

Addressing the Cold Start Problem

in the Wikipedia Recommender

System through Content-Based

Filtering

Mihai Mihăilă

Kongens Lyngby 2011

IMM-MSC-2011-75

Technical University of Denmark

Informatics and Mathematical Modelling

Building 321, DK-2800 Kongens Lyngby, Denmark Phone +45 45253351, Fax +45
45882673 reception@imm.dtu.dk

www.imm.dtu.dk

IMM-PHD: ISSN 0909-3192

mailto:reception@imm.dtu.dk
http://www.imm.dtu.dk/

Abstract

Wikipedia is a free online encyclopaedia that can be edited by anyone. Despite its
large number of contributors and articles, the qualification of the authors, as well as

the quality of the contribution they generate, cannot be easily assessed.

Wikipedia Recommender System is a collaborative filtering system used to determine

the quality of Wikipedia articles based on user ratings. Being a collaborative filtering

system, WRS is affected by the cold start problem. The cold start problem is a

phenomenon that occurs when there is not enough data for the system to function

correctly. New users of WRS do not receive article ratings until they start interacting

with the system and have a trust profile. The current project addresses this problem
by using WikiTrust article rating.

WikiTrust is a system that calculates the rating of an article by determining and

computing the trust value of its words. In this system, the words’ trust level is

proportional to their authors trust. Authors gain trust by making changes that last over

multiple reviews.

The goal is to use the WikiTrust article reputation for calculating the WRS trust level

in those cases when WRS does not have enough information to determine a good

trust estimation of the article quality.

While the main purpose is to address the cold start problem, incorporating WikiTrust

reputation into WRS trust calculation could potentially increase WRS’s overall trust

level accuracy. The current project will investigate the advantages and disadvantages
of integrating the two systems, WRS and WikiTrust, and will attempt to determine the

best formula to use the latter for improving the current system performance.

ii

Preface

This thesis was prepared at the Department of Informatics and Mathematical

Modelling, within the Technical University of Denmark in partial fulfilment of the

requirements for acquiring the M.Sc. degree in engineering.

The project was completed in the period from March 7th, 2011 to September 23th,
2011 under the supervision of Associate Professor Christian Damsgaard Jensen.

The project design was presented during the poster session of International

Conference on Trust Management 5th IFIP WG 11.11.

One of the results of this project, the WRS Google Chrome Extension, has been

published in the Chrome Web Store and is currently available for free download
1
 and

usage.

Lyngby, September 2011

Mihai Mihăilă

s091368

1
 Wikipedia Recommender System - Chrome Web Store

https://chrome.google.com/webstore/detail/dlbpjdiahnhhokdbanadnhgjfoiojdmb

https://chrome.google.com/webstore/detail/dlbpjdiahnhhokdbanadnhgjfoiojdmb

iv

Contents
ABSTRACT ...I

PREFACE ... III

CONTENTS ... V

LIST OF TABLES .. VII

LIST OF FIGURES ... IX

1. INTRODUCTION... 1

1.1. INTRODUCTION .. 1
1.2. WIKIPEDIA RECOMMENDER SYSTEM .. 3
1.3. OBJECTIVES .. 4
1.4. STRUCTURE .. 5
1.5. DEFINITION OF TERMS .. 6

2. STATE OF THE ART .. 9

2.1. TRUST MODEL ... 9
2.2. CLASSIFICATION .. 12
2.3. CURRENT ARCHITECTURE .. 13
2.4. WRS EVOLUTION .. 17
2.5. SUMMARY ... 18

3. ANALYSIS.. 19

3.1. WIKITRUST ... 20
3.1. NECESSARY SYSTEM ARCHITECTURE CHANGES ... 26
3.2. SUMMARY ... 29

4. DESIGN .. 31

4.1. SERVER SERVICES .. 31
4.2. DATABASE .. 33
4.3. BROWSER EXTENSION ... 33
4.4. SECURITY ... 34
4.5. SUMMARY ... 35

5. IMPLEMENTATION .. 37

5.1. SERVER SERVICES .. 37
5.2. DATABASE .. 46
5.3. BROWSER EXTENSION ... 47
5.4. SUMMARY ... 52

vi

6. EVALUATION... 53

6.1. CONTRIBUTIONS .. 53
6.2. CENTRALIZED VERSUS DECENTRALIZED ... 54
6.3. PERFORMANCE ... 55
6.4. COLD START PROBLEM .. 56
6.5. UI & OTHER IMPROVEMENTS .. 64
6.6. SUMMARY ... 67

7. CONCLUSION .. 69

7.1. WIKIPEDIA RECOMMENDER SYSTEM .. 69
7.2. FUTURE WORK .. 70
7.3. FUTURE RESEARCH ... 70
7.1. SUMMARY OF CONCLUSIONS ... 71

8. APPENDIX ... 73

8.1. ACCEPTING THE SELF-SIGNED GLASSFISH CERTIFICATE 73
8.2. EXAMPLES OF WIKITRUST RATINGS ... 77
8.3. CODE ... 87

BIBLIOGRAPHY .. 149

List of Tables

Table 1: Entity mapping in wrs.web.dal.tables .. 42
Table 2: WikiTrust rating distribution for featured articles ... 59
Table 3: WikiTrust rating distribution for poor quality articles.................................... 61
Table 4: WikiTrust rating distribution for random articles .. 63
Table 5: Experiments summary ... 63

viii

List of Figures

Figure 1: Trust evolution function .. 11
Figure 2: Trust relationship between user A and B .. 13
Figure 3: Scone Proxy WRS Architecture .. 14
Figure 4: WRS Feedback interface.. 17
Figure 5: WikiTrust rating example .. 21
Figure 6: Fixing cold start using WikiTrust ... 23
Figure 7: Updating the WikiTrust rating when the user rates the page 25
Figure 8: New WRS Architecture ... 28
Figure 9: Database schema .. 47
Figure 10: WRS Extension when visiting Wikipedia or a different page 48
Figure 11: WRS Browser Extension notification ... 48
Figure 12: WRS Extension popup window ... 49
Figure 13: WRS Browser Extension options page ... 51
Figure 14: WikiTrust rating used in WRS ... 57
Figure 15: WikiTrust rating associated with user's category 57
Figure 16: WikiTrust rating distribution for featured articles 59
Figure 17: WikiTrust rating distribution for poor quality articles 61
Figure 18: WikiTrust rating distribution for random articles 62
Figure 19: WikiTrust rating distribution .. 64
Figure 20: Previous WRS Feedback Interface ... 65
Figure 21: New feedback mechanism ... 66
Figure 22: Certification error message for Glassfish's self-signed certificate 74
Figure 23: Certification error popup window .. 75
Figure 24: Certificate information window .. 76

x

Chapter 1

1. Introduction

1.1. Introduction

Wikipedia is a free, web-based and collaborative encyclopaedia. It was founded in

2001 and since then over 3.7 million
2
 articles have been created. It currently has over

90,000 active contributors. Given its size and the variety of its topics it has become

one of the most visited websites on the Internet. The popularity of Wikipedia heavily

relies on its openness, as virtually anyone can change an article or create a new one.

Although there are some ground rules and special requirements that every editor
should follow, a lot of controversy exists around Wikipedia.

Critics often underline the fact that the authors of Wikipedia are regular internet users

with no proven qualification to write a reference or scientific paper in the first place.

Moreover, as it can be edited by anyone, it is often the case that certain articles are

edited in such a way as to reflect one’s subjective beliefs or they are inspired by

potentially untrustworthy source like TV, radio, personal blogs, etc. This situation

2
 More precisely 3,709,225 articles at 2011-08-14

2 Introduction

leads to a lack of credibility of the article that cannot be quoted or used for any
academic or scientific purpose.

Another problem occurs along with the editing process. Typically, groups of editors

built around articles tend to preserve their contributions and resent outsiders with

different opinions. In the latest annual Wikipedia meeting, Jimmy Wales, one of the

co-founders of Wikipedia, acknowledged this problem as affecting the number of

editors and especially the number of new editors and consequently he announced

measures to simplify the editing procedures. Meanwhile, the issue is still present and

editing Wikipedia pages is governed by its 1,544 volunteers, possibly biased,
administrators.

Larry Sanger, the other co-founder of Wikipedia, stated in an article back in 2004 that

the source of all this problems was the lack of respect for expertise (Sanger, 2004).

Currently, Wikipedia does not have any mechanism for distinguishing between

common and expert users; hence the bad reputation it has in terms of credibility and

information accuracy.

By promoting the openness idea, Wikipedia has encouraged people to contribute,

assuming that over time articles will reach a mature state. At that point they can be
moved into a featured

3
 state, where only minor changes are accepted. However,

there are only few featured articles on Wikipedia; the ratio between normal and

featured articles is about one to 1100.

While the credibility of Wikipedia articles is put into question, its widespread use is a

reality that cannot be ignored. People are using it for various purposes even if they

are aware of its problems. According to alexa.com
4
, Wikipedia is the 7

th
 most visited

website on the Internet (August 2011).

In this context, there has been an acute need for assessing the quality of articles in

the Wikipedia. Various studies have shown that some articles on Wikipedia have the

same level of correctness as an academic article on the same topic (Giles, 2005).
The main proof of this is in the phrasing and the flow of the article, which is in favour

of the academic one. At the same time, articles on controversial topics or recent

events may have a very low quality and sometimes contain wrong, misleading

information. It is therefore necessary to highlight the differences between these two

types of articles for increasing the credibility of Wikipedia and the accuracy of the

information its visitors use.

3
 An article reviewed by the community and promoted as having a very good quality.

A featured article is marked with small bronze star icon on the top right of the article’s
page. There are 3350 featured articles on Wikipedia (August 2011).
4
 http://www.alexa.com is an internet ranking system

http://www.alexa.com/

Wikipedia Recommender System 3

1.2. Wikipedia Recommender System

The Wikipedia Recommender System (WRS) is a collaborative filtering system which

can be used alongside Wikipedia to determine the quality of an article. It utilises the

user’s article ratings in order to detect similarities between users and provide a

personalized, subjective rating for an article.

The system creates a user trust profile and records the user’s ratings along with other

user ratings on visited articles. To do so, trust metrics are used. By identifying users

with similar ratings the system can make predictions for other articles as well, better
than traditional filtering systems. Such a system typically averages the ratings across

a whole community of users and makes its recommendations based on it. WRS uses

trust metrics to determine the users with a similar trust profile and then calculates an

overall rating, based only on their ratings. Basically, it selects similar users from a

particular community when calculating a rating, rather than the whole community.

In the past decade, this approach has retained a lot of attention in academia as well
as industry. Several systems like ebay.com

5
 or slashdot.org

6
 have been using the

same or similar principles for building reputations for their community members.

Recently, bigger names in the industry seem to have made the first steps into

adopting the same principles even when it comes to search algorithms:

In May 2011 Bing
7
 acknowledged the fact that 90% of their users (which currently

represents around 15% of the market share in internet search) seek advice from

friends or family in their decision process. As a consequence, they decided to
incorporate Facebook

8
’s Like

9
-ed pages in their search, giving them priority over

other similar pages
10

. As friends and family members typically have similar

preferences with a user, we see this move as an attempt to integrate trust and

personal preferences into the traditional search results.

In August 2011, following the same principle as Bing, Google
11

 announced that its

search results will integrate and prioritize the posts in Google Plus
12

.

5
 http://www.ebay.com/ - An online auction and shopping website

6
 http://slashdot.org/ - an online technology-related news website

7
 http://www.bing.com – the 3

rd
 biggest search engine on the Internet, August 2011

8
 http://www.facebook.com – the largest social network on the Internet, August 2011

9
 Facebook Like is user’s ability to express his recommendation for an internet

resource or other internal items (comments, pictures etc.)
10

 (bing.com, 2011)
11

 http://www.google.com – the biggest search engine on the Internet, August 2011

http://www.ebay.com/
http://slashdot.org/
http://www.bing.com/
http://www.facebook.com/
http://www.google.com/

4 Introduction

These widely used systems gather information from social networks, on the premise
that those networks are built on top of similarities between its users. Using social data

is therefore a clear indicator of the importance that similar preferences have, when it

comes to collaborative filtering.

However, WRS does not rely on existing social networks. Instead, it determines users

with similar trust profiles based on the ratings they give to Wikipedia pages. User

ratings are stored in special pages of Wikipedia and are publicly available. Personal

trust profiles are stored on user’s local machine, while for providing a feedback

mechanism it uses a proxy filter for injecting an UI into Wikipedia pages.

1.3. Objectives

Any collaborative filtering system is affected by a phenomenon called cold start

problem
13

.

A collaborative filtering system relies on the network’s knowledge for assigning a

rating for an entity for which the user does not have any knowledge about yet. The

strength of these systems grows as the network contributing to the rating is larger,

therefore theoretically more accurate. The problem emerges when the network is
small or it does not exist at all. In these cases, the calculated rating might be

inaccurate or cannot be calculated at all. In this situation, the system meets a typical

cold start problem.

There are several ways of dealing with the cold start problem, among which inferring

a rating from an extended network of indirect friends or connecting to already existing

networks are the most common. However, these approaches either require user’s

intervention (for connecting to an existing network) or rely on the fact that, by
following a network connection, some knowledge will ultimately be available about

the current entity. It seems that the scenario where the user has no network or is part

of an isolated network, that has no knowledge about the current entity, is not covered

by any of them.

As a consequence, we turn our attention towards an external system that can always

provide a rating for an entity, in this case, a Wikipedia article.

12
 Google Plus is Google’s social network

13
 (Schein, et al., 2002)

Structure 5

WikiTrust
14

 is a filtering system developed at University of California, in Santa Cruz,
United States, which provides a rating for any Wikipedia article, based solely on its

content. WikiTrust article trust level is determined by the trust level of its

contributions. A contribution gains trust if it is created by a high reputation author and

lasts over multiple reviews. An author gains trust by creating contributions that last

over time (therefore, having an increased trust level).

WikiTrust can be used by itself as a Firefox add-on
15

, which informs the user about

the article level of trust by using colour coding (words’ background ranges from white

– high trust, towards dark orange – low trust).

WikiTrust also provides a rich API for retrieving article trust level, author trust level

and other related functions.

The current approach for solving the cold start problem in WRS consists in integrating
the WikiTrust article rating for those cases where no article rating is available.

There are several challenges in achieving this goal, among which:

 Dealing with the general rating WikiTrust provides opposite to category-
specific rating WRS uses.

 Investigating the WikiTrust ratings in terms of range, compared with the WRS

ratings.

The goal of the thesis is to address these challenges and incorporate WikiTrust
ratings into WRS for overcoming the cold start problem. However, after analysing the

system structure and starting the development process, various problems have been

identified, that were blocking the development, as described in the next chapter,
State of the Art. Therefore, in order to achieve the main goal of the thesis, we first

have to modify the existing functionality, so that WRS can be used with no restrictions

or limitations by any user. Secondly, we aim to maintain and improve (where

possible) the current user interaction, the installation complexity and the distribution

method.

1.4. Structure

The current thesis is structured as follows:

14
 http://www.wikitrust.net/

15
 https://addons.mozilla.org/en-US/firefox/addon/wikitrust/

http://www.wikitrust.net/
https://addons.mozilla.org/en-US/firefox/addon/wikitrust/

6 Introduction

Introduction describes the WRS project along with the objectives of the thesis.

State of the Art gives an overview of the current state of the project while highlighting

the current issues that are to be fixed.

Analysis presents a strategy for fixing the cold start problem and the current issues

introduced in State of the Art. WikiTrust system is viewed as an argument for

integrating it with WRS.

Design discusses the proposed solutions for achieving the goal of the thesis (fix the

cold start problem in WRS) and the design changes introduced in Analysis.

Implementation brings forward the specific ways in which the proposed architecture

change was achieved. The most important system components are discussed in

detail, while presenting the differences and similarities with the previous

implementation where necessary.

Evaluation shows the state of the project after the proposed changes have been

applied by highlighting individual achievements. It also contains the results of multiple

sets of tests that have been performed in order to assess the ratings of WikiTrust as

a working part of WRS.

Conclusion summarises the results achieved in this thesis and proposes various

areas for future work and research.

Appendix contains the source code and other resources used in the project.

1.5. Definition of Terms

In this section a set of terms will be defined as they are used in the current thesis.

Trust: One’s personal and contextual opinion about a specific subject.

Rating: The value WikiTrust returns as a quality indicator for an article or the quality

indicator a user assigned in the WRS system to an article.

Reputation: A group’s contextual opinion about some specific subject.

WRS: Wikipedia Recommender System is a recommender system for Wikipedia that

calculates ratings based on similarities between users. The similarities are based on
the ratings the users of the system assign to articles.

Definition of Terms 7

WikiTrust: An online content-based filtering system that can provide a rating for any

Wikipedia article
16

.

Trust value: In WRS, trust is measured on a [] scale (-1 means complete

distrust and 1 means complete trust) and represents the degree in which a trustor

trusts a trustee.

Trustor: The current user of WRS, who reads a Wikipedia article and is interested in

receiving a rating for it.

Trustee: Any user of the WRS user community different from the trustor.

Web of Trust: User’s network of users for which he has a trust value.

Trust profile: The WRS representation of user’s trust, including all his previous

interactions with other users and the data which contributes to a trust value.

16
 The supported Wikipedias are English, French, German, or Polish editions.

Chapter 2

2. State of the Art

In this chapter we look at the current system, which is the working result of

(Korsgaard, 2007), (Lefevre, 2009) and (Pilkauskas, 2010) (in chronological order of

their contributions).

In Trust Model and Classification we present the theoretical foundations of the WRS.

In Current Architecture we look at different key parts of the system and the way they

work together.

2.1. Trust Model

WRS tries to mimic the human behaviour in relation with trust. Individuals experience

trust in most of their social interaction which helps them establish relationships. There

are a series of factors involved in modelling trust in its representation used by WRS.

10 State of the Art

Initial Trust

WRS’s trust model is based on the model proposed by Stephen Marsh (Marsh,

1994). In this model, trust is represented on a [] range, -1 meaning complete

distrust, and 1 meaning full trust. The trust value for a new user is initialized with 0.0,

as no information is known about him. This initial value means the user is neither

trusted, nor distrusted.

Trust Dynamics

Over time, the trust value is modified by the user interactions. The model adopted by

WRS takes into account the order of the interactions and their age. The interactions

that occurred in the past count less than the ones that have occurred recently. The

interactions that are less than a month old count 100%, those between one month

and six months count 50% and the ones between six months and one year count
25%. Interactions older than one year are ignored.

An interaction is worth an absolute value of

 which gives 20 steps between -1.0 and

1.0, which are the boundaries of the trust values.

Trust Evolution

The core of the WRS trust model is represented by the trust evolution function. Its

formula is based on a superellipse:

|

|

 |

|

Where:

 x is the sum of interaction

 y is the calculated trust value

As the function is based on the model proposed by Stephen Marsh (Marsh, 1994), a

and b parameters, which give the radius of the superellipse, are equal with 1,
therefore a = 1 and b = 1. The n parameter which gives the curvature of the curve

starts at 1. This parameter will be updated based on whether the user is cautious or

optimistic. n < 1.0 gives a cautious curve, while n > 1.0 gives an optimistic curve.

Four functions are used to describe the possible scenarios in WRS:

 An optimistic curve in trust:

Trust Model 11

| | | | [] []

 A cautious curve in trust:

| | | | [] []

 An optimistic curve in distrust:

| | | | [] []

 A cautious curve in distrust:

| | | | [] []

These equations, when n = 2, produce the curves in Figure 1: Trust evolution

function.

Figure 1: Trust evolution function

12 State of the Art

2.2. Classification

WRS’s goal is to create a web of trust for its users in order to be able to predict rating

values for unknown articles to the trustor, but rated by the trustee.

Trustor’s trust in a trustee is contextual, associated with a category. When rating an

article, the trustor places it in one of the available categories. By assigning categories

to ratings the system tries to mimic the real life experience where people have

contextual trust in others.

For example, a person A can trust another person B when it comes to movies

preferences, but he might not agree with B’s food preferences, if only one of them is

vegetarian.

Figure 2: Trust relationship between user A and B illustrates a similar example, where

user A has a high trust in user B in Computers category as they have given the same
rating to the Microsoft article. On the other hand, A’s trust in B is low in Sports

category as B’s rating is different than his.

Notice that WRS, instead of having prior information about the relationship between A

and B, looks at ratings rated by both A and B in order to understand how close they

are in terms of preferences. By doing so, it eliminates the need of having to

preconfigure the system.

Obviously, there are far more complex factors in real life that contribute to building

trust. However, the adoption of rating categories is the first step into achieving

contextual trust.

Current Architecture 13

A

MicrosoftMicrosoft

FC BarcelonaFC Barcelona

B

9; Computers 9; Computers

3; Sports

7; Sports

Figure 2: Trust relationship between user A and B

In this same figure, WRS trust seems to be bidirectional. However, given the way
trust is calculated, it is in fact unidirectional. WRS updates the trust values only if it

finds a prior user rating while visiting a page. Therefore, users will have different trust

values in each other.

WRS uses the same top 15 categories as Open Directory Project
17

. They were found

by Pilkauskas (Pilkauskas, 2010) to be simple enough for the average user while best

covering the wide range of Wikipedia articles.

2.3. Current Architecture

WRS is currently implemented as a plugin for the Scone Proxy. It uses Wikipedia

user pages as a central repository for user ratings and it computes and stores the

user’s trust profile on the local machine. An overview of the system can be observed
in Figure 3: Scone Proxy WRS Architecture.

17
 http://www.dmoz.org/about.html

http://www.dmoz.org/about.html

14 State of the Art

Local machineLocal machine

Wikipedia

Scone Proxy

WRS

Web Browser

http://en.wikipedia.org/wiki/Barack_Obama

Feedback
interface

1

2

Internet

Figure 3: Scone Proxy WRS Architecture

The Scone Proxy

The Scone Proxy
18

 is a Java Framework designed to allow the development of web

enhancements for research and educational purposes. It acts as an intermediary

between webpages and the web browsers, capturing the browsing data, allowing its

manipulation and then forwarding it to the web browsers.

Being a Scone Proxy plugin, WRS exposes its functionality to a variety of browsers.

WRS intercepts Wikipedia pages and manipulates them in order to display a page

rating and a feedback mechanism.

