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Abstract 

Phase-type distributions can be understood as the distributions of absorption times of 

certain Markov jump processes.  Phase type distributions constitute a class of 

distributions on the nonnegative real axis. The concept can be expanded into higher 

dimensions, thus multivariate phase type distributions (MPH) are obtained. 

 

We could associate the total accumulated reward until absorption in a finite state with 

phase type distributions. Under this background V.G. Kulkarni introduced a new class of 

multivariate phase type distributions (denoted by MPH*). Usually it is difficult to 

compute this distribution directly. There are several computation techniques for the 

distributions in MPH*, of which we have a particular interest in the PDE method.  

 

Since it is not an easy task to solve the partial differential equations directly, we have 

introduced power series method to see the possibilities of obtaining the distributions or 

survival functions. Several concrete examples have shown that the recursive equations 

generated from the PDEs are valid.  

 

Finally we use some numerical tests to confirm the feasibility of the PDE-Power series 

method to obtain the approximate survival functions of multivariate phase type 

distributed random variables. 
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Chapter 1 Introduction 

 
A phase-type distribution is the distribution of the first passage time in a finite-state 

Markov chain. This distribution plays an important role in a number of applied 

probability problems, such as risk theory and queuing theory. The univariate case is the 

simplest case since univariate PH distributions can be written in a closed form including 

their densities, Laplace transforms and their moments. Due to these nice properties, it is 

relatively easy to evaluate their probabilistic quantities. The concept can also be 

expanded into bivariate and multivariate cases. Several techniques are possibly helpful in 

computing their distributions. These include partial differential equations (PDE) method 

and Laplace Stieltjes Transforms. The former draws a particular interest since it can be 

easily associated with other known analysis tools, i.e. power series method. Thus the goal 

of this thesis is to see the possibilities of obtaining distributions/survival functions of 

phase type distributed random vectors by the help of partial differential equations. 

 

For a better understanding of the project, we present some necessary background. This 

means a review on the basic theory will come first because the initial idea of phase type 

distribution arises from the framework of continuous Markov processes. We then present 

the concept and the corresponding derivation of phase type distributions in both the 

univariate case and the multivariate case. After that the motivation of using partial 

differential equation method is presented; the motivation is also supported by some 

concrete examples. By looking at these examples, the reader will get the feeling about 

how real examples could work in the framework of partial differential equations. 

Afterwards, power series method is introduced to supplement the PDE method. Similarly, 

there will be concrete examples to illustrate the ideas. Finally we use some numerical 

tests to confirm the feasibility of PDE-Power series method to obtain the approximate 

survival functions of phase type distributed random variables.  
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A brief summary of the thesis is as follows: 

 

Chapter 2 contains basic definitions and a brief introduction to computation techniques 

for obtaining survival functions of phase-type distributed variables. The importance of 

the partial differential equations method is highlighted. 

 

Chapter 3 focuses on the partial differential method. We present the motivation and then 

show the detailed computation processes in several examples, which include the case 

using the identity reward matrix and a more complicated reward structure. These 

examples indicate the potential applications of PDE method. 

 

Chapter 4 shows the application of PDE-power series method to obtain the survival 

functions of phase type distributed variables. The idea is supported by numerical test, 

where we have used finite power series coefficients to obtain the approximate values of 

the survival functions. 

 

Chapter 5 presents the conclusion of the thesis. Some limitation of the method is pointed 

out. We also give some suggestions about the future work in this area. 
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Chapter 2 Basic theory 

2.1 Continuous-Time Markov chains 

 

In probability theory, a stochastic process is a mathematical model for the evolution of 

systems that either exhibits inherent randomness, or operates in an unpredictable 

environment. A continuous-time Markov process is a stochastic process which can 

describe physical systems in continuous time. 

 

Definition 2.1.1 (Stochastic process). 
[1]

 

Let I be either �  or [0, )∞ . A stochastic process on I with state space E is a collection of 

random variables { : }tX t I∈  on E.  

 

Definition 2.1.2 (Continuous-time stochastic process) 
[2] 

A continuous-time stochastic Process 0( ( ) )tX t ≥ , with state space E is a collection of 

random variables X(t) with values in E. 

 

One fundamental example is the Poisson process, which is defined as follows: 
 

Definition 2.1.3 (Homogeneous Poisson Process)
 [2]

 

A point process N(t) on the positive half-line is called a homogeneous Poisson process 

(HPP) with intensity 0λ >  if  

a) For all times , [1, ]it i k∈ , such that 1 20 kt t t≤ ≤ ≤ ⋅⋅⋅ ≤ , the random 

variables 1( , ], [1, 1]i iN t t i k+ ∈ − , are independent. 

b) For any interval ( , ] , ( , ]a b N a b+⊂ � is a Poisson random variable with 

mean ( )b aλ − . 

 

 

The Poisson process describes the number of “events” taking place until time t 

while the waiting time from one event to the next is exponentially distributed and 

independent of all other waiting times. 

 

In the following work, we are only concerned about the continuous-time phase type 

distributions, therefore what is needed is only the concept of continuous time Markov 

chains. 
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Definition 2.1.4 (Finite Continuous Time Markov Chains) 
[2]

 

 

A stochastic process 0( ( ) )tX t ≥  with finite state space E is a finite continuous-time 

Markov chain (or Markov jump process) if for all 1 20 nt t t t≤ ≤ ≤ ⋅⋅⋅ ≤ <  and all 

1,..., ,nj j j E∈  

            1 1( ( ) | ( ) ,..., ( ) ) ( ( ) | ( ) )n n n nP X t j X t j X t j P X t j X t j= = = = = =  

Whenever 1 1( ( ) ,..., ( ) ) 0n nP X t j X t j= = >  

This property is the Markov property of X(t). 
 

From this property, we can see that the distribution of a continuous-time Markov chain is 

determined by the initial distribution 

 

                                    ( ) ( (0) )i P X i i Eα = = ∈  

and the transition probability ( ) { ( )} ,
ij

P t p t i j E= ∈  

Where ( ) ( ( ) | ( ) )
ij

p t p X t s j X s i= + = =  

Obviously P(0)=I,  

Where I is the identity matrix. 

 

In other words, 0{ ( )}
t

P t ≥ is a transition semigroup on E, and we have the well-known 

Chapman-Kolmogorov equation:  

 

                  P(t+s)=P(t)P(s) for each , 0t s ≥  

For any state i, there exists 
0

1 ( )
lim [0, )ii

i
h

p h
q

h→

−
= ∈ ∞ , 

We denote 
ii i

q q= −  

And for any state , ( )i j i j≠ , there exists 
0

( )
lim [0, )

ij

ij
h

p h
q

h→
= ∈ ∞  

 

The matrix of ,( )
ij i j E

Q q ∈= is critical and will lead to the following concept. 

 

Definition 2.1.5 (Infinitesimal Generator)
 [2]

 

 

The numbers 
ij

q  are called the local characteristics of the continuous-time Markov 

chain
[3]

. The matrix 

                       ,{ }
ij i j E

Q q ∈=            

Is called the infinitesimal generator of the continuous-time Markov chain. 
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For the purpose of showing an important property of the infinitesimal generator, the 

following concept of inter-arrival times and embedded process is also necessary. 

 

There exists a sequence of transition times ( )
n n N

τ ∈  when X(t) jumps i.e. 

      

                                        1 1inf{ : ( ) ( )}
n n n

t X t Xτ τ τ− −= ≥ ≠  

Clearly if 
n

τ = ∞  then 
n k

τ + = ∞  for all k N∈ . 

The inter-arrival times are defined as 1n n
τ τ+ −  

 

  

Definition 2.1.6 (Embedded process)
 [3]

 

 

Let ( )
n n N

τ ∈  be the nondecreasing sequence of transition times of the regular jump process 

0( ( ) )
t

X t ≥ , where 0 0τ =  and 
n

τ = ∞ if there are strictly fewer than n transitions in (0, )∞ . 

The process 0{ }
n n

X ≥  with values in { }E E∆ = ∪ ∆ , where ∆  is an arbitrary element not in 

E , is defined by  

                                               ( )
n n

X X τ= ,  

with the convention ( ) ,X ∞ = ∆ and it is called the embedded process of the jump process.  

 

 

Theorem 2.1.1 (Regenerative structure) 
[2]

 

 

Let 0( ( ) )
t

X t ≥  be a continuous-time Markov chain with state space E and infinitesimal 

generator  ,{ }
ij i j E

Q q ∈=  

Then given the embedded process 
0

( )
n n

X ∈� the sequence of inter-arrival times, 

01( )
n n n N

τ τ+ ∈− , are independent with distribution given by 

 

                         
01

exp( )
( | ( ) ) 0

1

nX n

n n n n

n

q s if X
P s X s

if X
τ τ+ ∈

− ≠ ∆
− > = >

= ∆
�

 

 

Where 
\{ }

i ij

j E i

q q
∈

= ∑ for all i E∈  
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2.2 Phase type distribution 

 

With the basic theory of continuous-time Markov chains described above, the concept of 

phase type distributions can be now presented.  

 

First we look at the univariate case. Consider a continuous time Markov chain (CTMC) 

with finite state-space E: (1, 2, … , m+1) where the first m states are transient and state 

m+1 absorbing. Then this Markov process has an intensity matrix  

 

                                                     
0 0

T t
Q

 
=  
 

 

Where T is a non-singular n n×  sub-intensity matrix and t Te= −  

 

Here e is the m-dimensional column vector of 1’s. 

 

Let the initial distribution of 0( ( ) )
t

X t ≥ be
i

α , and min{ 0 | ( ) 1}t X t mτ = > = +  be the 

absorbing time of the Markov process. It is clear that the distribution of τ is only 

dependent on α and T. 

 

 

 

 

Definition 2.2.1 (Phase type distribution) 
[4]

 

 

The distribution of τ is called a phase-type distribution with initial distribution α and the 

sub-intensity matrix T. We write ~ ( , )PH Tτ α . 

 

We can show that the probability that absorbing state is not visited at time t is tT
e eα . 

 

Proof.   

 

1

, 1

, 1

( ) ( ( ) )

( ( ) | (0) ) ( (0) )

( )

m

j

m

i j

m
t tT

ij

i j

P t P X t j

P X t j X i P X i

i P e e

τ

α α

=

=

=

> = =

= = = =

= =

∑

∑

∑

 

 

 

 



 12 

Similarly  the following theorem is obtained. 

 

 

Theorem 2.2.2 If ~ ( , )PH Tτ α , then τ has the following density: 

                              ( ) Txf x e tα=  

 

Proof. 

   
, 1

, 1

( ) ( ( , ))

( ( , ) | ( ) , (0) ) ( ( ) | (0) ) ( (0) )

( ( , ) | ( ) ) ( )

m

i j

m
x

ij

i j

f x dx P x x dx

P x x dx X x j X i P X x j X i P X i

P x x dx X x j P i

τ

τ

τ α

=

=

= ∈ +

= ∈ + = = = = =

= ∈ + =

∑

∑

 

 

By the definition of t Te= − , we get ( ( , )) jP x x dx t dxτ ∈ + = , where jt is the jth element 

of t. 

Thus 
, 1

( ) exp( )
m

Tx

ij j

i j

f x dx Tx t dx e tdxα α
=

= =∑  

 

In quest of moments ofτ , we rely on the method of Laplace transform. 

 

Theorem 2.2.3 If ~ ( , )PH Tτ α , then the laplace transform of τ is given by  

                       1( ) ( ) ( )s
L s E e sI T t

τ
τ α− −= = −  

 

Proof.  We use the density function ( ) Txf x e tα=  to calculate ( )L sτ , then we get  

                                     

0

( )

0

1

( )

( )

sx Tx

sI T x

L s e e tdx

e tdx

sI T t

τ α

α

α

∞
−

∞
− −

−

=

=

= −

∫

∫  

By successive differentiation of the Laplace transform, then the kth moment of τ is : 

 

                                        1( ) ! ( )k kE k T eτ α −= −  

 

 

We will give one simple example of a phase type distributions. 
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Example: Generalized Erlang distribution 

 

Let 1 2, ,..., nX X X  be independent and ~ exp( )i iX λ , then 1 2 ... nY X X X= + + +  has a 

phase type distribution with (1,0,0,...,0)α =  and  

 

1 1

2 2

3 3

0 0 0

0 0 0

0 0 0

0 0 0 0 n

T

λ λ

λ λ

λ λ

λ

− 
 − 
 = −
 
 
 − 

�

�

�

� � � � � �

�

 

 

 

Think of Y as the absorption time of a Markov chain, which starts from state 1 and can 

only jump to the “adjacent” state. Only from the last transient state n is the Markov 

process ready to be absorbed. 

Start 1 2 3 n abs
1λ 2λ nλ

 
 

Fig.1: Markov process of the Generalized Erlang distribution. 

 

 

With the knowledge gained from the univariate case, the model of the bivariate case can 

be introduced. 

 

Take a continuous-time Markov chain 0( ( ) )tX t ≥  with state space E and sub-intensity 

matrix T and initial distributionα into consideration. Let 1A  and 2A be two nonempty 

closed subsets of E. Also assume that the probability of eventually being absorbed into 

1 2A A∩ is 1. Without loss of generality, E=(1, 2, … , m, m+1). As before, the first m 

states are transient while the state m+1 is the absorbing state. Then the infinitesimal 

generator is  

                                                           
0 0

T t
Q

 
=  
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We define   

                                 inf{ 0 : ( ) }, 1, 2k kt X t A kτ = ≥ ∈ =  

The vector 1 2( , )τ τ then has a bivariate phase type (BPH) distribution. 

