
On Sparse Multi-Task Gaussian Process Priors for
Music Preference Learning

Jens Brehm Nielsen, Bjørn Sand Jensen and Jan Larsen
Technical University of Denmark

Department of Informatics and Mathematical Modelling
Amussens Allé, Building 305, 2800 Lyngby, Denmark,

{jenb, bjje, jl}@imm.dtu.dk

Abstract

In this paper we study pairwise preference learning in a music setting with multi-
task Gaussian processes and examine the effect of sparsity in the input space as
well as in the actual judgments. To introduce sparsity in the inputs, we extend a
classic pairwise likelihood model to support sparse, multi-task Gaussian process
priors based on the pseudo-input formulation. Sparsity in the actual pairwise judg-
ments is potentially obtained by a sequential experimental design approach, and
we discuss the combination of the sequential approach with the pseudo-input pref-
erence model. A preliminary simulation shows the performance on a real-world
music preference dataset which motivates and demonstrates the potential of the
sparse Gaussian process formulation for pairwise likelihoods.

1 Introduction

Preference learning is aimed at eliciting, modeling and eventually predicting human preference for
a given input or normally sets of inputs. In this paper we focus on a relatively robust query type
for human preference elicitation suitable for e.g. music applications, namely pairwise comparisons
modeled by the likelihood function considered in [11, 1]. This basic likelihood model was first put
into the flexible framework of Gaussian processes (GP) priors by Chu et. al. [5]. Furthermore, a
general multi-task extension to the particular preference setup was proposed in Bonilla et. al. [3]
based on the multi-task formalism originally developed by Bonilla et. el. [2] which supports the
inclusion of collaborative or transfer learning between users. GP based models are in turn desirable
models for preference learning, however, they all struggle with an inconvenient O

(
n3
)

scaling in
terms of the number of input instances, n, which makes their use limited for large-scale problems. A
number of suggestions have been proposed to resolve this issue for the standard GP regression case.

Our objective is to extend the well-known pairwise likelihood model to allow for explicit sparsity
in the input space. This is achieved by extending the pairwise likelihood model in terms of a set of
pseudo-inputs (of size l << n) which are essentially used to integrate out the function values of the
original inputs using the ideas proposed in Snelson et. al. [10] for the standard regression case. In
effect the multi-task GP prior is now placed over the function values of the pseudo points. Poste-
rior inference relies on a Laplace approximation, and the pseudo-inputs can be found by evidence
optimization or be fixed and determined by, e.g., k-means initialization. Secondly, we outline to
combine the model with the ideas of Bonilla et. al. [3] and include sequential experimental design to
ensure that sparsity also persists in terms of the number of actual pairwise comparisons, m, besides

Revision: 2011/12/12. Acknowledgment: This work was supported in part by the IST Programme of the
European Community, under the PASCAL2 Network of Excellence, IST-2007-216886. This publication only
reflects the authors’ views.

1

the sparsity in the associated number of input instances, n. Finally, we evaluate the pseudo-input
model on a real-world music preference dataset, examine the multi-task transfer and learning rates
and discuss limitations and further improvements of this initial evaluation.

The paper is organized as follows: In Section 2 we review the basic model, provide the pseudo-
input extension and discuss option of sequential experimental design. In Section 3 we consider a
toy example and present the preliminary results on the music dataset. In Section 4 we discuss the
overall findings and outline a number of future research steps.

2 Model & Extensions

We describe the general setup and model in terms of

• a setA of na input instances, e.g. audio tracks, where each input instance i is described by one
feature vector x(a) ∈ Rda , i.e., A = {x(a)

i |i = 1, ..., na}.
• a set U of nu users, where each user j is described by a feature vector x(u) ∈ Rdu , i.e.,
U = {x(u)

j |j = 1, ..., nu}.

The task for a specific user j is to perform a forced choice between two input instances, x(a)
u ∈ A

and x(a)
v ∈ A, where u 6= v, resulting in a response y ∈ {−1,+1}, where y = +1 corresponds to

a preference for the u’th input, and −1 corresponds to a preference for the v’th input. We acquire
m such pairwise comparisons between any two input instances in A and with any user in U , which
results in the set of observations Y =

{
(yk;x

(a)
uk , x

(a)
vk , jk)|k = 1, ...,m

}
.

