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Summary

Stochastic differential equations are gaining popularity, but estimating the
models can be rather time consuming. CTSM v2.3 is a graphical entry
point which quickly becomes cumbersome. The present thesis successfully
implements CTSM in the scriptable R language and exploit the independent
function evaluations in the gradient.

Several non-linear model are tested to determine the performance running
parallel. The best speed-up observed is 10x at a low cost of additional total
CPU usage of a few percent.

The new CTSM interface lets a user diagnose erroneous estimations using
the newly added traces of the Hessian, gradient and parameters. It lives
within R and its very flexible environment where data preprocessing and
post processing can be performed with the new CTSM.
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CHAPTER 1

Background

This thesis was suppose to continue the analysis of clinical data in the DI-
ACON project. Diabetes is a condition where the body is unable to regulate
the glucose level in the blood. Glucose is the main source of energy for
our cells, but the level must be sustained within limits to avoid irrevers-
ible organ damage such as diabetic retinopathy or neuropathy. Managing
diabetes often relies on self-administration of insulin while monitoring the
glucose level. The DIACON project aims at automating the infusion of
insulin to sustain a stable level of glucose. The change of glucose level will
follow some physical system but even assuming perfect measurements the
measured levels will be subject to randomness. This systemic randomness is
modelled by using stochastic differential equations (SDE). This was what I
had undertaken, but I was challenged.

A major part in modelling is to identify and estimate parameters. For state
space models where the system equations are SDEs the in-house grown
Continuous Time Stochastic Modelling (CTSM) program by Niels Rode
Kristensen and Henrik Madsen [14] is a way to formulate a model and estim-
ate the parameters. The computational time depends both on the complexity
of the model and the data and will quickly consume an hour or more. Dur-
ing model identification waiting for hours is not satisfactory. Realising the
inherently serial optimisation relies on parallelisable calculations the speed
of CTSM became my challenge.

Currently CTSM is presented to the user through a friendly graphical user
interface designed in Java. This is an excellent entry point for some modellers
but a cumbersome way to verify multiple models repeatedly while changing
the underlying codebase. Thus I developed a simple interface in R.

The R interface was merely a tool for myself but a scriptable interface to
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2 Background

CTSM was highly requested. This was the birth of this thesis.



CHAPTER 2
CTSM

CTSM’s main purpose is estimating parameters, but will also do simulation,
smoothing, filtering and prediction. In the present thesis the parameter
estimation is the focus as it is computationally heavy.

The real machinery of CTSM is a complex set of Fortran 77 routines. It
depends on routines from the Harwell library, ODEPACK, LAPACK and
BLAS.

2.1 A brief overview of the mathematics

The general non-linear model in state space form is

dXt = f (Xt, Ut, t, θ)dt + σ(ut, t, θ)dWt (2.1)

yk = h(xk, uk, tk, θ) + ek (2.2)

The state variable Xt is a n-dimensional real valued random variable, ut

m-dimensional real valued input, t a real valued time and θ are the para-
meters. The vector function f (·) is referred to as the drift and σ(·) as the
diffusion. The SDE is driven by a standard n-dimensional Wiener process
(or a Brownian motion).

The Wiener process in eq. (2.1) has independent Gaussian distributed incre-
ments. CTSM assumes the conditional distribution of the k’th output is also
Gaussian fully described by eqs. (2.3) and (2.4).

ŷk|k−1 = E [yk|Yk−1, θ] (2.3)

Rk|k−1 = V [yk|Yk−1, θ] (2.4)

Finding the optimal parameters is the non-linear optimisation problem.

θ̂ = min
θ∈Θ
{−ln(L(θ;YN |y0))} (2.5)

3



4 CTSM

2.2 Optimising the objective function

The optimisation scheme used in CTSM is the well-known BFGS Quasi-
Newton algorithm with an inexact line search. Specifically it is the VA13
routine from the Harwell library implemented back in 1975. It has been
slightly modified but the calculations remain unchanged.

Quasi-Newton is a gradient based method where the Hessian is approxim-
ated. The Hessian is updated after every iteration using the BFGS updating
scheme. Computationally this is done through two rank-1 updates. Not
requiring a user defined Hessian is a major benefit as it is often impractical to
determine. The required gradient is not even available analytically and thus
approximated by forward or central finite difference. Forward difference is
used during the first N iterations where the higher approximation error is
less crucial. Moving closer to the solution the approximation is changed to
the central finite difference approximation.

Evaluating the loss function once can be rather expensive. The forward
approximation requires evaluating loss(xk−1 + α · pk) which is N evalu-
ations of the loss function. The central approximation requires evaluating
loss(xk−1 ± α

2 · pk) which is 2N evaluations. Clearly these are independent
evaluations of a computationally expensive loss function which can benefit
from running in parallel on a multi core processor.

Having an approximation of the Hessian and a finite difference approxima-
tion of the gradient the search direction is

pk = H−1
k gk. (2.6)

The next point in the parameter space is

xk+1 = xk + α · pk (2.7)

where α is a step length. With Quasi-Newton α = 1 should always be tried
first to ensure quadratic convergence. In general the optimal step length is
that minimising the loss function along the search direction. This subprob-
lem is solved inexactly and there are many such line search algorithms all
trying to compute a step length such that the Armijo and Wolfe conditions
are met[18]. This part is sequential.

The problems analysed with CTSM are likely to be small in dimension.
Thus the matrix inversion and multiplications will not benefit from running
parallel. Only the gradient will be calculated in parallel. The underlying
code does not currently perform the calculations correctly in parallel.
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2.3 The Graphical User Interface

Niels Rode Kristensen designed the current Java interface to CTSM. Fig-
ure 2.1 is the CTSM23 model specification of one the models used by [17].
The graphical user interface provides an easy way to specify a model and

Figure 2.1: Model specification

estimate it. This is very advantageous for students, external users and non
power users in general. When used heavily as in fig. 2.1 one is quickly
faced with having either many tabs or many saved model files. Changing
the model is possible but it is not easy to recover a previously tried model.
CTSM23 can only work on one model at a time and there is no possibility
of queuing additional runs. The lack of scripting of batching is a major
disadvantage when many models have to be analysed. The modeller must
be present to start the next run.

2.3.1 Brief introduction to how it works

When the model has been specified as in fig. 2.1 it is symbolically analysed.
Everything entered in CTSM23 are strings which are processed to verify the
correctness of the mathematics and dependencies. To verify the mathematics
every string is parsed through numerous tests e.g. counting parentheses and
verifying the use of basic operators as =-*/.



6 CTSM

The user must now specify initial values, bounds, estimation method and
priors. CTSM is now ready to translate the model into valid Fortran 77 code
which is saved in files in a working directory. For non-linear models the
f (·) and h(·) are further differentiated with respect to the states and inputs.
Technically this is automatic differentiation through source transformation
done by the Jakef precompiler[9].

The Fortran 77 code is then compiled behind the scene and initiated by the
CTSM Java interface. When completed the results are shown.

2.3.2 Some Problems with CTSM23

Being designed in Java the program is (to some extent) subject to the will
of Oracle (previously Sun Microsystems). Some of the elements used have
been deprecated and presently I am unable to alter any of the text boxes in
the stock version and thus unable to specify any model.

Installation on 64 bit Linux based systems using the provided InstallAny-
where installation software is not possible due to a known bug in the installer.

The goal here is to provide a way to overcome a number of the current
limitation.

2.4 R

R is a statistical language for analysing and visualising data [21]. It was
conceived in 1993 in New Zealand by Ross Ihaka and Robert Gentleman.
R is one of two modern implementations on the S programming language.
R is an open source project under GNU which has gained much use in the
academic world.

The R base is extended through thousands of packages developed by the
community. The biggest source of packages is the Comprehensive R Archive
Network (CRAN). The packages can use an underlying Fortran and C library.

Compared to the commercial MATLAB, R suffered in performance during
loops. MATLAB has a Just in Time (JiT) compiler which greatly speeds up
arithmetic loops. With the release of R version 2.14.0 a newly added byte
compiler is now default. It is not automatically applied to user functions but
a small test I conducted showed a 5 time speed up when applying the byte
compiler on arithmetic functions.



CHAPTER 3

Pre-implementation
considerations

Writing a serial program is quite easy. Going parallel forces the designer to
think in parallel. CTSM relies on a number of libraries each of these libraries
must be thread safe to be used in a threaded region.

3.1 Are the required libraries safe?

BLAS is the Basic Linear Algebra Subprograms which is the de facto stand-
ard for building blocks in numerical linear algebra. Especially the general
matrix multiply routine GEMM is heavily used. BLAS exist as a reference
implementation and in multiple optimised flavours for different architecture.
Common for most is they are multi threaded and thus thread safe[3].

