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Summary

This thesis will focus on translating CSP processes to ForSyDe models, before
translation, we will introduce some basic operators and typical processes in CSP
for which we give translations to ForSyDe. As ForSyDe is a recent system-level
model, we will also make a detailed introduction to it. After that, some example
based translations will be illustrated to show how CSP processes to be translated
to ForSyDe.

The CSP processes we considered in this thesis are primitive processes, processes
with sending or receiving events, processes with choices (non-deterministic or
deterministic choice), and processes containing a recursion. It involves par-
allelism problems, such as pairwise channel communication and deterministic
choice control. Then the construction of CSP processes in ForSyDe will be
generalized. Towards channel communication between two processes, we also
discuss situations under Advanced Networks rather than Simple Networks.

We also propose an alternative approach to translate CSP processes to another
low-level model, task graph. Compare with two approaches, we will find the
advantage of ForSyDe.

All in all, we have achieved our goals but still have some problems left, which
will be concluded in the end.
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Chapter 1

Introduction

1.1 Background

Nowadays, concurrent systems [1] become very common, thanks to the devel-
opment of technology and our demands for computing power. A number of dif-
ferent activities can be carried out at the same time due to the concurrency. In
computer science, many models can be used to describe and analyze concurrent
systems, and one among them is called process calculus or process algebras [2].
Process algebras provide a tool for high-level description of interactions, com-
munications, and synchronizations between a collection of independent agents
or processes. Leading examples of process algebras include Communicating
Sequential Process (CSP) [3], Calculus of Communicating Systems (CCS) [4],
Algebra of Communicating Processes (ACP) [5]. In this document, we focus on
CSP models to represent a high-level description for concurrent systems.

CSP is known as a well known concurrency model invented by Tony Hoare [6].
It helps to focus on the interactions of concurrent processes, such as the dining
philosophers problem in [3]. One of big problems in a concurrent system is
communication, so the way to describe communication issue becomes significant
in CSP. We can describe communication channels, data types in channels, and
data sending and receiving behaviors among concurrent processes in CSP.
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However, data communication represented by CSP is modeled in high-level, we
cannot know how these data communication is accomplished on a executive
platform. It is very interesting to see how the high-level data communication
performs on a low-level architecture. Therefore, a new low-level model called
Formal System Design (ForSyDe) [7] is introduced. It is an abstract hardware
model and based on processes and signals. Processes are connected by signals,
each process in ForSyDe could be considered as an independent unit in a con-
current network.

Therefore, a translation from CSP to ForSyDe model is to show how CSP works
on this particular parallel hardware architecture, and give a concept about the
possibility of translating such kind of high abstract description to a system-level
modeling framework.

1.2 Motivation

The motivation of this thesis comes from three aspects:

• Since ForSyDe is a new model for system design, there seems to be few
articles to translate from other models to it. It is supposed to be a kind
of challenge to translate CSP to this system-level modeling framework.

• Add an expression to ForSyDe framework. As we know that CSP descrip-
tion is widely used in many fields, if we can use ForSyDe framework to
express CSP, the use of ForSyDe could be wider.

• CSP is related to a model in which all places with massive parallelism
and this translation can relate conceptual parallelism with hardware par-
allelism.

1.3 Goals

Two main goals are supposed to be accomplished:

• Understand basic principles of ForSyDe model and discover difficulties it
may occur when translating CSP to ForSyDe model.

• Select fragments of CSP for which there exist related ForSyDe frameworks.
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Besides, there is a sub goal as well. ForSyDe is under an ongoing develop-
ment and the document available is rather informal and insufficient, therefore,
a sub goal is to make a careful introduction to ForSyDe, in order to help others
understand ForSyDe framework better.

1.4 Structure of the thesis

In the rest of this document, it includes the following chapters.

• Chapter 2 gives a description of CSP, and a definition of CSP network.
It will illustrate some subsets of CSP for which we give translations to
ForSyDe.

• Chapter 3 makes a detailed introduction to ForSyDe, it shows how this
kind of system-level framework works with only processes and signals.

• Chapter 4 gives us some simple typical examples to illustrate a main idea
about translating CSP processes to ForSyDe models.

• Chapter 5 is to generalize how to construct ForSyDe models under a Simple
CSP Network.

• Chapter 6 is to discover a way to translate an Advanced Network commu-
nication.

• Chapter 7 offers an alternative approach about translating from CSP to
another low-level model, task graph [8]. After translation, the related task
graph will be scheduled on different multi-core platforms.

• Finally, a conclusion of the whole project is in Chapter 8, it will conclude
successes and declare difficulties during the project.
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Chapter 2

Communicating Sequential
Processes

In this chapter, we will make a brief introduction to CSP, including an overview
of CSP, principle operators, several types of CSP processes which will be trans-
lated later, a definition of CSP network, and traces of CSP.

2.1 Overview

CSP is a formal language for describing patterns of interaction in concurrent
systems. [1] Briefly speaking, CSP allows the description of systems in terms of
component processes that operate independently, and interact with each other
respectively through message-transmitting communication. Here, some concepts
in CSP are listed as follows.

Events in CSP are used to describe a kind of behavior, and an event could
include any action. For example, in a simple vending machine [3], two events
can be defined.

• coin - the insertion of a coin in the slot
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• choc - the extraction a chocolate from the dispenser of vending machine

However, there is no timing description of occurrences of events, thus, we don’t
know how long every event will last.