Given the two latent function values fk =
[
fjk

(
x

(a)
uk

)
, fjk

(
x

(a)
vk

)]
(associated with a particular

user) at the two inputs, we model the observations by a likelihood function p (yk|fk,θL). The
likelihood function is defined by additional parameters θL. The function fjk is an absolute, latent
function preserving the preference information over the input space for a particular user j. The
function parametrization admits that we directly place a Gaussian process prior on fjk allowing
for a flexible predictive model for the pairwise responses of a particular user. A multi-task setting
can be constructed by exploiting an observed feature vector per user. Consequently, we can think
of a global latent multi-task preference function f(x(a), x(u)) instead of several individual single-
task preference functions fj(x(a)). The multi-task kernel formulation of a GP [2] can hence be
formulated as:

fj(x
(a)
i) = f(x

(a)
i , x

(u)
j) ∼ GP

(
0, k(x

(a)
i , ·)k(x

(u)
j , ·)

)
= GP (0, k(xi,j , ·)) , (1)

where we have joined the audio and user feature into one input instance, x = {x(a), x(u)}, and
thereby defined the unique set of inputs as X = {{x(a)

i , x
(u)
j }|i = 1...na, j = 1...nu}. Thus, the GP

framework constitutes a non-linear, yet very flexible alternative to the more traditional models such
as (Generalized) Linear Models. Also, this formulation addresses the multi-task kernel only in the
definition of the covariance function - everywhere else, we only think of one input x containing both
user and task features simultaneously with a corresponding function value f(x). This definition will
be convenient later.

Given a standard Bayesian framework and assuming the likelihood factorizes we now obtain the
posterior over the function, i.e.,

p (f |X ,Y,θ) ∝ p (f |X ,θGP)
∏m

k=1
p (yk|fk,θL)

with f = [f(x
(a)
1 , x

(u)
1), f(x

(a)
1 , x

(u)
2), ..., f(x

(a)
1 , x

(u)
nu), ..., ..., f(x

(a)
na , x

(u)
nu)]>, θGP contains the

GP hyper-parameters and θ = {θL,θGP }. The main computational issue in the single task GP
is to calculate/approximate the posterior which poses a O

(
n3
a

)
scaling challenge due to the inver-

sion of the kernel matrix. Coupling nu single task GPs in the covariance structure will further scale
this to O([nanu]3). In practical preference applications, this is of course a problem and to remedy
this we first consider the (standard) pairwise likelihood in Section 2.1.1 and then a sparse extension
in Section 2.1.2 allowing for a sparse GP prior with less than (na)(nu) inputs. Finally, we suggest
the sequential extension in Section 2.3.

2

2.1 Likelihood

2.1.1 Pairwise Likelihood (Standard)

Pairwise comparisons are typically modeled by the classic Probit choice model [11, 1], constituting
the basis for the so-called pairwise likelihood function given by

p (yk|fk,θL) = Φ

yk fjk
(
x

(a)
uk

)
− fjk

(
x

(a)
vk

)
√

2σ

 , (2)

where Φ(x) defines a cumulative Gaussian (with zero mean and unity variance), and θL = {σ}.
The use of a GP prior in connection with this likelihood was first proposed in [5].

2.1.2 Pairwise Likelihood with Pseudo-Inputs

We extend the standard preference model in Eq. 2 to obtain sparsity in the input space in terms of
the effective number of points in the prior and posterior. We generally follow the ideas in [10], i.e.,
given a set of pseudo-inputs X̄, their functional values f̄ must come from a Gaussian process like
the real latent data f . Therefore, we can directly place a Gaussian process prior over f̄

p
(
f̄ |X̄

)
= N

(
f̄ |0,KX̄X̄

)
(3)

where the matrix KX̄X̄ is the covariance matrix of the l pseudo-inputs collected in the matrix X̄ =
[x̄1, ..., x̄l]. Recall, that we have formulated our multi-task problem only in terms of the covariance
function. Therefore, each pseudo-input x̄ defines both a task vector x̄(a) ∈ Rda and a user vector
x̄(u) ∈ Rdu , which are stacked to form each of the pseudo-input vectors used in KX̄X̄. Then
the covariance matrix, KX̄X̄, is again found by the use of the same multi-task covariance function
k (·, ·) from Eq. 1, i.e., [KX̄X̄]i,j = k(x̄i, x̄j)