LAPACK is the Linear Algebra PACKage. LAPACK is built on top of BLAS
and performs e.g. matrix factorisations. As of version 3.3 all routines in
LAPACK are thread safe[16]. Unfortunately inspecting the source trunk of
the recently released version 2.14.0 the included version of LAPACK is 3.1.
All routines but DLAMCH (and three others not used by CTSM) are thread
safe[15]. Although DLAMCH is present in the log-likelihood function it is never
called during parameter estimation. Thus it is harmless here.

ODEPACK is a collection of nine solvers for initial value problems for or-
dinary differential equations (ODE)[10]. There is no information available
on thread safety. The code is the original implementation from 1983 so it is
likely it is not thread safe.

The Harwell library is only used for it legacy optimiser VA13 and its depend-
encies. There will ever only be one instance within the program running.

7



8 Pre-implementation considerations

3.2 OpenMP

There are a number of methods to produce parallel code. Two widely used
are Message Passing Interface (MPI) and Open Multi-Processing (OpenMP).
MPI is more difficult to implement but can work in a distributed memory
setup - a cluster. OpenMP on the other hand is quite easy to implement but
only on share memory systems, i.e. one multi core computer with a vast
amount of memory. The size of the problems of interest and the size of the
current servers at DTU there is no reason to use MPI over OpenMP.

The wonderful thing about OpenMP is one can gradually parallelise the
code without major rewrites. One must remember that just because it is easy
does not guarantee efficient parallel code. With OpenMP it is easy to get false
sharing. Every core in a multi core CPU have its own small cache (L1) which
is a piece of memory on the CPU between the core and the main memory.
The data currently in the L1 cache is called a cache line. If two elements sit
close on the same cache line and that cache line is loaded on multiple L1
caches then any update to one cache line will invalidate others. The other
thread will be force to reload it from the memory. The solution is to pad
those variables affected to get them on different cache lines. Congruency is
likely not an issue here as only limited writing to shared arrays ever happen.

Since R 2.13.1 OpenMP is supported. Support is still eventually determined
by the compiler, but R 2.13.1 accepts the SHLIB_OPENMP flag. Prior to version
2.13.1 small non portable hacks very required. These would raise warnings
when building the package.

The GNU implementation of OpenMP is called GOMP. GOMP is working
across platforms, but is broken for Microsoft Windows where the threadprivate
clause is not working. The SHLIB_OPENMP flag is empty on Windows such
that the code will never be compiled with OpenMP.

The required stack size may quickly be too little memory when using
OpenMP. GNU OpenMP will allocate all local variables on the stack [7].
R has its own memory control and will terminate when the stack is almost
fully used. In Linux systems the size of the stack can be changed by calling
ulimit -s unlimited before starting R.

3.2.1 Directives

Implementing OpenMP is through directives (or pragmas). These pragmas
are translated by a preprocessor before compiling the code. In fixed form
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Fortran 77 all pragmas begin are stated in column 1 with c$omp. Thus if the
code is compiled without OpenMP all pragmas are simply comments.

OpenMP offers many ways to control the level of parallelisation. Doing that
requires knowledge of some pragmas. In Fortran 77 it is quick normal to
use COMMON blocks of variables to avoid parsing too many variables through
calls. A common block is shared between subroutines and act like a global
variable. The SAVE attribute has a similar effect as it preserves the value
of the variable between calls. Every COMMON and SAVE must be declared
thread private using c$OMP THREADPRIVATE(var1,var2,...). Upon entry
to a parallel region each thread will have its own set of the thread private
variables. The values are not copied and upon entry all the variables are
uninitialised. This can be overcome by using the copyin clause which copies
the values from the master thread to the corresponding variables in each
thread.

Keeping common blocks private within threads is essential. The GNU
implementation of OpenMP (GOMP) is broken on Microsoft Windows as
the threadprivate clause is not working.

To specify a region in the code which should run in parallel is enclosed by
Everything enclosed will be executed on each core. To run a loop in parallel

c $ OMP PARALLEL
...

c $ OMP END PARALLEL

Listing 1: OpenMP parallel clause

a DO clause is added. OpenMP will make sure the index variable is thread
private.

3.2.2 Control the data sharing

Inside the parallel region OpenMP must know which variables are to be
shared and which are to be private. There are two obvious clauses for this
purpose: SHARED(var1,var2,...) and PRIVATE(var3,var4,...). Shared
variables have no restriction and can be altered by all threads. Care must
be taken such that multiple thread are not updating the same variable. If so
this can lead to a data race and corrupt the calculations.

PRIVATE variables gets a private instance in every thread. The variables are
not initialised upon entry. This is accomplished by using the FIRSTPRIVATE
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clause. Variables declared firstprivate are initialised with the valued of the
corresponding variables in the master thread just before entry.

3.3 Reference Classes

R has to class systems from the S language, S3 and S4. S3 is a simple class
system. It is very easy and quite flexible to use. Far most of the packages for
R are designed in S3 classes. S4 was introduced with the methods package. It
is a much more rigorous and less flexible class than the S3 classes. It does
provide more clear overview of the code as it is clear which methods acts on
what.

R is written very functional programming, i.e. a function takes some inputs,
process them and returns the result. Reference classes is an object oriented
system with similarities to Java and C++. A class is an object with local
variables (fields) and methods. Methods are acting on the object itself in
contrary to the functional programming. I chose Reference Classes as I
wanted a CTSM model where the users can add and remove equations,
states etc. This is easily done when the methods modify the object itself.
Also, it is possible to inherit classes much like S4 which will be used here.

One caveat is copying. Imaging having an instance of a model which should
be copying to another variable. Normal R semantics would be model2 <-

model1. This does not work with Reference classes. It will merely copy the
reference to the underlying object. Modifying model2 will thus show up in
model1. A copy can be made, but must be done using the copy() method.



CHAPTER 4

Serial to Parallel

When using the OpenMP model only limited changes to the code are re-
quired to get it running.

There are two loops which can run in parallel. Only one run at the time, i.e. it
depends on whether it is currently performing forward or central difference.
The forward difference loop is shown in listing 2.

DO 4 I=1,NX
CALL FWDIFF(NX,X,I,XMIN,OD2,F,DF,INTS,NINT,DOUBLS,

$ NDOUB,TMAT,NTMAT,IMAT,NIMAT,OMAT,NOMAT,NOBS,

$ NSET,NMISST,EPSM,VINFO)
4 CONTINUE

Listing 2: Wrapper for the forward difference approximation

CTSM stores the current parameter estimate, the input and t in and common
block. Evaluating the loss function will change all of those. The common
block must be declared as private in each thread. Previous attempts to
implement OpenMP had already added the threadprivate clause to all
common blocks in the CTSM code. However enabling OpenMP only caused
CTSM to break down. Debugging parallel code changes the way the program
is executed. Naturally one can only debug one thread at a time. The outcome
of the code while debugging can be very different. In fact adding any kind of
instrumentation to the code will interfere with its normal execution pattern.

I started debugging an OpenMP running parallel CTSM using Eclipse Phor-
tran which is a part of the Eclipse Parallel Tools Platform [5]. Having ana-
lysed a majority of the code I found out that CTSM would be returned by
ODE integrator. CTSM would try to integrate multiple separate systems of
ODEs but it turned into one major data race. The subroutines in ODEPACK

11



12 Serial to Parallel

relies heavily on common blocks shared within ODEPACK. These blocks
of shared memory were shared in general over all running threads. The
integrator would return as the system it was trying to solve was overwritten
by another system - each thread fighting against each other. This was fixed
by added the threadprivate clause to every common block and variable
with the SAVE attribute.

At this point the code was running good. The included examples in the
CTSM documentation were tried multiple times with consistent results -
except for a few different results. The datasets for these two models are
complete without missing observations.

Parallel CTSM was further tested using the model shown in fig. 2.1 on
page 5 by Jan Kloppenborg Møller. The data supplied contains thousands
of missing observations and the general model structure is vast compared
to the examples from the documentation. CTSM returned prematurely.
After much time spend on debugging the code another data race appeared.
The log-likelihood function (loss function) counted the number of missing
observations. This variable is a part of the arguments of the subroutine and
can be traced back till listing 2 on the previous page where it is called NMISST.
Due to the variable being shared all running threads were updating a single
copy of it. Imagine two threads. One in the middle counting missing values
and the other finishing. As the counting happens over multiple files the
current count is added to the previous. The second thread finishes counting
and updates NMISST to 5000 and continues. When the first thread will finish
it will now update NMISST which is no longer 0 but 5000. CTSM failed as
later checks showed too the data had too many missing observations.

