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Abstract

The procedure involved in fitting hearing aids has become highly extensive, due
to the vast number of parameters in modern hearing aids. An interactive system
that automatically optimizes the hearing aid setting for individual users is an
interesting alternative in comparison with manual hearing aid fitting procedures.

In this thesis, an iterative interactive framework for personalization of hearing
aids based on user preferences is presented. For a particular user, the framework
models a preference function over hearing aid settings with a Gaussian process
based on a minimum of observations. An observation is a subjective rating of the
overall preference of the processed sound resulting from a particular hearing aid
setting. New observations are suggested based a novel active learning criterion
developed in this project. With the novel active learning criterion the next
subjectively rated setting becomes the setting for which the preference has the
highest probability of being larger than the preference for the currently preferred
setting given a Gaussian process estimated preference function.

Simulations and a pilot experiment show that the framework discovers a person-
alized setting in few iterations compared with the number of possible settings.
Furthermore, the framework has the capability to model complex preference
functions, although an improved interactive experimental paradigm is required
to account for inconsistent subjective preference assessments.
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Resumé

Den procedure, der kræves for at tilpasse høreapparater, er blevet særdeles om-
fattende pga. det store antal parametre i moderne høreapparater. Et interak-
tivt system, som automatisk optimerer høreapparatsindstillinger for individuelle
brugere, er et interessant alternativ til manuelle høreapparats tilpasningsproce-
durer.

I dette speciale præsenteres en interaktiv metode til præference baseret
høreapparatspersonliggørelse. For en given bruger modelleres en præference-
funktion over høreapparatsindstillinger med en Gaussisk process baseret p̊a et
minimum af observationer. En observation er en subjektiv vurdering af den
overordnet præference af den resulterende lyd givet en specifik høreapparatsind-
stilling. Nye observationer foresl̊as baseret p̊a et nyt aktivt læringskriterium,
som er udviklet i dette projekt. Med det nye aktive læringskriterium bliver
den næste subjektive vurderede indstilling, den indstilling for hvilken præferen-
cen har den største sandsynlighed for at være større end præferencen for den
nuværende foretrukne indstilling givet en Gaussisk process estimeret præfer-
encefunktion.

Simuleringer og et pilot forsøg viser, at metoden finder en personlig indstilling
efter f̊a iterationer sammenlignet med antallet af mulige indstillinger. Endvidere
har metoden evnen til at modellere komplekse præferencefunktioner, selvom
et forbedret interaktivt forsøgsparadigme er nødvendigt for at tage højde for
inkonsistente subjektive præference vurderinger.
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Chapter 1

Introduction

1.1 Motivation

Entering the digital era has been a major breakthrough for the hearing aid (HA)
industry, and it has extensively increased the sound processing possibilities in
a HA. Consequently, a wide range of algorithms that do potentially improve
the HA performance have been developed over the recent decades. Improved
noise suppression algorithms, advanced compressors, adaptive beam-formers and
context classifiers to mention a few. However, a comprehensive amount of free
adjustable HA parameters has emerged from these improvements making the
HA fitting procedure increasingly complex.

It is believed that bad HA performance is often associated with improper fit-
ting and therefore it is believed that more intelligent and efficient HA fitting
methods can have a positive effect on user satisfaction. In addition, current
fitting paradigms do not account for individual user preferences among hearing
impaired (HI) persons, but is merely concerned with hearing loss (HL) compen-
sation. Because of the fitting complexity the dispenser is left with little freedom
for individual user personalization and the quality of the fitting and the degree
of personalization are strongly affected by the commitment of the dispenser.

Recent studies have confirmed that individual user preferences do exist. Başkent
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et al. (2007) used a Genetic Algorithm (GA) to find individual personal pref-
erences among subjects for the setting of a vocoder including the number of
vocoder channels, the amount of spectral shift and the amount of spectral com-
pression/expansion. The study showed that subjects obtained different solutions
and generally preferred their own solution among the solutions obtained by other
subjects. Durant et al. (2004) also used a GA to adjust a feed-back canceler to
individual preferences and showed that subjects generally preferred the individ-
ualized setting found by the GA over settings found for other subjects. Since
fitting rationales do not account for individual preferences, the need for a simple
user-driven personalization approach in the fitting procedure arises. However,
elicitation of subjective preferences among hearing aid settings is in practice not
trivial. As an example, Ricketts and Hornsby (2005) compared speech recog-
nition results and sound quality results for speech in background noise with
and without a noise suppression algorithm applied. The results showed that
the speech recognition scores were almost unaffected by the introduction of the
noise suppression algorithm, but the sound quality increased considerably with
the presence of the noise suppression algorithm.

1.2 Project Aim

Recent studies (Başkent et al., 2007; Durant et al., 2004; Ricketts and Hornsby,
2005) show that user preferences can be captured and give reason to believe
that the quality of the HA fitting due to increased personalization can be im-
proved. Therefore, the overall aim of this study is to investigate the possibilities
for an intelligent user-driven active-learning method with a simple interactive
user interface, used to capture individual user preferences for a subset of HA
parameters and discover the optimal setting for individual subjects.

The concept is to model a preference function over HA settings based on a
minimum of observations of subjectively assessed preference values for particular
HA settings. The observations are made iteratively and individual observations
are chosen actively to discover the optimal setting of the HAs. The strategy
is to study relevant machine learning and active learning theory, resulting in
a developed baseline framework. Since, an optimal individualized setting is
essentially not known in advance for any test subject, simulations are used
to estimate performance. Finally, the implemented method is tested through a
pilot experiment and evaluated with respect to robustness and convergence time.
Furthermore, the validity of the estimated preference functions is discussed, in
conjugation with the advantages and disadvantages of the method.



1.3 Structure 3

1.3 Structure

Initially, in chapter 2 useful background information is presented. In chap-
ter 3 the relevant machine learning theory is explained, followed by chapter 4
containing the active learning theory including a novel active learning concept
developed in this project and a simulation study which verifies the method. The
baseline algorithm is proposed in chapter 5 and results from the pilot experi-
ments are presented in chapter 6. Following this, future work and research areas
are discussed in chapter 7. Finally, in chapter 8 the conclusion is contained.



4 Introduction



Chapter 2

Background

In this chapter background concepts within HA fitting, preference judgments,
perceptual measures and psycho-acoustics will be presented to make the reader
aware of factors that are important for HA personalization. However, these
concepts are not within the main focus of this project. The concepts presented
in the this chapter are important, but it has been outside the scope of this
project to include them thoroughly.

2.1 Typical Hearing Aid Fitting Procedure

This section briefly describes the traditional HA fitting methods (for further
details see for instance Dillon (2001)). Currently, HA fitting is based mainly
upon prescriptive methods called rationales, which map hearing threshold mea-
surements (audiograms) to a target gain in a given frequency range.

Initially, the type and degree of HL are determined based on a measured au-
diogram. Dependent on the HL the dispenser chooses the most suitable HA
style for the HI. Each style defines some limits and possibilities in terms of
ease of insertion, visibility, amount of gain, sensitivity to wind noise, directivity,
telephone compatibility and avoidance of occlusion and feedback (Dillon, 2001,
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chapter 10). Some of these properties are associated with practicality, while
others are directly associated with choice of features.

Next, the dispenser takes an imprint for the ear mold and orders the HAs from
the manufacturer. When the HAs are received from the manufacturer, the dis-
penser is ready to fit the HAs. Some manufacturers have developed rationales
specifically for their HAs including additional diagnosis besides the audiogram,
e.g. loudness recruitment, discomfort levels, cognitive skills based on a ques-
tionnaire etc.

A very difficult and vague part of the fitting process is to decide whether or not
a particular feature should be enabled and how it should be adjusted to satisfy
the needs of the hearing impaired. Normally, the manufacturer has limited
the flexibility such that the dispenser can only adjust meta-parameters, e.g.
the degree of adaptive noise suppression, which then for each setting defines
all the parameters in the adaptive noise reduction algorithm. The preferences
concerning feature adjustment for individual subjects are very diverse and it
can be difficult for the dispenser to elicit useful information about the optimal
adjustment. In regards, a lot is based on dispenser intuition and experience,
hence the quality of the feature adjustments can vary.

Additional fine-tuning is typically performed after a wearing period of approx-
imately three months. Based upon the statements from the patient, the dis-
penser tries to deduce to what extend any imperfections require additional ad-
justments. For instance, new HA users can typically not tolerate the amount
of high-frequency gain according to their prescriptions, because they perceive
impact sounds as “too sharp”. Consequently, audiologists often provide less
high-frequency gain in the initial fitting and increase it to the prescribed target
gain when fine-tuning the HAs.

It is practically infeasible to accommodate improper fitting in all situations due
to the restrictions regarding type of HA resulting from a particular HL combined
with the individual attitude towards impairment and personal preferences about
how a HA should sound. Therefore, trade-offs are inevitably.

2.2 Perceptual and Performance Measures

The main focus in this thesis is to develop a suitable algorithm for further prefer-
ence optimization, assuming that it is possible to subjectively assess preference.
In this process it is convenient to assume that there exists a one dimensional
preference measure, i.e., an internal scale on which decisions is made favoring
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one setting over another. Furthermore, it is assumed that this preference mea-
sure is a mixture of different attributes, such as speech intelligibility, listening
effort, sound quality etc.

Realistically, this assumption will not be valid. Probably, user preference is
related to a complex conjugation of attributes, hence to expect that preference
can be captured in one perceptual measure is unrealistic. To make a simple de-
cision regarding these issues, subjects are in this thesis supposed to provide their
opinion about what they prefer in a completely general sense, without further
instructions about what to focus on in given sound environment (context). This
is referred to as overall preference. Presumably, this leads to inconsistencies in
the user assessments, because test subjects will not always be fully aware of his
or her intention. In addition, the intention by subjects are naturally affected by
the context.

In the next sections three different attributes contributing to the overall prefer-
ence are briefly reviewed. In general, there exist well-known methods to exploit
these attributes alternative to an overall preference. However, for the sake of
simplicity the overall preference measure is assumed in this thesis.

2.2.1 Speech Intelligibility

Speech intelligibility (SI) is a objective performance criterion describing how
well a subject is able to understand the words that are pronounced. Normally,
SI measurements are carried out with speech in background noise and measured
as the percentage of correctly understood words resulting in a score. The score
depends on the type and shape of the noise as well as the speech material itself.
Generally, the score follows a psychometric curve as a function of the Signal to
Noise Ratio (SNR).

Traditionally, SI scores were the dominating measure to describe performance
of hearing impaired persons, since intuitively the goal of a HA system would be
to improve the speech communication ability for the HI. However, SI is hardly a
subjective preference. Instead, the perceptual experience of speech intelligibility
is related to personal preference in noisy-speech environments, since HI subjects
have an extensive cognitive load in these situations. Therefore, in speech recog-
nition research the expression listening effort is a subjective alternative to speech
intelligibility.
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2.2.2 Listening Effort

Traditionally, listening effort is a perceptual measure related to the amount of
cognitive load used by a test subject in a noisy speech environment. There does
not exist any explicit definition of listening effort nor a standardized method of
measuring it.

Typically, the measure is used subjectively, but Baddeley (1992) defines the
term working memory, which assumes that in complex recognition tasks the
brain has to simultaneously process and store information. Hence, if the brain
uses a lot of its capacity to process, the working memory is reduced. This
has been used to objectively measure cognitive loads in complex environment
by performing tasks, where subjects are suppose to remember the first and
last word of a sentence, while understanding the meaning as well (Andersson
and Lyxell, 1999). Thus, it is possible to use listening effort as an objective
performance measure by introducing the concepts of working memory.

2.2.3 Sound Quality

Sound quality is a perceptual measure referring to the overall quality of the
presented stimulus, but can alternatively be used to subjectively rate partic-
ular features in the stimulus. Therefore, speech quality, spaciousness quality
etc. are within the field of sound quality. For this reason there exist different
standards for the assessment of sound quality dependent on the situation. The
Telecommunication Standardization Sector of the International Telecommuni-
cation Union (ITU-T) has made a recommendation regarding the area of sound
quality in speech communication systems that include noise suppression algo-
rithms (ITU-T P.835, 2003). Also, ITU-T has developed a recommendations for
assessment of quality for speech (ITU-T P.862, 2001).

Commonly, sound quality is measured as a subjective rating of the overall quality
of the presented sound. Therefore, dependent on the user preferences and on the
instructions given by the experimenter, sound quality results can vary among
subjects.
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Machine Learning Theory

Several practical problems arise in modern engineering where a predicted out-
put f∗ from an unknown system (Machine) given a new set of inputs x∗ =
{x1, x2, ..., xD}, where D is the dimension of the input, is requested. The
knowledge about the physical nature of the unknown system is typically lim-
ited. Instead, it might be possible to collect input-output (x, y) measurements
or observations (collected in a data set D = {X,y}) for the unknown system.
X contains the inputs xn, n = 1, 2, 3, ..., N for the N number of observations
and yn, n = 1, 2, 3, ..., N contains the corresponding noisy targets. To imitate
the unknown system (Learning) and predict outputs f∗ for new inputs x∗, a
mapping from inputs to outputs should be learned based in the measured or
observed data set D. Generally, (supervised) learning involves two parts:

1) Model selection: Selection of a particular model - parameterized or
non-parameterized.

2) Training : Optimize model parameters (collected in the vector w) given
the data set D.

The simplest model is a parameterized linear model f(x,w) = x>w, where the
output is a linear combination of the inputs. For more complex systems, non-
parameterized models using kernels are frequently used (referred to as kernel
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machines). A kernel machine is a flexibly non-linear method, where no particular
functional model form (parameterization) is specified. Instead, a kernel function
is specified, which computes a scalar expressing the similarity between input
points. A predicted output is determined by the similarity between the new
input and all the observations through the kernel function. The parameters w
in the kernel function is referred to as hyper-parameters.

In this thesis, machine learning is used to model the preference by HA users
for individual HA settings by mapping from HA settings to overall preference.
This chapter will present and derive the machine learning theory relevant for
this project. First, an introduction to Bayesian learning will be given in sec-
tion 3.1. Following this, a thorough presentation of a Gaussian Process (GP) is
presented in section 3.2, including a suitable extension developed in this thesis
in section 3.2.3. Additional details about these concepts can be found in Bishop
(2006) and Rasmussen and Williams (2006).

3.1 Bayesian Learning

Bayesian learning is a major area within probabilistic models and has emerged
from Bayes’ theorem which is directly obtained from the rule of factorization of
joint probabilities P (X,Y ) = P (Y |X)P (X) = P (X|Y )P (Y ),

P (Y |X) =
P (X|Y )P (Y )

P (X)
, (3.1.1)

where X and Y are stochastic variables, P (X) is the probability of X and
P (X|Y ) is the conditional probability of X given Y . Bayes’ theorem is also
valid for multi dimensional continues stochastic variables, in a machine learning
context in terms of a model parameter set w and an observed or measured data
set D

p(w|D) =
p(D|w)p(w)

p(D)
, (3.1.2)

where lowercase p refers to a probability density function. The term p(w) in the
nominator on the right hand side called the prior contains a priori information
about the behavior of the parameters and the term p(D|w) called the likelihood
expresses the probability of the data set D as a function of the model parameters
w. The term p(D) in the denominator on the right hand side is a normalization
factor ensuring that the posterior distribution p(w|D) is a valid probability
distribution that integrates to 1. By integrating both sides of equation (3.1.2)
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with respect to w the normalization factor can be rewritten∫
p(w|D)dw =

∫
p(D|w)p(w)

p(D)
dw

1 =
1

p(D)

∫
p(D|w)p(w)dw

p(D) =

∫
p(D|w)p(w)dw (3.1.3)

The normalization term is in general called the marginal likelihood, due to the
marginalization of the likelihood with respect to the parameters. Alternatively,
the normalization term is referred to as the model evidence, since it expresses
the evidence for one particular model given the observed data (Bishop, 2006,
section 3.4). An illustrative example of the Bayesian formalism applied to a
simple linear regression model is given in (Bishop, 2006, Figure 3.7).

To gain further insight into the behavior of the marginal likelihood, a simple
approximation to the integral in equation (3.1.3) can be made. Assume that
a model containing only one adaptive parameter w has a posterior distribution
over parameters which is sharply peaked around the most probable value wMAP

and has a width ∆wposterior. Further, it is assumed that the prior is flat having
a width of ∆wprior, hence p(w) = 1/∆wprior. Then the marginal likelihood can
be approximated by

p(D) =

∫
p(D|w)p(w)dw ' p(D|wMAP )

∆wposterior
∆wprior

. (3.1.4)

Finally, taking the natural log to obtain

ln p(D) ' ln p(D|wMAP ) + ln
∆wposterior

∆wprior
. (3.1.5)

Due to the fact that probabilities are naturally always between zero and one,
the first term is always less or equal to zero, and since the posterior will be
more narrow than the prior the second term will be less or equal to one as
well. Further, the second term will have a large magnitude if the posterior is
closely tuned to the data. Hence, the second term can be interpreted as penalty
or regularization term, which increases in magnitude as the posterior becomes
more closely tuned compared to the prior. Expanding these assumption to
models containing M adaptive parameters and assuming that all parameters
have the same ratio of

∆wposterior
∆wprior

the log marginal likelihood becomes

ln p(D) ' ln p(D|wMAP ) +M ln
∆wposterior

∆wprior
. (3.1.6)

When a more complex model is used the data will normally be fitted more
accurately, hence the first term will decrease in magnitude, but the second term
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(regularization term) will in this simple approximation increase linearly with the
number of parameters M . Thus, a Bayesian framework automatically embeds
regularization of the model complexity and should ideally avoid over fitting, i.e.,
avoid fitting the noise in the data and instead estimate the function that has
generated the data. This concept is illustrated in figure 3.1. More attention

p(D)

DD0

M 1

M 2

M 3

Figure 3.1: Marginal likelihood (y-axis) for three different models with different
complexity in which M1 is the simplest model. The x-axis expresses the com-
plexity of the observed data. When the complexity increases the simple models
fit the data poorly, hence the marginal likelihood suddenly decreases. The regu-
larization term reduces the overall marginal likelihood for complex models. For
a particular data set D0 the model with intermediate complexity is favored by
the marginal likelihood, because it is the simplest model that can fit the data.
(Bishop, 2006, Figure 3.13).

will be drawn towards the marginal likelihood in section 3.2.4 when considering
Gaussian Processes.

In cases of sequentially observed data a Bayesian framework can effectively be
used to update the probabilities over model parameter settings every time new
data becomes available. In such situations the concept of conjugated priors
arises naturally (Bishop, 2006, section 2.4). Conjugated priors refer to dis-
tributions for which the posterior has the same functional form as the prior.
Therefore, when looking for a conjugated prior it must be conjugated to the
likelihood so that the posterior distribution has the same functional form. The
exponential family is an example of commonly used conjugated priors. Gener-
ally, distributions contained in the exponential family have the form

p(x|η) = h(x)g(η) exp{ηTu(x)}, (3.1.7)
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where x can either be a scalar or a vector. η is referred to as the natural
parameters of the distribution and u(x) and h(x) is some function of x. g(η)
ensures that the distribution is normalized and therefore satisfies

g(η)

∫
h(x) exp{ηTu(x)}dx = 1 (3.1.8)

To model the natural parameters of the exponential family there exists a con-
jugated prior of the form

p(η|χ, ν) = f(χ, ν)g(η)ν exp{νηTχ} (3.1.9)

which multiplied with the likelihood function given by (Bishop, 2006, equation
2.227)

p(X|η) =

(
N∏
n=1

h(xn)

)
g(η)N exp

{
ηT

N∑
n=1

u(xn)

}
(3.1.10)

gives

p(η|Xχ, ν) ∝ g(η)ν+N exp

{
ηT

(
N∑
n=1

u(xn) + νχ

)}
. (3.1.11)

Despite an normalization factor, this expression has the same functional form
as the prior given by equation (3.1.9). It should be observed that the parameter
ν can be interpreted as the effective number of pseudo-observations in the prior.
Each observation has a value of the sufficient statistic u(x) given by χ (Bishop,
2006, section 2.4.1).