Mathematically, 1 2( , ) ~ ( , )BPH Tτ τ α , where α is the initial distribution. 
[6]

 

 

We will give one simple example of a bivariate phase type distribution. 

 

 

 

Example 
[6]

: 

Given two independent random variables 1T and 2T . If 1 1~ exp( )T λ , 2 2~ exp( )T λ , then 

the joint distribution of 1 2( , )T T is BPH. This could be understood by constructing a 

CTMC with state space {1,2,3, }E = ∆ , 1 {2, }A = ∆ , 2 {3, }A = ∆ and (1,0,0)α = , and  

                              

1 2 2 1

1

2

( )

0 0

0 0

T

λ λ λ λ

λ

λ

− + 
 

= − 
 − 

 

In this case, the survival function F of  1 2( , )T T  is 1 1 2 2

1 2( , )
t t

F t t e
λ λ− −=  

 

Likewise, the above bivariate phase-type distribution could be expanded to 

multidimensional phase-type distribution.  

Consider a continuous-time Markov chain 0( ( ) )tX t ≥  with state space E and sub-intensity 

matrix T and initial distributionα . Given k closed subsets of E: 1 2, ,A A … kA , then it 

could be defined 

                        min{ 0 | ( ) }i it X t Aτ = > =  (1 i k≤ ≤ ) 

The random vector ( 1 2, ,..., kτ τ τ ) is then said to have a multivariate phase type distribution. 

Mathematically, that is 1 2 1 2( , ,..., ) ~ ( , ; , ,..., )k kMPH T A A Aτ τ τ α  
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2.3 Accumulated reward system and The Class MPH* 

 

One of the essential applications of phase type distribution can be found by the 

combination of a continuous-time Markov chain and reward system. If a process has 

already been modelled by a CTMC, and during the sojourn in each state before being 

absorbed, there might be a reward gained dependent on the time spent in each state and 

the corresponding reward rate. The goal is thus to find the distribution or survival 

function of the accumulated reward. In the following work, we focus on deriving the 

survival function due to the convenience of calculating. 

 

First the model is to be illustrated mathematically. 

 

Consider again a one dimensional phase type distribution.  

Consider a continuous time Markov chain with state-space (1, 2,…, m+1) with 

corresponding generator matrix 

 

                    
0 0

T t
Q

 
=  
 

 

 

The absorption time is min{ 0 | ( ) 1}t X t mτ = > = +  

 

It is assumed that before the random variable X enters the absorbing state, there is reward 

gained. Mathematically, there exists a vector r=(r(1),r(2),…,r(m)), where r(i) is the 

reward rate at state i. (1 i m≤ ≤ ) . Throughout our project work, we assume all reward 

rates are non-negative. 

 

Therefore the total reward until absorption in the state m+1 is 
0

( ( ))Y r X t dt
τ

= ∫  

 

It can be derived that Y has a phase type distribution. The basic idea is to find a CTMC 

such that the distribution of the absorbing time is the same as the distribution of Y. 
[4] 

 

 

 

Likewise, this one dimensional Y could be extended to k-dimensional 1 2( , ,..., )kY Y Y using 

the same Markov chain mentioned above. 
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Suppose there are k reward systems: ( (1), (2),..., ( )), 1i i i ir r r r m i k= ≤ ≤ . 

 

Denote  

                    

1

2

k

r

r
R

r

 
 
 =
 
 
 

�
 

as the reward matrix. 

 

Similarly, it could be defined 
0

( ( )) , 1 .i iY r X t dt i k
τ

= ≤ ≤∫  

 

The new random vector 1 2( , ,..., )kY Y Y is said to have a multivariate phase* type 

distribution. We write 1 2( , ,..., ) ~ *( , ; )kY Y Y MPH T Rα  
[4] 

 

Theorem 1.3.1 MPH* is a strict superset of MPH 
[4] 

 

Proof omitted. 

 

 

Since phase type distributions play an important role in applied probability models, it is 

important to study their distributions. Usually it is difficult to compute the distributions 

directly. There are several computation techniques for the distributions in MPH*, of 

which we have a particular interest in the PDE method. In the next section an 

introduction will be given to these techniques including Laplace transforms and partial 

differential equations. 
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2.4 Computation techniques related to MPH* 

2.4.1 Laplace Stieltjes Transforms 

 
Consider a vector 1 2( , ,..., ) ~ *( , ; )kY Y Y Y MPH T Rα= . The conditional Laplace Stieltjes 

transforms are defined by 

 

1 2

1 1 2 2

( , ,..., )

(exp( ... ) | (0) ), 1

i k

k k

s s s

E s Y s Y s Y X i i m

φ

= − − − − = ≤ ≤
 

 

Therefore the Laplace transform of Y is given by  

 

1 2

1 1 2 2

1 2 1

1

( , ,..., )

(exp( ... ))

( , ,..., )

k

k k

m

i i k m

i

s s s

E s Y s Y s Y

s s s

φ

α φ α +
=

= − − − −

= +∑

 

 

The properties of the conditional Laplace transforms will be analyzed by introducing new 

random variables H : the time spent in state i.
 [4]

 

 

By the properties of conditional expectation and Markov process, what is obtained is 

1 2

1 1 2 2

1 1 2 2

, 1

1 2

1

1

11 1 2 2

( , ,..., )

(exp( ... ) | (0) )

(exp( ( ) ( ) ... ( ) ) | (0) )

[ ( ) ( , ,..., ) ( )]

[ ( ) ( ,
( ) ( ) ... ( )

i k

k k

k k

m
ij i m

j k

j i i
j ì

m
iji

j

ji k k i
j ì

s s s

E s Y s Y s Y X i

E s r i H s r i H s r i H X i

q q
s s s

q q

qq
s s

q s r i s r i s r i q

φ

φ

φ

+

=
≠

=
≠

= − − − − =

= − − − − =

⋅ +

= ⋅
+ + + +

∑

∑ , 1

2

1 2 , 11,

1 1 2 2

,..., ) ( )]

( , ,..., )

( ) ( ) ... ( )

i m

k

i

m

ij j k i mj j ì

i k k

q
s

q

q s s s q

q s r i s r i s r i

φ

+

+= ≠

+

+
=

+ + + +

∑

 

Keep in mind that , 1

1

m

i m ij

j

q q+
=

= −∑ , and the following equation can be finally derived: 

1 1 2 2 1 2

1 2 , 11

( ( ) ( ) ... ( )) ( , ,..., )

( , ,..., )

k k i k

m

ij j k i mj

s r i s r i s r i s s s

q s s s q

φ

φ +=

+ + +

= +∑
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This is a good result, since if written in the matrix form, it becomes 

 

( )D T Teφ− = −  

 

Where D is a diagonal matrix with 
1

( )
k

ii j j

j

D s r i
=

=∑ , T  is the sub intensity matrix of the 

CTMC, 1 2( , ,..., ) 'kφ φ φ φ= , e is the column of 1. 

 

Since T  is invertible, ( )D T−  is also invertible in a nonempty neighbourhood of 

1 2( , ,..., ) 0ks s s s= = . Therefore the equation ( )D T Teφ− = −  has a unique solution, that is 

1( )D T Teφ −= − − . 

 

 

However, it is difficult to invert a multidimensional Laplace transform to get the joint 

distribution. Nevertheless, this formula can be used to get the joint moments by taking 

proper derivatives. We will investigate the possibility of this computation.
 [4]

 

If we define 1 2

1 2 1 2( , ,..., ) ( ... | (0) ), 1kaa a

i k km a a a E Y Y Y X i i m= = ≤ ≤  

where ia are nonnegative integers for 1 i m≤ ≤  

Then using the result above, the following equations are satisfied: 

1 2 1 1 1

1 1

(0,0,...,0) 1, 1

( , ,..., ) ( ) ( ..., , 1, ,..., )

i

m m

ij j k j j i j j j k

j j

m i m

q m a a a a r i m a a a a a− +
= =

= ≤ ≤

= − −∑ ∑
 

One immediate outcome of these equations is the feasibility of computing the variance 

covariance matrix of 1 2( , ,..., )kY Y Y  

 

A more explicit expression of the joint moments can be derived in the following 

theorem.
[7] 

Theorem 2.4.1. The joint moments 
1

( ),i
n a

ii
E Y

=∏ where ,ia ∈� is given by 

                          
!

1

( )

1 1

( ) ( ) .
l

aa

i

l i

T r eσα −

= =

− ∆∑∏  

Here 
1

,
n

ii
a a

=
=∑ j

r is the jth column of R and 
l

σ is one of the !a  possible ordered 

permutations of the derivatives, with ( )
l

iσ being the value among 1…n at the ith position 

of that permutation. 
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2.4.2 Partial Differential Equations 

 
Consider a vector 1 2( , ,..., ) ~ *( , ; )

k
Y Y Y Y MPH T Rα= . Let 

i
F be the survival function of 

Y given the initial state is i, that is  

 

1 2 1 1 2 2( , ,..., ) ( , ,..., | (0) )

1

i k k k
F y y y P Y y Y y Y y X i

i m

= > > > =

≤ ≤
 

 

To obtain the important result of PDE, it is better to start with the derivation from the 

well-known properties of conditional probability. In the following work, we assume 

0
i

y >  for 1 .i k≤ ≤  

1 2 1 1 2 2

1 1 2 2

1

1 1 1

1

( , ,..., ) ( , ,..., | (0) )

( , ,..., | (0) , ( ) )

( ( ) | (0) )

( ( ) ,..., ( ) | (0) ) ( ( ) | (0) )

i k k k

m

k k

j

m

k k k

j

F y y y P Y y Y y Y y X i

P Y y Y y Y y X i X h j

P X h j X i

P Y y r i h Y y r i h X j P X h j X i

=

=

= > > > =

= > > > = =

⋅ = =

= > − > − = ⋅ = =

∑

∑

 

As 0h → , we know ( ( ) | (0) ) ( )
ij

P X h j X i q h o h= = = + , so finally we get  

1 2 1 1 2 2

1 1 1 1

1

( , ,..., ) ( , ,..., | (0) )

( ( ) ,..., ( ) )(1 ) ( ( ) ,..., ( ) ) ( )

i k k k

m

i k k i j k k ij

j
j ì

F y y y P Y y Y y Y y X i

F y r i h y r i h q h F y r i h y r i h q h o h
=
≠

= > > > =

= − − − + − − +∑  

After rearranging terms, we obtain 

 

 

1 1 1

1 1

1

( ,..., ) ( ( ) ,..., ( ) )

( ( ) ,..., ( ) ) ( )

i k i k k

m

ij j k k

j

F y y F y r i h y r i h

q F y r i h y r i h h o h
=

− − −

= − − +∑
 

 

By the definition of partial differential equations, by dividing both sides by h and 

letting 0h → , the following important result comes out: 

1 1

( )
k m

i
j ij j

j jj

F
r i q F

y= =

∂
=∑ ∑ ,1 i m≤ ≤  

 

Although the above derivation is based on the assumption that 0
i

y >  for 1 i k≤ ≤ , the 

final PDEs could be also valid for any case involving marginal survival functions. We 
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can not give a thorough proof like we did in the above derivation. In the following work, 

we simply assume the marginal survival functions also satisfy the above PDEs.  

 

The PDEs are very important in the following work. Some “derivative” result could also 

be generated with the help of this theorem. To see whether this PDE works for a real 

model, we will look at a simple example below. 

 

Example: Kibble model 

The model of the bivariate case is illustrated below. 

PP P

 
Fig 2: Markov process of the Kibble model 

 

For the purpose of easy illustration, it is considered that the Markov chain consists of 2 

transient states and one absorbing state. The time spent in each transient state (state 1 and 

2) is exponentially distributed with parameter λ . When it comes to state 2, the 

probability that the next jump is to absorbing state is P, and that the next jump is to state 

1 is (1-p). 

 

 

The sub-intensity matrix of this CTMC becomes   

 

T=
(1 )p

λ

λ

−
 −

λ

λ


− 

 

 

In this model the reward matrix is R=
1

0





      
0

1





. 

 

In order to obtain two conditional survival functions 1 1 2( , )F y y  and 2 1 2( , )F y y , we would 

use the properties of the mixture of Erlang distributions. 

Recall that if ( , ),X Erlang i λ∼ then  
1

0

( , , ) ( ) ( ) / !
i

x k

x

k

F x i P X x e x k
λλ λ

−
−

=

= > =∑  
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Under this condition, using the properties of 2-dimensional Erlang distributions we get 

the two conditional survival functions in probabilistic forms as follows: 

1 2

1 1 2 1 1 2 2

1 1
1 1 2

1 0 0

( , ) ( , | (0) 1)

( ) ( )
[ (1 ) ( )( )]

! !

k ki i
y yi

i k k

F y y p Y y Y y X

y y
p p e e

k k

λ λλ λ∞ − −
− −−

= = =

= > > =

= −∑ ∑ ∑
 

 

And   

 

1 2

1 2

2 1 2 1 1 2 2

2 1
1 1 2

2 0 0

2 1
1 1 2

2 0 0

( , ) ( , | (0) 2)

( ) ( )
0 [ (1 ) ( )( )

! !

( ) ( )
[ (1 ) ( )( )]

! !

k ki i
y yi

i k k

k ki i
y yi

i k k

F y y p Y y Y y X

y y
p p p e e

k k

y y
p p e e

k k

λ λ

λ λ

λ λ

λ λ

∞ − −
− −−

= = =

∞ − −
− −−

= = =

= > > =

= ⋅ + −

= −

∑ ∑ ∑

∑ ∑ ∑

 

We would like to see how these two survival functions work in the framework of PDEs.  

