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1 INTRODUCTION

The work reported in this chapter concerns the classi�cation of dermatoscopic images of skin lesions. The

overarching goals of the work are:

Develop an objective and cost-e�cient tool for classi�cation of skin lesions

This involves extracting relevant information from dermatoscopic images in the form of dermato-

scopic features and designing reliable classi�ers.

Gain insight into the importance of dermatoscopic features

The importance of dermatoscopic features is still very much a matter of research. Any additional

insight into this area is desirable.

Develop a probabilistic neural classi�er design framework

In order to obtain reliable classi�cation systems based on neural networks, a principled probabilistic

approach will be followed.

Hence, the work should be of interest to both the dermatological and engineering communities.

1.1 Malignant melanoma

Malignant melanoma is the deadliest form of skin cancer and arises from cancerous growth in pigmented

skin lesions. The cancer can be removed by a fairly simple surgical incision if it has not entered the blood

stream. It is thus vital that the cancer is detected at an early stage in order to increase the probability

of a complete recovery. Skin lesions may in this context be grouped into three classes:

� Benign nevi is a common name for all healthy skin lesions. These have no increased risk of devel-

oping cancer.

� Atypical nevi are also healthy skin lesions but have an increased risk of developing into cancerous

lesions. The special type of atypical nevi called dysplastic nevi have the highest risk and are, thus,

often referred to as precursors of malignant melanoma.

� Malignant melanoma are as already mentioned cancerous skin lesions.

When a dermatologist inspects a skin lesion and �nds it suspect, the dermatologist will remove the

skin lesion and a biopsy is performed in order to determine the exact type of skin lesion. If the lesion is

found to be malignant, a larger part of the surrounding skin will be removed depending on the degree

of malignancy. If a lesion is not considered to be suspect, it is usually not removed unless there is some

cosmetic reason to do so.
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It is not an easy task for dermatologists visually to determine whether a skin lesion is or might be

malignant, though. A study at Karolinske Hospital, Stockholm, Sweden has shown that a dermatologists

with less than 1 year of experience detects 31% of the melanoma cases they are presented with while

dermatologists with more than 10 years of experience are able to detect 63% [1]. Another study shows

that experienced dermatologist are capable of detecting 75% of cancerous skin lesions [2].

Malignant melanoma is usually only seen in Caucasians.

1.2 Evolution of malignant melanoma

The incidence of malignant melanoma in Denmark has increased 5- to 6-fold from 1942 to 1982 while the

mortality rate has been doubled from 1955 to 1982 [3]. Currently, approximately 800 cases of malignant

melanoma are reported in Denmark every year. In Germany 9000� 10000 new cases are expected every

year with an annual increase of 5� 10% [4].

Due to the rather steep increase in the number of reported malignant melanoma cases, it is becoming

increasingly important to develop methods capable of diagnosing malignant melanoma that are simple,

objective and preferably non-invasive. Today the only accurate diagnostic technique is a biopsy and a

histological analysis of the skin tissue sample. This is an expensive procedure as well as an uncomfortable

experience for the patient. For patients with many skin lesions or dysplastic nevus syndrome1, this is

clearly not a feasible diagnostic technique. Contributing to the problem is the increasing awareness of

skin cancer among the general public. People are consulting dermatologists more often which again calls

for a simple and accurate diagnostic technique.

1.3 Image acquisition techniques

1.3.1 Traditional imaging

In larger dermatological clinics, records of the patients skin lesions are kept in form of a diagnosis and

one or more traditional photographs of the lesion. Some patients may be predisposed to melanoma due

to, e.g., cancer in the family or dysplastic nevus syndrome. These patients will often be regularly checked

in order to detect any changes in their skin lesions. Photographs taken at each check-up are compared

and any change is an indication of a possible malignancy. In this case, the lesion is removed and a biopsy

performed.

It is mainly for this monitoring over time that traditional imaging is used today. An example of a

traditional photograph is shown in �gure 1.

1People with dysplastic nevus syndrome have multiple dysplastic nevi - often dozens or even hundreds.
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Figure 1: Example of pigmented skin lesion. Left: Traditional imaging technique. Right: Dermatoscopy

imaging technique.

1.3.2 Dermatoscopic imaging

Since traditional imaging is just a recording of what the human eye sees, it does not reveal any information

unavailable to the eye. Dermatoscopy also known as epiluminescence microscopy, on the other hand, is

an imaging technique that provides a more direct link between biology and distinct visual characteristics.

Dermatoscopy is a non-invasive imaging technique that renders the stratum corneum2 translucent

and makes subsurface structures of the skin visible. The technique is fairly simple and involves removing

re
ections from the skin surface. This is done by applying immersion oil onto the skin lesion and pressing

a glass plate with the same re
ection index as the stratum corneum onto the lesion. The oil ensures

that small cavities between the skin and the glass plate are �lled in order to reduce re
ections. With a

strong lightsource, usually a halogen lamp, it is now possible to see skin structures below the skin surface.

Usually the glass plate and lightsource are integrated into devices like a dermatoscope or a dermatoscopic

camera. Both of these have lenses allowing a 10x magni�cation of pigmented skin lesions. In �gure 1 an

example of a skin lesion, recorded by the dermatoscopic imaging technique, is shown.

Although this imaging technique is not new, it is only in the last decade that the technique has been

thoroughly investigated, especially in Western Europe [5]. It is still, though, not a widely used technique

primarily due to the lack of formal training in evaluating and understanding the visual characteristics in

the images. Some of these characteristics will be brie
y described in the next section.

A few studies concerning processing and analysis of digital dermatoscopic images have been published.

In [6] and [7], results of color segmentation techniques based on fuzzy c-means clustering are shown.

Preliminary results using a minimum-distance classi�er for discriminating between benign nevi, dysplastic

nevi and malignant melanoma are presented in [8]. Based on features describing various properties

including shape and color, they were able to classify 56% of skin lesions in a test set correctly.

2The top layer of the skin.
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Figure 2: Pigmented skin lesion with several dermatoscopic features.

1.4 Dermatoscopic features

The dermatoscopic imaging technique produces images that are quite di�erent from traditional images.

Several visual characteristics have been de�ned and analyzed in recent studies, e.g., [9], [10] and [11].

These visual characteristics will be called dermatoscopic features or just features for short.

Table 1 lists the most important dermatoscopic features together with a short description. The

features all describe speci�c biological behavior, see, e.g., [10] for a more detailed description. In �gure

2 and several dermatoscopic features are shown on a pigmented skin lesion.

As can be seen in, e.g., �gure 2, there is one prominent artifact due to the use of immersion oil.

Small air bubbles occur in the oil layer and appear as small white circles or ellipses. This artifact can

be avoided if the oil is carefully applied. Usually the area occupied by air bubbles is very small but

important features like, e.g., black dots or pseudopods may be obscured by air bubbles.
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Table 1: De�nition of dermatoscopic features

Feature Description

Asymmetry An asymmetric shape is the result of di�erent local growth rates. This

indicates malignancy. Asymmetry may be de�ned in numerous ways,

though. In section 2.4.1, one such de�nition is presented.

Edge abruptness A sharp abrupt edge suggests melanoma while a gradual fading of the

pigmentation indicates a benign lesion.

Color distribution Six di�erent colors may be observed: Light-brown, dark-brown, white,

red, blue and black. A large number of colors present indicates melanoma.

Pigment network Areas with honeycomb-like pigmentation. A regular network usually in-

dicates a benign lesion. A network with varying mesh size suggests an

atypical/dysplastic nevus or a melanoma.

Structureless area Areas with pigmentation but without any visible network. Unevenly dis-

tributed areas indicate melanoma.

Globules Nests with a diameter of more than 0:1mm of heavily pigmented

melanocytic cells. These may be brown or black. If evenly distributed, it

indicates a benign lesion.

Black dots Heavily pigmented melanocytic cells with a diameter less than 0:1mm.

If located close to the perimeter, it suggests an atypical lesion or a

melanoma.

Pseudopods Large \rain-drop" shaped melanoma nests located at the edge of the le-

sion. A very strong indicator of malignant melanoma.

Radial streaming Radial growth of melanoma. Looks like streaks. Very indicative of malig-

nant melanoma.

Blue-white veil Areas with a blue-white shade of color. Indicates melanocytic cells located

deep in the skin. An indicator of melanoma.

Depigmentation Loss of pigmentation. An indicator of melanoma.
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Figure 3: Feature extraction 
owchart showing the four main processing blocks, image acquisition, pre-

processing, segmentation and feature description.

2 FEATURE EXTRACTION IN DERMATOSCOPIC IMAGES

In the previous section, dermatoscopic images and features were introduced. In this section, we will

describe the image processing techniques used in order to extract and describe dermatoscopic features.

In �gure 3, a 
owchart describing the feature extraction process is shown. The four main blocks,

image acquisition, preprocessing, segmentation and dermatoscopic feature description, are described in

the next sections.

2.1 Image acquisition

All dermatoscopic images used in this work are acquired at Rigshospitalet, Copenhagen, Denmark using

a Dermaphot camera (Heine Optotechnik).

The images are developed as slides and digitalized with a resolution of 1270 dots per inch and 24 bit

color3 using an Eskoscan 2540 color scanner (Eskofot). The image resolution has later digitally been

38 bit for each of the color channels red, green and blue.
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reduced by a factor 2 in order to limit the computational resources needed for processing the images,

thus reducing the size of each image to 885x590.

2.2 Image preprocessing

The �rst step in the feature extraction process is preprocessing of images with the purpose of reducing

noise and facilitating image segmentation by using median �ltering and the Karhunen-Lo�eve transform.