There exist different ways to make use of the posterior distribution p(w|D) over
model parameters after the Bayesian inference. The simplest way to use the
Bayesian inference is to use what is referred to as maximum a posterior estimate
or simple the MAP estimate of the model parameters. In the MAP estimate
the model parameters wMAP that maximize the posterior distribution are used
as a point estimate in addition with the given model to make predictions for
new inputs. To gain an understanding of the MAP estimate assume that the
observed targets y have a Gaussian distribution with mean given by a model
prediction f(x,w)

p(y|x,w, β) = N
(
y|f(x,w), β−1

)
(3.1.12)

=

√
β

2π
exp

{
−β

2
[f(x,w)− y]

2

}
, (3.1.13)

where x is the input and the precision β = 1/σ2 is equal to the inverse variance.
The likelihood function p(y|X,w, β) will be given by the product rule if the
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data is assumed to be drawn independently

p(y|X,w, β) =

N∏
n=1

N
(
yn|f(xn,w), β−1

)
(3.1.14)

=

(
β

2π

)N/2
exp

{
−β

2

N∑
n=1

[f(xn,w)− yn]
2

}
. (3.1.15)

where X is the matrix containing all the N input vectors xn, n = 1, 2, 1, ..., N
and y is the vector containing the N corresponding targets yn, n = 1, 2, 3, ..., N .
Next, put a zero-mean Gaussian distribution with precision α over the model
parameters

p(w|α) = N
(
w|0, α−1I

)
(3.1.16)

=
( α

2π

)M/2

exp
{
−α

2
wTw

}
, (3.1.17)

where M is the dimension of w. Recall, from equation (3.1.2) that the poste-
rior distribution is proportional to the likelihood multiplied by the prior. Also,
notice that taking the natural logarithm of the posterior does not change the
maximization with respect to w, only the trick simplifies the derivations. Fi-
nally, it is also convenient and completely equivalent to minimize the negative
logarithm of the posterior instead of maximizing the logarithm of the posterior
directly. Hence, the problem boils down to minimize the negative-log-posterior
proportional to

− ln p(w|X,y, α, β) ∝ − ln p(y|X,w, β)− ln p(w|α) (3.1.18)

= −N
2

lnβ +
N

2
ln 2π +

β

2

N∑
n=1

[f(xn,w)− yn]
2

(3.1.19)

− M

2
lnα+

M

2
ln 2π +

α

2
wTw. (3.1.20)

Including only the terms that depend on w the MAP estimate corresponds to
minimize

β

2

N∑
n=1

[f(xn,w)− yn]
2

+
α

2
wTw, (3.1.21)

which is equivalent to minimize the regularized sum of squared errors function
given by

1

2

N∑
n=1

[f(xn,w)− yn]
2

+
λ

2
wTw, (3.1.22)
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with regularization parameter λ = α/β (Bishop, 2006, section 1.2.5).

In case of a non-informative uniform prior on w the MAP estimate is identical to
the non-Bayesian probabilistic estimate called maximum likelihood (ML), which
only maximizing the likelihood with respect to w or equivalently minimizes the
negative-log-likelihood. Further details about ML solutions can be found in for
instance Bishop (2006).

Because the MAP estimate is a point estimate making use of only the highest
mode of the posterior distribution, it does not necessarily reflect the true be-
havior of the data. Therefore, a more thorough use of the Bayesian inference
is also possible. This approach is referred to as a full Bayesian approach. In
the full Bayesian approach a new prediction f∗ for a future input x∗ requires
an integration over w, and in general such marginalization is the corner stone
of classical Bayesian methods. The integration with respect to w results in a
predictive distribution p(f∗|x∗,X,y, α, β) given by

p(f∗|x∗,X,y, α, β) =

∫
W

p(f∗|x∗,w, β)p(w|X,y, α, β)dw. (3.1.23)

One approach based on a full Bayesian treatment is the Gaussian process, which
will be described in the regression case in section 3.2.

3.2 Gaussian Processes for Regression

A Gaussian process (GP) is a full Bayesian approach for which a prediction f∗
for a future input x∗ is sampled from a Gaussian distribution conditioned on
the observed (training) data (X,y)

p(f∗|x∗,X,y) ∼ N (m,K), (3.2.1)

where X = {xi|i = 1...n} is the matrix containing the input vector of dimension
D for the n observations and y = {yi|i = 1...n} are the noisy function targets for
the n observations. m and K denote the mean and covariance of the predictive
distribution, which will be functions of the observed data (X,y) and the new
input vector x∗.

This section explains the fundamentals of Gaussian Processes in a weight space
view and in a functions space view in section 3.2.1 and section 3.2.2, respectively.
Next, in section 3.2.3 an appropriate method to include non-zero-mean functions
in a Gaussian process is developed. In this way, more informative priors over
functions are incorporated in a Gaussian Process. Finally, training of a GP
based on the marginal likelihood is shown in section 3.2.4.
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3.2.1 Weight Space View

An intuitive procedure to derive the equations describing a GP is to begin with
the standard linear regression model for which the function output is a linear
combination of the inputs

f (x) = x>w. (3.2.2)

In the case of additive noise ε on the observed function values the targets y are
given by

y = f (x) + ε. (3.2.3)

In the case of a GP it is assumed that the additive noise follows an independent
Gaussian distribution with zero-mean and variance σ2

n

ε ∼ N
(
0, σ2

n

)
. (3.2.4)

In a traditional Bayesian viewpoint the likelihood term is defined as the con-
ditional probability of the observed data D given the parameters, recall equa-
tion (3.1.2). Here, the likelihood term will alternatively be conditioned on the in-
puts X. Because of the independent noise assumption, the likelihood p (y|X,w)
is given by factorizing over each observation in the observed data

p (y|X,w) =

n∏
i=1

p (yi|xi,w) =

n∏
i=1

1√
2πσn

exp

(
−
(
yi − x>i w

)2
2σ2

n

)

=
1

(2πσ2
n)
n/2

exp

(
− 1

2σ2
n

∥∥y −X>w
∥∥2
)

= N
(
X>w, σ2

nI
)
. (3.2.5)

Now, placing a zero-mean Gaussian prior p(w) with covariance matrix Σp on
the weights w

p(w) = N (0,Σp) , (3.2.6)

yields

p(w|X,y) ∝ exp

[
− 1

2σ2
n

(
y −X>w

)> (
y −X>w

)
− 1

2
w>Σ−1

p w

]
. (3.2.7)

By “completing the square”, the posterior becomes proportional to (Rasmussen
and Williams, 2006, equation 2.7)

p(w|X,y) ∝ exp

(
−1

2
(w − w̄)

>
(

1

σ2
n

XX> + Σ−1
p

)
(w − w̄)

)
, (3.2.8)
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where w̄ = σ−2
n

(
σ−2
n XX> + Σ−1

p

)−1

Xy. This expression has the form of a

Gaussian distribution given by

p(w|X,y) ∼ N
(

w̄ =
1

σ2
n

A−1Xy,A−1

)
, (3.2.9)

where A = σ−1
n XX> + Σ−1

p . The predictive distribution p(f∗|x∗,X,y) re-
sulting from the full bayesian treatment (recall equation (3.1.23)) is given by
(Rasmussen and Williams, 2006, equation 2.9)

p(f∗|x∗,X,y) =

∫
W

p(f∗|x∗,w)p(w|X,y)dw (3.2.10)

= N
(

1

σ2
n

x∗
>A−1Xy,x∗

>A−1x∗

)
. (3.2.11)

The linear model described in the previous will fail to model non-linear generated
data, hence to describe such data more complex models need to be included.
This is done by introducing a non-linear projecting of the input data onto a
possible higher dimensional feature space. The feature space mapping is de-
scribed by the function φ(x) mapping from the D-dimensional input space to a
N -dimensional feature space. The idea of the feature mapping is that although
the data has a non-linear behavior in input space it might be linear in the feature
space. Hence, by projecting the data to a high dimensional feature space the
linear model can be applied there instead, resulting in similar results as before
for the GP. The linear model applied in feature space will be given by

f(x) = φ(x)>w. (3.2.12)

The notation Φ(X) will be used to denote the N by n dimensional data matrix
where the i’th column contains the i’th input data point projected to feature
space φ(xi). Substituting X with Φ(X) in the expression for the predictive
distribution for the linear model and rewriting, results in the following expres-
sion for the predictive distribution for the non-linear model (Rasmussen and
Williams, 2006, equation 2.12)

p(f∗|x∗,X,y) = N
(
φ>∗ ΣpΦ

(
K + σ2

nI
)−1

y,φ>∗ Σpφ∗

− φ>∗ ΣpΦ
(
K + σ2

nI
)−1

Φ>Σpφ∗

)
,

(3.2.13)

where the shorthands Φ = Φ(X) and φ∗ = φ(x∗) have been used.

Observe, that in equation (3.2.13) the feature space mapping always enters in
the form φ>∗ ΣpΦ or φ>∗ Σpφ∗ which are inner products. This enables the use of
the kernel trick where instead of computing the feature mapping for all input
vectors a kernel or covariance function k(x, x′) = φ(x)>Σpφ(x′) being an inner
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product is computed instead. This trick has the advantage that everything is
described in terms of scalar products between data points given by the covariance
function k(·, ·). In section 3.2.2 the GP will be derived using this trick.

3.2.2 Function Space View

In this section an equivalent kernel representation of a GP is described. The
kernel representation is the current state-of-the-art formulation of a GP.

A GP is defined as a collection of random variables and in this case the random
variables are function values f(x) at location x. With the linear feature space
model (equation (3.2.12)) and a Gaussian prior on the weights p(w) = N (0,Σp)
the mean and covariance of the GP prior is given by

E [f(x)] = φ(x)>E [w] = 0, (3.2.14)

E [f(x)f(x′)] = φ(x)>E
[
ww>

]
φ(x′) = φ(x)>Σpφ(x′) (3.2.15)

Thus, the distributions of f(x) and f(x′) are jointly Gaussian with zero-mean
and covariance given by φ(x)>Σpφ(x′). There exists different possibilities for
the covariance function or kernel function. One common choice is to use the
squared exponential (SE) covariance function defined by

cov(f(x), f(x′)) = k(x,x′) = σ2
f exp

[
− 1

2l2
(x− x′)

2
]
, (3.2.16)

where l and σ2
f is referred to as the length scale and the signal variance, respec-

tively. The distribution of function values f∗ at points collected in X∗ drawn
from the prior will now by given by

p(f∗|X∗) = N (0,K (X∗,X∗)) (3.2.17)

Naturally, it will normally not be very interesting to sample function values from
the prior. Instead, it is possible to write the joint Gaussian distribution between
noise free observations (f ,X) and test points (f∗,X∗) as these are sampled from
the same distribution.[

f
f∗

]
∼ N

(
0,

[
K (X,X) K (X,X∗)
K (X∗,X) K (X∗,X∗)

])
(3.2.18)

Fortunately, there exist simple relations between the joint distribution of two
Gaussian random variables and the conditional and marginal distributions of the
two random variables (Rasmussen and Williams, 2006, appendix A.2), hence the
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predictive distribution of the test cases conditioned on the observations can be
written as

p(f∗|X∗,X, f) = N
(
f̄∗, cov(f∗)

)
, (3.2.19)

where the mean f̄∗ and covariance cov(f∗) is given by

f̄∗ = K (X∗,X)K (X,X)
−1

f (3.2.20)

cov(f∗) = K (X∗,X∗)−K (X∗,X)K (X,X)
−1
K (X,X∗) (3.2.21)

In practice, there is noise on the observations y, hence y = f(x) + ε. Again,
assuming that the observation noise is independent Gaussian noise with zero-
mean and variance σ2

n, the covariance function for the observations y becomes

cov(y) = K (X,X) + σ2
nI, (3.2.22)

which yields [
y
f∗

]
∼ N

(
0,

[
K (X,X) + σ2

nI K (X,X∗)
K (X∗,X) K (X∗,X∗)

])
(3.2.23)

Finally, the predictive distribution for new test cases is derived similar to equa-
tion (3.2.19)

p(f∗|X∗,X,y) = N
(
f̄∗, cov(f∗)

)
, (3.2.24)

where

f̄∗ = K (X∗,X)
[
K (X,X) + σ2

nI
]−1

y (3.2.25)

cov(f∗) = K (X∗,X∗)−K (X∗,X)
[
K (X,X) + σ2

nI
]−1

K (X,X∗) (3.2.26)

Notice, that this result is identical to equation (3.2.13) when K(C,D) = Φ(C)>

ΣpΦ(D), where C and D are either X or X∗. Also, for a particular feature
mapping the equivalent kernel can be computed as k(x,x′) = φ(x)>Σpφ(x′),
but normally some standard kernel or covariance functions will be used as for
instance the squared exponential kernel shown previously. For a particular ker-
nel there exists a possible infinite expansion in terms of basis functions, hence
it should (at least in theory) be possible to transform back and forth between
the weight space representation and the function space representation.

Another important thing to notice is that the mean function from equation (3.2.25)
is a linear predictor of the underlying function and this function has the same
representation as traditional kernel machines defined by

f̄(x∗) =

n∑
i=1

αik(xi,x∗), (3.2.27)
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where xi is the i’th observation point and for the GP linear predictor it is seen

that α =
(
K(X,X) + σ2

nI
)−1

y. Hence, the prediction f̄(x∗) for a new test case
x∗ is written as a linear combination of n kernel functions located at each of the
observation points xi.

3.2.3 Incorporating Non-Zero-Mean Functions

In the previous formulation of a GP it has been assumed that the observation
and the test point share a zero-mean joint Gaussian distribution. Generally,
this does not need to be the case and in this section a method developed in this
thesis to incorporate non-zero-mean functions is presented.

If an explicit mean function m(x) is specified, the predictive mean from equa-
tion (3.2.25) simple becomes

f̄∗ = m(X∗) +K (X∗,X)
[
K (X,X) + σ2

nI
]−1

y, (3.2.28)

and the predictive variance from equation (3.2.26) will be left unchanged (Ras-
mussen and Williams, 2006, Section 2.7). Rasmussen and Williams (2006) de-
rives a method to incorporated a mean function in a GP in terms of a set of fixed
basis functions with coefficients learned from data (Rasmussen and Williams,
2006, Equation 2.39 - 2.42).

For the outline of this thesis it will be more desirable to include what will be
referred to as the initial preference function h(x), containing a mean function
m(x) and a variance V (x) over function values at a particular point x. It is
assumed that the distribution of function values h(x) at two points x and x′ are
independent, hence there is no covariance between two points x and x′ - only a
variance. The distribution of h(x) is now given by

h ∼ N (m(X),V(X)I) (3.2.29)

In this thesis it is proposed to model this function by a traditional zero-mean
GP determined beforehand as the average preference function for a group of
subjects. At this point, it is important to understand that the function mean
m(x) of h(x) serves as an initial guess of a personal preference function g(x)
including the uncertainty V (x). The resulting preference function is given by
g(x) = h(x)+f(x), where the residual f(x) is modeled by a zero-mean GP with
covariance function K(X,X).

f ∼ N (0,K(X,X)) (3.2.30)

and

y(x) = h(x) + f(x) + ε, (3.2.31)
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where y(x) is the observation of the function g(x) and ε ∼ N
(
0, σ2

n

)
is the

contaminating noise. It is now possible to express the Gaussian distribution for
both the observations y(X) and the test case g(X∗) at X∗

y ∼ N
(
m(X),K(X,X) + V(X)I + σ2

nI
)

(3.2.32)

g∗ ∼ N (m(X∗),K(X∗,X∗) + V(X∗)I) (3.2.33)

As in section 3.2.2 the two distributions share a joint distribution given by[
y
g∗

]
∼ N

([
m(X)
m(X∗)

]
,

[
K (X,X) + V(X)I + σ2

nI K (X,X∗)
K (X∗,X) K (X∗,X∗) + V(X∗)I

]) (3.2.34)

Again, it is possible to use the identity for Gaussian distributions (Rasmussen
and Williams, 2006, appendix A.2) and derive the predictive distribution for g∗
conditioned on the observations

p(g∗|X∗,X,y) = N (ḡ∗, cov(g∗)) , (3.2.35)

where

ḡ∗ = m(X∗)

+K (X∗,X)
[
K (X,X) + V(X)I + σ2

nI
]−1

(y + m(X))
(3.2.36)

and

cov(g∗) = K (X∗,X∗) + V(X∗)I

−K (X∗,X)
[
K (X,X) + V(X)I + σ2

nI
]−1

K (X,X∗) .
(3.2.37)

3.2.4 Learning the Hyper-Parameters

A GP has a weight space interpretation with a parameterized model (ref. sec-
tion 3.2.1), but a GP will in general be formulated as a non-parameterized kernel
machine in function space (ref. section 3.2.2). Although, the function space in-
terpretation generally decreases the number of free parameters compared with
the weight space interpretation, the parameters in the covariance function called
hyper-parameters must be learned from data. This step is referred to as training
the GP. This section describes the underlying theory for training a GP based
on the log of the marginal likelihood (Rasmussen and Williams, 2006, section
4.5.1).
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Recall, that the marginal likelihood is the integral over the likelihood multiplied
with the prior and is a normalization constant ensuring that the posterior in-
tegrates to one and thereby becomes a valid distribution. For a GP model the
prior is a Gaussian over functions f |X ∼ N (0,K (X,X)) and the likelihood is
a factorized Gaussian over targets y|f ∼ N

(
f , σ2

nI
)

given by

p(y|f) =
1

(2π)−n/2
· 1√

σ2
n

exp

[
1

2σ2
n

(y − f)
>

(y − f)

]
, (3.2.38)

where n is the number of observations. This can also be written as a distribution
over f ∼ N (y, σ2

nI). Thus, the likelihood multiplied with the prior can be written
as the product of two Gaussians in f . Using the identities for the product of two
Gaussians (Rasmussen and Williams, 2006, equation A.7 and A.8) the marginal
likelihood p(y|X) is given by the normalization constant

p(y|X) = (2π)−n/2|K (X,X) + σ2
nI|−1/2 exp

[
−1

2
y>
(
K (X,X) + σ2

nI
)−1

y

]
.

(3.2.39)

Normally, the log marginal likelihood is given instead

log p(y|X) = −n
2

log 2π − 1

2
log |K (X,X) + σ2

nI

− 1

2
y>
(
K (X,X) + σ2

nI
)−1

y.

(3.2.40)

To learn the hyper-parameters the log marginal likelihood should be maximized.
This training method is referred to as a maximum marginal likelihood estimate
of the hyper-parameters. It is in principle not trivial to find the global maximum
of the marginal likelihood and normally the maximization can easily end up in a
local maximum. Further details about how to actually do the maximization will
not be given here, but more details can be found in (Rasmussen and Williams,
2006, chapter 5).