1. The overall idea of the pseudo-input formalism is
now to refine the likelihood such that the real f values that enter directly in the original, non-sparse
likelihood function (through fk), exist only in the form of predictions from the the pseudo-inputs
f̄(X̄). Given the listed assumptions, we formally have that f and f̄ are jointly Gaussian, i.e.,[

fk

f̄

]
= N

([
0

0

]
,

[
Kxkxk

KX̄xk

>

KX̄xk
KX̄X̄

])
, (4)

where we define the following matrices and vectors

Kxkxk
=

[
k(xuk,jk , xuk,jk) k(xuk,jk , xvk,jk)
k(xvk,jk , xuk,jk) k(xvk,jk , xvk,jk)

]
,KX̄xk

= [kuk
,kvk]

with [kuk
]i = k(x̄i, xuk,jk) and [kvk]i = k(x̄i, xvk,jk). Note, that we have now formally stacked the

task and user feature into one input, such that xuk,jk and xvk,jk contain the task feature for option u
and v, respectively, together with the user feature.

From Eq. 4 it is trivial to find the conditional distribution of fk given f̄ , hence the likelihood can be
derived in terms of f̄ , i.e. p

(
yk|f̄ , X̄

)
, by integrating over fk

p
(
yk|xuk,jk , xvk,jk , X̄, f̄ ,θ

)
=

∫
fk

p (yk|fk,θL) p
(
fk |̄f , X̄

)
dfk (5)

=

∫
fk

Φ

yk fjk
(
x

(a)
uk

)
− fjk

(
x

(a)
vk

)
√

2σ

N (fk|µk,Σk)dfk (6)

= Φ

(
yk
µuk
− µvk
σ∗k

)
(7)

1Notice, that now we have introduced one more use of i and j, besides to index input and users, namely
to index element of a matrix. In the following we will keep using both, but when i and j are used to index
matrices and vectors, it will be clear from the notation

3

where µk = [µuk
, µvk]>, µuk

= kTuk
K−1

X̄X̄
f̄ , µvk = kTvkK−1

X̄X̄
f̄ and

Σk =

[
σukuk

σukvk
σvkuk

σvkvk

]
= Kxkxk

−K>X̄xk
K−1

X̄X̄
KX̄xk

Furthermore, (σ∗k)2 = 2σ2 + σukuk
+ σvkvk − σukvk − σvkuk

, which all together results in the
pseudo-input likelihood

p
(
yk|xuk,jk , xvk,jk , X̄, f̄ ,θ

)
= Φ (zk) , where zk = yk

(
kTu − kTv

)
K−1

X̄X̄
f̄/σ∗k (8)

2.2 Posterior - Inference & Predictions

Both likelihoods described in Section 2.1 lead to untractable posteriors and call for approximation
techniques or sampling methods. Our goal in this initial study is to examine the model and its
properties - not to provide the optimal approximation - and we will only explore inference based on
the Laplace approximation.

2.2.1 Posterior Approximation

Inference using the Laplace approximation has also been applied in [4] for the standard model.
The general solution to the approximation problem can be found by considering the unnormalized
log-posterior and the resulting cost function (to be maximized) is given by

ψ
(
f̄ |Y,X , X̄,θ

)
= log p

(
Y|f̄ ,X , X̄,θ

)
− 1

2
f̄TKX̄X̄

−1f̄ − 1

2
log |KX̄X̄| −

N

2
log 2π. (9)

where [KX̄X̄]i,j = k(xi, xj)θGP . We use a damped Newton method with optional linesearch to
maximize Eq. (9). The basic damped Newton step (with adaptive damping factor λ) can in this case
be calculated without inversion of the Hessian (see [7])

f̄new =
(
K−1

X̄X̄
+ W − λI

)−1 [
(W − λI)− f̄ +∇ log p(Y|f̄ ,X , X̄,θ)