The Scone Proxy is based on IBM’s Web Intermediaries (WBI) technologies. The

latest version of WBI was released in June, 1999.

As mentioned by Lefevre (Lefevre, 2009), Scone Proxy had not seen a good adoption

by the community. The project’s website
19

 is only mentioning a limited number or

prototypes based on Scone.

18
 http://www.scone.de/index.html

19
 http://www.scone.de/examples.html

http://www.scone.de/index.html
http://www.scone.de/examples.html

Current Architecture 15

Scone Proxy’s latest version was released in February, 2009. The fact that the
underlying technology (WBI) has not been under development for over a decade,

along with the fact that Scone’s tested platforms
20

 and browsers (Internet Explorer 6,

Firefox 1.x, Opera 7.x) are far from recent. So, while still working, the Scone Proxy is

a thing of the past.

Wikipedia as a Central Repository

In its early stages WRS used the article’s pages to store ratings as wiki comments

(therefore, not visible to the users reading the article in order to avoid having to

maintain another online system to serve as a repository. This approach was quickly

dropped after Wikipedia community complained about WRS generating unneeded

content for all users, even the ones that were not using WRS.

The next step was to look at other locations on Wikipedia that could store the user

ratings, without interfering with the actual article content. This location was identified

in user pages.

Every Wikipedia user has access to a user page which can be used for drafts,

personal notes as well as any other content compatible with Wikipedia purpose. The
user pages act as any other Wikipedia page in terms of contributions, meaning that

anybody can edit such a page.

As the WRS goal is to improve Wikipedia’s functionality, WRS uses these user pages
as a central repository for ratings. To do so, a user named Recommendations was

created and all the ratings were kept in this user’s subpages. Therefore, as the user

page is located at

http://en.wikipedia.org/wiki/User:Recommendations, the ratings for an

article like http://en.wikipedia.org/wiki/Winter are kept at
http://en.wikipedia.org/wiki/User:Recommendations/Winter.

However, as the Wikipedia policies tightened over time to prevent automatic editing

tool (which had a potential of generating unneeded, wrong or malicious content) as
well as bad contributions to wiki pages, this approach (of storing ratings in the user

pages) faced some challenges as well.

In May 2011, the use of WRS generated controversy among Wikipedia administrators

which blocked the accounts creating the ratings and deleted the user pages

containing the ratings. Such a situation was caused by two user accounts who rated

20
 http://www.scone.de/download.html

http://en.wikipedia.org/wiki/Winter
http://www.scone.de/download.html

16 State of the Art

two different articles, hence generating the automatic creation and subsequent
edition of two use subpages.

After explaining to the administrators the purpose of WRS and the way it worked, the

user accounts were unblocked, but several restrictions were imposed, which

conflicted with the way WRS worked.

The accounts that initially used WRS for browsing and rating pages were

consequently no longer able to use WRS. This was a clear indicator that the current

strategy for storing ratings on Wikipedia had to change.

Feedback Interface

The system is interacting with the user through its Feedback Interface illustrated in
Figure 4: WRS Feedback interface. This visual element which in this example has a

dimension of 250*350 pixels is always added to the Wikipedia articles and cannot be

closed or hidden. The Feedback Interface can be moved around, but, by doing so, it

fails to update its visual content for several seconds or until the screen is updated.

Another problem of the current Feedback Interface is the placement of the rating

buttons. The buttons used for rating are placed on two rows, with a top – down, left –

right arrangement. This placement is confusing and contradicts basic UI rules as the

user has to follow a zigzag path in order to find a specific button.

WRS Evolution 17

Figure 4: WRS Feedback interface

2.4. WRS Evolution

The first version of WRS was developed by Thomas Rune Korsgaard (Korsgaard,

2007). It used article’s page to save user ratings.

The second version of WRS was developed by Thomas Lefevre (Lefevre, 2009). It

introduced categories for the ratings as well as storing the ratings in user’s page

instead of article’s page.

The third version of WRS was developed by Povilas Pilkauskas (Pilkauskas, 2010). It
changed the number of the rating categories for the system to allow a better

categorization scheme.

18 State of the Art

2.5. Summary

In this chapter we have looked at the current implementation of WRS and have

highlighted some of its weaknesses. While analysing the system, we have noticed

WRS is not functioning anymore because some changes in Wikipedia policies. These

findings will serve as an argument for changing the system’s architecture as a first

step towards achieving the goal of the thesis.

Chapter 3

3. Analysis

Our approach to solving the cold start problem in WRS is to use WikiTrust whenever

there are no user ratings available. In this chapter we will look at WikiTrust system

and discuss the specific ways it calculates trust as an argument for using it within

WRS. The suggested solution does not cover all the aspects of the cold start problem

especially if we consider cold start the state when the system is not relying on

enough data to calculate an accurate rating. Our resolution is however a starting

point upon which several other techniques can be built for a better performance of the
whole system.

Due to the problems we found in State of the Art, we propose a series of architecture

changes for WRS. These changes are presented in Necessary System Architecture

Changes.

20 Analysis

3.1. WikiTrust

As described by its authors, WikiTrust is a content-driven reputation system for

Wikipedia authors. In this system, users gain reputation when their contributions are

preserved over multiple reviews by other users, and they lose reputation when their

contributions are changed, deleted or reverted. The system differentiates between

various ways of preserving or removing one’s changes, and updates the reputation

accordingly.

WikiTrust Reputation

An interesting side of WikiTrust is its implicit trust aspect of the reputation, which

makes it a good candidate for integrating it with our WRS system. WikiTrust
calculates reputation based on text life and edit life, which are determined by human

users
21

. Author B, preserving the previous changes of author A in his revisions,
expresses his trust in author A’s contribution. Author C, removing the changes of

author A in his revisions, expresses his distrust in author A’s contribution. Ultimately,

WikiTrust reputation value for an author is the reputation within the group of authors

with whom he collaborated on Wikipedia pages.

WikiTrust computes the trust value for each individual word (as part of a revision),

which is based on its lifespan and on its author’s reputation. As a consequence, any

Wikipedia article has a rating in WikiTrust based on its containing words. Therefore a
page rating is based on the trust values of all authors that contributed to the text of

the page.

21
 Even if automatic software can make changes to Wikipedia as well

WikiTrust 21

C ED FA B

Barack ObamaBarack Obama WinterWinter ONUONU

Figure 5: WikiTrust rating example

In Figure 5: WikiTrust rating example the rating for the article ONU is influenced by all

the authors illustrated (A, B, C, D, E and F) even if only Author E and Author F have

directly edited it.

Notice that:

 Authors B, C and D have potentially contributed to the reputation of Author E
by contributing to the article Winter.

 Authors A potentially have contributed to the reputation of Author A and C by
contributing to a common article, namely Barack Obama.

At the same time, we acknowledge the fact that this network of authors might not

contain the user reading an article and interested in a rating. Therefore, integrating

WikiTrust in WRS means automatically assigning the reputation of an article as

perceived by the network of its authors and all the other authors contributing to their

trust level. We believe this trust value is relevant for the quality of the article,

therefore integrating WikiTrust into WRS can be perceived as connecting the user to

a general rating generated by members of the network, most likely to have a

meaningful opinion. This approach is expected to be better than other techniques for
solving the cold start problem by connecting to a random network user (Victor, et al.,

2008).

Prior to integrating WikiTrust into WRS, the Firefox WikiTrust Add-on has been tested

in order to assess its correctness. The following has been observed:

22 Analysis

 Featured articles have a generally high trust illustrated by a white background
for most of its words.

 Poor quality articles
22

 generally have a predominant orange background

which suggests low trust especially in those sections concerning recent

events.

 Introducing a small change into an article using a new Wikipedia account is
illustrated as low trust by dark orange background.

Given the results presented by the authors of WikiTrust and the working Mozilla

Firefox extension, as well as the manual testing performed, integrating WikiTrust into

WRS is a motivated choice.

Using WikiTrust in WRS

WikiTrust will be used on top of the existing WRS implementation, in those cases

where the system does not have enough data to calculate a rating. The workflow of
the new system is illustrated in Figure 6: Fixing cold start using WikiTrust.

22
 Our criteria for finding poor quality articles will be detailed in Evaluation.

WikiTrust 23

Get article rating

Are there ratings
available in the

database?

No Yes

Get the latest
page revision

using Wikipedia
API

Get the revision
rating using

WikiTrust API

Return trust value

Cold Start
problem

Use already existing
functionality

Figure 6: Fixing cold start using WikiTrust

The figure also shows an additional step (performed using Wikimedia API and
described later in Design), which gets the page ID and the current revision id, needed

for the WikiTrust API call.

The WikiTrust API that provides the needed data is called Text Origin and Trust API.

It returns a special representation of a given revision of a page where each sequence

(a single word or more consecutive words) has a trust value associated with it.

24 Analysis

For example, in order to get the trust values of the revision 411787463 of the page
20742, we have to call:

http://en.collaborativetrust.com/WikiTrust/RemoteAPI?method=wik

imarkup&pageid=20742&revid=411787463

This call returns a representation like:

Since {{#t:10,84893431,User1}}its inception in

{{#t:8,86765634,User2}}1928 the movement

The tag {{#t:10,84893431,User1}} means that all the words following the

closing bracket, in this case, its inception in has a trust value of 10 and it has

been created by user User1 in revision 84893431.

In order to calculate the trust value for the whole document, we apply a weighted

average, where the weight is given by the length of the sequence.

For getting the WikiTrust rating we therefore calculate:

∑ () ()

∑ ())

Where:

length(sequence) = the length of the text sequence

trust(sequence)= the trust value of the text sequence

We however have to apply some changes in order to use the resulting WikiTrust

rating.

One first change is adjusting the rating’s range to WRS, as WikiTrust ratings use a
[] scale compared to the [] scale used by WRS.

We apply another change to the WikiTrust rating when we associate it with a

category. Detecting the category of an article has been an interesting topic in WRS.

Previous attempts of automatic classification for articles concluded with the use of a

well-defined set of categories based on Open Directory Project classification scheme
proposed by Pilkauskas (Pilkauskas, 2010). This classification scheme separates

ratings in 15 categories and passes to the user the responsibility of assigning one of

these categories to an article.

WikiTrust 25

The ratings that WikiTrust provides for articles are content-based, therefore they are
not assigned to any category. In order to overcome this issue, we perform the

following steps:

1. When the WikiTrust rating is retrieved we present it to the user as it is, with

no category assigned to it.

2. Whenever the user rates an article (rating involves selecting a category for it)

the category of the WikiTrust rating will be updated to the user’s rating
category as described in Figure 7: Updating the WikiTrust rating when the

user rates the page.

Set article rating

Is there a WikiTrust
rating in the trust

profile?

No

Update WikiTrust
category for rating

Yes

Exit method

Use already existing
functionality

Update WikiTrust
rating category

Figure 7: Updating the WikiTrust rating when the user rates the page

Notice that assigning this category to a WikiTrust rating does not affect other users,

as the WikiTrust rating being edited is personal and located in the user’s trust profile.

26 Analysis

3.1. Necessary System Architecture Changes

As illustrated in State of the Art, WRS faces several problems pointing to design

changes.

The most important change is the location of the user ratings. After moving from the

article page to user pages, the current approach of using Wikipedia as a central

repository seems an impossible scenario. We will therefore look at other options for

moving away from Wikipedia towards a central location for the ratings, even at the

cost of having to maintain another online system. This change is mandatory as the
current implementation does not work anymore.

Another change is the usage of Scone Proxy. The use of this framework slows down

web browsing as all the content is bridged through Scone Proxy. Scone Proxy also

has a series of restrictions which point to the fact that it might not be appropriate for a

normal user. It conflicts with popular software as Skype and WAMP (Windows

Apache MySQL PHP) Server. Another weakness of the Scone Proxy is that it doesn’t

follow the no-cache command in HTML and it caches pages. This means the user

will have to pay attention to the output from the Scone Proxy Command Window and

empty the cache manually, a task most users do not want to repeat whenever they

return to a page they visited before. The last argument against using Scone Proxy is

the installation of WRS. Even if the installation steps have been reduced over time,

installing WRS is not an easy task as it requires some specific steps to be performed

by the user in order to set up Scone Proxy. While this change is not mandatory, it will

contribute to the development of WRS in the long run and will set the ground for wide

distribution and usage of WRS.

The last motivation for change is the lack of advanced debugging provided by

modern IDEs. The current implementation of WRS makes it hard to debug. As

pointed out by (Pilkauskas, 2010) the limited way to debug the code is by dumping

messages to either the console or log files or by a similar technique. The system

does not benefit from the modern IDEs debugging tools which will otherwise enable a

faster speed of development. Improving the debugging options while making the

other changes will accelerate the current and future development. This change is

optional, but highly necessary in the author’s opinion.

After analysing the current state of the project which dictates several design changes

(and keeping in mind the big goal of the thesis of solving the cold start problem) the

following approach has been suggested:

Necessary System Architecture Changes 27

Server Services

In order to get rid of Scone Proxy, the current functionality can be implemented as a

service running on a server that exposes specific methods through web services. The

goal is to keep the core of WRS unchanged and adapt it to fit the new architecture.

Having these services will significantly reduce WRS installation complexity and it will

change the distribution method, as such services can be used across platforms with

virtually no limitations.

Independent Storage for Ratings

As the article ratings can no longer be kept on Wikipedia user pages, we have to

move them to an independent location, accessible by the new WRS services. The

server that holds these WRS services is a good candidate for this purpose as we can

use it with no restrictions.

Currently, the ratings are being kept in plaintext in the user pages, and moving them

to our own server would mean saving them in simple text files. Performing the

supported operations (read, write) would translate to handling files on the server’s file

system. While these operations can be implemented, we have to be aware that their

number, as well as their size, will be expanding consistently, along with the usage of

WRS. In order to simplify things and focus on the main goal of this project, we turn

our attention to already existing technologies for handling this scenario. We will
therefore use a relational database, where all the needed operations are

implemented and ready to be used with no or little extra work. Furthermore, the

relational databases have already implemented mechanisms for fast lookup and

transactional operations that we can take advantage of.

Browser Extension for Client Interaction

As all the complex operations will be executed by the server services, we can

develop a lightweight client to access them. The client will have to be able to call web

methods (exposed by the server services) and support a basic client interaction.

These requirements, as well as the need of a simple and easy-to-distribute

application, point towards implementing the WRS client as a browser extension.

Ultimately, publishing this browser extension in an online marketplace as a free
download will make it ideal for wide distribution and usage.

The current feedback could be improved as it is too intrusive, distracting the user

from browsing. An interface where the article rating is presented without distracting

the user from browsing, and displaying the feedback interface only on demand would

be preferred to the existing one.

28 Analysis

In the process of implementing this new browser extension, several improvements
will have to be applied to the existing WRS Feedback interface in order to fix some of

the problems it has in terms of user interaction. More specifically, the new interface

should be less intrusive, more intuitive and optionally more esthetically appealing.

This is an optional change, but it can contribute to a better user experience, which

leads to attracting more users and keeping the existing ones.

An overview of the new proposed architecture can be observed in Figure 8: New

WRS Architecture.

Local machineLocal machine

Wikipedia

Web Browser

http://en.wikipedia.org/wiki/Barack_Obama

Internet

ServerServer

WikiTrust

Services Database

WRS

Figure 8: New WRS Architecture

Notice that we want to preserve the current core functions of the WRS (the ones that

are dealing with trust management, trust dynamics etc.) and change only the

adjacent components.

Implementing all these changes represent a major swift in the current WRS
architecture. A much detailed plan for performing these changes is presented in
Design, while in Implementation we take a closer look at the specifics of

implementing the changes.

Summary 29

3.2. Summary

In this chapter we have discussed some of the mechanisms WikiTrust is using for

building an article rating, which can be perceived as a reputation as it is the result of

authors assigning trust in each other’s contributions through their own revisions. We

have also looked at the differences between WikiTrust and WRS and how they can

be changed in order for the two systems to work together.

In the second part of the chapter we have presented several architecture changes

that will be implemented before the cold start problem can be addressed.

Chapter 4

4. Design

In this chapter we will discuss the new design of the system that is supposed to repair

the issues we have found and accommodate the new changes needed in order to fix

the cold start problem. Compared with the previous system, the new design that we

are discussing represents a big change and a chance to address other problems that

have not been stated in the goals of the project.

In this chapter we will have a detailed description of each core component of the new

WRS.

4.1. Server Services

One of the most important changes in the current design is the location of the

services performing the core functions of WRS. The previous design was running

WRS on user’s local machine in a decentralized manner. The new approach that we

are taking is moving all the functions that were previously running on user’s computer

32 Design

and move them to an independent server. There are several reasons for doing so,
which have been stated in Analysis.

These services will perform all the heavy work of WRS, exposing as output only the

results of the internal calculations. These services will be triggered by the users,

through web services calls.

The web services will expose the following functionalities:

 Retrieve an article rating given the identity of the user.

 Allow a user to rate an article.

 Create a user account.

Internally, these services will inherit the functions from the old WRS system including

handling the ratings and updating the trust profiles.

All the user data necessary for the system to function will be hosted on the same

server, in the WRS database. The system will interact with both Wikipedia and

WikiTrust in order to retrieve additional information needed for the cold start problem

solution.

Scalability

The server services will be implemented in such a way as to easily enable future

contributions. The idea is to create a scalable system, where developers can create

modules for the operations currently supported. These modules will be detected and

used without having to recompile or redeploy the services.

Therefore, the system will implement a plugin architecture, allowing additional

modules to be developed, incorporated and executed at runtime. By using Java

Reflection
23

 these new modules will automatically be found by scanning the plugin

directory and executed if needed.

The client using the server services will be responsible for specifying a plugin

identifier on each method call, to help the server pick from the available modules able

to execute a specific operation. If the client does not specify a plugin identifier, a

default plugin (which we will implement) will be used. The default plugin will reuse the

existing WRS functionality and will make the appropriate WikiTrust calls in order to

handle the cold start problem.

23
 http://java.sun.com/developer/technicalArticles/ALT/Reflection/

http://java.sun.com/developer/technicalArticles/ALT/Reflection/

Database 33

4.2. Database

The key role of the database is to replace the Wikipedia user pages that have been

used to store article ratings. The previous implementation kept these ratings in

plaintext; therefore an additional parsing step is needed after reading them.

The easiest way to change the location of the ratings would have been to simply save

the ratings to files on the server’s file system in the same format. However, a better

way to store the ratings would be in a relational database, which has obvious

advantages over simple text files, the main important of which being strong typing
(requiring no addition parsing after reading the data). Additionally, as a way of making

the system more robust, the categories used for ratings will be moved into a

database table, linked with the ratings table.

Our new approach relies on separate user accounts that are different from Wikipedia

user accounts. The main reason for that is for ensuring privacy and data integrity.

The user credentials will be kept in the database as well.

The database will also contain the (previously local) web of trust files. Each user has

a web of trust file which is a basic serialization of the classes containing the data

needed for calculating his trust values. Without changing much of the serialization,

the location of that file will be moved in the database and linked with the user’s table.

4.3. Browser Extension

Having a lightweight browser extension for WRS has been a goal starting since it

early stages (Korsgaard, 2007). At that time, the development of such an extension

was considered unfeasible mainly because it implied using specific programming

languages, namely C++ or JavaScript which were inappropriate for accomplishing the
tasks the old WRS system was performing.

In the context of the new architecture, the requirements for such an extension have

changed, as all the heavy operations are done on a server.

Developing a browser has become possible and it has been chosen for reaching a

larger audience and for providing an easy installation and little impact on the user’s

machine. Having a larger number of active users can also be the starting point of

important collecting data for monitoring the way the system behaves and whether it

lives up to the expectation.

34 Design

The browser extension will take over the graphical user interface that was previously
displayed to the user and will be the component responsible for invoking the server

services through web services.

The browser extension will have the following features:

 Deliver minimum impact for the users while they are not browsing Wikipedia.
 Provide essential information when displaying a rating for a Wikipedia article in

a less intrusive way than the previous WRS Feedback Interface.
 Allow the user to rate the currently viewed Wikipedia article.
 Allow the user to create accounts.

The browser extension will also have to take care of the user session management
and perform all the communication with server services in a secure manner.

4.4. Security

The previous implementation, while having some security issues, relied on the

security of the user’s local machine as most of the sensitive data was handled only

locally. However, with the new design we are suggesting, sensitive information will be

handled both on the local machine as well as on the services server.

For the sake of simplicity and due to time constraints, the security model we will be

using relies on the following assumptions:

 The client’s browser is a secure environment and can handle sensitive data.

 The server which hosts the services is a secure environment.

Therefore, what we need to worry about is the communication channel. As a normal
http connection when calling the web services could obviously be attacked, we have

chosen to rely on the security of a secure https connection. As a consequence, our

server will have to provide the means for establishing such a connection.

At the same time, as we mentioned before in Database, we choose to manage

separate user accounts, different from the Wikipedia ones. The reason is that the

user validation happens on the server, and by sending the user credentials to the

server, if our server is corrupted it could reveal the user’s Wikipedia credentials. By

using the suggested separate user accounts, a corrupted server could at most modify

or destroy the data used by WRS. In our opinion, this scenario causes less damage

than potentially compromising one’s Wikipedia account. We therefore have chosen to

have a separate user management for your system.

Summary 35

When moving the WRS functionality onto the server we lose the privacy of user
machines where the personal information has been kept. Even if we plan to use the

same database for multiple purposes (public ratings, user management and personal

trust profiles) access to these resources will be granted only to authenticated users

and the data will only be accessible through the WRS web services. Therefore, no

direct access will be provided to the WRS database.

4.5. Summary

In this chapter we continued the discussion we started in the Analysis with an in-

depth look of the new WRS components. We set various requirements to be followed

when implementing the system as a way to ensure the end result of these

components working together meet the stated goals.

Chapter 5

5. Implementation

The existing WRS uses Java and other Java-related technologies to accomplish its

goals. As we want to reuse as much code as possible, our new approach will have to

be built in Java as well. The unneeded code will be eliminated while the code

corresponding to the client side of the application will be rewritten in JavaScript.

5.1. Server Services

Several factors were considered when choosing the right approach to develop the

server services. We had to accommodate the following requirements for the server
services:

1. Interact with the database for data retrieval and manipulation.

2. Interact with external systems by using web clients.

3. Provide a convenient way for the browser extension to access the core WRS

functionality.