The log marginal likelihood from equation (3.2.40) consists of three terms, each
having individual roles. The first term is a normalization constant, the second
term is a complexity penalty term (regularization term), which only depends on
the covariance function, and the last term is the actual data fit containing the
observation points. Thereby, the marginal likelihood embeds regularization of
the model complexity and therefore the optimal hyper-parameter set is a natural
trade-off between fitting the actual data, while keeping the model complexity in
a reasonable shape.



Chapter 4

Active Learning Theory

In machine learning it is normally assumed that observations (input-output
pairs) are available beforehand, hence the problem is to find the model that
gives the best performance considering all the available data. However, for
some physical problems it might be expensive to measure or test the output
for particular inputs, because new experiments are time consuming, unpleasant,
costly etc. In such situations it is absolutely necessary only to acquire a new
observation if it is believed that the resulting observation gives significant in-
formation about the unknown function. The information is normally expressed
in terms of a particular cost/goal function, hence active learning or active data
selection refers to the concept of performing experiments that optimize a cost
or, equivalently, goal function. Active data selection is often used iteratively to
suggest one experiment at a time, but it can also be applied for a bunch of ex-
periment or a “route” of experiments resulting in the largest reward from a cost
function (Boutilier, 2002). The latter is typically referred to as experimental
planning.
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4.1 Maximize Total Information Gain

The first rather simply yet very intuitive strategy for active data selection is
to maximize what is referred to as the total information gain (Mackay, 1992,
Section 4.3). That is, to select a new observation in order to gain as much
information about the predictor as possible, i.e. to reduce the uncertainty of
the posterior the most. Mackay (1992) expresses the total information gain as
the expected change in entropy E [∆S] = E [SN − SN+1] with respect to the the
data set between the distributions over the model parameters with and without
a particular observation, where the entropy SN reduces to

SN =

∫
pN (w) log

1

pN (w)
dw, (4.1.1)

Further, Mackay shows that this strategy results in picking the next datum
at the position where the point-wise variance of the predictor is largest given
the assumption that the observation noise is independent Gaussian noise. This
criterion will in the reminder of this report be referred to as ALM.

For a Gaussian process the variance of the predictor is directly available through
equation (3.2.26) or alternatively equation (3.2.37), hence it becomes extremely
easy to select the new datum at the position where the variance of a particular
state of the GP is largest.

4.2 Minimize Generalization Error

Another concept by Cohn described in Seo et al. (2000) aims at selecting the
next datum x̃ in order to minimize the error at a reference point ξ. The idea is
that information at one particular point may influence the uncertainty in other
points. Therefore, this concept is referred to as minimizing generalization error.
Based on the assumption that the current model is correct the mean square error
(MSE) is assumed to be dominated by the variance term. Hence, to minimize
the MSE the candidate that minimizes the overall variance should be chosen as
the next datum. Given a certain covariance function k(·, ·), the overall variance
given a new datum x̃ can be estimated from

KN+1 =

[
K (X,X) K (X, x̃)

K (X, x̃)
>

k (x̃, x̃)

]
(4.2.1)
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The change in variance ∆σ2
ŷ(ξ) at the reference point ξ as a function of the

candidate x̃ is given by

∆σ2
ŷ(ξ) =

(
K(ξ,X)K (X,X)

−1
K (X, x̃)−K (x̃, ξ)

)2

K (x̃, x̃)−K (X, x̃)
>
K (X,X)

−1
K (X, x̃)

(4.2.2)

This criterion will in the reminder of this project be referred to as ALC. Ideally,
the change in variance should be averaged over an input density p(x) or with
respect to a density q(x) expressing the importance of different regions in input
space. One possible procedure would be to normalize the mean of the GP pre-
dictive distribution and use this as the density q(x). Consequently, regions with
high user preference would be weighted as more important than regions with low
user preference. An obvious problem will inevitably occur if a particular state
of the GP is not a true description of the latent preference function. A possible
result of this would be that the active search focuses too early on regions which
are believed to have high importance based on an improper description of the
latent preferences function. Thereby, the active search could get stuck in a less
efficient local maximum. Therefore, care should be taken about not assigning
high importance to particular regions without the required information.

4.3 Optimize for Maximum Preference

The majority of machine learning problems for which active learning is applied
are concerned with the problem of given the best overall prediction performance
for all possible inputs given as few observations as possible. This is particularly
the basis in the concept by Mackay (1992). Alternatively, it will sometimes not
be too expensive to obtain information about the distribution of the input points
without having obtained the corresponding function values from the expensive
experiments. In such cases, active learning is concerned about given the best
overall prediction performance averaged with respect to the input distribution.
This is particular the idea behind the concept by Cohn (Seo et al., 2000). No-
tice, that common for both of these concepts is that the function models the
output from an unknown system and the goal is to be able to predict the output
from the system given a new input. This is fundamentally different from prefer-
ence learning in this thesis, where the function models preference for particular
settings and the goal is to predict the setting and hence the input for which
the preference is largest. Therefore, the two active learning concepts described
above are actually the right answer to the wrong question.

In this section (section 4.3) a novel active learning method developed during
this project is proposed. The method is particularly suitable for the field of
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preference learning with a GP and is based on the idea of query data points x̃
that have the highest probability of obtaining higher preference than the setting
with current highest preference xmax given the current model. The criterion
will be referred to as ALP. The function values for the two inputs x̃ and xmax
have a joint distribution resulting from equation (3.2.25) and equation (3.2.26)

f =

[
f(x̃)

f(xmax)

]
∼ N

(
f̄x̃,max, cov(fx̃,max)

)
, (4.3.1)

where

f̄x̃,max = K (Xx̃,max,X)
[
K (X,X) + σ2

nI
]−1

y, (4.3.2)

cov(fx̃,max) = K (Xx̃,max,Xx̃,max)

−K (Xx̃,max,X)
[
K (X,X) + σ2

nI
]−1

K (X,Xx̃,max) ,
(4.3.3)

the matrix Xx̃,max contains the actual maximum point xmax and one particular
query candidate x̃, X are the observation points and y are the corresponding
targets in a given iteration. To calculate the probability P (f(x̃) > f(xmax))
(from now on referred to as max probability) that the query candidate x̃ ob-
tains larger preference than the current maximum xmax the joint distribution
from equation (4.3.1) should be integrated over the area above the line where
f(xmax) = f(x̃) as illustrated in figure 4.1

P (f(x̃) > f(xmax)) =

∫
A∈{f(x̃)>f(xmax)}

N
(
f̄x̃,max, cov(fx̃,max)

)
df . (4.3.4)

No closed form solutions exist for solving this integration. Instead, sampling
from the distribution is used to approximate P (f(x̃) > f(xmax)). Since the
joint distribution is only two dimensional it is fairly easy to get a proper ap-
proximation. In this thesis, 10000 samples are drawn from the distribution to
provide an estimate.

Obviously, the optimal experiment is the candidate that has the highest proba-
bility of having larger preference than the current maximum, i.e., highest max
probability. In practice, the function value means of the GP over the entire input
space are calculated at every iteration, together with the point-wise variance.
Hence, to be able to carry out the calculations needed to use this concept, only
the covariance between the maximum point and all the other points in input
space must be calculated additionally. Together with the point-wise variance,
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Figure 4.1: Schematic of the 2-D Gaussian distribution, with means f̄(x̃) and
f̄(xmax) and covariance cov(fx̃,max). The integration area to compute P (f(x̃) >
f(xmax)) is illustrated with the shaded area.
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this forms the following matrix

σ2
xmax covxmax,x̃1 covxmax,x̃2 . . . covxmax,x̃n−1

covx̃1,xmax σ2
x̃1

0 . . . 0

covx̃2,xmax 0 σ2
x̃2

. . .
...

...
...

. . .
. . . 0

covx̃n−1,xmax 0 . . . 0 σ2
x̃n−1

 (4.3.5)

This matrix contains all the sub-covariance matrices for the 2 dimensional joint
distributions between the maximum point and another point x̃k, where k =
1, 2, 3, ..., n− 1. To get the 2× 2 covariance matrix needed to approximate the
max probability for x̃k the four elements being in the first and in the k + 1
columns and rows should be used. The means for all the relevant 2 dimensional
joint distribution are collected similarly.

As for most other maximization algorithms, the method presented here also suf-
fers from getting stuck in a local maximum. However, since the next experiment
is strictly based on the joint Gaussian distribution over function values, and thus
the covariance function, changing the hyper-parameters in the covariance func-
tion can possible force the algorithm out of a local maximum. Assume, that
the algorithm is stuck in a local maximum given a particular marginal likeli-
hood estimate of the hyper-parameter in a GP with a SE kernel. Now, reducing
the length scale l of the SE kernel (equation (3.2.16)) reduces the similarity
between points distant from the observations, and consequently the variance
in distant points increases. Alternatively, increasing the signal variance σ2

f in
the SE kernel increases the uncertainty at points dissimilar to the observation
points. Thereby, changing the hyper-parameters learned from the observations
enables a possibility to take action and modify the active learning algorithm
towards a search that emphasize uncertainty over high preference. In the limit
where the length scale is very small, all unobserved points will be given the
same chance of having higher preference than the current maximum, whereas
observation points have no probability of having higher preference than the cur-
rent maximum. Hence, in that limit the search is ideally random. Naturally,
action should only be taken whenever it is detected that the search is stuck in
a possible local maximum. The active learning algorithm presented here will be
investigated further in section 4.4 by numerous simulation examples.

4.4 2D Simulation

This section investigates the active learning algorithm with the ALP criterion
developed in this work by a 2D simulation study. The goal is to find the optimum
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of a pre-defined underlying preference function, without any knowledge about
the function.

4.4.1 Simulations method

The estimate of the underlying preference function is modeled with a zero-mean
GP with a SE covariance function. When noise is added to the observations the
covariance function additionally contains an independent Gaussian noise term.
The hyper-parameters are learned from the observed data available at each
iteration by maximizing the marginal likelihood as described in section 3.2.4.
In the simulations the observations are direct elicited preference values from
the pre-defined underlying preference function, i.e., an observation at a given
point consists of an input and a corresponding preference value determined by
the underlying preference function directly. Noisy observations are simulated by
adding independent zero-mean Gaussian noise to the preference values.

The pre-defined preference function is a modified version of the so-called
Griewangk function1. The standard Griewangk function has depending on the
sign a maximum/minimum at (0,0), whereas it contains local extrema almost
identical in size as the global maximum/minimum. In these simulations the
sign is always defined to obtain a global maximum in (0,0). The modifications
made to the standard Griewangk function decrease the local maxima relative
to the global maximum. Further, the four local maxima do not have identical
function values, as seen in the top-left plot in figure 4.2. This is done in order
not only to have improvement, i.e., higher preference value, between the local
maxima and the global maximum, but between two different local maxima as
well. The expression for the two-dimensional objective function f(x, y) used as
the underlying unknown preference function in the simulations is defined by

f(x, y) =
x+ y

50
− x2 + y3

200
− x2 + y2

4000
+ cos(x) cos(

y√
2

)− 1. (4.4.1)

This expression will be used throughout this work to simulate an underlying
preference function, because it contains several local maxima at which the al-
gorithm can possible not escape. Therefore, the function is suitable for testing
how well the algorithm can escape a local maximum. Both dimensions x1 and
x2 of the two-dimensional input space are restricted to a range between -5 and
5 and the resolution in each dimension is 41 uniformly spaced points. Thereby,
the number of possible inputs for which the one with the highest preference
value is to be discovered, is 41 · 41 = 1681.

1The expression for the standard Griewangk function in 2 dimensions is given by f(x, y) =
x2+y2

4000
− cos(x) cos( y√

2
) + 1
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Figure 4.2: 2D simulation plot for the first iteration with a modified Griewangk
function as the unknown underlying preference function. The top-left plot shows
the objective preference function. In the bottom-left plot the old GP fit will be
plotted resulting in the max probabilities shown in the top-middle plot. The
bottom-middle plot shows the new GP fit resulting from adding the new ob-
servation suggested by the active learning algorithm to the observations. The
right plots show the convergence measures (normalized distance and normalized
preference value difference between current maximum point and the objective
maximum point and the mean square error mse between the GP fit and the
objective preference function over the entire input space), the mean of the max
probabilities, the GP hyper-parameters and the hyper-parameters used to cal-
culate the probabilities
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The first observation point is always chosen randomly among all input points.
Hereafter, the active learning algorithm chooses the remaining observations it-
eratively, i.e., based on the max probabilities calculated in each iteration.

Next, the mean of the max probabilities mmaxthres over all points is calculated
in each iteration. If this mean drops below a certain threshold value the hyper-
parameters are altered until the mean is above the threshold. When the mean
is above the threshold value, the resulting max probabilities are used to suggest
the next experiment. The value of mmaxthres, which hyper-parameters that are
altered and how they are altered will be explained later in this section.

The simulation study is divided into two parts. In the first part (section 4.4.2)
there is no noise on the observations of the underlying preference function values.
Therefore, the active learning algorithm is not allowed to suggest the same
observation twice, because this would be redundant information. Instead, if the
preference for the setting with the highest max probability has already been
observed, the setting with the second highest max probability is suggested and
so forth until a yet unobserved new point is suggested. The ALP criterion does
not define a max probability value for the current maximum point. To avoid
an observation in the current maximum point a max probability value of 0 is
assigned to the current maximum point in each iteration.

The threshold of the mean of the max probabilities mmaxthres is set to 10−2.
When the mean of the max probabilities is below this value the signal variance
σ2
f,maxprob for the calculations of the max probabilities is increased in finite steps

controlled by the integer kσ2
f

such that

σ2
f,maxprob = σ2

f

(1+2·k
σ2
f

)
, (4.4.2)

where σ2
f is the signal variance in the GP fit learned from the observed data by

marginal likelihood maximization. Hence, when mmaxthres < 10−2, kσ2
f

will be

set to 2. If still mmaxthres < 10−2, then kσ2
f

will be set to 3 and so forth until

mmaxthres = 10−2. A summary of the simulation conditions for the noise-free
simulations is shown in table 4.1

In the second part (section 4.4.3) the observations are noisy. Therefore, it is
convenient to allow for several observations in the same point to reduce the un-
certainty of the observations in important regions with assumed high preference.
However, to prevent getting stuck in a local maximum, different strategies will
apply. One possibility is to do something similar as in the noise-free case. That
is to suggest the point with the second highest probability instead of suggesting
the point with the highest probability, whenever the same observation point has
been suggested through several iterations. Another possibility is to alter the
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Underlying preference function Modified Griewangk

Input space dimensions 2D

x range -5;5

y range -5;5

Resolution in each dimension 41 uniformly spaced points

Number of iterations 60

Covariance function SE

Covariance function hyper-parameters l, σ2
f

mmaxthres 10−2

Altered hyper-parameter σ2
f,maxprob = σ2

f

(1+2·k
σ2
f

)

Repeat observations no

Table 4.1: Simulation conditions for noise-free simulations

hyper-parameters when the maximum point has been the same throughout sev-
eral iterations, because it can thereby be assumed that the search has converged
to a possible local maximum. The simulations will not investigate all of these
different possibilities nor trying to find and optimize the best strategy. Instead,
the algorithm is allowed to perform infinitively many observations in the same
point, i.e., no ad-hoc procedure is implemented to detect if the algorithm is
caught and keeps suggesting the same setting as the optimal one. This is done
to present the baseline performance and give an impression of what could be a
promising strategy to pursue for modifying and optimizing the algorithm in a
realistic noisy setup using real subjects.

The addition of noise to the observations obviously makes the problem more ill-
posed. Consequently, the GP model itself might not be able to make a proper
estimate of the underlying function as easy as in the noise-free case.

Additionally, if the maximum point of a current GP fit is a point where no
observations have been performed, the max probability will in the maximum
point exceptionally not be set to zero, but to 1 in this point. This is done to make
sure that an observation is performed in this point in the next iteration. Without
this constraint, problems will occur if the predicted maximum is very large
compared with other points and at the same time has a very high uncertainty.
The ALP criterion assumes that the fit around the current maximum is correct,
which is important to verify. This can only be done by an observation. A
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drawback from this is that additional experiments will be wasted on identifying
that a predicted maximum actually has a high preference value.

Finally, the threshold of the mean of the max probabilities is increased to 10−1,
because the independent Gaussian noise included in the GP will always add some
additional uncertainty to the fit, and thereby the mean of the max probabilities
will not reduce so dramatically as in the noise-free case. Furthermore, both the
signal variance σ2

f and the length scale l of the SE covariance function will be
altered simultaneously to increase the max probabilities more dramatically. The
signal variance for the max probability calculations σ2

f,maxprob is again defined by
equation (4.4.2). The length scale lmaxprob for the max probability calculations
is defined by

lmaxprob = l(1/2)kl , (4.4.3)

where l is the marginal likelihood estimated length scale used in the GP fit.
kl = 1, 2, 3... is a integer controlling the step size in the same manner that kσ2

f

controls the step size of the signal variance for the max probability calculations
(see equation (4.4.2)). The reason for reducing the length scale in addition to the
signal variance is that otherwise the algorithm has a tendency to get caught more
frequently. It should be kept in mind that these simulations serve to present
a baseline performance. How exactly the hyper-parameters should be altered
must be determined more thoroughly in the future (ref. section 7.2). Note,
that the adjustment of lmaxprob (equation (4.4.3)) is possibly not appropriate if
the marginal likelihood estimated length scale l is smaller than 1. In that case
the modified length scale lmaxprob will be larger than the estimated l, which is
not the intention. The intention is to reduce the length scale to increase the
similarity between observation and candidate points. Fortunately, the marginal
likelihood estimated length scale l is never below zero in any of the simulations,
hence the imperfection has not influenced the noisy simulations significantly.

The noisy simulation is performed for five different noise levels with independent
zero-mean Gaussian noise as mentioned previously. The standard deviations σn
for the five noise levels are all set to be a fraction kσ of the standard deviation
σobj of the underlying preference function (modified Griewangk), thus

σn = kσ · σobj (4.4.4)

The five simulations correspond to kσ = {0.1; 0.3; 0.5; 0.7; 0.9}. In table 4.2 a
summary of the noisy simulation conditions is shown.
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Underlying preference function Modified Griewangk

Input space dimensions 2D

x range -5;5

y range -5;5

Resolution in each dimension 41 uniformly spaced points

Number of iterations
60 (visual examples)

100 (convergence comparison)

Covariance function SE and independent noise

Covariance function hyper-parameters l, σ2
f , σn

mmaxthres 10−1

Altered hyper-parameter
σ2
f,maxprob = σ2

f

(1+2·k
σ2
f

)

lmaxprob = l(1/2)kl

kσ 0.1;0.3;0.5;0.7;0.9

Repeat observations yes (infinitely)

Table 4.2: Simulation conditions for noisy simulations
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4.4.2 Noise-Free Observations Results

As the objective with these simulations is to study the behavior of the active
learning algorithm, it will be interesting to study the evolution in the simu-
lations. To visualize this, the current state of the GP fit is plotted in each
iterations together with the max probability for all points and the previous GP
fit resulting in the probabilities. Additionally, three convergence measures are
plotted; the normalized distance (dist) and the normalized preference value dif-
ference (diff) between the current maximum point and the actual maximum
point of the underlying function and the mean square difference (mse) between
the GP fit and the objective preference function over the entire input space.
The three convergence measures are given by

dist =
|xobj,max − xmax|√

200
, (4.4.5)

diff =
fobj,max − fobj(xmax)

fobj,max − fobj,min
and (4.4.6)

mse =

√
(fobj − f)2, (4.4.7)

where xobj,max is the maximum point of the underlying preference function,
xmax is the current maximum point of the GP fit, fobj,max and fobj,min are the
maximum and minimum preference values of the underlying preference function,
respectively, and fobj(xmax) is the preference function value of the underlying
preference function at the location of the maximum point of the current GP fit.