]
, (10)

Using the notation ∇∇i,j = ∂2

∂f(xi)∂f(xj) we apply the definition Wi,j =

−
∑
k∇∇i,j log p(yk|xuk,jk , xvk,jk , X̄, f̄ ,θ). When converged, the resulting approximation

can be shown to be p
(
f̄ |Y,X , X̄,θ

)
≈ N

(
f̄ |̂f ,

(
W + KX̄X̄

−1
)−1
)
. The damped Newton step

requires the Jacobian and Hessian of the new pseudo-input log-likelihood, which requires the
following derivatives

∂

∂ f̄
p (yk|...) = yk

N (zk)

σkΦ (zk)
K−1

X̄X̄
(ku − kv) (11)

∂2

∂ f̄ f̄>
p (yk|...) = −y2

k

N (zk)

σ2
kΦ (zk)

[
zk +

N (zk)

Φ (zk)

]
·K−1

X̄X̄

(
ku − kv

) (
ku − kv

)>
K−1

X̄X̄
. (12)

2.2.2 Evidence / Hyperparameter Optimization

Hyperparameters are optimized based on a regularized variant of traditional evidence or maximum
likelihood II (ML-II) optimization allowing for simple regularizing priors on the hyperparameters.
The reguralization is primarily included for robustness and is in spirit similar to regularized EM
algorithms. The details are available in [7], but for completeness we shortly review the process of
evidence optimization and comments on the case of the pseudo-input model.

So far we have simply considered the hyper-parameters θ = {θL,θGP} and pseudo-inputs X̄
as fixed paraments. However, they have a crucial influence on the model and we will resort
to point estimates by iterating between the Laplace approximation with fixed hyper-parameters,
i.e., finding p

(
f̄ |Y,X , X̄,θ

)
, followed by an evidence maximization step in which (θ, X̄) =

arg max(θ,X̄)p
(
Y|θ, X̄

)
. The log-evidence, log p(Y|θ, X̄), has to be approximated in our case,

which in terms of the existing Laplace approximation yields log p
(
Y|θ, X̄

)
≈ log p(Y|̂f , X̄,X ,θ)−

1
2 f̂TKX̄X̄

−1f̂ − 1
2 log |I + KX̄X̄W|. We perform the optimization step using a standard BFGS

method.

4

The pseudo-input model poses a number of difficulties since X̄ are also to be considered hyperpa-
rameter, and the input locations can thus be optimized as outlined above. Typically, this will, as
noted in [10][9], lead to a large number of local maxima providing potentially suboptimal solutions,
at least when using the proposed gradient method. It is not our aim to resolve nor document this
issue, and we will take a pragmatic view and simply accept evidence optimization methods as is.
The pseudo-input approach can in some sense be seen as a supervised clustering of the input space,
but the optimization of X̄ is heavily influences by the initializations. We recommend starting out
with a fixed set of pseudo-inputs initialized by a standard unsupervised clustering, such as k-means
like [9], and then attempt an evidence optimization of X̄. We will provide a demonstration of this
approach.

2.2.3 Predictions

Predictions of the pairwise judgments for a new experiment η = {x(a)∗
u , x

(a)∗
v , x(u)∗} with x(a)∗

u ∈
Rda , x(a)∗

v ∈ Rda and x(u)∗ ∈ Rdu is given by p(y|η,Y,X). Given the approximated posterior of
interest, p

(
f̄ |Y,X ,θ

)
, the prediction can be made in closed form (see e.g. [5] in the standard case

and [7] for the pseudo-input case).