Now, let us �rst de�ne a grey-level image of size MxN as a sequence of numbers,

z(m;n); 1 � m �M; 1 � n � N; (1)

where z(m;n) is the luminance of pixel (m;n). If we are dealing with an 8-bit grey-level image, then

each element, z(m;n), will be an integer in the interval [0; 255]. In any processing of 8-bit images, we

will abandon the integer restriction and process the image in a 
oating point representation in order to

minimize quantization e�ects.

Next, we de�ne a color image of size MxN as 3 sequences, r(m;n); g(m;n) and b(m;n), with r(m;n)

representing the red color component, g(m;n) the green color component and b(m;n) the blue color

component. The individual color components are typically representated by 8-bit but again any processing

will be done using 
oating point precision.

2.2.1 Median �ltering

As noted in section 1.4, the immersion oil used in the dermatoscopic imaging technique may produce

small air bubbles manifestating themselves as small white ellipses, lines or dots. This artifact can be

considered as impulsive noise and may thus be reduced using a median �lter given by

zmed(m;n) = medianfz(m� k; n� l)j �
Nmed � 1

2
� k; l �

Nmed � 1

2

^1 � m� k �M ^ 1 � n� l � Ng; (2)

where Nmed is odd4 and indicates the size of the two-dimensional median �lter. Note that we only

consider a square median �lter kernel. We may in fact consider any shape of �lter kernel if desirable.

Equation (2) is valid for a grey-level image. When working with color images, one should apply the same

median �lter to all 3 color components.

4If the median kernel size is even, there will be two middle values. One could then de�ne the median as the mean of

these two values.
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Figure 4: The e�ect of �ltering a 885x590 dermatoscopic image with a 11x11 median �lter. Left: Original

image. Right: Filtered image. Notice how the air bubble artifacts have been reduced, especially around

the lesion edge in the upper right hand corner.

Skin lesion speci�c comments

The main purpose of �ltering dermatoscopic images is to reduce localized re
ection artifacts while at the

same time preserving edges. In �gure 4, the results of applying a 11x11 median �lter to a dermatoscopic

image is shown. This kernel size is used for all median �ltering in this work.

2.2.2 Karhunen-Lo�eve transform

The next preprocessing stage aims at facilitating the segmentation process by enhancing the edges in

the image. For this purpose, we will consider the Karhunen-Lo�eve (KL) transform also known as the

Hotelling transform or the method of principal components [12], [13].

The KL transform is a linear transformation that uncorrelates the input variables by employing an

orthonormal basis found by an eigenvalue decomposition of the sample covariance matrix for the input

variables.

In image processing applications, the KL transformation is often applied to the 2-D image domain.

Here we will apply the transformation to the 3-D color space spanned by r(m;n), g(m;n) and b(m;n).

Now, let us de�ne the following 3�MN matrix containing all pixels from the 3 color channels,

V =

2
66664
r(1; 1) r(1; 2) : : : r(1; N) r(2; 1) : : : r(M;N)

g(1; 1) g(1; 2) : : : g(1; N) g(2; 1) : : : g(M;N)

b(1; 1) b(1; 2) : : : b(1; N) b(2; 1) : : : b(M;N)

3
77775 ; (3)

where we view [r(m;n) g(m;n) b(m;n)]
T
as a sample of a stochastic variable.

Let �v contain the sample mean of the 3 color components,
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�v =
1

MN

MX
m=1

NX
n=1

2
66664
r(m;n)

g(m;n)

b(m;n)

3
77775 : (4)

The sample covariance matrix is now given by

C =
1

MN
VVT � �v�vT; (5)

that can be eigenvalue decomposed, so that

C = E�ET; (6)

where E = [e1 e2 e3] is a matrix containing the eigenvectors of C and � a diagonal matrix containing

the corresponding eigenvalues of C in decreasing order: �1 � �2 � �3 � 0.

The KL transformation is now de�ned as

z = ET (v � �v) (7)

where v is a column vector in V and z contains what is known as the principal components.

Due to the decreasing ordering of the eigenvalues and the corresponding eigenvectors, the �rst principal

component will contain the maximum variance. In fact, no other linear transformation using unit length

basis vectors can produce components with a variance larger than �1 [14].

Skin lesion speci�c comments

For median �ltered dermatoscopic images, the �rst principal component will typically account for more

than 95% of the total variance. Since most variation occur at edges between regions with similar luminance

levels, the �rst principal component is a natural choice for segmentation. Another study also shows that

the Karhunen-Lo�eve transform is appropriate for segmenting dermatoscopic images [6].

2.3 Image segmentation

The next step in the feature extraction process is image segmentation. The main goal is to divide an

image into regions of interests from which appropriate features can be extracted. Here, we will consider

a complete segmentation that divides the entire image into disjoint regions. Denoting the image, R, and

the N regions, Ri; i = 1; 2; : : : ; N , this may be formalized as
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R =

N[
i=1

Ri; Ri \ Rj = ;; i 6= j: (8)

The regions are usually constructed so that they are homogeneous with respect to some chosen prop-

erty like, e.g., luminance, color or context. We will now consider the case where the aim is to group pixels

containing the same approximate luminance level.

2.3.1 Optimal thresholding

Thresholding is a very simple segmentation method based on using thresholds on the luminance level of

pixels in order to determine what region a pixel belongs to. Denoting the non-negative luminance of a

pixel, z(m;n), a thresholding process using N � 1 thresholds to divide an image into N regions may be

written as

z(m;n) 2

8>>>>>>>>>>>>>>>>>><
>>>>>>>>>>>>>>>>>>:

R1 if z(m;n) < T1

R2 if T1 � z(m;n) < T2

...
...

Ri if Ti�1 � z(m;n) < Ti

...
...

RN if TN�1 � z(m;n)

; (9)

where Ti is the threshold separating pixels in region Ri from pixels in region Ri+1.

Let us consider the luminance level, z(m;n), to be a sample of a stochastic variable, z, and let the

conditional luminance probability distribution be denoted by p(zjRi) and the prior region probability by

P (Ri). Assuming we know p(zjRi) and P (Ri), we may view the problem of selecting the thresholds as

a classi�cation problem and use Bayesian decision theory to minimize the probability of misclassifying a

pixel.

Let us now assume that the conditional luminance probability distributions, p(zjRi), are Gaussian

with mean �Ri
and equal variance �2Ri

= �2. We thus obtain the following closed-form solution for the

optimal thresholds,

Ti =
�Ri

+ �Ri+1

2
+

�2

�Ri
� �Ri+1

log
P (Ri+1)

P (Ri)
; (10)

where i = 1; 2; : : : ; N � 1. Assuming the prior probabilities, P (Ri), are equal, equation (10) reduces

to
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Ti =
�Ri

+ �Ri+1

2
: (11)

A simple iterative scheme based on equation (11) for estimating the N � 1 optimal thresholds and

the N luminance means is [15]

1. Initialize thresholds, so that T1 < T2 < : : : < TN�1.

2. At time step t, compute the luminance region means

�
(t)
Ri

=

P
(m;n)2R

(t)
i

z(m;n)

N
(t)
Ri

; (12)

where N
(t)
Ri

is the number of pixels in region Ri at time step t and i = 1; 2; : : : ; N .

3. The thresholds at time step t+ 1 are now computed as

T
(t+1)
i =

�
(t)
Ri

+ �
(t)
Ri+1

2
; (13)

where i = 1; 2; : : : ; N � 1.

4. If T
(t+1)
i = T

(t)
i for all i = 1; 2; : : : ; N � 1, then stop; otherwise return to step 2.

Skin lesion speci�c comments

All dermatoscopic images in this work have been segmented by the optimal thresholding algorithm using 2

thresholds. A typical �rst principal component of a median �ltered dermatoscopic image consists of a very

light background and a dark skin lesion with even darker areas inside. These 3 regions are usually fairly

homogeneous making the assumption of Gaussian luminance probability distributions a sound one. The

assumptions of equal variances, �2Ri
and equal priors, P (Ri), are usually not warranted. Nevertheless,

the algorithm provides good results using dermatoscopic images.

Note, the main purpose of segmentation in this application is to �nd a lesion shape mask de�ning

the edge location of the lesion. Thus, we are only interested in the threshold separating the light skin

background and the darker skin lesion. In some cases, the segmentation produces several skin lesion

candidates due to other small non-lesion objects. Usually the largest object is the skin lesion and is thus

selected for further processing.

In �gure 5, the results of using the optimal thresholding algorithm on a dermatoscopic image using

2 thresholds to separate 3 regions are shown. Note, the similar shape of the sample histogram and

the estimated histogram indicating the usability of the optimal thresholding algorithm in the context of

dermatoscopic images.
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Figure 5: Example of results using the optimal thresholding algorithm on the �rst principal component

of a median �ltered dermatoscopic image. Upper left: Median �ltered �rst principal component. Upper

right: The segmentation result using 2 thresholds to separate 3 regions. The solid white lines indicate

region borders. Lower left: The sample histogram of the upper left image. Lower right: Estimated

histogram. The dashed lines show the luminance probability densities, p̂(zjRi), estimated by the optimal

thresholding algorithm. The solid line shows the estimated histogram computed by assuming that the

prior probabilities of the 3 regions are 1=6; 1=6 and 4=6 from left to right. Note, that the overall shape

of the estimated histogram matches the sample histogram fairly well.
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2.4 Dermatoscopic feature description

The �nal step in the feature extraction process is the actual extraction and description of features. We

will in this section present methods for describing the following skin lesion properties:

� Asymmetry of the lesion border.

� Transition of the pigmentation from the skin lesion to the surrounding skin.

� Color distribution of the skin lesion including blue-white veil.

2.4.1 Asymmetry

An asymmetric skin lesion shape is the result of di�erent local growth rates and may indicate malignancy.

