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Rivals and Personnaz (Rivals & Personnaz, 2000) mainly concerns estimation of
confidence intervals (or error bars) for neural network prediction models trained by
least squares, but also the use of approximate leave-one-out (LOO) cross validation
error for model selection is considered.

In (Hansen & Larsen, 1996) “Linear Unlearning for Cross-Validation,” Advances
in Computational Mathematics, 5, 269-280, 1996, we proposed an approximation of
the LOO error which in (Rivals & Personnaz, 2000), p. 473, footnote 10, is claimed
to be invalid - even in the case of models which are linear in parameters. This is,
however, a misrepresentation of our work and incorrect.

In (Hansen & Larsen, 1996) we suggested LOO approximations for general cost
functions possibly augmented by a regularization term (e.g., weight decay) for non-
linear as well as linear models. In general we consider models which from the input
vector & predict an output y by y = f(x,w), where f(-) generally is a nonlinear
function of the input & and the parameter vector w.

In the case of linear models trained by least squares, the LOO error cf. equation

(18) (Hansen & Larsen, 1996) given ezactly as:
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where NN is the number of data examples, w is the parameter vector which mini-
mizes the least squares cost function (augmented by a regularization term R(w)),
hi, = 0f(x, w)/0w|,_- which for linear models equals @, and J = Y8 hih) +
O’R(w)/0wdw . That is, in the case of no regularization (R(w) = 0), which is

considered in (Rivals & Personnaz, 2000), equation (1) coincides with equations (36)



and (38) of (Rivals & Personnaz, 2000). The critique that our approximation is not
valid is thus incorrect.

In the case of least squares learning (and other cost functions) for general nonlin-
ear models the LOO error is an o(1/N) approximation' according to Theorem 2 in
(Hansen & Larsen, 1996). Using the approximation suggested in equations (37) and
(38) of (Rivals & Personnaz, 2000) involve terms of higher order? O(1/N?%),i < 2,
which is inconsistent (see further the proof of Theorem 2 (Hansen & Larsen, 1996)).
On the other hand, the approximation
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we suggested in equation (17), (Hansen & Larsen, 1996) is consistent.

The main topic of (Rivals & Personnaz, 2000), estimation of confidence inter-
vals, was first discussed in a neural network context by (Buntine & Weigend, 1991)
which presented a similar procedure, however, (Buntine & Weigend, 1991) is not ref-
erenced. Similar confidence intervals for nonlinear models have also been presented
by (Seber & Wild, 1989, p. 193) using linear Taylor expansion, and the general ex-

pression for the variance of the prediction error conditioned on @ reads:
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where 0 is the variance of inherent additive error, h(x) = Jf(z,w)/0w|

w=w’
dw = w — w is the parameter fluctuation and (Jwdw ") p the parameter covariance

matrix with respect to data sets D of size N.

Lo(-) is the order function: if a(N) = o(1/N), then a(N)/N — 0 as N — oo.
20(-) is the Landau order function: if a(N) = O(1/N) then a(N) = constant/N.



3 used in

The classical asymptotic estimate of the parameter covariance
(Rivals & Personnaz, 2000) is, o2J ', however, the use of LOO for estimating con-
fidence intervals was mentioned in our work (Hansen & Larsen, 1996) and further

addressed in (Sgrensen, Ngrgard, Hansen & Larsen, 1996) in which the parameter

covariance is estimated by:

(wiw "y p =Y (Awy — Aw)(Awy, — Aw) T, (4)
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where Aw = N~!' SN Awy, and Awy = J ' hy(yr — f(xr, w)).
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