2.3 Sequential Experimental Design

Sequential experiential design - also known as active learning, selective or uncertainty sampling -
includes datapoints/queries in a sequential manner by selecting only the most informative experi-
ments/instances in terms of some gain. If the gain is relevant to the task, this effectively reduces the
number of real input instances, n, and the number of pairwise comparisons, m, required to obtain
a certain performance level compared to random selection of datapoints. Together with the pseudo-
input model proposed in Section 2.1.2 this will ensure that we obtain a sparse and close to optimal
model in terms of m,n and the effective number of pseudo-inputs l. We formulate the problem as a
Bayesian sequential design problem (see e.g. [8]) in terms of a gain function, G(·), the expectation
of this gain and the currently observed data D = {X ,Y}, i.e.,

ηy = arg max
η

∑
y∈Y

p(y|η,D)G
(
y, η, p

(
f̄D∪η|y, η,D

)
, p
(
f̄D|y, η,D

))
(13)

If the aim is to find the instance for which the user(s) has/have highest preference, the gain can e.g.
be defined as expected improvement [3]. If the aim is a generalization of the preference model for
all instances and users, entropy change (reduction) is the natural choice (but not guaranteed to be
optimal). The multi-task (-user) and collaborative setting does support specialized gain functions
depending, e.g., on user experience, consensus and knowledge, but it is not the aim to develop such
concepts here. Since the main focus of the paper is the pseudo-input formulation of the pairwise
likelihood, we leave the evaluation of the sequential extension to future research, but consider it a
natural part of the general sparse framework outlined.

3 Simulations & Experimental Results

3.1 Example I: Pseudo-Input in 1D

This example is primarily intended to illustrate the basics of the pseudo-input principle in the pair-
wise case (in a single task setting). The example is based on a deterministic function which defines
the pairwise relations, specifically a cosine in [−2π; 2π] illustrated at the top-left in Figure 1. The
seventeen input points are distributed equidistantly throughout the interval. The pairwise dataset
Y is then generated as a complete set of pairwise relations for all input combinations. To model
this dataset, we consider three case: A standard model (Section 2.1.1), a sparse model with fixed
pseudo-inputs (Section 2.1.2) and a sparse model with optimized pseudo-inputs (Section 2.1.2). The
five pseudo-inputs are initialized to X̄ = [−5,−2, 0, 2, 5], i.e. not in the training set. For direct com-
parison between the three models, we fix the other parameters, i.e., θL and θGP , and use a Squared
Exponential covariance function in all three cases with variance σf = 1 and lengthscale ` = 1. The
results are presented in Figure 1.

5

−2 −1.75−1.5−1.25 −1 −0.75−0.5−0.25 0 0.25 0.5 0.75 1 1.25 1.5 1.75 2
−1

0

1

x [π]

Latent function
Orginal Input Points
Test Points

−2 −1.75−1.5−1.25 −1 −0.75−0.5−0.25 0 0.25 0.5 0.75 1 1.25 1.5 1.75 2

0

x [π]

Standard Model Inputs
Standard Model E

pred

Sparse Model Inputs Fixed
Sparse Model Inputs Fixed, E

pred

Sparse Model Inputs Optimized
Sparse Model Inputs Optimized, E

pred

2 4 6 8

−85

−80

−75

−70

−65

−60

−55

Iteration (BFGS)

lo
g(

ev
id

en
ce

)

Figure 1: Top (left) panel shows a graph of the function from which the true underlying relations
are defined. Top (right) panel shows the convergence of the evidence optimization. Bottom (left)
panel shows the input points as markers used the three considered models and the predictive mean
(Epred) of the model as dotted graphs.

Given the equidistantly distributed input points and the full pairwise design, the standard model is
almost capable of modeling the underlying function, however, the fixed model parameters limits the
fit to the original model. Yet, the standard model is the best model we can expect in this case. The
sparse model with fixed parameters generally has problems due to the suboptimal placement of the
five pseudo-inputs. The optimized version converges to a (possible local) maximum as seen in the
right panel of Figure 1 and solves the problem by moving the pseudo-inputs. This provides a better
- and almost close to the standard - model despite only requiring 5 points as compared to 17.

