
Trustworthiness in Service Oriented
Computing

Nicola Miotto

Kongens Lyngby 2011
IMM-PHD-2011-70

Technical University of Denmark
Informatics and Mathematical Modelling
Building 321, DK-2800 Kongens Lyngby, Denmark
Phone +45 45253351, Fax +45 45882673
reception@imm.dtu.dk
www.imm.dtu.dk

IMM-PHD: ISSN 0909-3192

Summary

Service Oriented Computing is an emerging paradigm for distributed comput-
ing, where Web Services represent the bricks of Service Oriented Architecture.
Brought to its full potential, this vision could allow software developers to take
advantage of agents to automatically discover and compose Web Services over
the Internet to build a distributed system. In the past years, there have been
many issues discussed about web services, regarding their implementation, their
founding principles and so on. But there is still a concern that would need to
be investigated: the trustworthiness provisioning.
The aim of this thesis is to provide a complete study about this issue in Service
Oriented Computing environments.

In Chapter 1 we aim at explaining the rationale behind SOA, discussing about
the historical reasons that gave life to this paradigm. Then, an explanation of
the current definition of Service Oriented Paradigm will be provided, showing
different use cases involving this concept. We will illustrate how different tech-
nologies try to meet the requirements of this pattern, focusing the attention
on those that nowadays are considered the de facto standard to concretise the
service orientation vision.

Essentially, in Chapter 2, an exhaustive analysis of the state of the art concern-
ing trust provisioning is provided. Trust provisioning is discussed both broadly
speaking and refining more details specifically related to the Service Oriented
Computing environment.
The first contribution of this work has been to categorize the most notable works
in few categories, depending on the rationale of their approach. This way it has
been possible to highlight the shortcomings and the advantages of each category.

ii

The whole study is accompanied by a running example illustrating a possible
real-world scenario for each approach. This should help the reader to better
understand the discussed issues.
The final part of the analysis further sum-up the issues arisen during the first
part, focusing the attention on the reasons that may determine the effectiveness
of a possible new approach.

The discussion carried out in Chapter 2 has been the preliminary study that let
us work on the second contribution of this work: the definition of the founding
principles that should be taken into consideration while designing a new frame-
work for trust provisioning in SOA. These principles have been outlined in light
of the state of the art analysis and supported by the drawn considerations and
conclusions.
Based on these principles a new framework has been suggested. Considering the
vast amount of studies and frameworks already proposed in literature, the effort
has been to devise a new solution adopting, where possible, already defined and
tested solutions.
The framework is described in Chapter 3 and it is the result of the studies con-
ducted in the first part. It constitutes the third contribution of this thesis.
As mentioned afore, the solution has been composed by joining different works
discussed in literature. Some of them has been extended and adapted to fit our
new framework, solving some of the major problems listed in Chapter 2. All
those interventions on the existing approaches are further contributions that
this project presents.

In Chapter 4, the results are discussed to provide practical credibility to our
work. Considering no implemented solutions have been provided (for time lim-
itations), we tried to explain by means of some real-world test cases how the
framework should behave and solve the arisen problems. Some implementative
suggestions are also provided in order to show how the framework could possibly
be concretised in a working solution.

Finally, in chapter 5, an argumentation about how the issues has been solved is
provided, along with a discussion regarding the future work that could improve
the suggested framework. Furthermore, the contributions of the thesis are ex-
plained in more detail, contextualizing them to the work illustrated throughout
the document.

Papers included in the thesis

[A] Nicola Dragoni, Nicola Miotto, Davide Papini
Analysis of Trust-Based Approaches for Web Service Selection. 5th Nordic
Workshop on Dependability and Security (NODES11), 2011. Accepted for
publication.

iv

Acknowledgements

I wish to thank my supervisor Prof. Nicola Dragoni for having welcomed me at
DTU to carry out my master thesis and for the effort in helping me reaching a
valuable result.
I also thank Prof. Claudio Palazzi, my relator in Italy, for having helped me,
when possible, to improve my thesis.
Thanks to Davide Papini for the initial help in finding contacts and suggestions
to start my thesis at DTU. And thanks for having presented my paper at the
NODES11 workshop and for having introduced me the people of the IMM de-
partment.
Thanks to both Fontas Fafoutis and Gianluca Frison for having kindly hosted
me during my last period in Denmark.
Thanks to my girlfriend Laura for having put up with me during my anxiety
moments.
A final great thanks to my parents and my grandparents that supported my
stay in Denmark.

vi

Contents

Summary i

Papers included in the thesis iii

Acknowledgements v

1 Background 1

1.1 Genesis . 1

1.2 Issues of a short-term-benefit IT solutions 2

1.3 The SOA vision . 4

1.4 SOA Technologies . 8

1.5 Use cases . 14

1.6 Trust in SOA . 15

2 Trust in SOA - State of the Art 17

2.1 Terms confusion . 17

2.2 Sources of trustworthiness . 18

2.3 Suggested approaches . 19

3 Framework 51

3.1 Founding principles . 52

3.2 High Level Architecture . 55

3.3 Evidence supplier . 59

3.4 QoS based step . 65

3.5 Reputation based selection step 74

3.6 Agreement negotiation and monitoring 82

viii CONTENTS

4 Application 91
4.1 Test cases . 91
4.2 Discussion . 101

5 Conclusions 107
5.1 Contributions . 108
5.2 Future Works . 110

A Publication - NODES11 113

Chapter 1

Background

Throughout the first chapter of this thesis, we will describe the background of
the Service Orientation paradigm.
Firstly, we will illustrate part of the history of this vision, in order to highlight
the reasons and the issues the made this new concept born. Essentially, we will
describe what Service Oriented Computing is, illustrating the definitions and
the ancestors of this paradigm. Furthermore, the technologies that have been
devised to carry out the rationale of this vision are briefly illustrated, focusing
on those that nowadays are considered the de facto standard for SOC. Finally,
the issue of trustworthiness provisioning is mentioned, in order to provide an
idea of what will be the main topic of discussion throughout the rest of the
document.

1.1 Genesis

In order to clearly understand what a Service Oriented Architecture is and why
it is gaining such a great attention in the recent years, it is necessary to jump
back to several years ago searching for the roots of this architectural pattern.
After the beginning of the information technology revolution (during the ’70s),
a new era started for the world of information. Lots of people could afford their

2 Background

own computer, but also lots of companies started to foresee the economical ad-
vantages this revolution may have carried out.
The world of business could take a huge benefit from automating the business
tasks and from delegating the internal business logic to a bunch of software
solutions. And the IT agencies began to spread out all over the world, offering
automated systems for the typical enterprise-level problems, like customer re-
lationship management, document management, human resource management
and so on. It is the Electronic Business, better known as e-business, era. This
word appeared the first time in an article published in Macworld Communica-
tions Inc[35] and eventually spread out in October, 1997, when IBM launched a
thematic campaign built around the term. In the following years an increasing
amount of companies started to use the Web to buy components and supplies
from other companies, to collaborate on sales promotions, and to carry out joint
research. It was then necessary to take advantage of the Internet to improve
the communication of information among enterprises. That was one of the main
reasons why concepts like interoperability, reusability, abstraction began to get a
critical importance for the economical perspective of each company. This made
the enterprises face a critical problem: each company’s business logic and data
were tied to the company specific protocols, technologies, languages and so on.

When it came to share data and services over the Internet between enterprises,
an accepted and popular approach was to design and develop ad-hoc solutions for
each need. This way each time it came to integrate many different components
or to reuse already existing software, many problems were rising. That is why
the idea of service oriented architecture started to take place.

1.2 Issues of a short-term-benefit IT solutions

As we mentioned above, there are many issues that might emerge at the enter-
prise level when dealing with automation of business tasks. The most common
and most accepted approaches were those providing a relatively quick solution
and an immediate tangible result. An approach that in problem solving theory
would be defined as greedy : a locally optimal choice at each stage, often leading
to a globally sub-optimal solution. Let us provide a concrete scenario to better
explain the problem:

• Encom is a big enterprise working on the IT field;

• the company realizes that it is necessary to provide itself with an internal
employee management system;

1.2 Issues of a short-term-benefit IT solutions 3

• after a first analysis of the business problem, the hired IT specialist de-
signs a solution capable of an authentication, authorization, logging and
employee profile management system;

• to better exploit the company know-how, the system is eventually devel-
oped with the Java programming language.

• After few months, the security branch of the Encom Enterprise asks for in-
tegrating the current monitoring system with a remote interface, provided
with an authentication/authorization system. This was necessary because
the security managers of the company would have been transferred abroad
in 2 months;

• The IT specialist is then hired again and asked for developing such a kind
of platform, paying attention to the backward-compatibility issues related
to the language used for the currently existing system: C++.

• The quickest and cheapest way the IT specialist can take is to reimplement
the authentication/authorization system for the current problem using the
C++ language.

The example lacks of several details, but it can quite clearly focus the problem.
The solution the IT specialist provided in the first case was of course the one with
the most short-term tangible benefit. But it was not designed to be eventually
reused or integrated. The same authentication/authorization system could have
been used also for the next required solution.
Spreading the problem out of the boundaries of the same enterprise, there are
many other similar scenarios we can describe:

• A second company, let us call it Sirius Cybernetics, has not enough devel-
opers available for starting up a project, consisting of a logging service for
the employee activities in the internal management system. It needs then
to outsource it.

• Encom is asked for developing the system. Another IT developer is then
hired in order to carry on the solution, the same way as described in
the previous example: a new team is instantiated to integrate a brand
new logging tool into the Sirius Cybernetics system. The operation takes
months, resulting in an expensive product and in a waste of time for both
companies.

First of all, as said before, the Encom Enterprise may have taken advantage of
its already developed logging system to reuse it for the new solution. But it
was put in a monolithic application, making it difficult to export it for reuse.

4 Background

Moreover, the Sirius Cybernetics enterprise could have searched for the already
implemented solution and, after having discovered it, it may have integrated it
as an additional distributed component to its system, without introducing new
code to maintain in its current infrastructure.
So, how to fulfill the “Don’t Repeat Yourself” principle? The idea is that for
each complex problem, many small concerns should be identified. Each concern
should be solved as a small logic unit, with a standard interface and a contract
as well, in order to allow its reuse and intercommunication with other units.
These small unities are named, in the context we are talking about, services.

1.3 The SOA vision

1.3.1 The Bricks: Services

The OASIS1 definition of the term service is:

A mechanism to enable access to one or more capabilities, where
the access is provided using a prescribed interface and is exercised
consistent with constraints and policies as specified by the service
description.[64]

In other terms, a service is a collection of functionally related capabilities. Each
service displays an interface that plays the role of a contract. An interface
discloses a set of operations that the service provides for. More services together
can be orchestrated to achieve e more complex goal. Let us provide a really high
level example:

• A company needs to design a vacation planning system architecture for a
tourism agency;

• after a thorough analysis, they decide to break up the problem into differ-
ent components:

– Trip planning

– Accommodation booking

– Bank transaction

1Organization for the Advancement of Structured Information Standards

1.3 The SOA vision 5

Each of them is supposed to provide for a specific step of the vacation
planning procedure.

• After further analysis, they figure out that the trip planning service may
be split into other sub-components:

– Flight booking

– Car rental

– Bus ticket purchasing

Figure 1.1: Concern Separation - Second step

6 Background

Each of the components the company identified can work as a stand-alone unity.
They offer various interfaces to interact with and the collaboration between them
can lead to the expected solution. They are the so-called services:

• each one provides for a specific set of functionally related capabilities

• they can work as an independent part of the system

• they are agnostic of each other and of the greater problem they are going
to solve

But, when composed together, they can help achieving a more complex goal.

1.3.2 The Service Oriented paradigm

There have been many programming design paradigms to date, each of them
conceived to achieve a specific goal. For instance:

The object oriented paradigm , conceived to bring modularity to the code
and make it reusable and easily maintainable.

The aspect oriented paradigm , stating that the system logic should be
broken into distinct cross-cutting concerns.

The aforementioned paradigms are considered some of the roots[27] of the de-
sign paradigm that started to gain a lot of attention in 2005 [42]: the service
orientation.
The Organization for the Advancement of Structured Information Standards
provides a definition of this concept:

A paradigm for organizing and utilizing distributed capabilities that
may be under the control of different ownership domains. It provides
a uniform means to offer, discover, interact with and use capabilities
to produce desired effects consistent with measurable preconditions
and expectations.[64]

This paradigm is based on the principle that a large solution should be parti-
tioned into smaller capabilities, each designed to solve an individual problem.

1.3 The SOA vision 7

In the context of the paradigm, the solution capabilities (or units) are referred
as services.
In order to fulfill the service orientation idea, such services have to hold a set
of design principles[27]:

Standardized Contract: each service needs to expose a contract to describe
its purpose and capabilities.

Loose coupling: service consumer, service contract and service implementa-
tion must not be strongly dependent to each other. These three entities
have to be weakly tied together. A strong dependency between service
contract and service implementation would imply a big effort to evolve,
maintain or change certain aspects of the logic behind the service inter-
face. As well the service consumer has to be independent from the service
provider: the service client should be uninfluenced and unaware of the
internal features of the service provider (such as operative system or pro-
gramming environment).

Abstraction: the service logic has to be hidden behind the interface contract.
This allows to preserve the previously mentioned loose coupling between
service interface and service implementation.

Reusability: when implementing a service, it is necessary to keep it agnostic
of its functional context. This means that it has to be considered as a long
lasting resource, ready to be used whenever its capabilities are required.

Autonomy: in order to have a reliable service (necessary for supporting a real
world production environment), the service logic must have significant
control over its environment and resources.

Statelessness: considering that a service may be reused lots of times by many
different consumers, it may be undertaken to a great scalability demand.
Statefulness requires an adequate surrounding technology, so, when possi-
ble, a service should be kept stateless.

Discoverabiliy: in order to improve reusability, it is mandatory that a service
can be in a first place discovered. This goal can be achieved by consis-
tently describing the service. To do that, the service contract should be
extended with functional meta-data as well as meta-informations related
to the QoS[27]. This way, the meta-informations can be retrieved (after
being published somewhere) in order to be analyzed either manually or
automatically. If the service results fitting with the consumer need, it may
be reused and integrated.

Composability: service oriented computing relies on the possibility to create
a solution by separating it into small problems and by identifying the

8 Background

components solving them. In order to achieve this result, components
(services) have to be capable of joining a composition, even if they are not
immediately enlisted in it.

These design principles are the archetypes of a system based on a Service Ori-
ented Architecture.

1.3.3 The Service Oriented Architecture

In the previous section the main principles defining a Service Oriented Archi-
tecture have been described.
This sort of architecture is based on the interaction of three primary parties[8]:

• The service provider: the entity providing for the service. It imple-
ments different services and exposes certain interfaces to allow their use.

• The service consumer: the client who utilizes the service by invoking
its interfaces.

• The service broker: the entity offering the discovery capability. It can
be a public registry, or an agent acting on behalf of the service consumer.

In SOA, all the resources can be linked on demand. They are available to
consumers allowed to use them, be them within an enterprise or across multiple
enterprises. There are different business-aligned IT services that collectively
fulfill an organization’s business processes and goals. In order to achieve the
more complex goals, it is necessary to orchestrate these services in a service
choreography.

1.4 SOA Technologies

1.4.1 Early Technologies

There are many ways to implement a service based system to date. Some of
the ideas and technologies currently available were born even before the idea of
SOA was conceived.
One of the first models that might have fit a service oriented architecture was

1.4 SOA Technologies 9

the Remote Procedure Call, whose idea goes back at least up to 1976. The
definition given by SGI2 is:

Remote procedure calls are a high-level communication paradigm
that allows programmers to write network applications using pro-
cedure calls that hide the details of the underlying network. RPC
implements a client/server system without requiring that callers be
aware of the underlying network. [41]

This enables an application to perform a procedure call to a remote machine
unaware of its underlying architecture and platform. And this is of course a first
step to concretise the interoperability feature required by the service orientation
paradigm. Even the client/server structure maps the consumer/provider parties
required by SOA. Based on this model, lots of technologies subsequently born:

• Distributed COM (DCOM), a proprietary technology by Microsoft. It
allows components distributed across a network to communicate, offering
the communication substrate under Microsoft’s COM+ application server
infrastructure.

• Remote Method Invocation (RMI), a Java programming interface that
allows communication between objects (in an object-oriented context), in
a java programming environment.

Both of these technologies are weakly following two of the main principles of
the service orientation paradigm:

• strong coupling : service consumer depends on the service provider. DCOM
imposes the underlying existence of a Microsoft platform. Java RMI re-
quires objects to be written in Java.

• weak composability : this is connected somehow to the coupling issue. In
case the service is asked to join a choreography, it comes difficult to in-
tegrate it to the current composed system if platform/programming lan-
guage requirements exist.

There are indeed other technologies concretising some of the concepts of the
service oriented paradigm (e.g. CORBA, DDS), but it would be out of the
scope of this document to carefully analyze them.
Pan Li et al. provide the following consideration concerning SOA:

2Silicon Graphics International, http://www.sgi.com/

http://www.sgi.com/

10 Background

Service oriented computing (SOC) is a new and promising paradigm
for open, distributed applications. Web Services, along with a group
of standards, has become de facto integration technology for realizing
SOC.[60]

Looking at the literature it is in fact quite common to find the concepts like
SOA, SOC etc. pulled-over terms like Web Services, SOAP, WSDL and so on.
In the following section Web Services will be then briefly explained so to provide
a glimpse on how the Service Oriented Vision is turning into a concrete form.

1.4.2 Web Services

The term Web Service has gained a bit of semantic confusion over the years.
There are different definitions about what a Web Service is supposed to be. The
W3C definition of Web Service is:

There are many things that might be called “Web Services” in the
world at large. However, for the purpose of this Working Group and
this architecture, and without prejudice toward other definitions, we
will use the following definition:

A Web Service is a software system designed to support interopera-
ble machine-to-machine interaction over a network. It has an inter-
face described in a machine-processable format (specifically WSDL).
Other systems interact with the Web Service in a manner prescribed
by its description using SOAP-messages, typically conveyed using
HTTP with an XML serialization in conjunction with other Web-
related standards.[33]

The W3C agreed definition for Web Service involves the use of technologies
such like SOAP and WSDL. Probing the Internet, it is nonetheless possible to
discover other quite different meanings of the term. Let us for instance show
this piece of article by Alex Rodriguez, an IBM software engineer:

Representational State Transfer (REST) has gained widespread ac-
ceptance across the Web as a simpler alternative to SOAP- and Web
Services Description Language (WSDL)-based Web Services. Key
evidence of this shift in interface design is the adoption of REST
by mainstream Web 2.0 service providers - including Yahoo, Google,

1.4 SOA Technologies 11

and Facebook - who have deprecated or passed on SOAP and WSDL-
based interfaces in favor of an easier-to-use, resource-oriented model
to expose their services.[78]

REST-ful Web Services seems then to be a valid alternative to the SOAP based
ones.
This “role clash” issue arises probably because REST based WS have gained
attention not a long time ago and so they are still lacking of standard definitions
to be described at a W3C level. Nowadays REST-ful Web Service users (devel-
opers) are increasing, but SOAP remains the de facto standard for enterprises.
They share the main critical feature of the data transport: they both usually
use HTTP as a transportation protocol, describing data through an XML doc-
ument (even though also JSON is possible with REST-ful Web Services).
The following sections will give some further details about these two technolo-
gies.

1.4.2.1 SOAP based

The SOAP based Web Service architecture is usually composed by the three
main entities a SOA requires: service provider, service consumer, service broker.
The entities illustrated in diagram 1.2 are:

Figure 1.2: SOA High Level Architecture

12 Background

SOAP: provides a standard, extensible, composable framework for packaging
and exchanging XML messages.
A SOAP message represents the information needed to invoke a service
or reflect the results of a service invocation, and contains the information
specified in the service interface definition.[30]

WSDL WSDL is an XML format for describing network services as a set of
endpoints operating on messages containing either document-oriented or
procedure-oriented information. The operations and messages are de-
scribed abstractly, and then bound to a concrete network protocol and
message format to define an endpoint. Related concrete endpoints are
combined into abstract endpoints (services). WSDL is extensible to allow
description of endpoints and their messages regardless of what message
formats or network protocols are used to communicate.

Service Provider: It is the actual owner of the service. It exposes the web
interfaces needed to invoke the service functionalities. It communicates
with the service consumer by means of SOAP messages. In a nutshell, it
is composed by three parts[85]:

• a listener to receive the message,

• a proxy to take that message and translate it into an action to be
carried out,

• the application code to implement that action.

It is possible, then, to implement the service logic with any programming
language for which a SOAP implementation library exists.

Service Consumer: It represents the other communicating peer. As for the
service provider, the service consumer needs a proxy in charge of convert-
ing procedure calls in SOAP messages to send over the net to the service
provider. Before that it clearly has to discover the needed service and, af-
ter having agreed on the contract, it has to refer to the WSDL description
in order to know what web interfaces are publicly disclosed.

Service Broker and UDDI: Here each service provider publishes its own ser-
vice descriptions (WSDL) and each service consumer can discover Web
Services by accessing the service broker registry. UDDI is an acronym for
Universal Description, Discovery, and Integration. This is an XML-based
registry whose specification is provided by the OASIS Group3

3http://www.oasis-open.org/committees/uddi-spec/

http://www.oasis-open.org/committees/uddi-spec/

1.4 SOA Technologies 13

1.4.2.2 REST based

RESTful Web Services are based on the Representational State Transfer ar-
chitectural style. It is a client/server based architecture, whose main principle
states that requests and responses has to be based on the transfer of represen-
tations of resources. In a Web Service context, the resource is represented by
the Web Service itself and it is identified by its URL. The client can access the
resource by invoking the corresponding URL. The principles of RESTful Web
Services are[78]:

• Use HTTP methods explicitly.

• Be stateless.

• Expose directory structure-like URIs.

• Transfer XML, JavaScript Object Notation (JSON), or both.

As stated in the first point, the operation the service requester can perform are
represented by the HTTP methods, such as[92]:

• GET, to perform a read operation

• POST, to perform a write operation

• DELETE, to perform a deletion

• PUT, to perform an update

The “REST way” of invoking services can be better explained by means of an
example: let us consider the situation where a service consumer needs to add a
user to a registry. The usual way of doing this through an HTTP request is:

GET / adduser ?name=Ford+Pre f e c t HTTP/1 .1

The REST way would be instead:

POST / use r s HTTP/1 .1
Host : myserver
Content−Type : a p p l i c a t i o n /xml
<?xml v e r s i o n =”1.0”?>

<user>
<name>Ford Pre fec t</name>

</user>

14 Background

As it is possible to see, a REST-ful service uses HTTP verbs already defined in
the protocol, without reinventing an additional layer.
Regarding the WS contract, there are no spread methodologies to date. Usually
the URL is self-explanatory for a human observer. For instance, a typical way
of describing a service is[78]:

http ://www. myservice . org / d i s c u s s i o n /{ year }/{day}/{month}/{ t o p i c }

This way the service interface results quite intuitive, even without strict rules
to code it. But it could not probably be processed by an automated agent, like
WSDL makes possible to do. Even though a WSDL-like description language
has been defined for REST-ful Web Services (WADL4), it is rarely adopted. The
main cause is probably a cultural reason: REST-ful Web Service are supposed
to be light and easy to use and so a WSDL-like document would not be the
simplest way to describe them.
Another key-difference between RESTful Web Services and SOAP ones is the
absence of popular REST Web Service registries.

1.5 Use cases

Use-cases for SOA usage and Web Services can be found in [29][31][32][68], but
many others are also available all over the Web.
We are not going to list all the possible scenarios involving a Service Oriented
Architecture, because it would be out of the topic of this work.
Analyzing the literature related to Web Services and SOA, and referring to [31],
there are however 2 main categories almost all the scenarios belong to:

Static use :
This category involves all those use cases where the developer, at program-
ming time, discovers the service providers and selects the required Web
Service prior to the invocation. Then the developer uses the meta-data
and description to create the Web Service invocation.

Dynamic use :
In this case, the Web Service invocation is performed after the system
is deployed. This means that the discovery, the selection and the ensu-
ing invocation of the Web Service are performed by a software agent at
runtime.

4http://www.w3.org/Submission/wadl/

http://www.w3.org/Submission/wadl/

1.6 Trust in SOA 15

A further separation can be applied depending on the dominium: enterprise or
non enterprise.
Enterprise-level use-cases (those that actually created the need of a Service
Oriented Architecture), involve all the scenarios where a company A needs to
conduct some sort of electronic business with company B. For instance, A might
be willing to automate the exchange of business documents with B. Thus, to
loose the integration issues and to improve automation, they may establish a
WS-based infrastructure for the communication.
Web Services can be adopted, then, outside the enterprise, targeting more
generic consumers. For instance, to compose the underneath architecture of
a distributed system whose results can be potentially requested by any user
(unaware of the underlying architecture). A common example for this case is
the Virtual Travel Agency provided by W3C[29].

1.6 Trust in SOA

There have been many issues discussed about Web Services over the years, re-
garding their implementation, their founding principles and so on. But there is
still a concern that would need to be thoroughly investigated: how can a service
be trusted? What is the right choice when it comes to decide the best service
among plenty of similar ones?
Let us provide an example by means of the well known Virtual Travel Agency
(VTA) scenario:

• Alice is a software developer for Encom Enterprise;

• she’s asked to develop a VTA system, a service helping the end-users
through all the necessary steps to plan a trip;

• she decides to break down the system into its smaller capabilities:

– flight booking

– accommodation booking

– bus ticket purchase or car rental

– payment

• since there are plenty of Web Services providing for the identified features,
she (or an agent on her behalf) has to choose the right one;

• Issue: which service is the right one?

16 Background

• Alice did not use any of the available services in her career, so she picks
them up just relying on few descriptions and her common sense (or the
agent does that, without any common sense);

• after one month, the company providing the flight booking service has to
temporary shut down the service: the Web Service Alice picked up turned
out to be not scalable for the intense traffic the VTA was having.

As the example highlights, selecting the right service does not include only the
problem of discovering services on the basis of what a service can do (functional
properties), but also on how well a service can do (nonfunctional properties),
evaluated according to some non-functional metrics.
Another example could involve Alice in the role of the final consumer instead
of the developer. She may have her personal VTA software agent on her smart-
phone that, based on her needs, searches the best offers for a trip. Alice is then
provided with a list of possible Web Services where to book her trip, but the
problem of which one she should trust still remains.
The issue we are going to analyze throughout the document concerns the prob-
lem of automated trust provisioning in SOA environment.
The VTA scenario will be used as a running example to discuss the trust provi-
sioning issue in SOA henceforth in this document.

Chapter 2

Trust in SOA - State of the
Art

In Chapter 1, we analyzed the background of Service Oriented Computing, an
emerging paradigm for distributed computing, where WSs represent the bricks
of a Service Oriented Architecture.
We discussed about how nowadays this vision is being concretised, highlighting
definitions and technologies involved. At the end we highlighted that there
is still a concern that would need to be thoroughly investigated: how can a
service be trusted? What is the right choice when it comes to decide the best
service among plenty of similar ones? In this chapter we are going to show how
in literature they tried to answer this question, providing a survey about the
state of the art of the Web Services (WS) trust provisioning. In the conclusive
part of the chapter, the sum-up of the considerations is provided, focusing on
the limitations of the current approaches and laying the foundations for a new
approach.

2.1 Terms confusion

One of the major point of confusion concerning the current discussions about
trust/trustworthiness in SOA is related to the meaning of terms. In section 2.3,

18 Trust in SOA - State of the Art

many different literature studies are analyzed, but in most of them the word
trust and the word trustworthiness are used with the same acceptation or with
different meanings in different works. The two terms have a precise meaning
and trust should not be confused with trustworthiness. This will be thoroughly
discussed in Chapter 3. In the meanwhile the two terms will be treated as al-
ready did so far in literature.

2.2 Sources of trustworthiness

In the studies present in literature, trustworthiness of WSs can be drawn by
many different sources, as we will better see in 2.3. A considerable part of them
depends on the QoS features of a WS. For this reason, we provide in this section
a brief explanation of what this metrics are and how they contribute to the non
functional characteristics of a service.
All the adopted metrics boil down to the QoS metrics for WSs identified by
W3C (figure 2.1). As shown in the diagram, there are three main groups of QoS

Figure 2.1: QoS metrics according to the W3C Consortium

features:

2.3 Suggested approaches 19

• Security : the security features can be statically derived, because, when
they exist, they are part of the WS contract.

• Performance: these features depend on the overall past experience with
the service usage. They can be derived by a consumer constantly analyzing
and evaluating its experience with the given WS.

• Application specific: The aforementioned metrics are common ones, which
can be applied to most domains. Since WSs are so diverse, it is impossible
to capture all QoS metrics for all of the domains in a single model. There-
fore, the fourth group, “application-specific metrics”, is reserved for the
metrics that are specific for a certain domain[93]. For instance, a Flight
Booking system may be evaluated depending on the amount of times it
manages to find the cheapest flight among the main flight companies at
a given moment. Or another flight booking system may receive a higher
grade if it allows users to choose multiple flights to compose a single jour-
ney. These features, then, may require or not the consumer past experience
to be evaluated.

The Security features are what Rasmussen & Jansson define as “hard security
mechanisms”[76]. This means that they are not evaluated in a social fashion,
but they depend on the system implementation.
Performance and application specific metrics can be drawn only after some
interactions with the service, and they fit in a “soft security” system. Some
studies include the reputation as part of the QoS features of WSs, as suggested
for instance in [104] by Bo Zhou et al. But there are diverging opinions about
that: other studies like [98] consider the reputation an QoS separated concepts.
We will provide a better explanation of the Quality of Service definition issue
throughout Chapter 3.

2.3 Suggested approaches

There has been a growing literature on studies aimed to address the problem
mentioned in Section 1.6. Many different frameworks and protocols have been
suggested in order to provide the end user with some sort of trustworthiness
clues. In this chapter we aim at grouping and classifying the whole “jungle”
of studies, according to different points of view. Each category identifies issues
and advantages shared by all the belonging works.
This preliminary analysis will highlight the main points of discussion regarding
the topic of trust provisioning in SOA, helping the ensuing definition of a new
approach to be adopted in our framework. Part of the concepts treated in this
section of our work derives from previous studies such like [9][23][16].