The FDF subroutine calculated the function value and the gradient. Calculat-
ing the function value is the first call to the log-likelihood function, LLIKE, in
listing 3 on the facing page. NMISST is update there and that number will not
change to the solution was the remove the NMISST argument from FWDIFF

in listing 2. Furthermore the gradient and vector info variables are now
declared as shared in the final code in listing 3 on the next page.

The new model would now run. Much time was spend on going through
the code to think about how each variable and argument are used in the
parallel setting. After manually debugging and correcting two data races I
learnt about thread analysers. Using both the Oracle Solaris Studio and Intel
Thread Profiler the code was analysed for further data races and congruency.
This process is very slow. Intel writes the execution time can be up to 300x
normal speed. No further data races were found.
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XMIN = 1D-1
CALL LLIKE(NX,X,INTS,NINT,DOUBLS,NDOUB,
$ TMAT,NTMAT,IMAT,NIMAT,OMAT,NOMAT,NOBS,NSET,

$ NMISST,FPEN,FPRIOR,EPSM,0,F,INFO)
IF (INFO.NE.0) RETURN
IF (MD.EQ.1) THEN

C
C FORWARD DIFFERENCE APPROXIMATION TO GRADIENT .
C
C $ OMP PARALLEL DO PRIVATE(I) FIRSTPRIVATE(X) SHARED(DF,VINFO)

DO 4 I=1,NX
CALL FWDIFF(NX,X,I,XMIN,OD2,F,DF,INTS,NINT,DOUBLS,NDOUB,

$ TMAT,NTMAT,IMAT,NIMAT,OMAT,NOMAT,NOBS,NSET,

$ EPSM,VINFO)
4 CONTINUE

C $ OMP END PARALLEL DO

Listing 3: Subset of the FDF subroutine calculating F and dF/dx





CHAPTER 5

The R Interface

CTSM in R (CtsmR here) has to major parts: (a) the user interaction part and
(b) the part communicating with the Fortran codebase. This section will take
out some of the important parts in the R code. Chapter 6 on page 21 goes
through a number of models and the CtsmR implementations are shown
there for reference.

5.1 User interface

CtsmR has 1 major class and 3 interface classes. The main class is called
ctsm.base and is not exposed. The three interface classes are inheriting
the ctsm.base class and provides model specifics. The three interfaces are:
ltictsm, ltvctsm and nlctsm for the linear time invariant, linear time vari-
ant and non-linear models respectively. Specifics included in the interface
classes are

• Interfaces for added equations and terms to the model

• Which dependences are allowed in the above matrices

• What goes in the internal A, B, C, D, SIGMAT and S matrices

The entire model specification will stay parsed by R and thus remain in the
language data type. R’s lists will be the internal data holder as lists are the
object which can contain multiple calls. Matrices are unfolded (in column
major as in Fortran) and stored in lists.

5.1.1 Adding an equation

A valid equation in CtsmR is a valid formula or expression in R. Writing
something like f<-a+b will be evaluated at once so to keep that from hap-

15



16 The R Interface

pening one must quote() it. To avoid requiring the user the use quote()

every time when adding an equation to the model the call is intercepted.
The expressions can now also be added directly without first quoting them.
Formulas like f a+b are simpler to cope with as they are not evaluated at
once.

The addequation method in ctsm.base is finding all equations and inserted
in the proper list. The left hand side becomes the name of the element and the
right hand side the content. The expression f==a+b becomes fvec[["X"]]
= a+b for the non-linear model. Adding equations/terms to the matrices is
a bit more complicated. Currently the user must specify the position in the
matrix.

There is no online check of illegal dependence in the equations.

5.1.2 Working on the equations

R is parsing the user entered equations before the CtsmR functions are actu-
ally called. Thus only mathematically valid expressions should appear. A
parsed expression in R is essentially lists of lists as LISP. In fact a+b is behind
the scenes as.call(list(as.name("+"),as.name("a"),as.name("b"))).
CtsmR will have to run through the entire tree to any algebraic equations.

codeWalker <- function(ex,node,...) {
if (is.list(ex)) {

for (j in 1:length(ex))
ex[[j]] <- Recall(ex[[j]],node,...)

}
if (typeof(ex) == "language") {

exx <- as.list(ex)
for (i in 1:length(exx)) {

ex[[i]] <- Recall(exx[[i]],node,...)
}

}
# Reached a node
ex <- node(ex,...)
return (ex)

}

Listing 4: The code walker

Listing 4 is a general function to walk through the entire expression tree. It
is used when end nodes must be handles as in substitution of equations.

Rather than walking through the expression tree it could be deparsed. De-
parsing turns an expression into the corresponding string. All substitutions
could then be done using regular expressions. Walking the trees seems
more secure as the entire end note is compared to equation names. Regular
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expressions would need more protection which is indirectly given using the
trees.

5.2 Processing to Fortran

There are two ways CtsmR will pass the model to the Fortran code. A
general problem on the Windows platform is the required Fortran 77 are not
available as standard. It it possible to get through the MinGW project but
most people will not have this. Linux on the other hand may have it already,
but if not it is quickly installed through a package manager.

To overcome the Windows issue two methods for evaluating the model is
developed. The primary will work like CTSM23 and convert the problem
into valid Fortran 77 which is compiled. The secondary method will work
more like standard R, i.e. the pre-compiled Fortran code will through a C
interface evaluate R functions or expressions within R.

Invoking the estimation starts a sequence to prepare the model for estimation.
CtsmR determines the size of the model at this point. It is unlike CTSM23
never specified by the user. The algebraic equations are first checked for
illegal dependence like implicit equations or cyclic dependence and then
substituted into the model using the codeWalker. For non-linear models one
extra step in done.

5.2.1 Differentiation

R can compute the symbolic derivatives of expressions. The automatic
differentiation is thus no longer required. The R function to be used here is
the simple D() which returns a simple call type. The non-linear case has two
vector functions which are differentiated with respect to inputs and states.
Listing 5 on the following page quickly differentiate a list of expressions in
R The derivatives produced this way have been test both numerically and
compared to symbolic differentiations in Maple with not mistakes.

The 4 matrices are now ready in the non-linear model. Finally ctsm.base is
called to perform the steps common to all models types.

5.2.2 Compiling the model

The default is to write the model out in Fortran code and compile it. The
user defined variables names must first be converted into the internal vector
notation. Having lists of state names, parameter names and input names
the codeWalker() is invoked to process the tree with a special leaf node
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diffVectorFun <- function(f,x) {
nf <- length(f)
nx <- length(x)
# Output as a list
jac <- vector("list",nf*nx)

# Column major
k <- 0
for (j in 1:nx)

for (i in 1:nf)
jac[[k<-k+1]] <- D(f[[i]],x[j])

jac
}

Listing 5: R code to differentiate a list of expressions

function. Only numbers and variables are converted not intrinsic functions
like sin, exp etc. where the generic function in Fortran are used.

The lists containing the Jacobians are deparsed to strings. A line can quickly
become longer than the allowed 72 columns in fixed-form Fortran. Ever line
is spilt into chunks of 64 characters. If splits occurred the subsequent lines
are written with a continuation mark.

Finally the model is compiled in a temporary directory. If successful, a
reference to the library file is saved.

5.2.3 The Windows alternative

This alternative was intended to become the primary link between the model
and Fortran. However R is very single threaded. This is a problems as CTSM
will have to evaluate the model multiple times in parallel to take advantage
on the speed-up. The Fortran code might run in parallel but all requests to R
will be queued thus reverting everything back to serial.

Another problem is R being an interpreted language. Unlike compiled
Fortran R contains multiple layers which are involved in the calculations.
When using R version 2.14.0 the byte compiler will be used and gain the
additional speed-up. My tests have shown Fortran is much faster, but byte
compiled R code is some 5 times faster. First the calls are converted into a
function using the calltoFunction() in ctsm.base. This is only necessary
because the byte compiler only handles functions.

R calls a C interface, which calls the main Fortran code. Every time the
matrices are evaluated the Fortran code calls a Fortran wrapper, which calls
the C wrapper which evaluates the expressions in the R environment.
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5.3 Exposed classes

Most of the code is entirely internal. The three model classes are available. A
new instance of the class is done by model <- [ltv,lti,nl]ctsm$new().