3.2 Example II: Music Preference Data

In order to provide some initial insight into pairwise music preference learning, we consider a pub-
licly available dataset [6]. Specifically, it consist of 10 test subjects, but only 9 with full user meta-
data, 30 audio tracks with 10 audio tracks per genre 2. The genres are Classical, Heavy Metal and
Rock/Pop. The design of the experiment is based on a partial version of a complete pairwise design,
hence only 155 out of the 420 combinations was evaluated by each of the 10 subjects. We extract
standard audio features from the audio tracks, specifically the Mel-Frequency Cepstral Coefficients,
MFCCs, (26 dimensions, including delta coefficients), which we project to a 6 dimensional space us-
ing PCA. Each track is subsequently modeled by a Gaussian with mean vector, µ(a), and covariance
matrix, Σ(a). The feature vector is then constructed as x(a) =

[
µ(a), diag

(
Σ(a)

)]>
.

We define the correlation structure of tracks by considering a general purpose covariance function
for audio that easily integrates user features and metadata types for the audio, such as audio features,
tags, lyrics etc. It is defined as

k (x, x′) =

(∑Ka

`=1
k`

(
x(a), x(a)′

))
ku

(
x(u), x(u)′

)
, (14)

The first factor is the sum of all the Ka covariance functions defining the correlation structure of the
audio inputs, x(a). The second factor, or multi-task part, is a general covariance function defining
the covariance function for the user metadata part, x(u). We include only audio features, and e.g. not
tags and lyrics, thus Ka = 1 and apply a standard squared exponential isotropic covariance function
for the audio part. The user kernel is defined by a standard squared exponential kernel between the
user features (age and the three prior genre preferences) available in vector form.

2The small-scale nature of the dataset is not optimal, yet it has not been possibly to obtain a larger dataset
containing both features (or audio) and ratings, and especially the desire to consider pairwise comparisons of
music tracks seems to be a novel consideration in music preference modeling.

6

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0.2

0.25

0.3

0.35

0.4

0.45

0.5

m [fraction of traningset]

er
ro

r
ra

te

IndividualStandard
IndividualSparse − Fixed
MultitaskStandard
MultitaskSparse − Fixed
MultitaskSparse − Optimized

Figure 2: Learning curves averaged over 10 repetitions and 5-folds. X̄ is learned once on the full
training set in each fold. A fraction of one corresponds to 80% of all comparisons. Sparse models
are limited to 10% of the original number of inputs

3.2.1 Results

We concentrate on two of the most imminent questions which are the performance difference be-
tween (sparse) pseudo-input Model versus (dense) standard model, and the difference between indi-
vidual modeling versus multi-task modelling.

We include a typical example of the learning curves by fixing all model parameters except the
pseudo-inputs. Based on initial experiments, we fix the covariance parameters to: σ(a) = 3, `(a) =
4, σ(u) = 1.5, and σ(u) = 1.5. and the likelihood parameter, σL = 1.

We consider the specific case of 27 pseudo-inputs (10% of total inputs points) in the 2 ∗ 6 + 4 = 16
dimensional input. This is based on a pure genre assumption, i.e., each of the nine users track
preference can be described by single value pr. genre (9 · 3). Multi-task models effectively implies
more points per genre if transfer can be exploited between users. The pseudo-inputs are initialized
by k-means in the full input space (all audio tracks, all user features).

To provide some insight into the generalization properties of the relatively small dataset, we use a 5-
fold cross-validation (CV) scheme. In each of the five CV we use one fold as test (279 observations),
and 4 fold for training (837 observations). We evaluate the learning curves for a number of training
set sizes, m, by selecting a random subsets of the full set. This is done 10 times for each m.

The preliminary results presented in Fig. 2 yields a few noticeable observations. Comparing the stan-
dard multi-task versus standard individual, we observe a minor benefit in the multi-task/collaborative
model versus modeling users individually, thus some (useful) transfer is present. We furthermore
observe that as more and more data is observed the individual model performs almost equally well
as the multi-task. This is expected and individual models will in the limit outperform a multi-task
model, but the exact point at which the individual models outperforms a multi-task model is difficult
to estimate beforehand.

The second point to notice is the difference between the standard multi-task and the sparse multi-
task. From a m-fraction of 0.0125 the sparse model contains less points than standard model (on
average) and with approximately less than a 20% of the training set, the sparse model is fully capable
to compete with the standard multi-task model. After 20% of the pairwise comparisons (m = 0.2)
approximately 80% of all real inputs points has been observed. After this point the sparse model
seems to lack the flexibility to fully describe the preferences. Whether this is due to a general
characterize of the music preference problem or the fixed hyperparameters is so far unexplored,

7

but we speculate that a full hyperparameter optimization will further minimize the gap between the
sparse and the non-sparse model in this pairwise case.