20 Trust in SOA - State of the Art

The categorization can be summarized in figure 2.2: 42

Figure 2.2: Classification of Trust Approaches for Online Service Provision[23].

Even though the main effort of this state of the art investigation has been to
devise a rationale-base categorization (as shown in Fig. 2.2 and thoroughly
discussed later on in this Chapter), it is necessary to provide a more general
classification based on architecture of the different frameworks. In fact, even
the architectural choices can result in a more or less adequate solution for this
context.
The systems studied in literature are mainly based on 2 architectures: central-
ized or distributed. Thus, Even if each single approach applies different rules
for the entity-to-entity communication or uses different algorithms to compute
the trust, the architecture-dependent behaviour can be generalized as follow:

Definition 2.1 (Distributed trust provisioning approaches) 42
The trust scores of WSs / service providers are computed/derived after having
directly communicated with other peers in the system.

Limitations: in the context of SOA it is not really possible to generalize the
shortcomings deriving from a distributed architecture, because they are tightly
connected to the specific approach. Anyway, in general, a common drawback is
the system setup and start-up effort.

Definition 2.2 (Centralized trust provisioning approaches) 42
The trust scores of WSs / service providers are provided by a central authority

with the responsibility of computing/collecting them.

Limitations: central authorities are a single point of failure and thus can exist
only under rigidly constructed and administered computational environments,

2.3 Suggested approaches 21

in particular considering the capacity demand of a SOA environment. Another
technical limitation resides in the possible alteration of the ratings (collusion or
retaliation). Moreover, a centralized trust authority can never be a good enough
recommender for everyone: different entities should be allowed to make up their
own mind [5].

Further advantages and drawbacks will be discussed in the following sections
according to each approach.
These initially outlined categories embody all the approaches that we are going
to describe in the following sections. Each of them is designed around either a
distributed architecture o a centralized one. Some approaches envelope works
conceived on a both distributed and centralized architecture.

2.3.1 Direct Experience

This class of approaches is based on presumptions drawn from the service con-
sumer’s own direct experience with the target service[7]. The rationale is that
the trust can be build upon some quality parameters that depend on the service
behaviour in the course of time. This means that the service can be trusted if
the consumer past experience with that service results complying to the given
trust policies. A model following this principle is the one suggested in A Cog-
nitive Trust-Based Approach for WS Discovery and Selection, where experience
is defined as follow:

An Experience is the knowledge gained after having a transaction
with a service. The experience with a particular service is stored in
a private repository as a set of values termed as Quality of Experience
(QoE). The term (QoE) is defined as how the user feels about how a
service was delivered, relative to his expectations and requirements.[7]

Jonker and Jan Treur present an analysis of models for the dynamics of trust
based on experiences[43]. They try to investigate the founding principles govern-
ing the evolution of an agent’s trust towards a service. In order to provide some
evolution or update function, they firstly had to define an initial trust, that is
currently the problem of the trust-by-experience approaches. They then assume
either unconditional trust or unconditional distrust where no direct experience
is available. In [103] the authors describe a layered framework conceived to
manage trustworthiness at seven levels. However, as the authors themselves
point out, the quality of the model to be built is fully dependent on the experi-
ence of the practitioners, that, as described below, is the main weakness of the
trust-by-experience approaches.

22 Trust in SOA - State of the Art

Definition 2.3 (Trust by Direct Experience) 42
A service consumer trusts a service because of his good past experience with
the service.

Definition 2.4 (Initial trust) 42
The assumed trust belief of a consumer when no direct experience is available.

Limitations: This approach does not suit large open systems where anyone
can publish its (malicious) code, since it does not allow to trust a service before
its execution. Moreover, whenever an unconditional distrust approach is used,
brand new services may be not considered trustworthy even if conforming to the
needs.

Scenario 1: Alice has no way to select the flight booking service according to
her trust preferences. She might decide to blindly select the WS, taking the
risk of invoking the it although there is no evidence of its trustworthiness. This
forces Alice to accept not only the WS inherent risk of prior performance (i.e., to
pay for services and goods before receiving them) but also the risk of blind (i.e.,
untrusted) execution, since she is going to invoke the service without trusting
it.
On the other side, she might decide to not trust a service just because of a
slightly unwelcome policy (e.g. the service demand the consumer’s address to
be accessed), even if the service was actually compliant with all the needs of
Alice (making eventually the policy more acceptable).

2.3.2 Trusted Third-Party Approaches

Truste Third-Party (TTP) approaches are based on the idea that the service
consumer can rely on a third-party in order to obtain a trust value of a given
service. Third-party may refer to different sort of entities:

• a trusted central authority

• members of a community, that can be represented by other service con-
sumers or interacting agents (further details later on)

The underlying assumption in these approaches is that consumers must trust
the third party they decide to consult. This category is further split in two
sub-categories: social and matchmaking approaches. In both of them the final

2.3 Suggested approaches 23

decision is based on the assessments provided by the TTP. The difference lies
on how the assessments are computed.

2.3.2.1 Social (Indirect Experience)

The trust evaluation towards a WS is forged by a cooperating community whose
members have directly or indirectly interacted with such WS. In order to be ef-
fective, each community member has to continuously review the services (and
the service providers) he is using. The global evaluation is not necessarily cal-
culated by the community members themselves, but might be the result of a
centralized information retrieval applied on member-supplied information.
In literature we can find three different social approaches:

• reputation, based either on a centralized authority or on a distributed
P2P system

• recommendation, based on a central authority

• referral, based on community of interacting agents

Reputation

The definition of the term reputation from The English Oxford Dictionary is:

a widespread belief that someone or something has a particular char-
acteristic

In a SOA context, the rationale is that a service is trustworthy as long as the
community has a good opinion about it. The reputation system is responsible
to collect ratings about users, services and service providers from members in
the community.
The global opinion can be modeled either around the QoS parameters described
in Section 2.2 or depending to what degree WSs adhere to the contract. How-
ever, the parameters used to rate a service, user or service provider are not
influencing the rationale of a TTP reputation system: an individual’s subjec-
tive trust on a service is derived from the reputation of that service or, in other
words, from the direct experience of someone else. This leads to the following
definition:

24 Trust in SOA - State of the Art

Definition 2.5 (Trust by Reputation) 42
A service consumer trusts a service because of its good reputation.

Limitations: another shortcoming is that trust relies on past information from
other members of the community. A natural problem arises in case of new
services. For example, when a service initially registers for business, no other
consumer has interacted with it and consequently no information exists about
its past behaviour and questions about its trustworthiness are left unanswered.
This can be defined as the new WS ramp-up issue.

Definition 2.6 (New WS ramp-up issue) 42
A new WS takes time before being adequately evaluated.

Scenario 2: Alice found a service for booking flights with a good contract under
the functional point of view. She does not have any experience though with that
WS, so she looks for some reputation score of the service. Unfortunately, the
service is new and no reputation scores are available. Alice is still in a vulnerable
position, under the risks of untrusted execution.

Limitations: Another shortcoming is that the effectiveness of any reputation
system relies on the number of members in a community and on their be-
haviour. In particular, the fewer the members in a reputation system, the
more inadequate the ratings provided by the systems. This issue gives life to
the community-bootstrap problem.

Definition 2.7 (Community bootstrap issue) 42
A community-dependent system is unlikely to provide good quality results as
long as the community is small or not really active.

Scenario 3: Alice tries to query a reputation provider for getting a trustworthi-
ness value of the WS she found. The value is low, so she decides to do not trust
the service. Nevertheless, that service was evaluated by a very small number of
consumers, non statistically relevant for a reliable rating.

A major distinction between different reputation systems is outlined by the base
architecture: centralized or distributed [93][46].

Centralized42
Most of the studies suggests centralized approaches[65], typical of e-commerce

2.3 Suggested approaches 25

web sites1. In those systems a central authority is responsible to collect
all the ratings from other members in the community (e.g. QoS data from
WS consumers, in our case) who have had direct experience with a specific
service or provider. The authority uses these ratings to derive a reputation
score for the service and makes it publicly available to future, potential
consumers. The central authority is then responsible for

Figure 2.3: Centralized reputation system

1. authenticating the users,

2. recording, aggregating and revealing ratings,

3. owning ratings.

In [65], a central QoS registry is deployed to collect and store QoS data
from WS consumers.

Definition 2.8 (Centralized reputation system) 42
The reputation value of a WS / service provider is owned by a central
authority.

Limitations: A technical limitation, as it may happen in such a kind of
reputation system, resides in the possible alteration of the ratings (col-
lusion or retaliation). Moreover, a centralized reputation system suffers
of all the shortcomings listed in Section 2.2 for approaches based on a
centralized architecture.

Distributed: two notable systems exploiting a distributed reputation com-
munity are EigenTrust[48] and the PeerTrust[96]. These are based on a

1e.g. http://www.ebay.com

http://www.ebay.com

26 Trust in SOA - State of the Art

system without a central authority. Each member of the community (be
it an agent or a human) records his own opinion about a service to make
it available to the other members. If one of them needs a trust evidence
of a given WS, he tries to request ratings to all the possible members he
can reach (if they had some previous experience). The reputation grade
is then calculated as a function of the obtained ratings.

Figure 2.4: Distributed reputation system

Definition 2.9 (Distributed reputation system) 42
The reputation value of a WS or of a WS provider is computed after having
received the reputation scores from other members of the community.

Limitations: Issues explained in Def. 2.7 and 2.6 are still present in this
solution.

Scenario 4: Alice needs to obtain the best flight booking service among
those who are publicly available. Her software agent tries to query all
the neighbour agents for the reputation grade of a service in the P2P
net it belongs to. The agents (based on theirs and their neighbours past
experience) return the answer and, after having calculated the reputation
score, Alice’s agent decides to discard the service. Alice still does not know
whether to trust or not the agent because the WS is a really new one and
the P2P community might still be missing some real long term experience
with that service.

Many studies have addressed the new WS ramp-up issue defined in Def. 2.6. The
question is: how the community should repute a new service (or new provider,

2.3 Suggested approaches 27

depending on the evaluated subject)? There have been many suggestions re-
garding the choice of the right starting reputation score. In the Sporas system
suggested by Giorgios Zacharia et al.,new users start with a minimum reputa-
tion value, and they build up reputation during their activity on the system. The
reputation value of a user never falls below the reputation of a new user [102].
The authors of the Dirichlet algorithm[46] (conceived for P2P sharing network)
state that it is possible to track the average reputation score of the whole com-
munity, and this can be used to set the base rate for new agents, either directly
or with a certain additional bias[46].

Limitations: In general, when the starting reputation is low, the new WS (or
provider) is underestimated and, even with a good actual behaviour, it may
be discarded a priori. Whenever a new WS receives an initial reputation score
higher than the minimum, this can be exploited by malicious users by contin-
uously subscribing and unsubscribing to the system in order to keep having a
“non zero” reputation value.

Scenario 5: Alice’s software agent starts discovering new flight booking WSs on
behalf of Alice. It queries a TTP (be it either a P2P community or a centralized
authority) who states that the chosen service has a non zero grade. Alice still
does not know whether the service is trustworthy or not, because the service
might belong to a malicious provider just subscribed to the community.

Recommendation

Recommendation systems [9][5] aim at making a prediction of a consumer’s
needs or interests. In its common formulation [6], the recommendation problem
is reduced to the problem of estimating ratings for the items (such as services)
that have not been seen by a consumer. Intuitively, this estimation is usually
based on the ratings given by this consumer to other items or on the ratings that
similar users provided for the targeted items. Once it is possible to estimate
ratings for the yet unrated items, then the system can recommend to the user
the items with the highest estimated ratings.

Definition 2.10 (Trust by Recommendation) 42
A service consumer trusts a service because of some recommendations got from
a trusted authority.

In general, recommendation-based systems work as good as wide and rich the
knowledge of the system is. In other words, it is necessary to know both the

28 Trust in SOA - State of the Art

community and the user requesting the service in order to produce reasonable
evaluations.

Limitations: The key weakness of this family of approaches, as for reputation
systems, still lies in the rationale of the approach: they rely on the existence
and good working of a community that provides ratings to the centralized rec-
ommender system. In large open service-oriented systems these assumptions
are too strong, leaving a consumer to a vulnerable position in case he does not
belong to any community or the community is so poor that does not provide a
significant ratings. Finally, recommender systems are conceptually centralized
and the weaknesses discussed for centralized systems are still valid (Section 2.2).

Scenario 6: Back to our scenario, Alice’s agent does not belong to any recom-
mender community. Therefore, Alice is still left in a vulnerable position, under
both the risks of prior performance and untrusted execution.

Recommender systems are usually classified into five categories, according to
how recommendations are computed [9][23][16]:

Content-Based Filtering : the consumer is recommended items similar to
the ones he preferred in the past; it is a static approach for selecting items
by filtering web sites or documents in terms of the words that occur in
them. For instance, this approach could be applied to services by indexing
their textual descriptions. But this approach is very primitive and would
be a step backward from current WSs standards (which involve formal
structured description of their functionalities);

Collaborative Filtering : the consumer is recommended items that people
with similar tastes and preferences liked in the past; Collaborative Fil-
tering (CF) represents the most widely used recommender method, for
instance in e-commerce sites such as Amazon2. In CF, user’s ratings for
different items are stored centrally and these ratings are often simply cap-
tured as the products a given user purchased [38]. If two users rate a set
of items similarly, they share similar tastes and for this reason they are
neighbours in the jargon. This information can then be used to recommend
items that one participant likes to his or her neighbors. In other words,
a user is given recommendations based on the ratings by other users who
are similar to the given user, that is who have similar subjective tastes.
A simple example of how a recommender system works in general is shown
in Fig. 2.5. If Alice and Bob both bought books A, B and C and Alice

2http://www.amazon.com

http://www.amazon.com

2.3 Suggested approaches 29

Figure 2.5: Basic idea of Collaborative Filtering[24].

bought also book D, then a CF system may recommend Bob to buy D.
The implicit assumption underlying CF systems is that different people
have different tastes and rate things differently according to subjective
taste. Note that this represents the key difference with respect to reputa-
tion systems [47]. Indeed, reputation systems are based on the seemingly
opposite assumption: all members in a community should judge the qual-
ity of a product or service consistently. In other words, CF takes ratings
subject to taste as input, whereas reputation systems take ratings assumed
insensitive to taste as input.

Limitations: While recommender systems seem working well in e-commerce
sites to buy products, there are some limitations of applying this approach
to service selection [38]. First of all, the assumption that someone pur-
chased a service does not mean that they liked it. Then, in the SOC vision,
services are distributed and advertised by a registry or broker. This entity
does not provide the service that it is recommending and may have little
to say about its trustworthiness. For instance, a registry would not have
any control on the actual service interaction, whereas an e-commerce site
would know that a product was shipped correctly.

Demographic: [77][54][71] This sort of recommendation systems aims at cat-
egorizing users analyzing their personal attributes and at making recom-
mendations based on demographic classes. This can be achieved by start-
ing classifying some given examples, like consumers and WSs rating; after
that, whenever a potential WS consumer submits a request to the system,
his demographic information are compared with the already given one in
order to obtain a potentially preferred WS (by means of a rank).

Limitations: In order to make the system capable to provide the match

30 Trust in SOA - State of the Art

to the requesting user, it is necessary both to have a starting knowledge to
build a demographic classifier and to gather the user demographic profile.
This can be done by asking the new user to disclose some sort of personal
information or by mining his profile out of his interaction with the system.
This is clearly not a proper idea if applied to a SOA-based open system,
where the user may probably not want to disclose his information and (in
the other case) may need to get recommendation since the beginning of
his interaction with the system, without waiting a long time before having
his demographic profile computed.

Scenario 7: Alice decides to join a community based on a demographic
recommendation system. In order to join, she is asked for some sensitive
information of the company is going to use the service. Such informa-
tion are the company name, working field and currently used WSs. The
company is not really willing to disclose these details. So Alice does not
provide any information, but she still cannot obtain any suggestion from
the system concerning a flight booking WS because there is no demographic
knowledge of the consumer (Alice on behalf of her company).

Utility-based: [34] The rationale of a utility-based recommender is that each
object of a set (WSs in our context) has a defined utility value for each
user. The utility-based recommenders derive the utility function of the
user in order to compute his profile. Then the profile is used to find the
most fitting objects[34]. The benefit of utility-based recommendation is
that it can factor non-product attributes (such as WS QoS parameters)
into the utility computation.

Limitations: As for the demographic recommender, the user needs to in-
put his own utility function, facing the same problem as the demographic
and collaborative filtering recommenders. In a centralized recommenda-
tion system it might be a too strong assumption to think the user is willing
to unconditionally share his preferences with third parties.

Scenario 8: Refer to the Scenario 7.

Knowledge-based: [90][83][81] Knowledge-based recommenders attempt to sug-
gest objects based on inferences about a user’s needs and preferences. In
some sense, all recommendation techniques could be described as doing
some kind of inference. Knowledge-based approaches are distinguished
in that they have functional knowledge: they have knowledge about how
a particular item meets a particular user need, and can therefore reason
about the relationship between a need and a possible recommendation.

2.3 Suggested approaches 31

Limitations: Knowledge-based recommenders have the intrinsic problem
of all knowledge-based systems: they need a starting knowledge, both of
the community and of the users. This is, for the same reason mentioned
above, a problem in a system where users need to find the right component
for their service oriented system even without necessarily having a past
interaction with the community.

Hybrid Approaches : In a survey by Robin Burked[16], the hybrid recom-
menders are introduced with this definition:

Hybrid recommender systems combine two or more recommen-
dation techniques to gain better performance with fewer of the
drawbacks of any individual one. Most commonly, collaborative
filtering is combined with some other technique in an attempt to
avoid the ramp-up problem.

In a nutshell, hybrid approaches just consist of the joint collaboration of
some of the approaches mentioned above, either by combining the final
results of each of them or by making them interact during the mining
process.

Limitations: Each problem should be treated with a different combina-
tion depending on the domain, the available data and so on. Considering
that the hybrid recommendation approaches are still a matter of research,
it is difficult to identify one system capable of achieving the required goal
to date. It should be necessary to conceive a specific hybrid recommender
for a SOA trust provisioning system and than prove its reliability.

Those typologies of recommendation system share one main weakness: the sys-
tem needs many information about the users in order to provide useful evalua-
tion. This can be achieved by either asking the users to disclose maybe sensitive
information (as we have seen this does not suit the SOA environment) or by
mining them out of the interaction of the users with the system, that would
require a long time. This leads to the following issue definition:

Definition 2.11 (New User ramp-up issue) 42
A new user needs to interact with the trust provisioning system in order to
receive good quality results.

Moreover, the well known issues of the social systems are still present: commu-
nity bootstrap and new service ramp-up (mitigated in the hybrid recommender).
Finally, the recommendation systems are conceptually centralized (Section 2.2).

32 Trust in SOA - State of the Art

Referral

A common weakness of most recommendation and reputation mechanisms lies
in their being conceptually and architecturally centralized: a single authority
is responsible to collect, aggregate and present all the ratings. To address this
limitation, referrals [84][100] have been proposed as a decentralized approach
based on online communities and software agents technologies. An online com-
munity is a set of interacting members (or principals in the jargon) representing
people, businesses or other organizations. The members of a community provide
services as well as referrals for services to each other. Referrals may be provided
proactively or in response to requests. Members are assisted by software agents
to help them manage their interactions. Software agents are persistent entities
that can perceive, reason, act, and communicate [84]. Agents represent different
members and assist them in evaluating services and referrals provided by oth-
ers, maintaining contact lists, and deciding or suggesting whom to contact for
different services. In this manner, agents help their members in finding the most
useful and reliable parties to deal with, supporting some of the functionality of
a registry in a distributed way. Referrals are based on a representation of how
much the other available parties can be trusted. Agents are responsible to build
and manage these representations taking into account the previous experiences
of their members and collaborating each other. Participating on behalf of dif-
ferent members, agents appear as autonomous and heterogeneous. Moreover,
agents organize themselves into communities and agents in the same community
are called neighbours. Communities are dynamically formed according to the
model that each agent maintains of some other agents. This model is based on
the party’s expertise (ability to provide correct services) and sociability (ability
to produce accurate referrals). An example showing how a referral system works
for online service selection is given in Figure 2.6. Agent A sends a query (i.e.,
a request of information about who provides a specific service) to its neighbors
B, C and D. Agent C decides to ignore the request and, acting autonomously,
it does not reply. Instead, agents B and D answer to A’s request but in two
different ways. Indeed, in referral systems an answer can be a referral to another
member (as in the D’s answer) or even oneself (B’s answer), in which case there
would be some more interaction to actually provide the service. According to
D’s referral, A decides to forward the query to E too. Again, E could reply
with some referrals or proposing itself. A will take its final decision reasoning
on the received answers.

Definition 2.12 (Trust by Referrals) 42
A service consumer trusts a service because of some referrals got from trusted
software agents.

2.3 Suggested approaches 33

Figure 2.6: Example of Referral System for Online Service Selection.

Recommendation systems rely on a third party charged of computing recom-
mendation. This authority does not necessarily have to expose the identity of
the sources of the recommendations that it aggregates. On the contrary, in re-
ferral systems the participants reveal their ratings to those whom they trust, so
the ratings would be more likely to be honest.

Limitations: Referral systems address some limitations of reputation and rec-
ommendation systems (such as, their centralized nature) but still rely on the
judgements of the members of a community. Here the community is formed by
software agents that act on behalf of their members (people, businesses etc.).
Therefore, the effectiveness and practicability of the approach resides in the ef-
ficiency of the interacting community. Some technical practical issues, such as
agents and members registration and communication as well as referrals rep-
resentation, are left unanswered in the literature, making the impression of a
still immature (or at least just academic) approach. Anyway, a part from these
technical questions, the approach is still based on ratings coming from the di-
rect previous experience of someone else, which leads to the main problem of
selecting trustworthy services in the absence of some neighbors that can help
us.

Scenario 9: Alice’s discovery agents found a flight booking WS reference ex-
ploring a UDDI registry (for SOAP-based WSs). But the discovery agent does
not belong to any community aware of that WS and then it cannot get any
trustworthiness score.

34 Trust in SOA - State of the Art

2.3.2.2 Matchmaking

These approaches are based on a component called matchmaker, responsible
to match a user’s request and trust preferences with available online service
descriptions. If some matches are found than the results are sent back to the
user. As shown in Fig. 2.7, two different matchmaking architectures have been
proposed in literature, depending on the centralized or distributed nature of the
matchmaker. A centralized trust-based matchmaking methodology has been

Figure 2.7: Example of Matchmaking Systems for Online Service Selection[24].

proposed by Galizia et al. in [28]. Differently to other approaches, it embodies
the WS selection problem in a classification problem: given a set of user’s policies
and established a classification criterion, the goal is to identify a class of WSs
matching the trust policies of the involved users. In other words, WSs are
classified according to the specific user as well as trust policies. To do this,
they have developed an ontology, namely WSs Trust Ontology (WSTO), that
is able to represent generic trust specifications within the semantic WS-based
interaction context. Being based on the WS Modelling Ontology (WSMO),
WSTO can be supported by the IRS-III platform [22] which in this context
behaves as a centralized trusted third-party by storing both user’s profiles and
services and reasoning on them (architecture A in Fig. 2.7).
A similar approach has been proposed by Olmedilla et al. in [70]. The main
difference with respect to [28] lies in the underlying registry and matchmaking
architecture, which is based on a P2P network (architecture B in Fig. 2.7).
Whenever a new service provider wants to offer its services, it must just join
such network. On the client side, a user looking for a service must send a query
along with his policies to a reasoning agent he trusts. The agent distributes

2.3 Suggested approaches 35

the query to the peers on the network and each of them applies a matching
algorithm. Whenever a peer has matches, it sends them back to the reasoning
agent which joins the results and present them to the user.

Definition 2.13 (Trust by Matchmaking) 42
A service consumer trusts a service because a trusted (central/distributed)
matchmaker states that the service’s policy matches the consumer’s request.

Limitations: As already discussed for reputation systems, a centralized ar-
chitecture such as the trust-based matchmaking methodology proposed by [28]
does not suit real open service oriented environments where the number of users
and services might be very high. Having a single central matchmaker where
both users and services must be registered to and where all the matches are
computed is very far from the SOC vision. Moreover, to work correctly, the
approach requires the users to disclose all their policies when they subscribe to
the matchmaking system, since no trust negotiation is supported. This is in
contrast with the openness of the system that would require a user to carefully
disclose his/her policies. A consequence of this requirement is that the matching
algorithm is not flexible and it is only based on a “take it or leave it” philosophy.
Finally, it is not realistic to ask service providers to disclose all of their (maybe
very sensitive) policies to a centralized registry.

Olmedilla et al. [70] replace the centralized matchmaker and registry with
a Peer-to-Peer network, distributing the matchmaking process to the service
providers. This would surely improve the performance and scalability of the
matching algorithm, that might be computationally expensive to be executed
on a single central server. Moreover, in a distributed approach servers can keep
policies locally and private, which is an essential property in realistic open en-
vironments.

Limitations: The problem is moved from trusting a service or a service provider
to the one of finding such a trusted reasoning agent.
Furthermore, the authors point out that different groups of users might use dif-
ferent trusted agents, i.e., a university might set up an agent for its students and
professors while a company could use a different one. Relying on such computa-
tional entities, the approach is not appropriate for selecting trustworthy online
services in SOC environments, because one cannot assume that these trusted
agents will be always available for any context and any service.

Scenario 10: Alice is not willing to disclose all her trust policies to a central
matchmaking service. Moreover, looking for a distributed matchmaking service

36 Trust in SOA - State of the Art

she faces the problem of selecting and trusting a reasoning agent. But where
can she locate such computational entities? And which agents should she trust?
On which basis? Current distributed matchmaking technologies do not answer,
leaving Alice in the same (vulnerable) situation.

Limitations: This family of approaches seems to solve the main problem of the
community-based systems: the community-size-dependent quality. The trust-
worthiness rating is evaluated matching the user trust requirements directly
against the WS provided trust guarantees. However this approach exposes an-
other issue: in the real world, guarantees are not always met. It would not
be difficult for a malicious (or distracted) user to craft a WS description so to
pretend to be a trustworthy WS. But the contract might be fake and not re-
spected by the provider. In this case a community would turn useful, providing
evaluations based on the past experience.

Scenario 11: Let us assume that Alice submitted the company’s trust profile
to either a centralized or distributed matchmaker. Now a software agent is
instructed to trust WSs providing the following trust guarantees:

• Encryption algorithm: AES

• Capacity: 20 simultaneous connections

The matchmaker essentially returns the matching WSs and Alice, by means of
the agent, selects one. During the pre-easter week (when many people use the
VTA system), after one month the VTA service is up and running, Alice finds
out that the system is having many faults. Then she realizes that the flight
booking WS cannot handle more than 10 connections simultaneously and the
VTA system has to be temporary taken down.

2.3.3 Hybrid

Hybrid approaches for trust-based online service selection are based on a combi-
nation of well known trust methodologies, such as the ones addressed in previous
sections. The key idea is that combining two or more approaches a consumer
can improve the quality of the assessments.

2.3 Suggested approaches 37

2.3.3.1 Socio-Cognitive

These approaches are mostly based on the works of Falcone and Castelfranchi
[19][17][72]. Influenced by the Artificial Intelligence field and especially by the
Multi-Agent System (MAS) paradigm, they treat trust as an agent’s mental
state. In this view, trust is articulated as an assumption or an expectation that
a service consumer makes about a specific service. This expectation is based
upon more specific beliefs which form the basis or the components of trust.
As pointed out in [7], beliefs can be seen as the answers to the question “What do
we have in mind when we trust a service?”. For example, we may trust a service
because we believe that the service is able to do what we need (competence
belief), and it will actually do it quickly (promptness belief). Competence and
promptness are examples of such “mental ingredients”, or beliefs, of trust. A
belief describes therefore a state of the world from the point of view of an agent.
That is, it represents the state the agent has in mind for a service: which/how is
the agent’s trust in (evaluation of) the service as for its competence and ability?
Which/how is the agent’s trust in (evaluation of) the service as for its intention
and reliability? Which/how is the agent’s trust in (evaluation of) the service as
for its goodwill and honesty? And so on. According to this rationale, degrees of
trust can be derived directly from the strength of the agent’s trust componential
and supporting beliefs. This leads to the following socio-cognitive definition of
trust.

Definition 2.14 (Socio-Cognitive Trust) 42
The degree of trust is a function of the subjective certainty of the pertinent
beliefs. Therefore, a service consumer trusts a service because of some of its
subjective beliefs.

Examples of beliefs proposed in literature [19][17][72][7] include:

• Competence (or Reliability) Belief: the service’s raw ability to accomplish
a task, such as providing accurate results or performing a desired action

• Availability Belief: the availability of the service

• Promptness Belief: the speed at which the service responds to task re-
quests by accomplishing the agreed upon task

• Cost Belief: cost refers to the monetary value that the consumer is willing
to pay

Since the trust level is a function of such subjective beliefs, the approach requires
the ability to form coherent beliefs about different characteristics of services

38 Trust in SOA - State of the Art

and reasoning about these beliefs. A key question therefore arises: how are
such beliefs obtained? That is, from which sources? The answer to the above
question differentiates the various proposals in literature. The most common
sources of belief can be summarized as follows:

• Direct Experience: the personal knowledge derived from participation or
observation from direct interactions with a service (Section 2.3.1).

• Reputation: the global trust value resulting from the consumers’ ratings
of past interactions with the service (Section 2.3.2.1)

• Categorization: the process of grouping things based on prototypes (i.e.,
how the properties of a class are transferred to their members)

• Reasoning: the act of using reason to derive a conclusion from certain
premises (i.e., more general than categorization)

For instance, in [43][82] the authors propose models in which they consider
the direct interaction (experience) or reputation as sources. In [72] sources
are categorization and reasoning. In [7] Ali et al. restrict sources to direct
experience and reputation.