Having a model the following is possible

• $[add,remove]drift - Add drift term(s)

• $[add,remove]diffusion - Add diffusion term(s)

• $[add,remove]measure - Add measurement equation(s)

• $[add,remove]noise - Add noise terms(s)

• $[set,get]options - Set options

• $gentemplate - Generate a template for entering initial values

• $[set,get]configpars - Set the parameter configuration

• $estimate - Estimate

• $simulate - Simulate

• $smooth - Smooth

• $predict - Predict

5.4 Diagnostics

Diagnosing an optimisation in CTSM23 is next to impossible. The user
has no other option but to look at CTSM23 while running and writing the
parameter trace down by hand.

CtsmR is tracing the optimisation. Currently the following are saved per
iterations:

• The diagonal elements in the approximated Hessian

• The finite differences approximation of the gradient

• The scalar step length

• The current parameters

• The function value
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Those five information can provide valuable insight to the optimisation. It
should be noted that the Hessian, gradient and parameters are given in
the optimisation space and not the original. The values can easily be back
transformed.



CHAPTER 6
Experiments

5 non-linear models were estimated multiple times to verify the correctness
of the new CTSM running in parallel. The number of threads used is varied
from 1 to 20. The smaller models were typically estimated multiple times at
for each number of threads. The larger models consume too much time and
all tests cannot be completed within the 24 limit at the G-bar. The G-bar was
chosen because there are 12 servers each with two 12 cores available and the
load is in general very low.

The time spend for the estimation was saved to study whether running in
parallel actually is faster. The timing is done in R using the system.time()

function which returns 3 (+ 2 hidden) time measurements. The first is the
CPU time required by the estimation, i.e. the total CPU time. The third is
the elapsed time on the wall clock, call it Tp where p is the number of cores
used. T1 is the time used for the estimation using a single core. The speedup
in parallel is then

Sp =
T1

Tp
. (6.1)

The overall load on the servers where manually checked every now and
again to ensure the timing would not be corrupted do to other users’ usage.
The timing is very consistent when the requested cores are not perform-
ing other tasks. The consistency is expected as the estimation is a fully
deterministic process.

6.1 Non-linear model of a fed-batch bioreactor

This model is included in the original CTSM and is described in the user
guide parenciterode2003.

21
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The biomass concentration X, substrate concentration S and volume V
in a fed-batch bioreactor is modelled and formulated as an SDE in state
space. Equations (6.2) and (6.3) are the system and observation equations
respectively.

d

X
S
V

 =

 µ(S)X− FX
V

− µ(S)X
Y + F(SF−S)

V
F

 dt +

σ11 0 0
0 σ22 0
0 0 σ33

 dωt (6.2)

y1

y2

y3


k

=

X
S
V


k

+ ek, ek ∈ N(0, S), S =

S11 0 0
0 S22 0
0 0 S33

 (6.3)

F is an input and µ(S) is a growth rate and is given

µ(S) = µmax
S

K2S2 + S + K1
. (6.4)

The rest are parameters - some of which will be estimated.

The implementation in CtsmR is shown in listing 6. At this point CtsmR

# Create a NL model
model <- nlctsm$new()
# Add the growth equation
model$addequation(mu==mumax*S/(K2*S^2+S+K1))
# Add a state equation
model$addstate(X==mu*X-F*X/V)
# Add two states equations at once
model$addstate(S==-mu*X/Y+F*(SF-S)/V,V~F)
# Add diffusion terms
model$adddiffusion(1,sig11,5,sig22,9,sig33)
# Add the measurement equations
model$addmeas(y1~X,y2~S,y2~V)
# And the noise terms
model$addnoise(1,s11,5,s22,9,s33)

Listing 6: CtsmR implementation of a fed-batch reactor model

can be asked to generate a template for the specification of initial values,
bounds and if it should be estimated. Invoke model$gentemplate() to get
the template in listing 7 on the next page. The initial values and their bounds
are taken from table B.1 [13, p. 50] and the original CTSM model file and
shown in table 6.1 on the facing page. The lower and upper bound for K2, S
and Y are ignored if supplied. 11 parameters are to be estimated and 3 are
fixed to a value.

Two options are changed from the default values. The data is loaded and
the model is estimated in R as shown in listing 8 on the next page.
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[MODEL]$configpars( #
# States , Method , Lower , Inital , Upper #

"X0" ,c( 1 , 0 , 0 , 0 ),
"S0" ,c( 1 , 0 , 0 , 0 ),
"V0" ,c( 1 , 0 , 0 , 0 ),

# Parameter , Method , Lower , Inital , Upper #
"K1" ,c( 1 , 0 , 0 , 0 ),
"K2" ,c( 1 , 0 , 0 , 0 ),
"SF" ,c( 1 , 0 , 0 , 0 ),
"Y" ,c( 1 , 0 , 0 , 0 ),
"mumax" ,c( 1 , 0 , 0 , 0 ),
"sig11" ,c( 1 , 0 , 0 , 0 ),
"sig22" ,c( 1 , 0 , 0 , 0 ),
"sig33" ,c( 1 , 0 , 0 , 0 ),
"s11" ,c( 1 , 0 , 0 , 0 ),
"s22" ,c( 1 , 0 , 0 , 0 ),
"s33" ,c( 1 , 0 , 0 , 0 )

)

Listing 7: Templete for configuring the parameters

Method Lower Initial Upper

X0 1 0 1 2
S0 1 0 0.25 1
V0 1 0 1 2
K1 1 0 0.03 1
K2 0 0.5
SF 0 10
Y 0 0.5
mumax 1 0 1 2
sig11 1 0 0.01 1
sig22 1 0 0.01 1
sig33 1 0 0.01 1
s11 1 0 0.1 1
s22 1 0 0.1 1
s33 1 0 0.1 1

Table 6.1: Parameter configuration for listing 6

# Change the ODE solver to Adams and the number of iterations in EKF to 1
model$setoptions(con=list(solutionMethod="adams",nIEKF=1))
# Load the data
data <- read.csv("nlex/sde0_1.csv", header=FALSE, sep=";")
# Slight reformat
data <- list(time=data[,1],inputs=data[,-1])
# Estimate
res <- model$estimate(data, sampletime=0, interpolation=0, threads=11)

Listing 8: Load data and estimate the model
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This model is rather small and thus all computations are repeated 10 times.
The estimation is done using from 1 to 20 threads. All estimations were
compared to the very first estimation. The snippet in listing 9 is shown here
but is used for all models.

rep <- 10
thr <- 1:20
# Prepare lists for the results
res <- vector("list", rep*length(thr))
times <- vector("list", rep*length(thr))
# Loop away
for (th in thr)

for (j in 1:rep) {
times[[(th-1)*rep+j]] <- system.time(res[[(th-1)*rep+j]]

<- model$estimate(data, sampletime=0, interpolation=0, threads=th))
}

Listing 9: Repeated estimation and timing

Figure 6.1 shows the wall time as a box plot. Clearly the timing is very con-
sistent. The parameter subspace has 11 dimensions corresponding to the 11
free parameters. Thus the gradient requires independent point calculations
in 11 directions. As expected the fastest estimation time is achieved when
using 11 cores. The speed-up is almost 7x.
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Figure 6.1: Wall time during estimating the fed-batch bioreacter model

Figure 6.2 on the facing page is the total CPU time used while estimating the
model. This is also a view on the efficiency. It is not free to use more cores as
the total CPU time is increasing with increasing number of cores. The large
dip at 11 cores is expected as all cores will be used during the calculation of
the gradient. The total CPU time is increased by 54%. In absolute numbers
it is only about 3 seconds increase. The extra time is overhead going in and
out of a parallel region. The simplicity of the model and size of data causes
the overhead to be significant.
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Figure 6.2: Total CPU time during estimation of the fed-batch bioreactor model

All 200 estimations gave identical results. The results from CtsmR are
compared to CTSM in tables 6.2 and 6.3. The values are very close.

CTSM CtsmR

Objective function -388.4856754136 -388.4856757680
Iterations 48 47
Function evaluations 74 63

Table 6.2: Optimisation Results

CTSM CtsmR

Name Estimate Std. dev. Estimate Std. dev.