The exact shape and absolute level of the learning curves are found to be sensitive to the exact prior
parameters including X̄, and a robust scheme is to be derived to ensure robust and generalizable
results. Despite its limitations the included case study suggests that the sparse pairwise model can
provide some computation relief without scarifying all of the performance - also in the multi-task
case - but there is a large number of model combinations still to be evaluated in future work.

4 Discussion & Conclusion

We derived a sparse version of the pairwise likelihood model using the pseudo-input formulation,
and applied the Laplace approximation. We suggest to examine Expectation Propagation and (se-
quential) MCMC methods for more efficient and exact approximations. The pseudo-inputs are
optimized using an evidence optimization approach which in general is challenging due to local
maximum of the evidence, which is to be examined in the future. For now we rely on a ”good” ini-
tialization. In the final step we suggested that the pairwise pseudo-input model should be combined
with a sequential experimental design to reduce the actual number of pairwise experiments.

A synthetic example was used to show the effect of the pseudo-inputs and evidence optimization. As
motivating example we presented a multi-task problem, namely a music preference problem. This
typically requires a sparse approximation both in terms of input (tracks) as evaluated and in terms of
the number of comparisons users have to perform, but the evaluation of the latter is considered future
work on a larger dataset. We see the pseudo-input model as a useful tool in examining clustering
properties of features and users in GP based preference learning, but this will probably require more
elaborate inference methods and kernels.

In conclusion this workshop contribution serves primarily as a presentation of the pairwise likelihood
in a pseudo-input formulation with the sequential design as an additional suggested option.

References
[1] R. D. Bock and J. V. Jones. The Measurement and Prediction of Judgment and Choice. 1968.
[2] E. Bonilla, K. Ming Chai, and C. Williams. Multi-task gaussian process prediction. In J.C.

Platt, D. Koller, Y. Singer, and S. Roweis, editors, Advances in Neural Information Processing
Systems 20, pages 153–160. MIT Press, Cambridge, MA, 2008.

[3] E. Bonilla, S. Guo, and S. Sanner. Gaussian Process Preference Elicitation. In J. Lafferty,
C. K. I. Williams, J. Shawe-Taylor, R.S. Zemel, and A. Culotta, editors, Advances in Neural
Information Processing Systems 23, pages 262–270. 2010.

[4] W. Chu and Z. Ghahramani. Extensions of Gaussian Processes for ranking: semi-supervised
and active learning. In Workshop Learning to Rank at Advances in Neural Information Pro-
cessing Systems 18, 2005.

[5] W. Chu and Z. Ghahramani. Preference Learning with Gaussian Processes. Proceedings of the
22nd International Conference on Machine Learning (ICML), pages 137–144, 2005.

[6] B. S. Jensen, J. S. Gallego, and J. Larsen. A Predictive Model of Music Preference using Pair-
wise Comparisons - Supporting Material and Dataset. www.imm.dtu.dk/pubdb/p.php?6143.

[7] B. S. Jensen and J. B. Nielsen. Pairwise Judgements and Absolute Ratings with Gaussian
Process Priors. Technical report, November 2011.

[8] D. V. Lindley. On a Measure of the Information Provided by an Experiment. The Annals of
Mathematical Statistics, (4):986–1005, 1956.

[9] Y. Qi, A. Abdel-Gawad, and T. Minka. Sparse-posterior gaussian processes for general likeli-
hoods. In Proceedings of the Proceedings of the Twenty-Sixth Conference Annual Conference
on Uncertainty in Artificial Intelligence (UAI-10), 2010.

[10] E. Snelson and Z. Ghahramani. Sparse Gaussian Processes using Pseudo-Inputs. Advances in
neural information processing, 2006.

[11] L. L. Thurstone. A Law of Comparative Judgement. Psychological Review, 34, 1927.

8