 

1 2

1 2

12 1 1
11 1 1 1 2

1

1 1 0 01

1 1
1 11 2 1

1 0 0 2

( ) ( )
(1) (1) [ (1 ) ( 1( 1)) ]

! ( 1)! !

( ) ( ) ( )
[ (1 ) ( )( )] [ (1 ) (

! ! !

k k k ki i
y yi

j

j i k kj

k k ki i
y yi i

i k k i k

F F y y y
r r p p e k e

y y k k k

y y y
p p e e p p

k k k

λ λ

λ λ

λ λ λ
λ

λ λ λ
λ λ

−∞ − −
− −−

= = = =

∞ − − ∞
− −− −

= = = = =

∂ ∂
= = − − + ⋅ ≥

∂ −

= − − + −

∑ ∑ ∑ ∑

∑ ∑ ∑ ∑ 1 2

2 1
2

0 0

2

1

1

( )
)( )

!

ki i
y y

k

j j

j

y
e e

k

q F

λ λλ− −
− −

=

=

=

∑ ∑

∑

 

 

1 2 2

1 2

2
2 2

2

1 2

12 1 1
1 1 2 2

2 0 0 1

2 2
2 1 2

2 0 0

1

(2) (2)

( ) ( )
[ (1 ) ( )( ( ) )]

! ! ( 1)!

( ) ( )
(1 ) [ (1 ) ( )( )]

! !

(
[ (1 ) (

j

j j

k k k ki i i
y y yi

i k k k

k ki i
y yi

i k k

i

F F
r r

y y

y y y
p p e e e

k k k

y y
p p p e e

k k

p p

λ λ λ

λ λ

λ λ λ
λ

λ λ
λ

λ

=

−∞ − − −
− − −−

= = = =

∞ − −
− −−

= = =

−

∂ ∂
=

∂ ∂

= − − +
−

= − −

− −

∑

∑ ∑ ∑ ∑

∑ ∑ ∑

1 2

1 2

1 2

2 1
1 2

2 0 0

1 1
1 1 2

1 0 0

2 1
1 1 2

2 0 0

2

2

1

) ( )
)( ]

! !

( ) ( )
(1 ) [ (1 ) ( )( )]

! !

( ) ( )
[ (1 ) ( )( ]

! !

k ki i
y y

i k k

k ki i
y yi

i k k

k ki i
y yi

i k k

j j

j

y y
e e

k k

y y
p p p e e

k k

y y
p p e e

k k

q F

λ λ

λ λ

λ λ

λ λ

λ λ
λ

λ λ
λ

∞ − −
− −

= = =

∞ − −
− −−

= = =

∞ − −
− −−

= = =

=

= − −

− −

=

∑ ∑ ∑

∑ ∑ ∑

∑ ∑ ∑

∑
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Therefore we get  
2 2

1
1

1 1

2 2
2

2

1 1

(1)

(2)

j j j

j jj

j j j

j jj

F
r q F

y

F
r q F

y

= =

= =

∂
=

∂

∂
=

∂

∑ ∑

∑ ∑
 

 

The result is consistent with the PDEs. This is a good example to show how the partial 

differential equations work for phase type distributions. We have more interest in how to 

use the PDEs to obtain the distribution or survival functions. To be more specific in this 

bivariate model, given the reward matrix R and the sub-intensity matrix T, is it possible 

for us to solve the above partial differential equations to get 1F  and 2F ? To see such 

possibilities, we will introduce the power series method in the next chapter. 
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Chapter 3 Power series method 
 

Power series are used to solve differential equations, including many important 

differential equations with nonconstant coefficients such as the Legendre and Bessel 

equations. 
[8]

 In many cases, the solutions of differential equations have power series 

expansions. It might be possible to find the power series solution (if it exists) directly 

from the differential equation. Therefore the power series method plays an important role 

in PDE studies. It is worth making efforts to see whether this method is useful in phase 

type distribution studies. 

As is known in mathematics, a power series (in one dimension) is an infinite series of the 

form: 

2 3

0 1 2

0

( ) ( ) ( ) ( ) ( ) ...n

n

n

f x a x c a a x c a x c x c
∞

=

= − = + − + − + − +∑  

Where 
n

a is called the coefficient of the nth term and c is a constant.  

Similarly, we could extend the power series from one dimension to multi-dimensions: 

1

1

1 2 ,..

,.. 0 1

( , ,... ) ( ) k

n

n

n
j

n j j k k

j j k

f x x x a x c
∞

= =

= −∑ ∏  

In our following work, it is assumed that 0
k

c = for k∀� . 

As explained in the previous chapter, if 1 2( , ,..., ) ~ *( , ; )
k

Y Y Y Y MPH T Rα= , then 

 

                           
1 1

( )
k m

i
j ij j

j jj

F
r i q F

y= =

∂
=∑ ∑ ,1 i m≤ ≤  

Where 
i

F is the survival function of Y given the initial state is i.  

Since  

                 1 2 1 1 2 2( , ,..., ) ( , ,..., | (0) )

1

i k k k
F y y y P Y y Y y Y y X i

i m

= > > > =

≤ ≤
, 

i
F is a k-variate function. With the theory of multivariate power series, it is interesting to 

find out whether there are some interrelations among power series coefficients and if any, 

how these relations could be used to find some solutions of the PDEs. 
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Let’s first consider the bivariate case. Suppose 1 2( , ) ~ *( , ; )Y Y Y MPH T Rα= , and 

throughout the thesis we use the following notation in the bivariate case: 

 

11 12

21 22

T T
T

T T

 
=  
 

 

By the analysis in the previous sections, there is 

 
2

1 1

( )
k

i
j ij j

j jj

F
r i q F

y= =

∂
=∑ ∑ ,1 2i≤ ≤  

 

By the expansion of power series, come the representations of 1F and 2F : 

1 1 2 1 2

0 0

2 1 2 1 2

0 0

( , )

( , )

i j

ij

i j

i j

ij

i j

F y y y y

F y y y y

α

β

∞ ∞

= =

∞ ∞

= =

=

=

∑∑

∑∑  

Here the analysis is going to be made step by step, the simplest reward system-identity 

matrix therefore being the first. After that a more “general” reward system will be taken 

to verify the results. 
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3.1 Using the identity matrix reward system 

 

As mentioned above, the first analysis is made with the simplest reward system  

                       
1 0

0 1
R

 
=  
 

 

After plugging the value of this matrix into  

2

1 1

( )
k

i
j ij j

j jj

F
r i q F

y= =

∂
=∑ ∑ ,1 2i≤ ≤  

 

It gives 

 

                       

1
11 1 12 2

1

2
21 1 22 2

2

(1)

(2)

F
T F T F

y

F
T F T F

y

∂
= +

∂
= +

 

 

Using the power series theory, the left hand side of (1) can be rewritten in more details as 

below: 

 

11
1 2 1 1 2

1 0 0 01

( 1)i j i j

ij i j

i j i j

F
i y y i y y

y
α α

∞ ∞ ∞ ∞
−

+
= = = =

∂
= ⋅ ⋅ = ⋅ + ⋅∑∑ ∑∑  

And the right hand side of (1) is  

11 1 12 2 11 1 2 12 1 2 11 12 1 2

0 0 0 0 0 0

( )i j i j i j

ij ij ij ij

i j i j i j

T F T F T y y T y y T T y yα β α β
∞ ∞ ∞ ∞ ∞ ∞

= = = = = =

+ = + = +∑∑ ∑∑ ∑∑  

Thus there comes an equation  

                         1 1 2 11 12 1 2

0 0 0 0

( 1) ( )i j i j

i j ij ij

i j i j

i y y T T y yα α β
∞ ∞ ∞ ∞

+
= = = =

⋅ + ⋅ = +∑∑ ∑∑  

Recall that if two power series are equal, then the coefficients corresponding to the term 

with the same power should be equal. Therefore we get 

                                 1, 11 12( 1) ( ) (3)
i j ij ij

i T Tα α β+ ⋅ + = +     
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Similarly (2) can be rewritten in more detail as below: 

 

12
1 2 , 1 1 2

0 1 0 02

21 1 22 2 21 1 2 22 1 2

0 0 0 0

21 22 1 2

0 0

( 1)

( )

i j i j

ij i j

i j i j

i j i j

ij ij

i j i j

i j

ij ij

i j

F
j y y j y y

y

T F T F T y y T y y

T T y y

β β

α β

α β

∞ ∞ ∞ ∞
−

+
= = = =

∞ ∞ ∞ ∞

= = = =

∞ ∞

= =

∂
= ⋅ ⋅ = ⋅ + ⋅

= + = +

= +

∑∑ ∑∑

∑∑ ∑∑

∑∑

 

    

That is , 1 21 22( 1) ( ) (4)
i j ij ij

j T Tβ α β+ ⋅ + = +                                      

 

(3) and (4) are therefore the two recursive equations which could be used to obtain all 

coefficients if only given some boundary values. 

In fact, (3) and (4) contain a lot of information about the PDE. No matter how 

complicated the representations of the power series coefficient might look, they all satisfy 

(3) and (4). A simple example is illustrated below. 

 

Example: Kibble model. 

PP P

 

Fig 3: Markov process of the Kibble model 

 

To see the function of (3) and (4), we still use the example of the Kibble model 

mentioned in the previous chapter. 

The simplest case of the sub-intensity matrix would be as follows: 

 

                                          T=
(1 )p

λ

λ

−
 −

λ

λ


− 

 

 

 

 



 27 

Recall that in this case the two conditional survival functions are as follows: 

1 2

1 1
1 1 2

1 1 2

1 0 0

( ) ( )
( , ) [ (1 ) ( )( )]

! !

k ki i
y yi

i k k

y y
F y y p p e e

k k

λ λλ λ∞ − −
− −−

= = =

= −∑ ∑ ∑  

1 2

2 1
1 1 2

2 1 2

2 0 0

( ) ( )
( , ) [ (1 ) ( )( )]

! !

k ki i
y yi

i k k

y y
F y y p p e e

k k

λ λλ λ∞ − −
− −−

= = =

= −∑ ∑ ∑  

 

The two conditional survival functions can be written in the form of power series: 

 

                                                  

1 1 2 1 2

0 0

2 1 2 1 2

0 0

( , )

( , )

i j

ij

i j

i j

ij

i j

F y y y y

F y y y y

α

β

∞ ∞

= =

∞ ∞

= =

=

=

∑∑

∑∑  

However,
ij

α and 
ij

β  are not directly obtainable by only looking at the original survival 

functions. Instead, we insert the power series expressions of the exponential functions, by 

this we get  

 
1 1

1 1 1 2 2
1 1 2

1 0 0 0 0

( ) ( ) ( ) ( )
( , ) [ (1 ) ( )( ) (5)

! ! ! !

k l k li i
i

i k l k l

y y y y
F y y p p

k l k l

λ λ λ λ∞ − ∞ − ∞
−

= = = = =

− −
= − ⋅ ⋅∑ ∑ ∑ ∑ ∑  

2 1
1 1 1 2 2

2 1 2

2 0 0 0 0

( ) ( ) ( ) ( )
( , ) [ (1 ) ( )( ) (6)

! ! ! !

k l k li i
i

i k l k l

y y y y
F y y p p

k l k l

λ λ λ λ∞ − ∞ − ∞
−

= = = = =

− −
= − ⋅ ⋅∑ ∑ ∑ ∑ ∑  

 

In order to get explicit representations of 
ij

α and 
ij

β , the following method has to be 

resorted to. 

 

First we work with
ij

α . 

For the ease of explanations, we will introduce notation G such that  
1 1

1 1 1 2 2
1 1 2

1 0 0 0 0

( ) ( ) ( ) ( )
( , ) [ (1 ) ( )( ) ,

! ! ! !

k l k li i
i

i k l k l

y y y y
G F y y p p

k l k l

λ λ λ λ∞ − ∞ − ∞
−

= = = = =

− −
= = − ⋅ ⋅∑ ∑ ∑ ∑ ∑ and then 

divide G into infinite sum such that 

                             
1

(7)i

i

G G
∞

=

=∑  

 

where  
1 1

1 1 1 2 2

0 0 0 0

( ) ( ) ( ) ( )
(1 ) ( )( ) (8)

! ! ! !

k l k li i
i

i

k l k l

y y y y
G p p

k l k l

λ λ λ λ− ∞ − ∞
−

= = = =

− −
= − ⋅ ⋅∑ ∑ ∑ ∑  
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It is clear that 1 1 2 2( , , | (0) 1)
i

G P Y y Y y U i X= > > = = , where the random variable U  is 

the times the CTMC repeats in state 1 and 2. 