X0 1.009 55 1.059 68× 10−2 1.009 55 1.507 96× 10−2

S0 2.383 47× 10−1 9.308 00× 10−3 2.383 47× 10−1 9.366 96× 10−3

V0 1.003 95 7.917 15× 10−3 1.003 95 9.370 32× 10−3

mumax 1.002 24 2.843 86× 10−3 1.002 24 4.177 70× 10−3

K2 5 × 10−1 5 × 10−1

K1 3.162 94× 10−2 1.313 94× 10−3 3.162 94× 10−2 2.189 35× 10−3

Y 5 × 10−1 5 × 10−1

SF 1.000 00× 101 1.000 00× 101

sig11 1.552 98× 10−27 7.553 69× 10−26 1.563 00× 10−26 7.213 50× 10−25

sig22 1.765 42× 10−6 1.330 94× 10−5 8.013 09× 10−7 6.973 23× 10−6

sig33 1.149 93× 10−8 1.268 31× 10−7 1.788 68× 10−8 1.893 28× 10−7

s11 7.524 75× 10−3 9.997 02× 10−4 7.524 79× 10−3 1.089 41× 10−3

s22 1.063 61× 10−3 1.383 74× 10−4 1.063 61× 10−3 1.410 16× 10−4

s33 1.138 85× 10−2 1.530 64× 10−3 1.138 85× 10−2 1.531 12× 10−3

Table 6.3: Estimation Results
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6.2 Heat dynamics of solar collectors

This test model is kindly provided by Peder Bacher [2].

The problem here is estimating the parameters in a non-linear model of a
solar collector. At first the collector is seen as a single compartment where the
temperature is modelled as the average temperature of the in and outflow
assuming constant temperature of the inflow. The one compartment model
is expanded to nc compartments. The two compartment model is shown in
fig. 6.3. The nc compartment model is given in eq. (6.5). These are the state

F ′(τα)enKταb(θ)Gb

F ′(τα)enKταdGd

QfcfTi

QfcfTo2

Ufa(Ta − Tf2)

Tf1 = Ti+To1
2

TiTf2 = To1+To2
2

To1

Ufa(Ta − Tf1)

F ′(τα)enKταb(θ)Gb

F ′(τα)enKταdGd

To2

QfcfTo1

Figure 6.3: Diagram of the two compartment model of a solar collector and energy
flows. From [2].

equations.

dTo1 =
(

F′U0(Ta − Tf1) + nccfQf(Ti − To1)

+ F′(τα)enKταb(θ)Gb + F′(τα)enKταdGd

) 2
(mC)e

dt + σ1dω1

(6.5)

dTo2 =
(

F′U0(Ta − Tf2) + nccfQf(To1 − To2)

+ F′(τα)enKταb(θ)Gb + F′(τα)enKταdGd

) 2
(mC)e

dt + σ2dω2

...

dTonc =
(

F′U0(Ta − Tfnc) + nccfQf(To(nc−1) − Tonc)

+ F′(τα)enKταb(θ)Gb + F′(τα)enKταdGd

) 2
(mC)e

dt + σ2dω2

and the measurement equation is

Yk = Tonck + ek. (6.6)

The details are well described in [2].
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6.2.1 One compartment model

For one compartment the model has one state and one measurement equa-
tions. Listing 10 is the corresponding implementation.

# Create a NL model
model <- nlctsm$new()
# Add the growth equation
model$addequation(Ktab==(1-b*(1/cosT-1)) *

(1/(1+exp(-1000*(cosT-1/(1/b+1))))))
# Add the state equations
model$addstate(To==(Ufa*(Ta-(To+Ti)/2) + Q*c*(Ti-To) +

a*A*Ktab*Ib + a*A*Ktad*Id)/Cf)
# Add diffusion terms
model$adddiffusion(1,exp(p22))
# Add the measurement equations
model$addmeas(y~To)
# And the noise terms
model$addnoise(1,exp(e11))

Listing 10: CtsmR implementation of the one compartment solar collector
model

The initial values are configured as in listing 7 on page 23. The values are
taken from the saved CTSM23 model file. Two out of nine parameters are
fixed leaving leaving 7 parameters and the initial state as free parameters.
The estimation is repeated 10 times for each thread between 1 and 20.
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Figure 6.4: Times for the one compartment model

Figure 6.4 shows the fastest estimation time is achieved at 8 cores as expected.
The speed-up here is just below 5x. 19 additional seconds are spend on CPU
time at 8 cores. This is a 22.6% increase. Again the model is quite quickly
estimated.
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CTSM CtsmR

Objective function -4487.60124 -4487.60124
Iterations 26 29
Function evaluations 41 39

Table 6.4: Optimisation Results

CTSM CtsmR

Name Estimate Std. dev. Estimate Std. dev.

To0 6.341 10× 101 7.324 70× 10−2 6.341 09× 101 6.460 99× 10−2

b 1.340 80× 10−1 1.566 90× 10−3 1.340 79× 10−1 1.745 40× 10−3

Ufa 3.676 50× 101 8.110 20× 10−2 3.676 53× 101 8.314 25× 10−2

c 4.183 00× 103 4.183 00× 103

a 8.417 70× 10−1 8.054 60× 10−4 8.417 70× 10−1 8.603 05× 10−4

A 1.253 00× 101 1.253 00× 101

Ktad 9.449 80× 10−1 2.299 80× 10−3 9.449 77× 10−1 2.645 70× 10−3

Cf 6.422 80× 104 3.098 90× 102 6.422 74× 104 2.895 11× 102

p22 −1.447 00× 101 8.627 10× 10−2 −1.446 38× 101 8.583 60× 10−2

e11 −4.275 20 2.110 80× 10−2 −4.275 19 2.000 09× 10−2

Table 6.5: Estimation Results
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6.2.2 Three compartment model

The expanded three compartment model is shown implemented in CtsmR
in listing 11. The initial values are taken from the corresponding CTSM23

# Create a NL model
model <- nlctsm$new()
# Add the growth equation
model$addequation(Pb==a*A/3*(1-b*(1/cosT-1))

* (1/(1+exp(-1000*(cosT-1/(1/b+1)))))*Ib)
model$addequation(Pd==a*A/3*Ktad*Id)
model$addequation(deltaT1==Ta - (To1+Ti)/2)
model$addequation(deltaT2==Ta - (To2+To1)/2)
model$addequation(deltaT3==Ta - (To3+To2)/2)
# Add the state equations
model$addstate(To1==Ufa*deltaT1/Cf + Q*c*(Ti-To1)/Cf + Pb/Cf + Pd/Cf)
model$addstate(To2==Ufa*deltaT2/Cf + Q*c*(To1-To2)/Cf + Pb/Cf + Pd/Cf)
model$addstate(To3==Ufa*deltaT3/Cf + Q*c*(To2-To3)/Cf + Pb/Cf + Pd/Cf)
# Add diffusion terms
model$adddiffusion(1,exp(p11),5,exp(p22),9,exp(p33))
# Add the measurement equations
model$addmeas(y==To3)
# And the noise terms
model$addnoise(1,exp(e11))

Listing 11: CtsmR implementation of the three compartment solar collector
model

file. Figure 6.5 shows a dip in estimation time at 12 which is also the number
of free parameters.
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Figure 6.5: Times for the three compartment model

The estimation repeated 5 times and all 100 estimations were identical.

Tables 6.6 and 6.7 on the next page shows the estimates are similar.
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CTSM CtsmR

Objective function -12657.52963863876 -12657.52964688
Iterations 44 52
Function evaluations 74 86

Table 6.6: Optimisation Results

CTSM CtsmR

Name Estimate Std. dev. Estimate Std. dev.

To10 6.432 50× 101 3.430 60× 10−2 6.432 31× 101 8.940 85× 10−2

To20 6.399 20× 101 8.124 70× 10−2 6.399 23× 101 2.160 26× 10−1

To30 6.348 90× 101 1.856 40× 10−2 6.348 89× 101 2.838 30× 10−2

a 7.974 50× 10−1 1.773 10× 10−3 7.974 49× 10−1 3.406 17× 10−3

A 1.253 00× 101 1.253 00× 101

b 1.542 90× 10−1 2.332 90× 10−3 1.542 81× 10−1 3.235 38× 10−3

Ktad 9.590 40× 10−1 5.203 00× 10−3 9.590 42× 10−1 9.682 13× 10−3

Ufa 1.162 40× 101 8.420 70× 10−2 1.162 42× 101 8.290 04× 10−2

Cf 2.854 40× 104 1.543 20× 102 2.854 36× 104 2.356 85× 102

c 3.970 00× 103 3.970 00× 103

p11 −2.914 50 3.212 50× 10−2 −2.914 57 3.157 43× 10−2

p22 −3.594 60 3.262 50× 10−2 −3.594 63 3.749 85× 10−2

p33 −2.012 60× 101 1.221 90× 10−1 −1.975 70× 101 1.126 58× 10−1

e11 −9.658 80 8.710 20× 10−2 −9.658 74 8.140 28× 10−2

Table 6.7: Estimation Results
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6.3 Glucose concentration model

This model is based on [11, 27]. The CtsmR implementation here is based on
the work by Anne Katrine Duun-Henriksen.

This model join the CtsmR test arsenal rather late. What made it interesting
is it size: 10 states and and 28 parameters. The optimisation space has a full
space of 38 dimensions. Listing 12 provides the CtsmR implementation.