In order to measure asymmetry, we will �rst look at 2-D moments and how these may be used for

describing certain geometrical properties of an object or a region in an image.

Moments

Moment representations interpret a normalized grey level image function, z(x; y), as a probability density

function of a 2-D stochastic variable. Properties of this variable may thus be described by 2-D moments

[16]. For a digital image, z(m;n), the moment of order (p+ q) is given by

mpq =

MX
m=1

NX
n=1

mpnqz(m;n): (14)

Translation invariant moments are obtained by considering the centralized moments

mc
pq =

MX
m=1

NX
n=1

(m�mc)
p(n� nc)

qz(m;n); (15)

where (mc; nc) is the center of mass given by mc =
m10

m00
; nc =

m01

m00
.

We will now in the following consider the case where z(m;n) is binary and represents a region, R, so

that z(m;n) = 1 if (m;n) 2 R, otherwise z(m;n) = 0. This could, e.g., be the result of a segmentation

process.

The moment of inertia for a binary object or region, R, w.r.t. an axis through the center of mass

with an angle � as shown in �gure 6 is de�ned as [17]

I(�) =
X
(m;n)

X
2 R

D2
�(m;n) (16)

=
X
(m;n)

X
2 R

[�(m�mc) sin � + (n� nc) cos �]
2
; (17)
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Figure 6: Left: The orientation angle, �o, of an object is de�ned as the angle of the axis through the center

of mass, (mc; nc), that minimizes the moment of inertia, I(�) =
PM

m=1

PN

n=1D
2
�(m;n)z(m;n). Right:

Skin lesion showing the edge of the lesion and the two principal axes used for calculating asymmetry.

These axes de�ne directions of least and largest moments of inertia. The two asymmetry indexes for this

lesion are 0:14, respectively. Note, that this lesion is larger than the �eld of view of the camera. Only

very large lesions, where the calculation of asymmetry can not be justi�ed, have been omitted from the

data set.

where D�(m;n) is found by translating the object so that its center of mass coincides with the center

of origo of the coordinate system and by rotating5 the object clockwise by the angle � so that the

n-coordinate of the translated and rotated point (m;n) equals the desired distance D�(m;n).

The orientation of an object is de�ned as the angle of the axis through the center of mass that results

in the least moment of inertia [17]. To obtain this angle, we compute the derivative of equation (17) and

set it to zero,

@I(�)

@�
= 0 ) �o =

1

2
tan�1

�
2mc

11

mc
20 �mc

02

�
: (18)

The axis through the center of mass de�ned by �o is also known as a principal axis. We will refer to

this as the major axis. All objects have two principal axes6 where the second principal axis is de�ned by

the angle yielding the largest moment of inertia. This will be referred to as the minor axis. The principal

axes are orthogonal and will in the next section be used for calculating asymmetry.

In �gure 6, an example of a skin lesion and its two principal axes are shown.

Measuring asymmetry

The principal axes found in the previous section will now be used as axes of symmetry. That is, we will

measure how asymmetric the object is with respect to these two axes. This can be done by folding the

5Rotation of a point (m; n) clockwise by the angle � is given by: (mr; nr) = (m cos � + n sin �;�m sin � + n cos �).
6Note, a circle has an in�nite number of principal axes due to its rotational symmetry.
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object about its principal axes and measure the area of the non-overlapping regions relative to the entire

object area. Thus, for each principal axis, we de�ne a measure of asymmetry as

Si =
�Ai

A
; (19)

where i = 1; 2 indicates the principal axis, �Ai is the corresponding non-overlapping area of the

folded object and A is the area of the entire region. For an object completely symmetric about the i0th

principal axis, Si is zero while complete asymmetry yields an asymmetry measure of 1.

Skin lesion speci�c comments

Several skin lesions included in this work are larger than the �eld of view of the camera. That is, the

entire lesion in not visible in the digitized image. This will introduce an uncertainty in the location of

the principal axes and subsequently in the asymmetry measures. See the example in �gure 6.

Due to the rather limited amount of data available, these have nevertheless been included. Some

severe cases, where the calculation of asymmetry could not be justi�ed, have been removed from the

data set, though. One could also choose not to compute the asymmetry measures in these cases and

subsequently treat them as missing values. Several techniques for dealing with missing values exist, see,

e.g., [18] for an overview.

2.4.2 Edge abruptness

An important feature is the transition of the pigmentation between the skin lesion and the surrounding

skin. A sharp abrupt edge suggests malignancy while a gradual fading of the pigmentation indicates a

benign lesion.

In order to measure the edge abruptness, let us �rst estimate the gradient of a grey-level image.

Image gradient estimation

In a digital image, z(m;n), the gradient magnitude, g(m;n) and gradient direction, �g(m;n), is de�ned

by [16]

g(m;n) =
q
g21(m;n) + g22(m;n); �g(m;n) = tan�1

�
g2(m;n)

g1(m;n)

�
; (20)

where g1(m;n) and g2(m;n) are the di�erence approximations to the partial derivatives in the m and

n direction, respectively,
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g1(m;n) =
X
i

X
j

h1(�i;�j)z(m+ i;m+ j) (21)

g2(m;n) =
X
i

X
j

h2(�i;�j)z(m+ i;m+ j): (22)

g1(m;n) and g2(m;n) are expressed as convolutions between the image and gradient operators denoted

by h1(i; j) and h2(i; j), �(Nh � 1)=2 � i; j � (Nh � 1)=2, where Nh is odd and indicates the size of the

gradient operators.

Several gradient operators have been suggested, see, e.g., [17]. Here we will use the Sobel gradient

operator de�ned by

H1 =

2
66664
�1 0 1

�2 0 2

�1 0 1

3
77775 ; H2 =

2
66664
1 2 1

0 0 0

�1 �2 �1

3
77775 : (23)

We will in the following denote the gradient magnitude estimation of a grey-level digital image,

z(m;n), using the Sobel gradient operators by g(m;n) = grad[z(m;n)].

Measuring edge abruptness

Let us consider the luminance component of a color image given by

z(m;n) =
1

3
[r(m;n) + g(m;n) + b(m;n)]; (24)

which is just an equally weighted sum of the three color components.

We may now estimate the gradient magnitude of the intensity component by computing g(m;n) =

grad[z(m;n)].

If we sample the gradient magnitude, g(m;n), along the edge of the skin lesion, we obtain a set of

gradient magnitude values,

e(k) = g(m(k); n(k)); k = 0; 1; : : : ;K � 1; (25)

where K is the total number of edge samples and (m(k); n(k)) the coordinates of the k0th edge pixel.

This set of values describes the transition between the lesion and the skin background in each edge

point. In order to describe the general transition or abruptness, we use the sample mean and variance of

the gradient magnitude values e(k),
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Figure 7: Example of measuring edge abruptness in a dermatoscopic image. Upper left: Intensity image

showing the lesion edge obtained from the segmentation process. Upper right: Gradient magnitude

image. Note: The gradient magnitude range has been compressed by the transformation, gc(m;n) =

log(1 + g(m;n)), in order to enhance the visual quality. Lower left: The gradient magnitude sampled

along the lesion edge. Lower right: Histogram of gradient magnitude measured along the lesion edge.

me =
1

K

K�1X
k=0

e(k); ve =
1

K

K�1X
k=0

e2(k)�m2
e; (26)

where the sample mean, me, describes the general abruptness level and the sample variance, ve,

describes the variation of the abruptness along the skin lesion edge.

In �gure 7, an example of measuring the abruptness in a dermatoscopic image is shown.

Skin lesion speci�c comments

As mentioned previously, several skin lesions larger than the �eld of view of the camera are included in

this work. For these lesions the gradient magnitude has not been sampled along false edges. These occur

at the boundaries of the image where the skin lesion crosses the image border, see the example in �gure

6. Thus we assume, that enough edge information is available from the visible part of the skin lesion in
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order to describe the characteristics of the lesion edge and that we can neglect the contributions outside

the �eld of view.

2.4.3 Color

The color distribution of a skin lesion is another important aspect that may contribute to an accurate

diagnosis. Dermatologists have identi�ed 6 shades of color that may be present in skin lesions examined

with the dermatoscopic imaging technique. These colors arise due to several biological processes [10].

The colors are: Light-brown, dark-brown, white, red, blue and black [10]. This is a rather vague color

description that is likely to cause some discrepancies between how di�erent individuals perceive skin

lesion colors. There are especially problems with separating light-brown from dark-brown but problems

also occur with red and dark-brown due to a rather reddish glow of the dark-brown color in skin lesions.

We will nevertheless try to de�ne a consistent method of measuring skin lesion colors that matches

dermatologists intuitive perception of colors. This is done by de�ning color prototypes that are in close

correspondence with the color perception of dermatologists and using these prototypes to determine the

color contents of skin lesions. As a guideline, a large number of colors is considered to be an indicator of

malignancy.

Color prototype determination

The color prototypes have been determined from three 2-D histograms7 of 18 randomly selected skin

lesion images combined into one large image. By inspecting the histograms, several clusters matching

the color perception of dermatologists have been de�ned and the perceived cluster centers are used as

prototypes. This is shown in �gure 8. Note, that several shades of light-brown, dark-brown and blue have

been identi�ed. No reliable prototype for red distinguishing it from dark-brown could be determined.

This is a problem also found among dermatologists. One may consider a part of a lesion to be red while

another may suggest dark-brown. Due to these di�culties, a red prototype has not been de�ned.

It is clear that this way of determining prototypes is a very subjective process, yet great care has been

taken in order for the prototypes to match the color perception of dermatologists8.

A standard k-means clustering algorithm using the Euclidean distance measure in the RGB color

space has also been employed but did not yield acceptable color prototypes. It is obvious from inspecting

the 2-D histograms that the Euclidean distance measure is not the most appropriate choice due to the

varying shape of the di�erent clusters. It would be bene�cial to allow the distance measure to vary

between clusters acknowledging that di�erent probability distributions generate the individual clusters.