 

Obviously 
i

G  contributes to , 0 ,
nm

n mα ≤ < ∞  

Let’s write ( , )
i

G n m as the term which contributes to the series coefficient
nm

α , e.g. 
1(0,0) (1 )i

i
G p p

−= −  

 

What interests us more is ( , 0)
nm

n mα >  

3 cases need discussing: 

  a) If  1i n− ≤  and 1i m− ≤  (1 ( , )i m n −≤ ≤ ) 

      
1 1

1

0 0

( ) ( )
( , ) (1 ) ( )( ) (9)

! ( )! ! ( )!

k n k k m ki i
i

i

k k

G n m p p
k n k k m k

λ λ λ λ− −− −
−

= =

− −
= − ⋅ ⋅

− −
∑ ∑  

   b) If  1i n− >  and 1i m− >  ( ( , ) 2i m n +≥ + ) 

        1

0 0

( ) ( )
( , ) (1 ) ( )( ) (10)

! ( )! ! ( )!

k n k k m kn m
i

i

k k

G n m p p
k n k k m k

λ λ λ λ− −
−

= =

− −
= − ⋅ ⋅

− −
∑ ∑  

   c) If ( , ) 1 ( , ) 1m n i m n− ++ ≤ ≤ + , then  

       
( , ) ( , )( , )1

1

0 0

( ) ( )
( , ) (1 ) ( )( ) (11)

! ( )! ! (( , ) )!

k m n k k m n km ni
i

i

k k

G n m p p
k n k k m n k

λ λ λ λ
+ −−− −−

−

−
= =

− −
= − ⋅ ⋅

− −
∑ ∑  

 

Recall the binomial formula: 

            
0

( ) ( )
! ( )!

k m km
m

k

a b
a b

k m k

−

=

+ = ⋅
−

∑  

Therefore 
0

( )
) ( ) 0

! ( )!

k m km
m

k k m k

λ λ
λ λ

−

=

−
⋅ = − =

−
∑  

                 
( , )( , )

( , )

0

( )
( ) 0

! (( , ) )!

k m n km n
m n

k k m n k

λ λ
λ λ

−−

−
−

−
=

−
⋅ = − =

−
∑  

 

This indicates that both (10) and (11) are equal to 0. 

 

Without loss of generality, we assume n>m, then by using (7), (9)-(11), we get  

 
1 1

1

1 1 0 0

( 1) ( 1)
( , ) (1 ) ( )( ) ( 0) (12)

! ( )! ! ( )!

n n k m m km i i
i

nm i

i i k k

G n m p p n m
k n k k m k

λ λ
α

− −∞ − −
−

= = = =

− −
= = − ⋅ ⋅ > >

− −
∑ ∑ ∑ ∑  

 

 

With the same method, now we work with 
ij

β  
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We write 
2 1

1 1 1 2 2
2 1 2

2 0 0 0 0

( ) ( ) ( ) ( )
( , ) [ (1 ) ( )( )

! ! ! !

k l k li i
i

i k l k l

y y y y
F y y p p H

k l k l

λ λ λ λ∞ − ∞ − ∞
−

= = = = =

− −
= − ⋅ ⋅ =∑ ∑ ∑ ∑ ∑ , and then 

divide H into an infinite sum such that  

                                            
2

(12)i

i

H H
∞

=

=∑  

where
2 1

1 1 1 2 2

0 0 0 0

( ) ( ) ( ) ( )
(1 ) ( )( ) (13)

! ! ! !

k l k li i
i

i

k l k l

y y y y
H p p

k l k l

λ λ λ λ− ∞ − ∞
−

= = = =

− −
= − ⋅ ⋅∑ ∑ ∑ ∑  

 

Obviously 
i

H contributes to , 0 ,
nm

n mβ ≤ < ∞  

Let’s write ( , )
i

H n m as the term which contributes to the series coefficient
nm

β  

 

What also interests us is ( , 0)
nm

n mβ >  

 

Similarly 4 cases need discussing: 

 

            a) If  2i n− ≤  and 1i m− ≤  ( 2 ( 1, 2)i m n −≤ ≤ + + ), then  

 

               
2 1

1

0 0

( ) ( )
( , ) (1 ) ( )( ) (14)

! ( )! ! ( )!

k n k k m ki i
i

i

k k

H n m p p
k n k k m k

λ λ λ λ− −− −
−

= =

− −
= − ⋅ ⋅

− −
∑ ∑  

             b) If  2i n− >  and 1i m− >  ( ( 1, 2) 1i m n +≥ + + + ) then 

                 1

0 0

( ) ( )
( , ) (1 ) ( )( ) (15)

! ( )! ! ( )!

k n k k m kn m
i

i

k k

H n m p p
k n k k m k

λ λ λ λ− −
−

= =

− −
= − ⋅ ⋅

− −
∑ ∑  

             c) If 2i n− ≤  and 1i m− >  then 

                  

                  
2

1

0 0

( ) ( )
( , ) (1 ) ( )( ) (16)

! ( )! ! ( )!

k n k k m ki m
i

i

k k

H n m p p
k n k k m k

λ λ λ λ− −−
−

= =

− −
= − ⋅ ⋅

− −
∑ ∑  

d) If 2i n− >  and 1i m− ≤  then 

                  
1

1

0 0

( ) ( )
( , ) (1 ) ( )( ) (17)

! ( )! ! ( )!

k n k k m kn i
i

i

k k

H n m p p
k n k k m k

λ λ λ λ− −−
−

= =

− −
= − ⋅ ⋅

− −
∑ ∑  

 

By the binomial formula, we realize that equations (15)-(17) are equal to 0. 

Without loss of generality, assume n>m, then by using (12), (14)-(17), what is obtained is  

2 1
1

2 2 0 0

( ) ( )
( , ) (1 ) ( )( ) ( 0) (18)

! ( )! ! ( )!

k n k k m km i i
i

nm i

i i k k

H n m p p n m
k n k k m k

λ λ λ λ
β

− −∞ − −
−

= = = =

− −
= = − ⋅ ⋅ > >

− −
∑ ∑ ∑ ∑  

 

 

Even though this model is simple, the representations of 
nm

α and 
nm

β are quite 

complicated. Therefore out come the advantages of the recursive equations (3)-(4), since 
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it is more difficult to get a concise representation of power series coefficients when the 

model becomes more complicated. Nevertheless, (3)-(4) are always satisfied, so they can 

be used to retrieve coefficients with some known boundary values. 

We have now found explicit expressions for 
nm

α and 
nm

β  in the model and will continue 

to verify that these indeed satisfy (3)-(4). Without loss of generality, again we assume 

n>m. 

 

 

Proof of 1, 11 12( 1) ( )
n m nm nm

n T Tα α β+ ⋅ + = +  in the Kibble model  

 

In this model, 11T λ= −  and 12T λ=  

Using (12), the task is to see whether 

 
1 11 1

1

1 0 0

( 1) ( 1)
( 1, ) (1 ) ( )( )

! ( 1 )! ! ( )!

n n k m m km i i
i

i k k

n m p p
k n k k m k

λ λ
α

+ + − −− −
−

= = =

− −
+ = − ⋅ ⋅

+ − −
∑ ∑ ∑  

 

is equal to 

 

1 1
1

1 0 0

2 1
1

2 0 0

1 ( 1) ( 1)
[ (1 ) ( )( )

1 ! ( )! ! ( )!

( ) ( )
(1 ) ( )( )]

! ( )! ! ( )!

n n k m m km i i
i

i k k

k n k k m km i i
i

i k k

p p
n k n k k m k

p p
k n k k m k

λ λ
λ

λ λ λ λ
λ

− −− −
−

= = =

− −− −
−

= = =

− −
− ⋅ − ⋅ ⋅

+ − −

− −
+ ⋅ − ⋅ ⋅

− −

∑ ∑ ∑

∑ ∑ ∑
 

 

Which leave us to prove  
11 1

1

1 0 0

1 1
1

1 0 0

2 1
1

2 0 0

( 1) ( 1)
(1 ) ( )( )

! ( 1 )! ! ( )!

1 ( 1) ( 1)
[ (1 ) ( )( )

1 ! ( )! ! ( )!

( 1) ( 1)
(1 ) ( )( )]

! ( )! ( )!

n k m km i i
i

i k k

n k m km i i
i

i k k

n k m ki i
i

i k k

p p
k n k k m k

p p
n k n k k m k

p p
k n k m k

+ − −− −
−

= = =

− −− −
−

= = =

− −− −
−

= = =

− −
−

⋅ + − ⋅ −

− −
= − −

+ ⋅ − ⋅ −

− −
+ −

⋅ − −

∑ ∑ ∑

∑ ∑ ∑

∑ ∑
m

∑

                    (19) 

 

To prove (19), we have to divide the sum into two parts: i=1 and i>1. 

When i=1, the part on the left side is 

                              
1 0 0( 1) ( 1)

( )( )
0! ( 1 0)! 0! ( 0)!

n m

p
n m

+ − −− −

⋅ + − ⋅ −
 

             and the part of the right side is  

                            
0 01 ( 1) ( 1)

[ ( )( )]
1 0! ( 0)! 0! ( 0)!

n m

p
n n m

− −− −
−

+ ⋅ − ⋅ −
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Obviously 
1 0 0 0 0( 1) ( 1) 1 ( 1) ( 1)

( )( ) [ ( )( )]
0! ( 1 0)! 0! ( 0)! 1 0! ( 0)! 0! ( 0)!

n m n m

p p
n m n n m

+ − − − −− − − −
= −

⋅ + − ⋅ − + ⋅ − ⋅ −
 

 

When i>1, the part of the left side is 
11 1

1

2 0 0

( 1) ( 1)
(1 ) ( )( )

! ( 1 )! ! ( )!

n k m km i i
i

i k k

p p
k n k k m k

+ − −− −
−

= = =

− −
−

⋅ + − ⋅ −
∑ ∑ ∑  

                and the part of the right side is                 

                                                

1 1
1

2 0 0

2 1
1

2 0 0

1 ( 1) ( 1)
[ (1 ) ( )( )

1 ! ( )! ! ( )!

( 1) ( 1)
(1 ) ( )( )]

! ( )! ( )!

n k m km i i
i

i k k

n k m km i i
i

i k k

p p
n k n k k m k

p p
k n k m k

− −− −
−

= = =

− −− −
−

= = =

− −
− −

+ ⋅ − ⋅ −

− −
+ −

⋅ − −

∑ ∑ ∑

∑ ∑ ∑
 

 

 

  

After rearranging terms, this is to prove  

 
11 1

1

2 0 0

2 1
1

2 0

( 1) ( 1)
(1 ) ( )( )

! ( 1 )! ! ( )!

1 ( 1) ( 1)
(1 ) ( )( )

1 ( 1)! ( 1)! ! ( )!

n k m km i i
i

i k k

n i m km i
i

i k

p p
k n k k m k

p p
n i n i k m k

+ − −− −
−

= = =

− + −−
−

= =

− −
−

⋅ + − ⋅ −

− −
= −

+ − ⋅ − + ⋅ −

∑ ∑ ∑

∑ ∑
 

 

Which leaves us to prove 
1 21

0

( 1) ( 1)
(20)

! ( 1 )! ( 1)! ( 1)! ( 1)

n k n ii

k k n k i n i n

+ − − +−

=

− −
=

⋅ + − − ⋅ − + ⋅ +
∑  

 

We will prove equation (20) by induction. 

 

When i=2, the left side of (20) is 
1 0 1 1( 1) ( 1)

0! ( 1 0)! 1! ( 1 1)!

n n

n n

+ − + −− −
+

⋅ + − ⋅ + −
 

                 and the right side of (20) is 
2 21 ( 1)

1 (2 1)! ( 2 1)!

n

n n

− +−
⋅

+ − ⋅ − +
 

Obviously  
1 0 1 1 2 2( 1) ( 1) 1 ( 1)

0! ( 1 0)! 1! ( 1 1)! 1 (2 1)! ( 2 1)!

n n n

n n n n

+ − + − − +− − −
+ = ⋅

⋅ + − ⋅ + − + − ⋅ − +
 

So when i=2, (20) is satisfied. 

 

Suppose 
1 21

0

( 1) ( 1)

! ( 1 )! ( 1)! ( 1)! ( 1)

n k n ii

k k n k i n i n

+ − − +−

=

− −
=

⋅ + − − ⋅ − + ⋅ +
∑ when 2i ≥  
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Then  

 
1 1 11

0 0

2 1 2 1

( 1) ( 1) ( 1)

! ( 1 )! ! ( 1 )! ! ( 1 )!

( 1) ( 1) ( 1) ( 1) ( 1)

( 1)! ( 1)! ( 1) ! ( 1 )! ! ( 1)! ( 1) ! ( 1)! ( 1)

( 1 ) ( 1

n k n k n ii i

k k

n i n i n i n i

k n k k n k i n i

i n

i n i n i n i i n i n i n i n

n i

+ − + − + −−

= =

− + + − − + + −

− − −
= +

⋅ + − ⋅ + − ⋅ + −

− − ⋅ − + ⋅ −
= + = +

− ⋅ − + ⋅ + ⋅ + − ⋅ − + ⋅ + ⋅ − + ⋅ +

+ − ⋅ −
=

∑ ∑

1 1) ( 1)

! ( 1)! ( 1) ( 1) ! ( )!

n i n i

i n i n n i n i

+ − + −−
=

⋅ − + ⋅ + + ⋅ ⋅ −

 

 

This is the end of the induction proof. 

Thus 1, 11 12( 1) ( )
n m nm nm

n T Tα α β+ ⋅ + = +  

 

Likewise, there is also the need to prove 

, 1 21 22( 1) ( ) (1 )
n m nm nm nm nm

m T T pβ α β λα λβ+ ⋅ + = + = − −
 

Once again assume n>m, and by the result in (18), this is going to test whether 

 
11 2 1

1

, 1

2 0 0

( ) ( )
(1 ) ( )( )

! ( )! ! ( 1 )!

k n k k m km i i
i

n m

i k k

p p
k n k k m k

λ λ λ λ
β

− + −+ − −
−

+
= = =

− −
= − ⋅ ⋅

− + −
∑ ∑ ∑  

equal to  

1 1
1

1 0 0

2 1
1

2 0 0

1 ( 1) ( 1)
[(1 ) (1 ) ( )( )

1 ! ( )! ! ( )!