# Create a NL model
model <- nlctsm$new()
# Add the equations
model$addequation(FR==(0.003*(Q1/VG-9)*VG)/(1+exp(ggf*(9-Q1/VG))))
model$addequation(F01c==(F01*(Q1/VG)/4.5)/(1+exp(-ggc*(4.5-(Q1/VG))))+

F01/(1+exp(ggc*(4.5-(Q1/VG)))))
# Add the state equations
model$addstate(Q1==D2/tauD-F01c-FR-x1*Q1+k12*Q2+EGP0*(1-x3))
model$addstate(Q2==x1*Q1-(k12+x2)*Q2)
model$addstate(x1==-ka1*x1+kb1*I)
model$addstate(x2==-ka2*x2+kb2*I)
model$addstate(x3==-ka3*x3+kb3*I)
model$addstate(I==(S2/tauS)/VI-I*ke)
model$addstate(D1==Ag*d-D1/tauD)
model$addstate(D2==D1/tauD-D2/tauD)
model$addstate(S1==Usc-S1/tauS)
model$addstate(S2==S1/tauS-S2/tauS)
# Add diffusion terms
model$adddiffusion(1,exp(s1),12,exp(s2),23,exp(s3),34,exp(s4),45,exp(s5),

56,exp(s6),67,exp(s7),78,exp(s8),89,exp(s9),100,exp(s10))
# Add the measurement equations
model$addmeas(Gout==Q1/VG)
# And the noise terms
model$addnoise(1,sG)

Listing 12: CtsmR implementation of the Hovorka model

This model is estimated using simulated data. All states have been fixed
plus another two parameters. Thus 26 parameters must be estimated. The
servers at the G-bar only have 24 cores so all directions for the gradient
cannot be estimated simultaneously. The best performance is expected at 13
cores. That is because 13 is the highest number dividing 26.

The estimation is slow so there is only one estimation per number of cores.
Figure 6.6 on the next page shows the resulting times. The fastest estimation
time is found at 13. This is where each core is essentially calculating both
points while approximating the gradient. At 13 cores the speed-up is 10x
and relative additional CPU cost is 8.8%.

The estimates are once again very similar. The results are not shown due to
the 26 parameters.
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Figure 6.6: Times for the Hovorka model

6.4 Marine Ecosystem in Skive Fjord

The two models tested here were provided by Jan Kloppenborg Møller [17].
His paper is a methodology description with an application to a marine
ecosystem in Skive Fjord. The change of water column nitrogen and phyto-
plankton nitrogen is modelled by a SDE. Contrary to any of the previous
model eq. (6.7) has state dependent diffusion.

d

[
Xw,t

Xp,t

]
=

[
Nex,tQt

0

]
dt +

[
−Qt − awp − awt apw

apw −apw −Qt

] [
Xw,t

Xp,t

]
dt

+

[
σwXw,t 0

0 σpXp,t

] [
1 r12

r12 1

]
dwt

(6.7)

Equation (6.7) does not comply with the requirements of CTSM and its
use of Kalman filtering due to the state dependent diffusion. Through a
Lamperti transformation the state dependence is removed and the model
can be estimated using CTSM. For eq. (6.7) the Lamperti transformation is
simply a log transformation [17, p. 10].

This particular dataset has a lot of missing observations. The sampling time
of the different inputs vary a lot, but the dataset has a set of observations
per day. As a result three of the inputs are missing 92% of the observations
as the sampling time was high.
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6.4.1 Basic Marine model

Equation (6.7) on the preceding page was only tried at a very late stage.
A larger extended version of the model was difficult to get working in
CtsmR. Hoping for an uncaught implementation error this model was tried.
Although the model is smaller the dataset remains the same. There are 11

# Create a NL model
model <- nlctsm$new()
# Add the equations
model$addequation(Xw==exp(sxw*Zw))
model$addequation(Xp==cp*exp(sxp*Zp))
model$addequation(f==1)
# Add the state equations
model$addstate(Zw==(Nex*Q/Xw-awl-Q-awp*f+apw*Xp/Xw)/sxw-sxw*(1+r^2)/2)
model$addstate(Zp==(awp*Xw/Xp*f-apw-Q-apl)/sxp-sxp*(1+r^2)/2)
# Add diffusion terms
model$adddiffusion(1,1,2,r,3,r,4,1)
# Add the measurement equations
model$addmeas(Yw==log(Xw+Xp))
model$addmeas(Yp==log(cp)+sxp*Zp)
model$addmeas(Ypri==sxw*Zw+log(awp)+log(f))
# And the noise terms
model$addnoise(1,sw,5,sp,9,spr)

Listing 13: CtsmR implementation of the eq. (6.7)

free parameters and the fastest estimation time is at 11 cores illustrated in
fig. 6.7.
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Figure 6.7: Times for small model of Skive Fjord

The speed-up is 4.4x for an additional charge of 15x. Table 6.8 on the next
page shows the results which again is near identical.
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CTSM CtsmR
Objective function 1445.753337696099 1445.7533376961
Iterations 49 56
Function evaluations 60 71

Table 6.8: Optimisation Results

CTSM CtsmR

Name Estimate Std. dev. Estimate Std. dev.

Zw0 −6.771 00 4.493 30 −6.771 05 4.439 77
Zp0 −2.346 20 1.393 60 −2.346 23 1.234 25
sxw 6.115 30× 10−2 3.995 40× 10−3 6.115 34× 10−2 3.669 79× 10−3

cp 1 1
sxp 6.246 00× 10−1 8.486 50× 10−2 6.246 01× 10−1 8.146 71× 10−2

awl 7.031 70× 10−3 3.282 10× 10−3 7.031 70× 10−3 3.106 89× 10−3

awp 1.589 50× 10−2 2.209 40× 10−3 1.589 51× 10−2 2.177 43× 10−3

apw 5.264 10× 10−2 3.406 30× 10−2 5.264 05× 10−2 3.117 88× 10−2

r −1.644 90× 10−1 4.648 70× 10−2 −1.644 95× 10−1 4.377 29× 10−2

apl 0 0
sw 1.348 50× 10−2 2.448 60× 10−3 1.348 47× 10−2 2.262 69× 10−3

sp 3.039 00× 10−1 1.481 90× 10−1 3.038 97× 10−1 1.449 88× 10−1

spr 3.545 90 2.849 30× 10−1 3.545 94 2.872 63× 10−1

Table 6.9: Estimation Results

6.4.2 Extended Marine model

The model shown in eq. (6.7) on page 32 is the basic model which is extended
through out the paper. This is the model from [17, p. 18] where the diffusion
terms have been changed. The model is Lamperti transformed to get state
independent diffusion. Furthermore one of the parameters is added as a
state only with a diffusion term.

The R implementation is given in listing 14 on the next page.

Figure 6.8 on the facing page are based on a single estimation per cores used.

The estimation is very time consuming spending 7500 seconds on the estim-
ation using a single core. Running at the optimal 16 cores resulted in a 10.4x
speed-up for an additional CPU charge of 3.3%.

The estimates are once again very similar. The results are not shown due to
the number of parameters.
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# Create a NL model
model <- nlctsm$new()
# Add the equations
model$addequation(Xw==(sxw*(1-gw)*Zw)^(1/(1-gw)))
model$addequation(Xp==(sxp*(1-gp)*Zp)^(1/(1-gp)))
model$addequation(f==Xp*(gr/(kgr+gr))/(kw+Xw))
model$addequation(dpw==Xw^(-gw)/sxw)
model$addequation(dpp==Xp^(-gp)/sxp)
model$addequation(corw==Xw^(gw-1)*gw*(1+r^2)*sxw/2)
model$addequation(corp==Xp^(gp-1)*gp*(1+r^2)*sxp/2)
# Add the state equations
model$addstate(Zw==dpw*(Nex*Q-(awl+Q+exp(awp)*f)*Xw+apw*Xp)-corw)
model$addstate(Zp==dpp*(ap0+exp(awp)*Xw*f-(apw+Q)*Xp)-corp)
model$addstate(awp==0)
# Add diffusion terms
model$adddiffusion(1,1,2,r,4,r,5,1,9,0)
# Add the measurement equations
model$addmeas(Yw==log(Xw+Xp))
model$addmeas(Yp==log(Xp))
model$addmeas(Ypri==log(Xw)+awp+log(f))
# And the noise terms
model$addnoise(1,sw,5,sp,9,spr)

Listing 14: CtsmR implementation of the extended marine eco model
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Figure 6.8: Times for the large model of Skive Fjord





CHAPTER 7
Discussion

All test models were estimated as expected. That is the estimates from
CtsmR as highly similar to those of CTSM23. The observed differences is
explained in section 7.1.