38 Implementation

By using a standard Java Web Application we could easily satisfy both 1 by using
Java Persistence API

24
 and 2 by using standard Java web clients. However, the

Java Web Application only provides capabilities for creating standard web services.

As we stated before, the browser extension will be interacting with these web

services, therefore we want to avoid having to deal will the complex envelope design

of the web service parameters and responses. We want to make the communication

between any client and these services as easy as possible. Therefore, in order to
satisfy 3, we decided to use a special kind of web project, a Maven Web Application,

which can use JSON
25

 as a data format for web services communication.

JSON (JavaScript Object Notation) is a lightweight data format, similar to XML, which

is the preferred way of data exchange on the web for scripting and lightweight

programming languages. As we plan to use JavaScript for developing the Browser

Extension, JSON data format is the perfect fit for client-server communication. An
example of data representation using JSON can be observed in Code snippet 1:

JSON example.

{"extensions": {

 "id": "wrs",

 "name": "WRS Chrome Extension",

 "UI": {

 "pages": [

 {"title": "feedback", "width": "200"},

 {"title": "options", "width": "220"}

]

 }

}}

Code snippet 1: JSON example

Our services will run on Glassfish Application Server
26

, which is one of the obvious

ways of hosting Java web services.

Entry Point

The place to start when analysing the server services is the processRequest

method in WRSResource of the wrs.web.resources package. The signature of

24
 http://www.oracle.com/technetwork/articles/javaee/jpa-137156.html

25
 http://www.json.org/

26
 http://glassfish.java.net/

http://www.oracle.com/technetwork/articles/javaee/jpa-137156.html
http://www.json.org/
http://glassfish.java.net/

Server Services 39

the method and the class can be seen in Code snippet 2: processRequest method
signature. The method attributes are instructing the webserver to pass the get

requests it receives when accessing the /wrs/ path to this method. You can also

observe the attributes that instruct the server to produce JSON responses.

@Path("/wrs/")

public class WRSResource {

 @GET

 @Produces(MediaType.APPLICATION_JSON)

 public GenericResponse processRequest(…

Code snippet 2: processRequest method signature

After interpreting the input parameters, this method will call other functions depending

on the method input variable. Several methods are currently supported:

 createUser creates an user account given an username and a password.

e.g.

/method=createUser&username=mihai&password=somePassword

 login checks if the provided username and password are valid.

e.g. /method=login&username=mihai&password=somePassword

 getCategories returns the categories stored in the database. e.g.

/method=getCategories

 getRating gets the rating of an article given the article URL and valid

credentials. The returned response contains the rating value, the rating

category and the percentage estimation of the rating category.

e.g. a method call like:

/method=getRating&username=mihai&password=somePassword&pa

geUrl=http://en.wikipedia.org/wiki/Obama

can receive a response like
{"result":"success","rating":"7","categoryRatingPercentag

e":"90,00", "category":"2"}

 setRating adds a new rating for the specified article given valid credentials,

the article URL, rating value and rating category.

e.g.
/wrs?method=setRating&username=mihai&password=somePasswor

d&experience=true&rating=9&categoryRating=3&pageUrl=http:

//en.wikipedia.org/wiki

40 Implementation

Plugin Architecture

After deciding which method to call, the system looks at all the classes in a specific
package that implement a specific interface (see Code snippet 3: IResponseBuilder

interface). Based on an optional parameter impl, one of these classes will be

selected for building the response message.

public interface IResponseBuilder {

 public int GetImplementationId();

 public RatingResponse GetRating(String pageUrl,String

username);

 public GenericResponse SetRating(String pageUrl,int

rating,int categoryId,boolean experience,String username);

}

Code snippet 3: IResponseBuilder interface

One important thing to notice is that the package is scanned at runtime by using Java
Reflection (as illustrated in Code snippet 4: loadClassesFromExternalPackage

method), therefore additional implementations can be added to the running system

without recompiling or redeploying it.

public Class[] loadClassesFromExternalPackage() throws

IOException, ClassNotFoundException {

 ClassLoader classLoader =

Thread.currentThread().getContextClassLoader();

 assert classLoader != null;

 String packageName = "wrs.web.external";

 String path = packageName.replace('.', '/');

 Enumeration<URL> resources =

classLoader.getResources(path);

 List<File> dirs = new ArrayList<File>();

 while (resources.hasMoreElements()) {

 URL resource = resources.nextElement();

 dirs.add(new File(resource.getFile()));

 }

 ArrayList<Class> classes = new ArrayList<Class>();

 for (File directory : dirs) {

 classes.addAll(findClasses(directory,

packageName));

 }

 return classes.toArray(new Class[classes.size()]);

 }

Server Services 41

 private static List<Class> findClasses(File directory,

String packageName) throws ClassNotFoundException {

 List<Class> classes = new ArrayList<Class>();

 if (!directory.exists()) {

 return classes;

 }

 File[] files = directory.listFiles();

 for (File file : files) {

 if (file.isDirectory()) {

 assert !file.getName().contains(".");

 classes.addAll(findClasses(file, packageName +

"." + file.getName()));

 } else if (file.getName().endsWith(".class")) {

classes.add(Class.forName(packageName + '.' +

file.getName().substring(0, file.getName().length() -

6)));//removes .class suffix

 }

 }

 return classes;

 }

Code snippet 4: loadClassesFromExternalPackage method

A Default Implementation

For the purpose of this thesis, a default implementation was developed for the plugin

architecture, which provides the getRating and setRating functionalities using

the proposed cold start problem solution.

These methods reuse some of the old code, adding on top the implementation for

getting the WikiTrust rating when no rating is available in the system.

For improving the performance of the system, we update, in the setRating method,

the WikiTrust rating category as illustrated in Code snippet 5: ModifyWikitrustRating

method to the user rating category.

private void ModifyWikitrustRating(String pageUrl, int

categoryId) {

 Rating previousWikitrustRating =

webOfTrust.getRatingOfUserForPage(WikiTrustName, pageUrl);

 if (previousWikitrustRating != null) {

 previousWikitrustRating.setCategory(categoryId);

42 Implementation

webOfTrust.insertNewRatingOfUserForPage(WikiTrustName, pageUrl,

previousWikitrustRating);

 }

 }

Code snippet 5: ModifyWikitrustRating method

Even if in the current implementation this step does not have any impact over the

calculated value, (as WikiTrust rating is used only when no other ratings are

available), keeping the WikiTrust rating in the user’s trust profile and updating its

category could be used in the future by other techniques that can be built on top of

the current system to improve the cold start problem solution.

Data Access Layer

The classes in the package wrs.web.dal and wrs.web.dal.tables are used

for interacting with database entities. For avoiding confusions with the previous terms
used in the code the suffix Table has been added to the database entities and the
class names have been capitalized. The mappings are presented in Table 1: Entity

mapping in wrs.web.dal.tables.

SQL Table Name Web Application Entity Name

rating RatingTable

user UserTable

category CategoryTable

weboftrust WeboftrustTable

Table 1: Entity mapping in wrs.web.dal.tables

DatabaseInteraction.java in wrs.web.dal provides methods for directly

interacting with database entities to create, read, update and delete operations.

DatabaseHelpers.java in wrs.web.dal contains methods with auxiliary

database functions. These methods typically use one or more methods from

DatabaseInteraction.java for performing a more complex operation useful to

WRS.

Server Services 43

Trust Management

After being refactored for a better readability of the code, several classes from the old

WRS implementation have been moved to wrs.web.trust and wrs.web.rating

and distributed as follows

wrs.web.trust

 Reviewer.java

 TrustUpdater.java

 WoT.java

wrs.web.rating

 InteractionData.java

 InteractionHistory.java

 Rating.java

 RatingCalculator.java

 RatingHistory.java

 SessionRatingDB.java

These classes represent the main legacy from old implementation and their

functionality has been maintained, with little changes.

One important change is in the WoT.java file. This file indirectly contains a reference

to InteractionData class which has been modified from simply being an array

wrapper to being a class containing appropriate fields and accessors. Because in the

WRS implementation WoT.java is being serialized in order to store trust profiles,

the changes that have been made are incompatible with older versions of class

serializations. Typically, this situation should have been avoided, but given the fact

that the code was hard to understand and the system was not used on a large scale,

the changes have been adopted.

Helpers

Various static methods that are used in the project independently have been grouped

in wrs.web.helpers package. This package contains methods for interacting with

Wikipedia and WikiTrust, JSON and XML operations, as well as security and logging

operations.

44 Implementation

All needed Wikipedia operations have been moved into a single static class. These
operations have been implemented using the latest MediaWiki

27
 API. The following

methods have been created:

 ArrayList<Integer> GetLatestRevisions(String pageUrl, int

revisionsCount) returns the descending list of revisions given a pare

URL.

 int GetPageId(String pageUrl) returns the ID of a page given its

URL

 String GetSanitizedArticleName(String articleName) returns

the name of the displayed article given an article name. This method is being
used mainly for dealing with page redirects as it returns the actual article the

user sees, which might be different than the one the address references.

WikiTrust offers a series of methods through its API; however we were only

interested and have implemented a method for getting the trust value of the latest

revision of the document:

 getPageTrust (String articleUrl) calls the Text Origin and Trust

WikiTrust API in order to get a special representation where each word has a

trust value associated. It uses the Wikipedia helper methods in order to

provide specific parameters to the call and it then calculates the weighted
document trust value which is used for fixing the cold start problem.

Dealing with Page Redirects

During development, certain scenarios have been found when WRS was not able to

return a rating by using WikiTrust. The cause has been identified as being the way in

which we used MediaWiki API and WikiTrust API for retrieving a rating.

Visiting the page on Necessary and sufficient condition at

http://en.wikipedia.org/wiki/Necessary_and_sufficient_conditions (Notice the extra s

at the end of the URL address) our extension uses MediaWiki API in order to retrieve

the latest revisions. The article title used in the call is taken from the URL address,
namely Necessary_and_sufficient_conditions. When doing so, only a three year old

revision is received along with a comment saying the article was moved from
Necessary and sufficient conditions to Necessary and sufficient condition. Attempting

to use WikiTrust API for retrieving the page rating, using the provided revision, fails;

27
 http://www.mediawiki.org/wiki/MediaWiki MediaWiki is a PHP-based platform best

known for being used by Wikipedia.

http://www.mediawiki.org/wiki/MediaWiki

Server Services 45

therefore, we end up in a scenario with no rating for the page, caused by the page
redirect feature Wikipedia uses

28
.

In order to fix this problem we have used another MediaWiki API call, that, when

given an article name, it returns the redirected article, then one being displayed to the

user.

Calling this method, it has therefore given us the correct article name and we have

been able to retrieve recent revisions for which WikiTrust provided a rating.

Refactoring

The reused code from the previous system had to be refactored in order to make

possible its understanding and its future development. A great deal of code was

obscure and hard to understand, therefore hard to build upon. Therefore, as a first

step, the existing code had to be refactored in order to ensure an implementation as

close as possible to the initial one. The main focus was to build appropriate classes

to replace the array wrappers classes used throughout the project and to make the

code more understandable.

Unused Code

Multiple source code files containing unused functionality have been moved to

wrs.web.obsolete package. This package also contains classes that are

referenced in other classes, but not by any used ones. Their functionality has been

therefore disconnected from the project, hence the decision of moving them to this

package.

Other files that have been moved in this package are the ones mentioned by previous

authors, but whose’ functionality is no longer used in the project. We have not been

able to track why or when these files stopped being used, and they have been simply

ignored and moved to this package due to the complexity of analysing and integrating

them into the new system.

28
 http://en.wikipedia.org/wiki/Wikipedia:Redirect

http://en.wikipedia.org/wiki/Wikipedia:Redirect

46 Implementation

5.2. Database

A MySQL database containing four tables has been built in order to provide storage

for all persistent data WRS uses:

 The rating table has replaced the old user pages where article ratings were

stored. Notice the column PageUrl which represents the article URL. E.g. all

ratings of article http://en.wikipedia.org/wiki/Winter which were

before kept at
http://en.wikipedia.org/wiki/User:Recommendations/Winter

will now be placed in this table having

http://en.wikipedia.org/wiki/Winter for PageUrl column.

 The category table is used to represent the WRS categories in the database.
The rating table is linked to this table in order to associate a rating with a

category.

 The weboftrust table stores the serialized user trust profile. The previous

serialization functionality is kept, only the location of the data has been

changed from the user’s local machine file system, to the server’s database.

 The user table contains the user credentials used for authentication. This

table is linked with the rating table and weboftrust table.

The database schema can be observed in Figure 9: Database schema.

Browser Extension 47

Figure 9: Database schema

5.3. Browser Extension

For implementing the browser extension, several popular browsers could have been

chosen, as most of them provide an intuitive way of building extensions.

Because of the abundance of learning material and because it provides the needed

functionality, the browser we have chosen is Google Chrome.

Google Chrome offers an easy framework for building extensions. Some of the

features we have used while implementing the WRS Browser Extension are:

 Low impact on the navigation when the user is not viewing a Wikipedia
article: we have chosen to implement the extension as a page action (the

extension is accessible through a contextual icon placed on the navigation
bar when visiting targeted websites) over a browser action (the extension is

48 Implementation

accessible through an icon placed on the browser toolbar that is always
visible). We therefore have no impact when the user is visiting other pages
different than Wikipedia as can be seen in Figure 10: WRS Extension when

visiting Wikipedia or a different page.

Figure 10: WRS Extension when visiting Wikipedia or a different page

 A notification system that is not intrusive and can display essential WRS
information: we used the Chrome notification system that can display

notification in the lower right corner of the screen. We show the notifications

asynchronously, without any impact on Wikipedia page being loaded, and of

course, only on relevant pages that belong to Wikipedia. An example of WRS
Browser Extension notification can be seen in Figure 11: WRS Browser

Extension notification. Any notification is closed automatically after 15

seconds and they can be turned off altogether from the options page.

Figure 11: WRS Browser Extension notification

 A popup window available on demand used for rating articles: when the user

wants to rate the page he has to click on the navigation bar icon in order to

open a popup window. Even if with this approach the user has to remember

to rate the article in case he wants to, we think it is a better approach than

displaying the window that allows rating at all times which blocks the

navigation. The popup is only displayed when requested and disappears as

soon as the user clicks anywhere else on the page. An example of popup
window is shown in Figure 12: WRS Extension popup window.

Browser Extension 49

Figure 12: WRS Extension popup window

 A configuration page: Google Chrome allows an options page to be specified

for extensions where the user can setup various parameters. Currently WRS

Browser Extension is using the configuration page for multiple purposes

among which:

o Creating an user account

o Authenticating an existing user

o Turning on and off the article rating notifications

The WRS Extensions can make a successful rating retrieval for an article only after
the user is logged in. The extension keeps the user credentials in the localStorage

variables and transmits them over a secure https channel. We therefore rely on the

50 Implementation

browser’s localStorage security which is acceptable as we have assumed from the

start the user’s local machine is a secure environment.

The extension has several components used to achieve the current behaviour:

 A background page is loaded when the browser starts. This page is used for

deciding if a visited page is a valid Wikipedia article, therefore initializing an

asynchronous call to the server services for retrieving the rating of the article
(the getRating server method).

 A popup page displays the article rating and provides an interface for rating.

This page therefore calls both the getRating and setRating server methods.

The page can be opened by clicking on the extension icon in the navigation

bar.

 An options page is used for logging in, creating a user account and changing

the notification options. A screenshot of the notification page can be seen in
Figure 13: WRS Browser Extension options page.

Browser Extension 51

Figure 13: WRS Browser Extension options page

An interesting aspect of the built Browser Extension is the fact that all methods it

invokes for interacting with the server services are cross domain calls. Typically,

browsers do not allow this kind of client calls because of the potential security risks,

but in the case of extension, Google Chrome provides a mechanism for bypassing
this security measure. Extensions can specify a list of external domain list for which

all the cross domain calls will be successful. These domains are presented to the

user when he installs the extension. WRS Chrome extension asks for permission to
communicate with vmwrs.imm.dtu.dk, the location of the web server hosting the WRS

server services.

While the current WRS Extension relies on some specific Google Chrome features, it

is our belief that it can easily be migrated to other browsers, especially to Mozilla
Firefox because of the limited number of operation and the common programming

language (JavaScript) used.

Publishing the Extension to Chrome Web Store

The next step of truly taking advantage of the browser extension development has

been to publish it over the internet in a public location so that it can easily be installed

and used.

Google Chrome has a large marketplace called Chrome Web Store that offers

various browser extensions, themes, and applications that can be used inside the
browser. The developed extension has been published in this online marketplace.

The current implementation of the WRS Chrome extension can be downloaded for

free from the Chrome Web Store
29

.

Current Limitations and Workarounds

In order the use https secure communication, the user of the extension has to accept

the default Glassfish self-signed certificate of the server hosting the WRS services.
However, because of the manual steps involved (described in detail in Accepting the
Self-signed Glassfish Certificate), the published Chrome Extension uses the

unencrypted http communication.

29
 Wikipedia Recommender System - Chrome Web Store

https://chrome.google.com/webstore/detail/dlbpjdiahnhhokdbanadnhgjfoiojdmb

https://chrome.google.com/webstore/detail/dlbpjdiahnhhokdbanadnhgjfoiojdmb

52 Implementation

This workaround can easily be changed by purchasing a paid SSL certificate for the
server that requires no further manual steps in order to be accepted by the browser.

However, because of the academic nature of this project the default self-signed

Glassfish certificate has been used. The decision of using an unsecure channel for

communication was based on the need to simplify the usage of the WRS Chrome

Extension and to spare potential users the trouble of manually installing the self-

signed certificate.

5.4. Summary

In the current chapter we described the specifics of implementing the cold start

problem solution while changing the system’s architecture. We presented the details

of multiple core components of the system as the Database, the Server Services and

most importantly, the WRS Google Chrome Extension.

The Database has been introduced to replace the previous approach which kept the

WRS data on the Wikipedia user pages. It consists of four tables created using

MySQL database engine.

The Server Services have been built as a Maven Java Web Application and they

represent the core of the WRS. The project uses Java Persistence API to interact

with the Database. The Web Application also provides a way for clients to interact
with WRS through web services.

The Google Chrome Extension was developed and published in the Chrome Web

Store as a way to easily distribute WRS. This browser extension uses the publicly

exposed Server Services methods to access the core functionality of WRS.

Chapter 6

6. Evaluation

The goal of this thesis is to fix the cold start problem in the WRS by using a content

based filtering system. While making the changes for accomplishing this goal we

have faced problems in storing the data used by the system on the Wikipedia user

pages. Because of that, we had to redesign the system in order to address these

challenges while still aiming to accomplish our goal of fixing the cold start problem.

As a solution, we have moved both the core services and the rating storage on a

separate server that can be used with no restrictions.

In this chapter we will look at some of the benefits that we have gained by changing

the WRS architecture and implementing the cold start problem solution based on

WikiTrust.

6.1. Contributions

In this section we will enumerate the achievements of the current project followed by

a more in-depth discussion about each of them. The results of the current project are:

54 Evaluation

 A working WRS in the context of the changed Wikipedia policies.

 A working solution for the cold start problem in WRS.

 A working browser extension that enables easy installation and usage and

large distribution of WRS.

6.2. Centralized versus Decentralized

The obvious change introduced by the new system design is the location of the core
functionality of WRS. The previously version of WRS was a decentralized system

meaning that each user was responsible for doing his own calculation and the data

used by the project was stored locally. Only the common data that can be seen by

everybody was kept in a central location i.e., the Wikipedia user pages. This

approach had several advantages:

 Scalability: the individual calculations were performed on user’s machine

therefore allowing a multitude of users to be able to run the system at the

same time with virtually no performance penalty.

 User data security: the individual data was always kept on the user’s local

machine, which is considered a safe environment. Keeping the WRS trust

values private is obviously important.

On the other hand, the system encountered some problems like:

 Application size and lack of an automatic installer: the application was hard to

install even for an advanced PC user and its core components conflicted with

popular software mostly likely to exist on users machines. At the same time,
for using the system, several changes had to be made to the browser

configuration each time the user was switching the system on and off.

 Distribution: the application was hard to distribute and had a limited number

of users because of that.

The current implementation has moved the core of WRS from the user’s machine to a

separate server. Hence the system is a centralized one. The old system strengths are
now the new system’s weaknesses:

 Scalability: as it gains more users, the system will be slowed down as it has

to serve multiple requests. Nowadays, there are multiple ways to cope with

this problem, but for the purpose of this thesis we have not looked at

improving this aspect. We just acknowledge the fact that it will become a
problem when the number of users increases.

Performance 55

 User data security: In the current implementation we keep the user data on

the server, an environment that we consider secure, but which has not been

completely analysed for security flaws. One measure that we have taken in

this regard was to move away from using Wikipedia credentials to a separate

user management system. This way, if the data is being breached, we are at

least sure that data it is only relevant to WRS and not to any other system.

The new system’s advantages are the following:

 Application size: The client side WRS application has a negligible size (under

50 KB) and does not conflict with any other software (as it is a browser

extension). The steps involved in installing it are straightforward and are easy

to perform even for a beginner user. In the current implementation, we do

require one extra step for secure communication (accepting an SSL server
certificate), that is a direct consequence of the academical nature of this

project. However, the published extension uses unencrypted communication

therefore no additional steps are required.

 Distribution: The current WRS Extension can be distributed using Chrome

Web Store, potentially reaching more than 20% of the internet users
30

. The

results of the current project have culminated with the developed Google

Chrome Extension being published in the Chrome Web Store. The extension
can be found in the Productivity category of the Extension section and can be

downloaded
31

 and used for free.

While both architectures have advantages and disadvantages, in the current

implementation we had to choose the centralized approach in order to satisfy the new

Wikipedia policies that have been blocking the functionality of the old WRS system.

6.3. Performance

Because of the design change, a comparison between the two systems (the old

implementation and the current one) is not entirely appropriate. However we must

mention the performance recorded by Korsgaard (Korsgaard, 2007), Lefevre
(Lefevre, 2009) and Pilkauskas (Pilkauskas, 2010). The old implementation of WRS

30
 According to http://statcounter.com/ Google Chrome exceeded the 20% global

market share of Internet browsers in June 2011
31

 Wikipedia Recommender System - Chrome Web Store
https://chrome.google.com/webstore/detail/dlbpjdiahnhhokdbanadnhgjfoiojdmb

http://statcounter.com/
https://chrome.google.com/webstore/detail/dlbpjdiahnhhokdbanadnhgjfoiojdmb

56 Evaluation

took anywhere from couple of seconds to more than a minute for displaying a rating
during which time the navigation was blocked.