Limitations: A first weakness of the approach lies in the fact that it is based
on beliefs obtained by means of the well know (and problematic) methodologies
for trust. In other words, we are moving the problem of selecting a trustworthy
service to the problem of selecting trustworthy beliefs that will be used as rea-
soning basis for deciding on the trustworthiness of the service. Another major
limitation lies at the implementation level. To fully realize this approach, some
sort of BDI3 agents [75] is needed. Indeed, as Falcone et al. remarks in their
paper [19] only a cognitive agent can “trust” another agent. We mean: only an
agent endowed with goals and beliefs. This requirement seems too strong when
applied to open and large service-based systems, since it is not reasonable to as-
sume that every agent will be conforming to the BDI model (which, a part from
the modeling of trust, requires specific architectures to support the reasoning
on beliefs and goals).

Scenario 12: Alice is still searching for the most fitting flight booking WS
to integrate to the VTA system. She is told then to delegate the task to an
automated agent that will perform a reasoning process on the available WSs,
interacting with other agents. Now Alice has to choose the agent that best
suites her own subjective believes of trust.

3Belief-Desire-Intention

2.3 Suggested approaches 39

Scenario 13: Let us assume that a fitting agent is already available. This
agent can manage to communicate with other agents of the same kind (BDI
agents, for instance). Considering the openness of the system Alice is dealing
with, where no strict rules are enforced, she realizes that her agent will not
be capable of communicating with many other agents of the same kind. The
selected WSs are then narrowed to a small amount compared to the total. The
chosen WS is thus going to be far away from the best available choice.

2.3.3.2 Trust & Reputation

Studies such as [39][40][45] propose methods for assessing the quality of online
services by combining trust and reputation techniques in a single integrated
framework. For instance, [45] shows how (Bayesian) reputation systems can be
combined with trust modeling based on subjective logic [44]. [39] describes a
report-driven framework. In this study, WSs have their QoS profile computed
by means of reports provided by both providers and consumers. The profiles
are used to generate a WS rank based on the consumer requirements. This is
the reputation side of the framework. On the other hand, it is necessary to
guarantee the reliability of the provided report, because a real world scenario
would also include both liars and distracted users that would poison the rank-
ing system with false/wrong reports. Thus the authors suggest, along with the
reputation framework, a system (enhanced by some previously trusted entities)
capable of identifying liars.
The rationale of these approaches is that by combining two different trust
methodologies the resulting integrated framework will improve some weaknesses
of the constituent methodologies, and thus the overall assessment of online ser-
vices.

Definition 2.15 (Trust & Reputation based system) 42
A system providing for a trustworthiness score employing methodologies based
on both reputation and trust. One is used to enhance the result supplied by the
other.

Limitations: Although these approaches are remarkable, especially [45] where
the integration results in a flexible framework for online trust management, they
still suffer the main limitations of their constituent methodologies. For instance,
both approaches inherit one of the main weaknesses of reputation systems, that
is to be based on a centralized and trusted reputation center (Section 2.3.2.1).
Moreover, as for [45], there are many issues inherited by the community-based
trust provisioning systems that have not been addressed yet.
The authors of [45] propose a bootstrapping method consisting of creating

40 Trust in SOA - State of the Art

trusted reports for the most important WSs by means of trusted monitoring
agents. With this approach there would be the problem of selecting the most
important WSs nonetheless.

Scenario 14: Alice’s WS discovery agent obtains a rank of the most fitting
flight booking WSs. Alice now knows what the centralized system “think”
about the available WSs, but she does not know whether the data used for the
computation were enough to generate a useful rank. She might has to wait for a
long period before having a good evaluation of the available flight booking WS.

2.3.3.3 Direct Experience & Reputation

[80][73][12] propose a model where the trust in a service is computed as a rating
of the level of performance of the service. This overall performance is not limited
to the agent’s direct experience (or confidence, see Section 2.3.1) but it also
based on the evaluations by other agents in the system (in [80] it is named the
group experience, i.e. what the other members of the group think about the
agent being evaluated and of his group). Thus, in these models, trust can be
seen as a rating built as a result from combining agent’s direct experience (with
the service) along with the social reputation of the service provider.

Definition 2.16 (Trust by Direct Experience & Reputation) 42
The trust towards a service is evaluated by means of the user direct experience
combined with the service reputation.

Limitations: Again, the combination of two methodologies improve some weak-
nesses of one constituent model, but it does not provide a complete solution
to the trustworthy online service selection problem. For instance, in [73] the
authors combine confidence and reputation to address the situation where no
previous experience of the service is available (main weakness of the direct expe-
rience method). But to do this they based their proposal on trust and reputation
mechanisms to infer expectations of future providers’ behavior from past expe-
riences in similar situations. This idea inherits the already discussed problems
of trust and reputation mechanisms.

Scenario 15: Alice’s agent cannot establish a reliable trustworthiness score for
certain flight booking WSs because there are no past interactions with them

2.3 Suggested approaches 41

and, moreover, they seem to have joined the WS network too recently in order
to have some useful reputation evaluations.

2.3.4 Automated Trust Negotiation

Automated Trust Negotiation (TN) [11] is an approach specifically targeted to
allow agents to access sensitive data and services in open environments. Trust
negotiation protocols are based on the iterative disclosure of digital credentials
and requests for credentials between two unknown parties (strangers in TN
jargon), with the goal of establishing sufficient mutual trust so that the parties
can complete a transaction. Informally, digital credentials (credentials for short)
refer to the online analogues of paper credentials (a drivers license, passport, or
employee ID card, for example). Thus, a credential is a digitally signed assertion
by a credential issuer about the credential owner. It is usually signed using the
issuers private key and verified using the issuers public key [94]. To automate
trust negotiation, each party must establish access control policies (policies for
short) to protect its sensitive resources, including credentials and services, from
inappropriate access. Each policy should specify the digital credentials strangers
must present to access the protected resource. Policies can themselves be seen
as sensitive resources. To better understand how TN systems work, let us apply
the approach to our Virtual Tourism Agency scenario, under a different point
of view: Alice in this case is not a developer, but an occasional user that has to
plan a trip helped by a VTA software agent installed in her smartphone.

Scenario 16: To trust the discovered flight booking service, Alice’s discov-
ery agent decides to start a Trust Negotiation with the flight booking service
provider, as shown in Figure 2.8. The steps of the negotiation are described
below.

1. The negotiation starts with the agent request of the service. At the time
of the request, the agent has no prior knowledge of the flight booking WS
provider’s requirements for granting access to the service.

2. The flight booking WS provider replies sending a policy to the agent. Such
policy specifies that the agent must submit two credentials, namely Alice’s
passport ID and VISA credit card number, in order to use the agent service
and to make an online booking.

3. Alice wants to disclose confidential information only to trusted third par-
ties. Thus the agent is programmed to unconditionally disclose the client’s
passport ID for the flight booking service, but it is programmed to disclose

42 Trust in SOA - State of the Art

Figure 2.8: Example of Trust Negotiation for Trust-Based Online Service
Selection[24].

VISA card number only to a business that is a member of the Better
Business Bureau (BBB). Therefore, the agent replies to the flight booking
service provider disclosing the client’s passport ID and requesting a BBB
membership credential.

4. Fortunately, the flight booking service provider is a BBB member and
discloses the membership number to the agent.

5. Having the policy satisfied, the PAA replies disclosing client’s VISA card
number to the flight booking service provider.

6. Finally, the flight booking service provider allows Alice’s agent to invoke
the service and the TN protocol ends successfully. At the end of the
negotiation, Alice’s agent trusts the flight booking WS provider and the
flight booking WS provider trusts the agent.

The above example should make clear the concept of trust in TN systems. Here
the point of view is not restricted to the service consumer only (how the service
consumer may trust a service) but the goal is to establish a mutual trust between
service consumer and provider.

Definition 2.17 (Credential-Based Trust (or Trust by Negotiation)) 42
A service consumer and a service provider mutually trust each other because

2.3 Suggested approaches 43

the access control policy of the requested service is compliant with the access
control policy of the service consumer.

Note that the above definition does not state that a negotiation will always
succeed if the parties’ policies are compliant. Indeed, the success of the ne-
gotiation depends on several factors. For instance, a negotiation could take
different routes according to the negotiation strategies adopted by the parties
[49]. The above definition just states that if a trust negotiation succeeds estab-
lishing a mutual trust among two parties then this is because the two parties
have compliant access control policies for the requested resource.

Limitations: Trust negotiation principles and systems have been widely inves-
tigated in the last few years, both in different (still mainly academic) domains
(like e-Business, e-Commerce, P2P systems and more recently in WSs [25]) and
with respect to issues such as privacy, safety and efficiency. This effort is evident
in the growing literature on TN related issues ([94] [101] [99] [56] [69] [70] [57]
[11] [86] [87] to mention only a few). However, several key issues have still to
be addressed to bring Trust Negotiation to its full potential. Listing all these
weaknesses is outside the scope of the paper and in the following we will try to
identify only the ones that are relevant to the online service selection problem.

Lack of Real-World TN Systems: to date, research in Trust Negotiation
has been primarily of a theoretical and academic nature, resulting in a
strong theoretical foundation of the matter but developing only few proof
of concept prototypes ([94][3][14]). Real-world Trust Negotiation systems
are still missing.

Lack of TN Standards: to implement a real-world TN system, a number of
important technology-related issues must be addressed and to date no
standards have been identified. For instance, one can find many languages
for expressing resource access policies (e.g., [59][10][2]), several protocols
and strategies for conducting trust negotiation (e.g.,[101][3][50][25]) and
different logics for reasoning about the outcomes of these negotiations
(e.g., [15][95]). As a result, proof of concept implementations are based
on different languages and protocols, making the different systems unable
to talk each other.

Tailored to Credentials and Negotiation: Even assuming that some stan-
dards will be eventually defined, exploiting a TN approach for selecting
online services would require that both parties (client and service provider)
should be able to support a (complex) negotiation process. This sounds
a too strong requirement for open large systems, where consumers should

44 Trust in SOA - State of the Art

be able to select a trustworthy service with less computational effort and
not necessarily after a (complex) negotiation. Moreover, adopting a TN
approach would require that both parties reason and act according to a
credential-based notion of trust. Other trust meanings are not supported.

Tailored to ingle Service: current TN approaches take for granted that a
client always starts the negotiation by requesting access to a resource.
Instead, as pointed out by Mecella et al. [67]:

While many in the literature treated Web Services as a set of
independent single operations, interacting with real world Web
Services involves generally a sequence of invocations of several
of their operations, referred to as conversation. A simple exam-
ple is a bookstore Web Service; buying a book involves generally
searching for the book, browsing the details and reviews about
this book, adding the book to the shopping cart, checking out,
paying, etc.

It is therefore of key importance to consider the access control and nego-
tiation issues for the overall WS conversation. As noted by Koshutanski
and Massacci [49] it might well be that the conversation takes different
routes, therefore changing the set of needed credentials. Keeping up with
the book example, if we decided to send the books as gift then we only
need to specify the address of the credit card holder and the address of
the gift recipient. Our address is not needed. Mecella et al. [67] have
provided an access control model and a trust-negotiation scheme for WS
where such conversational aspect is taken care of. While they take full care
of the behavioral aspect of WS, their negotiation protocol still sticks to
the progressive disclosure of credentials while keeping the set of requested
services fixed.

Heavy procedure with many available WSs: in order to kick off the ne-
gotiation, the user has to establish a communication directly with the
provider. In case the user discovered a considerable number of WSs where
he has to pick-up one from, he should instantiate a negotiation with each
provider in order to find out the trustworthy one. This can result in an ad-
ditional workload for service providers and, moreover, in a time-consuming
and resource-consuming process (for the user). This might not result ef-
fective in some scenarios, such those where a user is consuming WSs with
his smartphone (sometimes a not really powerful device).

Some SOA use-cases unawareness: in a SOA there are use-case where the
services are supposed to be consumed many times from the same costumer,
since they are involved in a choreography. This means that, for instance,
a WS should be trusted the first time during discovery (development) and
then be consumed without the TN protocol being involved on the ensuing

2.3 Suggested approaches 45

requests. Once the trust is established, there should be a way to cache it
for a period. We are usually willing to trade off disclosure of our security
attributes for each additional or unknown service.

Only contract level guarantees: A service consumer can trust a service provider
by means of this incremental policies disclosure until an access level is
agreed between the two parties. But what if a service provider claims
(for instance) a false scalability value among its QoS contract parameters
of his pay-per-month WS? In such a case it may happen that after one
week of usage the service stops working adequately. That would require
that someone who experienced this problem is able to make other future
consumers know about the issue.

Scenario 17: Back to our scenario, Alice might not be willing to disclose her
credit card number for the flight booking service. But it might be willing to do
so if the flight booking WS provider tells her that the service gets a 10% more
quota if the credit card is disclosed. But unfortunately, current TN frameworks
do not allow to negotiate services for trust and viceversa. A first preliminary
work on this direction has been proposed by Dragoni et al. in [25][26].

2.3.5 Discussion

2.3.5.1 Main Issues

As we verified throughout this analysis, many approaches have been suggested
to enhance the service selection process with trust. Some of them are not di-
rectly addressed to a SOA environment, but can still be taken into account for
further improvements and extensions in order to adapt them to SOC. The liter-
ature about that is growing, but, as it is possible to verify out of this analysis,
WS trustworthiness provisioning is still an open challenge.
While investigating on studies in literature, it has been possible to derive short-
comings and advantages of the single approaches. They are summarized in the
table 2.1. In order to optimize space and improve clarity, the plus and minuses
are synthesized in few main classes, each one with its notation:

Shortcomings White

• NSR (New Service Rump-up): refer to Def. 2.6;

46 Trust in SOA - State of the Art

• CD (Community Dependent): a community dependent system is af-
fected by the community bootstrap issue (Def. 2.7);

• NUR (New User Rump-up): this problem is connected to those ap-
proaches where it is necessary to calculate the user profile in order to
provide some useful evaluation to him. This means that the user has
either to use the system for a period (Def. 2.11) or to provide some
sensitive information before having valuable trust scores.

• HS (Hard Setup): this problem is connected to those approaches that
require a big effort to be integrated in the real world;

• UT (Unconditional Trust/Distrust): this issue is related to the ap-
proaches were the user has to consume a service without any previous
experience or evidence that the service is trustworthy. Or, the other
way around, the user distrust the service unconditionally for the same
reason;

• CE (Centralized): deriving from the centralized nature of the given
approach (Def. 2.2):

– black-box score computation

– single point of failure

– usually need to disclose sensitive information to a central entity

– not fitting to SOA because of its intrinsic scalability demand

Advantages White

• PUTS (Pre Use Trust Score): chances to obtain a trust score before
using the service;

• UFS (User Fitting Score): the WS trust score is also somehow re-
lated to the user personal “tastes” and habits;

Apart from the features listed above, there are some other specific pros and cons
related to certain approaches that will be described directly in the table.

2.3 Suggested approaches 47

Approach Pluses Minuses

Direct experience
UFS → the most fitting
score

UT

TTP

Social

Reputation PUTS
NSR, CD, CE→ for those
methodologies based on a
centralized architecture

Recommendation PUTS, UFS

CD, NSR, NUR or user in-
formation disclosure, CE
→ for those methodologies
based on a centralized ar-
chitecture

Referrals
PUTS, rates coming from
trusted peers

NSR, CD

Matchmaker

PUTS, UFS, some com-
munity based method-
ologies provide for liars
recognition

HS, CE → for those
methodologies based on a
centralized architecture,
trust towards service
moved to trust towards
agent

Hybrid

Socio-Cognitive
Accurate trust computa-
tion, UFS

depending on the be-
lief source → UT/N-
SR/CD/CE/NUR, HS →
cognitive agents have to
be conforming to a model,

Trust & Reputation

liars recognition (some of
the ideas), PUTS, some
sort of good results can be
provided even with a poor
community or a brand
new service

CE, NSR, CD

DE & Reputation
Issues of the 2 constituent
models mitigated

NSR, CD

Automated Trust Negotiation
UFS, PUTS, trust can
ALWAYS be computed

HS, no standards defined,
no WS aware (at the cur-
rent state)

Table 2.1: Pluses and Minuses summary

In order to carry out this evaluation, few questions have been adopted as guide-
lines to judge each system:
How does the trust score fit the user needs? It would be better to build
the trust score around the user profile, as, for instance, the recommendation

48 Trust in SOA - State of the Art

systems do;
Does the provider/consumer have to disclose any sensitive informa-
tion? Some centralized approaches ask the user (be it either the provider, the
consumer or both) to submit some personal information in order to improve
the trust score computation. This is clearly something that should be avoided:
users usually do not want to unconditionally disclose sensitive details to a cen-
tral authority.
Can the user know how the trust is calculated? Depending on the system
architecture, the trust score might be calculated by a third party in a black box.
The user may rather prefer to know how the service he is going to trust has been
suggested.
How does the community influence the trust score? This issue mainly
affects the social approaches (2.3.2.1): is the trust score depending on the
size/quality of a community? In such a case, the main shortcoming would
be the community bootstrap, i.e. how to create an initial community to kick-off
the system.
Does the user has to unconditionally trust/distrust certain services?
Whenever a user finds a WS, if the functional contract meets the user needs,
there should always be a way to provide a trust score for that service, without
leaving the user in the position of unconditionally trusting/distrusting the WS.
What is the trustworthiness of a brand new WS? A new WS (i.e. it
has been recently deployed) needs a way to be “tried” even with no previous
knowledge about it. A non functional contract or TN approaches seem to be a
good starting point to address this issue.
How hard is the trust provisioning infrastructure to setup and main-
tain? When designing a trust provisioning system it has to be taken into
account both the effort needed to apply the system to the already existing SOC
infrastructure, and the issues intrinsically related to the nature of a SOA-based
system. A trust provisioning system is in charge of a great responsibility, and its
robustness and scalability is a critical point in a SOA environment. Thus, for in-
stance, it would be rather irresponsible to adopt a pure centralized architecture
(that would be the single point of failure).

2.3.5.2 Soft Trust VS Hard Trust

Rasmusson et al., in [76], coined the terms soft security and hard security to
categorize security mechanisms. Following the same idea, we further narrowed
down all the classes of approaches in two main families: those based on a soft
notion of trust and those based on a hard one. The first one comprises the vast
majority of the approaches. More precisely, those that draw the trustworthiness
of a service out of the following sources:

2.3 Suggested approaches 49

• direct experience of the consumer with the service

• indirect experience (opinions on the service coming from someone trusted
by the consumer)

• some form of combination of direct and indirect experience (what we called
hybrid approaches)

All of them has two key limitations in common: the user has to obtain trust
from his own direct experience or from the direct experience of someone else
he trusts. The former is affected by the problem of the blind execution. In the
latter, the same problem is just moved to another level: someone else has to
blindly use a service. This requires 15 people taking the risk to try. As correctly
pointed out by Dragoni in [23]

if someone does not take the risk of invoking an unknown service for
the first time, then no one will be able to decide about the trustwor-
thiness of the service before its invocation.

Approaches based on the soft notion of trust share the critical issue of new
service and community start-up (Defs. 2.6 and 2.7).
The rationale of the soft trust is that participants in a market collaborate each
other in sharing information on other participants or services. Soft trust expects
and even accepts that there might be malicious services or service providers in
the system. The idea is to identify them and prevent them from harming the
other participants by means of collaboration and social interactions, aiming at
sharing as much knowledge as possible.

Definition 2.18 (Soft Trust) 42
Soft trust is a user’s belief of a service trustworthiness based on a social control
philosophy. It demands his experience or the past experience of a society with
the service. This allows malicious users to be identified and put aside. All the
community dependent approaches are based on a soft notion of trust.

The other class of approaches, such like Trust Negotiation and Matchmakers,
relies on a hard notion of trust. The rationale is that it should be possible to de-
rive the trustworthiness of a WS just looking at its non functional contract (like
QoS information). Some of them take into account the semantic of a WS, i.e.
services should be selected considering their security behaviour (for instance,
access control rules). The recent Security-By-Contract (SxC) approach illus-
trated in [25] might represent a good starting point for this purpose, because
it takes into account the security behavior of a service instead of depending on

50 Trust in SOA - State of the Art

the social control philosophy in the existing trust based approaches. Moreover,
it is directly conceived considering the SOA related issues.
Nevertheless, even the hard trust provisioning approaches studied in literature
have a critical drawback: the lack of lying/distracted user recognition capabil-
ities. In other words, everyone can provide a fake/wrong contract, be it due
to either a malicious behaviour or human distraction (or other unpredictable
problems). In this case the community help would turn useful.

Definition 2.19 (Hard Trust) 42
Hard trust is a user’s belief of a service trustworthiness based on a guarantee
that the service will be trustworthy. It demands the user to be certain the
service will behave as stated.

Moreover some practical issues related to WSs are not yet considered. For
instance, the Trust Negotiation approaches work fine assuming that the WS is
consumed by a user directly invoking it. But in the real world, as pointed out
in [68], WSs can even be a “developer thing”. This means that they have to
be trusted during the development time and then transparently consumed by
clients unaware of the distributed nature of the system they are using.

2.3.5.3 Conclusion

The analysis carried out throughout this chapter constitutes the jumping step
for the design of a new trust provisioning framework conceived for SOA. The
issues arisen during the discussion and the considerations regarding the hard
and soft notions of trust are the guidelines that will drive the creation of a new
approach.
Furthermore, as we pointed out in the introduction of the analysis, there is
a sort of term confusion related to words “trust” and “trustworthiness”. A
clear distinction of their acceptation is still missing in the currently suggested
approaches. Thus, an agreed definition on their meaning is necessary to provide
the cornerstone for a new framework.

Chapter 3

Framework

In this Chapter we are going to describe the framework conceived to meet the
requirements listed during the preliminary analysis in Chapter 2.
In the introductory section the founding principles that constitute the rationale
of our work are explained. Essentially, the framework will be firstly described
in its high level architecture and then detailed to its components.
The framework has been designed trying to follow the DRY1 principle, i.e. try-
ing to adopt already existing ideas and focusing the effort on integrating them.
Some of them needed a further extension or revision to well fit our system. This
choice derives from the realization that completely redesigning new solutions in
this case would signify to reinvent the wheel, considering the vast amount of
studies on this matter already present in literature.
As a final clarification, it is necessary to point out that the framework spec-
ification has been willingly kept abstract enough to leave free choice on its
future application (no matter if it will be applied to SOAP based Web Services,
REST-ful ones or any others). Thus, details related to technologies, languages
and so on are left to the final chapter where some test cases and implementative
examples will be illustrated.

1Don’t Repeat Yourself

52 Framework

3.1 Founding principles

3.1.1 Soft and Hard Trust Integration

The analysis in Section 2 highlighted the separation between soft and hard no-
tions of trust, focusing on the advantages and weaknesses of them. It then
emerged how hybrid systems generally turned to improve constituent method-
ologies. The joint collaboration of more techniques usually blunts the short-
comings of the single approaches. These considerations suggested one of the
founding principle of our framework: hard trust and soft trust provisioning
techniques should be embodied in a unified hybrid model. The user will then
always be able to evaluate automatically the available WSs for a given need,
while the community will push unworthy WSs aside. In other words, the user
will always be able to make up his trust belief towards a WS and malicious
users/services bypassing the hard trust mechanism of the system will be caught
by the community.

3.1.2 Trust vs Trustworthiness

Understanding the meaning of the term trustworthiness represents a fundamen-
tal step towards the definition of a theory of service trustworthiness. Indeed,
as we analyzed in Chapter 2, the literature shows that a common agreement
on its precise meaning is still missing, leading to a confusing situation where
terms such as “trusted” and “trustworthy” are often interchanged, and the term
“trustworthiness” is overused without any precise definition of its meaning. An
illustrative example of such ambiguity is considering the definitions of trust and
trustworthiness given by Bishop and Chang et al. in [13][20]:

Definition 3.1 (Bishop) 42
An entity is trustworthy if there is sufficient credible evidence leading one to
believe that the system will meet a set of given requirements. Trust is a measure
of trustworthiness, relying on the evidence provided.

Definition 3.2 (Chang et al.) 42
Trust is the belief the trusting agent has in the trusted agent’s willingness and
capability to deliver a mutually agreed service in a given context and in a given
time slot. Trustworthiness is a measure of the level of trust that the trusting
agent has in the trusted agent.

3.1 Founding principles 53

Analyzing all the differences between these definitions is outside the scope of
our investigation. However, what should become apparent at a first sight is
that there is a strict correlation between trust and trustworthiness, although
such concepts are defined in different ways. For instance, by Def. 3.1, an agent
trusts or not a service according to the service’s trustworthiness, so trust relies
on trustworthiness. By Def. 3.2 instead trustworthiness relies on trust. So in
the former definition trust is seen as a measure of trustworthiness, while in the
latter it is exactly the contrary, i.e. trustworthiness is defined as a measure of
the level of trust.
Some interesting questions therefore naturally arise: what is the nature of trust
and trustworthiness? Do they refer to the same concept? Or are they distinct?
And in that case are they correlated? And how? A comprehensive philosophical
answer to these questions is outside the scope of this work. In order to proceed
with the explanation of the framework it is necessary to agree on a definition of
what we will mean throughout the document with the terms trust and trustwor-
thiness. Loosely speaking, trustworthiness implies that something is worthy of
being trusted. We see it as a subjective property, that relies on the user’s point
of view to some extent. Trust merely implies that one trusts something whether
it is trustworthy or not, perhaps because one has no alternative, or because one
does not even realize that trustworthiness is necessary, or because of some other
reason. This distinction is expressed very clearly in the following quotation:

Trust is an attitude that we have towards people whom we hope will
be trustworthy, where trustworthiness is a property, not an attitude.
Trust and trustworthiness are therefore distinct although, ideally,
those whom we trust will be trustworthy, and those who are trust-
worthy will be trusted.[66]

According to these considerations, we aim at providing an informal definition of
service trustworthiness and trust which will constitute the fundamental premise
of the suggested framework and will hold henceforth in the document:

Definition 3.3 (Service Trustworthiness) 42
A service is trustworthy if there is sufficient credible evidence leading a user to

believe that the service will meet a set of given requirements.

Thus, the framework must support three key concepts:

• a set of given requirements the the service must meet during its execution;

• a credible evidence that can be checked by the user to determine trustwor-
thiness of the service; in other words, the evidence is credible because it
can be verified (or monitored) by the user;

54 Framework

• a notion of sufficient evidence, that is a “quantity of evidence” that a user
needs for believing on the service trustworthiness.

The definition of trust a user has towards a service is:

Definition 3.4 (Trust towards a Service) 42
The user trusts a service if he has a strong belief that the service will meet a

set of given requirements, not necessarily rationally.

The strong belief is then up to the user himself, who has free will in the choice
of whether to trust a service or not. This means that, even with many trust-
worthiness evidences, the user might decide to not trust it (so, in such a case,
the service is not trustworthy for the user).

This agreed definitions of service trust trustworthiness are going to constitute
one of the founding principles of our framework.

3.2 High Level Architecture 55

3.2 High Level Architecture

The architecture of the framework is conceived to support the founding princi-
ples explained in 3.1. According to Def. 3.3, the concepts of sufficient evidence
have to be supported. A user willing to consume a service needs some evidences
that the service will be trustworthy. It is then up to the user himself how to
evaluate and weigh these evidences. The framework has then to provide the
tools helping the potential consumer to take a choice, without forcing a unique
perception of trust.

A further key-concept the framework has to support regards the set of given
requirements the service must meet during its execution. In order to make sure
a service is meeting a set of requirements, a contract is necessary. A negotiator
must then agree on a contract with the provider. The contract will then be
monitored to make sure the provider respects it.
The monitoring process will provide what we defined the credible evidence that
the service is behaving well, i.e., as claimed in the agreement. Note that the
evidence concerns the fact that the service has satisfied the agreement in a con-
versation.

Another cornerstone forming the rationale of our framework is what during
the state of the art analysis we defined as hard trust and soft trust. The former
is a belief based on the existence of a non functional contract, a guarantee that
the service will behave as requested. The latter is instead based on the evalua-
tion of a society, capable of recognizing liars or who generally cheat (wittingly
or unconsciously) the hard trust of the users. As stated in 3.1.1, the evidences
the framework has to supply should let the user decide based on both a hard
and a soft belief.
Finally, there have been listed many different issues that should be solved. Some
of them affect more approaches in the same time, some others are specific to
certain solutions. The framework has been conceived to overcome even these
issues. The discussion in 4.2 will explain how and where.
Fig. 3.1 shows the high-level architecture of the framework, leaving the most
part of the details aside (they will be explained in the following sections).

56 Framework

Figure 3.1: Framework - High Level Architecure.

The evidence supplier acts as an aggregator & ranker plugged to different sources
to draw on for providing evidences to the user. Each source is fed with the list of
(functionally similar) WS references that will then be ranked depending on the
technique applied by the source. The evidence supplier will then: (1) normalize
the scores of different sources to the same range (min-max normalization), (2)
aggregate them according to the user supplied weights, (3) re-rank the resulting
list, (4) filter it according to the user supplied thresholds. For instance, a
user may decide that source A is more important than B, assigning 80% of
importance to A and 20% to B and “unplug” source C by giving a 0% weight.
The resulting ranked list can then be filtered by specifying that the services
below 10% score in the rank are automatically not trustworthy. It is, essentially,
up to the user the choice of what should be the sufficient evidence he needs
for believing the service trustworthiness.
A negotiator is then in charge to agree directly with the provider on a contract
that will be monitored throughout the whole interaction between consumer and
provider. This contract constitute the set of requirements that the service
must meet during its execution and the monitoring process will help the
automatic evaluation of the consumer experience over the time.

A point is still missing: by which means hard trust and soft trust are provided?

3.2 High Level Architecture 57

Soft trust sources: as mentioned in Chapter 2, soft trust derives from direct
experience, being it by the consumers himself or by someone else’s expe-
rience. In the framework, we considered then two soft trust sources: a
reputation community and the user direct experience.
The reputation based source is the community that an agent installed
in the client will contact to obtain the reputation scores for a given list of
WSs. This is one of the sources the evidence supplier uses to provide a
static score for a WS trustworthiness.
Furthermore, the direct experience with a WS is also used as a soft trust
source. This source can clearly have a role just when the user already
had some sort of interaction with a WS. We provided the tool to let the
user automatically feed this source: the negotiator along with a monitor,
better explained in section 3.6.