Next, the mean of the max probabilities, the hyper-parameters of the current
GP fit and the hyper-parameters for the probability calculations are plotted. In
figure 4.2 this configuration is shown.

The inclusion of the first randomly chosen observation results in the GP fit shown
in the bottom-left (previous GP state) plot in figure 4.3, where the data from
the second iteration is depicted. Notice, that the shape of the max probabilities
(top-middle plot in figure 4.3) is similar to the shape of the previous GP state for
which the max probabilities are based. Furthermore, it can be seen that points
fare from the first observation point obtain the same max probability of 0.5.
This is due to the fact that the marginal likelihood optimization of the hyper-
parameters does not have enough observations and thus information to make a
proper estimate of the underlying function. Therefore, the prior over functions
is the “best guess” in areas distant from the observation. The large uncertainty
resulting from the prior causes the max probabilities to increase in these areas
as seen in the top-middle plot of figure 4.3. As a result, the next observation
point will be chosen randomly from areas distant from any of the observations,
whenever there are not enough observations to make a proper estimate of the
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Figure 4.3: 2D simulation plot for the second iteration with a modified
Griewangk function as the unknown underlying preference function.

underlying preference function. This is a convenient property of the algorithm,
because the observations will ideally be evenly spread in input space until a
proper estimate of the underlying preference function can by provided. The
small fluctuations seen in the max probability plot are due to the sampling
method approximating the integral from equation (4.3.4).

At a certain iteration the marginal likelihood estimate of the hyper-parameters
fits the observations, whereby predictions are not merely drawn from the prior
anymore. This is because the observations influence the predictions everywhere
in input space. The data depicted in figure 4.4 shows the 5’th iteration. Here
the old GP (previous GP state) is the first fit, where the marginal likelihood
estimate of the hyper-parameters “smooths” the data. Obviously, the smoothed
fit is different from the underlying preference function, but at this point in the
search it is the best estimate the GP can provide. Notice, that the shape of the
max probabilities over the input space is different from the shape of the old GP
fit for which the probabilities are based. The “east” corner is far from any of the
observation, hence the uncertainty is large, while the mean of the GP (predictor)
is also relatively large, causing the max probabilities in this area to be large.
In the “west” corner the mean of the GP is largest, thus even though the area
is close to an observation point and the uncertainty thereby is small, the max
probabilities are still large in this area due to the large mean values. Thereby,
the active learning algorithm appears to be a natural weighting between a high
predicted preference and uncertainty.



4.4 2D Simulation 37

−5
0

5

−5

0

5
−3

−2

−1

0

Obj. func: Modi�ed Griewangk

−5
0

5

−5

0

5
−3

−2

−1

0

New GP

−5
0

5

−5

0

5
0

0.5

1

Probabilities

pr
ob

ab
ili

ty

10 20 30 40 50 60
100

101

102
GP hyperparameters

 

 

10 20 30 40 50 60
100

101

102

number of iterations

Probability hyperparameters

 

 

10 20 30 40 50 60
−1

0

1
Convergence

 

 

10 20 30 40 50 60
10-2

10-1

100

va
lu

e
va

lu
e

va
lu

e
va

lu
e

Mean probability

−5
0

5

−5

0

5
−3

−2

−1

0

Old GP

dist
di�
mse

l
σf

2

l
σf

2

Figure 4.4: 2D simulation plot for the 5’th iteration with a modified Griewangk
function as the unknown underlying preference function.
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Figure 4.5: 2D simulation plot for the 8’th iteration with a modified Griewangk
function as the unknown underlying preference function.
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Figure 4.6: 2D simulation plot for the 16’th iteration with a modified Griewangk
function as the unknown underlying preference function.

In the 8’th iteration (see figure 4.5) the search has located a possible maximum.
Notice, how the shape of the max probabilities is sharpened in the area of
the possible located maximum. In subsequent iterations the shape of the max
probabilities becomes increasingly sharpened around a decreasingly narrow area
around the possible local maximum. In this way the correct location of the
local maximum is discovered. In the 16’th iteration (see figure 4.6) the local
maximum is correctly identified. Notice, that the shape of the max probabilities
has an imperceptible narrow peak next to the center of the local maximum.
The evolution from the 8’th (figure 4.5) to the 16’th iteration (figure 4.6) shows
that the algorithm quickly discovers a maximum whenever the possibility of
obtaining one is identified. This is a very satisfying property within the area
of preference learning, where the number of observations can be restricted such
that it might not be possible always to locate the global maximum within the
allowed number of observations. In these cases, it is absolutely necessary that
the found optimal setting is as good as possible. Therefore, a fast located local
maximum is preferable compared to less efficient settings based on an incorrect
overall estimate of the underlying preference function.

The global maximum is detected in the 21’st iteration depicted in figure 4.7.
At this point it is interesting to observe the locations of the observations. Be-
sides the underlying preference function, the top-left plot also contains crosses
indicating the locations of the observations. The inputs of the observations are
as expected not spread equally in input space, but instead the observations are
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more densely distributed in regions with high preference. Hence, the algorithm
only spends further observations if a region turns out to have high preference,
whereas it uses a minimum of observations to discover regions with low prefer-
ences. This behavior is exactly the desired behavior. In the 21’st iteration the
mean of the max probabilities based on the marginal likelihood estimate of the
hyper-parameters has become smaller than the threshold of 10−2. Consequently
the signal variance σ2

f,maxprob used for the max probability calculations (bottom

plot in the right side of figure 4.7) is increased relative to the signal variance σ2
f

of the GP fit (second plot from the bottom in the right side of figure 4.7) (ref.
equation (4.4.2)). As mentioned previously, this causes the mean of the max
probabilities to get above the threshold resulting in the max probabilities seen
in the top-middle plot. In this way the uncertainty is weighted higher than the
uncertainty resulting from the marginal likelihood maximization, and the active
learning algorithm continues outside the current maximum.
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Figure 4.7: 2D simulation plot for the 21’st iteration with a modified Griewangk
function as the unknown underlying preference function.

In figure 4.8 the 26’th iteration is presented showing how the signal variance
for the max probability calculations remains larger than the marginal likelihood
estimate of the function variance used for the GP fit to keep the mean of the
max probabilities above the threshold. This forces the algorithm to search out-
side regions with already found high preference. Actually, the four regions with
high max probabilities are seen to coincide properly with the three undiscov-
ered local maxima, although this might only be a coincidence. Behavior like
this will presumably be very dependent on the underlying unknown preference
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Figure 4.8: 2D simulation plot for the 26’th iteration with a modified Griewangk
function as the unknown underlying preference function.

function. By looking at the mse error plotted in the top of the plots in the
right side of figure 4.8, it is seen that the algorithm begins to reduce the mse
error and thus the generalization error of the entire preference function. This
is even more profound in the 41’st iteration depicted in figure 4.9 where the
mse error has degraded from the point where the global maximum was discov-
ered. In that iteration the underlying preference function is almost completely
identified. Notice, how the signal variance for the max probability calculations
has increased accordingly. Thus, it turns out that first the active learning al-
gorithm focuses on high preference, and second by increasing the uncertainty
through the hyper-parameters the algorithm puts more emphasis in reducing
the generalization error and discovers the entire underlying preference function.
By comparing the locations of the observations in the 41’st iteration and in
the converging 26’st iteration, it can be seen that even though the observations
have been spread more equally in input space after the search has converged,
the locations are still distributed more densely in high preference regions than
in low preference regions.

Although this particular run (figure 4.3 - figure 4.9) is actually fairly represen-
tative for the behavior of the active learning algorithm, it is important to see
the average behavior over many runs. In the following, the average performance
over 100 simulations is analyzed by presenting identical convergence measures
as those shown in the top-right plots of the figures, i.e., dist, diff and mse. In
order to compare the in this thesis developed active learning criterion (ALP)
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Figure 4.9: 2D simulation plot for the 41’st iteration with a modified Griewangk
function as the unknown underlying preference function.

with other algorithm types, two further simulation types with different active
learning criteria are conducted. Again, 100 simulations are performed for each of
the criteria. The first criterion consists of choosing new observations randomly
and in the second criterion new observations are chosen according to Mackay’s
criterion, i.e., new observations are selected where the point-wise variance is
largest. In figure 4.10 the mean of the three convergence measures over the 100
simulations have been plotted for each of the three active learning criterion.

First of all, it is seen that selecting new observation points randomly is as
expected not a proper strategy - the convergence time is considerably longer
than both of the two other criterion (see red curves in figure 4.10). Therefore,
no further attention will be given to the random strategy.

Comparing the ALP and ALM criteria, it can be seen that for this particular
objective function the two methods converge on average equally fast towards
the global maximum - both criteria result in nearly global convergence after 30
iterations (black and blue curves in the middle plot of figure 4.10). However,
if the search is finished before the global convergence point, i.e., before the
30’th iteration, the ALP criterion results in an on average considerably better
proposed best setting than the ALM criterion. On average, the ALP criterion
results in a proposed best setting with a preference value that is only 10 percent
lower than the preference value of the global maximum after 17 iterations. In
contrast, with the ALM criterion 24 iterations are used on average to reach the
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Figure 4.10: Mean over 100 runs for each of the three data selecting criteria -
ALP, ALM and random. The top plot shows the normalized distance, the middle
plot shows the normalized preference difference and the bottom plot shows the
mse.
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same preference value for the current best setting. When studying the average
performance of the ALP criterion, it can once again be seen that a good solution
in relation to high preference is quickly discovered compared with the two other
criteria. As mentioned previously, this is exactly the desired behavior, since it
might be impossible in a real setting to perform enough experiments to locate
the global maximum point. The ALP method seems to have the ability to
obtain a solution with a good preference value in few iterations compared with
the ALM method - at least in this idealized simulation.

Another interesting observation to draw from figure 4.10 is that the two active
learning methods reduce the generalization error (mse) differently. The two
methods seem to converge completely in the same number of iterations, yet
the ALM method reduces the mse faster than the ALP method. Hence, this
indicates that the ALP method contains a natural trade-off between finding the
maximum point of an underlying function and generalizing the entire function
itself. The behavior seen previously, where the ALP criterion first discovers the
global optimum and then afterwards generalizes the entire underlying function,
is also observed here over 100 runs.
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Figure 4.11: 100 similar runs with the ALP method together with the corre-
sponding mean plotted with a think line. The top plot shows the normalized
distance, the middle plot shows the normalized preference difference and the
bottom plot shows the mse.
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Figure 4.12: 100 similar runs with the ALM method together with the corre-
sponding mean plotted with a think line. The top plot shows the normalized
distance, the middle plot shows the normalized preference difference and the
bottom plot shows the mse.

In figure 4.11 and figure 4.12 the individual runs are shown together with corre-
sponding means from figure 4.10, for the ALP and the ALM criteria, respectively.
These two figures give an expression of the data resulting in the average perfor-
mance from figure 4.10. The reason that the ALM criterion results in a proposed
best setting with higher preference value than the ALP criterion early in the run
(between the 5’th and the 10’th iteration) is due to the shape of the underlying
preference function. The ALM method will use observations at the locations
with highest variance, hence ideally for fixed hyper-parameters in the GP, this
results in equally distributed observations in input space. Consequently, the GP
will smooth the observations before any of the real peaks are observed. Appar-
ently, this smoothing often gives rise to a weak maximum around the middle
of input space early in the run (see the normalized distance in the top plot of
figure 4.12). For the objective function used in these simulations, suggesting a
point around the middle as an optimal setting results in a setting with relatively
high preference. Thereby, the ALM criterion seems to perform better very early
in the run compared to the ALP criterion, but this is a result of an incorrect
estimate of the underlying function, which results in a good proposed optimal



4.4 2D Simulation 45

setting for this particular underlying preference function. In comparison, the
proposed optimal setting early in the run with the ALP criterion corresponds
to one of the local maxima as seen from the normalized distance plot in the top
of figure 4.11.

4.4.3 Noisy Observations Results

For each noise level 100 simulations are performed and the average performance
for each noise level is plotted in figure 4.13 together with the noise-free average
performance from figure 4.11.
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Figure 4.13: Mean over 100 runs for each of the five noise levels together with the
noise-free simulation. The top plot shows the normalized distance, the middle
plot shows the normalized preference difference and the bottom plot shows the
mse.

As expected the convergence time increases as the noise level increases. It can
also be noticed that on average the solution for which the search converges gets
increasingly worse with increasing noise level. With the relatively small num-
ber of observations located in assumed high preference regions, the uncertainty
caused by the observation noise will be difficult for the GP to handle. When
the strength of the observation noise is comparable to the fluctuations in the
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underlying preference function, the required number of repeated observation in
a given points must be increased to reduce the noise. Therefore, with limited
number of observations the precision of the provided preference function esti-
mate has a limit, which decreases with increasing noise level. To avoid this
behavior numerous observations should be made at a lot of input points, but
this would obviously be infeasible in practice and consequently it would also be
meaningless to apply active learning. Conclusively, there is a limit in how good
on average the proposed optimal setting can get with very noisy observations.
However, kσ = 0.9 is an extremely high amount of noise (ref. equation (4.4.4)),
and for medium noise contributions the algorithm shows acceptable average
performance, although there is still room for improvements. At this point, no
more effort is put into optimizing the algorithm, but instead a couple of general
observations will be shown.

In figure 4.14 the 19’th iteration for one particular noisy simulation with kσ = 0.3
is shown. In this iteration the GP starts to fit the data with something else than
just a plane. Until the 19’th iteration the active learning has only picked obser-
vation points randomly. In the noise-free simulations this happened earlier (in
the provided example at the 4’th iteration), because the absence of noise made
the problem of over-fitting less dominating. In the noisy case, the covariance
function additionally contains the independent noise variance. Apparently, the
embedded regularization in the marginal likelihood optimization of the hyper-
parameters, restricts the GP not to over-fit the underlying functions, before the
probability of the data dominates the model complexity (ref. equation (3.2.40)).
This obviously increases the convergence time.

In figure 4.15 the 46’th iteration is shown. In this iteration the search has con-
verged - not to the global maximum, but to the largest of the local maxima. For
the remaining 14 iterations the algorithm keeps suggesting observations in the
setting corresponding to the prominent peak observed in the max probabilities.
This is because there is no limit in how many observations that can be per-
formed at a given setting. Even though the search cannot move away from the
local maximum, unexplored information about the maximum of the underlying
preference function is obviously still captured in the max probabilities. The
peak located next to the current proposed optimal setting prevents the search
in continuing into other regions observed also to have considerably high max
probabilities. In these simulations no constraints have been applied for detect-
ing if the search has converged to a certain maximum and does not explore the
input space any further. These constraints should not be specific stopping cri-
teria, but for instance criteria that detect if either the proposed optimal setting
has not moved or the new observation point has not moved throughout several
iterations.

The first simple constraint would be to set a limit of the number of repeated
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Figure 4.14: Noisy 2D simulation plot with kσ = 0.3 for the 19’th iteration with
a modified Griewangk function as the unknown underlying preference function.
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Figure 4.15: Noisy 2D simulation plot with kσ = 0.3 for the 46’th iteration with
a modified Griewangk function as the unknown underlying preference function.
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observations. If this limit is reached the setting with the second highest max
probability is suggested. This strategy is similar to the strategy used in the
noise-free setting, but it might not be applicable for the noisy case. If a peak
occurred in the noise-free setting it would be narrow, meaning that the max
probability was only high exactly at the center of the peak. In this noisy ex-
ample it is seen from figure 4.15 that the peak does not decrease as fast as in
the noise-free simulations, hence around the maximum of the the peak the max
probabilities are also relatively large. Consequently, the second highest max
probability might correspond to a setting just next to the setting corresponding
to the center of the peak. An inevitable result of this will be that a lot of re-
dundant observations are used to move away from a local maximum. Naturally,
this behavior will be influenced by the resolution of the setting step-size. In
the presented example the resolution is relatively large, hence for smaller res-
olutions the settings close to the center of the peak might not get a high max
probability. Nevertheless, it is inconvenient to have the performance influenced
by the setting resolution.

Forcing the search into other important regions is the motivation for suggest-
ing the second highest max probability, but instead it can result in redundant
experiments in already explored regions. To actually force the algorithm into
other regions, only maximum points of the max probabilities should be con-
sidered. If a particular setting has been suggested numerous times the second
largest maximum point of the max probabilities should be suggested. In this
way, the concept of suggesting experiments that have the highest probability of
having larger preference than the current maximum is respected within partic-
ular regions. This would yield a difference. Obviously, to actually be able to
find maximum points of the max probabilities, the sampling noise/error should
be filtered out by smoothing the max probability, with e.g. low-pass filtering.
In the work presented in this thesis such a strategy has not been investigated.

Conclusively, it has been shown that addition of noise does slow down the con-
vergence time. On average, the preference value for the found optimal setting is
reduced with increasing noise level as well. However, it is interesting to observe
that the max probabilities contain a lot of useful information - how to optimally
make use of this information must be further investigated in the future (see
section 7.3).

4.4.4 Summary

The simulations have shown good performance by the novel active learning algo-
rithm together with the GP for noise-free observations compared with Mackay’s
method and random sampling. The algorithm performance the way that is
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desired, i.e., a useful maximum - local or global - is quickly identified. The
algorithm has further the potential to escape from a possible local maximum
and identify the global maximum.

With the addition of noise to the observations the performance is as expected
considerably worse than in the noise-free case. However, a considerably amount
of noise can be tolerated, still yielding acceptable performance, i.e., on average
the search converges quickly, although the suggested optimal setting is not nec-
essarily the global maximum. It might be possible to optimize the performance
further by using the concept of the max probabilities in a more sophisticated
manner, but the scope of the thesis has not allowed for a thorough study of such
strategies (see section 7.3).
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Chapter 5

User-Driven Personalization
Framework

In this chapter the baseline framework proposed in this project for capturing
personal preferences among a finite set of settings in a simplified HA simulator
will be presented.

Initially, in section 5.1 an earlier framework proposed by Heskes and de Vries
(2005) will be described, since this probabilistically based framework has been
the main inspiration for the framework developed in this thesis. Next, section 5.2
through section 5.4 explain the proposed framework. A simulation study of the
full framework is presented in section 5.5 followed by final remarks in section 5.6.

5.1 Bayesian Utility Elicitation

This section will review a Bayesian framework for HA personalization developed
by Heskes and de Vries (2005). The basic principle is to model preferences
of subject i through a utility function ui(y) = U(y;wi). The utility function
(preference function) mapping from HA outputs (sound) y ∈ Y to utility ui
is parameterized by a final set of parameters w ∈ W . However, Heskes and
de Vries (2005) do not explicit state any model for the utility function, yet the
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problem is addressed in Birlutiu et al. (2010).