7Red-green, red-blue and green-blue 2-D histograms.
8The author has spent hour-long sessions with dermatologists viewing and discussing skin lesions in order to gain insight

into their color perception.
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Figure 8: Color prototypes have been found manually by inspecting the combined 2-D histograms of 18

randomly selected images. The perceived cluster centers are chosen as prototypes. Upper left: Red-green

2-D histogram. The histogram values, h(r; g), have been compressed by the transformation, hc(r; g) =

log(1 + h(r; g)), in order to enhance the visual quality. Upper right: Red-blue 2-D histogram (log-

transformed). Lower left: Green-blue 2-D histogram (log-transformed). Lower right: The determined

color prototypes. The skin color prototype is left out since it is eliminated by the segmentation process.

Only colors inside the lesion are of interest in this work.
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Often these distributions may be considered Gaussian, see e.g. [19].

Another contributing factor to the failure of the standard k-means algorithm is the number of pixels

in each cluster. The histograms in �gure 8 are log-transformed, that is, the dynamic range has been

compressed in order to enhance the visual quality. Thus the number of pixels close to the center of some

of the clusters seems relative large compared to, e.g., the dominant skin color cluster even though the

number of pixels in these clusters is in fact rather small. In the standard k-means algorithm these clusters

are likely to be suppressed by the higher populated dominant clusters resulting in unacceptable results.

Thus in order to overcome these problems and to incorporate the color perception of dermatologists,

the manually selected prototypes are used in this work. Note, that 10 color clusters have been de�ned

but only 9 prototypes are used. The skin color prototype is left out as this color is eliminated by

the segmentation process and normally only found outside the lesion. The 9 color prototypes thus

corresponds of white, black, light-brown 1, light-brown 2, dark-brown 1, dark-brown 2, blue 1, blue 2 and

blue 3 representing 5 di�erent colors.

Measuring color

The color contents of a skin lesion may be determined by comparing the skin lesion pixels with color

prototypes. Here we will use the Euclidean distance measure for comparing colors,

d2i (m;n) = [r(m;n) � ri]
2 + [g(m;n)� gi]

2 + [b(m;n)� bi]
2; i = 1; 2; : : : 9; (27)

where di(m;n) is the distance in RGB colorspace from pixel (m;n) to the i0th color prototype de�ned

by cpi = [ri gi bi]
T.

Every skin lesion pixel can now be assigned a prototype color by selecting the shortest distance. That

is, the pixel (m;n) should be assigned the prototype color cpi if

di(m;n) < dj(m;n) for all i 6= j: (28)

We may now describe the color contents of a skin lesion as a set of relative areas - one for each color

prototype. This may be written as

ai =
Acpi

A
; (29)

where A is the area of the skin lesion, Acpi the area inside the skin lesion occupied by pixels close to

prototype color cpi as de�ned by equation (28) and ai the relative measure of the color content of the

prototype color cpi. Since we do not wish to distinguish between di�erent shades of the same color, the
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Figure 9: Examples of color detection in a dermatoscopic image. Left: Original median �ltered image.

Right: Results of comparing the skin lesion image in the left panel with color prototypes in the RGB

colorspace using the Euclidean di�erence measure. Note, that all shades of blue are representated by the

blue1 prototype seen in �gure 8, all shades of dark-brown by dbrown2 and all shades of light-brown by

lbrown2.

color content of light-brown is de�ned as the sum of ai for the two light-brown color shades. The same

applies to the blue and dark-brown color shades.

As mentioned in the previous section, the choice of distance measure is not trivial. The most appro-

priate distance measure in this context would be one that takes the color perception of dermatologists

into account. The CIE9 has proposed the perceptually uniform colorspaces, CIE-Lab and CIE-Luv, in

which the Euclidean distance measure matches the average humans perception of color di�erences [20].

In order to transform pixels in RGB colorspace to either CIE-Luv or CIE-Lab colorspace, one must �rst

empirically determine a linear 3�3 transformation matrix for the complete imaging system10 that trans-

forms the RGB colorspace of the imaging system to the standardized CIE-RGB colorspace, see e.g. [21].

The CIE-RGB values may then be converted through a non-linear transformation into either CIE-Luv or

CIE-Lab values [17]. Using the Euclidean distance measure in either of these colorspaces for comparing

colors may yield results corresponding better with the color perception of dermatologists.

An example of skin lesion comparison with the color prototypes is shown in �gure 9.

Skin lesion speci�c comments

Note, that the use of color prototypes requires that the conditions of the imaging system are very con-

trolled in order to achieve color consistency. This involves camera, lighting conditions, �lm type, �lm

development process and scanner.

9Commission Internationale de L'Eclairage - the international committee on color standards.
10The imaging system in this application consists of camera, �lm, development process and image scanning.
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3 A PROBABILISTIC FRAMEWORK FOR CLASSIFICATION

3.1 Bayes decision theory

Bayes decision theory is based on the assumption that the classi�cation problem at hand can be expressed

in probabilistic terms and that these terms are either known or can be estimated.

Suppose the classi�cation problem is to map an input pattern x into a class Cl out of nC classes where

l = 1; 2; : : : ; nC. We can now de�ne several probabilistic terms that are related through Bayes' theorem

[22],

P (Cljx) =
p(xjCl)P (Cl)

p(x)
: (30)

P (Cl) is the class prior and re
ects our prior belief of an unobserved pattern x belonging to class Cl.

p(xjCl) is the class-conditional probability density function and describes the probability characteristics

of x once we know it belongs to class Cl. The posterior probability is denoted by P (Cljx) and is the

probability of an observed pattern x belonging to class Cl. The unconditional probability density function,

p(x), describing the density function for x regardless of the class, is given by

p(x) =

nCX
l=1

p(xjCl)P (Cl): (31)

In short, Bayes' theorem shows how the observation of a pattern x changes the prior probability P (Cl)

into a posterior probability P (Cljx).

A classi�cation system usually divides the input space into a set of nC decision regions,R1;R2; : : : ;RnC ,

so that a pattern, x, located in Rl is assigned to class Cl. The boundaries between the regions are called

decision boundaries. Often the aim of a classi�er is to minimize the probability of error, that is, to mini-

mize the probability of classifying a pattern x belonging to class Cl as a di�erent class due to x not being

in decision region Rl. This leads to Bayes' minimum-error decision rule saying that a pattern should be

assigned to class Cl if [22]

P (Cljx) > P (Cmjx) for all l 6= m: (32)

As already mentioned, Bayes' minimum-error decision rule assumes that the aim is to minimize the

probability of error. This makes sense if every possible error is associated with the same cost. If this

is not the case, one could adopt a risk-based approach, see, e.g., [23]. It may also be appropriate not to

divide the entire input space into nC decision regions. If a pattern has a low posterior probability for

all classes, it may be bene�cial to reject the pattern, rather than assigning it to a class. This is called

error-reject trade-o�, see, e.g., [22], [24], [25].
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3.2 Measuring model performance

Up until now, we have assumed that we either know the true posterior probabilities for the classes or

that we have some estimate of the posterior probabilities. We will now introduce the notion of a model

producing estimates of the posterior probabilities.

Assume we have a data set, D, which we shall call a training set, consisting of q
D
input-output pairs

drawn from the joint probability distribution p(x;y)

D = f(x�;y�)j� = 1; 2; : : : ; q
D
g; (33)

where x is an input pattern vector and y is an output vector containing the corresponding class label:

yT = (y1; y2; : : : ; ynC ) with yl = 1, if x 2 Cl, otherwise yl = 0. This class labeling scheme is known as

1-of-nC coding.

Let us also assume, we have a model,M, parameterized by a vector, u, that is estimated on the basis

of the training set, D, and let the model be capable of producing estimates of the posterior probabilities

for the classes,

M(u) : xy ŷ; (34)

where ŷT = (ŷ1; ŷ2; : : : ; ŷnC ) contains estimates of the true posterior probabilities, i.e., ŷl = P̂ (Cljx).

We can now use Bayes' theorem to de�ne several probabilistic terms for the model M,

p(ujD) =
p(Dju)p(u)

p(D)
: (35)

p(u) is the parameter prior and re
ects our prior knowledge of the model parameters before observing

any data. p(Dju) is the likelihood of the model and describes how probable it is that the data, D, is

generated by the model parameterized by u. The posterior parameter distribution is denoted by p(ujD)

and quanti�es the probability distribution of the model parameters once the data has been observed. The

unconditional probability distribution, p(D), is a normalization factor given by p(D) =
R
p(Dju)p(u)du.

Now, in order to design a model as close to the true underlying model as possible, we may �nd the

parameters that maximize the posterior parameter distribution,

ûMAP = argmax
u

[p(Dju)p(u)] : (36)

This is known as maximum a posteriori (MAP) estimation.
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If we have a uniform parameter prior, p(u), the MAP estimate reduces to the maximum likelihood

(ML) estimate,

ûML = argmax
u

[p(Dju)] : (37)

The MAP and ML estimate is based on the assumption that there is one near-optimal model matching

the true model the best. Bayesians argue that one should use the entire posterior parameter distribution

as a description of the model when doing output predictions. Examples of Bayesian approaches include

David MacKay's Bayesian framework for classi�cation based on approximating the posterior weight

distribution [26], [27], [28] and Markov Chain Monte Carlo schemes based on sampling the posterior

weight distribution [29], [30]. We will pursue the ML principle.