The primary observation was that the estimation of any valid CTSM model
is always fastest when the used number of cores equals the number of free
parameters. This is not at all surprising in theory, but is confirmed here. The
speed-up is determined in general in section 7.2 on the following page.

All models tested here were already working in CTSM23. It was a matter of
reproducing the results. However during model identification a new feature
of CtsmR can help diagnosing when an estimation does not work. More on
this in section 7.3 on page 41.

7.1 The discrepancies

All the parameter estimations shown in chapter 6 on page 21 vary somewhat
from the previous results. All the estimations done during this thesis were
done on the same 64 bit AMD architecture running Linux. The results will
vary across 32/64 bit, compiler suites as well as the operating system. This
is however not the case here.

The Jacobian in CTSM23 is determined using automatic differentiation.
In CtsmR it is determined analytically, but may or may not be its most
simplified form. The fed-batch model in section 6.1 on page 21 was estim-
ated in CTSM23 again. When the optimisation finished the four jacobians
were replaced with those derived analytically in CtsmR. After recompiling
the source code CTSM23 was asked for one more estimation. The results

37
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are shown in table 7.1 on the following page. Some "larger" changes are
highlighted.

CTSM23 AD CtsmR diff

Name Estimate Std. dev. Estimate Std. dev.

X0 1.009 55 1.059 68× 10−2 1.009 55 1.057 13× 10−2

S0 2.383 47× 10−1 9.308 00× 10−3 2.383 47× 10−1 9.058 98× 10−3

V0 1.003 95 7.917 15× 10−3 1.003 95 7.365 02× 10−3

mumax 1.002 24 2.843 86× 10−3 1.002 24 4.633 68× 10−3

K2 5 × 10−1 5 × 10−1

K1 3.162 94× 10−2 1.313 94× 10−3 3.162 93× 10−2 1.932 08× 10−3

Y 5 × 10−1 5 × 10−1

SF 1.000 00× 101 1.000 00× 101

sig11 1.552 98× 10−27 7.553 69× 10−26 1.957 71× 10−27 6.153 47× 10−26

sig22 1.765 42× 10−6 1.330 94× 10−5 8.466 89× 10−7 4.435 86× 10−6

sig33 1.149 93× 10−8 1.268 31× 10−7 1.087 10× 10−8 7.805 00× 10−8

s11 7.524 75× 10−3 9.997 02× 10−4 7.524 80× 10−3 1.036 89× 10−3

s22 1.063 61× 10−3 1.383 74× 10−4 1.063 61× 10−3 1.378 15× 10−4

s33 1.138 85× 10−2 1.530 64× 10−3 1.138 85× 10−2 1.554 92× 10−3

Table 7.1: Estimation Results

The automatic differentiation is using two work vectors which is looped
through several times. By replacing the Jacobians the estimation time
dropped. Although it remains unmeasured the difference was clear. It it also
rather expected as the Jacobian derived symbolically are simple calculations
without any use of loops and work vectors.

Order of parameters CTSM23 and CtsmR vary in the way the parameters
are found in the equations. In CtsmR the order is: Initial states, sorted lists
of parameters in the drift and dt parts, diffusion specific parameters and
noise specific parameters. In the fed-batch example three parameters have
swapped place. By forcing CtsmR to use the same order of parameters
as CTSM23 the results become identical to those from CTSM23 using the
analytically derived Jacobians. The order of parameters is rather random
in CTSM as they are listed as they appear in the equations. One order is
not better than another per se, but CtsmR will not be affected should a user
swap the order of the equations in a model.

7.2 Speed-up

All the wall clock profiles figs. 6.1 and 6.4 to 6.7 on pages 24–33 are similar
in shape. The difference is the number of free parameters in the model. The
highest speed-up is always achieved using the same number of cores as free
parameters. The speed-ups is a relative measure and it seems natural that
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the speed-up depends on the amount of free parameters. Adding one extra
parameter calls for two additional evaluations of the objective function. To
study this relationship all models went through the following scheme.

• Fix all parameters to either the initial or optimal values

• Release one parameter and set the original bounds

• Estimate the model using one core

• Estimate the model using optimal number of cores

• Repeat until all parameters have been set free

The estimation of some of the configurations did as the ODE solution would
fail. Most models are complicated thus a bad initiation can be problematic.
To actually perform this is very simple in CtsmR due to the ability to script.
First the models were estimated as they were originally intended and the
results were subsequently used as described in section 7.2 on the preceding
page. A nice ability which is be very cumbersome in CTSM23.

In practice all models were tried using both initialisations. The model
with a single free parameter was obviously not estimated as the speed-up
measure is 1. Parameters originally fixed remained fixed during this test
and the estimation was skipped. Finally the info flag was check for both the
single and parallel runs. This will not exclude all degenerative/troubled
estimations. In a number of cases the forward propagation ODE is so stiff
that the integration exceeds the allow steps. This is followed by a warning
printed to R. CTSM will restart the integration 1000 times each followed
by a warning. The same will of cause happen running in parallel but the
printing of the warnings to R may increase the overhead disproportionally
thus lowering the speed-up measure.

Figure 7.1 on the following page shows the relative speed-up measures for
the test models plotted against the number of free parameters. For every
model a speed-up of 1 for one free parameter has been added.

Figure 7.1 on the next page shows a clear and expected trend. The speed-up
is not identical to the free parameters as expected. A linear fit is done in
R by fixing the (1, 1) point. This is reasonable as the speed-up for one free
parameter is simply 1. Fitting eq. (7.1) using lm() in R gives a slope of
a = 0.5716. Thus eq. (7.2) is the rule of thumb for the speed-up in CtsmR in
parallel.

SU− 1 = a · (#pars− 1) (7.1)



40 Discussion

Free parameters

S
pe

ed
−

up

2

4

6

8

10

12

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

● ●

●

●

●

●

● ● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

5 10 15 20

Models

● FB

● FB 2

● Solar1

● Solar3

● Hovorka

● Skive14

● Skive14 2

Figure 7.1: Speed-up by number of free parameters. FB 2 and Skive14 2 were initiated
using optimal values. Rest using those from the original CTSM23 files.

SU = 0.5716 · #pars + 0.4284 (7.2)

7.2.1 Additional CPU cost

The optimisation algorithm itself is serial. Determining the gradient is a
truly expensive task whereas the remaining matrix vector multiplications
finding the search direction and BFGS updates are very cheap in comparison.
During the serial sections all but one core are idle and wasting CPU time.
However the complexity of the gradient compared to the complexity of the
Quasi-Newton algorithm itself is rather high.

Figure 7.2 on the facing page shows increased total CPU time as high as
60%. However this is the fed-batch model which is very fast to estimate. As
the complexity and thus estimation time increases the relative additional
CPU cost decreases. The time consuming extended marine eco model only
charges 3.3% extra CPU time to achieve a 10.4x speed-up.

7.3 Diagnostics

CTSM23 prints the current point in the parameter space during the estima-
tion. The values are overwritten at some rate which does not follow the rate
of iteration. In reality obtaining a trace in CTSM23 is not possible.

The codebase of CTSM is now for each iteration saving

• the diagonal elements of the Hessian
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Figure 7.2: Additional CPU time in percent

• the gradient

• the step length

• the free parameters

• the negative log-likelihood

This information can shed some light on what the optimiser is doing. When
the optimisation does not converge it can be useful to diagnose which
parameter is problematic.

The trace of the parameters of the optimisation of the extended marine eco
model from section 6.4.2 on page 34 is shown in fig. 7.3 on the following
page. The trace is also showing that all the estimates stabilises at the end
thus indicating convergence to some minimum. Figure 7.4 on the next page
is the negative log-likelihood. It is decreasing well and flattens out indicating
a local minimum.



42 Discussion

Iteration

V
al

ue

200

250

300

350

0.5155

0.5160

0.5165

0.5170

0.20
0.22
0.24
0.26
0.28
0.30
0.32

6.20e−05

6.25e−05

6.30e−05

6.35e−05

Zw0

gw

kw

ap0

20 60 100 140

50

100

150

0.214
0.216
0.218
0.220
0.222
0.224
0.226

−0.9875

−0.9870

−0.9865

0.0116

0.0117

0.0118

0.0119

Zp0

sxp

r

sw

20 60 100 140

−1.12
−1.10
−1.08
−1.06
−1.04
−1.02

0.80

0.85

0.90

0.95

0.4935
0.4940
0.4945
0.4950
0.4955
0.4960
0.4965

0.21
0.22
0.23
0.24
0.25

awp0

gp

awl

sp

20 60 100 140

2.4
2.6
2.8
3.0
3.2
3.4
3.6
3.8

435
440
445
450
455
460
465

0.12

0.14

0.16

0.18

0.78

0.80

0.82

0.84

sxw

kgr

apw

spr

20 60 100 140

Figure 7.3: Back transformed parameter trace from the extended marine eco model
in section 6.4.2
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CHAPTER 8

Future Development

CtsmR is an almost ready to use R package. However many ideas for the
further development have emerged.