( ) ( )
(1 ) ( )( )]

! ( )! ! ( )!

n n k m m km i i
i

i k k

k n k k m km i i
i

i k k

p p p
m k n k k m k

p p
k n k k m k

λ λ
λ

λ λ λ λ
λ

− −− −
−

= = =

− −− −
−

= = =

− −
− − ⋅ ⋅

+ − −

− −
− − ⋅ ⋅

− −

∑ ∑ ∑

∑ ∑ ∑
 

 

This indicates testing whether  

11 2 1
1

2 0 0

1 ( 1) 1 ( 1)
(1 ) ( )( )

! ( )! ! ( 1 )!

n k m km i i
i

i k k

p p
k n k k m k

− + −+ − −
−

= = =

− −
− ⋅ ⋅

− + −
∑ ∑ ∑  

 

equal to  

1 1

1 0 0

2 1
1

2 0 0

1 1 ( 1) 1 ( 1)
[ (1 ) ( )( )

1 ! ( )! ! ( )!

1 ( 1) 1 ( 1)
(1 ) ( )( )]

! ( )! ! ( )!

n k m km i i
i

i k k

n k m km i i
i

i k k

p p
m k n k k m k

p p
k n k k m k

− −− −

= = =

− −− −
−

= = =

− −
− ⋅ ⋅

+ − −

− −
− − ⋅ ⋅

− −

∑ ∑ ∑

∑ ∑ ∑
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This is equal to prove  

11

1 0 0

1 1

1 0 0

1 1

1 0 0

1 ( 1) 1 ( 1)
(1 ) ( )( )

! ( )! ! ( 1 )!

1 1 ( 1) 1 ( 1)
[ (1 ) ( )( )

1 ! ( )! ! ( )!

1 ( 1) 1 ( 1)
(1 ) ( )( )

! ( )! ! ( )!

n k m km i i
i

i k k

n k m km i i
i

i k k

n k m km i i
i

i k k

p p
k n k k m k

p p
m k n k k m k

p p
k n k k m k

− + −−

= = =

− −− −

= = =

− −− −

= = =

− −
− ⋅ ⋅

− + −

− −
= − ⋅ ⋅

+ − −

− −
− − ⋅ ⋅

− −

∑ ∑ ∑

∑ ∑ ∑

∑ ∑ ]∑

 

 

which leaves us to prove  

1 1

0

1 ( 1) 1 ( 1)

! ( 1 )! 1 ! ( )!

m k m ii

k k m k m i m i

+ − − +

=

− −
⋅ = ⋅

+ − + ⋅ −
∑                                        (21) 

 

Obviously when i=1 the (21) is satisfied. 

With the same method of induction, assume 
1 1

0

1 ( 1) 1 ( 1)

! ( 1 )! 1 ! ( )!

m k m ii

k k m k m i m i

+ − − +

=

− −
⋅ = ⋅

+ − + ⋅ −
∑  

 
1 11

0

1

1 ( 1) 1 ( 1) ( 1)

! ( 1 )! 1 ! ( )! ( 1)! ( )!

( 1) ( 1) ( 1) ( 1)

( 1) ( 1)!( )!

( ) ( 1) ( 1)

( 1) ( 1)!( )! ( 1) ( 1)!( 1)!

m k m i m ii

k

m i m i

m i m i

k m k m i m i i m i

i m

m i m i

m i

m i m i m i m i

+ − − + −+

=

− + −

− −

− − −
→ ⋅ = ⋅ +

+ − + ⋅ − + ⋅ −

+ ⋅ − + + ⋅ −
=

+ ⋅ + −

− ⋅ − −
= =

+ ⋅ + − + ⋅ + − −

∑

 

 

In sum, equation (21) is valid. 

 

All of the above is based on the assumption that n>m>0, the proof is exactly the same if 

the case is tested when 0 n m< ≤ . 

 

It is also necessary to highlight the results in this section since they are very important: 

the following recursive power series equations are valid in the simple Kibble model. 

1, 11 12( 1) ( )
n m nm nm

n T Tα α β+ ⋅ + = +
 

, 1 21 22( 1) ( )
n m nm nm

m T Tβ α β+ ⋅ + = +
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Typically, when n>m, by using the induction method, the following representations of 

nm
α

and nm
β

 can be obtained: 
1 1

1

1 1 0 0

( 1) ( 1)
( , ) (1 ) ( )( ) ( 0) (12)

! ( )! ! ( )!

n n k m m km i i
i

nm i

i i k k

G n m p p n m
k n k k m k

λ λ
α

− −∞ − −
−

= = = =

− −
= = − ⋅ ⋅ > >

− −
∑ ∑ ∑ ∑  

2 1
1

2 2 0 0

( ) ( )
( , ) (1 ) ( )( ) ( 0) (18)

! ( )! ! ( )!

k n k k m km i i
i

nm i

i i k k

H n m p p n m
k n k k m k

λ λ λ λ
β

− −∞ − −
−

= = = =

− −
= = − ⋅ ⋅ > >

− −
∑ ∑ ∑ ∑  

 

If other reward system other than identity matrix is chosen, (3) and (4) have to be 

modified. Another example is taken below to show the functionality of other recursive 

equations. 
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3.2 Using a more complicated reward system 

 

Recall that 
1 1

( )
k m

i
j ij j

j jj

F
r i q F

y= =

∂
=∑ ∑  

 

The PDEs for the general bivariate case can be written as: 

 

1 1
11 21 11 1 12 2

1 2

2 2
12 22 21 1 22 2

1 2

(22)

(23)

F F
R R T F T F

y y

F F
R R T F T F

y y

∂ ∂
+ = +

∂ ∂
+ = +

 

 

Similarly with the method of deriving (3)-(4), the following power recursive equations is 

obtained: 

 

11 1, 21 , 1 11 12

21 1, 22 , 1 21 22

( 1) ( 1) (24)

( 1) ( 1) (25)

i j i j ij ij

i j i j ij ij

R i R j T T

R i R j T T

α α α β

β β α β

+ +

+ +

+ + + = +

+ + + = +
 

 

Thus (24) and (25) contain the information of (22) and (23) in our model, and these two 

concise equations could be expected to retrieve power series coefficients with given 

boundary values. 

As what has been done in the previous section, now is the turn to see how (24)-(25) work 

in a concrete example. 

 

Example: Erlang (2) distribution 

 

Consider 1 2( , ) ~ *( , ; )Y Y Y MPH T Rα= , with  

              T=
1

0

−



  
1

1


− 

 and R=

2

3

1

3







      

1

3

2

3







 

 

Y can be represented in another way: 



 36 

               
1

2

2 / 3

1/ 3

Y
Y

Y

  
= =  

 
 

1

2

1/ 3

2 / 3

Z

Z

 
 
  

 

 

Where 1 2( , )Z Z
 are independent exp(1) distributed random variables. 

The two conditional survival functions of Y will be derived. 

 

For the purpose of getting 1 1 2 1 1 2 2( , ) ( , | (0) 1)F y y p Y y Y y X= > > = , 3 cases have to be 

discussed: 

 

1. If 1 22y y≥ , then  

             

3
12

3
12

2 1
1 1 2 1 1 1 2 1 2 1 13 3

1 1 1 1 1 1
0

3
1 1 1 12 0

3 3 3
1 1 1 1 12 2 2

( , ) ( ) ( ) ( 3 2 )

1 (2 3 ) exp(2 3 )exp( )

exp( ) exp( 3 ) exp( )

exp( ) exp( 3 )(exp( ) 1) 2exp( ) exp( 3 )

y

y

F y y p Y y p Z Z y p Z y Z

p Z y Z y Z dZ

y y Z dZ

y y y y y

= > = + > = > −

= ⋅ > + − −

= − + −

= − + − − − = − − −

∫

∫
 

 

2. If 1
1 22

y y≤ , then 3
1 1 2 2 2 2 22
( , ) ( ) 2exp( ) exp( 3 )F y y p Y y y y= > = − − −  

3. If 1
2 1 22

2y y y< < , then  

   

1 2

2

1
1 2 2 2

1 1 2

2 2 2

2

1 2 1 2

( , ) ( , )

3exp( ) 3exp( )

3exp( ) exp( 3 ) exp( 3 )

y y

y u u

y y y u

F y y f u v dudv

u v dudv u v dudv

y y y y

∝ ∝

∞

=

= − − + − −

= − − − − − −

∫ ∫

∫ ∫ ∫ ∫  

 

It is much easier to get  

3
2 1 2 1 1 2 2 1 22
( , ) ( , | (0) 2) exp( max(3 , ))F y y p Y y Y y X y y= > > = = −  

 

Likewise, we will see how the survival functions work in the PDE framework in (24) and 

(25). To do this, 3 cases have to be discussed: 

 

1.  1
1 22

y y≤  

    
3

22 23
1 1 2 2 22

0 0

( ) ( 3 )
( , ) 2exp( ) exp( 3 ) 2

! !

k k

k k

y y
F y y y y

k k

∝ ∝

= =

− −
= − − − = −∑ ∑  

    
3

223
2 1 2 22

0

( )
( , ) exp( )

!

k

k

y
F y y y

k

∝

=

−
= − =∑  
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     In this case,
3
2

0

( ) ( 3)
2

! !

m m

m
m m

α
− −

= − ,
3
2

0

( )

!

m

m
m

β
−

= , and all other coefficients are 0. 

    

11 1, 21 , 1 1, , 1

1 13 3 3
2 2 22 1

3 3

11 12

2 1
( 1) ( 1) ( 1) ( 1)

3 3

( ) ( ) ( )( 3) ( 3)
0 [2 ]( 1) 2

( 1)! ( 1)! ! ! !

i j i j i j i j

j j jj j

ij ij

R i R j i j

j
j j j j j

T T

α α α α

α β

+ + + +

+ +

+ + + = + + +

− − −− −
= ⋅ + − + = − + +

+ +

= +

 

      

21 1, 22 , 1 1, , 1

13 3
2 21 2

3 3

21 22

1 2
( 1) ( 1) ( 1) ( 1)

3 3

( ) ( )
0 ( 1) 0

( 1)! !

i j i j i j i j

j j

ij ij

R i R j i j

j
j j

T T

β β β β

α β

+ + + +

+

+ + + = + + +

− −
= ⋅ + + = −

+

= +

 

 

Therefore (24)-(25) are satisfied in this case. 

 

 

     2.  1 22y y≥  

         
3

12 13
1 1 2 1 12

0 0

( ) ( 3 )
( , ) 2exp( ) exp( 3 ) 2

! !

k k

k k

y y
F y y y y

k k

∝ ∝

= =

− −
= − − − = −∑ ∑  

         1
2 1 2 1

0

( 3 )
( , ) exp( 3 )

!

k

k

y
F y y y

k

∝

=

−
= − =∑  

       In this case, 
3
2

0

( ) ( 3)
2

! !

m m

m
m m

α
− −

= −    0

( 3)

!

m

m
m

β
−

=  

       

11 1, 21 , 1 1, , 1

1 13 3
2 22 1

3 3

11 12

2 1
( 1) ( 1) ( 1) ( 1)

3 3

( ) ( )( 3) ( 3) ( 3)
[2 ]( 1) 0 [2 ]

( 1)! ( 1)! ! ! !

i j i j i j i j

i ii i i

ij ij

R i R j i j

i
i i i i i

T T

α α α α

α β

+ + + +

+ +

+ + + = + + +

− −− − −
= − + + ⋅ = − − +

+ +

= +

 

       

21 1, 22 , 1 1, , 1

1

1 2
3 3

21 22

1 2
( 1) ( 1) ( 1) ( 1)

3 3

( 3) ( 3)
( 1) 0 0

( 1)! !

i j i j i j i j

i i

ij ij

R i R j i j

i
i i

T T

β β β β

α β

+ + + +

+

+ + + = + + +

− −
= + + ⋅ = −

+

= +

 

       Therefore (24)-(25) are satisfied in this case. 
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         3.  1
2 1 22

2y y y< <  

         

1 1 2 1 2 1 2

1 2 1 2

0 0 0 0

( , ) 3exp( ) exp( 3 ) exp( 3 )

( ) ( ) ( 3 ) ( 3 )
3

! ! ! !

k k k k

k k k k

F y y y y y y

y y y y

k k k k

∝ ∝ ∝ ∝

= = = =

= − − − − − −

− − − −
= − −∑ ∑ ∑ ∑

 

        1
2 1 2 1

0

( 3 )
( , ) exp( 3 )

!

k

k

y
F y y y

k

∝

=

−
= − =∑  

       This case is more complicated so the following 3 subcategories need to be considered: 

           a) If m>0, n>0, 
( 1)

3
! !

m n

mn
m n

α
+−

=    0mnβ =  

              

11 1, 21 , 1 1, , 1

1 1

2 1
3 3

11 12

2 1
( 1) ( 1) ( 1) ( 1)

3 3

( 1) ( 1) ( 1)
3 ( 1) 3 ( 1) 3 0

( 1)! ! !( 1)! ! !

i j i j i j i j

i j i j i j

ij ij

R i R j i j

i j
i j i j i j

T T

α α α α

α β

+ + + +

+ + + + +

+ + + = + + +

− − −
= ⋅ + + ⋅ + = − +

+ +

= +

 

               
21 1, 22 , 1 1, , 1

21 22

1 2
( 1) ( 1) ( 1) ( 1)

3 3

0 0

i j i j i j i j

ij ij

R i R j i j

T T

β β β β

α β

+ + + ++ + + = + + +

= + = +

 

 

                  Therefore (24)-(25) are satisfied in this case. 