Hard trust sources: these sources are based on guarantees given by the provider.
The first one is based on the QoS offer of the provider. We will explain
in details the motivation behind this choice in 3.4. This is another source
used by the evidence supplier to help the user making up his own idea
about a WS trustworthiness. Then, in order to leave the providers spec-
ifying “private” policies, a contract by negotiation procedure is provided.
This way, the user will be able to negotiate specific (and different from
QoS) requirement for the ensuing conversation with the WS and have a
guarantee on the future service behaviour that he will be able to monitor.

The preliminary categorization performed by the evidence supplier helps the
user to avoid a random selection for a trust negotiation procedure. This solves
the problem explained in 2.3.4: the user does not have to instantiate a connec-
tion with every provider before being able to take a decision. A preliminary
suggestion will be supplied by the evidence supplier.

As already stated in the introduction of this chapter, in our framework we
tried to outsource the components when possible, or, in other words, we tried to
drawn the techniques for trust provisioning from other studies. This choice has
been taken because many studies have already addressed the trust provisioning
issue and we believe some of them can be reused and directly integrated in this
system.
Before providing more details about the framework, let us point out 2 premises:

1. It is assumed that the functional WS discovery has already been per-
formed: it would be out of the scope of this work to provide details con-
cerning the WS discovery. We assume the WS contracts that match the
functional requirements of the service consumer have already been found
and are now available to the user;

58 Framework

2. The QoS Offers of the WS providers are owned by an external entity in
charge of collecting them. We assume that such an entity must exist, but
we leave the design/implementation details to other researches, because
the topic is not directly related to trust provisioning for SOA. It has been
inserted in the figure for clarity reasons and it will not be analyzed in this
document.
Nevertheless, we advocate that the non-functional contract of each WS
should not be retrieved by the client/agent from the server itself. There are
various motivations, some of them already stated in [98]: keeping a local
copy of a QoS contract would introduce some concerns regarding when
the client should update it. Assuming the existence of many, frequently
updating agents, the WS provider would have a considerable additional
workload. Moreover, the process of querying one by one all the web service
providers matching the functional contract in order to obtain the QoS
contract, would considerably slow down the selection process.

3.2.1 Roles

The entities and components listed in the previous section collaborate in order to
provide to the user a sufficient credible evidence of the service trustworthiness.
They will try to make the user trust a service (refer to definitions 3.3 and 3.4
in section 3.1.2) or not, without leaving him in a vulnerable position of taking
a random choice. Below the components’ roles in the system are listed:

1. The QoS Matcher matches the user’s qos demand against the QoS Offers.
It then discards those offers that do not meet the consumer requirements
and rank the remaining contracts by “fitness” with the consumer demand.
The category this component is mapped to is the matchmaker one. Nev-
ertheless, the matching procedure is applied client side, in order to keep
it decentralized and overcome some the issues listed during the analysis.

2. The Reputation Agent communicates with its peers in the reputation net-
work to obtain a reputation score for each service. The agents in the
reputation network communicate each others as well in order to have a
valuable reputation score for a service. At the end the reputation agent
rank the WS references based on the reputation score.
As we will see in more detail later, this component is designed along the
lines of the referral systems, providing the user with the same service as
reputation services do.

3. The Direct experience is not probably available at the very beginning. It
is built after the user already consumed a WS. It is calculated based on

3.3 Evidence supplier 59

the WS behaviour over the time with the help of a monitoring agent.

4. The Evidence Supplier filter and rank the WS references based on the
result provided by the different sources and applying some user-defined
thresholds and weights.

5. The Negotiator, once a WS is either automatically or manually selected,
will negotiate with the provider an agreement based on the user policies.
The negotiator component has been inspired by the trust negotiation
methodologies.
During the negotiation, the security behaviour of the service will be agreed.
Further details will be explained in specific sections.

6. An Agreement is produced out of the negotiation. This is used as a
contract by a monitoring agent to automatically evaluate the service be-
haviour during the conversation with the provider and to release ratings
to be used as reputation scores or direct experience scores.

Depending on different factors, some of the aforementioned components might
not be used, without anyway affecting the whole procedure. These factors can
be related to the user willing to do not use a specific source for the evaluation.
Or it can even depend on the unavailability of certain infrastructure components
(e.g. the provider does not have a negotiator agent).

3.3 Evidence supplier

The definition provided for trustworthiness in 3.1.2 relies on the concept suf-
ficient evidence. It results clear the relation between the trustworthiness and
the possibility of providing evidences about it. However a user has his own
belief of what should be trustworthy (and thus, he personally decides whether
to trust a service or not). This means that, depending on the user’s attitude,
a service may be trusted even with either a really weak evidence (the user is
like a “gambler”) or, the other way around, a very strong evidence (the user is
“paranoid”).
The evidence supplier (ES) is then in charge of providing what we defined
the sufficient evidence of a WS by collecting information from different sources.
The definition of evidence source in this scope is:

Definition 3.5 (Trustworthiness evidence source) A function, component,
methodology or any entity capable of producing an evidence of trustworthiness
for a given service.

60 Framework

As already mentioned in Section 3.1.1, we believe that an evidence of trustwor-
thiness should let the user rely on both hard and soft notions of trust. Thus,
the evidence supplier should collect enough information from other trust provi-
sioning mechanisms so to make the user take his choice.
We will discuss about the sources that are going to be integrated in the system
in Sections 2.3.2.1 and 3.4.
The effort has been to devise a methodology to aggregate different evidence
sources, letting to the user the flexibility to model the result according to his
trust needs.

3.3.1 ES/Sources collaboration

3.3.1.1 Sources

The evidence supplier will obtain trustworthiness information from three sources:

• A QoS Matchmaker component will filter and rank a given list of func-
tionally matching WSs based on the user’s QoS demand and the services
QoS offers.

• A Reputation component will filter and rank a given list of functionally
matching WSs based on the community’s reputation towards the service.

• The Direct experience component keeps track of the past experience of
the user himself towards the services. It is computed by automatically
monitoring the activities with a WS.

The ES will have to filter & rank the WSs based on the result returned by the
different sources. This implies that the results should respect a defined structure
in order to be aggregated. Thus, every source should return a result following
the listed requirements:

• The evaluation of the WSs has to be expressed by means of a ranked list,
where each entry is a tuple containing the WS reference and the given
score;

• The rank has to be monotonically increasing, i.e. the higher the score, the
higher the rank;

• WSs that have not been evaluated for information unavailability (e.g. no
QoS offers), has to be returned in a separate list of unclassified results.

3.3 Evidence supplier 61

3.3.1.2 Scores normalization

In order to decouple as much as possible the ES from the different evidence
sources, the task of normalizing the scores to the same scale is delegated to
the evidence supplier. This way, the engine of each source does not have to be
designed in order to respect a specific scale that might change over time.
To fulfill the requirement, the MAX-min normalization has been used. This
choice is based on the consideration that different evidence sources may return
ranks in different ranges of values. With the MAX-min normalization it is
possible to narrow down all the values in the range [0,1], intuitive to understand.

3.3.1.3 Results

The evidence supplier is fed with a given set of WS references. We then assume
(as already stated in Section 3.2) that a functional matching has already been
performed through one of the existing frameworks/approaches for WS discovery
(e.g. [21]). Additionally, the user will have to setup few parameters to guide
the filtering and ranking process (further details in Section 3.3.3).
After processing all the trustworthiness-related information associated to those
WSs (by querying the sources), the ES will return a filtered and ranked list
where each entry contains the following data:

• Reference of the WS: a unique reference to the service

• Score: the overall score given to the service

There will be cases where some WSs where not classified because of some missing
information (e.g. the QoS offer does not exist). In this case the evidence supplier
will put all those WSs in a list named unclassified.

3.3.2 Workflow

Figure 3.2 shows the workflow of the “evidence supply” step of this framework.

The flow starts by supplying a set of functionally matching WSs to the ES.
From that point on, the user might potentially choose a WS even without any
evidence of the WS trustworthiness (i.e. trusting it just based on the functional
contract). Otherwise, the flow enters a sequence of steps where the user will
have to set the guidelines to rank and filter the WSs, until the evidence supplied

62 Framework

Figure 3.2: Evidence Supplier - Flowchart

is strong enough to make him take a choice regarding the WS to consume (or
to negotiate a contract with).
The flowchart is supposed to provide just an intuitive idea of how the evidence
supplier is involved in the trust-building procedure. Specific cases like those
where the user is not able to make up his trust belief even after querying all the
sources are not represented. They are not useful to understand the rationale,
thus they will be discussed separately later in the document (Section 4.2.3).
The framework will actually involve two sources, but to stress the extensibility
of the idea, the flowchart has been kept generic.

3.3.3 User-defined parameters

The ES has a filtering and ranking role. Given a set of services S, it will return a
ranked subset s ∈ S after retrieving trustworthiness clues from different sources.
The user has then to be allowed to setup his own preferences to conduct the
filtering and ranking process. There are two categories of parameters the user
can set:

3.3 Evidence supplier 63

• Weights: the weights are associated to each specific evidence source.
The user, depending on his attitude, might be willing to rely more on one
source than the other ones. The evidence supplier has thus to provide a
result satisfying this will.
Weights are expressed as a percentage: in general, with N sources of trust-
worthiness, the user is allowed to set a weight on each of them so that the
final sum of weights is 100%. In this case, sources of trust are QoS contract,
reputation and direct experience. The user can even decide to “unplug”
one of these sources. In such case the weight will be 0% . Formally:

Definition 3.6 (Source weights constraint) 42
Given E the set of sources and we the weight given to evidence source e ∈ E∑

e∈E

we = 1

• Thresholds: the user is allowed to setup a threshold to meet on different
sources. For instance, the user might desire a minimum reputation of 42%.
Then the user can choose:

– A threshold for each source queried by the evidence supplier.

– A global threshold, that will represent the overall minimum score of
the service after the weighed filtering and ranking have been applied
by the evidence supplier to the service list.

WSs that do not meet the threshold are automatically assumed to have
the minimum value in the rank. All the threshold are expressed as a
percentage.

Definition 3.7 (Threshold constraint) 42
Given te the threshold assigned to the evidence source e ∈ E:

∀e∈E 0 ≤ te ≤ 1, te ∈ Q

Further parameters tightly related to the specific trustworthiness source can be
set by the user, like the QoS demand. They will be described on the related
sections.

3.3.4 Filtering and Ranking

The filtering and ranking process depends on the information supplied by the
different sources. Moreover, the user, as described in 3.3.3, has previously set

64 Framework

specific thresholds and weights.
Given those premises, the filtering process is:

Definition 3.8 (Filtering by threshold) 42
Inputs are a service score and a threshold, output tells whether the service has
to be filtered or not:

Filter?(sc, t) =

{
true if sc ≤ t
false otherwise

For a given evidence source e ∈ E and the associated threshold Te , the set of
Web Services filtered by means of e, Sfe , is:

Sfe = {i ∈ S : Filter?(sci, Te) = false}

After the the service list has been filtered for each source, the weighted rank is
performed, based on the scores given by the trustworthiness sources:

Definition 3.9 (Weighted score) 42
Given

• W the set of weights for E, where we ∈ W is the weight for evidence
source e ∈ E

• re,s the rating for service s ∈ S returned by evidence source e ∈ E

The weighted score (rating) for a service s ∈ S is:

WeightedScore(s) =
∑
e∈E

we ∗ re,s

Then, given Sfe the filtered Web Service set for evidence source e ∈ E, the ES
take a list of services Sf such that,

Sf =
⋂
e∈E

Sfe

where Sfe is the list of Web Services filtered based on the result of evidence
e. The ES then applies a sorting procedure returning the same list sorted by
increasing WeightedScore.

In our framework there are currently three evidence sources for the evidence

3.4 QoS based step 65

supplier: the QoS, the Reputation and the Direct experience based ones. Any-
way, the given definitions are generic enough to be applied to any set of sources
where the returned result is represented by monotonically increasing scores list
(better scores for higher values).
It is important to point out that the user should be able to do not consider a
source at all by giving a 0 weight to it. In this case, the ES should not event
query the source.

3.4 QoS based step

To date, many studies have analyzed the Quality of Service as a critical factor
to discriminate different offers of the same WS capabilities. In [89] the au-
thors claim that QoS support for Web Services will play an important role for
the success of this emerging technology and the QoS a service provider deliv-
ers will become a decisive criterion when services with the same functionalities
are available at customers’ choice. Kyriakos, in Mixed-Integer Programming for
QoS-Based Web Service Matchmaking [53], identifies the QoS augmented WS
discovery as the main solution for filtering and selecting between functionally
equivalent WSs. The authors of [88] disclose the results of a survey performed
in UAE targeting IT managers of businesses in different sector. The statistic
shows that QoS requirements are among the most important features when it
comes to consume Web Services. In [63], Yan Lu et al. suggest an algorithm for
dynamic composition of WS based on QoS.
We have mentioned just few of the whole list of studies regarding the QoS se-
lection of Web Services. Therefore, Quality of Service should be considered as
a source of trustworthiness: whenever a user needs to choose among plenty of
functionally similar WSs, the knowledge of how the service will behave under
a qualitative point of view may result in a critical factor for the final choice.
For instance, a user might be willing to trust a service only if it can keep a
huge amount of traffic. Thus, he will trust a service that assures a big capacity.
In this section methodologies suggested by different papers and studies will be
integrated in order to provide a selection and ranking mechanism for WSs based
on their QoS contract.

3.4.1 Model

The model we are going to describe has been kept abstract enough to depend as
few as possible from the technology it will be applied to. Thus, for instance, we
are not going to list which attributes should be used or whether the specification

66 Framework

will be mapped in a XML or JSON document: this would imply assumptions
on the underlying infrastructure. A low packet loss QoS requirement might, for
instance, be a desirable attribute when working on a wireless environment, but
not necessarily otherwise. Or even talking about a JSON schema would address
the model to a REST-ful Web Service infrastructure.
The purpose of this chapter is, instead, to provide a generic framework the can
be instantiated to (almost) any the required need.

3.4.2 Issues & Requirements

The growing literature related to QoS selection and ranking of WS demonstrates
that this is not a trivial topic. There are many possible choices that can be
considered when designing a QoS selection system for WSs. Each choice solves
some specific problems, leaving others uncovered. The following list aims at
categorizing the range of possible options for a QoS ranking system design,
highlighting shortcoming and pros for each of them.

Preferences vs Constraints: in order to provide an automatic selection/rank-
ing of the WS QoS offers, the potential WS consumer is required to specify
his needs so to match them against the provider offers. There are essen-
tially two ways of expressing those needs: weights for every QoS attributes
and/or specific user-defined constraints. Works like [63] provide a ranking
function where preferences submitted by the user represents the demand.
This approach makes the ranking process more efficient. However it lacks
of expressivity since the user cannot precisely define values specifically
related to each attribute (e.g. responsetime = 4.2ms) and, moreover,
all the QoS attributes must be represented as numbers. This implies that
QoS features that are not directly described has numerical (e.g. security)
must be “translated” by means of a specific function (e.g. security→ level
of security [63]).
Other studies try to address the problem of ranking/filtering by match-
ing a constraint-based demand against the offers [53][88][91]. This gives to
the client a better expressivity in defining the non-functional requirements.
There are anyhow some issues to consider:

• the more fine-grained (expressive) the contract is, the lower the effi-
ciency of the matching process results. [53] is dedicated to issue of
efficiently compute the QoS matching process with symmetric model
for offers and demand and non-linear constraint support;

• the lower expressive the contract is, the lower the precision: [88]
describes a model where offers and demand are expressed as vectors

3.4 QoS based step 67

of real numbers. Unlike the previous example, with this model is
not possible to define a range for a given attribute (e.g. 1.0ms <=
response time <= 34.0ms). The algorithm is then extremely less
complex and probably more efficient. However such kind of approach
does not allow to discriminate with super-optimal solutions and sub-
optimal ones. The result just depends on the similarity with the offer,
no matter if an offer is dissimilar because better or because worse.

Other works apply an hybrid solution, where a previous selection based on
a constrained demand approach is enriched with a further ranking based
on preferences [97].

Ranking vs Filtering: Approaches like the one explained in [79] are supposed
to provide a filtering criteria for a given set of WS QoS offers. That is,
depending on the demand, the function classifies the offers in two groups:
matching and not-matching ones. Others, instead, aim at sorting the
offers depending on a preference or similarity function ([63]). Usually the
integration of the two procedures is adopted: a filtering step is applied
to keep a list of just the matching services. Essentially a sorting step
is applied, to rank the remaining offers depending on a user specified
dominant attribute ([97] [91]). Other approaches provide a richer filtering
procedure where offers are classified in few categories. Like, for instance,
as non-matching, exact-matching, super-matching ([52]). Shortcomings
and pros of the two approaches usually depend on other choices. For
example, if a constrained demand is used, it might result difficult to apply
a ranking method: in which cases an offer is better then another one? If an
attribute demand is specified like qi > 42, how two offers with q1

i = 43
and q2

i = 50 should be interpreted? Equally good, q1
i better or q1

i worse
than q2

i ? This might depend on qi and on the user intentions. Indeed, in
order to have a good constrained approach with ranking, a strong semantic
for the QoS specification should be defined.

Single service vs Composition: The QoS discovery and selection procedure
may be performed with different goals. The most part of the studies
considers each WS selection as an independent event. This is indeed a
common use-case when it comes to find the best service to consume on
the fly.
In different use-cases, a user might be both a consumer and a provider
himself and thus aiming at creating a WS composition in order to expose
another service (or just for the internal enterprise use). In this case, the
selection function executed should take into account not just the QoS of
a single WS, but of the entire composition, even accepting a less then
optimal choice for one WS in order to achieve a global optimum for the
choreography. Notable works in this direction are [104] and [63].

68 Framework

Fixed vs Flexible attributes: Another important distinction between differ-
ent studies is outlined by the range of considered QoS attributes. Usually
the suggested frameworks include specific attributes just for testing or ex-
ample purposes, but they adopt a model or a specification that can be
extended on demand (like [97] and [89], where the proposed solution relies
on the well known tModel schema2). Krikitos et al. in [51] provide an
ontology and a alignment algorithm to handle the semantic matching be-
tween QoS attributes. [104], instead, provides an optimization model built
around the existence of four precise QoS attributes. The drawback of this
kind of approach is that it is hardly extensible to different subdomain, but
on the other hand it results fully optimized for a specific case.

Out of this analysis it is possible to see how one perfect universal choice is
difficult to take. It would be out of the scope of this document to figure out
the best solution for all the cases. The aim in this project is just to provide a
basic QoS preliminary selection capable of helping the user understand what to
trust. It is not therefore required to provide the finest-grained QoS specification
or the best ranking function: that would be a standing-alone research topic.
Although there are some requirements that should be met in order to make the
QoS based selection component fit the framework:

• Generalization of the attributes: as we stated at the beginning of
this chapter, the framework should be generic enough to be applied to
the widest possible range of SOA contexts. Thus the QoS model should
be kept abstract from the specific attributes and from the specification
language. In other words, it is not possible to tie the matching algorithm
to some QoS predefined attributes and semantic.

• Ranking: in order to collaborate with the Evidence supplier(3.3), the QoS
based step should return a list of WS references ordered by offer fitness
to demand. Then, each WS reference returned should be scored with a
numerical value that will be integrated to the results of other trustworthi-
ness sources. Moreover, it is not required to provide a filtering technique:
recalling the definition given for trust (Def. 3.4), it is necessary to leave
the user the final choice, even if not rational (so he might be willing to
select the poorest matching offer just to help the provider in some kind of
beta-testing).

• Complexity/precision tradeoff : as stated during this analysis, the aim
of this project is not the study of the QoS selection at a low level. The QoS
selection is just a preliminary step towards a more complete solution. The
user should be provided with a suggestion about the choice to take, but

2http://uddi.xml.org/tmodels

http://uddi.xml.org/tmodels

3.4 QoS based step 69

this QoS evidence will be enhanced by other components in the system.
Thus, even to meet the time limits and the integrability requirements, the
adopted QoS selection framework has to provide a preliminary ranking of
a list of WSs without falling in a complex solution that would result in a
stand-alone study.

Based on these premises, the next section will explain the decided solution for
implementing the QoS based ranking component.

3.4.3 The QoS Ranking

As we showed in the previous section, many studies in literature addressed the
problem of QoS matching, ranking and selection for WSs. They differ in many
aspects: adopted algorithms, level of abstraction, expressivity of the model,
languages and standards and so forth. Our attention was addressed to those
studies that could have been easily integrated in our framework.
In [91] a complete architecture for the QoS based WS selection is described. It
is a notable work, published in the International Journal of Computer Applica-
tions in 2010, that does not meet the requirements for this component of our
framework though. The main weakness is the lack of abstraction: the study has
been addressed to SOAP WS. For instance, the existence of the UDDI registry
is assumed. Then the tModel3 is used as the data structure to represent QoS of-
fer/demand. Moreover, the matching and sorting algorithms are left uncovered
and thus it was not possible to extrapolate them for the reuse in our framework.
Another work related to QoS based WS selection is A Framework and QoS
Matchmaking Algorithm for Dynamic Web Services Selection[88], proposed by
L.Taher et al. in at the Second International Conference on Innovations in
Information Technology4 in 2005. A plus of this work is the separation of the
framework in two models: the data model and the computation model. The
former include all the data structure used to handle the QoS properties and
semantic, like ontology registries. The latter concerns the matching algorithm
and the management of the QoS dynamic changes. As stated by the authors,
this separation has been carried out in order to provide a generic framework
that can be customized for any domain. Therefore, even if a consistent part of
the framework is instantiated to SOAP WSs, with all the schema specifications,
the algorithmic part is reusable for any domain. WS QoS offer and demand
are represented by vector of real numbers, where each dimension corresponds to
a QoS attributes. After a normalization step, the Euclidean distance between

3http://uddi.xml.org/tmodels
4http://www.it-innovations.ae/iit005/index.php

http://uddi.xml.org/tmodels
http://www.it-innovations.ae/iit005/index.php

70 Framework

each offer and demand is applied in order to find the most similar (and so, the
most fitting) offers. This procedure, however, exposes various issues:

• QoS offers and demand are expressed as points in the space. That is, there
is no way for the consumer or the provider to express a range of values
for their QoS preferences. This could be indeed useful, in particular when
it comes to deal with QoS measurements: response time is not usually a
constant value, so both the provider and the user might be willing the have
a tolerance interval for such kind of metrics. Moreover, it would be rather
difficult for certain users to establish an exact value for QoS parameters.
Should a value higher than the one specified be considered as better or
worse? Questions like this one are left unanswered in the study.

• The Euclidean distance has some properties that turn advantageous for
what concern the user QoS demand specification. The computed distance
will reflect the similarity between that query and the offers regardless
of the dimensions of the vectors. This way the user is not constrained
to specify a preference for each QoS attribute, still receiving a valuable
answer. Nevertheless, this exposes the problem in case of poor QoS offer
specification: if the QoS offer vector has a lower dimensionality than the
demand one, a good match can be achieved anyway. So, if the provider
creates a 1 attribute QoS offer and that attribute value meets the user
demand, there will be a good match, even if the user had specified many
other different parameters.

A partial solution to the problems stated above would be to change the QoS
demand model: instead of defining precise values, that might be a non-trivial
task, the user should be asked to input preferences for each attribute. Practi-
cally speaking, it is already known which values are better for a given parameter.
For instance, the response time is a dimension that improves by decreasing its
value. Thus, the lower the value is, the better the performance results. In most
cases the user might be just not interested in a certain QoS attribute. In that
case, he should apply a low weight. But whenever the potential consumer wants
a QoS parameter to be considered, it is a good approximation to assume that
he will prefer generally high values for monotonically increasing dimensions and
lower values for monotonically decreasing dimensions.
This concept is partly applied in various studies: in [97] the authors rank (af-
ter a filtering step) the QoS offers depending on the value of the user-selected
dominant attribute. Selecting a dominant attribute is the same as giving the
maximum weight to it whilst assigning weight 0 to the remaining ones. This
makes sense in this work because there is a previous filtering of the QoS offers
based on some user specified parameters (that let the user be more expressive).
A more suitable solution for the user preferences specification is proposed in

3.4 QoS based step 71

[104]. Even though the paper addresses the problem of multi-granularity WS
composition (out of the scope of our project), there are few parts worth to
consider for the integration in our system. Before explaining how, the relevant
features of the framework will be briefly introduced:

• A limited set of predefined QoS attributes is used;

• A process is mapped to multiple WSs interacting with different patterns;

• Service classes are considered to group different WSs with similar func-
tionalities;

• An optimization model is suggested to solve a QoS-based Multi-Granularity
Service Selection Problem;

The part of the paper considered for our project is the one describing the opti-
mization model. The authors adopt an objective function where each variable
represents a QoS attribute. The number of variables is fixed. Then they define
few constraints to help the discovery of the best composition. An adapted ver-
sion of the objective function will suffice in our framework.
First of all, the constraint used by the authors of [104], are specifically conceived
for the QoS attributes they decided to consider. Thus, to meet the abstraction
requirement advocated throughout section 3.4.2, they are not going to be in-
cluded in our QoS ranking component because they would tie the algorithm to
the QoS details. The remaining part is a maximization function returning the
best scoring QoS offer calculated on the weighted sum of the normalized scores
of the different QoS attributes:

max
4∑
i=1

wi ∗ Norm(Qi)

This is not fitting to our framework though: it is limited to four QoS attributes.
Therefore, the first modification is the substitution of the constant limit to a
limit equal to the amount of attributes qn specified in the demand.
Then, the final goal of [104] is to find the best path to achieve the a result
with the best QoS. Therefore, an optimization problem has to be solved. In
our study, a sorting problem has to be addressed. So, while keeping the same
fundamental idea, the original algorithm has to be revised. The need of our
QoS component is to obtain a score for each QoS offer, depending on the user
defined weights. The score function is then defined as follow:
Given

• Q the set of all the possible QoS attributes;

72 Framework

• I a set of indexes, where |I| ≤ |Q| and ∀i∈I qi ∈ Q

• W a set of user-defined weights, where |W | ≤ |Q| and W ∈ R|W |;

• assumed wj ∈ W the jth weight in W , ij ∈ ID is the ith index in the
demand index set ID, then wj is the user-defined weight for qi ∈ Q;

• a QoS offer O, where |O| ≤ |Q| and O ∈ R|O|;

• assumed oj ∈ O the jth offer value in O, ij ∈ IO the ith index in the
offer index set IO, then oj is the provider-defined offer value for qi ∈ Q;

∑
w∈|W |

w = 1,

Definition 3.10 (QoS score function) For an offer O and weight demand
W ,

Score(O,W) =
∑

j ∈ |W |

(wj ∗ Norm(O, ij)), wj ∈W and ij ∈ ID

The function Norm(Oq, qi) is a normalization function. It is inspired by the one
suggested in [104] and [97], where the authors distinguish decreasing dimensions
and increasing dimensions:

Definition 3.11 (Increasing dimension) The quality of the dimension im-
proves with the increase of the value.

Definition 3.12 (Decreasing dimension) The quality of the dimension wors-
ens with the increase of the value.

The function has been slightly modified in order to support the case where a
required attribute is not present in the offer. In that case it is necessary to
outdistance that offer from those having a value defined. The goal is achieved
by shifting the score of all the offers having the attribute. This way they will
all have a value proportional to the given weight, whilst leaving to 0 the other
missing the attribute (no weight in the total score). The shift for the moment is
a variable γ whose value should be established depending on how much missing
attributes has to be outdistanced by the present ones. This would need some
practical test to be decided.
It is even necessary to define a function to map a QoS offer attribute oi ∈ Oq
to the corresponding attribute qi ∈ Q:

3.4 QoS based step 73

Definition 3.13 (QoS Mapping function)

FindOffer(O, q) =

{
oi ∈ O if ∃i ∈ IO t.c. q = qi
null otherwise

Given

• maxi the maximum value for an attribute qi ∈ Q among all the offers for
that attribute;

• mini the minimum value for an attribute qi ∈ Q among all the offers for
that attribute;

The normalization function is then:

Definition 3.14 (QoS attribute normalization)

Norm(O, j) =



FindOffer(O, qj) 6= null ∧
FindOffer(O,qj)−minj

maxj−minj
+ γ if qj is increasing ∧

maxj −minj 6= 0

FindOffer(O, qj) 6= null ∧
maxj−FindOffer(O,qj)

maxj−minj
+ γ if qj is decreasing ∧

maxj −minj 6= 0

0 otherwise

Finally, for a list o QoS offers O = {O1 . . . On} and a set of user defined weights
W , it is trivial to define the ranking function:

Definition 3.15 (QoS ranking function)

Rank(O,W) = {Os : ∀i∈|Os|−1Score(Oi,W) ≤ Score(Oi+1,W)}

Where Os is the original offer list sorted by Score.
In case a service provider did not arranged an offer for his WSs, they will be
labeled as unclassified, so to make clear that they do not take part to the rank.

74 Framework

3.5 Reputation based selection step

The second step of the WSs filtering and ranking involves a reputation frame-
work. This will constitute the social enhancement of the trustworthiness ev-
idence provisioning. Or, to use the words of the second chapter, the social
part will help the user build the soft trust towards the different services. As al-
ready analyzed in Section 2.3.2, many studies have suggested reputation systems
for trustworthiness provisioning. Some of them suggest centralized approaches
[65], but, as we stated in section 2.3.5, a centralized system does not suite a
SOA environment. Other works propose distributed reputation systems, like
EigenTrust[48]. The approach does not directly address the WS environment,
but it is studied in a P2P file sharing context. In [39] QoS reports are used as
the feedback for reputation framework based on a P2P network. It focuses on
the cheaters recognition, suggesting methodologies to identify dishonest reports
and dishonest users. The framework, though, does not fit ours because reputa-
tion is tightly connected to a QoS report of a WS, whilst our reputation rates
are going to be computed based on different parameters.
Other studies define hybrid systems where reputation is used to mitigate the
issues of other approaches. In [98], the author suggests a model where a prelim-
inary WS QoS discovery is enhanced by a reputation system, but the reputation
scores are assumed to be trustworthy.
A notable work addressing the reputation management issue for WS is [61].
It explains a distributed architecture based on the referral approach(Section
2.3.2.1). The architecture and rationale are illustrated in the next section.