Assuming that the individual samples in D are drawn independently, the likelihood of the model can

be written as

p(Dju) =

q
DY

�=1

p(y�jx�;u)p(x�): (38)

Instead of maximizing the likelihood, we may choose to minimize the negative logarithm11 of the

likelihood

� log p(Dju) = �

q
DX

�=1

[log p(y�jx�;u) + log p(x�)] : (39)

Since p(x) is independent of the parameter vector, u, we can discard this term from equation (39)

and minimize the following function instead,

ED(u) = �
1

q
D

q
DX

�=1

log p(y�jx�;u) (40)

=
1

q
D

q
DX

�=1

e(x�;y�;u); (41)

where ED(u) is called an error function and e(x;y;u) a loss function. Note, that the negative log-

likelihood has been normalized with the number of samples in the training set D, thus making ED(u) an

expression of the average pattern error.

Now, let us return to the MAP technique. As with the ML estimate, instead of maximizing the

posterior parameter distribution, we can choose to minimize the negative logarithm of the posterior

parameter distribution

11Since the logarithm is a monotonic function, the two approaches lead to the same results.
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� log p(Dju) � log p(u) = �

q
DX

�=1

[log p(y�jx�;u) + log p(x�)]� log p(u): (42)

Again we note that p(x) is independent of u, so we may discard this term and minimize the following

function instead,

�
1

q
D

q
DX

�=1

log p(y�jx�;u)�
1

q
D

log p(u): (43)

This function that we wish to minimize can now be written as

C(u) = ED(u) +R(u); (44)

where C(u) is called a cost function and R(u) _ � 1
q
D

log p(u) a regularization function. The latter is

determined by the parameter prior and we shall return to this subject in section 3.4.1.

In the next section, we will derive a loss function for multiple-class problems based on the ML principle.

3.2.1 Cross-entropy error function for multiple classes

We will now consider the case where we have multiple exclusive classes, i.e., a pattern belongs to one

and only one class. As in section 3.2, we assume that we have a model capable of producing estimates

of the true posterior probabilities for the classes: ŷl = P̂ (Cljx), we use a 1-of-nC coding scheme for the

class labeling and the distributions of the di�erent class labels, yl, are independent. The probability of

observing a class label, y, given a pattern, x, is P̂ (Cljx), if the true class is Cl, which can be written as

p(yjx;u) =
nCY
l=1

(ŷl)
yl : (45)

Inserting equation (45) in equation (40), we obtain the following error function,

ED(u) = �
1

q
D

q
DX

�=1

nCX
l=1

y�l log ŷ
�
l ; (46)

which is known as the cross-entropy error function [23].

3.3 Measuring generalization performance

When modeling, we would like our model to be as close as possible to the true model described by p(x;y).

In order to measure this, we de�ne the generalization ability of a model as its ability to predict the output

of the true model. Thus, the generalization error of a model can be de�ned as
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G(u) = he(x;y;u)ip(x;y) (47)

=

Z
e(x;y;u)p(x;y)dxdy (48)

where the loss function, e(x;y;u), could be, e.g, the cross-entropy error. The lower bound of G(u) is

G(u?), where u? denotes the parameters of the true model.

In the limit of an in�nite training set, D, the training error converges to the generalization error,

lim
q
D
!1

ED(u) = lim
q
D
!1

1

q
D

q
DX

�=1

e(x�;y�;u) (49)

=

Z
e(x;y;u)p(x;y)dxdy: (50)

Note that G(u) is dependent on the training set through the model parameters u. We may remove

this dependency by de�ning the expected generalization error as the average generalization error w.r.t.

all possible training sets of size q
D
,

�G = hG(u)ip(D) (51)

=

Z
G(u)p(D)dD: (52)

Here we have acknowledged that the generalization error itself is a stochastic variable and de�ned the

expected or average generalization error. We could equally well have de�ned other interesting measures

like, e.g., the median. See [31] for a discussion of di�erent generalization error statistics.

Usually, we do not know the true joint input-output distribution, p(x;y), and thus cannot determine

neither G(u) or �G. Instead, we can compute either empirical or algebraic estimates of these quantities

which we shall discuss in the next two sections.

3.3.1 Empirical estimates

Sine we usually cannot assess the true joint input-output distribution, p(x;y), we may resolve to using

empirical estimates of this distribution.

One such estimator is obtained by employing a data set that is independent of the training set but

drawn from the same true distribution p(x;y). We call this a test set,

T = f(x�;y�j� = 1; 2; : : : ; q
T
): (53)

If we use the empirical joint input-output distribution, p̂
T
(x;y), based on the test set, we may now

use the test error as an estimate of the generalization error,
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ĜT (u) =
1

q
T

q
TX

�=1

e(x�;y�;u): (54)

As with the training error, ĜT (u) converges to the generalization error, G(u), when the test set, T ,

is in�nite.

Now, we would like the training set to be as large as possible in order to create an accurate model. At

the same time the test set should be large in order to get a reliable estimate of the generalization ability of

the model. Unfortunately, the available data is usually rather limited, so we have to deal with a trade-o�

between having a large training set and a large test set. A method trying to overcome this trade-o� is

called cross-validation [32], [33]. The idea of cross-validation is based on training and testing on disjunct

subsets of data resampled from the available database. If we split the database up into K disjunct data

sets, we may estimate a model using K � 1 sets and evaluate its performance on the remaining set. This

can be done K times resulting in K di�erent models with K measures of the generalization performance.

The cross-validation error is then de�ned as

ĜCV =
1

K

KX
i=1

ĜT (i) (u
(i)) (55)

where ĜT (i)(u
(i)) is the test error de�ned by equation(54) and i the split label. This provides us with

an estimate of the expected generalization error de�ned by equation(51).

If each of the K disjunct data sets only contains one pattern, we obtain the special case called leave-

one-out cross-validation.

Cross-validation has one major drawback, though, and that is the high computational costs involved.

K models have to be estimated which for leave-one-out cross-validation corresponds to estimating as

many models as there are available patterns in the data set. A scheme trying to remedy this based on

linear unlearning of patterns has been proposed in [34]. An application using this technique is presented

in [35].

3.3.2 Algebraic estimates

Empirical generalization error estimates require a fraction of the available data to be set aside thus

reducing the amount of data available for the training set. And as stated previously, we would prefer a

large training set in order to model the true model as accurately as possible.

In order to maximize the size of the training set, we will now consider an algebraic estimate of the

average generalization error based only on the data in the training set. We will assume the following:

� Independence of input and error on output.
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� There exists a set of parameters, u?, that implements the true model, i.e., the chosen model

architecture should be capable of implementing the true model.

� The number of patterns in the training set is large.

Under these assumptions, the following estimate of the average generalization error can be derived

[36], [37], [38],

hG(u)ip(D) � ED(u) +
1

q
D

tr
�
J�1H

�
; (56)

where H and J is the Hessian matrix for the unregularized and regularized cost function, respectively.

This estimate may be used to select an optimal model among a hierarchy of models with decreasing

complexity, i.e., every model should be a sub model of the previous model in the hierarchy [38].

For other texts on algebraic generalization error estimates, see, e.g., [39], [40], [41], [42].

3.4 Controlling model complexity

When estimating models, we face the problem of choosing a model that has an appropriate complexity.

That is, the model should be 
exible enough to adequately model the underlying function of the true

model. At the same time, we should ensure that the model is not too 
exible in order not to capture the

noise in the data. The latter case is known as over�tting [43], [23].

In brief, the purpose with controlling the model complexity is to maximize the generalization perfor-

mance of the model. We will in the next two sections consider two such techniques based on parameter

regularization and parameter pruning, respectively. Both methods are based on the assumption that the

model is too complex.

3.4.1 Weight decay regularization

As we saw in section 3.2, the MAP technique involves a prior for the model parameters and the cost

function could thus be written as

C(u) = ED(u) +R(u) (57)

where R(u) _ � 1
q
D

log p(u) is called a regularization function.

In order to avoid over�tting, we should consider a prior that has the potential of limiting the model

complexity by ensuring that the decision boundaries are smooth. One such prior that favors small

parameters12 is a zero mean Gaussian parameter prior with the individual parameters being independent,

12Here we assume that small parameters lead to very constrained models while large parameters allow very 
exible models

which will be the case for the neural network models considered in section 4.
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p(uk) =
1p

(2�)1=�k
exp

�
�
1

2
�ku

2
k

�
; (58)

where �k is the inverse prior parameter variance that can be used for controlling the range of uk. We

can now write the normalized negative logarithm of the parameter prior as

�
1

q
D

log p(u) = �
1

q
D

nuX
k=1

log p(uk) (59)

= �
1

q
D

nuX
k=1

�
�
1

2
�ku

2
k � log

2�

�k

�
; (60)

where nu is the total number of parameters.

We have seen from the MAP estimate that R(u) should really equal � 1
q
D

log p(u), but since the second

term in equation (60), log 2�
�k
, doesn't depend on u and we want to minimize C(u) = ED(u)+R(u) with

respect to u, we may discard this term and de�ne the regularization function as

R(u) =
1

2q
D

nuX
k=1

�ku
2
k =

1

2
uTRu; (61)

where R is a diagonal positive semide�nite matrix with elements �k=qD in the diagonal. This partic-

ular form of the regularization function is called weight decay in the neural network community since it

penalizes large parameters or weights whereas it for regression problems in traditional statistics is known

as ridge regression when all �k's are equal [44]. The regularization parameters, �k, are also known as

hyperparameters since they themselves control other parameters, in this case, the model parameters.

3.4.2 Optimal brain damage pruning

As we saw previously, we could limit the e�ect of a parameter or implicitly remove it by setting its

regularization parameter, i.e., the inverse parameter variance, to a very large value. We could instead

explicitly remove a parameter using one of several pruning techniques.