 

            b) If m>0, n=0, 0

( 1) ( 3)
3

! !

m m

m
m m

α
− −

= − , 0

( 3)

!

m

m
m

β
−

=  

                

11 1,0 21 ,0 1 1,0 ,0 1

1 1 1

2 1
3 3

11 0 12 0

2 1
( 1) (0 1) ( 1) (0 1)

3 3

( 1) ( 3) ( 1) ( 1) ( 3) ( 3)
(3 )( 1) 3 (0 1) (3 )

( 1)! ( 1)! !1! ! ! !

i i i i

i i i i i i

i i

R i R i

i
i i i i i i

T T

α α α α

α β

+ + + +

+ + +

+ + + = + + +

− − − − − −
= ⋅ − + + ⋅ + = − − +

+ +

= +

 

                 

21 1,0 22 ,0 1 1,0 ,0 1

1

21 0 22 0

1 2
( 1) (0 1) ( 1) (0 1)

3 3

1 ( 3) 2
( 1) 0

3 ( 1)! 3

( 3)
0

!

i i i i

i

i

i i

R i R i

i
i

T T
i

β β β β

α β

+ + + +

+

+ + + = + + +

−
= + + ⋅

+

−
= − = +

 

                  

                  Therefore (24)-(25) are satisfied in this case. 
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            c) If m=0, n>0, 
( 1) ( 3)

(0, ) 3
! !

n n

n
n n

α
− −

= − ,   (0, ) 0nβ =  

                    In the case that i>0,j=0 

                 

11 1, 21 , 1 1, , 1

1 1 0 1

2 1
3 3

11 12

2 1
( 1) ( 1) ( 1) ( 1)

3 3

( 1) ( 3) ( 1) ( 1) ( 3) ( 3)
[3 ]( 1) 3 (0 1) (3 )

( 1)! ( 1)! !(0 1)! ! ! !

i j i j i j i j

i i i i i i

ij ij

R i R j i j

i
i i i i i i

T T

α α α α

α β

+ + + +

+ + + +

+ + + = + + +

− − − − − −
= ⋅ − + + ⋅ + = − − +

+ + +

= +

 

                  

21 1, 22 , 1 1, , 1

1

1
21 223

1 2
( 1) ( 1) ( 1) ( 1)

3 3

( 3) ( 3)
( 1) 0 0

( 1)! !

i j i j i j i j

i i

ij ij

R i R j i j

i T T
i i

β β β β

α β

+ + + +

+

+ + + = + + +

− −
= + + = − = +

+

 

 

                     In the case that i=0, j>0 

                          

11 1, 21 , 1 1, , 1

1 1 1

2 1
3 3

11 12

2 1
( 1) ( 1) ( 1) ( 1)

3 3

( 1) ( 1) ( 3) ( 1) ( 3)
3 [3 ]( 1) [3 ] 0

! ( 1)! ( 1)! ! !

i j i j i j i j

j j j j j

ij ij

R i R j i j

j
j j j j j

T T

α α α α

α β

+ + + +

+ + +

+ + + = + + +

− − − − −
= ⋅ + ⋅ − + = − − +

+ +

= +

 

                          
21 1, 22 , 1 1, , 1

21 22

1 2
( 1) ( 1) ( 1) ( 1)

3 3

0 0

i j i j i j i j

ij ij

R i R j i j

T T

β β β β

α β

+ + + ++ + + = + + +

= + = +

 

                

 

                    In the case that i=0, j=0 

                            

11 1, 21 , 1 1, , 1

2 1
3 3

11 12

2 1
( 1) ( 1) ( 1) ( 1)

3 3

( 1) ( 3) ( 1) ( 3)
[3 ] [3 ] 1 1 1 1

1! 1! 1! 1!

i j i j i j i j

ij ij

R i R j i j

T T

α α α α

α β

+ + + ++ + + = + + +

− − − −
= ⋅ − + − = − ⋅ + ⋅

= +

 

                             
21 1, 22 , 1 1, , 1

1
21 223

1 2
( 1) ( 1) ( 1) ( 1)

3 3

( 3) 0 0 1 1

i j i j i j i j

ij ij

R i R j i j

T T

β β β β

α β

+ + + ++ + + = + + +

= ⋅ − + = − ⋅ = +

 

                 In sum, (24)-(25) are satisfied in this case.    

 

In conclusion, the power series recursive equations (24)-(25) are also valid in our updated 

“more general” bivariate case. The result is very promising since it indicates that the 

power series recursive equations have potential applications in our PDE study. It will be 
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an amazing result if the original distribution function can be derived given the power 

series coefficients.  

 

3.4 Summary 

In this chapter we have introduced power series method to take a deeper insight into the 

application of partial differential equation on studying phase type distributions. For ease 

of illustration, we are only concerned about two dimensional cases. The motivation of 

using power series is that we can obtain recursive equations of coefficients, thus they 

might help us to derive all coefficients if given only boundary coefficients. After 

obtaining these recursive equations, we test them in some concrete examples. The result 

is promising in that no matter how complicated the representations of power series 

coefficients might look, they all fulfil the recursive equations. Therefore on the other 

hand, if it is difficult to get a closed form of distribution or survival functions while 

relatively easy to get the marginal distributions, we have the opportunity to obtain the 

approximate values of distribution functions given the boundary power series coefficients. 

Thus it is very interesting to have some numerical test to see whether the idea works. 
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Chapter 4 Power series numerical test 
 

 

So far we have seen that the power series recursive equations work in different examples. 

We would like to see if only given finite power series coefficients due to limited resource, 

whether we are able to obtain some approximate result of the true distribution/survival 

functions. Typically, we know all marginals of an MPH distribution are MPH 

distributions
 [6]

. Therefore it is relatively easy to obtain all marginal distributions/survival 

functions. Accordingly, we could obtain all boundary values of power series coefficients 

( 0 0 0 0, , , ( , 0)n m n m m nα α β β ≥ ) easily.  

Before we take the analysis of the possibility of approximation, we will first see whether 

it is possible to obtain all coefficients given the boundary values. 

 

4.1 Using recursive equations to obtain all power series 
coefficients 

 

As before we know the power series representation of two conditional distributions in the 

bivariate case: 

 

1 1 2 1 2

0 0

2 1 2 1 2

0 0

( , )

( , )

i j

ij

i j

i j

ij

i j

F y y y y

F y y y y

α

β

∞ ∞

= =

∞ ∞

= =

=

=

∑∑

∑∑  

And also the Kulkarni PDE 

 

1 1

( )
k m

i
j ij j

j jj

F
r i q F

y= =

∂
=∑ ∑  

 

This leads to  
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1
11 1 12 2

1

2
21 1 22 2

2

(1)

(2)

F
T F T F

y

F
T F T F

y

∂
= +

∂
= +

 

Where we have assumed the reward matrix is the identity matrix. 

 

As explained in previous chapters, we know (1) and (2) could give us some recursive 

equations in power series. In our following work, we assume the boundary power series 

coefficients are known. At this point, we have interest on whether we could obtain values 

of all coefficients given these boundary values. We will first illustrate this possibility by 

looking at the easiest Kibble model. 

 

We assume the Kibble model has the following sub-intensity matrix  

 

1 1

1
T

q

− 
=  − 

 

 

From (1) and (2) we get the recursive equations: 

1,

, 1

( 1) ( ) (26)

( 1) ( ) (27)

i j ij ij

i j ij ij

i

j q

α α β

β α β

+

+

⋅ + = − +

⋅ + = −
  

 

Specifically, 

1 0 0

1 0 0

1 (28)

1 (29)

n n n

m m mq

α α β

β α β

⋅ = − +

⋅ = −
 

 

So we can get all values of 1 1,
n m

α β  (n, m>0) with the boundary values. 

Moreover, 1 1,1 1,1 ( 0) (30)
m m m

m mα α β− −⋅ = − + >  

 

On the right-hand side of (30),  1,1m
β −  can be derived from (29). Therefore with the 

boundary value 01α we can get 11α . Plugging 11α  into (30) we can also get 21α . This 

indicates that with 1,1m
α − we can always get 1m

α . In sum, using (29) and (30) we can 

obtain values of all 1m
α  (m>0). 

 

Furthermore, 1 1, 1 1, 1 ( 0) (31)
n n n

n q nβ α β− −⋅ = − >  

On the right-hand side of (31), 1, 1n
α −  can be derived from (28). With the boundary value 

10β we can get 11β . Plugging 11β  into (31) we get 12β . Similarly, we can get all values of 

1n
β  (n>0).  
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Up to now, we have obtained values of all 0 0 0 0 1 1 1 1, , , , , , , ( , 0)n m n m n m n m m nα α β β α α β β ≥  

By induction method, we know from (26) and (27) that, given all 1, 1,,m n m nα β− − we can get 

all mnα ; and given all , 1 , 1,m n m nα β− −  we can get all mnβ . In conclusion, with the given 

boundary values, we can get values of all coefficients , ( , 0)mn mn m nα β ≥  

 

 

Now we want to investigate the general case. Suppose 1 2( , ) ~ *( , ; )Y Y Y MPH T Rα= . 

According to Kulkarni PDE, we get 

1 1
11 21 11 1 12 2

1 2

2 2
12 22 21 1 22 2

1 2

(22)

(23)

F F
R R T F T F

y y

F F
R R T F T F

y y

∂ ∂
+ = +

∂ ∂
+ = +

 

 

Plugging (22) and (23) into power series, we get 

 

11 1, 21 , 1 11 12

12 1, 22 , 1 21 22

( 1) ( 1) (24)

( 1) ( 1) (25)

i j i j ij ij

i j i j ij ij

R i R j T T

R i R j T T

α α α β

β β α β

+ +

+ +

+ + + = +

+ + + = +
 

 

We still want to see whether it is possible to obtain values of power series coefficients 

given all boundary values. Without loss of generality, we assume none of 

11 12 21 22, , ,R R R R
is 0.  

By using (24) and (25), we get 

11 0 12 0 21 0, 1

1

11

11 0 12 0 11 1,0

1

21

21 0 22 0 22 0, 1

1

12

21 0 22 0 21 1,0

1

22

( 1)

( 1)

( 1)

( 1)

n n n

n

m m m

m

n n n

n

m m m

m

T T R n

R

T T R m

R

T T R n

R

T T R m

R

α β α
α

α β α
α

α β β
β

α β β
β

+

+

+

+

+ − +
=

+ − +
=

+ − +
=

+ − +
=

 

Like the case in Kibble model, given all values of 0 0 0 0, , , ( , 0)n m n m m nα α β β ≥ , we are able 

to obtain all values of 1 1 1 1, , , ( , 0)n m n m m nα α β β ≥ . 
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By induction method, we can get that 

 

11 1, 12 1, 21 1, 1

11

21 1, 22 1, 22 1, 1

12

( 1)
( 0) (32)

( 1)
( 0) (33)

m n m n m n

mn

m n m n m n

mn

T T R n
m

mR

T T R n
m

mR

α β α
α

α β β
β

− − − +

− − − +

+ − +
= >

+ − +
= >

 

 

since all coefficients on both right-hand side of (32) and (33) have been obtained in 

previous calculations. In conclusion, we could get all power series coefficients given all 

boundary values in the general case.  

 

In principle the power series method could provide us with an analytical solution. The 

straightforward way is to insert all the power series coefficients into  

1 1 2 1 2

0 0

2 1 2 1 2

0 0

( , )

( , )

i j

ij

i j

i j

ij

i j

F y y y y

F y y y y

α

β

∞ ∞

= =

∞ ∞

= =

=

=

∑∑

∑∑  

However, by doing this we can not get the explicit expression. Due to the limited time 

distributed to the project, we are not able solve the differential equations directly. Thus 

we have to resort to numerical tests to get the approximated distribution/survival 

functions. 

 

Besides only deriving the results in theory, it is very interesting to try examples and 

hopefully find some potential trend of the power series. We will give two concrete 

examples. 

 



 45 

4.2 Numerical test in Kibble model 

 

We will still refer to the case in chapter 2, in which the two survival functions are listed 

below: 

 

1 1
1 1 1 2 2

1 1 2

1 0 0 0 0

( ) ( ) ( ) ( )
( , ) [ (1 ) ( )( ) (34)

! ! ! !

k l k li i
i

i k l k l

y y y y
F y y p p

k l k l

λ λ λ λ∞ − ∞ − ∞
−

= = = = =

− −
= − ⋅ ⋅∑ ∑ ∑ ∑ ∑  

2 1
1 1 1 2 2

2 1 2

2 0 0 0 0

( ) ( ) ( ) ( )
( , ) [ (1 ) ( )( ) (35)

! ! ! !

k l k li i
i

i k l k l

y y y y
F y y p p

k l k l

λ λ λ λ∞ − ∞ − ∞
−

= = = = =

− −
= − ⋅ ⋅∑ ∑ ∑ ∑ ∑  

PP P

 

Since we get this explicit expressions of both survival functions, we would like to see 

whether the survival function written by power series can be approximate to the original 

probabilistic representation if given the finite mnα and mnβ . 

 

The idea is illustrated below: 

We know the probability that the Markov process repeats in state 1 and 2 for at least n 

cycles is (1 )np− . We have interest in the case when 6(1 ) 10np −− < , that is
6 log10

log(1 )
n

p

−
>

−
. 

We will choose the smallest value of n to fulfil the above conditions in our following 

numerical test. 

