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Rivals and Personnaz (Rivals & Personnaz, 2000) mainly concerns estimation of

con�dence intervals (or error bars) for neural network prediction models trained by

least squares, but also the use of approximate leave-one-out (LOO) cross validation

error for model selection is considered.

In (Hansen & Larsen, 1996) \Linear Unlearning for Cross-Validation," Advances

in Computational Mathematics, 5, 269{280, 1996, we proposed an approximation of

the LOO error which in (Rivals & Personnaz, 2000), p. 473, footnote 10, is claimed

to be invalid - even in the case of models which are linear in parameters. This is,

however, a misrepresentation of our work and incorrect.

In (Hansen & Larsen, 1996) we suggested LOO approximations for general cost

functions possibly augmented by a regularization term (e.g., weight decay) for non-

linear as well as linear models. In general we consider models which from the input

vector x predict an output y by by = f(x;w), where f(�) generally is a nonlinear

function of the input x and the parameter vector w.

In the case of linear models trained by least squares, the LOO error cf. equation

(18) (Hansen & Larsen, 1996) given exactly as:

ELOO =
1
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(1)

where N is the number of data examples, cw is the parameter vector which mini-

mizes the least squares cost function (augmented by a regularization term R(w)),

hk = @f(xk;w)=@wj
w=bw which for linear models equals x, and J =

P
N

k=1
hkh

>

k
+

@2R(cw)=@w@w>. That is, in the case of no regularization (R(w) = 0), which is

considered in (Rivals & Personnaz, 2000), equation (1) coincides with equations (36)
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and (38) of (Rivals & Personnaz, 2000). The critique that our approximation is not

valid is thus incorrect.

In the case of least squares learning (and other cost functions) for general nonlin-

ear models the LOO error is an o(1=N) approximation1 according to Theorem 2 in

(Hansen & Larsen, 1996). Using the approximation suggested in equations (37) and

(38) of (Rivals & Personnaz, 2000) involve terms of higher order2 O(1=N i); i � 2,

which is inconsistent (see further the proof of Theorem 2 (Hansen & Larsen, 1996)).

On the other hand, the approximation

bELOO =
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we suggested in equation (17), (Hansen & Larsen, 1996) is consistent.

The main topic of (Rivals & Personnaz, 2000), estimation of con�dence inter-

vals, was �rst discussed in a neural network context by (Buntine & Weigend, 1991)

which presented a similar procedure, however, (Buntine & Weigend, 1991) is not ref-

erenced. Similar con�dence intervals for nonlinear models have also been presented

by (Seber & Wild, 1989, p. 193) using linear Taylor expansion, and the general ex-

pression for the variance of the prediction error conditioned on x reads:

V f(y � by) jxg = �2 + h(x)>h�w�w>iDh(x) (3)

where �2 is the variance of inherent additive error, h(x) = @f(x;w)=@wj
w=bw,

�w = w�cw is the parameter uctuation and h�w�w>iD the parameter covariance

matrix with respect to data sets D of size N .

1o(�) is the order function: if a(N) = o(1=N), then a(N)=N ! 0 as N !1.
2O(�) is the Landau order function: if a(N) = O(1=N) then a(N) = constant=N .

3



The classical asymptotic estimate of the parameter covariance3 used in

(Rivals & Personnaz, 2000) is, �2J�1, however, the use of LOO for estimating con-

�dence intervals was mentioned in our work (Hansen & Larsen, 1996) and further

addressed in (S�rensen, N�rgard, Hansen & Larsen, 1996) in which the parameter

covariance is estimated by:

h�w�w>iD =
NX
k=1

(�wk ��w)(�wk ��w)>; (4)

where �w = N�1
P
N

k=1
�wk and �wk = J

�1
hk(yk � f(xk;cw)).
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