These methods are often based on computing the importance of each parameter by estimating the

increase in an error measure that the removal of a parameter causes. All parameters are then ranked

according to their importance denoted saliency and a percentage of the parameters with the lowest

saliencies can be removed. The model is then re-estimated and the procedure is repeated until no

parameters remain. This results in a family of models with decreasing complexity. For each model, an

estimate of the generalization error may be computed and used for selecting the optimal model.

We will consider a pruning technique called optimal brain damage [45], that is based on the following

assumptions:
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� The regularized cost function is at a minimum.

� The terms of third and higher order in a Taylor expansion of the error and regularized cost function

can be neglected.

� The o�-diagonal elements in the Hessian matrix can be neglected if more than one parameter is

removed.

Under these assumptions the OBD saliency for a weight, ûk, is

sOBDk =

�
�k
q
D

+
1

2
Hkk

�
û2k; (62)

where Hkk is the k0th diagonal element of the Hessian matrix.

4 NEURAL CLASSIFIER MODELING

The traditional approach to classi�cation is statistical and concerns the modeling of stationary class-

conditional probability distributions by a set of basis functions, e.g., Parzen windows or Gaussian mixtures

[22], [23], [18].

Neural networks have in the last decade been employed extensively for classi�cation applications.

The two most common neural network architectures for supervised classi�cation are the multi-layer

perceptron and the radial basis function network with two layers of weights. We will consider the multi-

layer perceptron architecture in greater detail in the next section.

Both classes of neural networks possess the important universal approximation capability, i.e., they

may approximate any given function13 with arbitrary precision as long as the number of hidden units are

large enough [46],[18]. Since neural networks learn by example, they are particular e�ective in situations

where no suitable traditional statistical model may be identi�ed, i.e., knowledge about the true data-

generating system is poor.

Radial basis function networks will not be discussed any further. For a more thorough introduction,

see, e.g., [23].

4.1 Multi-layer perceptron architecture

We will now focus on two-layer perceptrons and de�ne a particular model architecture that is used

throughout the rest of this work.

13If the network output function imposes bounds on the the output values, the networks can of course only approximate

equally bounded functions.
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The hidden unit activation function used is the hyperbolic tangent function. Thus, the output of the

hidden units for a pattern, x�, may be written as

hj(x
�) = tanh

 
nIX
k=1

wI
jkx

�
k + wI

j0

!
; j = 1; 2; : : : ; nH ; (63)

where wI
jk is the weight connecting input k and hidden unit j, wI

j0 is the threshold for hidden unit j,

nI is the number of inputs and nH is the number of hidden units.

The hidden unit outputs are weighted and summed, yielding the following unbounded network outputs,

�i(x
�) =

nHX
j=1

wH
ij hj(x

�) + wH
i0 ; i = 1; 2; : : : ; nO; (64)

where wH
ij is the weight connecting hidden unit j and the unbounded output unit i, w

H
i0 is the threshold

for the unbounded output unit i and nO is the number of unbounded output units.

In order to employ the probabilistic framework derived in section 3, the neural classi�er outputs must

be normalized so that the classi�er may be used for estimating posterior probabilities. We will now

consider two slightly di�erent normalization schemes and discuss their properties.

4.1.1 Softmax normalization

The standard way of ensuring that network outputs may be interpreted as probabilities is by using the

normalized exponential transformation know as softmax [47],

ŷ�i = P̂ (Cijx
�) =

exp[�i(x
�)]PnO

i0=1 exp[�i0 (x
�)]

; (65)

where ŷ�i is short for the estimated posterior probability that the pattern, x�, belongs to class Ci. We

thus have the following properties: 0 � ŷ�i � 1;
PnO

i=1 ŷ
�
i = 1. As can be seen, the softmax normalization

introduces a redundancy in the output representation due to the property that the posterior probability

estimates for a pattern sum to one.

An e�ect of this is that the unregularized Hessian matrix for a well-trained network will be singular

due to the output redundancy resulting in a dependency between the weights going to one output unit

and the weights going to the other output units. This e�ectively reduces the rank of the unregularized

Hessian matrix by the number of hidden units plus one (threshold unit). Any computations involving

the inverse Hessian matrix will be a�ected by this. The problem is reduced by employing regularization

since this usually reestablishes the full rank of the regularized Hessian.

The standard softmax network is shown in �gure 10.
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Figure 10: The standard two-layer softmax network. This has an inherent output redundancy yielding

the unregularized Hessian singular for a well-trained network.

4.1.2 Modi�ed softmax normalization

In order to remove the output redundancy introduced by the standard softmax normalization, we may

remove one of the unbounded outputs. This yields the following modi�ed softmax normalization,

ŷ�i =

8>><
>>:

exp[�i(x
�)]

1+
PnC�1

i0=1
exp[�i0 (x

�)]
; for i = 1; 2; : : : ; nC � 1

1�
PnC�1

i0=1 ŷ�i ; for i = nC

; (66)

where nC is the number of classes.

Another way of obtaining this modi�cation is by removing all input connections to the unbounded

output �nC (�) and setting �nC (�) to zero for all input patterns. Using the standard softmax normalization

(65), we now e�ectively obtain the modi�ed softmax normalization. This is illustrated in �gure 11.

The modi�ed softmax normalization has several bene�ts compared to the standard softmax normal-

ization. With a certain number of hidden units, the modi�ed softmax normalization reduces the network

complexity, i.e., the number of weight parameters is reduced by the number of hidden units plus one. This

improves the number of training patterns per weight relationship. The dependency between weights is

removed, thus improving the performance of algorithms based on the computation of the inverse Hessian,

e.g., the Newton scheme of updating weights that will be discussed in section 4.2.2. Another example

where the modi�ed softmax normalization may be bene�cial is in MacKay's Bayesian framework for clas-

si�cation [26], [27]. This framework approximates the posterior probability distribution of the weights

by a Gaussian distribution centered on the MAP solution of the weights and with the inverse Hessian as

covariance matrix. The posterior class probabilities are then found by using the entire posterior weight

distribution. Any inaccuracies in the Hessian may in this framework a�ect the results considerably.
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Figure 11: The modi�ed two-layer softmax network. This does not have the inherent output redundancy.

The modi�ed softmax scheme is recommended for output normalization.

4.2 Estimating model parameters

With the neural classi�er architecture in place, we now need to address the task of estimating the model

parameters. We will pursue the MAP approach with a Gaussian weight prior. As we recall from section

3, this yields the following cost function

C(u) = ED(u) +R(u); (67)

where u is a column vector containing all nu network weights and thresholds, ED(u) the cross-entropy

error function (46) and R(u) a regularization function proportional to the log weight prior.

The MAP solution for the network weights and thresholds will be found by using a training set, D,

of size q
D
and by using optimization methods based on gradient and curvature information.

Common for these approaches is an iterative weight updating scheme that may be formulated as

u(t+1) = u(t) +�u(t); (68)

where t indicates the iteration timestep and �u(t) the weight parameter change.

In the following sections, we will need the �rst and second derivatives of the cross-entropy error

function w.r.t. the weights. Note, if the modi�ed softmax normalization is used then �nC (x
�) = 0 in the

following.

The gradient is
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@ED(u)

@uj
= �

1

q
D

q
DX

�=1

nCX
i=1

y�i
ŷ�i

@ŷ�i
@uj

; (69)

and the Hessian,

@2ED(u)

@uj@uk
= �

1

q
D

q
DX

�=1

nCX
i=1

y�i
ŷ�i

�
�

1

ŷ�i

@ŷ�i
@uk

@ŷ�i
@uj

+
@2ŷ�i
@uj@uk

�
; (70)

where the derivative of the posterior probability w.r.t. the weights is given by

@ŷ�i
@uj

= ŷ�i

nCX
i0=1

(�i;i0 � ŷ�i0)
@�i0(x

�)

@uj
; (71)

and the second derivative is given by

@2ŷ�i
@uj@uk

=

nCX
i0=1

��
(�i;i0 � ŷ�i0)

@ŷ�i
@uk

� ŷ�i
@ŷ�i0

@uk

�
@�i0(x

�)

@uj
+ ŷ�i (�i;i0 � ŷ�i0)

@2�i0 (x
�)

@uj@uk

�
: (72)

Note, that we have expressed the derivatives as a function of the derivatives for a standard neural

network with linear outputs: @�i0 (x
�)=@uj and @2�i0(x

�)=@uj@uk.

It is often desirable for computational reasons to use the Gauss-Newton approximation of the Hessian

instead,

@2ED(u)

@uj@uk
�

1

q
D

q
DX

�=1

nCX
i=1

1

ŷ�i

@ŷ�i
@uk

@ŷ�i
@uj

: (73)

This is motivated by Fisher's property,


@2e(x;y;u)=@u@uT

�
p(D)

= h@e(x;y;u)=@u @e(x;y;u)=@uTip(D)

[48], that is valid when using a log-likelihood cost function. An important property of this approximation

is that the Hessian is guaranteed to be positive semi-de�nite, thus ensuring that a Newton step is a

descent direction. The Newton algorithm will be described shortly.

The detailed derivations of equation (69)-(73) may be found in [49].

4.2.1 Gradient descent optimization

One of the simplest optimization algorithms is gradient descent also known as steepest descent derived

from a �rst order Taylor approximation to the regularized cost function. It is based on iteratively updating

the weight vector so that we move in the direction of the largest rate of decrease of the cost function,

i.e., in the direction of the negative gradient of the cost function evaluated at timestep t. This may be

written as
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�u(t) = ��
@C(u(t))

@u
= ��

�
@ED(u

(t))

@u
+
@R(u(t))

@u

�
: (74)

where � is called a learning rate that ensures that the cost error decreases for each iteration when �

is su�ciently small.