The two survival functions can be approximately written by  

1 1
1 1 1 2 2

1 1 2 1 1 2

1 0 0 0 0

( ) ( ) ( ) ( )
( , ) [ (1 ) ( )( ) ( , | )

! ! ! !

k l k ln i i
i

i k l k l

y y y y
F y y p p F y y n

k l k l

λ λ λ λ− ∞ − ∞
−

= = = = =

− −
≈ − ⋅ ⋅ =∑ ∑ ∑ ∑ ∑  

2 1
1 1 1 2 2

2 1 2 2 1 2

2 0 0 0 0

( ) ( ) ( ) ( )
( , ) [ (1 ) ( )( ) ( , | )

! ! ! !

k l k ln i i
i

i k l k l

y y y y
F y y p p F y y n

k l k l

λ λ λ λ− ∞ − ∞
−

= = = = =

− −
≈ − ⋅ ⋅ =∑ ∑ ∑ ∑ ∑  

Given the boundary values of power series, we could calculate mnα and mnβ for 

1 ,m n u≤ ≤ , where u is an integer. These boundary values are listed below: 
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0

0 0

( ) (1 ) / !

( ) / !

n

n

n

n n

p p n

p n

β λ

α α λ

= − −

= = −  

1

0 ( ) (1 ) / !n n

n
p p nβ λ −= − − −     when 2n ≥  

00 1 pβ = −  

01 0β =  

 

 

Now we could get the approximate values of two survival functions: 

1 1 2 1 2 1 1 2

0 0

2 1 2 1 2 2 1 2

0 0

( , ) ( , | , )

( , ) ( , | , )

u u
i j

ij

i j

u u
i j

ij

i j

F y y y y F y y u PS

F y y y y F y y u PS

α

β

= =

= =

≈ =

≈ =

∑∑

∑∑
 

We could further define 1 1 2 1 1 2
1

1 1 2

( , | ) ( , | , )

( , | )

F y y n F y y u PS
e

F y y n

−
=  

                                       2 1 2 2 1 2
2

2 1 2

( , | ) ( , | , )

( , | )

F y y n F y y u PS
e

F y y n

−
=  

as the according error compared to the probabilistic result. 

 

 

We will start to work with the case of marginal distribution, which is to say 

1 0y = or 2 0y = . 

The easiest case would be that p is approaching 1, in this case 

1 1( ,0)F y , 1 2(0, )F y , 2 2(0, )F y can be approximated by 1exp( )yλ− or 2exp( )yλ− , and 

2 1( ,0)F y is almost 0.  

Suppose 2 0y = or 1 0y = , p=0.99 and 1λ = . We calculate the values of 1 2,e e  in two cases 

and list them in Table 1 and Table 2. 
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u/ 1y  0.5 0.75 1 1.5 2 

1 0.1715 

0.1715 

0.4589 

0.4589 

0.9731 

0.9731 

3.1413 

3.1413 

8.0979 

8.0979 

2 0.0294 

0.0294 

0.1203 

0.1203 

0.3458 

0.3458 

1.7267 

1.7267 

6.0993 

6.0994 

3 0.0037 

0.0037 

0.0231 

0.0231 

0.0895 

0.0895 

0.6829 

0.6829 

3.2708 

3.2708 

4 3.7501e-04 

3.7501e-04 

0.0035 

0.0035 

0.0183 

0.0183 

0.2117 

0.2117 

1.3674 

1.3674 

5 3.1270e-05 

2.9649e-05 

4.4156e-04 

4.3949e-04 

0.0031 

0.0031 

0.0540 

0.0540 

0.4693 

0.4693 

10 1.6419e-08 

1.6377e-06 

2.2864e-08 

2.0879e-06 

8.2553e-08 

2.6963e-06 

7.6584e-06 

1.1742e-05 

2.8520e-04 

2.9135e-04 

20 1.6402e-08 

1.6377e-06 

2.0990e-08 

2.0860e-06 

2.6815e-08 

2.6406e-06 

4.3336e-08 

4.1273e-06 

6.8640e-08 

6.2145e-06 

50 1.6402e-08 

1.6377e-06 

2.0990e-08 

2.0860e-06 

2.6815e-08 

2.6406e-06 

4.3336e-08 

4.1273e-06 

6.8640e-08 

6.2145e-06 

100 1.6402e-08 

1.6377e-06 

2.0990e-08 

2.0860e-06 

2.6815e-08 

2.6406e-06 

4.3336e-08 

4.1273e-06 

6.8640e-08 

6.2145e-06 

Table 1. Values of 1 2,e e  when p=0.99 and 1λ = and 2 0y =  

 

 

u/ 2y  0.5 0.75 1 1.5 2 

1 0.1715 

0.0982 

0.4589 

0.2078 

0.9731 

0.3557 

3.1413 

0.7846 

8.0979 

1.4466 

2 0.0294 

0.0377 

0.1203 

0.1285 

0.3458 

0.3154 

1.7267 

1.2030 

6.0993 

3.3977 

3 0.0037 

0.0074 

0.0231 

0.0388 

0.0895 

0.1298 

0.6829 

0.7747 

3.2708 

3.0291 

4 0.0004 

0.0010 

0.0035 

0.0080 

0.0183 

0.0363 

0.2117 

0.3322 

1.3674 

1.7669 

5 3.1270e-05 

1.0755e-04 

0.0004 

0.0013 

0.0031 

0.0078 

0.0540 

0.1083 

0.4693 

0.7782 

10 1.6419e-08 

1.0979e-06 

2.2864e-08 

1.1952e-06 

8.2553e-08 

1.0564e-06 

7.6584e-06 

3.0409e-05 

0.0003 

0.0010 

20 1.6402e-08 

1.0980e-06 

2.0990e-08 

1.2065e-06 

2.6815e-08 

1.3508e-06 

4.3336e-08 

1.7517e-06 

6.8640e-08 

2.3187e-06 

50 1.6402e-08 

1.0980e-06 

2.0990e-08 

1.2065e-06 

2.6815e-08 

1.3508e-06 

4.3336e-08 

1.7517e-06 

6.8640e-08 

2.3187e-06 

100 1.6402e-08 

1.0980e-06 

2.0990e-08 

1.2065e-06 

2.6815e-08 

1.3508e-06 

4.3336e-08 

1.7517e-06 

6.8640e-08 

2.3187e-06 

Table 2. Values of 1 2,e e  when p=0.99 and 1λ = and 1 0y =  

 

We can see that a very good approximation can be achieved when u is around 20. As u 

increases further, the errors are approximately the same (from the computer calculation). 

This indicates that the power series coefficients drop sharply when the indexes increase. 

We will test the system by changing the parameters a little bit. 

Suppose 2 0y = , p=0.5 and 0.5λ = . We calculate the values of 1 2,e e  and list them in the 

following table. 
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u/ 1y  0.5 0.75 1 1.5 2 

1 0.0085 

0.0085 

0.0199 

0.0199 

0.0370 

0.0370 

0.0906 

0.0906 

0.1756 

0.1756 

2 3.5816e-04 

3.5870e-04 

0.0013 

0.0013 

0.0031 

0.0031 

0.0117 

0.0117 

0.0305 

0.0305 

3 1.0704e-05 

1.0164e-05 

5.9285e-05 

5.8710e-05 

1.9835e-04 

1.9774e-04 

0.0011 

0.0011 

0.0039 

0.0039 

4 8.2260e-07 

1.3629e-06 

2.8337e-06 

3.4089e-06 

1.0641e-05 

1.1254e-05 

8.5277e-05 

8.5971e-05 

3.9677e-04 

3.9755e-04 

5 5.3443e-07 

1.0748e-06 

5.0429e-07 

1.0795e-06 

1.9196e-07 

8.0423e-07 

4.6384e-06 

3.9446e-06 

3.2589e-05 

3.1803e-05 

10 5.4033e-07 

1.0807e-06 

5.7518e-07 

1.1504e-06 

6.1227e-07 

1.2245e-06 

6.9380e-07 

1.3876e-06 

7.8619e-07 

1.5724e-06 

20 5.4033e-07 

1.0807e-06 

5.7518e-07 

1.1504e-06 

6.1227e-07 

1.2245e-06 

6.9379e-07 

1.3876e-06 

7.8619e-07 

1.5724e-06 

50 5.4033e-07 

1.0807e-06 

5.7518e-07 

1.1504e-06 

6.1227e-07 

1.2245e-06 

6.9379e-07 

1.3876e-06 

7.8619e-07 

1.5724e-06 

100 5.4033e-07 

1.0807e-06 

5.7518e-07 

1.1504e-06 

6.1227e-07 

1.2245e-06 

6.9379e-07 

1.3876e-06 

7.8619e-07 

1.5724e-06 

Table 3. Values of 1 2,e e  when p=0.5 and 0.5λ = and 2 0y = . 

 

We can see that the approximation is very good when the value of u is not less than 10. 

So we can trust the power series system to obtain the marginal survival function 

1 1( ,0)F y and 2 1( ,0)F y  in this case. 

The marginal survival function 1 2(0, )F y and 2 2(0, )F y can also be obtained by power 

series method with good precision. See the values of 1 2,e e  below: 

u/ 2y  0.5 0.75 1 1.5 2 

1 0.0085 

0.0140 

0.0199 

0.0301 

0.0370 

0.0514 

0.0906 

0.1084 

0.1756 

0.1832 

2 3.5816e-04 

0.0018 

0.0013 

0.0061 

0.0031 

0.0143 

0.0117 

0.0475 

0.0305 

0.1126 

3 1.0704e-05 

1.3796e-04 

5.9285e-05 

6.8764e-04 

1.9835e-04 

0.0022 

0.0011 

0.0110 

0.0039 

0.0353 

4 8.2260e-07 

6.4478e-06 

2.8337e-06 

5.5044e-05 

1.0641e-05 

2.3510e-04 

8.5277e-05 

0.0018 

3.9677e-04 

0.0079 

5 5.3443e-07 

1.2884e-06 

5.0429e-07 

4.6364e-06 

1.9196e-07 

2.1599e-05 

4.6384e-06 

2.4010e-04 

3.2589e-05 

0.0014 

10 5.4033e-07 

9.6703e-07 

5.7518e-07 

9.8239e-07 

6.1227e-07 

1.0027e-06 

6.9380e-07 

1.0559e-06 

7.8619e-07 

1.1010e-06 

20 5.4033e-07 

9.6703e-07 

5.7518e-07 

9.8239e-07 

6.1227e-07 

1.0027e-06 

6.9379e-07 

1.0570e-06 

7.8617e-07 

1.1284e-06 

50 5.4033e-07 

9.6703e-07 

5.7518e-07 

9.8239e-07 

6.1227e-07 

1.0027e-06 

6.9379e-07 

1.0570e-06 

7.8617e-07 

1.1284e-06 

100 5.4033e-07 

9.6703e-07 

5.7518e-07 

9.8239e-07 

6.1227e-07 

1.0027e-06 

6.9379e-07 

1.0570e-06 

7.8617e-07 

1.1284e-06 

Table 4. Values of 1 2,e e  when p=0.5 and 0.5λ = and 1 0y = . 
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After investigating the case of marginal distribution, we would like to test the system 

further. 

We would like to see the symmetrical case first, that is 1 2y y= . Suppose p=0.5 and 1λ = , 

we calculate the corresponding errors, and list them below: 

 

u/ 1 2y y=  0.5 0.75 1 1.5 2 

1 0.0189 

0.0027 

0.0187 

0.0189 

0.1597 

0.0753 

1.0818 

0.3565 

3.7120 

1 

2 5.5199e-04 

0.0077 

0.0024 

0.0258 

0.0148 

0.0753 

0.4963 

0.5375 

3.7120 

2.7896 

3 5.5510e-04 

0.0010 

0.0046 

0.0031 

0.0228 

0.0017 

0.3353 

0.1755 

3.1885 

2.1931 

4 6.2985e-05 

9.1093e-05 

5.4504e-04 

4.6360e-04 

0.0016 

0.0019 

0.0516 

0.0583 

1.3560 

1.1491 

5 6.2117e-06 

7.0015e-06 

7.0847e-05 

2.4294e-05 

4.2537e-04 

6.9061e-05 

0.0141 

0.0121 

0.4503 

0.4035 

10 7.4848e-07 

1.2751e-06 

9.1432e-07 

1.4974e-06 

1.1074e-06 

1.7704e-06 

2.0002e-06 

2.6775e-06 

4.0307e-05 

2.6630e-05 

20 7.4848e-07 

1.2751e-06 

9.1436e-07 

1.4971e-06 

1.1060e-06 

1.7637e-06 

1.5883e-06 

2.4547e-06 

2.2469e-06 

3.4134e-06 

50 7.4848e-07 

1.2751e-06 

9.1436e-07 

1.4971e-06 

1.1060e-06 

1.7637e-06 

1.5883e-06 

2.4547e-06 

2.2469e-06 

3.4134e-06 

100 7.4848e-07 

1.2751e-06 

9.1436e-07 

1.4971e-06 

1.1060e-06 

1.7637e-06 

1.5883e-06 

2.4547e-06 

2.2469e-06 

3.4134e-06 

Table 5. Values of 1 2,e e  when p=0.5 and 1λ = and 1 2y y= . 

In this case, the power series system is much more reliable. The error is almost 

neglectable when u is bigger than 20.  

 

So far we can see that we can trust the system when u is larger than 20. In the following 

test, we are only concerned about the case when u=20 or u=50. 

 

We increase values of 1 2,y y  gradually to see the scope of errors. They are listed in Table 6-11. 