In the current implementation, the rating for a page is requested from the server

asynchronously without stopping or slowing down the user navigation. When the

rating is received it is displayed as a desktop notification. We can therefore say the

WRS Extension has zero impact on the browser navigation. An important aspect to

remember is that we are not using the Scone Proxy anymore. Therefore we

eliminated any additional overhead that has been caused by its usage.

Retrieving the ratings from WikiTrust has been tracked during the experiments we
present in Cold Start Problem. For 300 articles the average retrieval time was found

to be 2.62 seconds while the median was 2.40 seconds. This duration refers only to

the WikiTrust call and does not count the additional time spent on text manipulation,

which is ignorable (bellow two milliseconds).

6.4. Cold Start Problem

The current goal of the thesis has been achieved, as currently the system uses

WikiTrust ratings when it cannot calculate a trust value due to inexistent trust profiles.

This solution has been implemented in the following way:

 When the user visits a page he has never visited before, he receives a
WikiTrust rating which is not assigned with any category, as seen in Figure

14: WikiTrust rating used in WRS.

 When the user rates a page, the WikiTrust rating is updated to the category
the user selected for his rating. If the user revisits the page he will see the
WikiTrust rating and the category he selected Figure 15: WikiTrust rating

associated with user's category. Notice that the user rating does not influence

the WikiTrust rating, and it is not considered when calculating the trust value

for the article. This functionality has been inherited from the old WRS

implementation.

An important thing to notice is that currently the WikiTrust ratings are kept in the

user’s trust profile; therefore, other users cannot access it or use it directly.

Cold Start Problem 57

Figure 14: WikiTrust rating used in WRS

Figure 15: WikiTrust rating associated with user's category

58 Evaluation

For analysing the behaviour of the WRS module that handles the cold start problem
we selected various types of articles. We expected these articles would show specific

rating patterns.

The purpose of the experiments was to analyse the results of the WikiTrust ratings for

known sets of articles. By observing those ratings and comparing them to the

expectations we can draw conclusions about the solution we use for the cold start

problem.

Featured Articles

The featured articles are considered by Wikipedia to have a comparable quality with
the academic ones. On top of that, such articles accept only minor changes. As

WikiTrust relies heavily on the age and stability of the changes, we were expecting

high ratings on average for this experiment.

However, we have acknowledged that there are situations when WikiTrust is not able

to retrieve an accurate rating for an article. Such a situation is encountered when

expert authors get a low WikiTrust reputation, due to the lack of previous

contributions. Articles written by such authors will most likely have an unfair low
WikiTrust rating.

The articles used in this experiment have manually been selected from the list of

featured articles on Wikipedia
32

. On this page, the articles are ordered alphabetically

in categories, which in turn, are ordered alphabetically as well. The articles have

been picked pseudo-randomly as we tried to have an equal distribution across the

whole article set and we have visited articles only once.

Figure 16: WikiTrust rating distribution for featured articles and Table 2: WikiTrust

rating distribution for featured articles show the results for visiting 100 featured

articles.

98% of all articles have an above average rating (of 6 or more on our [] scale) and

there are 0% articles with below average ratings. Furthermore, 76% of all articles
have a rating of 8, which denotes a very high quality.

What this means is that the featured articles have indeed a high quality, and that the
featured label, that Wikipedia gives to its best articles, indicates an above average

quality.

32
 http://en.wikipedia.org/wiki/Wikipedia:Featured_articles

http://en.wikipedia.org/wiki/Wikipedia:Featured_articles

Cold Start Problem 59

Figure 16: WikiTrust rating distribution for featured articles

Rating Number of articles Percentage

5 2 2.00%

6 5 5.00%

7 17 17.00%

8 76 76.00%

Total 100 100.00%

Table 2: WikiTrust rating distribution for featured articles

Poor Quality Articles

In this experiment we have handpicked various articles covering controversial, recent

or local articles that are most likely to contain subjective or wrong information.

The articles considered controversial and recent are subject to numerous changes,

which sometimes are made while the events take place. Such articles have been

60 Evaluation

included in this experiment as the sources used for creating them are often not
trustworthy (TV, radio) or biased (personal blogs).

The articles covering regional or local topics have few contributors, simply because

few people know about them. These authors might contribute to Wikipedia only

because they know something about the subject. Without support from the

community or contributions to other articles, their reputation will most likely remain

low. The articles they write will as well have a low quality.

Articles about new technologies and products might contain incomplete or wrong

information resulting in poor quality.

We have acknowledged, however, that the articles analysed in this experiment can

get wrong results (unfair low ratings or unmotivated high ratings) in the following

situations:

 Articles might receive low ratings from WikiTrust when they contain recent

changes and little information about the author. Over time, these articles

might prove to have a high quality, but WikiTrust is not able to correctly

estimate their quality shortly after they were written. This happens because

WikiTrust relies heavily on the age of the text when it has little or no

information about the author.

 Authors might build high reputation when their contributions are not

changed, due to the lack of contributors. Such authors can build reputation

over time and WikiTrust will incorrectly consider their contribution as having

high quality.

The articles chosen for this experiment cover the following topics:

 On-going events (35 unique articles)

o London riots (2011)

o Norway attacks (2011)

o Spanish protests (2011)

 Local/Regional topics from Denmark and Romania (47 unique articles)

 New technologies and products (18 unique articles)

The complete list of articles considered to have a poor quality can be found in
Appendix.

Figure 17: WikiTrust rating distribution for poor quality articles and Table 3: WikiTrust

rating distribution for poor quality articles summarize the results of visiting 100

supposedly low quality articles.

Cold Start Problem 61

Notice that 48% of all articles have an above average rating (of 6 or more) while 26%
of them have a below average rating (of 4 or less).

Notice that the rating distribution has changed: the featured articles experiment

results are spread across the [] range (with four steps) while the poor articles

experiment results are spread across a wider, [] range (with six steps).

Figure 17: WikiTrust rating distribution for poor quality articles

Rating Number of articles Percentage

2 3 3.00%

3 8 8.00%

4 15 15.00%

5 26 26.00%

6 27 27.00%

7 21 21.00%

Total 100 100.00%

Table 3: WikiTrust rating distribution for poor quality articles

62 Evaluation

Random Articles

The articles visited for this experiment have been chosen pseudo-randomly, by a

human operator. We have used several articles as starting points and then we have

followed various links in the articles to navigate to other Wikipedia articles.

We notice that 89% of articles have an above average rating (of 6 or more) while 7%

have a below average rating (of 4 or less).

The [] rating distribution range contains seven steps and is wider than the ones

presented in the previous experiments. This distribution resembles the featured

article distribution and shows high results on average.

Figure 18: WikiTrust rating distribution for random articles

Rating Number of articles Percentage

2 4 4.00%

3 1 1.00%

4 2 2.00%

5 4 4.00%

Cold Start Problem 63

6 11 11.00%

7 25 25.00%

8 53 53.00%

Total 100 100.00%

Table 4: WikiTrust rating distribution for random articles

Overall

The most important aspect of the experiments is the percentage of above average

and below average ratings. There is a noticeable difference between featured articles
and poor quality articles WikiTrust was able to detect and can be observed in (Table

5: Experiments summary). The random articles ratings are placed, as expected, in

between the featured and poor quality articles when looking at both below average

ratings and above average ratings.

Type of

articles

Below average rating

(4 or less)

Average rating

(5)

Above average

rating (6 or more)

Featured 0% 2% 98%

Poor quality 26% 26% 48%-

Random 7% 4% 89%

Table 5: Experiments summary

The small scale of the experiments we have performed and the various unknown (or

hard to verify) factors involved makes it hard to draw precise conclusions. However,

the fact that the results are the expected ones and that we have not got any

conflicting or wrong results, leads us to believe WikiTrust is a useful and insightful

tool for assessing the quality of Wikipedia articles based on their content.

Furthermore, based on the results, we consider the integration of WikiTrust into WRS

is a good choice for our goal of fixing the cold start problem.

Figure 19: WikiTrust rating distribution contains all the results for the various types of

articles visited.

64 Evaluation

Figure 19: WikiTrust rating distribution

Notice that the figure does not show any ratings of 1 or 9, which are the extreme

edges of the ratings range. Such examples were not found during the performed

experiments. While individual sequences have extreme trust values, the overall rating

for the article is averaged with all the other sequences, which most often contain

various trust values. Articles with extreme ratings of 1 or 9 are likely to exist, but were

simply not encountered during our experiments. As a solution, more experiments

could be performed in order to find such articles or the WikiTrust ratings range could

be adjusted to cover the WRS ratings range. However, in the current implementation,

we are just acknowledging this situation, which can be the subject of further

improvements.

6.5. UI & Other Improvements

One of the secondary goals of the project was to improve the WRS user experience.
The new user interface was based on the previous one (illustrated in Figure 20:

Previous WRS Feedback Interface), on top of which we added some modifications.

UI & Other Improvements 65

Figure 20: Previous WRS Feedback Interface

The new system improved the client interaction in several ways:

 It displays a small notification window (300 pixels wide, 80+ pixels in height,

depending on the length of the article title) containing essential information to

the bottom right of the screen, which can be closes at any time and

disappears after 15 seconds.

 It displays a popup window when clicking the WRS Extension icon on
navigation bar. This popup has a similar size as the previous Feedback

Interface, but it is only visible for the duration of the interaction, as it is being

closed when the user clicks anywhere else on the page. As a browser

extension, the new feedback mechanism integrates well with the pages and it

does not present any rendering problems.

 The placement of the rating buttons has been changed to a clean left to right

ascending order for a more intuitive way to rate an article.

The resulting feedback mechanism can be observed in Figure 21: New feedback

mechanism.

66 Evaluation

Figure 21: New feedback mechanism

From an installation and distribution perspective the system has improved radically.

Any internet user can now download the browser extension that has been
implemented and is available for free in the Chrome Web Store

33
. Finding the

extension can be done either by:

 Direct link

https://chrome.google.com/webstore/detail/dlbpjdiahnhhokdbanadnhgjfoiojdm

b

33
 https://chrome.google.com/webstore

https://chrome.google.com/webstore/detail/dlbpjdiahnhhokdbanadnhgjfoiojdmb
https://chrome.google.com/webstore/detail/dlbpjdiahnhhokdbanadnhgjfoiojdmb
https://chrome.google.com/webstore

Summary 67

 Searching for a relevant term, part or the whole name of the extension by
using the search functionality of the Chrome Store.

After finding the extension, the installation process only requires the user to confirm

the permissions the extension needs. Currently, two permissions are requested as

the extension needs to access browser tab information and the server hosting the

WRS services. Once the permissions requests are accepted the extension is ready to

be used, without even having to restart the browser.

Both of the presented methods for finding the extension and actually installing it

should take under one minute and should be able to be performed even by a

beginner PC user. From an installation and distribution perspective, we observe a

tremendous improvement compared with the previous versions of WRS. We think

that this aspect in particular will enable future work in analysing the benefits the WRS

brings in order to further improve its functionality.

Several tweaks could be implemented in order to make the WRS browser extension a

better productivity tool:

 Display the WikiTrust rating alongside the WRS rating, even after the cold
start problem is not present. This modification could increase the perceived

reliability by offering the two ratings, one content-based, the other one based

on personal preferences.

 Present the number of ratings used in the trust calculation. This feature could

increase user’s trust in the tool itself. Aside from the description about how

the tool works, the current implementation does not allow the regular user to

understand how the WRS rating was calculated. Displaying the users whose

ratings were considered by WRS (or even more, displaying the reason why

those users matter in the first place) could add to the credibility of the system.

These tweaks however have not been implemented due to time constraints.

6.6. Summary

In this chapter we have looked at various aspects of the WRS system after the
changes, needed to accomplish the goals set in Introduction, have been

implemented.

We have enumerated the changes between the old decentralized architecture and

the current centralized one.

68 Evaluation

We have looked at the performance improvements and we have acknowledged the
fact that they were mainly the desired consequence of the design change.

We have looked at the ways we addressed the Cold Start problem, the main goal of

the project.

Finally, we have enumerated other ways in which the WRS was improved including
numerous UI improvements and tweaks and the extension distribution using the

browser’s online marketplace.

Chapter 7

7. Conclusion

7.1. Wikipedia Recommender System

In this project we have addressed the cold start problem present in WRS. The

method chosen to achieve this goal was by using an external content-based filtering

system, namely WikiTrust, in those situations where no user ratings are available.

We have presented the state of WRS and we have stated the need for design

modifications due to the changes in Wikipedia policies, which were stopping us from

using Wikipedia user pages as a repository.

We have analysed WikiTrust as an argument for being used in WRS due to its

promising results.

We have enumerated the requirements for the new design of the system as a starting

point for implementing the system.

A new WRS has been built around a new architecture that transforms the system into

a centralized one. A browser extension has been implemented that accesses the

centralized services. This browser extension has been published in the browser
native marketplace, enabling easy installation and usage.

The evaluation of the new system has revealed several improvements in terms of

performance, usability and distribution.

The implemented fix for the cold start problem has proved to be working, providing a
rating for any article on Wikipedia. A set of tests have been performed in order to

70 Conclusion

have an overview of the WikiTrust ratings. The results were the expected ones,
therefore validating the idea of using WikiTrust in WRS in the first place.

7.2. Future Work

While accomplishing its goals, the current implementation has some areas that could

be further improved.

First of all, if used on a large scale, a valid SSL server certificate should be

purchased and the browser extension communication method changed to encrypted
https mode.

Currently, the data in the WRS database is only accessible by authenticated users

through our web services. Consuming these services, users can gain access to either

public information like article ratings as well as to their personal trust profile. For

ensuring privacy, a more advanced mechanism should be created for restricting

access to private data, especially in the prospect of a larger and widely used system.

The communication security could be improved as well, as it currently relies on other

systems’ security, as the browser and server. Appropriate cryptographic means

should be used in order to ensure the security of the system for the scenario where

the above mentioned systems are compromised.

The previous authors of WRS stated the need for heavy code refactoring (Lefevre,

2009) in order to eliminate unneeded code and to improve the readability and
scalability of the used one. In the current implementation this refactoring process has

been started, but it has to be continued in future versions. More specifically, the new

design implemented asks for data driven functionality opposite to various hard-coded

values used in previous versions. Additionally, some work still needs to be done into

transforming simple array wrappers classes into meaningful classes using fields and

accessors for readability purposes.

7.3. Future Research

WikiTrust has a powerful API which can reveal interesting results about articles,
authors and contributions. In the current project we have used Text Origin and Trust

API in order to retrieve the current page rating. However, there are other APIs that

Summary of Conclusions 71

can perform various operations, and an interesting one is providing a rating for an
author. This function can be accessed by calling:

http://en.collaborativetrust.com/WikiTrust/RemoteAPI?method=raw

quality&revid=123

It would be interesting to observe what contribution (if any) the author rating has

when using it to calculate article rating. Instead of using the trust value for the article

(the current implementation), WRS could use this indicator as either a starting point

for solving the cold start problem in a different way or for adding another dimension to

the rating weighting.

Given the current architecture we think that building such tools and analysing their

results is possible and can be used for bringing further improvements to WRS.

7.1. Summary of Conclusions

The project’s goal of fixing the cold start problem in WRS has been achieved by using

WikiTrust ratings.

In the process, WRS design had to be changed due to Wikipedia policies.

The outcome of this project is a working WRS system, with a working solution for the

cold start problem.

Furthermore, the project can now be used by installing a free browser extension
available in the Chrome Web Store.

Chapter 8

8. Appendix

8.1. Accepting the Self-signed Glassfish

Certificate

For using the secure https communication with the default self-signed Glassfish

certificate, the following manual steps have to be performed:

1. Navigate to the https address of the website hosting the WRS services by

using Internet Explorer. A Certificate Error message will be displayed,
presenting two options as illustrated in Figure 22: Certification error message

for Glassfish's self-signed certificate.

74 Appendix

Figure 22: Certification error message for Glassfish's self-signed certificate

2. Proceed to the website by selecting Continue to this website (not

recommended) option.

3. Click on the Certificate error icon on the browser’s navigation bar and then

click View certificates link at the bottom of the popup window (illustrated in

Figure 23: Certification error popup window).

Accepting the Self-signed Glassfish Certificate 75

Figure 23: Certification error popup window

4. In the Certificate information window that was opened click the Install

Certificate… button (Figure 24: Certificate information window). This action

will start the Certificate Import Wizard.

76 Appendix

Figure 24: Certificate information window

5. In the first step of the wizard select Next.

6. In the second step of the wizard select the Place all certificates in the

following store option and click the enabled Browse button. This action will

open the Select Certification Store window.

7. In the Select Certification Store window select Trusted Root Certification

Authorities node and click the OK button.

Examples of WikiTrust Ratings 77

8. Click the Next button to proceed to the third step of the wizard.
9. Finally click on the Finish button. This action will bring up a Security Warning

asking you to confirm the requested operation. Click Yes to answer the

dialog.

10. An information dialog will display the success of the operation which you can
close by clicking the OK button. The Certificate Information window can now

be closed as well.

8.2. Examples of WikiTrust Ratings

Featured Articles

Address

R
a
ti

n
g

N
u

m
b

e
r

o
f

s
e
c
ti

o
n

s

R
e
tr

ie
v
a
l

ti
m

e

(m
il

li
s
e
c
o

n
d

s
)