3.5.1 Referral Based Reputation Framework

As mentioned in the Previous Work section of A Distributed Reputation Broker
Framework For Web Service Application[61] , the framework has been influenced
by studies related to referral network systems. The actors on behalf of the
referral in this system are the so-called Trust Broker (TB). The other entities are
the users (that actually consumes the services) and the reputation authorities,
who are the “final chance” to obtain a reputation rating for a service (more
details later on). Figure 3.3, shows how these entities collaborate.

3.5 Reputation based selection step 75

Figure 3.3: Entities relationships

Briefly, the workflow of the system is:

1. a user A needs to retrieve the reputation of a user/service B ;

2. A contacts the desired TB, specifying the following informations in the
request:

• requester ID (A in this case)

• service ID (B in this case)

• transaction count threshold (the number of transactions the reputa-
tion score has to have been calculated on)

3. the TB verifies whether it owns a reputation score for the service com-
puted on the basis of enough transactions (the threshold specified by the
requester);

4. if it does not, it contacts other trusted TB to obtain the required infor-
mation;

5. if they do not manage to provide this information either, it contacts a
Reputation Authority, that it is supposed to collect informations about all
services;

6. finally, when the reputation rating is retrieved, the result is returned to
A;

76 Framework

7. A can now choose whether to perform the transaction or not; in case it
does, it can return a reputation score back to the trust broker, who will
update its database.

The TB is designed as in figure 3.4: The two main components are the Reputa-

Figure 3.4: Trust Broker

tion Manager and the Connection Manager, described below.

3.5.1.1 Reputation Manager

The reputation manager has different functionalities. It acts as the interface for
the user -TB communication. This means that, whenever a user needs to retrieve
a reputation score or to submit a rating, he will contact the reputation manager
of the TB. As a consequence, the reputation manager is in charge of keeping
and aggregating the users’ ratings about their experiences and providing scores
to the requesting users. Two formulas are suggested to calculate the reputation
update on a new rate submission.

3.5 Reputation based selection step 77

Definition 3.16 (Time dependent reputation update function) 42
This function assumes highest weight for more recent feedbacks. This allows

users to have a better expectation on the current service performance.

Rnew = eβ∆t N

N + 1
Rold + (1− e−β∆t N

N + 1
)r

Where

• r the new feedback

• Rold is the latest computed rating

• ∆t is the time between r and R

• eβ∆t the discount factor for Rold

• N is the number of already computed updates

The discount factor will determine the window out of which a transaction rating
is not meaningful any longer. During the performance study, for instance, the
author set a window of 100 transaction by fixing β = 1

36∗105 .
By providing a β = 0, the time will not influence outcome of the function:

Definition 3.17 (Time independent reputation update function) 42
This function assumes the service quality is not affected by the time, so β = 0

Rnew =
N

N + 1
Rold + (

1

N + 1
)r

When a not sufficient evidence of a service reputation is owned (this means the
requesting user threshold is too high), the reputation manager delegates the
connection manager to contact other brokers.

3.5.1.2 Connection manager

The connection manager is the entity in charge of dealing with the network
of trusted brokers. It keeps a list of trusted brokers and updates the trust
relationships with them. It collaborates with whom it trusts more to obtain
reputation scores (when the reputation manager requests them) and it provides
reputation informations to other brokers. Trust towards a broker depends on
the number of accurate recommendations that the broker has provided. It is a
value in the range [0, 1]. 0.5 is assumed to be a neutral value (starting value).

78 Framework

Definition 3.18 (TB Trust increment) 42

X = X + F ∗ (1−X)

Definition 3.19 (TB Trust decrement) 42

X = X ∗ (1− F)

F is a positive index less then 1. The functions are designed to make the
trust gain more difficult then the trust loss. Its value is not fixed even in the
performance study of the paper: a random value within the range [0.2, 0.5] is
picked-up for each TB in the test phase. This is because tests have been more
focused on the evolution of the system correctness depending on initial trust
values among TBs and initial local reputation scores for the tested services.
Thus the F has not a critical role in the system overall correctness and can
be arbitrarily chosen among a range of intermediate values (like the authors
suggest).

3.5.1.3 Discussion

Many details are indeed missing, but it would be out of the scope of this doc-
ument to precisely describe the whole solution. For further informations we
strongly suggest to read the original paper [61].
It is instead more important to focus on the worth points of this work, that led
us to the choice of integrating it in the framework.

• Light Client: considering an environment where the service consumer
might be hosted in a mobile device, considering the hardware limitations
and the battery consumption, it would be desirable to keep as much of
the computation as possible on a different server. Thus, the distribution
of the logic on dedicated Trust Brokers meets this requirement.

• Easier rating collection: in a pure P2P network, where each user inter-
acts with other users, it would be more difficult to collect enough ratings
to achieve a reliable reputation value for the services. Thus, collecting
more ratings in a Trust Broker, helps reaching a worth result with less
effort;

• Faster computation: again, in a pure P2P network, requesting reputa-
tion scores to each user would increase the number of connections (and

3.5 Reputation based selection step 79

then the time) needed before obtaining a valuable score. With trust bro-
kers constantly collecting ratings, this issue is weakened. Moreover, part
of the scores can even be computed offline.

• Time dependent function: one the reputation update functions takes
into account the timestamp of each rating. This methodology enclose an
interesting consequence: reputation is fresh. If a service had a good rep-
utation for a long period and than, all of a sudden the service encounters
some serious problems and stop providing the service as supposed to, the
reputation score is affected and all the potential consumers can figure out
something is going wrong.

• Anti-collusion: if a malicious broker joins the community, at a certain
point it will probably start providing recommendations that do not match
the honest ones. The other brokers will then recognize it and progressively
stop collaborating with it.

• Performance study: the framework has been actually implemented and
tested with different parameters to verify it correctness. Results show that
a system initially setup with neutral or good reputation scores in TBs
reaches the overall correctness over the time, whilst a system configured
with bad initial reputation scores tends to remain not correct (no one tries
the WS because assumed to be untrustworthy and then reputation scores
are never updated). Thus, the system behaviour is known, even if we are
not going to provide an implemented solution in our project.

Even if there are many advantages in this solutions, some issues are not ad-
dressed, like.

• A user is assumed to be honest. So he can possibly poison the reputation
database of a broker. No mechanism to recognize wrong user rating are
provided.

• As analyzed in chapter 2, a WS is not alway a one-time-use-resource. In
many occasions it happens that a WS is part of a more complex system
exposed as another service. It is then going to be used quite frequently in
a short time interval. In the paper the authors assume the user requests
a reputation score and then responds back with the feedback about the
service invocation. In case this procedure has to be performed a lot of
times, there would be a great overhead and few efficiency.

80 Framework

3.5.2 Integration with the Framework

The integration of the reputation system with our framework has to be accom-
plished considering 4 points of concern, related to algorithmic choices, compo-
nents interaction and so forth.

3.5.2.1 Reputation update function

Which of the two reputation update functions should be adopted to best suite
our framework? Considering the W3C use-cases, we believe that there can be
users for both of them. Function 3.16 is more likely to be useful for direct con-
sumers, i.e. users that will select the WS and consume it directly. In this case,
if the service is experiencing temporary problems, it would turn desirable for
the user to know about it. On the other hand, if a developer-user is composing
a service-oriented infrastructure, the service is going to be used repeatedly and
for a long time. Thus, it would be probably more useful to know the overall
reputation of the WS, regardless of a temporary failure. Therefore, both of the
functions should be available and the consumer should evaluate and select which
is the most fitting to his needs.

3.5.2.2 Reputation request

The trust-broker computes the current reputation score for each WS. It receives
a parameter in the form:

< user id, ws ref, min transactions >

To decrease the overhead and improve performances, the input parameters are
extended so to provide a list of WS references instead of a single one. Further-
more, in light of the discussion in 3.5.2.1, the user should specify whether he
prefers a time dependent or independent score.

< user id, [ws ref1, . . . , ws refn],min transactions, is time dependent >

Of course the trust broker has to be instructed to compute the reputation score
for each of the WSs, to then return the two list as explained above.

3.5 Reputation based selection step 81

3.5.2.3 Reputation-agent / Evidence-supplier interaction

The reputation system and evidence supplier have to communicate through an
agreed interface. As mentioned in 3.3, the evidence supplier is going to deal
with tuples containing the following data:

• Ranked list of WSs whose score has been successfully calculated

• List of web services whose score has not been calculated and are then
unclassified

Considering the trust broker is computing a reputation numerical value for each
requested WS, the rank is trivial: higher the reputation score, higher the rank-
ing. The WS without enough transactions are going to populate the unclassified
list.

3.5.2.4 User ratings

The last integration point to think about concerns the consumer-generated rat-
ings: how can a service be rated? Considering that the framework should be
adaptable to the widest range of possible use cases, the following scenarios has
to be taken into account:

• The system can be used by a sporadic consumer, that means the service
is selected, directly used by the consumer and stop. In this case the user
should submit a score based on his experience (even manually).

• The system can be used by a developer to compose a service oriented
system based on a choreography. This means each service is going to be
indirectly used more times by the users consuming the main system. In
this case there are two points to focus:

– the rate cannot be submitted by the end user because he is trans-
parently using the main application unaware of the underlying infras-
tructure. Therefore the rate has to be automatically generated and
submitted by means of an agent. Thus, the agent has to be driven in
the rating process by some rules, disguised as a contract.

– a WS participating to a composition is consumed more frequently in
a time interval by the same user (the one identified by the developer)
than a service directly invoked by a sporadic consumer. This leads to

82 Framework

a conclusion: it is more likely that the service behaviour will not be
changing drastically and continuously in a shorter interval. There-
fore, it would be a waste of resources to provide a feedback every
time the service is consumed. The idea is then to send one feedback
each predefined time interval or in case of considerable changes in the
local rating.

All these considerations boil down to this idea: the rate can be submitted both
manually by the user and by an agent that automatically checks the conformity
of the WS interaction to the contract. This second case will be better discussed
in 3.6.
The trust broker needs, anyway, a rate and a timestamp. In light of what has
been outlined, a rating should be expressed following the definition 3.20.

Definition 3.20 (Service rating) 42
A service rating is an evaluation of the web service conformance to the expec-

tations. It is expressed as a tuple:

< user id, ws ref, rating, timestamp >

rating is a real number within the range [0, 1].

3.6 Agreement negotiation and monitoring

As a final step towards building a trustworthiness belief, we advocate that a con-
tract negotiation is necessary. This will allow the consumer to formally establish
an agreement directly with the service provider. By means of an agreement, the
service consumer can systematically, constantly and automatically evaluate the
outcome of his interactions with the service. This evaluation can then influence
the user own trust towards the service (weakening or enhancing it) and also be
used as a score to provide to other users willing to consume the same service.
In our framework this score may, for instance, be submitted to the reputation
manager or be used as a direct evidence of trustworthiness.
In this section we will explain how to agreement is established and how it will
influence the future experience of the user.

3.6.1 Motivation

As analyzed throughout Chapter 2, automated trust negotiation is one of the
main families among the ones existing in literature dealing with the WS trust

3.6 Agreement negotiation and monitoring 83

provisioning issue. It solves some of the problems arisen during the analysis:

• it always produces a tangible result, depending on the negotiation out-
come: if it fails, the security parameters offered by the provider do not
satisfy the user needs (or, the other way around, the consumer demand
does not fit the provider offer). Thus, not trust relationship is established.
Otherwise, once an agreement is achieved, the consumer and the provider
are trusting each other.

• both provider and consumer disclose their security behaviour iteratively
and incrementally. This improves the privacy safeguard for both the
provider and the consumer: sensitive informations are kept locally. They
will be exposed step by step with the growth of the trust between the two
peers.

Another advantage of this approach is that the trust relationship is also estab-
lished from provider towards the consumer. Anyhow, this topic is not going to
be analyzed in this work, because what we want to focus in this project is the
trust establishment from the consumer to the provider.
In Sections 3.5 and 3.4 two techniques to rank WSs have been illustrated. The
first one is based on a social soft trust enforcing approach, the second one relies
on a hard notion of trust. However, we believe the hard trustworthiness compo-
nent in the framework does not suffice. Trust negotiation is necessary because a
QoS contract is not rich enough to express all the feature related to the security
behaviour of a web service. Moreover, it does not provide any way to establish
the access control rules for the service use and a formal way to monitor the
service behaviour. Let us provide two use cases to make the point:

• Alice is willing to use a flight booking service that does not require the ID
card disclosure. Alice picks up a WS selecting it on the base of its reputa-
tion and QoS. She perform the whole purchase procedure discovering, just
at the end of it, that she has to provide the ID card number to complete
the process. This kind of situation is indeed better to be avoided.

• A company would like to publish a WS for a call center management.
The company does not want that everyone can indiscriminately know the
service usage conditions. It will disclose them just to whom is going to
disclose, in turn, part of his policies (a fair exchange of informations).

The use cases we illustrated require the two peers to negotiate a contract.
So far, most of the trust negotiation approaches applied to a WS environment
are still an academic research field, where few works have addressed the issue

84 Framework

directly to a SOA context. The literature about that is growing, but still miss-
ing some important points specifically targeting a SOA.
A valuable work about Web Services and Automated Trust Negotiation is ex-
hibited in [25] and further elaborated in [26]. The authors describe a framework
for the negotiation of credentials but also the corresponding negotiation of ser-
vices and the behavioral constraints on the disclosures of credentials depending
on the business process.
The integration of this idea to our framework can fulfill the requirement of a
contract negotiation.

3.6.2 Security by contract

Two main features distinguish [25] and [26] from other related works:

• Real-world case negotiation: the study takes into account the possibil-
ity of negotiating the disclosure of security privileges for more (additional)
services5;

• Robustness: fault tolerance techniques have been devised in order to
make the framework fitting to an open environment such like SOA. This
way both cooperative and malicious peers have been taken into account.

The papers then thoroughly explain how the negotiation is carried out once
both consumer and provider had defined respectively the demand and the offer.
In a nutshell, the service provider’s offer looks like this: I will grant you services
s1...sn, but in change I want you to show me that you have security attributes (or
privileges) p1...pn. Further, I will ask you to show me your credentials according
to the following dynamic security rule x1 where e.g., possession of privilege pi
is asked before services can be accessed.
On the other side a client is making a counter-proposal: I want to use your
services s0,1...s0,n , and I am only willing to give you evidence that I have secu-
rity privileges p0,1...p0,m. Further, I am going to accept showing my credentials
only according to the following dynamic security behavior x0,1 where e.g., I am
willing to show possession of privilege pi but only if I am asking service s1 or
s2.
To give an idea of the rationale of this framework, the main functionalities and
definitions will be illustrated. For further details we suggest to directly refer to
the two papers.

5instead of allowing the negotiation of one service/resource only

3.6 Agreement negotiation and monitoring 85

3.6.2.1 Services and Privileges

The basic components of a generic contract are products offered and the goods
required to serve out the exchange. In SOC, products are the services and goods
are the privileges or credentials. For instance:

• services: getProduct, payProduct ;

• privileges: passportID, creditCardNumber ;

In a nutshell, services are what a provider offers and privileges are what the
consumer should provide in order to consume certain services. For the sake
of abstraction, we consider both services and privileges as atomic predicates,
without further details on specification and description languages.

Definition 3.21 Services and Privileges Let P be a set of atomic propositions p
denoting security privileges and let S be a set of atomic propositions s (disjoint
from P) denoting services.[25]

3.6.2.2 Contract rules

Services and privileges are bounded by specific rules. For instance, provider and
consumer could connect services and privileges like:

• Consumer: I’m willing to disclose my ’department affiliation ID’ only
for service ’publish results’ or ’run mobile code’

• Provider: Service ’publish results’ is worth providing ’department affilia-
tion ID’ or ’research project affiliation ID’

These are defined as security behaviours in [26]. Essentially, a security behaviour
is a rule that specify which privileges are intended to be disclosed for which
services. More formally, the grammar is:

Definition 3.22 (Contract rule) 42
Crule := S ← ∅ | S ← P
S := S and S | Sr
Sr := s1 | s2 | . . . | sn
P := P and P | Pr
Pr := p1 | p2 | . . . | pn

86 Framework

Example: Crule1 = payProduct ← email and creditCardNumber.
To model the conversational nature of the interaction, a contract rule list is
defined.

Definition 3.23 (Contract rule list) 42
A contract rule list is a non-empty list of contract rules related to different ser-
vices:

Crules = < Crule1, . . . , CruleN >

Example:

Crules1 = < selectItem ← ∅,
addToCart ← creditCardNumber,

confirmTransaction ← email and address >

3.6.2.3 Security policy

A set of contract rules along with the services and privileges appearing in the
contract rules list, represents a proposal. A proposal is used within the negoti-
ation to let the peers exchange their preferences regarding offers and demands.

Definition 3.24 (Proposal) A proposal Prop for a peer A is a set

< SA, PA, CArules >

where CArules specifies the contract rules for the given set of services SA and
privileges PA.

Both provider and consumer can setup more then one proposal, so to manage
more possibilities and preferences. During the negotiation, if a proposal is not
acceptable for the other peer, another one is suggested.
The list of proposals identifies the security policy SP , i.e. the acceptable
proposals for a peer. The preferences are expressed by means of a partial order
over the security policy list.

3.6 Agreement negotiation and monitoring 87

3.6.2.4 Agreement negotiation

In a nutshell, the negotiation between the consumer and the provider is an
exchange of proposals until an agreement is met. The consumer kicks-off the
conversation by asking for a set of services, and the provider replies with a
proposal, specifying the required privileges. The conversation ends either with
an accepted proposals (an agreement) or with a failure, in case there are no
acceptable proposals for the two peers.
Whenever a proposal is sent by one of the peers, the other peer verifies whether
it is acceptable by comparing it to its security policy set.
Let us define the consumer proposal as the demand < SD, PD,CDrules > and
the provider proposal as the offer < SO, PO,COrules >. An agreement A is a
demand proposal PD that matches an offer proposal PO. Formally:

Definition 3.25 (Agreement)

A = {PD ∈ SPD : ∃ PO ∈ SPO t.c. SD ∈ SO ∧ PO ∈ PD ∧ CDrules v COrules}

Where v is a match operator such that X v Y returns true if behaviour
specified by X is among the behaviours allowed by Y , false otherwise.

3.6.3 Integration with the Framework

3.6.3.1 Negotiator

The Negotiator component in our framework will be in charge of taking a user-
defined set of proposals and use them to negotiate a contract for a given WS. The
negotiation will be performed as described in 3.6.2. For the sake of simplicity,
from now on the negotiation process will be defined as:

Definition 3.26 (Negotiation)

Negotiate(ws ref, proposals) =

{
A if an agreement is met
∅ otherwise

If an agreement is met, that agreement is returned and will be used as the
contract.

88 Framework

3.6.3.2 Monitoring

The contract obtained through the negotiation is used to automatically moni-
tor the interaction with the WS. The original paper does not explain how the
rules listed in the contract should be enforced during the ensuing conversation.
Intuitively, monitoring the behaviour of a WS according to an agreement A re-
quires to check that the actual conversation with the service is compliant with
the claimed rules in A. From an architectural point of view a monitor can be
realized by means of a specific component running at the client side that inter-
cepts each incoming/outgoing message and checks whether or not the message
is compliant with the agreement. In these terms, an agreement violation is like a
protocol violation. The monitor notifies a violation or a successful conversation.
This monitor can me modeled by means of an operator that takes as input an
agreement and an actual conversation and replies true if the conversation is
compliant with the agreement, false otherwise. Therefore, we need to provide
a notion of conversation compliant with an agreement. Actually, this notion is
already provided by the v operator. In a nutshell, a conversation is compliant
with an agreement if it matches the agreement.

Definition 3.27 (Monitor operator) Given an agreement A and a conver-
sation C, the monitor operator 	 returns true if C matches A:

A 	 C =

{
true if C v A
false otherwise

This is clearly an abstract function whose practical implementation is left to
further research.
The monitor will then apply the 	 operator to the current conversation and the
negotiate agreement. The returning result will then now be used to evaluate
whether the conversation was successful or not.

3.6.3.3 Direct experience evaluation

As the conversations between consumer and WS grows, the number of feedbacks
returned by the monitor increases. These feedbacks can be used to build the
direct experience evaluation towards the WS. Thus, the trustworthiness of the
WS based on the direct experience depends on the amount of successful inter-
actions with it. In other words, the trustworthiness of the web service improves
if it behaves as agreed over the time.
Assuming the rate by direct experience is within a range [0, 1], we define the
update function for the direct experience rating.

3.6 Agreement negotiation and monitoring 89

Definition 3.28 (Direct Experience Rating Update) 42
Given

• A an agreement with a service s

• Cs a set of new conversations from the last rate update

• Csi the ith new conversation with s.

• n the size of C

• N a user defined threshold

• Rc the current direct experience rate for service s

• µ a factor in the range [0,1]

Update(Rc, A,C, n) =

 Rc + µ ∗ (1−Rc) if n = N ∧ ∀i∈nA 	 Csi
Rc if n 6= N ∧ ∀i∈nA 	 Csi
Rc ∗ (1− µ) otherwise

The starting rating can be given either a value according to the reputation the
WS have when selected, a manually selected value or a neutral 0.5. The function
will keep the rating always within the range [0,1]. The rate will increase after
N successful conversation, whilst it will decrease immediately if the conversa-
tion fails. Moreover, the rating decrease is faster as opposite to the increase,
so eventual automatic emergency procedures based on the current value of this
rating can take their effect faster.

3.6.3.4 Automatic Rating

The monitoring procedure allows the consumer to keep a constantly updated
rating about the interaction experience with the WS. This automatic rating
system can be exploited in three ways:

• The direct experience ratings for each WS can be stored locally and used
as an evidence source as well.

• By means of a watch dog, it should be possible to rise an alarm whenever
the rating falls beyond a pre-defined threshold. This way, it is possible to
initiate a recovering procedure to replace the “malfunctioning” WS with a

90 Framework

new one, after having queried the evidence supplier for new informations
about other services.

• The ratings generated by the contract monitoring procedure can be used
by the reputation component : they are communicated to the trust brokers
to update the reputation of the WS. As discussed in Section 3.5.2.3, ratings
should be communicated when necessary. In this case, the new rate should
be communicated after the Update function actually updates the ratings,
either by a positive or a negative increment.

Chapter 4

Application

Throughout Chapter 2, a thorough analysis about the state of the art for SOA
trust provisioning has been provided. The main issues have been highlighted
and the guidelines for a new framework have been provided. In Chapter 3, the
theoretical principles to found the new framework on have been defined. Essen-
tially, the framework has been explained.
In this chapter we aim at providing a practical explanation of the effective-
ness of the framework. In Section 4.1 we will provide an intuitive idea of how
the framework is supposed to work. We will then highlight in section 4.2 the
achieved improvements explaining how the problems arisen during the analysis
have been addressed.

4.1 Test cases

The framework explained throughout Chapter 3 has been designed with the
purpose of solving (or at least partly solving) the problems arisen and analyzed
in Chapter 2. During the analysis of the state of the art, a running example
has been provided. This way it was possible to exemplify the limitations ad
advantages of each approach with a practical scenario.
Following the same methodology, we are now going to illustrate the impact of

92 Application

our framework in a real application. As for Chapter 2, the Virtual Travel Agency
use case is adopted, providing a set of scenarios along the line of those listed by
W3C in Web Services Architecture Usage Scenarios1. Other scenarios that we
think worth it to analyze are also described.

4.1.1 Assumptions

The following test cases will involve Alice as the actor representing the consumer
of the Web Services. She will play the role of both a direct consumer and a
developer.
Few assumptions have been made to support the test cases in this section:

• The consumer always finds a way to obtain an updated list of WS refer-
ences matching his/her requirements;

• QoS offers, where mentioned, have been retrieved by means of a third
party in charge of collecting and providing them. This third party can be
either a central authority or a P2P network or anything else.

4.1.2 Background

Use cases are drawn from the W3C provided use-cases Web Services where a
Virtual Travel Agency agent is considered.
An example is the scenario illustrated during the introductory Chapter 1. More-
over, a scenario involving Alice as a direct consumer is used:
Alice, a business traveler in Copenhagen, is having dinner in a WLAN-equipped
pub. Since the work meeting planned for the next week has been canceled, Al-
ice would like to spend the unexpected free time as a tourist. Therefore, Alice
connects her mobile smart phone to the WLAN network of the pub looking for
some tourist Web services. With the help of her agent assistant she manages to
discover many different WSs that can be used to book flights, accommodations
and so on.
With the introduction of our framework, the scenario is extended like this:
Alice installed our framework on her smartphone. Whenever she has to choose
whether to trust a Web Service or not, she will use the tools provided by the
framework to gather the evidences she needs to consider the WS trustworthy.

1http://www.w3.org/TR/ws-arch-scenarios/

http://www.w3.org/TR/ws-arch-scenarios/

4.1 Test cases 93

4.1.3 QoS based selection

Precondition: 42
Alice’s agent discovered a list of four2 WSs offering flight booking capa-
bilities. She has no previous knowledge about anyone of them.

Case: 42
Alice sets up the Evidence Supplier to rank them based just on her QoS
preferences, then weights are distributed as:

Reputation = 0%

QoS = 100%

No thresholds are specified.
Preferences are:

• Alice is connected to a public WLAN infrastructure. She then wishes
to keep her data confidential while interacting with the Web Service.
She adds confidentiality to the list of preferred QoS attributes.

• For efficiency reasons, Alice would like her transaction with the flight
booking WS to be as quick as possible. She adds response time to
the list of preferred attributes.

Although the efficiency suites her needs, Alice still considers the end-to-
end confidentiality of her data the most important attribute in a public
WLAN infrastructure. Based on this she sets the weights:

• Confidentiality = 80%

• ResponseT ime = 20%

Furthermore, she sets a 100% weight on the QoS ranking and no thresh-
olds (3.3.3).
The four WSs provide the offers illustrated in table 4.1 (non matching
attributes are omitted because they weight 0, whilst missing matching at-
tributes have the ’−’ symbol).
The values assigned to confidentiality derives from this assumption: con-
fidentiality is a function mapping the confidentiality related parameters
(i.e. encryption algorithm) to a value reflecting their quality (i.e. SSL
with AES-256 encryption would gain a better value than SSL with RC4-
128 encryption).
Scores are computed assuming γ = 1 in function 3.14. 42
The scores have been computed with the formulas specified in definitions
3.10, 3.13 and 3.14.
The resulting rank is then: B, A, D, C.

2We use a small number for the sake of simplicity

94 Application

Confidentiality Response time Score

A 3.0 42.0 ms 1.528
B 3.5 25.0 ms 1.906
C - 30.0 ms 0.275
D 2.0 10.0 ms 1.2

Table 4.1: QoS Test Case

Postcondition: 42
Alice now already has a clue about which WS better fits her non functional
requirements. She picks up service B.

Alternative flows: 42

• Even if service B has a promising QoS offer, Alice prefers to verify
his reputation before making a choice.

• Even if service B has a promising QoS offer, Alice prefers to negotiate
a contract to rely on directly with the provider.

4.1.4 Reputation based selection

Precondition: 42
Alice’s agent discovered a list of four WSs offering flight booking capabil-
ities. She has no previous knowledge about anyone of them.

Case: 42
Alice sets up the Evidence Supplier to rank them based just on reputation,
then weights are distributed as:

Reputation = 100%

QoS = 0%

No thresholds are specified.
As described in 2.3.2.1, the Trust Broker that will be queried for the rep-
utation score requires a threshold representing the minimum number of
transactions. If the threshold is not met, the WS is labeled as unclassified.
Alice sets up the evidence supplier so to query the trust broker with the
following input:

< Alice, [A,B,C,D], 42, false >

4.1 Test cases 95

Alice is asking for a reputation score based on at least 42 transactions
for the four listed WSs. The reputation has to be calculated without
considering the timestamp of the rate submissions. The TB then returns:

Classified = [A = 0.4,

B = 0.2,

C = 0.9]

Unclassified = [D]

The result indicates that service C has generally demonstrated more trust-
worthiness over the time, whilst B probably belongs to the malicious cat-
egory.

Postcondition: 42
Alice has now a clue about the community trust towards the four WSs.
She decides that this is a sufficient quantity of evidence and she picks up
C.

Alternative flows: 42

• Even if service C has a good reputation, Alice would like to know
more about the non-functional offer of the Web Service.

• Even if service C has a good reputation, Alice prefers to negotiate a
contract to rely on directly with the provider.

4.1.5 Aggregated sources selection

Precondition: 42
Alice’s agent discovered a list of four WSs offering flight booking capabil-
ities. She has no previous knowledge about anyone of them.

Case: 42
Alice sets up the Evidence Supplier to rank them based just on reputation,
then weights are distributed as:

Reputation = 40%

QoS = 60%

No thresholds are specified. The evidence supplier retrieves the required
information from the two sources as described in scenario 4.1.3 and 4.1.4.
It essentially computes the overall grade for the service list. First, the

96 Application

results are normalized to the same range of values:

QoSrank = { B = 1.0,

A = 0.743,

D = 0.548,

C = 0.0 }
Reputationrank = { B = 0.2,

A = 0.4,

C = 0.9 }

The resulting aggregated result based on the weights is then:

Classified = { B = 0.68,

A = 0.605,

C = 0.36 }
Unclassified = { D }

Postcondition: 42
Alice has now a weighted rank of the WSs. She now decides to trust
service B.

Alternative flows: 42
Alice would like to know whether she can use her VISA Electron credit
card, as she usually prefers that one for online transactions. Thus, she
wants to initiate a negotiation with the provider to have more details
about the payment before deciding.