The utility parameterization wi is treated as a probabilistic variable and a prior
distribution p(w|ai) is assigned over wi. Individual w will be referred to as a
given utility state. ai denotes a patient profile containing information about
subject i, such as for instance type of HL, age etc. It is assumed that such
priors over utility states are available based on a collection of HI persons.

Next, the HA processes an input sound x ∈ X resulting in the output stimuli
y from above. Heskes and de Vries (2005) assign a probability function p(x)
over the sound input X. The HA contains a final set of tuning parameters
θ ∈ Θ, which control the sound processing, such that a fixed input sound x and
different HA parameters θ result in different output sound stimuli y. The sound
processing in the HA will be denoted y = F (x; θ). Given the utility function
U(y;wi), obviously, the goal is to find the “optimal” HA parameter setting θi
for subject i that gives the highest utility averaged over the fixed collection of
sounds x ∈ X. From this point on the subject index i will be omitted, because
all subjects will in practice be considered separately. An overview of the user-
hearing-aid system is shown in figure 5.1.

Figure 5.1: Bayesian decision network. x ∈ X relates to an input, θ ∈ Θ is the
HA parameters transforming x to an output y ∈ Y : y = F (x; θ). The utility
model u(y) = U(y;w) is described by a final set of parameters w ∈W having a
prior distribution given by the patient profile a. Dark gray refers to parameters
subject to the optimization and light gray refers to parameters given in advance
(Heskes and de Vries, 2005, figure 1(a)).

In practice, a paired comparison paradigm is a robust evaluation method, be-
cause the judgments are relative. To infer the paired comparison decision net-
work an experiment e will be defined as picking an input x from X in combina-
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tion with two different parameter settings θ1 and θ2 from Θ, i.e., e = {x, θ1, θ2}.
The subject is then asked to choose the preferred stimuli resulting from the
two settings, i.e., y1 = F (x, θ1) or y2 = F (x, θ2). The parameter d ∈ {−1, 1}
captures the choice from the subject with d = 1 indicating that y1 is preferred
over y2 and similar d = −1 indicating that y2 is preferred over y1. With the
assumption that this paired-comparison forced-choice paradigm follows a logis-
tic regression model, the decision from the subject is described by (Heskes and
de Vries, 2005, equation (1))

p(d|e, w) =
1

1 + exp {−d× [U(x; θ1, w)− U(x; θ2, w)]}
(5.1.1)

This paired-comparison forced-choice Bayesian experiment is visualized in fig-
ure 5.2. The probability density p(w|Dn) over utility states w after having done

Figure 5.2: Bayesian experimental design visualizing the paired comparison
paradigm. d ∈ {−1, 1} captures the choice from the subject where d = 1
indicates that y1 is preferred and d = −1 indicates that y2 is preferred (Heskes
and de Vries, 2005, figure 1(b)).

a new experiment
{
dn+1, en+1

}
can be obtained through Bayesian updating

given by Bayes’ theorem equation (3.1.2)

p(w|Dn+1) = p(w|dn+1, en+1, Dn) =
p(dn+1|en+1, w)p(w|Dn)

p(dn+1|en+1, Dn)
, (5.1.2)

where Dn consist of the tubles {eµ, dµ} , µ = 1...n and µ indicates the experi-
ment number of the n foregoing experiments. p(dn+1|en+1, w) is given by equa-
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tion (5.1.1) and the term in the denominator follows from equation (3.1.3)

p(d|e,Dn) =

∫
W

p(d|e, w)p(w|Dn)dw, (5.1.3)

where the superscript n+1 has been omitted, which will be consistent from this
point on, i.e., e and d refer to new experiments and Dn contains the n observed
experiments.

In practice, it will not be possible to let a subject evaluate all possible parameter
settings. Therefore, a cost function or equivalently a goal function is introduced
to enable active data selection for new experiments. Naturally, a specific choice
of cost/goal function defines the outcome of the optimization or learning process
(ref. chapter 4). At this point it is assumed that a goal function G(θ, w, e, d) is
defined, which encodes consequences of doing another experiment e with result
d in a current state w. First of all the posterior density function over utility
states w from equation (5.1.2) is used to marginalize the goal with respect to w
resulting in the posterior expected goal. For HA personalization the task is to
achieve the highest utility (preference) over all HA settings θ, therefore Heskes
and de Vries (2005) argue that the optimal decision is to maximize the expected
goal with respect to θ (Heskes and de Vries, 2005, equation (4))

G(e, d) ≡ max
θ

∫
W

G(θ, w, e, d)p(w|d, e,Dn)dw, . (5.1.4)

Next, taken the expectation with respect to the outcome d of the experiment
using equation (5.1.3) yields what Heskes and de Vries (2005) refer to as the
pre-posterior expected goal

G(e) =
∑
d=±1

G(e, d)p(d|e,Dn). (5.1.5)

The optimal experiment becomes the experiment that maximizes the pre-posterior
expected goal and a Bayesian solution e∗ to the experimental design becomes

e∗ = arg max
e
G(e) (5.1.6)

= arg max
e

∑
d=±1

p(d|e,Dn) max
θ

∫
W

G(θ, w, e, d)p(w|d, e,Dn)dw (5.1.7)

= arg max
e

∑
d=±1

max
θ

∫
W

p(d|e,Dn)G(θ, w, e, d)p(w|d, e,Dn)dw (5.1.8)

Despite the usefulness of these derivation, the question still remains to define a
proper and tractable cost/goal function. If the goal would be to infer the utility
model (preference function) parameters w one common choice would be the log
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difference between the posterior and prior density functions of w

G(θ, w, e, d) = log p(w|d, e,Dn)− log p(w|Dn) (5.1.9)

= log
p(w|d, e,Dn)

p(w|Dn)
(5.1.10)

Obviously, this goal function does not depend on θ, hence equation (5.1.4) be-
comes

G(e, d) = max
θ

∫
W

G(θ, w, e, d)p(w|d, e,Dn)dw (5.1.11)

=

∫
W

p(w|d, e,Dn) log
p(w|d, e,Dn)

p(w|Dn)
dw (5.1.12)

This equation is the Kullback-Leibler divergence between the posterior and prior
distribution over w, thus with this kind of goal function the optimal new exper-
iment would be the one that gives the largest information gain about the utility
parameters w averaged over the outcomes of the experiment. This is exactly
the ALM criterion from section 4.1.

For the purpose of HA personalization Heskes and de Vries (2005) suggest to
use a goal function based on what they refer to as expected utility. Basically,
this is the expectation with respect to the input sound files x of the modeled
utility function

EU(θ, w) =
∑
x∈X

p(x)U(x; θ, w) (5.1.13)

Notice, that the utility function U(x; θ, w) models preferences directly on the
HA parameter instead of on the output stimuli of the HA. This seems like a
convenient and natural approximation, since now preferences among HA set-
tings are modeled directly on the HA parameters. Further, assuming that all
sound files within the context of X are equally likely, the expected utility boils
down to the modeled utility function. Using this as the overall goal function,
equation (5.1.5) becomes

G(e) =
∑
d=±1

G(e, d)p(d|e,Dn) (5.1.14)

=
∑
d=±1

p(d|e,Dn) max
θ

∫
W

p(w|d, e,Dn)U(θ, w)dw (5.1.15)

=
∑
d=±1

p(d|e,Dn) max
θ

∫
W

p(d|e, w)p(w|Dn)

p(d|e,Dn)
U(θ, w)dw (5.1.16)

=
∑
d=±1

max
θ

∫
W

p(d|e, w)p(w|Dn)U(θ, w)dw (5.1.17)
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This is by Heskes and de Vries (2005) referred to as the expected value given
perfect information and they embed active data selection by performing the ex-
periment that maximizes this term. This criterion realizes the idea of performing
new experiments that in the context of hearing aid personalization focus directly
on the overall goal of maximum utility for a particular setting. As mentioned
previously, this is in nature different from the majority of other active learn-
ing problems, where the main interest is to be confident about an underlying
function over the entire input space or alternatively in a subspace of interest.

To summarize, the framework by Heskes and de Vries (2005) consists of three
parts - a preference function model must be defined, the preference function
model should be trained on pair-wise comparisons and finally active learning
should be applied to perform the most informative experiment. Such a method
is used in this thesis, but the three parts are addressed differently than what is
sketched by Heskes and de Vries (2005). The reason for this is that Heskes and
de Vries (2005) assume that the preference function is modeled by a parame-
terized model. It will be preferable to use a non-parameterized model, because
these are more flexible than parameterized models. Expected utility is defined
for parameterized models and how to apply the concept for non-parameterized
models is not evident. Therefore, the three steps in the framework by Heskes
and de Vries (2005) must be addressed differently, although the basic concepts
in the framework appear to be a promising strategy. How the three parts are
addressed in this thesis will be presented in the following three sections.

5.2 Modeling Preference Functions

A different notation will be used in this thesis than the notation used by Heskes
and de Vries (2005). A HA consisting of D adjustable parameters collected in
the vector x = [x1, x2, ..., xD] is considered. In practice each HA parameter xk,
where k = 1, 2, 3, ...,D, is bounded to a particular range and can take only a
finite number of values m within that range.

Next, it is assumed that there for a particular user exists a preferences function
fu(x) over HA settings, which describes the user preference for a particular HA
setting in a given sound environment. The observed values (targets) of the user
preference function are labeled y and are assumed to be related to the hidden
preference functions fu through contaminating independent zero-mean Gaussian
noise with variance σ2

n. The unknown user preference function fu is modeled by
a zero-mean GP with a SE covariance function with an additional independent
noise term f ∼ GP(O,KSE (X,X)). Predictions of the real user preference
function values f∗ at particular HA settings collected in X∗ given N observations



5.3 Transform Pair-Wise Judgments to Preferences 57

of HA settings/preference values (XN ,yN ) follow from equation (3.2.24).

The GP predictions of preference function values over HA settings are updated
every time a new preference value yN+1 is observed, where N is the number of
preference data points measured at a particular iteration. Naturally, the goal is
to find the optimal HA setting xopt that maximizes the user preference function.

The user is always presented to the same sound file processed differently through
the HA, hence the preference function fu(x) is only affected by the setting of
the HA. Furthermore, for the sake of simplicity it is assumed that the user
preference function over HA settings does not drift over time, which will never
be true in a real setup, even with a comprehensive user training phase.

5.3 Transform Pair-Wise Judgments to Prefer-
ences

Typically, pair-wise preference judgments are adopted in subjective experiments,
since it is easier for listeners to rate or judge two opportunities relative to each
other rather than to give an individual absolute rating on a given scale. Trans-
forming the pair-wise preference judgments to an actual preference scale for
individual settings is not trivial. Chu and Ghahramani (2005) have derived a
method for training a latent preference function modeled through a GP on pair-
wise judgments. Although, inferring the distribution over the latent function
directly on the pair-wise judgments seems like the optimal strategy, the time
limitations did not allow for an implementation of the method. Instead, a less
efficient strategy is used where the GP training step is divided into two separate
parts. In this section a possible transformation of the pair-wise preference judg-
ments into absolute preference scale values used in the GP model in section 5.2
is described.

The pair-wise preference judgments experiments are presented as modified A/B
experiments, where the user is forced to decide which of the presented two op-
tions the user prefers. Further, the user has to express to what extend he or she
prefers the dominating option on a 3 step scale ranging from little, somewhat to

clearly. To summarize, an experiment consists of two HA settings, x
(1)
q and x

(2)
g ,

where q = 1, 2, 3, ..., n and g = 1, 2, 3, ..., n are two different HA settings among
all possible settings n. Next, the user rates and a label d = {−3,−2,−1, 1, 2, 3}
is assigned to each experiment, where d < 0 denotes the case where option 1
is preferred over option 2 and vice versa. The absolute value of d indicates to
what extend the dominating option is preferred on the scale mentioned above.
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To transform the pair-wise judgments described above into preference values

which can be used to train the GP, it is assumed that the probability Pj(x
(2j)
g �

x
(1j)
q ) of option 2 to be preferred over option 1 from the j’th experiment can be

modeled with a sigmoid function of the form

Pj(x
(2j)
g � x(1j)

q ) =
1

1 + exp [− (yg − yq) + b]
, (5.3.1)

where yg and yq is the user preference function value for the g’th and q’th HA
settings xg and xg, respectively, and b is a bias favoring either option 1 or option
2. Notice, that in this thesis it is assumed that there is no bias favoring either
option 1 or option 2, e.i. b = 0.

The transformation of the pair-wise preference judgments to actual observed
preference function values y is performed by minimizing the sum of squared er-
rors function between the preference label d and the prediction from the sigmoid
function with respect to the preference function values yN (used to train the
GP) corresponding to the HA settings in XN . XN is the set of settings that
occurs in the pair-wise experiments, i.e., no settings occur more than once in
XN even if they have been used in several experiments. To do the minimization,
the preference label d is mapped to six discrete probabilities Pd spread equally
over the interval from 0 to 1. In this way the label d = −3 corresponds to a
1/12 chance for option 2 to be preferred over option 1, d = −2 corresponds to
a 3/12 chance, d = −1 to a 5/12 chance, d = 1 to a 7/12 chance, d = 2 to a
9/12 chance and finally d = 3 corresponds to a 11/12 chance of option 2 to be
preferred over option 1. The sum of squared errors function eMS becomes

eMS =
1

M

M∑
j=1

∣∣∣P (j)
d − Pj(x(2j)

g � x(1j)
q )

∣∣∣2 (5.3.2)

and is minimized with respect to the preference function values yN . M is the
number of pair-wise experiments. The method is sketched in figure 5.3.

The presented sum of squared errors cost function is continues which makes it
easier to minimize, yet it might not be possible to obtain a minimum equal to
zero. Consider the example sketched in figure 5.4, where three settings xq, xg
and xh for which the preference values yq and yg for the q’th and the g’th setting,
respectively are much larger than the preference value yh for the h’th setting.
Additionally, the preference value yg are slightly larger than yq. If three exper-
iments are now performed assuming no bias, where h is presented versus q, h
versus g and q versus g. Ideally, the results from these three experiments would
be d = 3, d = 3 and d = 1. When the preference values are obtained by minimiz-
ing the described sum of squared errors cost function from equation (5.3.2), even
the correct preferences values will results in a small error, because the distance
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Figure 5.3: Sketch of the pair-wise transformation given an experiment j with
HA settings xg and xq. From the subjective rating, the label d = 3 has been
assigned to the particular experiment. The error is minimized with respect to
the preference values yg and yq. The red configuration is an example of a starting
guess in the minimization resulting in the shown error. The green configuration
has minimized the error, i.e., an error of zero.
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Figure 5.4: Given three pair-wise experiments, xg vs. xq with label d = 1, xq
vs. xh with label d = 3 and xg vs. xh with label d = 3, then the N = 3
obtained transformed preference values yg, yq and yh from the minimization of
equation (5.3.2) results in the error shown in the zoomed box.
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between the discrete probabilities P
(j)
d and the probabilities from the sigmoid

function (equation (5.3.1)) will not coincide. The reason for this is that to satisfy
the experiment between q and g, the preference value for the q’th setting must
be (and is) larger than the preference value for g. On the other hand to obtain
an error of zero from the two other experiments the preference values for the q’th
and the g’th settings have to be equal. Consequently, the sum of squared errors
cannot be zero, hence the obtained preferences values from the minimization will
be a trade-off between not introducing too large an error when considering any
of the experiments. Furthermore, the preference values yq and yg resulting from
the mean square error minimization in the example depicted in figure 5.4 can be
significantly different from the real preference values. Increasing the preference
values yq and yg results in the same output from the three experimental, but
the error will increase. Therefore, the relative difference between the obtained
preference values will in general not be correct. If the experiment between the
q’th and g’th settings was not performed in the example depicted in figure 5.4,
the cost function would be zero, resulting in identical preference values for the
two settings, which is neither the right result. The previous considerations indi-
cate, that the transformation itself probably gives rise to additional noise even
in cases where the observer is noise free.

Another cost function that would not result in an error in the previously ex-
plained example, would be a cost function, which divides the probabilities pre-
dicted by the sigmoid into six equidistant intervals corresponding to the prefer-
ence label d as depicted in figure 5.5. If the predicted probability for the outcome
of a given experiment falls in the correct interval the error is zero, one if it falls
in the first adjacent interval, two if it falls in the second adjacent interval and
so forth. For correctly obtained preference values, this cost function will have
an error of zero in a noise free case. The problem with this cost function is that
it is a staircase function. Hence, in the minimization with respect to preference
values two sets of slightly different preference values can lead to the same error.
Therefore, the minimization is intractable with standard minimization tools.

The sum of squared errors function is proposed for the transformation, despite
the disadvantages that it might lead to. Additionally, it must be mentioned that
with this pair-wise transformation it is advisable to have all experiments “con-
nected”, meaning that if the first experiment consists of HA setting xg and xq,
then the next should only contain one new setting, while either xg or xq is used
once again. In this way all mapped preference function values are “connected”
when minimizing equation (5.3.2). Hereby, no sets of preference function values
can change arbitrary, since one preference function value influence the value of
another through the sum of squared errors function. Notice, that a drawback
from this constraint is that even though a new experiment consists of two HA
settings, only one of them can result in a new GP observation point, although
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Figure 5.5: Sketch of a pair-wise transformation with a staircase cost function
given an experiment j with HA settings xg and xq. From the subjective rating,
the label d = 1 has been assigned to the particular experiment. The error is
minimized with respect to the preference values yg and yq. The purple configu-
ration is an example of a starting guess in the minimization resulting in a error
of 2 (see legend box). The green configuration has minimized the error, i.e., an
error of zero. The largest obtainable error is 5, which can only occur when an
outcome of an experiment results in a label d equal to either -3 or 3.
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it might alter the previous ones. The transformation method is investigated
through simulations in section 5.5.

5.4 Active Learning

The last part of the baseline framework consists of applying active learning
to select the optimal experiment. In this work optimal experiments refer to
experiments that optimize user preference among HA settings. In section 4.3
a novel active learning criterion ALP for the case of optimizing user preference
has been proposed. The active learning part in this thesis will be based on this
concept. Naturally, it would be very interesting to study if the ALP criterion for
the case of optimal user preference outperforms the two criteria ALM and ALC
by Mackay (ref. section 4.1) and Cohn (ref. section 4.2), respectively. However,
due to time limitations such a study have not been done, unfortunately.

As touched upon in section 4.3 the ALP criterion seems to have the potential
to avoid getting stuck in a local maximum, thus the abilities exist, yet how
to exploit them will be dependent on the actual preference function. Different
proposals have been proposed during this thesis, only the reader should notice
that there might exist other strategies in how to alter the parameters and in
particular the hyper-parameters in the covariance function (see section 7.2).

5.5 2D Baseline Simulation

In this section the baseline algorithm including the modeling of the underlying
preference function, the pair-wise transformation of the observation and the
active learning part is investigated by a simulation. The simulation conditions
are presented in section 5.5.1 and results and comments are given in section 5.5.2.