http://en.wikipedia.org/wiki/Daniel_Lambert 7 1640 2402

http://en.wikipedia.org/wiki/Green_children_of_Woolpit 7 850 2064

http://en.wikipedia.org/wiki/Ketuanan_Melayu 8 3399 2752

http://en.wikipedia.org/wiki/Hanged,_drawn_and_quartered 8 1605 2505

http://en.wikipedia.org/wiki/Postage_stamps_of_Ireland 8 1450 4028

http://en.wikipedia.org/wiki/The_Scout_Association_of_Hong_Kon
g

8 2206 2378

http://en.wikipedia.org/wiki/Taiwanese_aborigines 8 3284 3318

http://en.wikipedia.org/wiki/Encyclopædia_Britannica 8 3523 3407

http://en.wikipedia.org/wiki/Florida_Atlantic_University 8 2260 2942

http://en.wikipedia.org/wiki/Georgetown_University 7 3191 3856

http://en.wikipedia.org/wiki/The_Guardian_of_Education 8 696 2052

http://en.wikipedia.org/wiki/Ohio_Wesleyan_University 8 2730 3196

http://en.wikipedia.org/wiki/Plano_Senior_High_School 7 1681 2623

http://en.wikipedia.org/wiki/Royal_National_College_for_the_Blind 8 1415 2678

http://en.wikipedia.org/wiki/Some_Thoughts_Concerning_Educati

on
8 1124 2230

78 Appendix

http://en.wikipedia.org/wiki/Stuyvesant_High_School 8 2430 3547

http://en.wikipedia.org/wiki/Texas_Tech_University 8 2562 3529

http://en.wikipedia.org/wiki/Autostereogram 8 1188 2507

http://en.wikipedia.org/wiki/Matthew_Boulton 8 1765 2779

http://en.wikipedia.org/wiki/Construction_of_the_World_Trade_Ce

nter
8 1576 2483

http://en.wikipedia.org/wiki/Distributed_element_filter 7 1657 3203

http://en.wikipedia.org/wiki/Rolls-Royce_R 8 2351 2599

http://en.wikipedia.org/wiki/Scout_Moor_Wind_Farm 7 827 1938

http://en.wikipedia.org/wiki/Glynn_Lunney 8 784 2340

http://en.wikipedia.org/wiki/Colton_Point_State_Park 8 2035 2936

http://en.wikipedia.org/wiki/Covent_Garden 6 2079 3075

http://en.wikipedia.org/wiki/Craters_of_the_Moon_National_Monu

ment_and_Preserve
8 1631 2716

http://en.wikipedia.org/wiki/Erie,_Pennsylvania 7 2207 2787

http://en.wikipedia.org/wiki/Germany 8 5076 3331

http://en.wikipedia.org/wiki/Hillsboro,_Oregon 8 2032 2928

http://en.wikipedia.org/wiki/Manchester 6 4612 3581

http://en.wikipedia.org/wiki/Paulins_Kill 7 1664 3020

http://en.wikipedia.org/wiki/Presque_Isle_State_Park 7 1475 2782

http://en.wikipedia.org/wiki/Forest_Park_(Portland,_Oregon) 7 1257 2278

http://en.wikipedia.org/wiki/Grand_Forks,_North_Dakota 8 2041 2891

http://en.wikipedia.org/wiki/Lethbridge 8 1582 3005

http://en.wikipedia.org/wiki/Pithole,_Pennsylvania 5 1233 2321

http://en.wikipedia.org/wiki/Turkey 7 4433 3269

http://en.wikipedia.org/wiki/Geology_of_the_Zion_and_Kolob_can

yons_area
8 1494 2342

http://en.wikipedia.org/wiki/Chicxulub_crater 7 1202 2494

http://en.wikipedia.org/wiki/Geology_of_the_Grand_Canyon_area 8 1914 2690

http://en.wikipedia.org/wiki/Major_depressive_disorder 8 4094 2830

http://en.wikipedia.org/wiki/Multiple_sclerosis 8 2284 3451

http://en.wikipedia.org/wiki/Influenza 8 3410 3352

http://en.wikipedia.org/wiki/History_of_the_Grand_Canyon_area 8 1473 2113

http://en.wikipedia.org/wiki/History_of_Miami 8 1512 2696

Examples of WikiTrust Ratings 79

http://en.wikipedia.org/wiki/Political_history_of_Mysore_and_Coor

g_(1565–1760)
7 2601 2692

http://en.wikipedia.org/wiki/Political_integration_of_India 8 2276 2758

http://en.wikipedia.org/wiki/Scottish_National_Antarctic_Expeditio

n
8 1100 2103

http://en.wikipedia.org/wiki/Manzanar 8 2587 2786

http://en.wikipedia.org/wiki/Samuel_Adams 8 2077 6443

http://en.wikipedia.org/wiki/James_Bowie 8 1683 2815

http://en.wikipedia.org/wiki/Tom_Crean_(explorer) 8 1383 3314

http://en.wikipedia.org/wiki/Thich_Quang_Duc 8 1535 2595

http://en.wikipedia.org/wiki/Epaminondas 8 1678 2537

http://en.wikipedia.org/wiki/Khalid_al-Mihdhar 8 1477 3228

http://en.wikipedia.org/wiki/Benjamin_Morrell 8 1095 3949

http://en.wikipedia.org/wiki/Fridtjof_Nansen 8 2133 3475

http://en.wikipedia.org/wiki/Emperor_Norton 8 1424 2836

http://en.wikipedia.org/wiki/Phan_Dinh_Phung 8 1288 3588

http://en.wikipedia.org/wiki/Ernest_Shackleton 8 2069 2886

http://en.wikipedia.org/wiki/Tarrare 7 515 1938

http://en.wikipedia.org/wiki/Nguyen_Chanh_Thi 7 2414 3214

http://en.wikipedia.org/wiki/Francis_Tresham 6 901 2148

http://en.wikipedia.org/wiki/Stephen_Trigg 8 645 1716

http://en.wikipedia.org/wiki/Hasekura_Tsunenaga 8 1873 2754

http://en.wikipedia.org/wiki/Harriet_Tubman 8 2134 2570

http://en.wikipedia.org/wiki/Roy_Welensky 8 967 2147

http://en.wikipedia.org/wiki/Chinese_classifier 8 2471 2537

http://en.wikipedia.org/wiki/Tamil_language 8 2443 2952

http://en.wikipedia.org/wiki/Swedish_language 8 3037 3120

http://en.wikipedia.org/wiki/Turkish_language 8 3812 3092

http://en.wikipedia.org/wiki/Edward_VIII_abdication_crisis 8 1448 2440

http://en.wikipedia.org/wiki/Fundamental_Rights,_Directive_Princi

ples_and_Fundamental_Duties_of_India
7 1604 2446

http://en.wikipedia.org/wiki/Pendle_witches 8 1309 2175

http://en.wikipedia.org/wiki/Parliament_Acts_1911_and_1949 5 1449 2694

http://en.wikipedia.org/wiki/Toa_Payoh_ritual_murders 8 1562 2720

80 Appendix

http://en.wikipedia.org/wiki/Australian_Competition_and_Consum

er_Commission_v_Baxter_Healthcare
6 608 1941

http://en.wikipedia.org/wiki/Book_of_Kells 8 1906 2671

http://en.wikipedia.org/wiki/The_General_in_His_Labyrinth 8 2359 2813

http://en.wikipedia.org/wiki/La_Peau_de_chagrin 8 1089 2558

http://en.wikipedia.org/wiki/Harris's_List_of_Covent_Garden_Ladi

es
6 1030 2611

http://en.wikipedia.org/wiki/The_Story_of_Miss_Moppet 7 1228 2118

http://en.wikipedia.org/wiki/The_Time_Traveler's_Wife 8 1035 1940

http://en.wikipedia.org/wiki/Vijayanagara_literature_in_Kannada 8 2260 2623

http://en.wikipedia.org/wiki/Ode_on_a_Grecian_Urn 8 1836 2399

http://en.wikipedia.org/wiki/Chinua_Achebe 8 2419 3210

http://en.wikipedia.org/wiki/John_Day_(printer) 8 783 2332

http://en.wikipedia.org/wiki/Oliver_Wendell_Holmes,_Sr. 8 1817 2724

http://en.wikipedia.org/wiki/George_Moore_(novelist) 8 1015 2163

http://en.wikipedia.org/wiki/Elaine_Paige 8 2262 2345

http://en.wikipedia.org/wiki/Philitas_of_Cos 8 679 1886

http://en.wikipedia.org/wiki/Adelaide_Anne_Procter 8 705 1872

http://en.wikipedia.org/wiki/Ion_Heliade_R?dulescu 8 2215 2495

http://en.wikipedia.org/wiki/J._K._Rowling 8 2514 2761

http://en.wikipedia.org/wiki/Mary_Martha_Sherwood 8 1932 2282

http://en.wikipedia.org/wiki/John_Millington_Synge 8 921 1975

http://en.wikipedia.org/wiki/Mary_Wollstonecraft 8 2249 2841

http://en.wikipedia.org/wiki/0.999... 8 2429 2997

http://en.wikipedia.org/wiki/1_?_2_+_3_?_4_+_·_·_· 8 854 2217

Poor Quality Articles

Address

R
a
ti

n
g

N
u

m
b

e
r

o
f

s
e
c
ti

o
n

s

R
e
tr

ie
v
a
l

ti
m

e

(m
il

li
s
e
c
o

n
d

s
)

Examples of WikiTrust Ratings 81

http://en.wikipedia.org/wiki/Death_of_Mark_Duggan 5 680 1794

http://en.wikipedia.org/wiki/2011_London_riots 5 2399 2652

http://en.wikipedia.org/wiki/Timeline_of_aftermath_of_2011_Engla

nd_riots
2 443 1636

http://en.wikipedia.org/wiki/BlackBerry_Messenger 4 169 1289

http://en.wikipedia.org/wiki/Max_Hastings 7 364 5450

http://en.wikipedia.org/wiki/London 6 5684 4412

http://en.wikipedia.org/wiki/Norway_killings 6 2657 3112

http://en.wikipedia.org/wiki/International_reactions_to_the_2011_N

orway_attacks
7 1529 2312

http://en.wikipedia.org/wiki/Regjeringskvartalet 5 137 1231

http://en.wikipedia.org/wiki/Anders_Behring_Breivik 7 2012 2768

http://en.wikipedia.org/wiki/Norwegian_Police_Service 5 738 1682

http://en.wikipedia.org/wiki/Utøya 6 277 1382

http://en.wikipedia.org/wiki/Labour_Party_(Norway) 7 715 1753

http://en.wikipedia.org/wiki/List_of_shooting_sprees 6 1049 1808

http://en.wikipedia.org/wiki/Tyrifjorden 5 201 1359

http://en.wikipedia.org/wiki/Beredskapstroppen 7 317 1294

http://en.wikipedia.org/wiki/Sigbjørn_Johnsen 3 111 1187

http://en.wikipedia.org/wiki/Øystein_Mæland 4 146 1278

http://en.wikipedia.org/wiki/Reactions_to_the_death_of_Osama_bi

n_Laden
6 4116 4112

http://en.wikipedia.org/wiki/Allegations_of_support_system_in_Pak

istan_for_Osama_bin_Laden
6 392 1634

http://en.wikipedia.org/wiki/Asif_Ali_Zardari 5 4014 3747

http://en.wikipedia.org/wiki/Husain_Haqqani 6 343 1535

http://en.wikipedia.org/wiki/2011_Norway_attacks 6 2657 2590

http://en.wikipedia.org/wiki/Mayhem 5 119 1128

http://en.wikipedia.org/wiki/Al-Qaeda 7 5086
1203

7

http://en.wikipedia.org/wiki/Ayman_al-Zawahiri 7 1987 2406

http://en.wikipedia.org/wiki/Maadi 7 445 1477

http://en.wikipedia.org/wiki/2011_military_intervention_in_Libya 5 5222 4531

http://en.wikipedia.org/wiki/Al-Assad_Stadium 4 29 935

http://en.wikipedia.org/wiki/Hafez_al-Assad 7 934 1822

82 Appendix

http://en.wikipedia.org/wiki/World_Youth_Day_2011 4 193 1411

http://en.wikipedia.org/wiki/Vanuatu 7 2182 3013

http://en.wikipedia.org/wiki/Bagdad 6 69 941

http://en.wikipedia.org/wiki/2011_Spanish_protests 7 1406 2319

http://en.wikipedia.org/wiki/Governance_of_the_Gaza_Strip 7 245 1313

http://en.wikipedia.org/wiki/Stadionul_Steaua 5 1030 2064

http://en.wikipedia.org/wiki/Romania's_Got_Talent 3 330 1621

http://en.wikipedia.org/wiki/Pro_TV 5 168 1315

http://en.wikipedia.org/wiki/Cronica_Cârcota?ilor 3 98 1158

http://en.wikipedia.org/wiki/Andreea_Marin_B?nic? 6 116 1119

http://en.wikipedia.org/wiki/Roman,_Romania 6 559 1507

http://en.wikipedia.org/wiki/D?muc 4 55 936

http://en.wikipedia.org/wiki/Bicazu_Ardelean 5 53 946

http://en.wikipedia.org/wiki/Bicaz_Canyon 6 76 911

http://en.wikipedia.org/wiki/National_Anticorruption_Directorate 5 37 912

http://en.wikipedia.org/wiki/High_Court_of_Cassation_and_Justice 5 81 916

http://en.wikipedia.org/wiki/DR1 4 229 1490

http://en.wikipedia.org/wiki/Got_Talent_series 7 2400 2598

http://en.wikipedia.org/wiki/Dansk_Melodi_Grand_Prix 5 415 1633

http://en.wikipedia.org/wiki/DR_HD 4 44 937

http://en.wikipedia.org/wiki/DR_Byen 3 88 970

http://en.wikipedia.org/wiki/Lucian_Bute 5 1050 2012

http://en.wikipedia.org/wiki/Leonard_Doroftei 4 917 1736

http://en.wikipedia.org/wiki/B.U.G._Mafia 7 1156 5077

http://en.wikipedia.org/wiki/Orice_E_Posibil 7 101 1898

http://en.wikipedia.org/wiki/JerryCo 6 175 1731

http://en.wikipedia.org/wiki/Via?a_noastr?_(Vol.1) 6 253 1451

http://en.wikipedia.org/wiki/Delia_Matache 5 276 1354

http://en.wikipedia.org/wiki/Connect-R 4 68 979

http://en.wikipedia.org/wiki/Kato_(Producer/Artist) 2 190 1313

http://en.wikipedia.org/wiki/Gazeta_Sporturilor 3 112 1116

http://en.wikipedia.org/wiki/Jurnalul_Na?ional 6 57 912

http://en.wikipedia.org/wiki/Antena_1_(Romania) 5 120 1137

Examples of WikiTrust Ratings 83

http://en.wikipedia.org/wiki/Intact_Group 3 91 1124

http://en.wikipedia.org/wiki/Romanian_Footballer_of_the_Year 4 790 1660

http://en.wikipedia.org/wiki/Antena_4_-_Euforia_lifestyle_TV 2 37 897

http://en.wikipedia.org/wiki/Dan_Voiculescu 5 622 1864

http://en.wikipedia.org/wiki/Acas? 4 53 983

http://en.wikipedia.org/wiki/DDTV 5 29 936

http://en.wikipedia.org/wiki/Oglinda_TV 5 70 1040

http://en.wikipedia.org/wiki/Antena_Interna?ional 4 74 925

http://en.wikipedia.org/wiki/Antena_2_(Romania) 3 42 954

http://en.wikipedia.org/wiki/Antena_3_(Romania) 5 101 1109

http://en.wikipedia.org/wiki/Antena_2_(Romania) 3 42 925

http://en.wikipedia.org/wiki/Antena_Interna?ional 4 74 869

http://en.wikipedia.org/wiki/Cristian_Chivu 6 2040 2162

http://en.wikipedia.org/wiki/GSP_TV 5 125 1213

http://en.wikipedia.org/wiki/Liga_I 6 2920 2733

http://en.wikipedia.org/wiki/Realitatea_TV 6 203 1359

http://en.wikipedia.org/wiki/Romanian_Professional_Football_Leag

ue
6 105 1250

http://en.wikipedia.org/wiki/FC_Universitatea_Craiova 7 484 1627

http://en.wikipedia.org/wiki/FC_Dinamo_Bucure?ti 7 1792 2351

http://en.wikipedia.org/wiki/Motorola 6 1366 2190

http://en.wikipedia.org/wiki/WebOS 7 1192 2091

http://en.wikipedia.org/wiki/Windows_Phone_7.1 6 268 1424

http://en.wikipedia.org/wiki/Steve_Ballmer 7 553 1829

http://en.wikipedia.org/wiki/Windows_Phone_7.1 6 268 1377

http://en.wikipedia.org/wiki/HP_TouchPad 4 569 1743

http://en.wikipedia.org/wiki/Google_Plus 6 593 2753

http://en.wikipedia.org/wiki/Firefox_6 6 4660 9088

http://en.wikipedia.org/wiki/Anonymous 6 134 1336

http://en.wikipedia.org/wiki/WebOS 7 1192 2562

http://en.wikipedia.org/wiki/Samsung_Galaxy_S_II 5 1350 2218

http://en.wikipedia.org/wiki/W00t 4 217 1669

http://en.wikipedia.org/wiki/Windows_8 6 480 2125

http://en.wikipedia.org/wiki/Ps_vita 5 992 3517

84 Appendix

http://en.wikipedia.org/wiki/BlackBerry_Bold 6 492 3064

http://en.wikipedia.org/wiki/Samsung_Galaxy_Tab_10.1 5 740 1697

http://en.wikipedia.org/wiki/Android_(operating_system) 5 2496 2383

http://en.wikipedia.org/wiki/Ie10 7 323 1572

Random Articles

Address

R
a
ti

n
g

N
u

m
b

e
r

o
f

s
e
c
ti

o
n

s

R
e
tr

ie
v
a
l

ti
m

e

(m
il

li
s
e
c
o

n
d

s
)

http://en.wikipedia.org/wiki/Arizona 8 3830 7585

http://en.wikipedia.org/wiki/Scottsdale,_Arizona 7 2383 5867

http://en.wikipedia.org/wiki/Paradise_Valley,_Arizona 3 434 2077

http://en.wikipedia.org/wiki/Carefour 7 1333 3311

http://en.wikipedia.org/wiki/Wal-Mart 8 3028 4837

http://en.wikipedia.org/wiki/West_Plains,_Missouri 6 383 4586

http://en.wikipedia.org/wiki/The_Home_Depot 8 1111 2293

http://en.wikipedia.org/wiki/Cobb_County,_Georgia 8 1353 2087

http://en.wikipedia.org/wiki/Metro_Atlanta 8 3844 6202

http://en.wikipedia.org/wiki/Columbus,_Georgia_metropolitan_area 7 158 1266

http://en.wikipedia.org/wiki/Thanksgiving 8 730 2884

http://en.wikipedia.org/wiki/New_France 8 1360 5022

http://en.wikipedia.org/wiki/American_Revolution 8 3915 5248

http://en.wikipedia.org/wiki/Pilgrim 6 386 1606

http://en.wikipedia.org/wiki/World_War_I 8 7773 8296

http://en.wikipedia.org/wiki/Franklin_D._Roosevelt 8 4935 4891

http://en.wikipedia.org/wiki/Liberia 6 2577 3056

http://en.wikipedia.org/wiki/Magnets 8 2094 3104

http://en.wikipedia.org/wiki/Redox 7 1375 3192

http://en.wikipedia.org/wiki/Inheritance_(object-

oriented_programming)
7 575 2183

http://en.wikipedia.org/wiki/Facade_pattern 6 171 1352

Examples of WikiTrust Ratings 85

http://en.wikipedia.org/wiki/Object-oriented_programming 8 1589 4890

http://en.wikipedia.org/wiki/C++ 8 1815 6817

http://en.wikipedia.org/wiki/Java_(programming_language) 7 2016 3626

http://en.wikipedia.org/wiki/Java_Servlet 7 551 1711

http://en.wikipedia.org/wiki/JSON 8 851 2008

http://en.wikipedia.org/wiki/JavaScript_syntax 7 1441 3476

http://en.wikipedia.org/wiki/First_Amendment_to_the_United_State

s_Constitution
8 1963 2421

http://en.wikipedia.org/wiki/FC_Barcelona 8 3362 2817

http://en.wikipedia.org/wiki/Athletic_Bilbao 8 2033 5423

http://en.wikipedia.org/wiki/Real_Madrid 6 2907 2505

http://en.wikipedia.org/wiki/Camp_Nou 8 812 1895

http://en.wikipedia.org/wiki/La_Masia 8 1416 2034

http://en.wikipedia.org/wiki/Ballon_d'Or 7 3297 2893

http://en.wikipedia.org/wiki/Andrés_Iniesta 8 1629 2273

http://en.wikipedia.org/wiki/Lionel_Messi 8 3662 3133

http://en.wikipedia.org/wiki/Xavi 7 1339 3644

http://en.wikipedia.org/wiki/El_Clásico 8 4681 4726

http://en.wikipedia.org/wiki/Catalan_nationalism 8 1257 2283

http://en.wikipedia.org/wiki/Autostrada_Soarelui 5 381 1364

http://en.wikipedia.org/wiki/?ód? 8 1798 5804

http://en.wikipedia.org/wiki/Warsaw–Vienna_Railway 7 237 1345

http://en.wikipedia.org/wiki/Congress_Poland 8 1047 2067

http://en.wikipedia.org/wiki/Austro-Hungarian_Empire 8 3638 3906

http://en.wikipedia.org/wiki/Polystyrene 7 1418 2270

http://en.wikipedia.org/wiki/Polyurethane 8 1643 3215

http://en.wikipedia.org/wiki/Carbamate 7 385 1461

http://en.wikipedia.org/wiki/Synthetic_fibers 7 368 1274

http://en.wikipedia.org/wiki/Hydroxyl 6 270 1437

http://en.wikipedia.org/wiki/Blowing_agent 2 104 4291

http://en.wikipedia.org/wiki/Ethylene_glycol 8 841 2050

http://en.wikipedia.org/wiki/Fenfluramine 7 179 1424

http://en.wikipedia.org/wiki/Dodge 8 1557 2537

http://en.wikipedia.org/wiki/Copenhagen 7 4214 4896

86 Appendix

http://en.wikipedia.org/wiki/Christian_IV_of_Denmark 8 901 2065

http://en.wikipedia.org/wiki/List_of_most_expensive_cities_for_exp

atriate_employees
6 3872 4991

http://en.wikipedia.org/wiki/Forbes 8 868 2516

http://en.wikipedia.org/wiki/Metropolitan_area 8 877 5356

http://en.wikipedia.org/wiki/Water 8 3315 4658

http://en.wikipedia.org/wiki/H20 5 39 912

http://en.wikipedia.org/wiki/Iridocyclitis 6 164 1185

http://en.wikipedia.org/wiki/Over_the_counter 8 655 1661

http://en.wikipedia.org/wiki/Active_pharmaceutical_ingredients 5 180 1278

http://en.wikipedia.org/wiki/Chris_Spheeris 4 99 1128

http://en.wikipedia.org/wiki/Greek-American 8 1317 6794

http://en.wikipedia.org/wiki/New_York 8 2699 4697

http://en.wikipedia.org/wiki/Kingdom_of_Great_Britain 7 1087 3907

http://en.wikipedia.org/wiki/Kingston,_New_York 7 1058 2773

http://en.wikipedia.org/wiki/Ebola 8 1692 3463

http://en.wikipedia.org/wiki/Yellow_fever 8 1325 3029

http://en.wikipedia.org/wiki/Bleeding_diathesis 4 301 1563

http://en.wikipedia.org/wiki/Coagulopathy 6 82 1153

http://en.wikipedia.org/wiki/Hypercoagulability 7 1078 3047

http://en.wikipedia.org/wiki/Antithrombin_deficiency 6 124 1444

http://en.wikipedia.org/wiki/Recessive 2 228 2165

http://en.wikipedia.org/wiki/Gregor_Mendel 7 822 2462

http://en.wikipedia.org/wiki/Austrian_Empire 8 1013 2360

http://en.wikipedia.org/wiki/Silicon_Valley 8 1448 2871

http://en.wikipedia.org/wiki/IPad 8 2767 3890

http://en.wikipedia.org/wiki/Italy 8 5801 5824

http://en.wikipedia.org/wiki/IPhone 8 3973 3753

http://en.wikipedia.org/wiki/Cellulosic_ethanol 8 1568 2513

http://en.wikipedia.org/wiki/Wood_pulp 7 821 1842

http://en.wikipedia.org/wiki/Logging 7 445 1500

http://en.wikipedia.org/wiki/Cut-to-length_logging 7 138 1222

http://en.wikipedia.org/wiki/Skidder 8 256 1263

http://en.wikipedia.org/wiki/Four_wheel_drive 8 2863 2929

Code 87

http://en.wikipedia.org/wiki/Off-road_vehicle 8 752 1845

http://en.wikipedia.org/wiki/Desert_Racing 5 91 1063

http://en.wikipedia.org/wiki/Baja_1000 8 1267 2075

http://en.wikipedia.org/wiki/La_Paz,_Baja_California_Sur 6 528 2839

http://en.wikipedia.org/wiki/La_Paz_(municipality) 2 11 1065

http://en.wikipedia.org/wiki/La_Paz_Municipality,_Bolivia 2 57 1099

http://en.wikipedia.org/wiki/Bolivia 8 3225 7469

http://en.wikipedia.org/wiki/Quechua_language 8 1878 3657

http://en.wikipedia.org/wiki/Roman_Catholic_Church 7 3284 7253

http://en.wikipedia.org/wiki/Spanish_conquest 8 1009 3816

http://en.wikipedia.org/wiki/Christopher_Columbus 7 3642 4859

http://en.wikipedia.org/wiki/Alaska 8 3523 4001

http://en.wikipedia.org/wiki/Spanish-American_War 8 3327 3673

8.3. Code

wrs.web.dal

DatabaseHelpers.java

package wrs.web.dal;

import java.io.ByteArrayInputStream;

import java.io.ByteArrayOutputStream;

import java.io.ObjectInputStream;

import java.io.ObjectOutputStream;

import java.util.ArrayList;

import wrs.web.dal.tables.RatingTable;

import wrs.web.dal.tables.WeboftrustTable;

import wrs.web.helpers.logger;

import wrs.web.rating.Rating;

import wrs.web.rating.SessionRatingDB;

import wrs.web.trust.WoT;

/*

 * @author mihai.mihaila

 */

88 Appendix

public class DatabaseHelpers {

 public static WoT

CreateWOTFromWeboftrustTable(WeboftrustTable table) {

 try {

logger.Instance.MethodCall("CreateWOTFromWeboftrustTable");

 ByteArrayInputStream byteArrayInputStream = new

ByteArrayInputStream(table.getTrust());