It is clear that a too small learning rate will result in slow convergence while a too large learning

rate will yield the �rst order approximation inadequate which may result in an error increase. A simple

approach for iteratively adapting the learning rate is described in the following �rst order optimization

scheme with �xed regularization parameters:

1. Initialize weights, e.g., uniformly over [�0:5; 0:5].

2. Compute C(u(t)), initialize14 the learning rate, �, and compute the weight parameter change,

�u(t) = ��@C(u(t))=@u(t).

3. Update the weights, u(t+1) = u(t) +�u(t), and compute C(u(t+1)).

4. If C(u(t+1)) > C(u(t)), then set � = �=2 and goto step 3.

5. If the convergence criteria15 is not met, then set t = t+ 1 and goto step 2.

This simple gradient descent scheme is not very e�cient but it may be employed when more sophis-

ticated optimization schemes are not applicable. This could, e.g., be the case in the startup phase for

optimization algorithms based on a second order Taylor expansion where the quadratic approximation

initially may be poor. That is, the gradient descent algorithm may be applied as initialization for more

advanced optimization schemes.

4.2.2 Newton optimization

There are several optimization algorithms based on a second order Taylor expansion of the cost function.

One of these is the Newton optimization method [43].

Using a second order Taylor expansion of the regularized cost function, the weights are updated by,

u(t+1) = u(t) � �

�
@2ED(u

(t))

@u@uT
+
@2R(u(t))

@u@uT

��1�
@ED(u

(t))

@u
+
@R(u(t))

@u

�
; (75)

where � is a stepsize parameter that ensures a cost error decrease when the second order Taylor

expansion is poor.

The Newton algorithm may be formulated as the following iterative scheme:

14Through initial experiments, a suitable value may be found.
15This could, e.g., be when the 2-norm of the gradient is below some small value.
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1. Initialize weights, use, e.g., the gradient descent scheme in section 4.2.1.

2. Compute C(u(t)) and initialize the step size, �, to 1.

3. Update the weights according to eq. (75) and compute C(u(t+1)).

4. If C(u(t+1)) > C(u(t)), then set � = �=2 and goto step 3.

5. If the convergence criteria16 is not met, then set t = t+ 1 and goto step 2.

The Newton algorithm converges in very few iterations but may be computational expensive due to

the need for computing and inverting the regularized Hessian.

4.3 Design algorithm overview

Based on the optimization algorithms described in this section and the probabilistic framework described

in section 3, we will suggest a scheme for designing neural network classi�ers based on adaptive estimation

of the network architecture by using the optimal brain damage pruning technique described in section

3.4.2. The regularization parameters are �xed throughout the pruning scheme. The algebraic test error

estimate described in section 3.3.2 is used for selection of the optimal network architecture.

In brief, the algorithm may be described as:

1. Determine the regularization parameters. These may be found, e.g., by sampling the algebraic test

error estimate as a function of these parameters and choose those that minimize the algebraic test

error estimate. An example of this is shown in [50].

2. Train/retrain the network using the Newton optimization algorithm. After pruning a small per-

centage of weights, only a few retraining iterations are usually required.

3. Compute the algebraic test error estimate.

4. Compute the OBD saliencies and remove a small percentage of the weights with the smallest

saliencies. Goto 2, if any weights are left.

5. Select the network with the smallest algebraic test error estimate as the optimal network.

After designing a classi�er using this algorithm, Bayes minimum-risk decision rule and rejection

thresholds may be applied.

Examples of using the algorithm are shown in [51], [52].

16This could, e.g., be when the 2-norm of the gradient is below some small value.
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5 EXPERIMENTS

We employ the design algorithm described in section 4.3 using �xed values of the regularization parameters

combined with network pruning. Of particular interest is the pruning of dermatoscopic input features.

5.1 Experimental setup

We have a total of 58 dermatoscopic images distributed in 3 skin lesion categories as: Benign nevi :

25, atypical nevi : 11 and malignant melanoma: 22. For each image, 9 features have been extracted.

In summary, these are: 2 asymmetry measures, 2 edge abruptness measures and 5 color measures (see

section 2 for details).

One approach for attempting to overcome the limited data problem, would be to employ bootstrapping

methods for increasing the training set size, see e.g. [53], [54], [55].

We will use the empirical leave-one-out test error estimator described in section 3.3.1 for evaluating

the designed classi�ers. This gives us 58 training sets each with 57 patterns and 58 test sets with 1

pattern. Thus, in order to design a complete classi�er for solving the malignant melanoma problem, we

need to design 58 classi�ers for the 58 training sets.

The used network architecture consists of 9 inputs, 4 hidden units and 2 output units with 2 regular-

ization parameters, �wI and �wH , for the weights/biases in the input layer and the weights/biases in the

output layer, respectively.

The network weights are initialized uniformly over [�0:5; 0:5] and the regularization parameters are set

to �wI = 0:5 and �wH = 0:9. These are chosen in order to prevent signi�cant over�tting of the training

data. A more systematic approach for determining the regularization parameters without the use of a

validation set is to sample the algebraic test error estimate as a function of the regularization parameters

and use the regularization parameters that minimize the algebraic test error estimate. Examples of this

are shown in [50]. 30 gradient descent iterations are performed prior to using the Newton algorithm17 for

locating a cost function minimum. Matrix inversion is done using the Moore-Penrose pseudo inverse (see

e.g. [48]) ensuring that the eigenvalue spread18 is less than 108. This is not a problem for this application

due to the rather large regularization parameters.

Next, the network is pruned and the optimal pruned model is selected as the model with the lowest

algebraic test error estimate. Recall, that this is an asymptotic estimate. Thus, its use may be question-

able in an application with only 57 training patterns. During pruning, the training patterns per weight

relationship improves, thus hopefully improving the validity of the estimator.

17Training is stopped when the 2-norm of the gradient of the training error w.r.t. the weights is below 10�5 or the

maximum number of allowed iterations is reached.
18Eigenvalue spread should not be larger than the square root of the machine precision [56].
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Table 2: Cross-entropy error for the malignant melanoma problem. The averages and standard deviations

over 10 runs are reported. One run is a full leave-one-out scheme using 58 training sets.

Cross-entropy Non-pruned neural Pruned neural

error classi�er classi�er

Training 0.689 � 0.002 0.757 � 0.003

Test 1.022 � 0.016 1.007 � 0.006

Table 3: Probability of misclassi�cation for the malignant melanoma problem. The averages and standard

deviations over 10 runs are reported.

Probability of Non-pruned neural Pruned neural

misclassi�cation classi�er classi�er

Training 0.273 � 0.004 0.306 � 0.001

Test 0.441 � 0.023 0.400 � 0.007

Since we employ the leave-one-out empirical test error estimator for model evaluation, the full classi�er

consists of 58 pruned networks.

5.2 Results

A total of 10 classi�ers each consisting of 58 pruned networks as described in the previous section are

designed. All results reported are the averages and standard deviations for the 10 classi�ers.

5.2.1 Classi�er results

Table 2 lists the cross-entropy error rates for the training and test set before and after pruning. As

expected, the training error increases as a result of pruning due to the reduced network complexity while

the test error decreases only slightly.

The corresponding classi�cation19 results are shown in table 3. Here we see a more noticeable decrease

of the test error from 0:441�0:023 to 0:400�0:007 after pruning. Note, that there is still some discrepancy

between the training error and test error suggesting that we are still over�tting the training set somewhat.

While the cross-entropy error and the classi�cation error yield some insight into the performance of

a classi�er, it is of great interest to see how the classi�cation errors are distributed in the 3 classes. This

information is contained in confusion matrices.

19Following Bayes minimum-error decision rule as described in section 3.1, the network output with the highest probability

determines the class. One could also adopt Bayes minimum-risk decision rule, see, e.g., [23].
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Table 4: Confusion matrix for the test set using non-pruned networks. The averages and standard

deviations over 10 runs are reported.

Confusion matrix Non-pruned neural classi�er

for test set Benign nevi Atypical nevi Melanoma

Benign neviy 0.684 � 0.058 0.709 � 0.038 0.273 � 0.000

Atypical neviy 0.108 � 0.033 0.018 � 0.038 0.041 � 0.014

Melanomay 0.208 � 0.041 0.273 � 0.000 0.686 � 0.014

y indicates the estimated output classes.

In table 4 and 5, the confusion matrices for the test set before and after pruning are shown. We

see that the performance for the atypical nevi class is rather poor before pruning and even worse after

pruning. The reason, that the atypical nevi class su�ers, is the lower class prior20 compared to the benign

nevi and melanoma class. Thus, the error contribution from the atypical nevi class is relatively small

making it fairly inexpensive to ignore this class during training. A method for minimizing the risk of

completely ignoring a class is to weight each error contribution from a pattern in the cross-entropy error

function with the inverse class prior. This corresponds to creating equal class priors. In order to take the

real imbalanced priors into account, the network outputs should be reweighted with the real imbalanced

class priors divided by the balanced class priors (see, e.g., [23]). This approach has not been employed

in this work. It is interesting to note that the majority of the atypical nevi before and after pruning are

assigned to the benign nevi class when recalling that the atypical nevi are in fact healthy. 72:7%� 0:0%

are actually classi�ed as benign for the pruned classi�ers. This suggests that the information in the

extracted dermatoscopic features is not adequate for distinguishing the benign nevi from the atypical

nevi but is more appropriate for separating healthy lesions, i.e. benign nevi and atypical nevi, from

cancerous lesions. Acknowledging this, we might be able to obtain a higher detection of the melanoma

lesions by considering only these two categories of lesions when designing the classi�ers. This has not been

attempted, though. If we compare the test set results before and after pruning, we note that pruning has

improved the detection of the benign nevi and the melanoma lesions signi�cantly. In fact, a detection rate

of 75:0%� 2:4% for the melanoma lesions are comparable with the detection rates of very experienced

dermatologists [2].