5.5.1 Simulation Conditions

The simulation setup is similar to the one used in section 4.4, but instead of
direct elicitation of the preference values y, the observations consist of noise-free
pair-wise preference judgments d. The preference judgments are given by map-
ping the difference in preference values resulting from the modified Griewangk
function between the two options through a sigmoid Pdecision given by equa-
tion (5.3.1) with no bias. Next, the interval between zero and one is divided
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into six equidistant intervals each corresponding to a particular decision label,
i.e., the interval from 5/6 to 1 corresponds to d = 3, the interval from 4/6 to
5/6 corresponds to d = 2 and so forth. The simulated decision label for a par-
ticular experiments is given by assigning the decision label d corresponding to
the interval that the output from the sigmoid Pdecision falls into. Additionally,
a slope constant a has been introduced in the equation for the sigmoid, hence
the decision sigmoid is given by

Pdecision =
1

1 + exp [−a · (y2 − y1)]
, (5.5.1)

where y1 and y2 is the preference value given by the modified Griewangk func-
tion for option 1 and option 2, respectively. The slope constant is adjusted in
order for the standard deviation of the output from the sigmoid given all pos-
sible experiment to correspond to the standard deviation of the differences in
preference values from all possible experiments normalized with respect to the
maximum range of preference differences. This was done trying to simulate an
optimal user.

Next, to ensure that all experiments are “connected” as described in section 5.3
the next proposed observation by the active learning algorithm is always judged
versus the observations with the highest preference value. Alternatively, if the
current best setting of the GP is not an observation, then this setting and the
best setting among the already observed settings are judged versus each other.
In this way a similar strategy as used for the noisy simulations from section 4.4.3
is adopted here as well.

80 iterations are performed. The mean of the max probabilities are given by
mmaxthres = 10−1 and infinitely many repeated observations are allowed. The
GP covariance function is a SE with an independent noise contribution, where
the hyper-parameters are learned from data by marginal likelihood maximiza-
tion. The altered hype-parameter for the max probability calculations is the
signal variance σ2

f,maxprob given by equation (4.4.2). The simulation conditions
are summarized in table 5.1.

5.5.2 Results

Numerous simulations have been run and the overall picture from the sim-
ulations is that it is almost impossible for the GP to fit the pair-wise data
mapped back to preference values by the sigmoid transformation described in
section 5.3, even without any noise applied. Generally, it seems as if the trans-
formation corrupts the data such that the marginal likelihood estimate of the
hyper-parameters fits the data as being merely noise. As already mentioned in
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Underlying preference function Modified Griewangk

Input space dimensions 2D

x range -5;5

y range -5;5

Resolution in each dimension 41 uniformly spaced points

Number of iterations 80

Covariance function SE and independent noise

Covariance function hyper-parameters l, σ2
f , σn

mmaxthres 10−1

Altered hyper-parameter σ2
f,maxprob = σ2

f

(1+2·k
σ2
f

)

Repeat observations yes (infinitely)

Sigmoid slope constant a 0.81

Table 5.1: Simulation conditions for noise-free pair-wise preference judgments
simulations

section 5.3 this might be a results of the imperfections of the cost function used
for backward mapping the pair-wise judgments to actual preference values. As
a result of this, the GP fitted preference function becomes extremely unstable,
hence the robustness of the method is very limited. This behavior will be il-
lustrated by examples from the simulations, instead of showing curves for the
performance as this is essentially very bad, because of the fragile estimate of the
underlying preference function.

The data from three consecutive iterations (67’th to the 69’th) from the only
simulation that turned out to by somewhat satisfactory is depicted in figure 5.6
to figure 5.8. These figures illustrate the unstable behavior of the preference
function estimate. In figure 5.6 the previous GP state has captured the un-
derlying preference function around the correctly identified global maximum.
However, the addition of one new observation changes the preference function
estimate significantly. In this example the maximum of the preference func-
tion is still located around the global maximum of the underlying preference
function, although this is simply a coincidence. In figure 5.7 the addition of a
second observation results in yet another preference function shape, although
this is more similar to the actual underlying preference function. Finally, in
figure 5.8 the fitted preference function has returned to the shape seen in the
old GP from figure 5.6.
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Figure 5.6: Noise-free 2D simulation with pair-wise transformation from pref-
erence judgments to preference values for the 66’th iteration with a modified
Griewangk function as the unknown underlying preference function.
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Figure 5.7: Noise-free 2D simulation with pair-wise transformation from pref-
erence judgments to preference values for the 67’th iteration with a modified
Griewangk function as the unknown underlying preference function.
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Figure 5.8: Noise-free 2D simulation with pair-wise transformation from pref-
erence judgments to preference values for the 68’th iteration with a modified
Griewangk function as the unknown underlying preference function.
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Figure 5.9: Noise-free 2D simulation with pair-wise transformation from pref-
erence judgments to preference values for the 64’th iteration with a modified
Griewangk function as the unknown underlying preference function.
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Obviously, the preference function fit is extremely unstable, which is as men-
tioned probably a result of the imperfect backwards transformation of the pref-
erence values. With the behavior seen from these three figures, it is the back-
wards transformation that determines how the new preference function looks
and therefore which observation that is performed next, rather than being the
active learning algorithm that determines it. The active learning algorithm pro-
posed in this thesis assumes that the GP can fit the data properly - especially
around the current maximum - and this is seen to be extremely difficult with
the pair-wise transformation. Recall, that there is not added any noise to the
observations. Also, the reader should be aware that this particular simulation
is the only example showing just acceptable performance.

In figure 5.9 the 64’th iteration of another simulation is shown. In contrast to the
previous example, this simulation shows the typical behavior of the algorithm.
Occasionally, the GP provides an estimate different from a plane. Sometimes
these fits are somewhat similar to the underlying preference function and some-
times they are not - as the case in figure 5.9. However, the GP typically provides
an estimate being simply a plane and thereby treats the fluctuations in the data
as noise. Since, no noise is added to any of these simulations, the problem must
occur from the pair-wise transformation. Therefore, it is concluded that the
algorithm is not robust with pair-wise data, because the data cannot be fitted
correctly. Hence, it is not sensible to investigate the behavior with the presence
of noise in the observations. Instead, the GP must be trained directly on the
pair-wise data as described in Chu and Ghahramani (2005), if the preference
elicitation is done using a pair-wise experimental setup. Recently, Groot et al.
(2010) have successfully applied this method for preference learning with normal
hearing (NH) and HI listeners.

5.6 Summary

The pair-wise transformation has been shown to destroy the data in the majority
of situations and it will therefore not be sensible to progress any further with
the method. Instead, since a considerable amount of observation noise can be
tolerated in the simulations shown in section 4.4 with direct observations of the
preference values, the work continues with an experimental setup where subjects
rate only one particular setting in each iteration on a virtual scale. However,
keep in mind that such observations will be very noisy.



Chapter 6

Pilot Experiment

To investigate the behavior and performance of the algorithm in a practical
setup, a pilot experiment with four test subjects is performed. The experimental
setup does not reflect a realistic automatic HA fitting situation in the sense
that it consists of finding an optimal HA setting for a NH subject. Despite
this, the setup is suitable to verify that the developed method can discover a
preferred setting for individual users and estimate real preference functions as
well. Further, it is possible to compare the functionality and performance of the
algorithm with the findings in the simulations.

The experimental method is presented in section 6.1. Following this, the results
are shown in section 6.2, and finally, the results are discussed in section 6.3.

6.1 Experimental Method

The experimental method for the pilot experiments is presented in this section,
including stimuli, apparatus, subjects and procedure.
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6.1.1 Stimuli

The stimuli in the pilot experiments are defined by two parts - the sound file
fed to a HA simulator and the processing taking place in the particular HA
simulator. The output from the HA simulator is the stimulus presented to the
subjects in each iteration.

Sound file

The same 15 seconds looped sound file is used for all experiments. The sound
file is a real recording of part of a conversation where a danish female speaker
tells about an experience at a restaurant. On the recording there is background
noise consisting of other conversations which are so weak that it is impossible
to understand the context. Also, there is clear music in the background. At the
end of some of the words the speaker makes a smacking sound with her lips and
tongue.

HA simulator

The HA simulator consists of a simple compressor. The compressor is a 15 band
filterbank compressor, where each band consists of one knee-point (K3 [dB])
also referred to as compression threshold, a compression ratio (CR) above the
knee-point and a constant gain (G3 [dB]) below the knee-point as shown in
figure 6.1. Additionally, the compressor has an attack speed (Att [dB/sec]) and
a release speed (Rel [dB/sec]), which are not band dependent. The attack and
release speeds are equivalent to the more common formulation using attack and
release times. The speed defines how much the level at the output can increase
or decrease per second, whereas time refers to how fast the level at the output
settles around the resulting steady state output when exposed to an instant
change in input level, e.g. ANSI/ASA S3.22-2009.

The knee-points K3 and gains G3 in the 15 bands are defined by

K3 = [38, 47, 50, 51, 53, 55, 53, 52, 52, 51, 51, 52, 51, 45, 45] dB and (6.1.1)

G3 = [10, 14, 18, 18, 17, 18, 22, 22, 21, 19, 18, 18, 17, 16, 16] dB, (6.1.2)

where the first element in the vectors defines the value in the first band of the
compressor, the second element defines the value in the second band and so forth.
These settings are chosen in order to obtain a compressor setting typical for a
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Figure 6.1: Schematic of the input-output characteristic of the compressor in
one particular band, where K3 is the knee-point/compression threshold, G3 is
the constant gain applied in the linear region and CR is the compression ratio.
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mild to moderate HL. Identical compression ratios are set in each band. Thus,
three free parameters define the input-output characteristic of the compressor.

Finally, the output of the compressor is always normalized to -20 dB FS1 in
MATLAB. This is done to prevent clipping.

6.1.2 Apparatus

The experiment is performed on a Windows XP PC in MATLAB. A Creative
Sound Blaster Extigy is used as external sound card and Beyer Dynamic DT
770 PRO 250 Ohm headphones are used. The SPL in the headphones is not
calibrated. Instead, subjects adjust the output to a comfortable level initially,
and this level is kept fixed during a particular experiment. The experiments are
conducted in an open office, i.e., no sound booth or particular listening room is
used.

6.1.3 Subjects

Four male subjects did the pilot experiment, referred to as JBN, GST, OHA,
and AWE. No audiometry was performed, but all test subjects reported to be
NH. GST is not native danish, but understands danish, hence this was specified
to be non-significant. JBN is the author of this thesis and the other subjects
are employees of the research department at Widex A/S. Therefore, all test
subjects have previous experience in listening experiments and are familiar with
HA stimuli. All test subjects were instructed to rate the stimuli in relation
to their overall preference, i.e., they were not instructed to focus on particular
attributes.

6.1.4 Procedure

The procedure used in the pilot experiment is explained in this section. First
the implemented GUI and subject task are presented followed by the experiment
conditions.

1FS refers to full-scale, hence 0 dB full-scale corresponds to a square-wave being fully
spanned between -1 and 1 in MATLAB
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GUI and Task

At the beginning of this project it was the outline that the experimental setup
should use paired comparisons to elicit the preference for particular settings.
However, the proposed method for handling the pair-wise data was seen to
perform poorly in section 5.5 and therefore the method was discarded. Further,
the time scope of the project did not allow for an implementation of a method
using a GP trained directly on pair-wise judgment. Instead, it was observed
that the algorithm can handle a considerable amount of noise on the direct
observed preference values (see section 4.4.3). Therefore, it was decided to
use an experimental setup where the user rates only one particular setting in
each iteration, although such experiments are difficult for subjects to perform
consistently.

To accommodate the latter, subjects do a training phase to get familiar with
the range of the preference scale for a particular HA parameter space. After the
training phase, i.e., before staring the actual experiment, subjects are instructed
to consider their intention based on the given sound file. Further, a reference
is included throughout the experiment, in order to prevent significant drift in
the subjective ratings. The reference is defined as the sound file processed by
the HA simulator (compressor) without any compression. Thereby, the only
processing affecting the reference stimuli is the filterbank in the compressor.

The MATLAB GUI used for the experiment is depicted in figure 6.2 (see caption
for an explanation).

Experiment Conditions

The conditions for the pilot experiment including real subjects, the HA com-
pressor and the GUI are presented in this section. The conditions for the active
learning algorithm are presented in this section as well.

The justification of the rather complicated algorithm developed in this thesis is
that preference functions are believed not to have a simple shape, i.e., contain
local maxima and minima. To confirm this, the underlying preference function
defined by the settings in the HA simulator should be as complicated as possible.
Addition of a simply noise reduction (NR) algorithm in the HA simulator was
considered. However, due to the poor quality of the considered NR algorithm it
was not believed to complicate the underlying preference function significantly.
A fitted preference function over the three parameters in the used HA simulator
can be visualized. Furthermore, it is believed that the three parameters do not
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Figure 6.2: The MATLAB GUI used for the experiments. The cross on the
white scale indicates the user rating of the processed sound file. The user can
move the cross as many times as he or she wants by pressing elsewhere on the
scale with the mouse courser - first when the “OK” button is pressed the rating
is confirmed moving on to the next experiment. The full range of the scale is
mapped to a preference value between -10 and 0, where -10 corresponds to “bad”
and 0 to “good”. When the “Play Signal” button is green the processed signal is
played, while pressing the “Play Reference” button this turns green instead and
the reference signal is played. The user can cross-fade between the processed
signal and the reference as many times as he or she wants to. The switches are
made real-time, so that the signal continues where the other one has gone to.

necessarily induce a simple preference function. This is the motivation for the
use of the HA simulator described in section 6.1.1.

A grid is used for each of the three parameters restricting the parameters only
to change in specified steps and in a given range. The discrete values for each
of the three parameters are given by

Att ∈ {30.0; 85.7; 244.9; 699.9; 2000.0} [dB/sec] (6.1.3)

Rel ∈ {30.0; 85.7; 244.9; 699.9; 2000.0} [dB/sec] (6.1.4)

CR ∈ {1 : 2; 1 : 4; 1 : 6; 1 : 8} (6.1.5)

The grid for the attack and release speeds are five log-spaced points from 30.0
dB/sec to 2000.0 dB/sec, i.e., equivalent to very long attack/release times to
very short attack/release times. With these grids, the experiments consist of
100 different settings and naturally the optimal one should be detected as fast
as possible.

The sequence of settings included in the training phase is fixed and thereby the
same for all subjects. The sequence consists of 18 settings for all the combina-
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tions resulting from the grid given by

Atttrain ∈ {30.0; 244.9; 2000.0} [dB/sec] (6.1.6)

Reltrain ∈ {30.0; 244.9; 2000.0} [dB/sec] (6.1.7)

CRtrain ∈ {1 : 2; 1 : 8} (6.1.8)

Notice, that this corresponds to the“corner”points and points in between for the
attack and release speeds. This sequence is chosen to present extreme settings
for the subjects, in order to span the virtual preference scale as much as possible.

The covariance function in the GP providing the preference function estimate
is a SE with an independent noise term. The active learning algorithm has
the constraint, that only three identical observations are allowed. When the
limit is reach, the algorithm suggests the setting with the second highest max
probability and so forth. The threshold of the mean of the max probabilities
is defined by mmaxthres = 5 · 10−2. When the mean of the max probabilities is
lower than the threshold, the signal variance σ2

f,maxprob in the max probability
calculations is altered according to equation (4.4.2). The search consists of
50 observations, i.e., 50 iterations are run, even if it the search seems to have
converged earlier. The conditions for the algorithm is shown in table 6.1.

Number of iterations 50

Covariance function SE and independent noise

Covariance function hyper-parameters l, σ2
f , σn

mmaxthres 5 · 10−2

Altered hyper-parameter σ2
f,maxprob = σ2

f

(1+2·k
σ2
f

)

Repeat observations yes (3)

Table 6.1: Algorithm conditions in the pilot experiment

6.2 Results

The results from the experiments with the active learning algorithm in the
practical setup including real subjects, the HA compressor and the GUI will be
presented in this section. The section is divided into two parts. In the first part
(section 6.2.1) the convergence points with each of the four subjects are deter-
mined by inspection of the predicted optimal setting during each search. In the
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second part (section 6.2.2) the preference function estimates during the search
are compared with the estimated preference function fit in the final iteration
with each of the four subjects.

6.2.1 Sequence of Proposed Optimal Setting

The optimal setting is defined as the optimum among the possible observations
defined by the discrete grid (see section 6.1.4).

Three subjects (JBN, GST and OHA) end up in the same optimal setting given
by the smallest possible attack speed of 30 dB/sec, the largest possible release
speed of 2000 dB/sec and the smallest possible compression ratio of 1:2 (see
table A.1, table A.4 and table A.7 in appendix A). The three searches have
found the final predicted optimum after 9, 6 and 8 iterations, although JBN and
OHA have one iteration where a slightly different optimum is predicted. Some
might argue that the search for OHA seems to have converged even earlier than
the 8’th iteration, but as will be clear later the optimum predicted in iteration
7 is found to be a very bad setting of the HA, hence it will definitely be wrong
to conclude that the search has converged before this iteration.

The search for test subject AWE seems to be doubtful about what the optimal
setting is (see table A.10 in appendix A). Obviously, two settings seem to com-
pete, both correspond to attack and release speeds given by 30 dB/sec and 2000
dB/sec, whereas the compression ratio should either be 1:6 or 1:8. These two
settings are competing from iteration 6. This behavior could indicate that the
fit is not completely reliable.

The converging iterations defined by inspecting of the proposed optimal settings
during the searches for the four test subjects are summarized in table 6.2. The
entire sequences of predicted optimal settings for each of the test subject during
the experiments can be found in appendix A (table A.1, table A.4, table A.7
and table A.10).

Subject JBN GST OHA AWE

Converging iteration 9 6 8 6

Table 6.2: Number of iterations until convergence determined by inspection of
the proposed optimal settings during the search - table A.1, table A.4, table A.7,
table A.10.
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6.2.2 Preference Function Estimates

To gain further insight about at what point the different searches have con-
verged, the final estimated preference function is compared with the individual
fits during the search for each of the four test subjects, individually. The esti-
mates will be depicted with a higher resolution than the resolution defined by
the observation grid (see section 6.1.4), although the optimal settings are still
defined as the optimum among the settings defined by the observation grid. A
GP will estimate the interpolation between observations. Therefore, it is sensi-
ble to depict the preference function with a higher resolution in order to gain an
additional detailed impression of the preference function shapes. The resolution
is 21 uniformly spaced points in each parameter direction.
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Figure 6.3: GP provided estimate of the preference function as a function of the
attack speed (Att), release speed (Rel) and inverse compression ratio (1/CR)
after the 9’th observation for test subject JBN. The color scale indicates the
preference. The four plots correspond to same preference function estimate, but
the plane in the direction of the release speed and inverse compression ratio
are moved along the attack speed axis. The resolution of the fitted preference
function contains 21 uniformly spaced points in each direction as opposed to the
rougher resolution of the discrete observation grid.

In figure 6.3 and figure 6.4 the fits after the 9’th iteration and the final iteration,
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Figure 6.4: Final estimated preference function after the 50’th observation for
test subject JBN. The four plots are the same preference fit only the plane in
the direction of the release speed and inverse compression ratio axis are moved
along the attack speed axis. The resolution of the fitted preference function
contains 21 uniformly spaced points in each direction as opposed to the rougher
resolution of the discrete observation grid.
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i.e., 50’th iteration, for test subject JBN are depicted, respectively. The 9’th
iteration is the first iteration where the information caught by the GP fit is
similar to the final fit. This point does actually correspond to the presumed
convergence point for the search with JBN defined in section 6.2.1. From the
preference function fits it is observed that the remaining iterations do reveal
some further information about the assumed underlying preference function.
For test subject JBN the preference in the final plot is almost unchanged in
a relatively large region with compression ratios from 1:2 to 1:4, fast release
speeds and slow attack speeds.
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Figure 6.5: Estimated preference function after the 15’th observation for test
subject GST. The four plots are the same preference fit only the plane in the
direction of the release speed and inverse compression ratio axis are moved along
the attack speed axis. The resolution of the fitted preference function contains
21 uniformly spaced points in each direction as opposed to the rougher resolution
of the discrete observation grid.