 ObjectInputStream objectInputStream = new

ObjectInputStream(byteArrayInputStream);

 WoT wot = (WoT) objectInputStream.readObject();

 return wot;

 } catch (Exception exc) {

 exc.printStackTrace();

 return null;

 }

 }

 public static SessionRatingDB

GetExtractedRatings(ArrayList<RatingTable> ratingList) {

 logger.Instance.MethodCall("ExtractRatings");

 SessionRatingDB sessionRatingDB = new

SessionRatingDB();

 for (RatingTable ratingTable : ratingList) {

 Rating

rating=DatabaseHelpers.GetRatingFromRatingTable(ratingTable);

 sessionRatingDB.push(rating);

 }

 return sessionRatingDB;

 }

 public static Rating GetRatingFromRatingTable(RatingTable

ratingTable){

 Rating rating = new Rating(

 ratingTable.getUserId().getId().toString(),

 ratingTable.getRating(),

 ratingTable.getCategoryId().getId(),

 "",

 ratingTable.getPageUrl().toString());

 return rating;

Code 89

 }

 public static byte[] GetWoTBytes(WoT wot) {

 try {

 ByteArrayOutputStream byteOutputStream = new

ByteArrayOutputStream();

 ObjectOutputStream objectOutputStream = new

ObjectOutputStream(byteOutputStream);

 logger.Instance.Log("Saving WoT :" +

wot.toString());

 objectOutputStream.writeObject(wot);

 objectOutputStream.close();

 return byteOutputStream.toByteArray();

 } catch (Exception exc) {

 exc.printStackTrace();

 return new byte[0];

 }

 }

}

DatabaseInteraction.java

package wrs.web.dal;

import java.util.ArrayList;

import java.util.Date;

import java.util.List;

import javax.persistence.EntityManager;

import javax.persistence.EntityManagerFactory;

import javax.persistence.EntityTransaction;

import javax.persistence.Persistence;

import javax.persistence.PersistenceUnit;

import wrs.web.dal.tables.CategoryTable;

import wrs.web.dal.tables.RatingTable;

import wrs.web.dal.tables.UserTable;

import wrs.web.dal.tables.WeboftrustTable;

import wrs.web.helpers.logger;

import wrs.web.helpers.security;

import wrs.web.trust.WoT;

/*

 * @author mihai.mihaila

 */

90 Appendix

public class DatabaseInteraction {

 public static final int wotVersion = 1;

 @PersistenceUnit

 static EntityManagerFactory entityManagerFactory;

 public static List GetAllCategoryTables() {

 DatabaseInteraction.entityManagerFactory =

Persistence.createEntityManagerFactory("WRSPersistanceUnit");

 EntityManager entityManager =

entityManagerFactory.createEntityManager();

 List values =

entityManager.createNamedQuery("CategoryTable.findAll").getResu

ltList();

 return values;

 }

 public static List GetAllRatingTables() {

 DatabaseInteraction.entityManagerFactory =

Persistence.createEntityManagerFactory("WRSPersistanceUnit");

 EntityManager entityManager =

entityManagerFactory.createEntityManager();

 List values =

entityManager.createNamedQuery("RatingTable.findAll").getResult

List();

 return values;

 }

 public static List GetAllUserTables() {

 DatabaseInteraction.entityManagerFactory =

Persistence.createEntityManagerFactory("WRSPersistanceUnit");

 EntityManager entityManager =

entityManagerFactory.createEntityManager();

 List values =

entityManager.createNamedQuery("UserTable.findAll").getResultLi

st();

 return values;

 }

 public static List GetAllWeboftrustTables() {

 DatabaseInteraction.entityManagerFactory =

Persistence.createEntityManagerFactory("WRSPersistanceUnit");

 EntityManager entityManager =

entityManagerFactory.createEntityManager();

Code 91

 List values =

entityManager.createNamedQuery("WeboftrustTable.findAll").getRe

sultList();

 ArrayList<WeboftrustTable> returnedValues = new

ArrayList<WeboftrustTable>();

 for (Object item : values) {

 WeboftrustTable wotTable = (WeboftrustTable) item;

 if (wotTable.getVersion() ==

DatabaseInteraction.wotVersion) {

 returnedValues.add(wotTable);

 }

 }

 return returnedValues;

 }

 public static ArrayList<RatingTable>

GetRatingsByPageUrl(String pageUrl) {

 List values = DatabaseInteraction.GetAllRatingTables();

 ArrayList<RatingTable> returnedValues = new

ArrayList<RatingTable>();

 for (Object item : values) {

 RatingTable itemRatingTable = (RatingTable) item;

 if (itemRatingTable.getPageUrl().equals(pageUrl)) {

 returnedValues.add(itemRatingTable);

 }

 }

 return returnedValues;

 }

 public static UserTable GetUserTableByUsername(String

username) {

 List values = GetAllUserTables();

 UserTable returnedValue = null;

 for (Object item : values) {

 UserTable userTable = (UserTable) item;

 if (userTable.getUsername().equals(username)) {

 returnedValue = userTable;

 }

 }

 return returnedValue;

92 Appendix

 }

 public static CategoryTable GetCategoryById(int id) {

 List values = GetAllCategoryTables();

 CategoryTable returnedValue = null;

 for (Object item : values) {

 CategoryTable categoryTable = (CategoryTable) item;

 if (categoryTable.getId() == id) {

 returnedValue = categoryTable;

 }

 }

 return returnedValue;

 }

 public static RatingTable GetRatingById(int id) {

 List values = GetAllRatingTables();

 RatingTable returnedValue = null;

 for (Object item : values) {

 RatingTable ratingTable = (RatingTable) item;

 if (ratingTable.getId() == id) {

 returnedValue = ratingTable;

 }

 }

 return returnedValue;

 }

 public static CategoryTable GetCategoryByName(String name)

{

 List values = GetAllCategoryTables();

 CategoryTable returnedValue = null;

 for (Object item : values) {

 CategoryTable categoryTable = (CategoryTable) item;

 if (categoryTable.getName().equals(name)) {

 returnedValue = categoryTable;

 }

 }

 return returnedValue;

 }

 public static UserTable GetUserTableByUserId(int userId) {

 List values = GetAllUserTables();

Code 93

 UserTable returnedValue = null;

 for (Object item : values) {

 UserTable userTable = (UserTable) item;

 if (userTable.getId() == userId) {

 returnedValue = userTable;

 }

 }

 return returnedValue;

 }

 public static WeboftrustTable

GetWeboftrustTableByUsername(String username) {

 List values =

DatabaseInteraction.GetAllWeboftrustTables();

 UserTable userTable =

DatabaseInteraction.GetUserTableByUsername(username);

 WeboftrustTable returnedValue = null;

 for (Object item : values) {

 WeboftrustTable weboftrustTable = (WeboftrustTable)

item;

 if (weboftrustTable.getUserId().getId() ==

userTable.getId()) {

 returnedValue = weboftrustTable;

 break;

 }

 }

 return returnedValue;

 }

 public static WeboftrustTable

GetWeboftrustTableByUserId(int userId) {

 List values =

DatabaseInteraction.GetAllWeboftrustTables();

 UserTable userTable =

DatabaseInteraction.GetUserTableByUserId(userId);

 WeboftrustTable returnedValue = null;

 for (Object item : values) {

 WeboftrustTable weboftrustTable = (WeboftrustTable)

item;

 if (weboftrustTable.getUserId().getId() ==

userTable.getId()) {

 returnedValue = weboftrustTable;

94 Appendix

 break;

 }

 }

 return returnedValue;

 }

 public static WeboftrustTable GetWeboftrustTableById(int

id) {

 List values =

DatabaseInteraction.GetAllWeboftrustTables();

 WeboftrustTable returnedValue = null;

 for (Object item : values) {

 WeboftrustTable weboftrustTable = (WeboftrustTable)

item;

 if (weboftrustTable.getId() == id) {

 returnedValue = weboftrustTable;

 break;

 }

 }

 return returnedValue;

 }

 public static WeboftrustTable

CreateEmptyWeboftrustTable(String username) {

 DatabaseInteraction.entityManagerFactory =

Persistence.createEntityManagerFactory("WRSPersistanceUnit");

 EntityManager entityManager =

entityManagerFactory.createEntityManager();

 EntityTransaction userTransaction =

entityManager.getTransaction();

 userTransaction.begin();

 WeboftrustTable wotTable = new WeboftrustTable();

 UserTable userTable = GetUserTableByUsername(username);

 WoT wot = new WoT(userTable.getId().toString());

 wotTable.setUserId(userTable);

 wotTable.setTrust(DatabaseHelpers.GetWoTBytes(wot));

 wotTable.setVersion(DatabaseInteraction.wotVersion);

 wotTable.setId(-1);

Code 95

 entityManager.persist(wotTable);

 userTransaction.commit();

 return wotTable;

 }

 public static RatingTable AddRating(String pageUrl, int

rating, int categoryId, boolean experience, String username) {

 DatabaseInteraction.entityManagerFactory =

Persistence.createEntityManagerFactory("WRSPersistanceUnit");

 EntityManager entityManager =

entityManagerFactory.createEntityManager();

 EntityTransaction userTransaction =

entityManager.getTransaction();

 userTransaction.begin();

 RatingTable ratingTable = new RatingTable();

 UserTable userTable = GetUserTableByUsername(username);

 CategoryTable categoryTable =

GetCategoryById(categoryId);

 ratingTable.setUserId(userTable);

 ratingTable.setCategoryId(categoryTable);

 ratingTable.setRating(rating);

 ratingTable.setPageUrl(pageUrl);

 ratingTable.setId(-1);

 Date date = new Date();

 ratingTable.setRatingTime(date);

 entityManager.persist(ratingTable);

 userTransaction.commit();

 return ratingTable;

 }

 public static UserTable CreateUser(String username, String

password) throws Exception {

 UserTable alreadyExistingUsername =

GetUserTableByUsername(username);

 if (alreadyExistingUsername != null) {

96 Appendix

 throw new Exception("Already existing user. Please

pick another username");

 }

 DatabaseInteraction.entityManagerFactory =

Persistence.createEntityManagerFactory("WRSPersistanceUnit");

 EntityManager entityManager =

entityManagerFactory.createEntityManager();

 EntityTransaction userTransaction =

entityManager.getTransaction();

 userTransaction.begin();

 UserTable userTable = new UserTable();

 userTable.setUsername(username);

 userTable.setPasswordHash(security.GetHash(password));

 userTable.setId(-1);

 entityManager.persist(userTable);

 userTransaction.commit();

 return userTable;

 }

 public static void WriteWOTToDatabase(WoT wot, int wotId) {

 try {

 logger.Instance.MethodCall("WriteWOTToDatabase");

 DatabaseInteraction.entityManagerFactory =

Persistence.createEntityManagerFactory("WRSPersistanceUnit");

 EntityManager entityManager =

entityManagerFactory.createEntityManager();

 entityManager.getTransaction().begin();

 WeboftrustTable wotTable =

entityManager.find(WeboftrustTable.class, wotId);

wotTable.setTrust(DatabaseHelpers.GetWoTBytes(wot));

 entityManager.persist(wotTable);

 entityManager.getTransaction().commit();

 } catch (Exception e) {

 e.printStackTrace();

 }

 }

}

Code 97

wrs.web.external

WikiTrustResponseBuilder.java

package wrs.web.external;

import java.text.DecimalFormat;

import wrs.web.dal.*;

import wrs.web.dal.tables.RatingTable;

import wrs.web.dal.tables.WeboftrustTable;

import wrs.web.helpers.logger;

import wrs.web.helpers.wikitrust;

import wrs.web.rating.*;

import wrs.web.resources.*;

import wrs.web.trust.*;

/*

 * @author mihai.mihaila

 */

public class WikiTrustResponseBuilder implements

IResponseBuilder {

 public static final String WikiTrustName = "WikiTrust";

 private boolean initialized = false;

 private TrustUpdater trustUpdater;

 private WoT webOfTrust = null;

 private int wotId = -1;

 private String userId = "";

 private String password = "";

 private RatingCalculator ratingCalculator = null;

 private Rating wikiTrustRating = null;

 public RatingResponse GetRating(String pageUrl, String

username) {

 this.InitializeVariables(username);

 this.UpdateTrust(pageUrl, true, false);

 // return normal trust value

 InteractionData computedAverage =

this.ratingCalculator.computeAverageInteractionData(17);

 RatingResponse ratingResponse =

this.GetCategoryAndRating(computedAverage);

 if (isRatingNull(ratingResponse)) {

 this.GetWikitrustRating(pageUrl);

98 Appendix

 // return wikitrust rating

 ratingResponse = new RatingResponse();

 if (wikiTrustRating != null) {

 if (wikiTrustRating.getCategory() <= 15) {

 ratingResponse.category =

wikiTrustRating.getCategory() + "";

 } else {

 ratingResponse.category = "-1";

 }

 ratingResponse.categoryRatingPercentage = "";

 ratingResponse.rating =

wikiTrustRating.getRating() + "";

 } else {

 ratingResponse.category = "Not assigned";

 ratingResponse.categoryRatingPercentage = "";

 ratingResponse.rating = "Unknown";

 }

 }

 return ratingResponse;

 }

 private boolean isRatingNull(RatingResponse rating) {

 String nonExistingPrefix = "Not enough";

 if (rating.rating.startsWith(nonExistingPrefix) &&

rating.categoryRatingPercentage.startsWith(nonExistingPrefix))

{

 return true;

 }

 return false;

 }

 public GenericResponse SetRating(String pageUrl, int

rating, int categoryId, boolean experience, String username) {

 //add rating to database

 RatingTable ratingTable =

DatabaseInteraction.AddRating(pageUrl, rating, categoryId,

experience, username);

 this.InitializeVariables(username);

 // modify wikitrust category

 this.ModifyWikitrustRating(pageUrl, categoryId);

 this.UpdateTrust(pageUrl, false, true);

Code 99

 this.trustUpdater.updateAndInsertRatingsToWoT(rating,

categoryId, experience);

 return new GenericResponse(true);

 }

 public int GetImplementationId() {

 return 1;

 }

 private RatingResponse GetCategoryAndRating(InteractionData

interactionData) {

 RatingResponse ratingResponse = new RatingResponse();

 try {

 DecimalFormat decimalFormat = new

DecimalFormat("#0.00");

 if

(String.valueOf(interactionData.getAverageRating()).contains("N

aN")) {

 ratingResponse.rating = "Not enough information

for a rating";

 logger.Instance.Log("Not enough information for

a rating");

 } else {

 ratingResponse.rating =

decimalFormat.format(interactionData.getAverageRating());

 logger.Instance.Log("Rating:" +

decimalFormat.format(interactionData.getAverageRating()));

 }

 if (interactionData.getCategoryType() != -1) {

 ratingResponse.categoryRatingPercentage =

decimalFormat.format(interactionData.getCategoryAverage() *

100);

 ratingResponse.category =

interactionData.getCategoryType() + "";

 logger.Instance.Log("Category:" +

decimalFormat.format(interactionData.getCategoryAverage() *

100) + " % " + interactionData.getCategoryType());

 } else {

 ratingResponse.categoryRatingPercentage = "Not

enough information for a category";

 ratingResponse.category = "-1";

 logger.Instance.Log("Not enough information for

a category");

100 Appendix

 }

 } catch (Exception e) {

 e.printStackTrace();

 }

 return ratingResponse;

 }

 private void InitializeVariables(String username) {

 logger.Instance.MethodCall("InitializeVariables");

 if (this.initialized) {

 return;

 } else {

 this.initialized = true;

 }

 WeboftrustTable wotTable =

DatabaseInteraction.GetWeboftrustTableByUsername(username);

 if (wotTable == null) {

 wotTable =

DatabaseInteraction.CreateEmptyWeboftrustTable(username);

 wotTable =

DatabaseInteraction.GetWeboftrustTableByUsername(username);

 }

 this.wotId = wotTable.getId();

 this.webOfTrust =

DatabaseHelpers.CreateWOTFromWeboftrustTable(wotTable);

 this.userId =

DatabaseInteraction.GetUserTableByUsername(username).getId().to

String();

 logger.Instance.Log("WoT from database:" +

this.webOfTrust.toString());

 }

 private void UpdateTrust(String pageUrl, boolean

updateCurrentRating, boolean prepareForInsertAverage) {

 boolean hasRating = true;

 SessionRatingDB sessionRatingDB =

DatabaseHelpers.GetExtractedRatings(DatabaseInteraction.GetRati

ngsByPageUrl(pageUrl));

 sessionRatingDB.prettyPrintObject();

Code 101

 if (false) {

 //if (updateCurrentRating) {

 // If the owner of the WoT is found to have given a

rating, that rating is retrieved and removed from the

SessionRatingDB.

 Rating ratingByCurrentUser =

sessionRatingDB.checkHasOwner(this.userId);

 if (ratingByCurrentUser != null) {

 logger.Instance.Log("User has rated this page

before, checking for helpers ratings.");

 InteractionData interaction =

this.webOfTrust.getInteraction(ratingByCurrentUser.getArticleUR

L());

 if (interaction != null) {

 this.trustUpdater = new

TrustUpdater(sessionRatingDB, interaction, this.webOfTrust,

this.wotId);

this.trustUpdater.updateAndInsertRatingsToWoT(ratingByCurrentUs

er.getRating(), ratingByCurrentUser.getCategory(),

interaction.getExperience() == 1);

 }

 }

 }

 // An rating is calculated based on the trust values

from the WoT

 this.ratingCalculator = new

RatingCalculator(sessionRatingDB, this.webOfTrust);

 if (prepareForInsertAverage) {

 InteractionData computedAverage =

ratingCalculator.computeAverageInteractionData(17);

 // Average is inserted along with the HTML to cast

own vote and feedback

 this.trustUpdater = new

TrustUpdater(sessionRatingDB, computedAverage, this.webOfTrust,

this.wotId);

 }

 }

 public void GetWikitrustRating(String pageUrl) {

102 Appendix

 Rating previousWikitrustRating =

webOfTrust.getRatingOfUserForPage(WikiTrustName, pageUrl);

 if (previousWikitrustRating != null) {

 wikiTrustRating = previousWikitrustRating;

 } else {

 int wikitrustRatingValue =

wikitrust.getPageTrust(pageUrl);

 if (wikitrustRatingValue != -1) {

 wikiTrustRating = new Rating(WikiTrustName,

wikitrustRatingValue, 16, "", pageUrl);

 Reviewer wikitrustReviewer = new Reviewer(17);

 wikitrustReviewer.setUsername(WikiTrustName);

wikitrustReviewer.insertRating(wikiTrustRating);

 webOfTrust.insertReviewer(wikitrustReviewer);

DatabaseInteraction.WriteWOTToDatabase(webOfTrust, wotId);

 }

 }

 }

 private void ModifyWikitrustRating(String pageUrl, int

categoryId) {

 Rating previousWikitrustRating =

webOfTrust.getRatingOfUserForPage(WikiTrustName, pageUrl);

 if (previousWikitrustRating != null) {

 previousWikitrustRating.setCategory(categoryId);

webOfTrust.insertNewRatingOfUserForPage(WikiTrustName, pageUrl,

previousWikitrustRating);

 }

 }

}

wrs.web.helpers

security.java

package wrs.web.helpers;

import java.security.MessageDigest;

Code 103

/**

 *

 * @author mihai.mihaila

 */

public class security {

 public static String GetHash(String message) {

 try {

 MessageDigest md = MessageDigest.getInstance("SHA-

256");

 md.update(message.getBytes());

 byte[] hashBytes = md.digest();

 StringBuffer stringBuffer = new StringBuffer();

 for (int i = 0; i < hashBytes.length; i++) {

stringBuffer.append(Integer.toString((hashBytes[i] & 0xff) +

0x100, 16).substring(1));

 }

 return stringBuffer.toString();

 } catch (Exception exc) {

 }

 return null;

 }

}

wikipedia.java

package wrs.web.helpers;

import java.io.BufferedReader;

import java.io.IOException;

import java.io.InputStreamReader;

import java.net.HttpURLConnection;

import java.net.URL;

import java.net.URLEncoder;

import java.util.ArrayList;

import org.codehaus.jackson.JsonFactory;

import org.codehaus.jackson.JsonParser;

import org.codehaus.jackson.JsonToken;

104 Appendix

/**

 *

 * @author mihai.mihaila

 */

public class wikipedia {

 public static final String wikipediaAddress =

"http://en.wikipedia.org/wiki/";

 public static ArrayList<Integer> GetLatestRevisions(String

pageUrl, int revisionsCount) {

 ArrayList<Integer> pageRevisions = new

ArrayList<Integer>();

 String articleName = "";

 int startIndex = wikipedia.wikipediaAddress.length();

 int endIndex = pageUrl.length();

 logger.Instance.Log("Extracting page name from

address:" + pageUrl + " startIndex:" + startIndex + "

endIndex:" + endIndex);;

 articleName = pageUrl.substring(startIndex, endIndex);

 articleName = GetSanitizedArticleName(articleName);

 String utfArticleName = articleName;

 try {

 utfArticleName = URLEncoder.encode(articleName,

"UTF-8");

 } catch (Exception exc) {

 exc.printStackTrace();

 //ignore the error

 }

 String address =

"http://en.wikipedia.org/w/api.php?action=query&format=json&pro

p=revisions&rvprop=ids&rvlimit=" + revisionsCount + "&titles="

+ utfArticleName;

 try {

 URL url = new URL(address);

Code 105

 HttpURLConnection httpUrlConnection =

(HttpURLConnection) url.openConnection();

 httpUrlConnection.connect();

 InputStreamReader inputStreamReader = new

InputStreamReader(httpUrlConnection.getInputStream());

 BufferedReader bufferedReader = new

BufferedReader(inputStreamReader);

 StringBuilder stringBuilder = new StringBuilder();

 String line = "";

 while ((line = bufferedReader.readLine()) != null)

{

 stringBuilder.append(line);

 }

 bufferedReader.close();

 inputStreamReader.close();

 httpUrlConnection.disconnect();

 JsonFactory factory = new JsonFactory();

 JsonParser parser =

factory.createJsonParser(stringBuilder.toString());