4.1.6 Negotiation

Precondition: 42
Alice’s agent discovered a list of four WSs offering flight booking capa-
bilities. They have been ranked by the evidence supplier based on Alice
preferences and they are now sorted in this order: B,A,C. Service D is
unclassified.

Case: 42
Alice is subscribed to a club within her bank where special gift are given
after collecting enough fidelity points. Fidelity points can be collected
even by doing transactions with the VISA Electron credit card. So Alice
prefers to use it to book the flight. She then starts the negotiation with
the provider, where she asks what privileges she has to disclose for certain
services.

4.1 Test cases 97

S
1

=
se

le
ct

F
li

g
h
t,

b
o
o
k
F

li
g
h
t,

co
n

fi
rm

T
ra

n
sa

ct
io

n
S

2
=

se
le

ct
F

li
g
h
t,

b
o
o
k
F

li
g
h
t,

g
et

D
is

co
u

n
t,

co
n

fi
rm

T
ra

n
sa

ct
io

n
P

1
=

em
a
il

,
M

a
st

er
C

a
rd

n
u

m
b

er
C

1
=
<

se
le

ct
F

li
g
h
t
←
∅,

b
o
ok

F
li

g
h
t
←

em
a
il

,
ge

tD
is

co
u

n
t

&
co

n
fi

rm
T

ra
n

sa
ct

io
n
←

M
a
st

er
C

a
rd

n
u

m
b

er
>

P
2

=
em

a
il

,
V

IS
A

E
le

ct
ro

n
n
u

m
b

er
C

2
=
<

se
le

ct
F

li
g
h
t
←
∅,

b
o
ok

F
li

g
h
t
←

em
a
il

,
ge

tD
is

co
u

n
t

&
co

n
fi

rm
T

ra
n
sa

ct
io

n
←

V
IS

A
C

a
rd

n
u

m
b

er
>

S
1

=
se

le
ct

F
li

g
h
t,

b
o
o
k
F

li
g
h
t,

co
n

fi
rm

T
ra

n
sa

ct
io

n
P

2
=

em
a
il

,
V

IS
A

E
le

ct
ro

n
n
u

m
b

er
C

3
=
<

se
le

ct
F

li
g
h
t
←
∅,

b
o
ok

F
li

g
h
t
←

em
a
il

,
co

n
fi

rm
T

ra
n

sa
ct

io
n
←

V
IS

A
C

a
rd

n
u

m
b

er
>

98 Application

As the negotiation flow illustrates, the flight booking service provider of-
fers a discount for whom is going to use a Master Card. Even though
Alice preferred to use a VISA Electron card, the possibility of the dis-
count changed her mind. Then she decides to conclude the negotiation by
accepting to confirm the transaction providing her Master Card number.

Postcondition: 42
Alice negotiated contract C1 to consume the service. She is going to book
the flight aware that she will obtain a discount using her Master Card. If
no discount will be provided (getDiscount invocation will return an error),
a contract violation will be caught by the monitor and the direct experience
rating for this WS will decrease.

Alternative flows: 42
Alice is not interested in the discount, and the negotiation ends accepting
contract C3.

4.1.7 Automatic feedback delivery (Alice direct consumer)

Precondition: 42
By means of the VTA software agent and the evidence supplier, Alice
selects a flight booking WS to book her flight. The negotiator is then used
to agree on a contract with the provider (the same contract described in
4.1.6.

Case: 42
The agent is set to monitor the conversation between Alice and the WS.
After each use (N = 1 in formula 3.28), the rating is automatically gen-
erated by the monitoring agent and eventually sent to the TB.
The update is calculated according to Def. 3.28. Let us assume that µ
is set to 0.2. The starting rating of the flight booking WS is set to 0.76
(drawing the value from the current reputation of the service).
Alice books the flight successfully and the security behaviour of the WS
meets the agreement. The evaluation based on Alice’s direct experience is
updated to 0.808. The value is automatically submitted to the TB along
with the timestamp. The TB updates the current reputation of the WS.

Postcondition: 42
The reputation of the flight booking WS has improved thanks to the suc-
cessful conversation between Alice and the WS.

Alternative flows: 42
Alice is asked for an additional International Passport number to complete
the transaction and the conversation fails (agreement not respected). The

4.1 Test cases 99

provider was probably offering some sort of phishing feature to attract
more consumers to the final step of the booking.
The current rating is updated to 0.608. The new rating is submitted to
the TB that updates the current reputation according to the sent value.

4.1.8 Automatic feedback (Alice developer)

Precondition: 42
Alice has selected a flight booking WS from a list after having agreed on a
contract with the provider. The agreed contract is the same resulted from
the negotiation in 4.1.6. The WS joins the choreography for the VTA
system. In this case, the system is going to be used by external users,
unaware of the underlying service oriented architecture.

Case: 42
Alice sets a software agent to monitor the communication between the con-
sumer (usually the code performing the WS invocations) and the provider.
The agent is instructed to use the negotiated contract to verify the cor-
rectness of the interaction. The average traffic volume towards the flight
booking WS is supposed to be 100 requests a day. Therefore, Alice sets
the agent to update the direct experience evaluation every 50 successful
conversations (twice a day). The update is calculated according to Def.
3.28. We assume that µ is set to 0.2. The starting rating of the flight
booking WS is set to 0.5.
The WS performs well for 3 sequential days.
The 1st day, the rating is updated once, from 0.5 to 0.6.
The 2nd day, the rating is updated twice, from 0.6 to 0.68 to 0.744.
The 3rd day the traffic volume decrease and the rating is updated once,
from 0.744 to 0.795.
For each update, the new rating is communicated automatically to the
trust broker. The 4th day, at the 42nd conversation, the flight booking
WS experiences a fault and during the confirmTransaction invocation, it
returns an 515 - Internal server error instead of the usual confirmation
number. The rate is updated from 0.795 to 0.636 and communicated to
the TB.

Postcondition: 42
The service performance has been tracked and rated throughout the 4 days
without any human intervention. The TB connected to Alice’s VTA has
received the evaluations about the service behaviour and the reputation
has been kept updated. The 4th day, after the fault, the reputation has
been influenced by Alice’s agent provided rate, reflecting the WS server

100 Application

problems without overloading the trust broker with connection for each of
the 242 conversations. Only five connections have been in fact performed.

4.1.9 Implementation suggestions

As already explained, the framework has not been implemented in a working
solution. However, many technologies have already been devised to solve some
of the concerns emerging in our work. We are now going to provide some
implementative examples to show how the framework could be theoretically
concretised in a real application. We will just mention some ideas on how to
map existing technologies to some component of the framework. Wi will not
discuss about those part where the only effort is related to the coding.

4.1.9.1 QoS component

There exist many standards and languages to specify QoS information regarding
Web Services, in particular for what concern SOAP-based Web Services. A
UDDI data structure extension named tModel is suggested by W3C to express
QoS offers for published WS [74]. This model has been conceived to let the
consumer search a UDDI registry to locate registry entries meeting a particular
QoS need.
The framework does not assume the existence of a centralized UDDI registry
performing the matching task, thus a more generic solution to specify QoS offers
would be to adopt one of the many XML based languages for QoS specification,
like OWL-S, WS-Agreement or the new OWL-Q proposed in [51]. These express
generic aspects of QoS features. Other languages like WSOL, WS-QoS, DAML-
QoS support class of services.

4.1.9.2 Reputation component

Concerning the Reputation component, the trust brokers can be implemented as
software agents exposing services for both retrieving the ratings and to update
them. Those services could be exposed as Web Services as well, so to allow a
sort of preliminary trustworthiness evaluation of the trust brokers themselves
by means of our framework. Trust brokers can even provide their CA signed
X.509 certificate to let the consumer make a preliminary selection.
The authors of the distributed trust broker architecture suggest to implement
trust brokers using some common software package like those certified by Liberty

4.2 Discussion 101

Alliance [1].
Anyway, a working system has been implemented by the authors themselves
and performance testes have been already provided in the original work.

4.1.9.3 Evidence supplier

The evidence supplier, in order to be fully flexible and extensible, should treat
uniformly all the different evidence sources in the system. They could be rep-
resented with XML with the following schema:

<?xml version=” 1 .0 ” encoding=”UTF−8” ?>
<s ou r c e s>

<source name=” reputa t i on ” weight=” 0 .8 ” th r e sho ld=” 0 .3 ”>
< c l a s s i f i e d>

<ws r e f=” ht tp : //companyA . com/Fl ightBooking . wsdl ”>0 .7</ws>
<ws r e f=” ht tp : //companyB . com/Fl ightBooking . wsdl ”>0 .5</ws>

</ c l a s s i f i e d>
<u n c l a s s i f i e d>

<ws r e f=” ht tp : //companyC . com/Fl ightBooking . wsdl ” />
</ u n c l a s s i f i e d>

</ source>
</ sourc e s>

4.1.9.4 Negotiation component

The negotiation can be carried out by means of software like TrustBuilder2, a
work by Winslett et al.[55]. TrustBuilder2 is a fully-configurable and extensible
framework for prototyping and evaluating trust negotiation systems, support-
ing the use of multiple credential formats such as X.509 certificates [37] and
SAML assertions [18]. Furthermore, it supports negotiation strategies. It fi-
nally accepts a wide range of policy specification languages, like Cassandra [2],
X-TNL [10], TPL [36], RT [58], and XACML [4], letting a great flexibility on
the language choice when the implementation will be carried out.

4.2 Discussion

In Chapter 2, a thorough analysis regarding the current state of Web Service
Trustworthiness provision has been carried out. All the existing approaches
have been categorized in four main classes:

102 Application

• direct experience

• trusted third-party

• hybrid

• automated trust negotiation

TTP based approaches and hybrid ones have been split in further classes (more
details in Sections 2.3.2 and 2.3.3).
Each class has been discussed in relation to its advantages and shortcomings,
highlighting the main limitations of the approach. At the end of the chapter
the pros and cons have been categorized and mapped to each class, in order to
have a starting point to devise the architecture of a new framework.
Based on the aforementioned analysis, the new framework has been conceived
and described in chapter 3. According to the requirements highlighted through-
out chapter 2, we are now going to trace down how each listed issue has been
addressed with our framework.

4.2.1 New Service ramp-up

Whenever a new Web Service joins the network, it may hardly escalate his
reputation in a social system where other functionally equivalent Web Services
are available. In the proposed framework the issue is present when it comes
to obtain an evidence through the reputation manager: in case the service is
not rated enough, it will not reach the minimum threshold required by the user
(if sufficiently high). As a consequence, no reputation score will be provided.
Nevertheless, the user is still able to make up his trust belief in other ways:
by means of the QoS matchmaker and the Negotiator. Both of them enforce
the notion of hard trust. The potential consumer will be able to query the QoS
matchmaker to verify whether the new Web Service has a valuable QoS offer
and then negotiate a security behaviour directly with the provider. This will
consequently fuel the new service rump-up, because more users will manage to
consume it even when brand new.

4.2.2 Community dependency

Another major issue of pure community based trust systems is the community
itself. A community does not born big, but starts with few, maybe inactive users.
Before any kind of social help can be obtained, the society has to grow. The

4.2 Discussion 103

problem of community bootstrap arises in many frameworks and some of them
suggest to fix the issue by providing some monitors autonomously “trying” the
WSs to generate some rates. In our framework, the possibility of agreeing on a
contract produces a benefit in this sense: the interaction between consumer and
provider can be constantly monitored and verified, therefore both positive and
negative experiences can be immediately and automatically translated in good
or bad rates to communicate to the TBs. This will help the reputation system
to become more reliable over the time, helping the bootstrap of the community
without the need of a user manually submitting his rates (even though this is a
possibility).

4.2.3 Unconditional trust/distrust

This problem was mainly affecting those approaches based on the direct ex-
perience. The problem in this framework is almost completely overcome: the
only occasion when a user should unconditionally trust or distrust a Web Ser-
vice/provider is in case no evidences are provided by any of the components
interacting with the evidence supplier and no negotiations has been carried out
successfully. This is actually an extreme situation that might be interpreted as
an untrustworthiness evidence: a Web Service provider that did not apply any
effort to procure either a QoS offer or a negotiation for a contract, has either
such a great reputation that there are no needs for further evidences (but this
is not the case because we are assuming the user does not have any evidence) or
its neglecting behaviour towards the trust precautions could correctly classify
the Web Service/provider as untrustworthy.

4.2.4 Centralized

The centralized nature of a system like the one we are discussing, would bring
to the issues listed in 2.3.5. This is why our system as been kept uncoupled by a
central authority. This does not mean that central authorities are useless and so
not considered (in fact, reputation authorities are used as a last chance in the
reputation infrastructure), but just that the system does not rely only on that.
Single point of failures have then been avoided by creating more sources where
to retrieve trustworthiness information from. When one of them fails, the others
are still available. Even the reputation system itself has been kept distributed,
by assuring that if a TB collapses, others can be contacted. In detail:

• Trustworthiness score is calculated in loco by the evidence supplier and

104 Application

the outcome of the computation can be inspected to better know how the
result came up;

• The system relies mainly on three external entities: a QoS supplier (not
discussed in this work), a referral in the reputation community and the
negotiator agent side. This way it will be unlikely to have a global failure
of the system.

• The reputation component as been outsourced from those studies that
where devising a distributed architecture for the reputation community.
The resulting Reputation Agent then inherits the features of those studies.

• Neither the consumer nor the provider are forced to disclose any sensitive
information:

– the consumer will setup the client side evidence supplier with his
preferred thresholds and preferences;

– the provider can share the QoS information related to the Web Ser-
vice and keep the sensitive data protected, ready to be negotiated
with the potential consumer directly;

– an increasing number of Web Services or Web Service consumers will
not destabilize the system: the service consumers have the trustwor-
thiness mining mainly executed in their own machine. There are
some possible bottlenecks in the system though:

∗ In case the reputation community is not properly setup, the
amount of trust brokers might not satisfy the consumers’ demand
(in term of requests per time unit), leading to a bottleneck. We
believe the issue would be overcome by a pure P2P reputation
network, because the increase of consumers would lead to a pro-
portional increase in the number of trust brokers (assuming each
consumer would act as a trust broker too). However, as dis-
cussed in 2.3.2.1, there are a few important advantages in the
current architecture of the reputation network that trade off this
potential shortcoming.

∗ Another potential bottleneck might rise from the QoS provision-
ing system. As stated in chapter 3.4, this work does not include
any hypothesis about how the QoS provider should be conceived
and plugged to the framework. Therefore, we just point out that
there might be a bottleneck in case the QoS provider will not
result scalable for a service oriented environment.

4.2 Discussion 105

4.2.5 User-fitting score

As we advocated in 2.3.5, the score provided by the system would be more
valuable and effective if fitting the user needs, habits and personal attributes.
In our framework, this is achieved in two ways:

• The result provided by QoS ranker is computed matching the user personal
preferences on the QoS features of a Web Service against the QoS offers.
The rank will then reflect the consumer personal needs related to the
Quality of Service.

• The negotiation is executed considering the consumer provided ordered list
of services, privileges and security behaviours. This will let the user specify
in details how the interaction with the provider should be performed. In
this case the score is 0 or 1 (either failure or acceptance), but still it is
built around the user needs.

On the contrary, the reputation is computed based on the other users and trust
brokers provided scores, with no details about which kind of faulty or good be-
haviours have generated it. Thus, the reputation score is somehow black-boxed
and does not reflect any user’s habit or need. A reputation from user A towards
Web Service B almost certainly depends on the contract negotiated between A
and B, that will generally be different from other users’ negotiated contracts.
We will discuss this issue as a potential starting step for a future extension of
the framework.
Nevertheless, the reputation in our framework should be seen just as a con-
firmation that the WS is generally considered worth it by the society. And,
moreover, that a malicious behaviour can be caught in time to the inform the
other potential consumers before they start trusting it.

4.2.6 Hard to setup

This issue requires a different discussion for each of the components of the
system:

• QoS ranker: the computation-logic of this component is kept in the
client, so there are no needs to setup a specific infrastructure to support
this. However there might be an integration problem arising from the QoS
specification itself: to date, there are many different suggested ways to
specify the QoS contract. This means that different service providers can

106 Application

express the QoS of their Web Services in different ways, through different
standard specifications and using different metrics and parameters.

• Reputation manager: this component requires the setup of some initial
trusted brokers, that can be considered trustworthy. This may result in a
tough start, because the initial trust brokers will have to “try” the Web
Services in order to mine a score. Otherwise, a consistent amount of active
users is necessary in order to produce a reliable reputation score. This re-
quirements usually affect all the community-based/TTP approaches, and
there are no best solutions in this case, apart from trying to boost the
community with an initial manual insertion: in our case, introducing some
initial trusted authorities and brokers that can immediately provide for the
reputation service.

• Negotiator: this component requires both the consumer and the provider
to arrange an agent for performing the negotiation protocol. This is of
course a strong requirement, that probably need to be addressed.

The overall evaluation is that the framework actually needs a surrounding infras-
tructure, even though the most part of the logic is kept on the client machine.
Thus an initial effort is required to take off, but the idea is that the components
can help each other in a synergistic work to achieve a stable state faster. For
instance, let us assume a very poor starting community. In this case, potential
consumers could rely on the QoS description and the negotiation to trust a Web
Service and essentially release a reputation score. This will feed the reputation
community, that will consequently allow another consumer to rely on QoS and
reputation to evaluate the same service. In a nutshell, the infrastructure should
theoretically grow up by an increasing speed over time. We however acknowl-
edge that further studies about the system bootstrap would definitely improve
this work.

Chapter 5

Conclusions

In this thesis we have analyzed the state of the art for what regard trust pro-
visioning on service oriented environment, focusing on the main issues affecting
current approaches. A framework has then been suggested and motivated to
overcome part of the issues arisen during the analysis. The aim of the study
was to design the base framework to solve the listed problems. The design
did not present any detail on the implementation or language/standards to be
adopted. It has been willingly been kept abstract enough to leave free choice
on its future application (no matter if it will be applied to SOAP based Web
Services, RESTful ones or any others). A final test case study has been carried
out to demonstrate how the framework can solve the problem listed in the anal-
ysis. Some use scenarios has been illustrated, highlighting the potentiality of
the system. Moreover, a discussion about the possible application in an imple-
mented solution has been portrayed, in order to provide a clue of the concrete
applicability of the framework. Finally it has been presented a discussion about
how the issues listed in the analysis have been addressed with the framework.
In this chapter we are now going to list the contributions of the whole thesis,
specifying then what and how could be improved and extended in the future.

108 Conclusions

5.1 Contributions

5.1.1 State of the Art Analysis

In Chapter 2, a thorough analysis of the current state of trust provisioning
approaches has been carried out. The studies addressing the problem of trust
in automated systems have been analyzed and categorized based on their ra-
tionale. The categorization has highlighted the main limitations connected to
each approach. A further analysis of the most critical factors influencing a
trust provisioning system addressing the SOA environment has been performed,
suggesting the guidelines to base a new framework upon.

5.1.2 Rationale for new founding principles

After the categorization based on the rationale of the approaches, a further
categorization of the has been provided: those based on a soft notion of trust
and those based on a hard notion of trust.
Moreover, after having emphasized the lack of clarity concerning the trust and
trustworthiness term definitions in the existing literature, an informal definition
of them has been provided as well.
This step allowed us to define the new founding principles to base our new
framework upon.

5.1.3 Unified Framework

The analysis in chapter 2 highlighted the main issues related to the current
trust provisioning approaches for a SOA environment. To solve part of the
listed issues, a framework unifying hard trust and soft trust approaches has
been devised. Thus, the most notable works based on the mentioned notions of
trust have been illustrated, explaining advantages and shortcomings of each one.
Some of them have been selected to join the unified framework. The evidence
supplier component has been designed to support the collaboration of the joint
components. The negotiation support has been provided in order to complete
the framework based on its the founding principles.
The framework has been designed in light of the analysis Chapter 2 and sup-
ported by the definitions outlined after the preliminary study of the state of the
art.

5.1 Contributions 109

5.1.4 Referral-based Reputation Manager (extension of
[61])

The distributed reputation system proposed in [61] has been extended to achieve
the following results:

• parametric time-dependency for reputation computation, in order to sup-
port more use-cases

• support for multiple WSs reputation request, by extending the trusted
broker accepted input

• integration with the evidence supplier, by extending the trusted broker
computed result

5.1.5 Preferences-based QoS ranking

An accurate analysis about the QoS matching/ranking problem in literature has
been carried out in Section 3.4. Out of this analysis, a new matching/ranking
system has been provided. The idea results from the extensions of [97] and
[104]. The new QoS ranker is based on a preference oriented demand specifica-
tion, considered more usable for the end-user and more efficient. Moreover, it
overcomes the issues arisen during the analysis in Section 3.4.

5.1.6 Contract negotiation and Monitoring (extension of
[26])

The trust negotiation framework explained in [26] has been integrated in our
unified framework to make it complying to the rest of the components. Further-
more, the original idea has been extended realizing a monitoring functionality
to integrate to the security behaviour negotiation of [26]. This will allow to au-
tomatically verify the compliance of the communication between provider and
consumer to the agreed contract, fulfilling the credible evidence requirement
mentioned in definition 3.3. As a consequence, the user will be able to track
his experience with the consumed WSs, making it available to other users and,
moreover, to eventually support watch-dogs and alarms to increase the robust-
ness of the system.

110 Conclusions

5.2 Future Works

Due to the time limitations, there have been some points that were not treated
completely or questions that were left unanswered. We are going then to list the
possible extensions and improvement that we have identified that could increase
the value of this project.

• Better QoS specification: the QoS ranker relies on some user preferences
expressed by means of weights. A step forward for this component would
be to integrate some methodologies to allow a more semantic QoS speci-
fication, so to avoid the integration problem described in 4.2.6.

• The negotiation component has been thoroughly explained in the original
paper under the point of view of the protocol and the techniques to enforce
a more robust negotiation. In the same paper, the efficiency and the
effectiveness of the framework is mathematically proven. We extended
the framework with a monitoring feature, but this although is still missing
practical credibility.

• The reputation component currently supports a really generic rating sys-
tem. It would be desirable to let the user know which parts of the other
users’ experience with the WSs have been evaluated and which exact prob-
lems eventually arisen. This would allow a more detailed and targeted
evaluation.

• Another issue related to the reputation component is the Trust Broker
selection. Currently, the user has to manually select the Trust Broker he
believes to be trustworthy and manually change it in case of faults. It
would be desirable a way to keep a list of trustworthy Trust Brokers to let
an agent automatically switch TB whenever a failure occurs.

• Ratings provided by different users are always considered trustworthy.
Collusion is prevented just among Trust Brokers, but malicious users can
still organize themselves to poison the rating of a particular service. Many
works address this issue, like [39] or [62] (to mention just two of them) and
they could be analyzed and revised to be integrated in our framework.

• There is currently no support for WS automatic composition. Services
can join a so called choreography, i.e. they are orchestrated to achieve a
final goal given by the composition of their results. So far, the framework
supports a single-service per query evaluation. A specific infrastructure to
support the non-functional automatic composition of WS is instead still
missing. It would be suitable to provide the tools to evaluate not just the

5.2 Future Works 111

best service, but the optimal composition (that may contain some sub-
optimal WS). Notable works in this direction are provided in [104] and
[63].

112 Conclusions

Appendix A

Publication - NODES11

Analysis of Trust-Based Approaches for Web Service
Selection

Nicola Dragoni, Nicola Miotto, Davide Papini

Department of Informatics and Mathematical Modelling
Technical University of Denmark, 2800 Kongens Lyngby, Denmark

ndra@imm.dtu.dk, s094348@student.dtu.dk, dpap@imm.dtu.dk

Abstract. Service Oriented Computing is an emerging paradigm for distributed
computing, where Web Services represent the bricks of a Service Oriented Archi-
tecture. Brought to its full potential, this vision could allow software developers
to take advantage of agents to automatically discover and compose Web Services
over the Internet to build a distributed system. In the past years, there have been
many issues discussed about web services, regarding their implementation, their
founding principles and so on. But there is still a concern that did not gained
much attention so far and would need to be thoroughly investigated: how can a
service be trusted? What is the right choice when it comes to decide the best ser-
vice among plenty of similar ones? In this paper we are going to show how it has
been tried to answer this question, providing a survey about the state of the art of
the web service trust provisioning.

1 Introduction
In the past years the Service Oriented paradigm has gained a growing attention, con-
sidered a new revolution in the Internet age. One of the major advantages offered by
this new paradigm is the possibility of automating the process building distributed sys-
tems. A software agent should be delegated to discover the right web services (WS) to
be used in a composition. This would also optimize integration and reusability of soft-
ware components.Many studies have addressed the different problems related to WS
and SOA, like implementation, funding principles and so on. But WS trustworthiness
provision is still an open challenge. In this paper we are going to update the survey A
survey on trust-based web service provision approaches[1] of Nicola Dragoni with new
concerns and extend it with a final discussion where the different approaches found in
literature will be compared, giving few suggestion on how the research on this field
could proceed.

1.1 Sources of trust
The studies we are going to analyze throughout this paper adopt different metrics to
evaluate the trustworthiness of a WS. The most part of those metrics boils down to the
QoS metrics for WSs identified by W3C (figure 1).

1.2 Real World scenario: Virtual Tourism Agency
Alice is a software developer for a tourism company. She’s asked to develop a Virtual
Tourism Agency (VTA), a service helping the users throughout the steps to plan a trip;
she decides to break down the system to smaller capabilities: flight booking, accom-
modation booking, bus ticket purchase/car rent, payment. Since there are many WSs

2

Fig. 1. QoS metrics according to the W3C Consortium

providing for the identified features, she has to choose the right ones and compose them
in a step by step procedure; but, which service is the right one? Alice didn’t use any of
the available services in her career, so she picks them up just relying on few descrip-
tions and on her common sense; after one month, the company providing for the flight
booking WS has to temporary shut down the service because of overloading problems.
Consequently, the VTA has to be taken down as well.
As the example tries to stress, selecting the right service does not include only the prob-
lem of discovering services on the basis of what a service can do (functional properties),
but also how well a service can do (non-functional properties), evaluated according to
some non-functional QoS1 metrics. The QoS value may determine the trust Alice has
towards a service.

2 Suggested approaches
There have been many studies in literature addressing the problem of automated trust
provisioning, not necessarily directly targeting the WS domain. The purpose of this
document is to classify the most relevant ones according to their rationale, in order to
outline their advantages and limitations in a SOA environment.
The different studies can be grouped according to diagram 2 [1]. 42
Another classification can depend on the architecture: distributed or centralized. In the
following sections we will discuss the suggested solutions and their limitations, provid-
ing an example scenario where supposed useful.

2.1 Centralized vs Distributed
Trust provisioning systems can be built mainly around 2 architectures (apart from TN):
centralized or distributed. Even if each single approach applies different rules for the

1 Quality Of Service

3

Fig. 2. Classification of Trust Approaches for Online Service Provision.

entity-to-entity communication or uses different algorithms to compute the trust, the
architecture-dependent behaviour can be generalized as follow:
Definition 1 - Distributed trust provisioning approaches: the trust scores of WSs /
service providers are computed/derived after having directly communicated with other
peers in the system.
Limitations: in the context of SOA is not really possible to generalize the shortcom-
ings deriving from a distributed architecture, because they are tightly connected to the
specific approach. Anyway, in general, a common drawback is the system setup and
start-up effort.
Definition 2 - Centralized trust provisioning approaches: the trust scores of WSs /
service providers are provided by a central authority with the responsibility of comput-
ing/collecting them.
Limitations: Central authorities are a single point of failure and thus can exist only
under rigidly constructed and administered computational environments, in particular
considering the capacity demand of a SOA environment. Another technical limitation
resides in the possible alteration of the ratings (collusion or retaliation). Moreover, a
centralized trust authority can never be a good enough recommender for everyone: dif-
ferent entities should be allowed to make up their own mind[2].

Further advantages and drawbacks will be discussed in the following sections according
to each approach.

2.2 Direct Experience
This class of approaches is based on presumptions drawn from the service consumer’s
own direct experience with the target service [3]. The rationale is that the trust can be
build upon some quality parameters that depend on the service behaviour in the course
of time. This means that the service can be trusted if the consumer past experience
with that service, i.e. the knowledge gained after having a transaction with it[3], results
complying to his expectations and requirements. Jonker and Jan Treur present an anal-
ysis of models for the dynamics of trust based on experiences [4]. They investigate the
basing principles governing the evolution of the trust towards a service. In [5] the au-
thors describe a layered framework conceived to manage trustworthiness through seven
levels. As the authors point out the quality of the model to be built is fully dependent on
the experience of the practitioners. In other words, how to trust a service when no past

4

experience is available? This is the main drawback of the trust-by-direct-experience ap-
proaches.
Definition 3 - Trust by Direct Experience: a service consumer trusts a service because
of his good past experience with the service.
Limitations: This approach is not suitable for large open systems where anyone can
publish its (malicious) code, since it does not allow to trust a service before its ex-
ecution. Moreover, whenever an unconditional distrust approach is used, brand new
services may be not considered even if conforming to the needs.
Scenario 1: Alice has no past experience with any flight booking WS. For each discov-
ered WS, with no evidence of its trustworthiness, she is forced to either unconditionally
trust or distrust it. In the first case Alice has to accept not only the WS inherent “risk of
prior performance” (i.e., to pay for services and goods before receiving them) but also
the “risk of blind (i.e., untrusted) execution”. In the second case she is going to reject a
service that might have been compliant to her trust policies.

2.3 Trusted Third-Party Approaches

TTP approaches are based on the idea that the service consumer can rely on a third-
party in order to obtain a trust value of a given service. Third-party may refer either
to a trusted central authority or members of a community. The underlying assumption
of these approaches is that consumers must trust the third party they decide to consult.
We distinguish among two types of approaches: social and matchmaking approaches.
In both of them the final decision is based on the assessments provided by the TTP. The
difference lies in how the assessments are computed.