The 15’th and final preference function fits for test subject GST are depicted in
figure 6.5 and figure 6.6, respectively. The 15’th iteration is the first iteration,
where there seems to be similarity with the final preference function, hence this is
a quite different convergence point than the one defined in section 6.2.1. Subject
GST has an increased preference from compression ratios around 1:5 to higher
compression ratios while the attack speed is slow. Thereby, a significant “valley”
located around a compression ratio of 1:5 occurs in the preference function
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Figure 6.6: Final estimated preference function after the 50’th observation for
test subject GST. The four plots are the same preference fit only the plane in
the direction of the release speed and inverse compression ratio axis are moved
along the attack speed axis. The resolution of the fitted preference function
contains 21 uniformly spaced points in each direction as opposed to the rougher
resolution of the discrete observation grid.
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Figure 6.7: Estimated preference function after the 11’th observation for test
subject OHA. The four plots are the same preference fit only the plane in the
direction of the release speed and inverse compression ratio axis are moved along
the attack speed axis. The resolution of the fitted preference function contains
21 uniformly spaced points in each direction as opposed to the rougher resolution
of the discrete observation grid.

The comparison with the first obtained preference function showing similar in-
formation about the assumed underlying preference function as the final pref-
erence function for test subject OHA is depicted in figure 6.7 and figure 6.8.
In section 6.2.1 it was proposed that the search has converged in the 8’th iter-
ation. However, by inspection of the preference function fits, the convergence
point seems to be the 11’th iteration. The tendency of large compression ratios
obtaining good acceptance is not significantly present for subject OHA, yet the
not preferred part of the parameter space is similarly detected as for JBN and
GST.

The preference function from the 17’th iteration and the final iteration for test
subject AWE are shown in figure 6.9 and figure 6.10, respectively. The 17’th
iteration is the first fit showing similar tendencies as the final preference func-
tion. In section 6.2.1 the optimal setting for AWE did not seemed evident. This
tendency also emerges in the fitted preference functions. The range of the fitted
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Figure 6.8: Final estimated preference function after the 50’th observation for
test subject OHA. The four plots are the same preference fit only the plane in
the direction of the release speed and inverse compression ratio axis are moved
along the attack speed axis. The resolution of the fitted preference function
contains 21 uniformly spaced points in each direction as opposed to the rougher
resolution of the discrete observation grid.
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Figure 6.9: Estimated preference function after the 17’th observation for test
subject AWE. The four plots are the same preference fit only the plane in the
direction of the release speed and inverse compression ratio axis are moved along
the attack speed axis. The resolution of the fitted preference function contains
21 uniformly spaced points in each direction as opposed to the rougher resolution
of the discrete observation grid.
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Figure 6.10: Final estimated preference function after the 50’th observation for
test subject AWE. The four plots are the same preference fit only the plane in
the direction of the release speed and inverse compression ratio axis are moved
along the attack speed axis. The resolution of the fitted preference function
contains 21 uniformly spaced points in each direction as opposed to the rougher
resolution of the discrete observation grid.
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preference values is very narrow and the preference values are merely concen-
trated around moderate values. It is only the slow and fast attack speeds that
are confidently separated in relation to preference, whereas the variations in
preference values along the two other directions - release speed and compression
ratio - are not significant.

The converging iterations defined by inspecting of the fitted preference functions
for the four test subjects are summarized in table 6.3.

Subject JBN GST OHA AWE

Converging iteration 9 15 11 17

Table 6.3: Number of iterations until convergence determined by comparing the
final preference functions with the preference functions during the search.

6.3 Discussion

Based on the sequence of proposed optima (section 6.2.1), specific convergence
points for the individual searches are difficult to determine. The sequences do
not express if a correctly proposed optimum is due to coincidence or due to
sufficient confidence in the estimated preference function. When the search has
converged, the estimated preference function should express a certain confidence
about the fit - in particular around the estimated optimum - but also about the
possible shape of the rest of the preference function. Therefore, only the bound-
aries for the convergence points of the searches can be expressed by presumed
lower and upper limits. These can reasonably be specified by the convergence
points from table 6.2 and table 6.3, respectively. It is not appropriate to es-
timate an actual mean convergence performance based on the results, because
the amount of data are not sufficient. However, the results do give the im-
pression that the baseline performance is satisfactory in relation to convergence
time. The found optima for the subjects seem realistic, since NH subjects will
generally not prefer compression.

By comparison of the final preference functions for the four test subjects it is seen
that slightly different shapes are found, even for the three test subjects with the
same predicted optimal setting. It would be wrong to over-interpret the results,
but the structures fitted by the GP - especially for JBN and GST - are seen to be
fairly complicated. High compression ratios and concurrent slow attack speeds
(long attack times) will reduce high impact sounds, which might be preferred by
some subjects. This tendency emerges in the estimated preference function for
JBN and GST. The only significant high impact sound on the sound file used
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in the experiment is the smacking tongue and lips sounds made by the female
speaker. Probably, this smacking sound is experienced to be annoying by JBN
and GST. Contrarily, reduction of the smacking sounds do not seem to have
any preference by OHA and AWE, probably due to other side effects occurring
from high compression. In comparison, high compression ratios with concurrent
fast attack speeds generally induce a lot of unpleasant and annoying artifact.
The low preference for high compression ratios and fast attack speeds by the
four subjects is presumably a results of the emerging artifacts. The important
conclusion to draw from these consideration is that the method seems to have
the potential to discover individual preferences among subjects.

Despite the potential of the method, the results have revealed potential issues
as well. If a subject assigns the top rating to a particular setting, the subject
cannot in a later iteration rate another setting as being better than the previ-
ously top rated candidate, although the subject prefers the other setting over
the previously top rated candidate. This problem may influence the results more
dramatically than the well known - and modeled - observation noise, because
the entire scale for the previous observations should be rescaled somehow. From
figure 6.7 and figure 6.8 it can be seen that for OHA no settings are estimated
to have the highest possible preference value (deep red) given the virtual pref-
erence scale. This either indicates that OHA did not use the top of the scale or
that the virtual scale was not used consistently. Inconsistent ratings will result
in a smoothing effect of the ratings. After the experiment, test subject OHA
expressed that he did not use the top part of the scale, since he did not think
that any of the given settings were good. Hence, the compressed preference
value behavior seen in the fitted preference functions for OHA (figure 6.7 and
figure 6.8) is most likely a result of this. In comparison, significant compres-
sion of the estimated preference values for AWE can be observed in figure 6.9
and figure 6.10. AWE reported that he did indeed use the entire range of the
scale. Since, this does not emerge in the preference function estimates, the com-
pressed behavior is probably caused by inconsistent ratings. As a results, the
GP smooths sudden variations in the observations. Consequently, the range of
the fitted preference values are compressed. The training phase was introduced
to reduce inconsistent ratings, but obviously they have not been significantly
reduced. In addition to this, it is rather doubtful whether or not it has been a
good idea to apply the reference sound. Without the reference some subjects
complained that it was difficult to rate a new setting and they believed that they
only rated the setting relatively to the previous setting, whereas with the addi-
tion of the reference others complained that it was difficult to rate a new setting
relatively to the reference, since it was not necessarily the best candidate. Nev-
ertheless, the reference possible fixed the scale slightly for some subjects, while
others did not used the reference at all or found it misleading. A setup with
additional robustness must inevitable be invented to accommodate inconsistent
ratings. Suggestions regarding this will be discussed in section 7.1.
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The observations for each of the three test subjects is found in table A.2, ta-
ble A.3, table A.5, table A.6, table A.8, table A.9, table A.11 and table A.12.
The observation locations are plotted in figure A.1, figure A.2, figure A.3 and
figure A.4.2 This information shows that the algorithm suggests experiments
more densely in regions with high preference and only few in regions which turn
out to have low preference. In the simulations, the observation points are more
densely distributed in high preference regions than in low preference regions.
Hence, this desired behavior is maintained in the experiments.

The pilot experiment does not give reason to believe that the proposed method
including the developed active learning algorithm cannot be used to address
these types of problems. Instead the algorithm shows to be a proper basis. The
algorithm quickly tracks a good setting and afterwards explores other regions to
gain additional information about the assumed underlying preference function.
However, the method adapted in this experiment does prove to lack a robust
interaction with the user.

2The author is aware, that it is difficult to spot the locations of each observation in the
figures from appendix A. The exact locations do not appear before the figures have been
rotated in MATLAB
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Chapter 7

Future Work

This thesis has investigated possibilities for an automatic user-driven personal-
ization procedure of HAs. A developed novel active learning criterion has been
used in a framework, which forms a proper basis for further development. How-
ever, this thesis has also revealed a vast number of issues with the framework -
and numerous potential solutions. This section presents future research topics
that can further improve the framework used in this thesis.

7.1 Experimental Paradigm

The baseline proposed in this thesis lacks a robust experimental paradigm, that
effectively limits the influence from noisy and inconsistent feed-back by subjects
(see section 6.3).

A typical experimental paradigm used for perceptual listening experiments are
relative judgments between instances, such as two-alternative forced choice,
three-alternatives forced choice etc. The two-alternatives forced choice paradigm,
i.e., paired comparisons, have been applied in the field of preference learning
(Groot et al., 2010) and shown to be applicable. The method assumes - as
in this thesis - a latent preference function modeled by a GP learned directly
from pair-wise data. The method appears to be a promising basis for modeling
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individual preference functions among subjects. The active learning criterion
developed in this thesis is in principle directly applicable for determining new
experiments with that type of GP formulation. The paired comparison experi-
mental paradigm is presumably a significant improvement of the baseline frame-
work. Other transformation methods might also be adapted to transform paired
comparison data into scales, for instance Wickelmaier and Schmid (2004), but
intuitively the optimal strategy is to train the GP directly on the pair-wise data.
Conclusively, the method would be interesting to include in a future version of
the algorithm.

Another possibility of an experimental setup, which has not been suggested
previously in the field of preference learning, is to make a modified-MUSHRA1

setup with an adaptive scale compensating for inconsistent ratings. How ex-
actly an adaptive scale can be applied has to be studied. A modified MUSHRA
test setup could consist of presenting the current lowest and highest preference
points, together with the previous new data point and the new data point sug-
gested by the active learning criterion.

7.2 Altering the Hyper-Parameters

With the novel active learning criterion it is possible to alter the hyper-parameters
in the covariance function to obtain a more global search (see section 4.3 and
section 4.4). In the noise-free simulations a good performance was obtained by
only adjusting the signal variance σ2

f , whereas it was found not to be sufficient in
the noisy simulations, where the length scale was altered additionally to obtain
a better performance. It is yet unclear, which hyper-parameters to adjust, when
a more global search is desired, hence this needs further study.

7.3 Induce a Global Search and Stop Criterion

In the pilot experiment presented in chapter 6 three identical observations were
allowed to be repeated, otherwise the setting with the second highest max prob-
ability was suggested and so forth until the constraint was not violated. As
mentioned during this thesis (see section 4.4), this might not be the optimal
strategy, especially when the amount of possible settings is increased in the fu-
ture. Therefore, more intelligent criteria should be investigated. In this thesis
the mean over the max probabilities was used to alter the hyper-parameters (see

1MUSHRA tests are described in Bech and Zacharov (2007)
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section 4.4). This appears to be a natural procedure, because if the mean over
the max probabilities is low given a current GP state, the preference gain in
the next iteration is presumably minimal. Thereby, it could be interpreted as a
convergence detection criterion. However, the mean over the max probabilities
was also observed to be a sufficient tool to embed a global search after a good
local maximum was obtained (see section 4.4.2). Therefore, the mean of the
max probabilities might not be optimal to use as a stop criterion additionally.

The maximum points of the max probabilities are probably useful information,
since the maximum points express the max probability in different regions in HA
parameter space. Thereby, the search will possible be further global, without
violating the local fine adjustment of the setting. Probably, the maximum points
of the max probabilities avoid the use of redundant observations at points next
to a correctly detected local maximum (as seen in section 4.4.3). It would
be naturally to study how this alternative use of the max probabilities would
perform.

It might turn out that the optimal strategy is to limit the number of repeated
observations, but a thorough study would be favorable. Correspondingly, the
optimal stopping criterion might simply be when the predicted optimum setting
has not changed throughout several iterations.

7.4 Preference Elicitation Strategy

In this thesis the subjects were instructed to rate individual stimuli according
to preference in a completely general sense (see section 2.2). Possibly, this is not
the optimal strategy for elicitation of user preference. A comprehensive study
in how to elicit user preference is therefore required. Knowledge about user
intentions in different sound environments would serve as crucial information,
in order to provide proper instructions to the users about their intentions during
an experiment. Consequently, the experiments would be easier for the users to
conduct resulting in more reliable results.

7.5 Test-Retest Experiments

In this study it has not been verified that the found optimal settings, i.e., prefer-
ence, for the four subjects could be recreated in a retest experiment. Thorough
test-retest experiments should therefore be performed in the future, to verify
the findings (see section 6.2) in this thesis.
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7.6 Use the Algorithm in a Realistic Setup with
Hearing Impaired Subjects

The sound-user environment (see chapter 6) imitated in this thesis is not re-
flecting a realistic situation. When a suitable performance of the algorithm has
been verified (see section 7.5), the algorithm performance should be tested for
realistic HA fitting using HI subjects. In such a study, it should be verified if a
HI subject does in general prefer the personalized setting proposed by the inter-
active user-driven framework among the optimal settings discovered for other
HI subjects.

7.7 Cluster Hearing Impaired Subjects based on
the Obtained Preference Function

Assume that individual optimal settings of a HA have been discovered for numer-
ous HI subjects by the use of an initial version of the algorithm. The algorithm
has thereby found an estimated preference function for each individual HI sub-
ject as well. Additionally, a subject profile of each individual HI subject has
been established, including features such as type of HL, age, mental condition,
daily environment, level and type of education etc. It would be useful to study if
it would be possible to cluster the individual estimated preference functions into
different groups and train a machine learning classifier to map from a particular
HI subject profile to one of the groups.

From a HA research perspective this would potentially uncover unknown infor-
mation about how peoples daily environment influences the optimal setting of
a HA and about which personal features that determine the preferences among
HA settings.

7.8 Use Cluster Preference Function as Prior
over Functions in the GP

A method to include a prior preference function and corresponding uncertainty
in a GP was derived in section 3.2.3. The method becomes useful if it is possible
to define a proper mapping from subject profiles to particular groups of subjects
with similar properties in relation to preferences (see section 7.7). Consequently,
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the mean and variance over preference function values for a particular group of
subjects can be used as an initial prior estimate of the preference functions.
This will potentially improve the convergence performance, because from the
beginning the search will focus on regions with high max probabilities given the
prior mean and variance. If a particular subject is not similar to the group that
he or she is initially assigned to, the algorithm should ideally have the same
capability to find an optimal setting as with a traditional zero-mean GP. These
scenarios should naturally be investigated.
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Chapter 8

Conclusion

In this thesis a probabilistic inter-active user-driven personalization framework
to discover the optimal setting of HAs for individual users based on their prefer-
ences has been proposed. The framework is based on modeling a latent prefer-
ence function over HA settings. The latent preference function has been modeled
by a GP with a SE covariance function trained directly on elicited preference
values. A novel active learning criterion has been developed, which expresses
the probability for a given setting to obtain higher preference than the current
best setting.

Noise-free simulations with the novel active learning criterion have shown that
is is suitable for preference learning. An algorithm consisting of a GP and the
active learning criterion discovers a potential local maximum and iterates to-
wards the global maximum. By comparing three sets of 100 simulations, the
criterion was compared with random selection of new observations and with
Mackay’s criterion, which strives to maximize the total information gain. Ran-
dom selection of new observations was as expected not an efficient strategy. The
observed behavior of the novel and Mackay’s criterion was essentially different,
even though the two methods on average converged to the global maximum in
the same number of iterations. On average, the novel criterion detects a maxi-
mum which has a 10 percent lower preference value than the global maximum
after 17 iterations. In comparison, Mackay’s criterion uses 24 iterations for a
similar achievement.



96 Conclusion

Subsequently, addition of noise to the simulations showed that the convergence
performance of the algorithm was reduced with increasing noise level and the
preference value of the discovered optimal setting was correspondingly worsened.
However, it was concluded that for realistic noise contributions the performance
was satisfactory.

Besides a GP modeling a latent preference function and the novel active learning
criterion, the baseline framework consisted of a transformation between pair-
wise preference judgment observations and actual preference values. Simulations
with the baseline framework revealed that the transformation corrupted the data
resulting in unstable preference function fits. Instead, a pilot experiment was
conducted with direct elicitations of preference values.

Overall, the results from the pilot experiments showed similar tendencies as
in the simulations. The experiment focused on the optimal setting of attack
and release speeds together with identical compression ratios in each band of a
15 band filterbank compressor. After having discovered a good setting of the
three parameters quickly, the algorithm exploits additional information about
the assumed underlying preference function. The discovered preference function
for each of the four test subjects indicated that personal preferences in the used
compressor setup do exist, even for the three test subjects that ended up in the
same optimal setting.

Finally, the framework investigated in this thesis appears to form a proper basis
for preference learning in relation to optimize personalization of HAs, although
a robust experimental setup must be invented.



Appendix A

Relevant Experimental Data
from the Pilot Experiment

A.1 JBN
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Predicted optimal setting for JBN

Iteration Att Rel CR
1 2000.0 dB/sec 30.0 dB/sec 1:2
2 30.0 dB/sec 2000.0 dB/sec 1:8
3 30.0 dB/sec 2000.0 dB/sec 1:8
4 30.0 dB/sec 30.0 dB/sec 1:8
5 30.0 dB/sec 30.0 dB/sec 1:8
6 30.0 dB/sec 2000.0 dB/sec 1:8
7 30.0 dB/sec 2000.0 dB/sec 1:8
8 30.0 dB/sec 2000.0 dB/sec 1:8
9 30.0 dB/sec 2000.0 dB/sec 1:2
...

...
...

...
25 30.0 dB/sec 2000.0 dB/sec 1:2
26 30.0 dB/sec 2000.0 dB/sec 1:4
27 30.0 dB/sec 2000.0 dB/sec 1:2
...

...
...