8.1 Polishing the package

The package still contains some rough edges which I will upon finishing this
thesis will take care off.

CRAN or The Comprehensive R Archive Network is the major host of pack-
ages contributed by the community. Uploading CtsmR to CRAN is the next
logical step.

Documentation of the classes and exposed functions is missing. This is a
(fair) requirement before uploading to CRAN. Hadley Wickham’s Roxygen2
will be used.

Unit testing is a great way to set up tests to ensure the correctness of the
code. Bad releases should not be possible. Matthias Burger’s RUnit package
should be used.

8.2 Optimisers

Currently it is the well-known unconstrained BFGS Quasi-Newton doing the
optimiser. The parameter space in the CTSM models are usually bounded.
Thus the constrained problem is first transformed into an unconstrained
problem before the optimisation is begun.

The current optimiser it the VA13 from the Harwell Subroutine Library. The
HSL Mathematical Software Library does not provide non-linear optimisa-
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tion tools any longer. They are now developed in the GALAHAD library
which is a thread safe Fortran library for both unconstrained and bound-
constrained problems [8].

8.2.1 Stochastic Optimisation

The most time consuming task here is evaluating the loss function. The
parameter space does have to be very high dimensional before the CTSM
problems consume time. Computing the gradient is means varying all
parameters twice. Adaptive Simultaneous Permutation Stochastic Approx-
imation is a stochastic analogue of the Newton-Raphson methods [24]. The
adaptive SPSA is estimating the Hessian and gradient. The main recursions
are

θ̂k+1 = θ̂k − ak H
−1
k Gk(θ̂k), Hk = fk(Hk) (8.1)

Hk =
k

k + 1
Hk−1 +

1
k + 1

Ĥk, k = 0, 1, 2, . . . (8.2)

Gk is a gradient approximation, Ĥk is the k-th iterate estimate of the Hessian
and f (·) is some function ensuring the Hessian is positive definite. The ak is
a non negative gain like the step length in the deterministic methods. The
clever part is how the gradient and Hessian are estimated. The gradient
requires two evaluations of the loss function. These two points is based
on perturbing the current point with independent Bernoulli ±1 in each
dimension. The spacing is determined by a iteration dependent gain factor.
The Hessian requires another two evaluations which are further perturbation
of those two points evolved in the gradient. Again the perturbation is
random and the spacing is controlled by another gain factor. The details are
omitted here but are found in [24, 26].

Per iteration the adaptive SPSA only requires 4 evaluations of the loss func-
tion independent of the dimension. This should really help speeding up
some of the high dimensional problems. [25] suggests a method using feed-
back and weighting of the Hessian to get faster convergence than regular
SPSA.

One issue is the gain factors. Some are suggested in [24] while some are
problem dependent and rely on expert judgement. If some heuristics cannot
be determined to get a true black box method then these are just additional
settings.
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8.3 Fortran 90/95

Fortran 77 is an old language. Since Fortran 77 there have been a number of
update to the standard; Fortran 90, 95, 2003 and 2008. Fortran 90 was a major
revision and brought many interesting new features which will simply the
CTSM Fortran codebase.

Masked array assignment Throughout the code there are many evalu-
ations of the user defined matrices. These are often save in other variables.
Some matrices are augmented by a row when evaluated, thus a subset of
the matrix is saved elsewhere. Currently this is done through nested loops.
Fortran 90 allows X(1:N)=R(1:N).

Dynamic memory allocation Fortran 77 does have assumed size variables,
but is otherwise not able to dynamically allocate memory on the heap.
Fortran 90 introduced an ALLOCATABLE attributed. When needed memory
can now be allocated through ALLOCATE.

The current code depends on variable length variables in a common block.
This is impossible in Fortran 77. Thus the size must be known at compile
time which makes it impossible to have a compiled library working for
unknown problems. The can be solved using by using a module (also new)
for allocatable variables.

Operator overloading Although R is performing the differentiation analyt-
ically now the previous method was to use automatic differentiation through
source code transformation. Operator overloading is another strategy for
automatic differentiation and there are several such tools available[1].

Other useful things DO loops are terminated by a label. This means there
are a lot of labels. Although some supported it already END DO are now
standard by Fortran 90.

Free form input allows more flexibility in the source code layout. The layout
has been freed so to speak.

Functions and variables are allowed to be 31 characters long.

8.3.1 Portability

Portability is always a concern. We want CTSM to be functional across
platforms. R is open source and as such written to be compiled with GNU’s
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compilers. It can however be compiled with Intel’s and Oracle’s compiler
suites under Linux [22, pp. 51-52].

GNU’s Fortran compiler is gfortran and it is a Fortran 95/2003/2008 com-
piler[6]. It offers a –std=legacy compiler option which suppresses warnings
related to Fortran 77 code.

Oracle Studio’s Fortran compiler is a Fortran 95 compiler [20, p. 177]. It
will compile standard conforming Fortran 77 for backward compatibility.
Version 12.1 (from Sun’s time) is available on the Gbar at DTU.

Intel’s ifort does compiles Fortran 77 code and provides backward support
for Fortran 77 specifics [12]. The Intel compiler suite is not available at DTU.

All the compilers our users are likely to use will compile Fortran 90/95 code.
In fact all 3 compilers only support Fortran 77 for backward compatibility.
There might however be problems with very old operating system which
will not compile anything but Fortran 77 [23, p. 23]. In general these are
irrelevant concerns for CTSM.

8.4 GPU Acceleration

Exploiting the graphical processing units (or GPU) is getting more and more
popular. GPU’s have hundreds of cores and can bring supercomputers
to workstations. NVIDIA’s Tesla C2075 has 448 CUDA cores and 6 GB of
memory [19]. Each core clock at 1150 MHz.

While the problems where CTSM is applied it not all that high dimensional
in parameter space there are many calculations which could be done in par-
allel. The biggest model I have seen tried in CTSM has some 50 parameters
and 10 states. The central finite difference approximation of the gradient is
2N independent calculations. Solving the forward Kolmogorov difference
equation for the states and variance is N and N(N+1)

2 coupled ODEs respect-
ively. To fully exploit this requires new tools for solving coupled ODEs in
parallel.

The clock frequency of a GPU core is much lower than a CPU. Modern
desktop CPUs have 2-6 cores working at frequencies around 3 GHz. The
servers at the Gbar, DTU have 2x12 cores AMD 6168 CPUs. Each core is
working at 1900 MHz [4]. Despite the Gbar is slower per core than a regular
laptop is will run CTSM problems with 2-3 or more parameters faster in
parallel.
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8.5 Extending the R interface

The new R interface is the first take. At an internal CTSM user meeting
several ideas surfaced.

Model specification trough a graphical user interface written in Tcl/Tk.
There are many inputs in these types of models and it can provide a quicker
overview having graphical entry point. The graphical interface should be
able to write out the corresponding R code. Thus is will serve as a learning
tool too.

R has a number of functions like plot(), resid() and anova. Plotting an
output from a fitted model should show diagnostic plots like when plotting
the output of lm(). There are a number of such functions which are logical
to implement. This will not only be user friendly but will integrate CTSM
further into the "regular" R way of working.





CHAPTER 9

Conclusion

The aim of this thesis was to reproduce the CTSM23 results faster in a flexible
environment.

R is a widely used statistical language and is a perfect environment provid-
ing the flexibility, reproducibility and prototyping any scientist would and
should appreciate. With CtsmR a model can be extended, do multiple estim-
ation on different datasets, sweep of initial parameters, use optimised point
as initial values in the next and etc. The ability to script is a much desired
feature which soon will be available for everybody to use.

Speed is essential, but the models tend to get more complicated. For some
years now the race of the Ghz has been replaced and focus is now turned
towards multi core systems. A modern laptop will have two of four cores.
Using three cores, leaving one for the system itself, the expected speed up is
2.

Running in parallel is not completely free. The total CPU time will increase
using more threads. That said the relative additional CPU time does decrease
for increased estimation time. Complicated models gain a substantial speed-
up at a low cost.

The product of this thesis is only the beginning of CtsmR and the proposed
future developments.
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