Social (Indirect Experience) The trust evaluation towards a WS is forged by a co-
operating community whose members have directly or indirectly interacted with such
WS. In order to be effective, each community member has to continuously review the
services (and the service providers) it’s using.The global evaluation is not necessarily
calculated by the community members themselves, but might be the result of a central-
ized data mining applied on member-supplied informations. In literature we can find
three different social-based approaches: reputation, recommendation and referral.
-Reputation: The definition of the term reputation from The English Oxford Dictionary
is: “a widespread belief that someone or something has a particular characteristic”. In
a SOA context, the rationale is that a WS is trustworthy as long as the community has
a good opinion about it. The reputation system is responsible to collect ratings about
users, services and service providers from members in the community. The global opin-
ion can be modeled either around the QoS parameters described above or depending to
what degree WSs adhere to the contract. However, the parameters used to rate a service,
user or service provider are not influencing the rationale of a TTP reputation system: an
individual’s subjective trust on a service is derived from the reputation of that service
or, in other words, from the direct experience of someone else.
Definition 4 - Trust by Reputation: a service consumer trusts a service because of his
good reputation.
A major distinction between different reputation systems is outlined by the base ar-
chitecture: centralized or distributed [6][7]. Most of the studies suggests centralized

5

approaches[8], typical of e-commerce web sites2. In those systems a central authority
is responsible to collect all the ratings from other members in the community (e.g. QoS
data from WS consumers, in our case) who have had direct experience with a specific
service or provider. The authority uses these ratings to derive a reputation score for the
service and makes it publicly available to future, potential consumers. Regarding dis-
tributed reputation systems, two notable examples are EigenTrust [9] and the PeerTrust
[10]. Each member of the community (be it an agent or a human) records its own opin-
ion about a service to make it available to the others. A reputation grade is a function of
all the trust ratings (if there are any) obtainable by all the possible members the agent
can reach.
Limitation A: the effectiveness of any reputation system lies on the number of mem-
bers in a community and on their behavior. The fewer the members in a reputation
system, the more inadequate the ratings provided by the systems. This issue envelopes
the community-bootstrap problem:
Definition 5 - Community bootstrap issue: a community-dependent system is unlikely
to provide good quality results as long as the community is small or not really active.
Limitation B: another shortcoming is that trust relies on past information from other
members of the community. A natural problem arises in case of new services. For ex-
ample, when a service initially registers for business, no other consumer has interacted
with it and consequently no information exists about its past behaviour and questions
about its trustworthiness are left unanswered. This can be defined as the new WS ramp-
up issue:
Definition 6 - New WS ramp-up issue: a new web service takes time before being ad-
equately evaluated.
Scenario 2: Alice needs a trust score for a just discovered flight booking service. She
sets up an agent to query all the neighbour agents for a reputation grade. The agents
(based on theirs and their neighbours past experience) return very low scores to Alice’s
agent. The WS is then discarded, but maybe either the community or the WS are new
born and it comes difficult to provide a useful evaluation. Thus, Alice still cannot ade-
quately evaluate the WS trustworthiness.

Now, a question for this and other social approaches arises: how the community
should repute a new service? There have been many studies addressing this issue. In
the Sporas system suggested by Giorgios Zacharia et al.,new users start with the min-
imum reputation value.[11]. The authors of the Dirichlet algorithm[7] (conceived for
P2P sharing network) state that it is possible to track the average reputation score of
the whole community, and this can be used to set the base rate for new agents[7].
Limitation: in general, when the starting reputation is low, the new WS is underesti-
mated. Whenever a new WS receives an initial reputation score higher than the mini-
mum, this can be exploited by malicious users by continuously subscribing and unsub-
scribing to the system in order to keep having a “non zero” reputation value.
Scenario 3: Alice’s software agent starts discovering new flight booking WSs on behalf
of Alice. It queries a TTP that states that the chosen service has a non zero grade. Alice
still doesn’t know whether the service is trustworthy: it might belong to a malicious
provider just subscribed to the community.

2 e.g. http://www.ebay.com

6

-Recommendation: Recommendation systems [12][2] aim at making a prediction of
a consumer’s needs of interests. In its common formulation [13], the recommendation
problem is reduced to the problem of estimating ratings for the items (such as services)
that have not been seen by a consumer. Intuitively, this estimation is usually based on
the ratings given by this consumer to other items or on the ratings that similar users pro-
vided for the targeted items. Once it is possible to estimate ratings for the yet unrated
items, then the system can recommend to the user the items with the highest estimated
ratings.
Definition 7 - Trust by Recommendation: a service consumer trusts a service because
of some recommendations got from a trusted authority.
In general, recommendation-based systems work as good as wide and rich the knowl-
edge of the system is. In other words, it is necessary to know both the community and
the user requesting the service in order to produce reasonable evaluations. These sys-
tems can be classified into five categories according to [1][14][12]:
in content-based filtering, the only static approach among the five ones, items are se-
lected according to their content. But this approach is very primitive and would be a
step backward from current WSs standards (which involve formal structured descrip-
tion of services); the most widely used one in e-commerce sites3 is the Collaborative
Filtering (CF): the consumer is recommended items that people with similar tastes and
preferences liked in the past. In CF, the implicit assumption is that different people have
different tastes. Note that this represents the key difference with respect to reputation
systems[15]. Items recommended to the user are then the ones other users with similar
tastes (neighbours) liked [16]. The next three approaches are utility-based[17], demo-
graphic[18][19] and knowledge-based[20][21] recommenders, where basically, as for
CF, by means of different classification and data mining algorithms, they infer the re-
lationship between user need/profiles and items in the community (e.g. in our case they
may be WSs and other community members). The last group is identified by the hybrid
recommenders, whose rationale is to combine two or more recommendation techniques
(usually along with CF) to gain better performance with fewer of the drawbacks of any
individual one.[14]
Limitations: those typologies of recommendation system share one main weakness: the
system needs many information about the users in order to provide useful evaluation.
This can be achieved by either asking the users to disclose maybe sensitive information
(as we have seen this is not suitable in a SOA environment) or by mining them out of
the interaction of the users with the system, that would require a long time. This leads
to the following definition:
Definition 8 - New User ramp-up issue: a new user needs to interact with the trust
provisioning system in order to receive good quality results.
Moreover, the well known issues of the social systems are still present: community
bootstrap and service ramp-up (mitigated in the hybrid recommender). Finally, the rec-
ommendation systems are conceptually centralized (see section 2.1).
Scenario 4: Alice finds a WS recommender service that requires to input some infor-
mations regarding the company past experience with other web services in order to be
used. Alice’s company does not want to disclose this information to a central system. A

3 like Amazon http://www.amazon.com

7

second recommender service does not demand any pre-use information, but it requires
Alice’s agent to interact with the community for a period before being able to provide
a recommendation and so Alice can’t use it.
-Referral: Referrals [22][23] have been proposed as a decentralized approach based on
online communities and software agents technologies. An online community is a set
of interacting members (or principals in the jargon) representing people, businesses or
other organizations. The members of a community provide services as well as refer-
rals for services to each other. Referrals may be provided proactively or in response
to requests. Members are assisted by software agents to help them manage their inter-
actions[22]. Referrals are based on a representation of how much the other available
parties can be trusted. Agents are responsible to build and manage these representations
taking into account the previous experiences of their members and communicate with
each others. Participating on behalf of different members, agents appear as autonomous
and heterogeneous. Moreover, agents organize themselves into communities and agents
in the same community are called neighbours. A key difference from the recommen-
dation systems is that in referral systems the participants reveal their ratings to those
whom they trust, so the ratings would be more likely to be honest.
Definition 9 - Trust by Referrals: A service consumer trusts a service because of some
referrals obtained from trusted software agents.
Limitations: Referral systems address some limitations of reputation and recommen-
dation systems (such as, their centralized nature) but still rely on the judgments of the
members of a community and new WS are difficult to start-up. Moreover some tech-
nical practical issues, such as agents and members registration and communication as
well as referrals representation, are left unanswered in the literature, making the im-
pression of a still immature (or at least just academic) approach.
Scenario 5: refer to scenario 1 and 2.

Matchmaking These approaches are based on a component called “matchmaker” re-
sponsible to match a user’s request and trust preferences with available online service
descriptions. If some matches are found than the results are sent back to the user.
A centralized trust-based matchmaking methodology has been proposed by Galizia et
al. in [24]. Differently to other approaches, they embodied the WS selection problem in
a classification problem: given a set of user and WS policies and established a classi-
fication criterion, the goal is to identify a class of WSs matching with trust policies of
involved users. In other words, WSs are classified according to the specific user as well
as trust policies.
Definition 10 - Trust by Matchmaking: A service consumer trusts a service because
a trusted (central/distributed) matchmaker states that the service’s policy matches the
consumer’s request.
Limitation A: matchmakers suffer of all the drawbacks inherited by the centralized
architecture (see 2.1). Moreover, both consumers and providers has to register to the
matchmaker in order to use it (far from the SOC vision). Finally, it is not realistic to ask
the providers to disclose all their (maybe sensitive) policies to a central authority.

Olmedilla et al. [25] replaces the centralized matchmaker and registry with a Peer-
to-Peer network, distributing the matchmaking process to the service providers. A sim-
ilar approach has been proposed by Olmedilla et al. in [25]. The main difference with

8

respect to [24] lies in the underlying registry and matchmaking architecture, which is
based on a Peer-to-Peer network. Whenever a new service provider wants to offer its
services, it must just join such network. On the client side, a user looking for a service
must send a query along with his policies to a reasoning agent he trusts. The agent
distributes the query to the peers on the network and each one of them applies a match-
ing algorithm. Whenever a peer has matches, it sends them back to the reasoning agent
which joins the results and presents them to the user. This way servers can keep policies
locally and private. However the problem is moved from trusting a service or a service
provider to the one of finding such a trusted reasoning agent.
Scenario 6: Alice, looking for a distributed matchmaking service, has to face the prob-
lem of selecting and trusting a reasoning agent. But where can she locate such computa-
tional entities? And which agents should she trust? On which basis? Current distributed
matchmaking technologies do not answer, leaving Alice in the same (vulnerable) situa-
tion.
Limitation B: this family of approaches seems to solve the community-bootstrap prob-
lem. The trustworthiness score is evaluated matching the user trust requirements di-
rectly against the WS provided trust guarantees. However this approach exposes an-
other issue: it wouldn’t be difficult for a malicious (or distracted) user to craft a WS
description so to pretend to be a trustworthy WS. In this case a “watching” community
would turn useful.
Scenario 7: Alice’s submitted the company’s trust profile to either a distributed or cen-
tralized matchmaker. Now a software agent is instructed to trust WSs providing AES
encryption algorithm and capable of handling 20 simultaneous connections. The match-
maker returns to the agent the matching WSs and Alice selects one. During the pre-
easter week (when many people use the VTA system), the system starts having many
faults. Alice realizes that the flight booking WS cannot handle more than 10 connections
simultaneously and the VTA system has to be temporary taken down.

2.4 Hybrid
Hybrid approaches for trust-based online service selection are based on a combination
of well known trust methodologies, improving the quality of the assessments.

Socio-Cognitive These approaches are mostly based on the works of Falcone and
Castelfranchi [26][27][28]. Influenced by the Artificial Intelligence (AI) field and espe-
cially by the Multi-Agent System (MAS) paradigm, they treat trust as an agent’s mental
state. The agent supports beliefs from which is possible to derive a degree of trust. As
pointed out in [3], beliefs can be seen as the answers to the question “What do we have
in mind when we trust a service?”. According to these beliefs the agent can articulate
assumptions and expectations about a specific service.
Definition 11 - Socio-Cognitive Trust: The degree of trust is a function of the subjective
certainty of the pertinent beliefs. Therefore, A service consumer trusts a service because
of some of its subjective beliefs.
The trust level is a function of such subjective beliefs. A key question therefore arises:
how are such beliefs obtained? That is, from which sources? The answer to the above
question is different in the various proposals in literature. Two of the most common
sources of belief are the ones already discussed in the previous sections, i.e. direct ex-
perience (2.2) and reputation (2.3). In addition there are categorization (the process of

9

grouping things based on prototypes) and reasoning (the act of using reason to derive a
conclusion from certain premises). For instance, in [4][29] the authors propose models
in which they consider the direct interaction or reputation as sources. In [28] sources
are categorization and reasoning. In [3] Ali et al. restrict sources to direct experience
and reputation.
Limitations: a first weakness of the approach lies in the fact that it is based on beliefs
obtained by means of the well known (and problematic) methodologies for trust. An-
other major limitation lies at the implementation level. To fully realize this approach,
some sort of BDI4 agents [30] is needed. Indeed, as Falcone et al. remark in their paper
[26] only a cognitive agent can “trust” another agent. We mean: only an agent endowed
with goals and beliefs. This requirement seems too strong when applied to open and
large service-based systems, since it is not reasonable to assume that every agent will
be conformed to the BDI model (which, a part from the modeling of trust, requires spe-
cific architectures to support the reasoning on beliefs and goals).
Scenario 8: Alice decides to delegate the trustworthy flight booking WS discovery to a
BDI agent. Considering the openness of the system Alice is dealing with she realizes
that her agent won’t be capable of communicating with many other agents of the same
kind. The selected WSs are then narrowed to a small amount compared to the total. The
chosen WS is thus going to be far away from the best available choice.

Trust & Reputation Studies such as [31][32][33] propose methods for assessing the
quality of online services by combining trust and reputation techniques in a single inte-
grated framework. For instance, [33] shows how (Bayesian) reputation systems can be
combined with trust modeling based on subjective logic [34]. [31] describes a report-
driven framework. WSs have their QoS profile computed by means of reports provided
by both providers and consumers. The profiles are used to generate a WS rank based
on the consumer requirements and reputation. Then, in order to prevent “spammers” or
distracted users from poisoning the system, the authors suggest, along with the reputa-
tion framework, a trust system capable of identifying liars.
Definition 12 - Trust & Reputation based system: A system providing for a trustwor-
thiness score employing methodologies based on both reputation and trust, in order to
improve some weaknesses of the constituent methodologies.
Limitations: Although these approaches are remarkable, especially [33] where the in-
tegration results in a flexible framework for online trust management, they still suffer
the main limitations of their constituent methodologies. For instance, both approaches
inherit one of the main weaknesses of some reputation systems (social and centralized)
(section 2.3). The authors of [33] propose a bootstrapping method consisting of creat-
ing trusted reports for the most important WSs by means of trusted monitoring agents.
However, with this approach there would be the problem of selecting the most impor-
tant WSs.
Scenario 9: refer to scenario 1 and 2.

Direct Experience & Reputation [35][36][37] propose a model where the trust in a
service is computed as a rating of the level of performance of the service. This overall
performance is not limited to the agent’s direct experience (or confidence, see section

4 Belief-Desire-Intention

10

2.3) but it is also based on the evaluations of the service by other agents in the system
(in [35] called the “group experience” , i.e., what the other members of the group think
about the agent being evaluated and his group). Thus, in these models trust can be seen
as a rating built as a result from combining agent’s direct experience (with the service)
along with the social reputation of the service provider.
Definition 13 - Trust by Direct Experience & Reputation: The trust towards a service
is evaluated by means of the user direct experience combined with the service reputa-
tion.
Limitations: again, the combination of two methodologies improves some weaknesses
of one constituent model, but it does not provide a complete solution to the trustwor-
thy online service selection problem. For instance, in [36] the authors combine con-
fidence and reputation to address the situation where no previous experience of the
service is available (main weakness of the direct experience method). But to do this
they based their proposal on trust and reputation mechanisms to infer expectations of
future providers’ behavior from past experiences in similar situations. This idea inherits
the already discussed problems of trust and reputation mechanisms.
Scenario 10: Alice’s agent can’t establish a reliable trustworthiness score for certain
flight booking WSs because there are no past interactions with them and, moreover,
they seem to have joined the WS network too recently in order to have some useful
reputation evaluations.

2.5 Automated Trust Negotiation
Automated Trust Negotiation (TN) [38] is an approach specifically targeted to allow
agents to access sensitive data and services in open environments. Trust negotiation
protocols are based on the iterative disclosure of digital credentials and requests for
credentials between two unknown parties (strangers in TN jargon), with the goal of
establishing sufficient mutual trust so that the parties can complete a transaction. Infor-
mally, digital credentials (credentials for short) refer to the online analogues of paper
credentials (a drivers license, passport, or employee ID card, for example). Thus, a cre-
dential is a digitally signed assertion by a credential issuer about the credential owner. It
is usually signed using the issuers private key and verified using the issuers public key
[39]. To automate trust negotiation, each party must establish access control policies
(policies for short) to protect its sensitive resources, including credentials and services,
from inappropriate access. Each policy should specify the digital credentials strangers
must present to access the protected resource. Policies can themselves be seen as sen-
sitive resources. Considering that both the consumer and the provider can provide their
own policies to gradually disclose, the point of view is not restricted to the service con-
sumer only anymore (how the service consumer may trust a service): the goal now is to
establish a mutual trust between service consumer and provider.
Definition 14 - Credential-Based Trust (or Trust by Negotiation): A service consumer
and a service provider mutually trust each other because the access control policy of the
requested service is compliant with the access control policy of the service consumer.
Note that the above definition does not state that a negotiation will always succeed if
the parties’ policies are compliant. Indeed, the success of the negotiation depends on
several factors. For instance, a negotiation could take different routes according to the
negotiation strategies adopted by the parties [40]. The above definition just states that

11

if a trust negotiation succeeds establishing a mutual trust among two parties then this
is because the two parties have compliant access control policies for the requested re-
source.
Limitations: trust negotiation principles and systems have been widely investigated in
the last few years, both in different (still mainly academic) domains (like e-Business,
e-Commerce, P2P systems and more recently in WSs [41]) and with respect to issues
such as privacy, safety and efficiency. This effort is evident in the growing literature
on TN related issues ([39][42][43][44][45] to mention only a few). However, several
key issues have still to be addressed to bring TN to its full potential: to date, the pro-
posed frameworks seems to have been studied in theoretical and academic fashion, still
“unplugged” from the real nature of WS and SOA: first of all, many in the literature
treated WSs (WS) as a set of independent single operations, while interacting with real
world WSs involves generally a sequence of invocations of several of their operations
[46]; then SOAP-based WSs are supposed to be consumed many times from the same
costumer, since they are involved in a composition. This means that a WS should be
trusted the first time during discovery (development) and then be consumed without the
TN protocol being involved on the ensuing requests. Moreover, no standard protocols
or languages have been defined, so the different proof of concept systems are unable to
talk each other. Finally, adopting a TN approach would require that both parties reason
and act according to a credential-based notion of trust. Other trust meanings are not
supported. A first preliminary work on this direction has been proposed by Dragoni et
al. in [41][47].
Scenario 11: Alice’s agent finds an interesting flight booking WS. It starts the TN proto-
col, disclosing step by step the required company credentials and finally it trusts it. Now
the WS is inserted in the VTA. Whenever a VTA client uses the service, the flight book-
ing WS requires the whole TN protocol to start over, that is not inefficient and useless
because the service has already been trusted by Alice’s agent during the discovery.

3 Discussions and conclusions
As we verified in the previous section, there have been suggested many approaches for
the automatic trust provision. Some of them are not directly addressed to a SOA envi-
ronment, but they can still be adapted to it. The literature about that is growing, but, as
it is possible to verify out of this analysis, WS trustworthiness provision is still an open
challenge.
While investigating on studies in literature, it has been possible to derive shortcomings
and advantages of the single approaches. They are summarized in the table 1. In order
to optimize space and improve clarity, the plus and minuses are synthesized in few main
classes, each one with its notation:
Shortcomings
NSR (i.e. New WS Ramp-up): refer to definition 6;
CD (i.e. Community Dependent): a community dependent system is affected by the
community bootstrap issue (refer to definition 5);
NUR (i.e. New User Ramp-up): refer to definition 8;
HS (i.e. Hard Setup): this problem is connected to those approaches that require a big
effort to be integrated in the real world;
UT (i.e. Unconditional Trust/Distrust): this issue is related to the approaches were the

12

user has to consume a service without any previous experience or evidence that the
service is trustworthy. Or, the other way around, the user distrust the service uncondi-
tionally for the same reason;
CE (i.e. Centralized): refer to section 2.1;
Advantages
PUTS (i.e. Pre Use Trust Score): there are chances to obtain a trust score before using
the service;
UFS (i.e. User Fitting Score): the WS trust score is also somehow related to the user
personal “tastes” and habits.

There are also other specific pluses and minuses related to specific approaches that
will be described directly in the table. 42

Approach Pluses Minuses

Direct experience UFS → the most fitting score UT

TTP

Social

Reputation PUTS
NSR; CD; CE for those methodologies
based on a centralized architecture

Recommendation PUTS; UFS

CD; NSR; NUR or user (sensitive)
information disclosure; CE for those
methodologies based on a centralized
architecture

Referrals
PUTS; rates coming from trusted
peers

NSR; CD

Matchmaker
PUTS; UFS; some community based
methodologies provide liars
recognition

HS; CE for those methodologies based
on a centralized architecture; trust
towards service moved to trust
towards agent in those based on a
distributed architecture

Hybrid

Socio-Cognitive Accurate trust computation; UFS

depending on the belief source
UT/NSR/CD/CE/NUR; HS because
cognitive agents have to be
conforming to a model

Trust & Reputation

liars recognition (some of the
ideas); PUTS; some sort of good
results can be provided even with
a poor community or a brand new
service

CE; NSR; CD

DE & Reputation
Issues of the 2 constituent models
mitigated

NSR; CD

Automated Trust Negotiation UFS; PUTS; trust can ALWAYS be
computed

HS; no standards defined; no fully
WS aware (at the current state)

Table 1. Pluses and Minuses summary

In order to carry out this evaluation, few questions have been adopted as guidelines to
judge each system:
How does the trust score fit the user needs? It would be better to build the trust score
around the user profile, as, for instance, the recommendation systems (2.3) do;
Does the provider/consumer have to disclose any sensitive informations? Some cen-
tralized approaches ask the user (be it either the provider, the consumer or both) to
submit some personal information in order to improve the trust score computation. This
is clearly something that should be avoided: users usually don’t want to unconditionally
disclose sensitive details to a central authority.
Can the user know how the trust is calculated? Depending on the system architecture,
the trust score might be calculated by a third party in a black box. The user may rather
prefer to know how the service he is going to trust has been suggested.
How does the community influence the trust score? This issue mainly affects the so-
cial approaches (2.3): is the trust score depending on the size/quality of a community?
In such a case, the main shortcoming would be the community bootstrap, i.e. how to
create an initial community to kick-off the system.

13

Does the user has to unconditionally trust/distrust certain services? Whenever a user
finds a WS, if the functional contract meets the user needs, there should always be a
way to provide a trust score for that service, without leaving the user in the position of
unconditionally trusting/distrusting the WS.
What is the trustworthiness of a brand new WS? A new WS (i.e. it has been recently
deployed) needs a way to be “tried” even with no previous knowledge about it. The TN
approaches seems to be a good starting point to address this issue.
How hard is the trust provisioning infrastructure to setup and maintain? When de-
signing a trust provisioning system it has to be taken into account both the effort needed
to apply the system to the already existing SOC infrastructure, and the issues intrinsi-
cally related to the nature of a SOA-based system. A trust provisioning system is in
charge of a great responsibility, and its robustness and scalability is a critical point in a
SOA environment. Thus, for instance, it would be rather irresponsible to adopt a pure
centralized architecture (that would be the single point of failure).

The analyzed approaches can be actually further on generalized to two big classes.
The first one comprises the vast majority, i.e. the ones based either on direct experience
of the consumer with the service, indirect experience (opinions on the service coming
from someone trusted by the consumer) or a combination of them (hybrid). All of them
has two key limitations in common: the user has to obtain trust from his own direct ex-
perience OR from the direct experience of someone else he trusts. It is usually safer to
trust, for instance, 15 people saying that something is good instead of directly trusting
something hoping it will be good. But still, this requires 15 people taking the risk to try.
As correctly pointed out by Dragoni in [1]: if someone does not take the risk of invok-
ing an unknown service for the first time, then no one will be able to decide about the
trustworthiness of the service before its invocation. This class of approaches is based
on a “soft trust” mechanism (similar to the idea of “soft security” coined by Rasmus-
son et al. [48]) and they share the critical issue of service and community bootstrap.
The rationale of the “soft trust” is that participants in a market collaborate each other in
sharing information on other participants or services. Soft trust expect and even accept
that there might be malicious services or service providers in the system. The idea is to
identify them and prevent them from harming the other participants by means of col-
laboration and social interactions.
The other class of approaches, such like TN and Matchmakers, relies on a “hard” no-
tion of trust: trustworthiness of a WS could be derived just from the a non-functional
contract. They take into account the semantic of a WS, i.e. their security behaviour (e.g.
access control rules, QoS features and so on). The recent Security-By-Contract (SxC)
approach [41] might represent a good starting point for this purpose, because it takes
into account the security behavior of a service instead of depending on the social control
philosophy in the existing trust based approaches. Nevertheless, even the “hard trust”
provisioning approaches studied in literature has a critical drawback: the lack of “fault
recognition” capability. Everyone can provide a fake/wrong contract, be it due either to
a malicious behaviour or to human distraction (or other unforeseeable reasons). In this
case the community help would turn useful. Moreover, it seems that these kind of ap-
proaches are still studied in a too theoretical fashion, without considering the practical
issues related to WSs. For instance, the TN approaches seems to work fine assuming

14

that the WS is consumed by a user directly invoking it. But in the real world, as said
in section 2.5, WSs are a “developer thing”. This means that they have to be trusted
during the development time and then transparently consumed by clients unaware of
the distributed nature of the system they are using.
Hybrid systems turned to be generally improving the constituent methods. Thus, a good
direction to follow is probably to design a system capable of providing the features of
both the macro-families: a “soft trust” system working along with a “hard trust” one
should lead to a framework where the SOA developer can always evaluate automati-
cally the available WSs for a given need and where a community is able to push unwor-
thy WSs (and providers) aside. Finally, one of the major point of confusion concerning
the current discussions about trust/trustworthiness in SOA is related to the meaning
of terms. The studies analyzed in section 2, often use the word trust and the word
trustworthiness with the same acceptation or with different meanings in different doc-
uments. The two terms have a precise meaning and trust should not be confused with
trustworthiness. This should be probably the first issue to address starting to design an
acceptable solution.