 

u\ 1 2( , )y y  
0.05 

0.05 

0.05 

0.5 

0.05 

1 

0.05 

1.5 

0.05 

2 

20 5.0098e-07 

9.7840e-07 

6.2435e-07 

1.0270e-06 

7.9827e-07 

1.1532e-06 

1.0216e-06 

1.3475e-06 

1.3084e-06 

1.6155e-06 

50 5.0098e-07 

9.7840e-07 

6.2435e-07 

1.0270e-06 

7.9827e-07 

1.1532e-06 

1.0216e-06 

1.3475e-06 

1.3084e-06 

1.6155e-06 

Table 6. Values of 1 2,e e  when p=0.5, 1 0.05y = and 1λ =  
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u\ 1 2( , )y y  
0.1 

0.1 

0.1 

0.5 

0.1 

1 

0.1 

1.5 

0.1 

2 

20 5.2573e-07 

1.0048e-06 

6.3675e-07 

1.0519e-06 

8.1074e-07 

1.1787e-06 

1.0342e-06 

1.3740e-06 

1.3211e-06 

1.6434e-06 

50 5.2573e-07 

1.0048e-06 

6.3675e-07 

1.0519e-06 

8.1074e-07 

1.1787e-06 

1.0342e-06 

1.3740e-06 

1.0342e-06 

1.3740e-06 

Table 7. Values of 1 2,e e  when p=0.5, 1 0.1y = and 1λ =  

 

u\ 1 2( , )y y  
0.5 

0.5 

0.5 

0.75 

0.5 

1 

0.5 

1.5 

0.5 

2 

20 7.4848e-07 

1.2751e-06 

8.3091e-07 

1.3319e-06 

9.2447e-07 

1.4070e-06 

1.1509e-06 

1.6114e-06 

1.4415e-06 

1.8936e-06 

50 7.4848e-07 

1.2751e-06 

8.3091e-07 

1.3319e-06 

9.2447e-07 

1.4070e-06 

1.1509e-06 

1.6114e-06 

1.4415e-06 

1.8936e-06 

Table 8. Values of 1 2,e e  when p=0.5, 1 0.5y =  and 1λ =  

 

u\ 1 2( , )y y  
1 

0.5 

1 

0.75 

1 

1 

1 

1.5 

1 

2 

20 9.2447e-07 

1.6244e-06 

1.0093e-06 

1.6841e-06 

1.1060e-06 

1.7637e-06 

1.3408e-06 

1.9819e-06 

1.6422e-06 

2.2840e-06 

50 9.2447e-07 

1.6244e-06 

1.0093e-06 

1.6841e-06 

1.1060e-06 

1.7637e-06 

1.3408e-06 

1.9819e-06 

1.6422e-06 

2.2840e-06 

Table 9. Values of 1 2,e e  when p=0.5, 1 1y =  and 1λ =  

 

u\ 1 2( , )y y  
1.5 

0.5 

1.5 

0.75 

1.5 

1 

1.5 

1.5 

1.5 

2 

20 1.1509e-06 

2.0727e-06 

1.2393e-06 

2.1355e-06 

1.3408e-06 

2.2203e-06 

1.5883e-06 

2.4547e-06 

1.9065e-06 

2.7812e-06 

50 1.1509e-06 

2.0727e-06 

1.2393e-06 

2.1355e-06 

1.3408e-06 

2.2203e-06 

1.5883e-06 

2.4547e-06 

1.9065e-06 

2.7812e-06 

Table 10. Values of 1 2,e e  when p=0.5, 1 1.5y =  and 1λ =  

 

u\ 1 2( , )y y  
2 

0.5 

2 

0.75 

2 

1 

2 

1.5 

2 

2 

20 1.4415e-06 

2.6479e-06 

1.5346e-06 

2.7142e-06 

1.6422e-06 

2.8047e-06 

1.9065e-06 

3.0580e-06 

2.2469e-06 

3.4134e-06 

50 1.4415e-06 

2.6479e-06 

1.5346e-06 

2.7142e-06 

1.6422e-06 

2.8047e-06 

1.9065e-06 

3.0580e-06 

2.2469e-06 

3.4134e-06 

Table 11. Values of 1 2,e e  when p=0.5, 1 2y =  and 1λ =  
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In conclusion, we can get very good approximation of 1 1 2( , )F y y and 2 1 2( , )F y y by 

1 1 2( , | , )F y y u PS and 2 1 2( , | , )F y y u PS  respectively, if we choose a large value of u.  

 

With the success of numerical test in the previous Kibble model using identity reward 

matrix, we would like to test the power series method in another example.  

 

 

Recall that 
1 1

( )
k m

i
j ij j

j jj

F
r i q F

y= =

∂
=∑ ∑  

 

The PDE for the general bivariate case can be written as: 

 

1 1
11 21 11 1 12 2

1 2

2 2
12 22 21 1 22 2

1 2

F F
R R T F T F

y y

F F
R R T F T F

y y

∂ ∂
+ = +

∂ ∂
+ = +

 

 

 

The following power recursive equations are obtained: 

 

11 1, 21 , 1 11 12

21 1, 22 , 1 21 22

( 1) ( 1)

( 1) ( 1)

i j i j ij ij

i j i j ij ij

R i R j T T

R i R j T T

α α α β

β β α β

+ +

+ +

+ + + = +

+ + + = +
 

 

If we use reward matrix with non-zero element, we get two recursive equations as 

follows: 

 

11 1, 12 1, 21 1, 1

11

21 1, 22 1, 22 1, 1

12

( 1)
( 0)

( 1)
( 0)

m n m n m n

mn

m n m n m n

mn

T T R n
m

mR

T T R n
m

mR

α β α
α

α β β
β

− − − +

− − − +

+ − +
= >

+ − +
= >

 

Therefore given all boundary power series coefficients, we can obtain all remaining 

power series coefficients.  

 

The example is the same as from Chapter 2: Erlang (2) distribution 

 

Consider 1 2( , ) ~ *( , ; )Y Y Y MPH T Rα= , with  
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              T=
1

0

−



  
1

1


− 

 and R=

2

3

1

3







      

1

3

2

3







 

 

Another representation of Y could be conjured: 

               
1

2

2 / 3

1/ 3

Y
Y

Y

  
= =  

 
 

1

2

1/ 3

2 / 3

Z

Z

 
 
  

 

 

Where 1 2( , )Z Z  are independent exp(1) distributed random variables. 

 

We are interested in the case that 1
2 1 22

2y y y< < , since all other cases are too simple to 

consider. In this case we have  

         

1 1 2 1 2 1 2

1 2 1 2

0 0 0 0

( , ) 3exp( ) exp( 3 ) exp( 3 )

( ) ( ) ( 3 ) ( 3 )
3

! ! ! !

k k k k

k k k k

F y y y y y y

y y y y

k k k k

∝ ∝ ∝ ∝

= = = =

= − − − − − −

− − − −
= − −∑ ∑ ∑ ∑

 

        1
2 1 2 1

0

( 3 )
( , ) exp( 3 )

!

k

k

y
F y y y

k

∝

=

−
= − =∑  

The boundary power series coefficients are listed below: 

0

( 1) ( 3)
3

! !

m m

m
m m

α
− −

= − , 0

( 3)

!

m

m
m

β
−

= , m>0 

0

( 1) ( 3)
3

! !

n n

n
n n

α
− −

= − , (0, ) 0nβ = , n>0 

00 001, 1α β= =  

Using the recursive equations and these boundary values, we can calculate mnα and 

mnβ for 1 ,m n u≤ ≤ , where u is an integer. 

 

Similarly,  

1 1 2 1 2 1 1 2

0 0

2 1 2 1 2 2 1 2

0 0

( , ) ( , | , )

( , ) ( , | , )

u u
i j

ij

i j

u u
i j

ij

i j

F y y y y F y y u PS

F y y y y F y y u PS

α

β

= =

= =

≈ =

≈ =

∑∑

∑∑
 

Furthermore we define 1 1 2 1 1 2
1

1 1 2

( , ) ( , | , )

( , )

F y y F y y u PS
e

F y y

−
=  

                                       2 1 2 2 1 2
2

2 1 2

( , ) ( , | , )

( , )

F y y F y y u PS
e

F y y

−
=  
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We will start to try 1 2,y y  with values nearly 0. Values of errors are listed in Table 1.  

 

u\ 1 2( , )y y  
0.05 

0.0251 

0.05 

0.03 

0.05 

0.05 

0.05 

0.075 

0.05 

0.099 

50 3.3481e-16 

0 

0 

0 

0 

0 

3.3702e-16 

0 

1.1318e-16 

0 

100 3.3481e-16 

0 

0 

0 

0 

0 

3.3702e-16 

0 

1.1318e-16 

0 

Table 12. Values of 1 2,e e  with small values of 1 2, ( 0)y y ≈  

 

The results are very promising especially for 2 1 2( , | , )F y y u PS , which can replace 

2 1 2( , )F y y completely. We will further increase values of 1 2,y y  gradually. See results in 

the table below. 

 

u\ 1 2( , )y y  
0.5 

0.3 

0.5 

0.5 

0.5 

0.75 

0.5 

0.9 

0.5 

0.99 

50 6.1826e-16 

3.7318e-16 

3.3777e-16 

3.7318e-16 

4.1817e-16 

3.7318e-16 

9.8806e-16 

3.7318e-16 

1.6584e-15 

3.7318e-16 

100 6.1826e-16 

3.7318e-16 

3.3777e-16 

3.7318e-16 

4.1817e-16 

3.7318e-16 

9.8806e-16 

3.7318e-16 

1.6584e-15 

3.7318e-16 

u\ 1 2( , )y y  
1 

0.51 

1 

0.75 

1 

1 

1 

1.5 

1 

1.99 

50 8.4021e-16 

1.3937e-16 

1.5161e-15 

1.3937e-16 

1.4492e-15 

1.3937e-16 

 

1.4525e-14 

1.3937e-16 

2.9299e-14 

1.3937e-16 

100 8.4021e-16 

1.3937e-16 

1.5161e-15 

1.3937e-16 

1.4492e-15 

1.3937e-16 

 

1.4525e-14 

1.3937e-16 

2.9299e-14 

1.3937e-16 

u\ 1 2( , )y y  
2 

1.01 

2 

1.5 

2 

2 

2 

3 

2 

3.99 

50 3.3165e-14 

7.0929e-13 

1.4526e-13 

7.0929e-13 

2.2154e-13 

7.0929e-13 

5.5876e-12 

7.0929e-13 

8.2959e-10 

7.0929e-13 

100 3.3165e-14 

7.0929e-13 

1.4526e-13 

7.0929e-13 

2.2154e-13 

7.0929e-13 

5.5876e-12 

7.0929e-13 

1.7277e-10 

7.0929e-13 

Table 13. Values of 1 2,e e ( we let 1y change from 0.5 to 2) 

 

In conclusion, we can get very good approximation of 1 1 2( , )F y y and 2 1 2( , )F y y by 

1 1 2( , | , )F y y u PS and 2 1 2( , | , )F y y u PS  respectively, if we choose a large value of u.  
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4.4 Summary 

 

The aim of this chapter is to see the possibilities of getting back to the original survival 

function of phase type distributed random variables if the power series coefficients are 

known. Theoretically the answer is yes. However, in most cases, we are not able to get a 

general explicit representation of power series in terms indexes i and j. What we always 

have is the marginal distribution, which indicates that we can obtain all boundary power 

series coefficients. Using the general recursive equations, we have seen that we can get 

all the remaining coefficients. At this point, we have interest in the possibilities of 

approximating the survival functions given finite power series coefficients. We have used 

two examples to see the performance, which shows that we can get a very good 

approximation. 
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Chapter 5 Conclusion 

 

In this project we have introduced the core definition and properties of phase type 

distributions. One of the essential applications of phase type distribution can be found by 

the combination of continuous-time Markov chain and reward system. Since phase type 

distributions play an important role in applied probability models, it is important to study 

its distribution. Usually it is difficult to compute this distribution directly. There are 

several computation techniques for the distributions in MPH*, of which we have a 

particular interest in the PDE method. Several concrete examples have been shown. The 

probabilistic representations of the survival functions satisfy the partial differential 

equations derived from the general case. 

 

The aim of the project is to find out the possibilities of obtaining distribution or survival 

function by the computation technique of the PDEs. To do this, we have introduced 

power series method to get a deeper insight into the application of partial differential 

equations when studying phase type distributions. We have obtained the recursive 

equations of power series coefficients, and verified that we are able to derive all 

coefficients if given only the boundary values. Several concrete examples have been 

shown to work in this framework of recursive equations.  

 

In most cases, it is not possible to get all power series coefficients in an explicit form. 

Also it is difficult to get a closed form of distribution or survival functions while 

relatively easy to get the marginal distributions. So alternatively, we are able to obtain the 

approximate values of distribution functions given the boundary power series coefficients. 

We have used two examples to see the performance, of which the key indicators are the 

errors defined as the difference between the probabilistic result and the approximate 

values. The performances show that we can get a very good approximation. 

 

However, the limitation of the power series method is that it will be very difficult to get a 

closed form of the survival functions. More specifically, what we get is an infinite sum of 
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power series, which doesn’t have an explicit representation normally. Therefore we are 

restricted to the “approximate” value of the distribution functions.  

 

The ideal goal is that we could solve the differential equations directly, but that’s not an 

easy task. The potential improving area might lie in other methods in complex analysis 

and partial differential equations properties.  

 

. 
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