 JsonToken token = null;

 while ((token = parser.nextToken()) != null) {

 if (parser.getCurrentName() != null &&

parser.getCurrentName().equals("revid")) {

 token = parser.nextToken();

pageRevisions.add(Integer.parseInt(parser.getText()));

 }

 }

 } catch (Exception exc) {

 exc.printStackTrace();;

 }

 return pageRevisions;

 }

 //get the right article name, dealing with underscores and

page redirects

 public static String GetSanitizedArticleName(String

articleName) {

 String returnedArticleName = articleName;

 String utfArticleName = articleName;

106 Appendix

 try {

 utfArticleName = URLEncoder.encode(articleName,

"UTF-8");

 } catch (Exception exc) {

 exc.printStackTrace();

 //ignore the error

 }

 String address =

"http://en.wikipedia.org/w/api.php?action=query&format=json&red

irects&titles=" + utfArticleName;

 try {

 URL url = new URL(address);

 HttpURLConnection httpUrlConnection =

(HttpURLConnection) url.openConnection();

 httpUrlConnection.connect();

 InputStreamReader inputStreamReader = new

InputStreamReader(httpUrlConnection.getInputStream());

 BufferedReader bufferedReader = new

BufferedReader(inputStreamReader);

 StringBuilder stringBuilder = new StringBuilder();

 String line = "";

 while ((line = bufferedReader.readLine()) != null)

{

 stringBuilder.append(line);

 }

 bufferedReader.close();

 inputStreamReader.close();

 httpUrlConnection.disconnect();

 JsonFactory factory = new JsonFactory();

 JsonParser parser =

factory.createJsonParser(stringBuilder.toString());

 JsonToken token = null;

 while ((token = parser.nextToken()) != null) {

 if (parser.getCurrentName() != null &&

parser.getCurrentName().equals("redirects")) {

 returnedArticleName =

GetNextToValue(parser, token);

 break;

 }

Code 107

 }

 } catch (Exception exc) {

 exc.printStackTrace();;

 }

 return returnedArticleName;

 }

 private static String GetNextToValue(JsonParser parser,

JsonToken token) throws IOException {

 while ((token = parser.nextToken()) != null) {

 if (parser.getCurrentName() != null &&

parser.getCurrentName().equals("to")) {

 token = parser.nextToken();

 return parser.getText();

 }

 }

 return "";

 }

 //get the right article name, dealing with underscores and

page redirects

 public static int GetPageId(String pageUrl) {

 String articleName = "";

 int startIndex = wikipedia.wikipediaAddress.length();

 int endIndex = pageUrl.length();

 logger.Instance.Log("Retrieving page id for article:" +

pageUrl + " startIndex:" + startIndex + " endIndex:" +

endIndex);;

 articleName = pageUrl.substring(startIndex, endIndex);

 String utfArticleName = articleName;

 try {

 utfArticleName = URLEncoder.encode(articleName,

"UTF-8");

 } catch (Exception exc) {

 exc.printStackTrace();

 }

108 Appendix

 String address =

"http://en.wikipedia.org/w/api.php?action=query&format=json&red

irects&titles=" + utfArticleName;

 try {

 URL url = new URL(address);

 HttpURLConnection httpUrlConnection =

(HttpURLConnection) url.openConnection();

 httpUrlConnection.connect();

 InputStreamReader inputStreamReader = new

InputStreamReader(httpUrlConnection.getInputStream());

 BufferedReader bufferedReader = new

BufferedReader(inputStreamReader);

 StringBuilder stringBuilder = new StringBuilder();

 String line = "";

 while ((line = bufferedReader.readLine()) != null)

{

 stringBuilder.append(line);

 }

 bufferedReader.close();

 inputStreamReader.close();

 httpUrlConnection.disconnect();

 JsonFactory factory = new JsonFactory();

 JsonParser parser =

factory.createJsonParser(stringBuilder.toString());

 JsonToken token = null;

 while ((token = parser.nextToken()) != null) {

 if (parser.getCurrentName() != null &&

parser.getCurrentName().equals("pageid")) {

 token = parser.nextToken();

 return Integer.parseInt(parser.getText());

 }

 }

 } catch (Exception exc) {

 exc.printStackTrace();;

 }

 return -1;

 }

}

Code 109

wikitrust.java

package wrs.web.helpers;

import java.io.BufferedReader;

import java.io.InputStreamReader;

import java.net.HttpURLConnection;

import java.net.URL;

import java.util.ArrayList;

/**

 *

 * @author mihai.mihaila

 */

public class wikitrust {

 public static int getPageTrust(String articleUrl) {

 int rating = 0;

 long start = System.currentTimeMillis();

 long end1 = 0;

 long end2 = 0;

 long end3 = 0;

 ArrayList<Integer> revisionIds =

wikipedia.GetLatestRevisions(articleUrl, 1);

 int pageId = wikipedia.GetPageId(articleUrl);

 String pageUrl =

"http://en.collaborativetrust.com/WikiTrust/RemoteAPI?method=wi

kimarkup&pageid=" + pageId + "&revid=" + revisionIds.get(0);

 ArrayList<Integer> trustArray = new

ArrayList<Integer>();

 ArrayList<Integer> trustWeightArray = new

ArrayList<Integer>();

 try {

 URL url = new URL(pageUrl);

 HttpURLConnection httpUrlConnection =

(HttpURLConnection) url.openConnection();

 httpUrlConnection.connect();

 InputStreamReader inputStreamReader = new

InputStreamReader(httpUrlConnection.getInputStream());

 BufferedReader bufferedReader = new

BufferedReader(inputStreamReader);

110 Appendix

 StringBuilder stringBuilder = new StringBuilder();

 String line = "";

 while ((line = bufferedReader.readLine()) != null)

{

 stringBuilder.append(line);

 }

 bufferedReader.close();

 inputStreamReader.close();

 httpUrlConnection.disconnect();

 end1 = System.currentTimeMillis();

 int index = stringBuilder.indexOf("{{#t:", 0);

 int previousClosingBracket = -1;

 while (index >= 0) {

 int commaIndex = stringBuilder.indexOf(",",

index);

 int closingBracket =

stringBuilder.indexOf("}}", index) + 2;

 String trust = stringBuilder.substring(index +

5, commaIndex);

 trustArray.add(Integer.parseInt(trust));

 if (previousClosingBracket != -1) {

 trustWeightArray.add(index -

previousClosingBracket);

 }

 previousClosingBracket = closingBracket;

 index = stringBuilder.indexOf("{{#t:",

commaIndex);

 }

 trustWeightArray.add(stringBuilder.length() -

previousClosingBracket);

 end2 = System.currentTimeMillis();

 } catch (Exception exc) {

 exc.printStackTrace();;

 }

Code 111

 int totalWeight = 0;

 for (int i = 0; i < trustArray.size(); i++) {

 rating += trustArray.get(i) *

trustWeightArray.get(i);

 totalWeight += trustWeightArray.get(i);

 }

 rating = rating / totalWeight;

 rating = (rating * 9) / 11;

 rating+=1;

 end3 = System.currentTimeMillis();

 System.out.println("v5." + " " + articleUrl + "

 " + rating + " " + trustArray.size() + " " + (end1

- start) + " " + (end2 - end1) + " " + (end3 - end2) + "

 " + (end3 - start));

 return rating;

 }

}

wrs.web.internals

WRSInternalResponses.java

package wrs.web.internals;

import java.util.List;

import wrs.web.dal.DatabaseInteraction;

import wrs.web.dal.tables.CategoryTable;

import wrs.web.resources.CategoryItemResponse;

import wrs.web.resources.CategoryResponse;

/**

 *

 * @author mihai.mihaila

 */

public class WRSInternalResponses {

112 Appendix

 public static CategoryResponse GetCategories() {

 CategoryResponse bean = new CategoryResponse();

 List categories =

DatabaseInteraction.GetAllCategoryTables();

 for (Object categoryObject : categories) {

 CategoryTable categoryTable = (CategoryTable)

categoryObject;

 bean.Items.add(new

CategoryItemResponse(categoryTable.getId(),

categoryTable.getName()));

 }

 return bean;

 }

}

wrs.web.rating

InteractionData.java

package wrs.web.rating;

import java.io.Serializable;

import wrs.web.helpers.logger;

/*

 * User: mihai.mihaila

 * Date: 5/13/11

 * Time: 9:59 PM

 */

public class InteractionData implements Serializable

{

 /*

 * 0 = Rating average,

 * 1 = Category Average,

 * 2 = Category Type,

 * 3 = Experience (1 good, 0 bad)

 */

 // fields

 private double averageRating;

Code 113

 private double categoryAverage;

 private int categoryType;

 private int experience;

 // getters and setters

 public int getCategoryType()

 {

 return categoryType;

 }

 public void setCategoryType(int categoryType)

 {

 this.categoryType = categoryType;

 }

 public double getCategoryAverage()

 {

 return categoryAverage;

 }

 public void setCategoryAverage(double categoryAverage)

 {

 this.categoryAverage = categoryAverage;

 }

 public double getAverageRating()

 {

 return averageRating;

 }

 public void setAverageRating(double averageRating)

 {

 this.averageRating = averageRating;

 }

 public int getExperience()

 {

 return experience;

 }

 public void setExperience(int experience)

 {

 this.experience = experience;

 }

114 Appendix

 public InteractionData()

 {

 this.averageRating = 0;

 this.categoryAverage = 0;

 this.categoryType = -1;

 this.experience = -1;

 }

 public InteractionData(InteractionData other)

 {

 this.setAverageRating(other.getAverageRating());

 this.setExperience(other.getExperience());

 this.setCategoryAverage(other.getCategoryAverage());

 this.setCategoryType(other.getCategoryType());

 }

 @Override

 public String toString()

 {

 String returnValue = "";

 returnValue+="Rating:"+this.getAverageRating()+

logger.newline;

 returnValue+="Category

Average:"+this.getCategoryAverage()+ logger.newline;

 returnValue+="Category Type:"+this.getCategoryType()+

logger.newline;

 returnValue+="Experience:"+this.getExperience()+

logger.newline;

 return returnValue;

 }

}

wrs.web.resources

CategoryItemResponse.java

 package wrs.web.resources;

 import javax.xml.bind.annotation.XmlRootElement;

 /**

 *

 * @author mihai.mihaila

Code 115

 */

 @XmlRootElement

 public class CategoryItemResponse {

 public int id;

 public String name;

 public CategoryItemResponse() {

 }

 public CategoryItemResponse(int id, String name) {

 this.id = id;

 this.name = name;

 }

 }

CategoryResponse.java

package wrs.web.resources;

import java.util.ArrayList;

import javax.xml.bind.annotation.XmlRootElement;

/**

 *

 * @author mihai.mihaila

 */

@XmlRootElement

public class CategoryResponse extends GenericResponse{

 public ArrayList<CategoryItemResponse> Items;

 public CategoryResponse() {

 this.Items=new ArrayList<CategoryItemResponse>();

 }

}

GenericResponse.java

package wrs.web.resources;

import javax.xml.bind.annotation.XmlRootElement;

/**

 *

 * @author mihai.mihaila

116 Appendix

 */

@XmlRootElement

public class GenericResponse {

 public String result = "success";

 public String exception;

 public GenericResponse() {

 }

 public GenericResponse(String exception) {

 this.exception = exception;

 }

 public GenericResponse(boolean result) {

 if (result) {

 this.result = "success";

 } else {

 this.result = "fail";

 }

 }

 public GenericResponse(boolean result, String exception) {

 if (result) {

 this.result = "success";

 } else {

 this.result = "fail";

 }

 this.exception = exception;

 }

}

IResponseBuilder.java

package wrs.web.resources;

/**

 *

 * @author mihai.mihaila

 */

public interface IResponseBuilder {

 public int GetImplementationId();

Code 117

 public RatingResponse GetRating(String pageUrl,String

username);

 public GenericResponse SetRating(String pageUrl,int

rating,int categoryId,boolean experience,String username);

}

RatingResponse.java

package wrs.web.resources;

import javax.xml.bind.annotation.XmlRootElement;

/**

 *

 * @author mihai.mihaila

 */

@XmlRootElement

public class RatingResponse extends GenericResponse{

 public String rating;

 public String categoryRatingPercentage;

 public String category;

 public RatingResponse()

 {

 }

}

WRSResource.java

package wrs.web.resources;

import java.io.File;

import java.io.IOException;

import java.net.URL;

import java.util.ArrayList;

import java.util.Enumeration;

import wrs.web.external.*;

import java.util.List;

118 Appendix

import javax.ws.rs.DefaultValue;

import javax.ws.rs.GET;

import javax.ws.rs.Produces;

import javax.ws.rs.Path;

import javax.ws.rs.QueryParam;

import javax.ws.rs.core.MediaType;

import wrs.web.dal.DatabaseInteraction;

import wrs.web.dal.IncorrectParameterValueException;

import wrs.web.dal.tables.UserTable;

import wrs.web.helpers.security;

import wrs.web.internals.WRSInternalResponses;

@Path("/wrs/")

public class WRSResource {

 @GET

 @Produces(MediaType.APPLICATION_JSON)

 public GenericResponse processRequest(

 @DefaultValue("") @QueryParam("method") String

method,

 @DefaultValue("1") @QueryParam("id") String id,

 @DefaultValue("1") @QueryParam("impl") int

implementation,

 @DefaultValue("") @QueryParam("pageUrl") String

pageUrl,

 @DefaultValue("") @QueryParam("username") String

username,

 @DefaultValue("") @QueryParam("password") String

password,

 @DefaultValue("0") @QueryParam("rating") int

rating,

 @DefaultValue("0") @QueryParam("categoryRating")

int categoryRating,

 @DefaultValue("") @QueryParam("experience") boolean

experience) {

 System.out.println("Welcome");

 if (method.equals("")) {

 return new GenericResponse("Method not found");

 }

 if (method.equals("createUser")) {

Code 119

 if (username.compareTo("") != 0 &&

password.compareTo("") != 0) {

 try{

 UserTable userTable =

DatabaseInteraction.CreateUser(username, password);

 if (userTable.getId() > 0) {

 return new GenericResponse(true);

 }

 }

 catch(Exception exc)

 {

 return new

GenericResponse(false,exc.getMessage());

 }

 }

 return new GenericResponse(false);

 }

 if (method.equals("login")) {

 try {

 this.login(username, password);

 return new GenericResponse(true);

 } catch (IncorrectParameterValueException exc) {

 return new GenericResponse(exc.getMessage());

 }

 }

 if (method.equals("getCategories")) {

 return WRSInternalResponses.GetCategories();

 }

 if (method.equals("getRating")) {

 IResponseBuilder responseBuilder = null;

 try {

 responseBuilder =

this.GetRequestedResponseBuilder(implementation);

 this.login(username, password);

 } catch (IncorrectParameterValueException exc) {

 return new

GenericResponse(false,exc.getMessage());

 } catch (DuplicateImplementationException exc) {

120 Appendix

 return new

GenericResponse(false,exc.getMessage());

 }

 if (responseBuilder == null) {

 return new GenericResponse("No implementations

found");

 }

 RatingResponse response =

responseBuilder.GetRating(pageUrl, username);

 return response;

 }

 if (method.equals("setRating")) {

 IResponseBuilder responseBuilder = null;

 try {

 responseBuilder =

this.GetRequestedResponseBuilder(implementation);

 this.login(username, password);

 } catch (IncorrectParameterValueException exc) {

 return new

GenericResponse(false,exc.getMessage());

 } catch (DuplicateImplementationException exc) {

 return new

GenericResponse(false,exc.getMessage());

 }

 if (responseBuilder == null) {

 return new GenericResponse("No implementations

found");

 }

 return responseBuilder.SetRating(pageUrl, rating,

categoryRating, experience, username);

 }

 return new GenericResponse("Invalid parameters");

 }

 public void login(String username, String password) throws

IncorrectParameterValueException {

Code 121

 UserTable userTable =

DatabaseInteraction.GetUserTableByUsername(username);

 if (userTable == null) {

 throw new

IncorrectParameterValueException("Incorrect username. Please

try again!");

 }

 if

(userTable.getPasswordHash().compareTo(security.GetHash(passwor

d)) != 0) {

 throw new

IncorrectParameterValueException("Incorrect password. Please

try again!");

 }

 }

 public IResponseBuilder GetRequestedResponseBuilder(int

implementationId) throws DuplicateImplementationException {

 IResponseBuilder responseBuilder = null;

 ArrayList<IResponseBuilder> responseBuilderArray = new

ArrayList<IResponseBuilder>();

 responseBuilderArray.add(new

WikiTrustResponseBuilder());

 try {

 Class[] classes =

this.loadClassesFromExternalPackage();

 responseBuilderArray =

this.loadFromPlugin(classes);

 } catch (Exception exc) {

 }

 IResponseBuilder plugin = null;

 if (plugin != null) {

 responseBuilderArray.add(plugin);

 }

 for (IResponseBuilder responseBuilderItem :

responseBuilderArray) {

 if (responseBuilderItem.GetImplementationId() ==

implementationId) {

 if (responseBuilder != null) {

122 Appendix

 throw new

DuplicateImplementationException("Duplicate implementations

found");

 } else {

 responseBuilder = responseBuilderItem;

 }

 }

 }

 return responseBuilder;

 }

 public Class[] loadClassesFromExternalPackage() throws

IOException, ClassNotFoundException {

 ClassLoader classLoader =

Thread.currentThread().getContextClassLoader();

 assert classLoader != null;

 String packageName = "wrs.web.external";

 String path = packageName.replace('.', '/');

 Enumeration<URL> resources =

classLoader.getResources(path);

 List<File> dirs = new ArrayList<File>();

 while (resources.hasMoreElements()) {

 URL resource = resources.nextElement();

 dirs.add(new File(resource.getFile()));

 }

 ArrayList<Class> classes = new ArrayList<Class>();

 for (File directory : dirs) {

 classes.addAll(findClasses(directory,

packageName));

 }

 return classes.toArray(new Class[classes.size()]);

 }

 private static List<Class> findClasses(File directory,

String packageName) throws ClassNotFoundException {

 List<Class> classes = new ArrayList<Class>();

 if (!directory.exists()) {

 return classes;

 }

 File[] files = directory.listFiles();

 for (File file : files) {

Code 123

 if (file.isDirectory()) {

 assert !file.getName().contains(".");

 classes.addAll(findClasses(file, packageName +

"." + file.getName()));

 } else if (file.getName().endsWith(".class")) {

 classes.add(Class.forName(packageName + '.' +

file.getName().substring(0, file.getName().length() - 6)));

 }

 }

 return classes;

 }

 private ArrayList<IResponseBuilder> loadFromPlugin(Class[]

classes) {

 ArrayList<IResponseBuilder> loadedClasses = new

ArrayList<IResponseBuilder>();

 for (Class loadedClass : classes) {

 try {

 Object obj = loadedClass.newInstance();

 if (obj instanceof IResponseBuilder) {

 loadedClasses.add((IResponseBuilder) obj);

 }

 } catch (Exception exc) {

 }

 }

 return loadedClasses;

 }

}

WRS Chrome Extension

global.js

var notifications = [];

var categories = {};

var wrsUsernameString = "wrsUsername";

var wrsPasswordString = "wrsPassword";

var displayNotificationsString = "displayNotifications";

//local machine

//var secureServerName = "https://Mihai-Acer-PC:8181";

124 Appendix

//var secureServerName = "http://Mihai-Acer-PC:8080";

//var normalServerName = "http://Mihai-Acer-PC:8080";

var secureServerName = "http://vmwrs.imm.dtu.dk:8080";

var normalServerName = "http://vmwrs.imm.dtu.dk:8080";

var reqGetRating = new XMLHttpRequest();

var reqCategories = new XMLHttpRequest();

var waitingTimeout = -1;

function showNotification(title, textToDisplay) {

 if (waitingTimeout != -1) {

 clearInterval(waitingTimeout);

 closeNotificationTimerElapsed();

 }

 //chrome.browserAction.setBadgeText({text:select.value});

 var notification = webkitNotifications.createNotification(

 'wrs icon.png',

 title,

 textToDisplay);

 notifications.push(notification);

 notification.show();

 waitingTimeout = setTimeout(closeNotificationTimerElapsed,

10000);

}

function closeNotificationTimerElapsed() {

 waitingTimeout = -1;

 closeAllNotification();

}

function closeAllNotification() {

 while (notifications.length > 0) {

 var notification = notifications.pop();

 notification.cancel();

 }

}

function loadRatingForPopup(username, password, pageUrl) {

Code 125

 reqGetRating.open("GET", secureServerName + "/wrs-

webapp/wrs?method=getRating&username=" + username +

"&password=" + password + "&pageUrl=" + pageUrl, true);

 reqGetRating.onload = processRequestGetRating;

 reqGetRating.send();

}

function cleanAddress(address) {

 var indexOfBreak = address.indexOf("#", 0);

 if (indexOfBreak >= 0) {

 address = address.substring(0, indexOfBreak);

 }

 return address;

}

function getTitleFromUrl(url) {

 var prefix = "http://en.wikipedia.org/wiki/";

 var address = url.substring(prefix.length);

 var replaceWithSpace=["_"];

 for(var i=0;i<replaceWithSpace.length;i++)

 {

 while (address.indexOf(replaceWithSpace[i]) >= 0) {

 address = address.replace(replaceWithSpace[i], "

");

 }

 }

 return address;

}

function processRequestGetRating() {

 var ratingDiv = document.getElementById("ratingDiv");

 var categoryRatingDiv =

document.getElementById("categoryRatingDiv");

 var jsonValue = JSON.parse(reqGetRating.response);

 if (jsonValue != null) {

 if (containsException(jsonValue)) {

 var loginText =

document.getElementById("loginText");

 loginText.innerText = "You are not logged in!";

 }

126 Appendix

 else {

 ratingDiv.innerText = jsonValue.rating;

 if (jsonValue.categoryRatingPercentage != "") {

 categoryRatingDiv.innerText =

jsonValue.categoryRatingPercentage + " % ";

 }

 if (jsonValue.category != "-1") {

 categoryRatingDiv.innerText +=

categories[jsonValue.category];

 }

 else {

 categoryRatingDiv.innerText += "Unassigned

category";

 }

 }

 }

}

function containsException(jsonValue) {

 if (jsonValue.exception != undefined) {

 return true;

 }

 else {

 return false;

 }

}

function loadRatingForBackground(username, password, pageUrl,

tabTitle) {

 if (localStorage[displayNotificationsString] == "true") {

 return;