References
1. Dragoni, N.: A survey on trust-based web service provision approaches. Technical report, In

Proc. of the 3rd International Conference on Dependability (DEPEND 2010), Venice, Italy,
2010, IEEE CPS

2. Abdul-Rahman, A., Hailes, S.: Using recommendations for managing trust in distributed
systems. In: IEEE Malaysia International Conference on Communication. (November 1997)

3. Ali, A.S., Ludwig, S.A., Rana, O.F.: A cognitive trust-based approach for web service dis-
covery and selection. Technical report, Department of Computer Science Cardiff University,
UK (2010)

4. Jonker, C.M., Treur, J.: Formal analysis of models for the dynamics of trust based on expe-
riences. Technical report, Department of Computer Science Cardiff University, UK (1999)

5. Zhang, J., Zhang, L.J., Chung, J.Y.: Ws-trustworthy: A framework for web services cen-
tered trustworthy computing. In: Proceedings of the 2004 IEEE International Conference on
Services Computing, Washington, DC, USA, IEEE Computer Society (2004) 186–193

6. Wang, Y., Vassileva, J.: Toward trust and reputation based web service selection: A survey
(2007)

7. Jøsang, A., Haller, J.: Dirichlet reputation systems. In: INTERNATIONAL CONFERENCE
ON AVAILABILITY, RELIABILITY AND SECURITY, IEEE Computer Society (2007)
112–119

8. Manikrao, U.S.: Dynamic selection of web services with recommendation system. In: In:
Proceedings of the International Conference on Next Generation Web Services Practices
(NWESP), IEEE Computer Society, Press (2005) 117

9. Kamvar, S.D., Schlosser, M.T., Garcia-Molina, H.: The eigentrust algorithm for reputation
management in p2p networks. In: Proceedings of the 12th international conference on World
Wide Web. WWW ’03, New York, NY, USA, ACM (2003) 640–651

10. Xiong, L., Liu, L.: Peertrust: Supporting reputation-based trust for peer-to-peer electronic
communities. IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING
16 (2004) 843–857

11. Zacharia, G., Moukas, A., Maes, P.: Collaborative reputation mechanisms in electronic mar-
ketplaces. In: Proceedings of the Thirty-second Annual Hawaii International Conference on
System Sciences-Volume 8 - Volume 8. HICSS ’99, Washington, DC, USA, IEEE Computer
Society (1999) 8026–

15

12. Balabanović, M., Shoham, Y.: Fab: content-based, collaborative recommendation. Commun.
ACM 40 (March 1997) 66–72

13. Adomavicius, G., Tuzhilin, A.: Toward the next generation of recommender systems: A sur-
vey of the state-of-the-art and possible extensions. IEEE TRANSACTIONS ON KNOWL-
EDGE AND DATA ENGINEERING 17(6) (2005) 734–749

14. Burke, R.: Hybrid recommender systems: Survey and experiments. User Modeling and
User-Adapted Interaction 12 (November 2002) 331–370

15. Jøsang, A., Ismail, R., Boyd, C.: A survey of trust and reputation systems for online service
provision. Decis. Support Syst. 43 (March 2007) 618–644

16. Huhns, M.N., Singh, M.P.: Service-oriented computing: Key concepts and principles. IEEE
Internet Computing 9 (January 2005) 75–81

17. Guttman, R.H., Moukas, A.G., Maes, P.: Agent-mediated electronic commerce: a survey.
Knowl. Eng. Rev. 13 (July 1998) 147–159

18. Rich, E.: Readings in intelligent user interfaces. Morgan Kaufmann Publishers Inc., San
Francisco, CA, USA (1998) 329–342

19. Pazzani, M.J.: A framework for collaborative, content-based and demographic filtering. Ar-
tif. Intell. Rev. 13 (December 1999) 393–408

20. Towle, B., Quinn, C.: Knowledge based recommender systems using explicit user models.
In: Papers from the AAAI Workshop, AAAI Technical Report WS-00-04, Menlo Park, CA:
AAAI Press (2000) 74–77

21. Schafer, J.B., Konstan, J., Riedi, J.: Recommender systems in e-commerce. In: Proceedings
of the 1st ACM conference on Electronic commerce. EC ’99, New York, NY, USA, ACM
(1999) 158–166

22. Singh, M.P., Yu, B., Venkatraman, M.: Community-based service location. Commun. ACM
44 (April 2001) 49–54

23. Yolum, P., Singh, M.P.: Engineering self-organizing referral networks for trustworthy service
selection. IEEE Transactions on Systems, Man, and Cybernetics. Part A 35(3) (2005) 396–
407

24. Galizia, S., Gugliotta, A., Domingue, J.: A trust based methodology for web service selec-
tion. In: Proceedings of the International Conference on Semantic Computing, Washington,
DC, USA, IEEE Computer Society (2007) 193–200

25. Olmedilla, D., Lara, R., Polleres, A., Lausen, H.: Trust negotiation for semantic web ser-
vices. In: 1ST INTERNATIONAL WORKSHOP ON SEMANTIC WEB SERVICES AND
WEB PROCESS COMPOSITION IN CONJUNCTION WITH THE 2004 IEEE INTERNA-
TIONAL CONFERENCE ON WEB SERVICES, Springer (2004) 81–95

26. Castelfranchi, C., Falcone, R.: Principles of trust for mas: Cognitive anatomy, social im-
portance, and quantification. In: Proceedings of the 3rd International Conference on Multi
Agent Systems. ICMAS ’98, Washington, DC, USA, IEEE Computer Society (1998) 72–

27. C., C., Y.H., T.: Trust and Deception in Virtual Societies. Kluwer Academic Publishers
(pres)

28. R., F., G., P., C., C.: A - Fuzzy approach to a belief-based trust computation. In: Special
issue on ’Trust, Reputation and Security: Theories and Practice’. (2003) 73–86

29. Schillo, M., Funk, P., Rovatsos, M.: Who can you trust: Dealing with deception. In: Pro-
ceedings of Autonomous Agents ’99 Workshop on ”Deception, Fraud, and Trust in Agent
Societies”, Seattle, USA (May 1999) 81–94

30. Rao, A.S., Georgeff, M.P.: Bdi agents: From theory to practice. In: IN PROCEED-
INGS OF THE FIRST INTERNATIONAL CONFERENCE ON MULTI-AGENT SYS-
TEMS (ICMAS-95. (1995) 312–319

31. Vu, L.H., Hauswirth, M., Aberer, K.: Qos-based service selection and ranking with trust and
reputation management. In: in Proceedings of the Cooperative Information System Confer-
ence (CoopIS05. (2005) 446–483

16

32. Huynh, D., Jennings, N.R., Shadbolt, N.R.: Developing an integrated trust and reputation
model for open multi-agent systems. (2004) 65–74

33. Jøsang, A., Bhuiyan, T., Xu, Y., Cox, C.: Combining trust and reputation management for
web-based services. In: Proceedings of the 5th international conference on Trust, Privacy
and Security in Digital Business. TrustBus ’08, Berlin, Heidelberg, Springer-Verlag (2008)
90–99

34. Jøsang, A.: A logic for uncertain probabilities. Int. J. Uncertain. Fuzziness Knowl.-Based
Syst. 9 (June 2001) 279–311

35. Sabater, J., Sierra, C.: Regret: reputation in gregarious societies. In: Proceedings of the fifth
international conference on Autonomous agents. AGENTS ’01, New York, NY, USA, ACM
(2001) 194–195

36. Ramchurn, S.D., Jennings, N.R., et al.: A computational trust model for multi-agent inter-
actions based on confidence and reputation. In: IN PROCEEDINGS OF 6TH INTERNA-
TIONAL WORKSHOP OF DECEPTION, FRAUD AND TRUST IN AGENT SOCIETIES.
(2003) 69–75

37. Billhardt, H., Hermoso, R., Ossowski, S., Centeno, R.: Trust-based service provider selection
in open environments. In: Proceedings of the 2007 ACM symposium on Applied computing.
SAC ’07, New York, NY, USA, ACM (2007) 1375–1380

38. Bertino, E., Ferrari, E., Squicciarini, A.: Trust negotiations: concepts, systems, and lan-
guages. Computing in Science and Engineering 6(4) (July 2004) 27–34

39. Winslett, M., Yu, T., Seamons, K.E., Hess, A., Jacobson, J., Jarvis, R., Smith, B., Yu, L.:
Negotiating trust on the web. IEEE Internet Computing 6 (November 2002) 30–37

40. Koshutanski, H., Massacci, F.: An access control framework for business processes for web
services. In: Proceedings of the 2003 ACM workshop on XML security. XMLSEC ’03, New
York, NY, USA, ACM (2003) 15–24

41. Dragoni, N., Massacci, F.: Security-by-contract for web services. In: Proceedings of the
2007 ACM workshop on Secure web services. SWS ’07, New York, NY, USA, ACM (2007)
90–98

42. Yu, T., Winslett, M., Seamons, K.E.: Supporting structured credentials and sensitive policies
through interoperable strategies for automated trust negotiation. ACM Trans. Inf. Syst. Secur.
6 (February 2003) 1–42

43. Ye, S., Makedon, F., Ford, J.: Collaborative automated trust negotiation in peer-to-peer sys-
tems. In: Proceedings of the Fourth International Conference on Peer-to-Peer Computing.
P2P ’04, Washington, DC, USA, IEEE Computer Society (2004) 108–115

44. Leithead, T., Nejdl, W., Olmedilla, D., Seamons, K.E., Winslett, M., Yu, T., Zhang, C.C.:
How to exploit ontologies in trust negotiation. In: University of Aachen (RWTH. (2004) 127

45. Nejdl, W., Olmedilla, D., Winslett, M.: Peertrust: Automated trust negotiation for peers on
the semantic web. In: In Workshop on Secure Data Management in a Connected World
(SDM04. (2004) 118–132

46. Mecella, M., Ouzzani, M., Paci, F., Bertino, E.: Access control enforcement for conversation-
based web services. In: Proceedings of the 15th international conference on World Wide
Web. WWW ’06, New York, NY, USA, ACM (2006) 257–266

47. Dragoni, N., Massacci, F., Saidane, A.: A self-protecting and self-healing framework for
negotiating services and trust in autonomic communication systems. Comput. Netw. 53
(July 2009) 1628–1648

48. Rasmusson, L., Jansson, S.: Simulated social control for secure internet commerce. In:
Proceedings of the 1996 workshop on New security paradigms. NSPW ’96, New York, NY,
USA, ACM (1996) 18–25

130 Publication - NODES11

Bibliography

[1] Liberty alliance. http://www.projectliberty.org/. url consulted on
September 15, 2011.

[2] Cassandra: Distributed access control policies with tunable expressive-
ness. In Proceedings of the Fifth IEEE International Workshop on Poli-
cies for Distributed Systems and Networks, pages 159–, Washington, DC,
USA, 2004. IEEE Computer Society.

[3] Trust-x: A peer-to-peer framework for trust establishment. IEEE Trans.
on Knowl. and Data Eng., 16:827–842, July 2004.

[4] eXtensible Access Control Markup Language (XACML) Version 2.0. Tech-
nical report, OASIS Access Control TC, February 2005.

[5] Alfarez Abdul-Rahman and Stephen Hailes. Using recommendations for
managing trust in distributed systems. In IEEE Malaysia International
Conference on Communication, November 1997.

[6] Gediminas Adomavicius and Alexander Tuzhilin. Toward the next gen-
eration of recommender systems: A survey of the state-of-the-art and
possible extensions. IEEE TRANSACTIONS ON KNOWLEDGE AND
DATA ENGINEERING, 17(6):734–749, 2005.

[7] Ali Shaikh Ali, Simone A. Ludwig, and Omer F. Rana. A cognitive trust-
based approach for web service discovery and selection. Technical report,
Department of Computer Science Cardiff University, UK, 2010.

[8] Ali Arsanjani. Service-oriented modeling and architecture.
http://www.ibm.com/developerworks/webservices/library/ws-soa-
design1/, November 2004. url consulted on March 23, 2011.

132 BIBLIOGRAPHY

[9] Marko Balabanović and Yoav Shoham. Fab: content-based, collaborative
recommendation. Commun. ACM, 40:66–72, March 1997.

[10] E. Bertino, E. Ferrari, and A. Squicciarini. X -tnl: An xml-based lan-
guage for trust negotiations. In Proceedings of the 4th IEEE International
Workshop on Policies for Distributed Systems and Networks, POLICY
’03, pages 81–, Washington, DC, USA, 2003. IEEE Computer Society.

[11] E. Bertino, E. Ferrari, and A. Squicciarini. Trust negotiations: concepts,
systems, and languages. Computing in Science and Engineering, 6(4):27–
34, July 2004.

[12] Holger Billhardt, Ramón Hermoso, Sascha Ossowski, and Roberto Cen-
teno. Trust-based service provider selection in open environments. In
Proceedings of the 2007 ACM symposium on Applied computing, SAC ’07,
pages 1375–1380, New York, NY, USA, 2007. ACM.

[13] M. Bishop. Computer security: art and science. Addison-Wesley, 2003.

[14] Guido Boella, Università Di Torino, and Joris Hulstijn. Argument games
for interactive access control. In In Proc. of WI 2005, pages 751–754,
2005.

[15] Piero A. Bonatti and Pierangela Samarati. A uniform framework for reg-
ulating service access and information release on the web. J. Comput.
Secur., 10:241–271, September 2002.

[16] Robin Burke. Hybrid recommender systems: Survey and experiments.
User Modeling and User-Adapted Interaction, 12:331–370, November 2002.

[17] Castelfranchi C. and Tan Y.H. Trust and Deception in Virtual Societies.
Kluwer Academic Publishers, pres.

[18] Scott Cantor, John Kemp, Rob Philpott, and Eve Maler. Assertions and
Protocols for the OASIS Security Assertion Markup Language (SAML)
V2.0. Technical report, March 2005.

[19] C. Castelfranchi and R. Falcone. Principles of trust for mas: Cognitive
anatomy, social importance, and quantification. In Proceedings of the 3rd
International Conference on Multi Agent Systems, ICMAS ’98, pages 72–,
Washington, DC, USA, 1998. IEEE Computer Society.

[20] Elizabeth Chang, Farookh Hussain, and Tharam Dillon. Trust and Rep-
utation for Service-Oriented Environments: Technologies For Building
Business Intelligence And Consumer Confidence. John Wiley & Sons,
2005.

BIBLIOGRAPHY 133

[21] Uddam Chukmol. A framework for web service discovery: service’s reuse,
quality, evolution and user’s data handling. In Proceedings of the 2nd
SIGMOD PhD workshop on Innovative database research, IDAR ’08, pages
13–18, New York, NY, USA, 2008. ACM.

[22] John Domingue, Liliana Cabral, Stefania Galizia, Vlad Tanasescu, Alessio
Gugliotta, Barry Norton, and Carlos Pedrinaci. Irs-iii: A broker-based
approach to semantic web services. Web Semant., 6:109–132, April 2008.

[23] Nicola Dragoni. A survey on trust-based web service provision approaches.
Technical report, In Proc. of the 3rd International Conference on Depend-
ability (DEPEND 2010), Venice, Italy, 2010, IEEE CPS.

[24] Nicola Dragoni. Turst-based service selection. University Lecture, 2010.

[25] Nicola Dragoni and Fabio Massacci. Security-by-contract for web services.
In Proceedings of the 2007 ACM workshop on Secure web services, SWS
’07, pages 90–98, New York, NY, USA, 2007. ACM.

[26] Nicola Dragoni, Fabio Massacci, and Ayda Saidane. A self-protecting and
self-healing framework for negotiating services and trust in autonomic
communication systems. Comput. Netw., 53:1628–1648, July 2009.

[27] Thomas Erl. SOA: Principles of Service Design. Prentice Hall, first edi-
tion, 2007.

[28] Stefania Galizia, Alessio Gugliotta, and John Domingue. A trust based
methodology for web service selection. In Proceedings of the International
Conference on Semantic Computing, pages 193–200, Washington, DC,
USA, 2007. IEEE Computer Society.

[29] W3C Group. Web service use case: Travel reservation.
http://www.w3.org/2002/06/ws-example, May 2002. url consulted
on March 25, 2011.

[30] W3C Group. Web services architecture. http://www.w3.org/TR/ws-
arch//, February 2004. url consulted on March 24, 2011.

[31] W3C Group. Web services architecture usage scenarios.
http://www.w3.org/TR/ws-arch-scenarios/, February 2004. url consulted
on March 25, 2011.

[32] W3C Group. Web services choreography requirements.
http://www.w3.org/TR/ws-chor-reqs/, March 2004. url consulted
on March 26, 2011.

[33] W3C Group. Web services glossary. http://www.w3.org/TR/ws-gloss/,
February 2004. url consulted on March 24, 2011.

134 BIBLIOGRAPHY

[34] Robert H. Guttman, Alexandros G. Moukas, and Pattie Maes. Agent-
mediated electronic commerce: a survey. Knowl. Eng. Rev., 13:147–159,
July 1998.

[35] Jim Heid. Business information in cyberspace. Macworld, 12(3):137–140,
March 1995.

[36] Amir Herzberg, Yosi Mass, Joris Michaeli, Yiftach Ravid, and Dalit Naor.
Access control meets public key infrastructure, or: Assigning roles to
strangers. In Proceedings of the 2000 IEEE Symposium on Security and
Privacy, pages 2–, Washington, DC, USA, 2000. IEEE Computer Society.

[37] R. Housley, S. Spyru, W. Ford, Verisign, W. Polk, T. Nis, D. Solo, and
Citicorp. Internet X.509 Public Key Infrastructure Certificate and CRL
Profile. January 1999.

[38] Michael N. Huhns and Munindar P. Singh. Service-oriented computing:
Key concepts and principles. IEEE Internet Computing, 9:75–81, January
2005.

[39] Le hung Vu, Manfred Hauswirth, and Karl Aberer. Qos-based service
selection and ranking with trust and reputation management. In in Pro-
ceedings of the Cooperative Information System Conference (CoopISÕ05),
pages 446–483, 2005.

[40] Dong Huynh, Nicholas R. Jennings, and Nigel R. Shadbolt. Developing
an integrated trust and reputation model for open multi-agent systems.
pages 65–74, 2004.

[41] Silicon Graphics International, editor. IRIX Network Programming Guide
6.5, chapter 4. 13th edition, July 2003.

[42] Alexander Linden Jackie Fenn. Gartner’s hype cycle special report for
2005. Gartner, 2005.

[43] Catholijn M. Jonker and Jan Treur. Formal analysis of models for the
dynamics of trust based on experiences. Technical report, Department of
Computer Science Cardiff University, UK, 1999.

[44] Audun Jøsang. A logic for uncertain probabilities. Int. J. Uncertain.
Fuzziness Knowl.-Based Syst., 9:279–311, June 2001.

[45] Audun Jøsang, Touhid Bhuiyan, Yue Xu, and Clive Cox. Combining trust
and reputation management for web-based services. In Proceedings of the
5th international conference on Trust, Privacy and Security in Digital
Business, TrustBus ’08, pages 90–99, Berlin, Heidelberg, 2008. Springer-
Verlag.

BIBLIOGRAPHY 135

[46] Audun Jøsang and Jochen Haller. Dirichlet reputation systems. In IN-
TERNATIONAL CONFERENCE ON AVAILABILITY, RELIABILITY
AND SECURITY, pages 112–119. IEEE Computer Society, 2007.

[47] Audun Jøsang, Roslan Ismail, and Colin Boyd. A survey of trust and rep-
utation systems for online service provision. Decis. Support Syst., 43:618–
644, March 2007.

[48] Sepandar D. Kamvar, Mario T. Schlosser, and Hector Garcia-Molina. The
eigentrust algorithm for reputation management in p2p networks. In Pro-
ceedings of the 12th international conference on World Wide Web, WWW
’03, pages 640–651, New York, NY, USA, 2003. ACM.

[49] Hristo Koshutanski and Fabio Massacci. An access control framework
for business processes for web services. In Proceedings of the 2003 ACM
workshop on XML security, XMLSEC ’03, pages 15–24, New York, NY,
USA, 2003. ACM.

[50] Hristo Koshutanski and Fabio Massacci. Interactive access control for web
services. In In Proceedings of the 19th IFIP International Information
Security Conference (SEC 2004, pages 151–166. Kluwer Press, 2004.

[51] Kyriakos Kritikos and Dimitris Plexousakis. Owl-q for semantic qos-based
web service description and discovery. In Tommaso Di Noia, Rubèn Lara,
Axel Polleres, Ioan Toma, Takahiro Kawamura, Matthias Klusch, Abra-
ham Bernstein, Massimo Paolucci, Alain Leger, and David L. Martin, edi-
tors, SMRR, volume 243 of CEUR Workshop Proceedings. CEUR-WS.org,
2007.

[52] Kyriakos Kritikos and Dimitris Plexousakis. Semantic qos-based web ser-
vice discovery algorithms. Web Services, European Conference on, 0:181–
190, 2007.

[53] Kyriakos Kritikos and Dimitris Plexousakis. Mixed-integer programming
for qos-based web service matchmaking. IEEE Transactions on Services
Computing, 2:122–139, 2009.

[54] Bruce Krulwich. Lifestyle finder: Intelligent user profiling using large-scale
demographic data. AI Magazine, 18(2):37–45, 1997.

[55] Adam J. Lee, Marianne Winslett, and Kenneth J. Perano. Trustbuilder2:
A reconfigurable framework for trust negotiation. In IFIPTM, pages 176–
195, 2009.

[56] Travis Leithead, Wolfgang Nejdl, Daniel Olmedilla, Kent E. Seamons,
Marianne Winslett, Ting Yu, and Charles C. Zhang. How to exploit on-
tologies in trust negotiation. In University of Aachen (RWTH, page 127,
2004.

136 BIBLIOGRAPHY

[57] Jiangtao Li, Ninghui Li, and William H. Winsborough. Automated trust
negotiation using cryptographic credentials. In Proceedings of the 12th
ACM conference on Computer and communications security, CCS ’05,
pages 46–57, New York, NY, USA, 2005. ACM.

[58] Ninghui Li and John C. Mitchell. Rt: A role-based trust-management
framework, 2003.

[59] Ninghui Li, John C. Mitchell, and William H. Winsborough. Design of a
role-based trust-management framework. In Proceedings of the 2002 IEEE
Symposium on Security and Privacy, pages 114–, Washington, DC, USA,
2002. IEEE Computer Society.

[60] Pan Li, Meng Xiangxu, Shen Zhiqi, and Yu Han. A reputation pattern for
service oriented computing. In Proceedings of the 7th international con-
ference on Information, communications and signal processing, ICICS’09,
pages 239–243, Piscataway, NJ, USA, 2009. IEEE Press.

[61] Kwei-Jay Lin, Jane Yung-jen Hsu, Yue Zhang, and Tao Yu. A distributed
reputation broker framework for web service applications. Journal of Elec-
tronic Commerce Research, 7(3):164–177, November 2006. ABI/INFORM.

[62] Yuhong Liu and Yan (Lindsay) Sun. Anomaly detection in feedback-
based reputation systems through temporal and correlation analysis. In
Proceedings of the 2010 IEEE Second International Conference on Social
Computing, SOCIALCOM ’10, pages 65–72, Washington, DC, USA, 2010.
IEEE Computer Society.

[63] Yan Lu, Zhaozi Gao, and Kai Chen. A dynamic composition algorithm
of semantic web service based on qos. In Proceedings of the 2010 Second
International Conference on Future Networks, ICFN ’10, pages 354–356,
Washington, DC, USA, 2010. IEEE Computer Society.

[64] C. Matthew MacKenzie, Ken Laskey, Francis McCabe, Peter F Brown,
Rebekah Metz, and Booz Allen Hamilton. OASIS Reference Model for
Service Oriented Architecture 1.0. OASIS, October 2006.

[65] Umardand Shripad Manikrao. Dynamic selection of web services with rec-
ommendation system. In In: Proceedings of the International Conference
on Next Generation Web Services Practices (NWESP), IEEE Computer
Society, page 117. Press, 2005.

[66] Carolyn McLeod. Trust. In Edward N. Zalta, editor, The Stanford Ency-
clopedia of Philosophy. Spring 2011 edition, 2011.

[67] Massimo Mecella, Mourad Ouzzani, Federica Paci, and Elisa Bertino. Ac-
cess control enforcement for conversation-based web services. In Proceed-
ings of the 15th international conference on World Wide Web, WWW ’06,
pages 257–266, New York, NY, USA, 2006. ACM.

BIBLIOGRAPHY 137

[68] D. A. Menasce. QoS issues in Web services. Internet Computing, IEEE,
6(6):72–75, 2002.

[69] Wolfgang Nejdl, Daniel Olmedilla, and Marianne Winslett. Peertrust:
Automated trust negotiation for peers on the semantic web. In In Work-
shop on Secure Data Management in a Connected World (SDMÕ04, pages
118–132, 2004.

[70] Daniel Olmedilla, Rubèn Lara, Axel Polleres, and Holger Lausen. Trust
negotiation for semantic web services. In 1ST INTERNATIONAL
WORKSHOP ON SEMANTIC WEB SERVICES AND WEB PRO-
CESS COMPOSITION IN CONJUNCTION WITH THE 2004 IEEE IN-
TERNATIONAL CONFERENCE ON WEB SERVICES, pages 81–95.
Springer, 2004.

[71] Michael J. Pazzani. A framework for collaborative, content-based and
demographic filtering. Artif. Intell. Rev., 13:393–408, December 1999.

[72] Falcone R., Pezzuolo G., and Castelfranchi C. Special issue on ’Trust,
Reputation and Security: Theories and Practice’, chapter A - Fuzzy ap-
proach to a belief-based trust computation, pages 73–86. 2003.

[73] Sarvapali D. Ramchurn, Nicholas R. Jennings, and et al. A computa-
tional trust model for multi-agent interactions based on confidence and
reputation. In IN PROCEEDINGS OF 6TH INTERNATIONAL WORK-
SHOP OF DECEPTION, FRAUD AND TRUST IN AGENT SOCI-
ETIES, pages 69–75, 2003.

[74] Shuping Ran. A model for web services discovery with qos. SIGecom
Exch., 4:1–10, March 2003.

[75] Anand S. Rao and Michael P. Georgeff. Bdi agents: From theory to
practice. In IN PROCEEDINGS OF THE FIRST INTERNATIONAL
CONFERENCE ON MULTI-AGENT SYSTEMS (ICMAS-95, pages 312–
319, 1995.

[76] Lars Rasmusson and Sverker Jansson. Simulated social control for secure
internet commerce. In Proceedings of the 1996 workshop on New security
paradigms, NSPW ’96, pages 18–25, New York, NY, USA, 1996. ACM.

[77] Elaine Rich. Readings in intelligent user interfaces. chapter User modeling
via stereotypes, pages 329–342. Morgan Kaufmann Publishers Inc., San
Francisco, CA, USA, 1998.

[78] Alex Rodriguez. Restful web services: The basics.
http://www.ibm.com/developerworks/webservices/library/ws-restful/,
November 2008. url consulted on March 24, 2011.

138 BIBLIOGRAPHY

[79] A. Ruiz-Cortés, O. Mart́ın-Dı́az, A. Durán-Toro, and M. Toro. Improving
the Automatic Procurement of Web Services Using Constraint Program-
ming. Int. J. Cooperative Inf. Syst, 14(4):439–468, 2005.

[80] Jordi Sabater and Carles Sierra. Regret: reputation in gregarious societies.
In Proceedings of the fifth international conference on Autonomous agents,
AGENTS ’01, pages 194–195, New York, NY, USA, 2001. ACM.

[81] J. Ben Schafer, Joseph Konstan, and John Riedi. Recommender systems
in e-commerce. In Proceedings of the 1st ACM conference on Electronic
commerce, EC ’99, pages 158–166, New York, NY, USA, 1999. ACM.

[82] M. Schillo, P. Funk, and M. Rovatsos. Who can you trust: Dealing with
deception. In Proceedings of Autonomous Agents ’99 Workshop on ”De-
ception, Fraud, and Trust in Agent Societies”, pages 81–94, Seattle, USA,
May 1999.

[83] S Schmitt and R Bergmann. Applying case-based reasoning technology for
product selection and customization in electronic commerce environments.
In 12th Bled Electronic Commerce Conference, 1999.

[84] Munindar P. Singh, Bin Yu, and Mahadevan Venkatraman. Community-
based service location. Commun. ACM, 44:49–54, April 2001.

[85] James Snell, Doug Tidwell, and Pavel Kulchenko. Programming Web
Services with SOAP, chapter 3. O’Reilly Media, 1st edition, December
2001.

[86] A. Squicciarini, E. Bertino, Elena Ferrari, F. Paci, and B. Thuraisingham.
Pp-trust-x: A system for privacy preserving trust negotiations. ACM
Trans. Inf. Syst. Secur., 10, July 2007.

[87] Anna Cinzia Squicciarini, Alberto Trombetta, and Elisa Bertino. Sup-
porting robust and secure interactions in open domains through recovery
of trust negotiations. In Proceedings of the 27th International Conference
on Distributed Computing Systems, ICDCS ’07, pages 57–, Washington,
DC, USA, 2007. IEEE Computer Society.

[88] L. Taher and H. El Khatib. A framework and qos matchmaking algorithm
for dynamic web services selection. In In Proceedings of the 2 nd Inter-
national Conference on Innovations in Information Technology (IITÕ05,
2005.

[89] M. Tian, A. Gramm, T. Naumowicz, H. Ritter, and J. S. Freie. A concept
for QoS integration in Web services. In Proceedings of the Fourth Interna-
tional Conference on Web Information Systems Engineering Workshops
(WISEW), Roma, Italy, pages 149–155, December 2003.

BIBLIOGRAPHY 139

[90] B. Towle and C. Quinn. Knowledge based recommender systems using
explicit user models. In Papers from the AAAI Workshop, AAAI Technical
Report WS-00-04, pages 74–77. Menlo Park, CA: AAAI Press, 2000.

[91] T.Rajendran, P.Balasubramanie, and Resmi Cherian. Article: An efficient
ws-qos broker based architecture for web services selection. International
Journal of Computer Applications, 1(9):79–84, February 2010. Published
By Foundation of Computer Science.

[92] Sameer Tyagi. Restful web services.
http://www.oracle.com/technetwork/articles/javase/index-137171.html,
August 2006. url consulted on March 25, 2011.

[93] Yao Wang and Julita Vassileva. Toward trust and reputation based web
service selection: A survey, 2007.

[94] Marianne Winslett, Ting Yu, Kent E. Seamons, Adam Hess, Jared Jacob-
son, Ryan Jarvis, Bryan Smith, and Lina Yu. Negotiating trust on the
web. IEEE Internet Computing, 6:30–37, November 2002.

[95] Marianne Winslett, Charles C. Zhang, and Piero A. Bonatti. Peeraccess:
a logic for distributed authorization. In Proceedings of the 12th ACM
conference on Computer and communications security, CCS ’05, pages
168–179, New York, NY, USA, 2005. ACM.

[96] Li Xiong and Ling Liu. Peertrust: Supporting reputation-based trust
for peer-to-peer electronic communities. IEEE TRANSACTIONS ON
KNOWLEDGE AND DATA ENGINEERING, 16:843–857, 2004.

[97] Ziqiang Xu, Patrick Martin, Wendy Powley, and Farhana Zulkernine.
Reputation-enhanced qos-based web services discovery, 2007.

[98] Ziqiang Xu and Copyright Ziqiang Xu. Reputation-enhanced web service
discovery with qos. In Ph.D. Dissertation, School of Computing, QueenÕs,
2006.

[99] Song Ye, Fillia Makedon, and James Ford. Collaborative automated trust
negotiation in peer-to-peer systems. In Proceedings of the Fourth Inter-
national Conference on Peer-to-Peer Computing, P2P ’04, pages 108–115,
Washington, DC, USA, 2004. IEEE Computer Society.

[100] Pınar Yolum and Munindar P. Singh. Engineering self-organizing referral
networks for trustworthy service selection. IEEE Transactions on Systems,
Man, and Cybernetics. Part A, 35(3):396–407, 2005.

[101] Ting Yu, Marianne Winslett, and Kent E. Seamons. Supporting struc-
tured credentials and sensitive policies through interoperable strategies
for automated trust negotiation. ACM Trans. Inf. Syst. Secur., 6:1–42,
February 2003.

140 BIBLIOGRAPHY

[102] Giorgos Zacharia, Alexandros Moukas, and Pattie Maes. Collabora-
tive reputation mechanisms in electronic marketplaces. In Proceedings
of the Thirty-second Annual Hawaii International Conference on System
Sciences-Volume 8 - Volume 8, HICSS ’99, pages 8026–, Washington, DC,
USA, 1999. IEEE Computer Society.

[103] Jia Zhang, Liang-Jie Zhang, and Jen-Yao Chung. Ws-trustworthy: A
framework for web services centered trustworthy computing. In Proceed-
ings of the 2004 IEEE International Conference on Services Computing,
pages 186–193, Washington, DC, USA, 2004. IEEE Computer Society.

[104] Bo Zhou, Keting Yin, Honghong Jiang, Shuai Zhang, and Aleksander
Kavs. Qos-based selection of multi-granularity web services for the com-
position. Journal of Software, 6(3), 2011.

	Summary
	Papers included in the thesis
	Acknowledgements
	1 Background
	1.1 Genesis
	1.2 Issues of a short-term-benefit IT solutions
	1.3 The SOA vision
	1.4 SOA Technologies
	1.5 Use cases
	1.6 Trust in SOA

	2 Trust in SOA - State of the Art
	2.1 Terms confusion
	2.2 Sources of trustworthiness
	2.3 Suggested approaches

	3 Framework
	3.1 Founding principles
	3.2 High Level Architecture
	3.3 Evidence supplier
	3.4 QoS based step
	3.5 Reputation based selection step
	3.6 Agreement negotiation and monitoring

	4 Application
	4.1 Test cases
	4.2 Discussion

	5 Conclusions
	5.1 Contributions
	5.2 Future Works

	A Publication - NODES11