...
50 30.0 dB/sec 2000.0 dB/sec 1:2

Table A.1: The predicted optimal setting during the search for JBN

Figure A.1: Observation locations for test subject JBN.
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Observations with JBN

Iteration no. Att Rel CR Scale value
1 30.0 dB/sec 2000.0 dB/sec 1:8 -2.7
2 2000.0 dB/sec 30.0 dB/sec 1:2 -6.3
3 2000.0 dB/sec 2000.0 dB/sec 1:8 -8.4
4 30.0 dB/sec 244.9 dB/sec 1:8 -1.1
5 30.0 dB/sec 30.0 dB/sec 1:8 -4.0
6 699.9 dB/sec 699.9 dB/sec 1:8 -7.9
7 30.0 dB/sec 2000.0 dB/sec 1:6 -3.4
8 30.0 dB/sec 30.0 dB/sec 1:8 -4.2
9 30.0 dB/sec 2000.0 dB/sec 1:2 -0.5
10 30.0 dB/sec 699.9 dB/sec 1:2 -2.8
11 2000.0 dB/sec 2000.0 dB/sec 1:2 -7.5
12 30.0 dB/sec 2000.0 dB/sec 1:4 -0.9
13 2000.0 dB/sec 85.7 dB/sec 1:4 -6.9
14 2000.0 dB/sec 30.0 dB/sec 1:8 -9.6
15 30.0 dB/sec 2000.0 dB/sec 1:4 -0.1
16 30.0 dB/sec 2000.0 dB/sec 1:4 -1.9
17 30.0 dB/sec 699.9 dB/sec 1:4 -1.2
18 30.0 dB/sec 30.0 dB/sec 1:4 -4.1
19 30.0 dB/sec 244.9 dB/sec 1:8 -2.9
20 85.7 dB/sec 2000.0 dB/sec 1:2 -1.7
21 30.0 dB/sec 699.9 dB/sec 1:4 -0.5
22 30.0 dB/sec 85.7 dB/sec 1:6 -3.1
23 30.0 dB/sec 699.9 dB/sec 1:4 -1.3
24 85.7 dB/sec 85.7 dB/sec 1:4 -5.1
25 699.9 dB/sec 30.0 dB/sec 1:6 -9.3

Table A.2: The observations made with test subject JBN for the 1st to the 25th
iteration
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Observations with JBN

Iteration no. Att Rel CR Scale value
26 85.7 dB/sec 699.9 dB/sec 1:6 -6.0
27 30.0 dB/sec 2000.0 dB/sec 1:2 -0.4
28 2000.0 dB/sec 2000.0 dB/sec 1:4 -8.3
29 244.9 dB/sec 30.0 dB/sec 1:2 -6.8
30 2000.0 dB/sec 244.9 dB/sec 1:6 -9.3
31 699.9 dB/sec 244.9 dB/sec 1:2 -6.8
32 2000.0 dB/sec 2000.0 dB/sec 1:6 -8.8
33 30.0 dB/sec 244.9 dB/sec 1:6 -2.8
34 85.7 dB/sec 85.7 dB/sec 1:8 -6.6
35 85.7 dB/sec 2000.0 dB/sec 1:4 -3.3
36 30.0 dB/sec 244.9 dB/sec 1:4 -2.4
37 699.9 dB/sec 30.0 dB/sec 1:4 -9.2
38 244.9 dB/sec 2000.0 dB/sec 1:8 -7.6
39 2000.0 dB/sec 699.9 dB/sec 1:4 -8.6
40 30.0 dB/sec 699.9 dB/sec 1:8 -2.3
41 2000.0 dB/sec 244.9 dB/sec 1:8 -8.8
42 30.0 dB/sec 30.0 dB/sec 1:2 -3.2
43 244.9 dB/sec 2000.0 dB/sec 1:2 -5.3
44 30.0 dB/sec 30.0 dB/sec 1:6 -4.0
45 2000.0 dB/sec 30.0 dB/sec 1:6 -9.1
46 2000.0 dB/sec 244.9 dB/sec 1:2 -7.5
47 30.0 dB/sec 85.7 dB/sec 1:2 -2.4
48 2000.0 dB/sec 30.0 dB/sec 1:4 -8.7
49 85.7 dB/sec 244.9 dB/sec 1:2 -4.0
50 699.9 dB/sec 85.7 dB/sec 1:8 -8.9

Table A.3: The observations made with test subject JBN for the 26th to the
50th iteration
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A.2 GST

Predicted optimal setting for GST

Iteration Att Rel CR
1 2000.0 dB/sec 30.0 dB/sec 1:8
2 2000.0 dB/sec 2000.0 dB/sec 1:4
3 30.0 dB/sec 30.0 dB/sec 1:2
4 30.0 dB/sec 30.0 dB/sec 1:2
5 30.0 dB/sec 30.0 dB/sec 1:2
6 30.0 dB/sec 2000.0 dB/sec 1:2
...

...
...

...
50 30.0 dB/sec 2000.0 dB/sec 1:2

Table A.4: The predicted optimal setting during the search for GST

Figure A.2: Observation locations for test subject GST.
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Observations with GST

Iteration no. Att Rel CR Scale value
1 30.0 dB/sec 244.9 dB/sec 1:2 -0.8
2 2000.0 dB/sec 30.0 dB/sec 1:8 -9.0
3 2000.0 dB/sec 2000.0 dB/sec 1:4 -9.2
4 30.0 dB/sec 30.0 dB/sec 1:2 -0.5
5 2000.0 dB/sec 30.0 dB/sec 1:2 -2.6
6 30.0 dB/sec 2000.0 dB/sec 1:2 -0.4
7 85.7 dB/sec 2000.0 dB/sec 1:2 -1.2
8 30.0 dB/sec 2000.0 dB/sec 1:8 -1.7
9 30.0 dB/sec 85.7 dB/sec 1:8 -3.7
10 85.7 dB/sec 30.0 dB/sec 1:4 -7.5
11 85.7 dB/sec 30.0 dB/sec 1:2 -4.1
12 2000.0 dB/sec 2000.0 dB/sec 1:2 -8.3
13 30.0 dB/sec 2000.0 dB/sec 1:6 -2.8
14 30.0 dB/sec 2000.0 dB/sec 1:4 -0.8
15 2000.0 dB/sec 2000.0 dB/sec 1:8 -9.8
16 30.0 dB/sec 699.9 dB/sec 1:2 -0.2
17 30.0 dB/sec 699.9 dB/sec 1:2 -0.2
18 30.0 dB/sec 699.9 dB/sec 1:2 -0.5
19 30.0 dB/sec 699.9 dB/sec 1:4 -1.6
20 30.0 dB/sec 30.0 dB/sec 1:6 -4.2
21 30.0 dB/sec 30.0 dB/sec 1:2 -4.1
22 2000.0 dB/sec 30.0 dB/sec 1:6 -9.0
23 30.0 dB/sec 244.9 dB/sec 1:2 -0.3
24 30.0 dB/sec 244.9 dB/sec 1:2 -0.4
25 85.7 dB/sec 2000.0 dB/sec 1:4 -5.8

Table A.5: The observations made with test subject GST for the 1st to the 25th
iteration
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Observations with GST

Iteration no. Att Rel CR Scale value
26 2000.0 dB/sec 30.0 dB/sec 1:4 -9.2
27 30.0 dB/sec 30.0 dB/sec 1:4 -4.2
28 30.0 dB/sec 30.0 dB/sec 1:8 -4.9
29 2000.0 dB/sec 85.7 dB/sec 1:2 -6.2
30 30.0 dB/sec 2000.0 dB/sec 1:4 -3.1
31 30.0 dB/sec 85.7 dB/sec 1:2 -0.4
32 30.0 dB/sec 85.7 dB/sec 1:2 -0.9
33 30.0 dB/sec 85.7 dB/sec 1:2 -2.4
34 85.7 dB/sec 2000.0 dB/sec 1:8 -8.4
35 30.0 dB/sec 244.9 dB/sec 1:6 -3.7
36 244.9 dB/sec 30.0 dB/sec 1:8 -9.4
37 2000.0 dB/sec 244.9 dB/sec 1:6 -9.4
38 30.0 dB/sec 699.9 dB/sec 1:8 -1.3
39 699.9 dB/sec 2000.0 dB/sec 1:2 -8.5
40 30.0 dB/sec 699.9 dB/sec 1:8 -0.6
41 30.0 dB/sec 699.9 dB/sec 1:8 -1.0
42 699.9 dB/sec 2000.0 dB/sec 1:6 -9.8
43 30.0 dB/sec 244.9 dB/sec 1:4 -2.1
44 2000.0 dB/sec 244.9 dB/sec 1:8 -9.9
45 85.7 dB/sec 699.9 dB/sec 1:2 -1.6
46 85.7 dB/sec 2000.0 dB/sec 1:2 -1.2
47 85.7 dB/sec 2000.0 dB/sec 1:2 -0.5
48 244.9 dB/sec 30.0 dB/sec 1:6 -8.6
49 2000.0 dB/sec 2000.0 dB/sec 1:6 -9.8
50 85.7 dB/sec 699.9 dB/sec 1:2 -0.1

Table A.6: The observations made with test subject GST for the 26th to the
50th iteration
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A.3 OHA

Predicted optimal setting for OHA

Iteration Att Rel CR
1 30.0 dB/sec 2000.0 dB/sec 1:2
...

...
...

...
6 30.0 dB/sec 2000.0 dB/sec 1:2
7 2000.0 dB/sec 2000.0 dB/sec 1:8
8 30.0 dB/sec 2000.0 dB/sec 1:2
...

...
...

...
12 30.0 dB/sec 2000.0 dB/sec 1:2
13 30.0 dB/sec 30.0 dB/sec 1:2
14 30.0 dB/sec 2000.0 dB/sec 1:2
...

...
...

...
50 30.0 dB/sec 2000.0 dB/sec 1:2

Table A.7: The predicted optimal setting during the search for OHA

Figure A.3: Observation locations for test subject OHA.
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Observations with OHA

Iteration no. Att Rel CR Scale value
1 244.9 dB/sec 85.7 dB/sec 1:6 -6.8
2 30.0 dB/sec 2000.0 dB/sec 1:2 -3.0
3 244.9 dB/sec 2000.0 dB/sec 1:2 -4.1
4 30.0 dB/sec 30.0 dB/sec 1:2 -5.7
5 2000.0 dB/sec 2000.0 dB/sec 1:2 -4.4
6 30.0 dB/sec 2000.0 dB/sec 1:8 -3.3
7 30.0 dB/sec 30.0 dB/sec 1:6 -7.6
8 2000.0 dB/sec 2000.0 dB/sec 1:8 -8.7
9 2000.0 dB/sec 699.9 dB/sec 1:4 -7.4
10 2000.0 dB/sec 30.0 dB/sec 1:2 -2.3
11 30.0 dB/sec 85.7 dB/sec 1:2 -2.2
12 30.0 dB/sec 30.0 dB/sec 1:2 -2.9
13 30.0 dB/sec 30.0 dB/sec 1:2 -3.0
14 30.0 dB/sec 2000.0 dB/sec 1:2 -1.6
15 30.0 dB/sec 85.7 dB/sec 1:2 -0.9
16 30.0 dB/sec 85.7 dB/sec 1:2 -0.7
17 30.0 dB/sec 244.9 dB/sec 1:2 -2.4
18 30.0 dB/sec 244.9 dB/sec 1:2 -1.2
19 85.7 dB/sec 244.9 dB/sec 1:2 -1.6
20 30.0 dB/sec 699.9 dB/sec 1:2 -0.8
21 30.0 dB/sec 699.9 dB/sec 1:2 -3.3
22 30.0 dB/sec 699.9 dB/sec 1:2 -1.5
23 85.7 dB/sec 244.9 dB/sec 1:2 -1.4
24 30.0 dB/sec 244.9 dB/sec 1:2 -2.8
25 699.9 dB/sec 85.7 dB/sec 1:2 -7.4

Table A.8: The observations made with test subject OHA for the 1st to the
25th iteration
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Observations with OHA

Iteration no. Att Rel CR Scale value
26 30.0 dB/sec 85.7 dB/sec 1:8 -6.7
27 30.0 dB/sec 699.9 dB/sec 1:6 -3.6
28 30.0 dB/sec 2000.0 dB/sec 1:4 -3.2
29 30.0 dB/sec 244.9 dB/sec 1:4 -2.4
30 30.0 dB/sec 244.9 dB/sec 1:4 -4.3
31 30.0 dB/sec 2000.0 dB/sec 1:6 -4.5
32 2000.0 dB/sec 30.0 dB/sec 1:8 -8.7
33 85.7 dB/sec 699.9 dB/sec 1:2 -3.1
34 85.7 dB/sec 699.9 dB/sec 1:2 -2.9
35 30.0 dB/sec 2000.0 dB/sec 1:8 -7.1
36 85.7 dB/sec 699.9 dB/sec 1:2 -5.2
37 30.0 dB/sec 699.9 dB/sec 1:4 -2.0
38 30.0 dB/sec 244.9 dB/sec 1:4 -3.0
39 85.7 dB/sec 244.9 dB/sec 1:2 -4.3
40 699.9 dB/sec 30.0 dB/sec 1:2 -6.9
41 85.7 dB/sec 699.9 dB/sec 1:4 -9.0
42 2000.0 dB/sec 244.9 dB/sec 1:6 -9.3
43 2000.0 dB/sec 85.7 dB/sec 1:4 -8.4
44 699.9 dB/sec 30.0 dB/sec 1:8 -9.5
45 30.0 dB/sec 85.7 dB/sec 1:6 -5.8
46 244.9 dB/sec 30.0 dB/sec 1:6 -8.3
47 30.0 dB/sec 699.9 dB/sec 1:8 -1.0
48 2000.0 dB/sec 699.9 dB/sec 1:2 -7.8
49 2000.0 dB/sec 244.9 dB/sec 1:8 -9.7
50 244.9 dB/sec 699.9 dB/sec 1:8 -9.7

Table A.9: The observations made with test subject OHA for the 26th to the
50th iteration
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A.4 AWE

Predicted optimal setting for AWE

Iteration Att Rel CR
1 2000.0 dB/sec 30.0 dB/sec 1:2
2 2000.0 dB/sec 30.0 dB/sec 1:6
3 30.0 dB/sec 2000.0 dB/sec 1:8
4 30.0 dB/sec 2000.0 dB/sec 1:8
5 30.0 dB/sec 2000.0 dB/sec 1:2
6 30.0 dB/sec 2000.0 dB/sec 1:8
...

...
...

...
10 30.0 dB/sec 2000.0 dB/sec 1:8
11 30.0 dB/sec 2000.0 dB/sec 1:6
12 30.0 dB/sec 2000.0 dB/sec 1:8
13 30.0 dB/sec 2000.0 dB/sec 1:8
14 30.0 dB/sec 2000.0 dB/sec 1:6
...

...
...

...
26 30.0 dB/sec 2000.0 dB/sec 1:6
27 30.0 dB/sec 2000.0 dB/sec 1:8
28 30.0 dB/sec 2000.0 dB/sec 1:6
...

...
...

...
32 30.0 dB/sec 2000.0 dB/sec 1:6
33 30.0 dB/sec 2000.0 dB/sec 1:8
34 30.0 dB/sec 2000.0 dB/sec 1:8
35 30.0 dB/sec 2000.0 dB/sec 1:8
36 30.0 dB/sec 2000.0 dB/sec 1:6
37 30.0 dB/sec 2000.0 dB/sec 1:6
38 30.0 dB/sec 2000.0 dB/sec 1:6
39 30.0 dB/sec 2000.0 dB/sec 1:8
40 30.0 dB/sec 2000.0 dB/sec 1:6
...

...
...

...
50 30.0 dB/sec 2000.0 dB/sec 1:6

Table A.10: The predicted optimal setting during the search for AWE
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Observations with AWE

Iteration no. Att Rel CR Scale value
1 85.7 dB/sec 2000.0 dB/sec 1:8 -2.7
2 2000.0 dB/sec 30.0 dB/sec 1:2 -6.1
3 2000.0 dB/sec 30.0 dB/sec 1:6 -7.8
4 30.0 dB/sec 2000.0 dB/sec 1:8 -2.0
5 30.0 dB/sec 2000.0 dB/sec 1:4 -2.6
6 30.0 dB/sec 2000.0 dB/sec 1:2 -4.5
7 30.0 dB/sec 2000.0 dB/sec 1:6 -2.7
8 30.0 dB/sec 30.0 dB/sec 1:8 -8.8
9 699.9 dB/sec 2000.0 dB/sec 1:2 -8.6
10 2000.0 dB/sec 699.9 dB/sec 1:8 -9.5
11 30.0 dB/sec 30.0 dB/sec 1:4 -5.3
12 30.0 dB/sec 2000.0 dB/sec 1:8 -1.2
13 30.0 dB/sec 30.0 dB/sec 1:2 -6.4
14 2000.0 dB/sec 244.9 dB/sec 1:4 -9.0
15 30.0 dB/sec 2000.0 dB/sec 1:8 -3.1
16 30.0 dB/sec 2000.0 dB/sec 1:4 -3.2
17 85.7 dB/sec 2000.0 dB/sec 1:8 -8.7
18 30.0 dB/sec 2000.0 dB/sec 1:4 -3.3
19 30.0 dB/sec 699.9 dB/sec 1:8 -1.4
20 30.0 dB/sec 699.9 dB/sec 1:4 -1.4
21 30.0 dB/sec 244.9 dB/sec 1:4 -1.1
22 30.0 dB/sec 699.9 dB/sec 1:4 -6.1
23 30.0 dB/sec 244.9 dB/sec 1:6 -5.6
24 30.0 dB/sec 699.9 dB/sec 1:4 -3.2
25 30.0 dB/sec 244.9 dB/sec 1:4 -3.3

Table A.11: The observations made with test subject AWE for the 1st to the
25th iteration
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Observations with AWE

Iteration no. Att Rel CR Scale value
26 30.0 dB/sec 244.9 dB/sec 1:4 -6.8
27 30.0 dB/sec 244.9 dB/sec 1:8 -0.6
28 30.0 dB/sec 699.9 dB/sec 1:8 -7.9
29 30.0 dB/sec 2000.0 dB/sec 1:2 -5.9
30 30.0 dB/sec 699.9 dB/sec 1:8 -4.3
31 2000.0 dB/sec 30.0 dB/sec 1:8 -9.5
32 30.0 dB/sec 244.9 dB/sec 1:8 -1.9
33 30.0 dB/sec 244.9 dB/sec 1:8 -3.3
34 30.0 dB/sec 2000.0 dB/sec 1:6 -5.6
35 244.9 dB/sec 30.0 dB/sec 1:2 -7.5
36 30.0 dB/sec 699.9 dB/sec 1:6 -1.1
37 30.0 dB/sec 699.9 dB/sec 1:6 -3.8
38 30.0 dB/sec 699.9 dB/sec 1:6 -2.6
39 30.0 dB/sec 244.9 dB/sec 1:6 -5.9
40 30.0 dB/sec 2000.0 dB/sec 1:6 -1.3
41 30.0 dB/sec 244.dB/sec 9 1:6 -0.8
42 30.0 dB/sec 85.7 dB/sec 1:4 -6.3
43 85.7 dB/sec 244.9 dB/sec 1:8 -8.1
44 30.0 dB/sec 85.7 dB/sec 1:6 -6.6
45 30.0 dB/sec 244.9 dB/sec 1:2 -1.7
46 30.0 dB/sec 244.9 dB/sec 1:2 -1.0
47 30.0 dB/sec 699.9 dB/sec 1:2 -4.7
48 30.0 dB/sec 244.9 dB/sec 1:2 -6.7
49 30.0 dB/sec 699.9 dB/sec 1:2 -0.3
50 30.0 dB/sec 699.9 dB/sec 1:2 -5.8

Table A.12: The observations made with test subject AWE for the 26th to the
50th iteration
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Figure A.4: Observation locations for test subject AWE.
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