In �gure 12, the results of a typical run of the design algorithm is shown. For the non-pruned networks,

the cross-entropy test error and classi�cation test error exhibit only very little over�tting. Notice, how

the Newton optimization sets in after 30 iterations. If smaller regularization parameters were used, the

e�ects would have been a lot more dramatic. The pruning plots show that the decrease of the cross-

20Recall, only 11 of 58 lesions in the training set are atypical.
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Figure 12: Results of a run of the design algorithm for the malignant melanoma problem. Each run

consists of 58 networks. Upper left: The development of the cross-entropy error during training of the

non-pruned networks. Gradient descent is used for the �rst 30 iterations, thereafter Newton optimization

is used. Upper right: The development of the classi�cation error during training of the non-pruned

networks. Lower left: The development of the cross-entropy error during pruning. The vertical line

indicates the mean location of the minimum of the estimated test error. Lower right: The development

of the classi�cation error during pruning.
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Table 5: Confusion matrix for the test set using pruned networks. The averages and standard deviations

over 10 runs are reported.

Confusion matrix Pruned neural classi�er

for test set Benign nevi Atypical nevi Melanoma

Benign neviy 0.732 � 0.019 0.727 � 0.000 0.241 � 0.037

Atypical neviy 0.032 � 0.017 0.000 � 0.000 0.009 � 0.019

Melanomay 0.236 � 0.013 0.273 � 0.000 0.750 � 0.024

y indicates the estimated output classes.

entropy test error and classi�cation test error occurs at the end of the pruning session, i.e., when only 12

to 20 weights remain. Note, that the minimum of the algebraic test error estimate coincides fairly well

with the region where the test error is lowest.

For comparison a standard k-nearest-neighbor21 (k-NN) classi�cation was performed. The training

error may be computed from the training set by including each training pattern in the majority vote.

The leave-one-out test error is computed by excluding each training pattern from the vote. Figure 13

shows the classi�cation error on the training and test set as a function of k. We see that for a wide range

of k-values, the k-NN classi�er has similar classi�cation error rates on the test set compared with the

non-pruned and pruned neural classi�ers suggesting that the k-NN classi�er and the neural classi�ers

perform similarly. If we inspect the confusion matrix for the test set for a 15-NN classi�er shown in table

6, we see that they classify quite di�erently despite having approximately the same overall classi�cation

error rate. The 15-NN classi�er performs much better for the benign nevi class at the expense of the

melanoma class. This is very unfortunate since the cancerous lesions are our major concern. From a

medical point of view, it is signi�cantly more expensive classifying a cancerous lesion as healthy as is

the opposite case. Again, we note that a large majority of the atypical nevi are classi�ed as benign nevi

supporting our earlier statement concerning the discriminating power of the extracted dermatoscopic

features.

5.2.2 Dermatoscopic feature importance

One of the most interesting e�ects of pruning is that it may provide information about the importance of

the input variables. This is of particular interest for this application where the discriminating power of the

dermatoscopic features is still rather unclear. Figure 14 shows an example of a pruned network selected

by the minimum of the algebraic test error estimate. Two inputs have been completely removed by the

21Within a k-NN, a pattern is classi�ed according to a majority vote among its k nearest neighbors using the Euclidean

metric, see, e.g., [22].
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Figure 13: Classi�cation results for a k-NN classi�er as a function of k. Note, that for a wide range

of k-values, the k-NN classi�er performs similar to the non-pruned and pruned neural classi�ers when

comparing the classi�cation rates.

Table 6: Confusion matrix for the test set using a 15-NN classi�er. Note, that the classi�er favors the

benign nevi class, thus making costly errors in the melanoma class from a medical point of view.

Confusion matrix k-NN classi�er (k = 15)

for test set Benign nevi Atypical nevi Melanoma

Benign neviy 0.920 0.818 0.455

Atypical neviy 0.000 0.000 0.000

Melanomay 0.080 0.182 0.545

y indicates the estimated output classes.
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Figure 14: Example of a pruned malignant melanoma network with 17 weights. A vertical line through

a node indicates a bias. The two pruned dermatoscopic input features are the minor axis asymmetry

measure and the dark-brown color measure. These are the two most commonly pruned input features.

Recall, that we only have two network outputs with weight connections due to the modi�ed softmax

normalization.
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pruning process. For this particular network, it is the minor axis asymmetry measure and the dark-brown

color measure. These are in fact the two most commonly removed dermatoscopic input features as can be

seen in table 7. The table shows how often the individual dermatoscopic features have been completely

removed during the runs of the design algorithm. Recall, that each run results in 58 pruned networks.

Thus, for each run the number of times a feature has been removed is computed relative to the maximum

number of times it could have been removed (58). This enables us to compute the mean and standard

deviation over 10 runs and sort the features according to their importance22. Two features were never

pruned: The major axis asymmetry measure and the blue color measure. We know that the presence of

blue color in a lesion indicates blue-white veil and thus malignancy. So this is an expected result. We

would also expect asymmetry to be important since this indicates di�erent local growth rates in the lesion

and thus malignancy. It is interesting to note that while the major axis asymmetry measure seems very

important, the minor axis asymmetry measure is nearly always removed. The reason for this is probably

that these two measures often are very similar which is also indicated by the skin lesion example in �gure

6. That is, they both contain the same information, thus only one asymmetry measure is needed. The

dark-brown color measure is the most often pruned feature. This is a bit surprising since the number of

di�erent colors present in a skin lesion normally is considered to correlate with the degree of malignancy.

The removal of this feature could be due to the fact that the 5 color measures sum to 1 for a skin lesion.

Thus, it is possible to infer a missing color measure from the remaining 4. We also note that the white

color measure is often removed. This could invalidate the explanation of the inference of a missing color

measure but the amount of white color, if present, is typically under 0:5%. That is, the white color

measure could easily be ignored in the inference of the missing dark-brown color measure.

In summary, the 3 most important dermatoscopic features seem to be the major axis asymmetry

measure and the blue and black color measures while the 3 least important are the dark-brown and white

color measures and the minor axis asymmetry measure.

6 CONCLUSION

In this work, we have proposed a probabilistic framework for classi�cation based on neural networks and

we have applied the framework to the problem of classifying skin lesions.

This involved extracting relevant information from dermatoscopic images, de�ning a probabilistic

framework, proposing methods for optimizing neural networks capable of estimating posterior class prob-

abilities and applying the methods to the malignant melanoma classi�cation problem.

22Assuming that the number of times a feature has been removed is inversely proportional to its importance.
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Table 7: Table showing how often the individual dermatoscopic features have been completely pruned

during the 10 runs. A zero pruning index for a feature indicates that it was never removed while a pruning

index of 1 indicates that the feature was always removed. The averages and standard deviations over 10

runs are reported.

Feature Pruning Feature Pruning Feature Pruning

importance index importance index importance index

Asymmetry: 0.000 Edge abrupt.: 0.053 Color: 0.272

Major axis � 0.000 Std. dev. � 0.025 White � 0.031

Color: 0.000 Edge abrupt.: 0.083 Asymmetry: 0.772

Blue � 0.000 Mean � 0.021 Minor axis � 0.048

Color: 0.022 Color: 0.097 Color: 0.783

Black � 0.008 Light-brown � 0.023 Dark-brown � 0.054

Dermatoscopic feature extraction

The extraction of dermatoscopic features involved measuring the skin lesion asymmetry, the transition

of pigmentation from the skin lesion to the surrounding skin and the color distribution within the skin

lesion. The latter involved determining color prototypes by inspecting 2-D color histograms and by using

knowledge of dermatologists color perception. No reliable red prototype color could be identi�ed, though,

partially due to a strong reddish glow of the dark-brown color in skin lesions. It was seen that some of

the extracted dermatoscopic features singlehandedly showed potential for separating in particular the

malignant lesions from the healthy lesions.

Probabilistic framework for classi�cation

The de�ned probabilistic framework for classi�cation included optimal decision rules, derivation of error

functions, model complexity control and assessment of generalization performance.

Neural classi�er modeling

The proposed schemes for designing neural network classi�ers involved de�ning a two-layer feed-forward

network architecture and evoking methods for optimizing the network weights and the network architec-

ture. Traditionally, a standard softmax output normalization scheme is employed in order to ensure that

model outputs may be interpreted as posterior probabilities. This normalization scheme has an inher-

ent redundancy due to the property that the posterior probability output estimates sum to one. This

redundancy is generally ignored and results in weight dependencies in the output layer and, thus, a sin-
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gular unregularized Hessian matrix. In order to overcome this, a modi�ed softmax output normalization

scheme removing the redundancy has been suggested.

The malignant melanoma classi�cation problem

The neural classi�er framework was applied to the malignant melanoma classi�cation problem using

the extracted dermatoscopic features and results from histological analyzes of skin tissue samples. The

adaptive estimation of regularization parameters and outlier probability was not employed due to the

very limited amount of data available. Instead, optimal brain damage pruning and model selection using

an algebraic generalization error estimate was employed. In a leave-one-out test set, we were able to

detect 73:2%�1:9% of benign lesions and 75:0%�2:4% of malignant lesions. None of the atypical lesions

were classi�ed correct. We argued that this probably is due to the fact that the atypical lesion class has

a small prior and thus is ignored during model estimation. 72:7% � 0:0% of the atypical lesions were

classi�ed as benign lesions. Recalling, that atypical lesions are in fact healthy indicates that the extracted

dermatoscopic features are e�ective only for separating healthy lesions from cancerous lesions, i.e., the

features do not possess adequate information for discriminating between benign and atypical lesions. As

a result of the pruning process, it was possible to rank the dermatoscopic features according to their

importance. We found that the three most important features are shape asymmetry and the amount of

blue and black color present within a skin lesion.
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