 }

 else {

 reqGetRating.open("GET", secureServerName + "/wrs-

webapp/wrs?method=getRating&username=" + username +

"&password=" + password + "&pageUrl=" + pageUrl, true);

 reqGetRating.onload = function () {

 processRequestGetRatingBackground(tabTitle);

 }

 reqGetRating.send();

 }

}

Code 127

function processRequestGetRatingBackground(tabTitle) {

 var jsonValue = JSON.parse(reqGetRating.response);

 if (jsonValue != null) {

 if (containsException(jsonValue)) {

 showNotification("WRS Rating", "You are not logged

in. Use the WRS navigation bar icon to login");

 }

 else {

 var ratingValue = jsonValue.rating;

 var categoryPercentage =

jsonValue.categoryRatingPercentage;

 var category = jsonValue.category;

 showNotification(tabTitle,

formatRatingPopupText(ratingValue, categoryPercentage,

category));

 }

 }

}

function formatRatingPopupText(ratingValue, categoryPercentage,

category) {

 var text = "Rating: " + ratingValue + "; ";

 if (categoryPercentage != "") {

 text += categoryPercentage + " % ";

 }

 if (category != "-1") {

 text += categories[category];

 }

 else {

 text += " Unassigned category";

 }

 return text;

}

function addCategoriesToPopup() {

 addOption("", -1);

 for (key in categories) {

 addOption(categories[key], key);

 }

}

128 Appendix

function loadCategories() {

 reqCategories.open("GET", normalServerName + "/wrs-

webapp/wrs?method=getCategories", true);

 reqCategories.onload = processRequestCategories;

 reqCategories.send();

}

function loadCategoriesAndAddOptions() {

 reqCategories.open("GET", normalServerName + "/wrs-

webapp/wrs?method=getCategories", true);

 reqCategories.onload =

processRequestCategoriesAndAddOptions;

 reqCategories.send();

}

function processRequestCategoriesAndAddOptions() {

 processRequestCategories();

 addCategoriesToPopup();

}

function processRequestCategories() {

 var jsonValue = JSON.parse(reqCategories.response);

 if (jsonValue != null && jsonValue.Items != null) {

 for (var i = 0; i < jsonValue.Items.length; i++) {

 categories[jsonValue.Items[i].id] =

jsonValue.Items[i].name;

 }

 }

}

popupPage.html

<html>

<head>

 <title>Wikipedia Recommender System </title>

 <style type="text/css">

 body

 {

 min-width: 300px;

 max-height: 300px;

 }

 #categoryComboBox

Code 129

 {

 width: 200px;

 }

 </style>

 <script type="text/javascript" src="../sjcl.js"></script>

 <script type="text/javascript" src="../global.js"></script>

 <script language="javascript" type="text/javascript">

 var rating = undefined;

 var experience = undefined;

 var categoryId = undefined;

 var pageUrl;

 var username = localStorage[wrsUsernameString];

 var password = localStorage[wrsPasswordString];

 var reqSetRating = new XMLHttpRequest();

 function loaded() {

 chrome.windows.getCurrent(function (window) {

 chrome.tabs.getSelected(window.id, function

(tab) {

 pageUrl = cleanAddress(tab.url);

 loadCategoriesAndAddOptions();

 loadRatingForPopup(username, password,

pageUrl);

 Initialize();

 });

 });

 }

 function NavigateToOptions() {

 window.open("options.html");

 }

 function Initialize() {

 var loginButton =

document.getElementById("loginButton");

130 Appendix

 var divUsername =

document.getElementById("divUsername");

 var loginText =

document.getElementById("loginText");

 if (username != undefined && username !=

"undefined") {

 loginText.innerText = "logged in as ";

 divUsername.innerText = username;

 loginButton.value = "Log out";

 } else {

 loginText.innerText = "";

 divUsername.innerText = "";

 loginButton.value = "Log in";

 }

 }

 function addOption(display, value) {

 var select =

document.getElementById("categoryComboBox");

 var newOption = document.createElement("option");

 newOption.value = value;

 newOption.innerText = display;

 select.appendChild(newOption);

 }

 function callbackExperience(button) {

 if (checkCategorySelected()) {

 experience = button.value;

 disablePanel("panelExperience");

 checkAndSubmitRating();

 }

 }

 function checkCategorySelected() {

 var select =

document.getElementById("categoryComboBox");

 if (select.value == -1) {

 showMessage("Select a category first!");

 return false;

 }

 else {

 disablePanel("panelCategory");

 categoryId = select.value;

 return true;

Code 131

 }

 }

 function callbackRating(button) {

 if (checkCategorySelected()) {

 rating = button.value;

 disablePanel("panelRatings");

 checkAndSubmitRating();

 }

 }

 function checkAndSubmitRating() {

 if (rating != undefined && experience != undefined

&& rating != "undefined" && experience != "undefined") {

 submitRating();

 }

 else {

 if (rating == undefined || rating ==

"undefined") {

 showMessage("Please also give a rating to

the article.");

 }

 if (experience == undefined || experience ==

"undefined") {

 showMessage("Please also answer 'Was this

information useful to you?' above question.");

 }

 }

 }

 function submitRating() {

 //alert("Submitting rating:" + rating + ";

experience:" + experience);

 setRating();

 }

 function setRating() {

 reqSetRating.open("GET", secureServerName + "/wrs-

webapp/wrs?method=setRating&username=" + username +

"&password=" + password + "&pageUrl=" + pageUrl +

"&categoryRating=" + categoryId + "&experience=" + experience +

"&rating=" + rating, true);

132 Appendix

 reqSetRating.onload = processRequestSetRating;

 reqSetRating.send();

 }

 function processRequestSetRating() {

 var jsonValue = JSON.parse(reqSetRating.response);

 var success = true;

 if (jsonValue != null) {

 if (jsonValue.result != "success") {

 showMessage(jsonValue.exception);

 return;

 }

 }

 else {

 success = false;

 }

 if (success) {

 showMessage("Rating succesfully submitted");

 }

 else {

 showMessage("An error occurred while submitting

the rating");

 }

 }

 function showMessage(message) {

 var messageDiv =

document.getElementById("messageDiv");

 messageDiv.innerText = message;

 }

 function disablePanel(panel) {

 var trButtons = document.getElementById(panel);

 for (var i = 0; i < trButtons.children.length; i++)

{

 trButtons.children[i].disabled = true;

 }

 }

 </script>

</head>

<body onload="loaded();">

Code 133

 <table>

 <tbody>

 <tr>

 <td align="center" colspan="2" style="font-

size: 20;">

 Wikipedia Recommender System

 </td>

 </tr>

 <tr>

 <td colspan="2" align="right">

 <table>

 <tbody>

 <tr>

 <td align="right">

 <div id="loginText">

 </div>

 </td>

 <td style="font-weight: bold">

 <div id="divUsername">

 </div>

 </td>

 <td>

 <input id="loginButton"

type="button" value="Log out" onclick="NavigateToOptions();"

 style="width: 100px" />

 </td>

 </tr>

 </tbody>

 </table>

 </td>

 </tr>

 <tr>

 <td colspan="2">

 <table align="center">

 <tbody>

 <tr>

 <td>

 Article rating:

 </td>

 <td style="font-weight: bold"

align="center">

 <div id="ratingDiv">

 </div>

 </td>

134 Appendix

 </tr>

 </tbody>

 </table>

 </td>

 </tr>

 <tr>

 <td colspan="2">

 <table align="center">

 <tbody>

 <tr>

 <td>

 Category rating:

 </td>

 <td style="font-weight: bold"

align="center">

 <div

id="categoryRatingDiv">

 </div>

 </td>

 </tr>

 </tbody>

 </table>

 </td>

 </tr>

 <tr>

 <td height="10">

 </td>

 </tr>

 <tr>

 <td style="font-size: 18; font-weight: bold"

colspan="2">

 Your rating:

 </td>

 </tr>

 <tr>

 <td align="left">

 <div>

 Category</div>

 </td>

 <td id="panelCategory" align="center"

colspan="">

 <select id="categoryComboBox">

 </select>

 </td>

Code 135

 </tr>

 <tr>

 <td align="left" colspan="2">

 Was this information useful to you?

 </td>

 </tr>

 <tr>

 <td align="center" colspan="2"

id="panelExperience">

 <button id="buttonNo"

onclick="callbackExperience(this);" value="false">

 No

 </button>

 <button id="buttonYes"

onclick="callbackExperience(this);" value="true">

 Yes

 </button>

 </td>

 </tr>

 <tr>

 <td align="left" colspan="2">

 Rate this article:

 </td>

 </tr>

 <tr>

 <td colspan="2">

 <table border="0" cellpadding="0"

cellspacing="0" width="100%">

 <tbody>

 <tr>

 <td>

 <table width="100%">

 <tr>

 <td

id="panelRatings">

 <button

id="button1" onclick="callbackRating(this);" value="1">

 1

 </button>

 <button

id="button2" onclick="callbackRating(this);" value="2">

 2

 </button>

136 Appendix

 <button

id="button3" onclick="callbackRating(this);" value="3">

 3

 </button>

 <button

id="button4" onclick="callbackRating(this);" value="4">

 4

 </button>

 <button

id="button5" onclick="callbackRating(this);" value="5">

 5

 </button>

 <button

id="button6" onclick="callbackRating(this);" value="6">

 6

 </button>

 <button

id="button7" onclick="callbackRating(this);" value="7">

 7

 </button>

 <button

id="button8" onclick="callbackRating(this);" value="8">

 8

 </button>

 <button

id="button9" onclick="callbackRating(this);" value="9">

 9

 </button>

 </td>

 </tr>

 </table>

 </td>

 </tr>

 </tbody>

 </table>

 </td>

 </tr>

 <tr style="height: 50px; font-style: italic">

 <td colspan="2" align="center">

 <div id="messageDiv" />

 </td>

 </tr>

 </tbody>

 </table>

Code 137

</body>

</html>

options.html

<html>

<head>

 <title>WRS Options</title>

</head>

<script type="text/javascript" src="../global.js"></script>

<script type="text/javascript" src="../sjcl.js"></script>

<script type="text/javascript">

 var loginReq = new XMLHttpRequest();

 var createAccountReq = new XMLHttpRequest();

 function hash(password) {

 var result = sjcl.hash.sha256.hash(password);

 var hexValue = sjcl.codec.hex.fromBits(result);

 return hexValue;

 }

 function RestoreCredentials() {

 var username = localStorage[wrsUsernameString];

 var password = localStorage[wrsPasswordString];

 if (username == undefined || password == undefined ||

username == "undefined" || password == "undefined") {

 divLogin.style.display = "table-row";

 divLogout.style.display = "none";

 var textLoginUsername =

document.getElementById("textLoginUsername");

 var textLoginPassword =

document.getElementById("textLoginPassword")

 textLoginUsername.value = "";

 textLoginPassword.value = "";

 }

 else {

 divLogin.style.display = "none";

 divLogout.style.display = "table-row";

 var textLoggedInUsername =

document.getElementById("textLoggedInUsername");

 textLoggedInUsername.innerText = username;

138 Appendix

 }

 if (localStorage[displayNotificationsString] == "true")

{

 checkboxDisplayNotifications.checked =

localStorage[displayNotificationsString];

 }

 }

 // Saves options to localStorage.

 function LogIn() {

 var textLoginUsername =

document.getElementById("textLoginUsername");

 var textLoginPassword =

document.getElementById("textLoginPassword");

 enableLoginPanel(false);

 login(textLoginUsername.value,

textLoginPassword.value);

 }

 function login(username, password) {

 loginReq.open("GET", secureServerName + "/wrs-

webapp/wrs?method=login&username=" + username + "&password=" +

password, true);

 loginReq.onload = processLoginRequest;

 loginReq.send();

 }

 function processLoginRequest() {

 var textLoginUsername =

document.getElementById("textLoginUsername");

 var textLoginPassword =

document.getElementById("textLoginPassword");

 var jsonValue = JSON.parse(loginReq.response);

 if (jsonValue != null) {

 if (containsException(jsonValue)) {

 alert(jsonValue.exception);

 }

 else {

Code 139

 localStorage[wrsUsernameString] =

textLoginUsername.value;

 localStorage[wrsPasswordString] =

textLoginPassword.value;

 RestoreCredentials();

 }

 }

 else {

 alert("An error occured, please try again");

 }

 enableLoginPanel(true);

 }

 function enableLoginPanel(value) {

 var divLoginPanel =

document.getElementById("divLogin");

 divLoginPanel.disabled = !value;

 }

 // Restores select box state to saved value from

localStorage.

 function LogOut() {

 localStorage[wrsUsernameString] = undefined;

 localStorage[wrsPasswordString] = undefined;

 RestoreCredentials();

 }

 function CloseWindow() {

 window.close();

 }

 function ShowSignUp(display) {

 if (display == true) {

 divSignup.style.display = "table-row";

 }

 else {

 divSignup.style.display = "none";

 }

 }

140 Appendix

 function SignUp() {

 createAccount(signUpUsername.value,

signUpPassword.value);

 }

 function changeNotificationRules() {

 localStorage[displayNotificationsString] =

checkboxDisplayNotifications.checked;

 }

 function createAccount(username, password) {

 createAccountReq.open("GET", secureServerName + "/wrs-

webapp/wrs?method=createUser&username=" + username +

"&password=" + password, true);

 createAccountReq.onload = createAccountReqCallback;

 createAccountReq.send();

 }

 function createAccountReqCallback() {

 var jsonValue = JSON.parse(createAccountReq.response);

 if (jsonValue != null) {

 if (containsException(jsonValue)) {

 alert(jsonValue.exception);

 }

 else {

 alert("Account succesfully created");

 clearCreateAccountFields();

 ShowSignUp(false);

 }

 }

 }

 function clearCreateAccountFields() {

 signUpUsername.value = "";

 signUpPassword.value = "";

 }

</script>

<body onload="RestoreCredentials();">

 <table width="400" style="background-color: #EEEEEE">

 <tr>

 <td align="left">

Code 141

 <table style="background-color: #CCCCCC"

width="100%">

 <tr>

 <td style="font-size: 18; font-weight:

bold; color: Black;">

 WRS

 </td>

 </tr>

 </table>

 </td>

 </tr>

 <tr>

 <td>

 <table>

 <tr>

 <td>

 <input

id="checkboxDisplayNotifications" type="checkbox"

onchange="changeNotificationRules();" />Don't

 display rating notification</br>

 </td>

 </tr>

 </table>

 </td>

 </tr>

 <tr id="divLogin">

 <td>

 <table width="100%">

 <tbody>

 <tr>

 <td colspan="2" align="right"

style="font-size: 18; font-weight: bold">

 Login

 </td>

 </tr>

 <tr>

 <td align="right">

 Username:

 </td>

 <td>

 <input id="textLoginUsername"

type="text" style="width: 100%" />

 </td>

 </tr>

142 Appendix

 <tr>

 <td align="right">

 Password:

 </td>

 <td>

 <input id="textLoginPassword"

type="password" style="width: 100%" />

 </td>

 </tr>

 <tr>

 <td colspan="2">

 <table width="100%">

 <tr>

 <td>

 <input

type="button" onclick="ShowSignUp(true);" value="Don't have an

account?" />

 </td>

 <td align="right">

 <input

type="button" onclick="LogIn();" value="Log in" style="width:

100px" />

 </td>

 </tr>

 </table>

 </td>

 </tr>

 <tr>

 <!-- <td colspan="2">

 <table width="100%">

 <tr>

 <td style="width: 100%"

align="right">

 </td>

 <td align="right">

 </td>

 </tr>

 </table>

 </td>-->

 </tr>

 </tbody>

 </table>

Code 143

 </td>

 </tr>

 <tr id="divLogout">

 <td>

 <table width="100%">

 <tbody>

 <tr>

 <td colspan="2" align="right"

style="width: 100%; font-size: 18; font-weight: bold">

 Logged in

 </td>

 </tr>

 <tr>

 <td>

 <table width="100%">

 <tr>

 <td style="width:80px">

 Logged in as:

 </td>

 <td align="left">

 <div

id="textLoggedInUsername" style="font-weight: bold; width:

100%" />

 </td>

 </tr>

 </table>

 </td>

 <td align="right">

 <input id="buttonLogout"

type="button" onclick="LogOut();" value="Log out" style="width:

100px" />

 </td>

 </tr>

 </tbody>

 </table>

 </td>

 </tr>

 <tr id="divSignup" style="display: none">

 <td>

 <table width="100%">

 <tbody>

 <tr>

 <td colspan="2" align="right"

style="font-size: 18; font-weight: bold">

144 Appendix

 Sign up

 </td>

 </tr>

 <tr>

 <td align="right">

 Username:

 </td>

 <td>

 <input id="signUpUsername"

type="text" style="width: 100%" />

 </td>

 </tr>

 <tr>

 <td align="right">

 Password:

 </td>

 <td>

 <input id="signUpPassword"

type="password" style="width: 100%" />

 </td>

 </tr>

 <tr>

 <td colspan="2" align="right">

 <input type="button"

onclick="SignUp();" value="Sign up" style="width: 100px" />

 </td>

 </tr>

 </tbody>

 </table>

 </td>

 </tr>

 <tr>

 <td align="center">

 <table style="height: 50px">

 <tr>

 <td>

 <input type="button" value="Close

window" onclick="CloseWindow();" style="width: 100px" />

 </td>

 </tr>

 </table>

 </td>

 </tr>

 </table>

Code 145

</body>

</html>

backgroundPage.html

<html>

 <head>

 <script type="text/javascript"

src="../global.js"></script>

 <script language="javascript"

type="text/javascript">

 var wikipediaAddress =

'http://en.wikipedia.org/wiki/';

 loadCategories();

 chrome.tabs.onUpdated.addListener(function (id,

change, tab) {

 if (change.status == "loading") {

 if (IsValidWikipediaPage(tab)) {

 var tabUrl = cleanAddress(tab.url);

 initializeWikipediaPage(id, tabUrl,

getTitleFromUrl(tabUrl));

 }

 else {

 initializeDifferentPage(id);

 }

 }

 if (change.status == "complete") {

 }

 });

 function IsValidWikipediaPage(tab) {

 var validPage = true;

 var

beginning=tab.url.substr(0,wikipediaAddress.length);

 // exclude pages not belonging to wikipedia

 if(wikipediaAddress!=beginning)

 {

 validPage = false;

 }

146 Appendix

 // exclude special pages of wikipedia

 if (tab.url.indexOf("Special%3A") >= 0 ||

 tab.url.indexOf("User:") >= 0 ||

 tab.url.indexOf("Talk:") >= 0 ||

 tab.url.indexOf("Wikipedia:") >= 0 ||

 tab.url.indexOf("Help:") >= 0 ||

 tab.url.indexOf("Media:") >= 0 ||

 tab.url.indexOf("File:") >= 0 ||

 tab.url.indexOf("Category:") >= 0 ||

 tab.url.indexOf("action=history") >= 0 ||

 tab.url.indexOf("action=edit") >= 0 ||

 tab.url.indexOf("Portal:") >= 0 ||

 tab.url.indexOf("Main_Page")>=0

) {

 validPage = false;

 }

 return validPage;

 }

 // the page is a wikipedia article

 function initializeWikipediaPage(id,pageUrl,title)

 {

 chrome.pageAction.setIcon({path: "wrs

icon.png",tabId: id});

 chrome.pageAction.setPopup({popup:

"popupPage.html",tabId: id})

 chrome.pageAction.show(id);

 var username = localStorage[wrsUsernameString];

 var password =

localStorage[wrsPasswordString];

 loadRatingForBackground(username,password,pageUrl,title);

}

 function initializeDifferentPage(id)

 {

 //ignore other pages

 chrome.pageAction.setIcon({path:

"icon.png",tabId: id});

Code 147

 chrome.pageAction.show(id);

 }

 </script>

 </head>

 <body>

 </body>

</html>

Bibliography

1. Adler, B. T. & Alfaro, L. d., 2007. A Content-Driven Reputation System for the

Wikipedia, ACM Press.

2. Adler, T. B. & Alfaro, L. d., 2010. Detecting Wikipedia Vandalism using

WikiTrust, Lab report for PAN at CLEF 2010.

3. Adler, T. B., Alfaro, L. d., Pye, I. & Raman, V., 2008. Measuring Author

Contributions to Wikipedia, ACM Press.

4. Adler, T. B. et al., 2008. Assigning Trust to Wikipedia Content, ACM Press.

5. Wikipedia. [Online]

Available at: http://www.wikipedia.org/

6. bing.com, 2011. Facebook Friends Now Fueling Faster Decisions on Bing.

[Online]

Available at:
http://www.bing.com/community/site_blogs/b/search/archive/2011/05/16/new

s-announcement-may-17.aspx?wa=wsignin1.0

[Accessed 01 08 2011].

7. Giles, J., 2005. Special Report Internet encyclopaedias go head to head.

[Online]

Available at:

http://www.nature.com/nature/journal/v438/n7070/full/438900a.html

[Accessed 16 8 2011].

8. Jøsang, A., Ismail, R. & Boyd, C., 2007. A Survey of Trust and Reputation

Systems for online service provision.

9. Jøsang, A., Keser, C. & Dimitrakos, T., 2005. Can we manage trust?, pp. 93-

107.

10. Korsgaard, T. R., 2007. Improving Trust in the Wikipedia, Kongens Lyngby.

11. Lefevre, T., 2009. Extending the Wikipedia Recommender System, Kongens

Lyngby.

150 Bibliography

12. Marsh, S. P., 1994. Formalising Trust as a Computational Concept.

13. Pilkauskas, P., 2010. Expertise classification of recommenders in the

Wikipedia Recommender System, Kongens Lyngby.

14. Sanger, L., 2004. Why Wikipedia Must Jettison Its Anti-Elitism. [Online]

Available at: http://www.kuro5hin.org/story/2004/12/30/142458/25
[Accessed 22 8 2011].

15. Schein, A., Popescul, A., Ungar, L. & Pennock, D., 2002. Methods and

Metrics for Cold-Start Recommendations.

16. Victor, P., Cornelis, C., Teredesai, A. M. & De Cock, M., 2008. Whom Should
I Trust? The Impact of Key Figures on Cold Start Recommendations, New

York, pp. 2014-2018.