There is one kind of special event in CSP, which is called channel event in
this thesis. From the name, we can see that it is an event contains a channel
with sending or receiving action.

Alphabet is considered as a set of names of events which are relevant for a
particular description of an object. Objects are realistic objects in the world
around us, such as a simple vending machine is an object, and its alphabet here
is the set {coin, choc}.

Processes in CSP are to stand for the behavior pattern of an object, and it
can be described in terms of the limited set of events which are selected in its
own alphabet. [3]

A special process which represents fundamental behaviors is called primitive
processes. Two of instances of primitive processes are STOP (the process that
communicates nothing) and SKIP (represents successful termination).

Events and primitive processes are two kinds of basic components in a process
algebra.

2.2 Operators

Operators which are going to be translated to ForSyDe models will be enumer-
ated below.

• Prefix
Let a be an event and P be a process, a→ P is to represent a is a prefix
of P . After finishing event a, process P will start.

• Sending
If c is a channel, and v is a valid data through c (v ∈ α(c)). c!v is a
notation to represent sending v via c.

• Receiving
If c is a channel, and x is a valid data through c (x ∈ α(c)). c?x is a
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notation to represent receiving a valid data via c.

• Non-deterministic choice
The non-deterministic (or internal) choice operator is used to define a pro-
cess which exhibits a range of possible behaviors, and the internal mech-
anism choose which one to perform. A non-deterministic choice between
processes P and Q is with the notation P uQ. Choose P or Q is nothing
related to environment control.

• Deterministic choice
The deterministic (or external) choice operator is also to define a process
which exhibits a range of possible behaviors, but the environment controls
the choice. Notation P�Q is to represent deterministic choice between
process P and Q. Take P�Q as an example, if environment only allows
P take place, it will always choose P , however, if it is non-deterministic
choice P u Q instead, it may select Q to execute by accident, and then
cause deadlock.

Note: we also use a notation (|) to represent a choice if there is no specific
definition about internal or external. In this thesis, we will clarify a choice
operator either internal choice or external choice.

• Recursion
If a behavior of a process is endless and repetitive, it is tedious to write
down the entire behavior of process, so we need a method to describe such
recursion. If a process P always repeat event a, P could be defined as
P = a → P . As we can see, the method is to use a prefix notation (→)
and point to original process again. The recursion we discussed in this
thesis is called guarded recursion, which means the definition will work
only if the right-hand side of the equation starts with at least one event
prefixed to all recursive occurrences of the process name. Therefore, the
equation P = P does not succeed in defining anything. [3]

• Concurrency
CSP is introduced to describe concurrent system, and the notation to
describe concurrency between processes P and Q is P ‖ Q. When P and
Q are assembled to run concurrently, events that are in both alphabets
require simultaneous participation of both P and Q. However, events
which are only in the alphabet of P are of no concern toQ, and these events
can occur independently of Q whenever P engages in them. Similarly, Q
can engage alone in events only in alphabet of Q. [3]

However, there are many other operators in CSP we will not consider their
ForSyDe models in this thesis, for example:
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• The hiding operator (\), a process (a → P ) \ {a} assumes that event a
doesn’t appear in process P , it could be simply reduced to P .

• The interleaving operator (|||), so for the process P ||| Q, it behaves as both
P and Q simultaneously. The events from both processes are arbitrarily
interleaved in time.

• The chaining operator (�), and P � Q represents P and Q are joined
together by an internal channel, so that the sequence of messages output
by P and input by Q on this internal channel is concealed from their
common environment. [3]

2.3 Processes in CSP

A CSP process is a sequential process which is consist of events and primitive
processes. Sometimes, an equation to define a process may contain other pro-
cesses or itself. However, any process can be represented by events and primitive
processes basically. For instance,

P = a!5→ Q
Q = b?x→ SKIP

We can find process Q is consist of a channel event and a primitive process,
and process P contains a channel event and process Q. Process P also can be
defined as:
P = a!5→ b?x→ SKIP

As a result, P is made up of two channel events and a primitive process basically.

During translation, we focus on two types of sequential processes.

• Binary selective process: a process with the structure X�Y or X u Y ,
where X and Y are two sequential processes. For example, a binary
selective process P:

P = (a?x→ STOP )�(b?y → STOP )

• Recursive process: a process contains a recursion, and an example of a
recursive process P is below:

P = c!3→ d?x→ P .



2.4 CSP network 9

2.4 CSP network

2.4.1 Definition

CSP network is to make parallel CSP processes together in one network. Below
is a CSP network, CSP processes P1, P2, P3, ..., Pn are in parallel with each other.

Network = P1 ‖ P2 ‖ P3 ‖ ... ‖ Pn

Where, Pi (i∈[1,n]) can include any non- parallel CSP notations, such as send-
ing notation (!), prefix (→), internal choice (u) etc.

Each Pi has its own input alphabet in(Pi) and output alphabet out(Pi). in(Pi)
is a set of channels on which Pi can receive data, and out(Pi) is a set channels
on which Pi can send data. in(Pi) and out(Pi) could be empty (∅), if no input
channel or output channel is involved in Pi. For example, a CSP description of
process P1 is below:

P1 = c?x→ d!2→ e?y → f !5→ STOP

We can find that channels c and e are channels waiting for data, and channels
d and f are sending data. So in(P1) = {c, e}; out(P1) = {d, f}.

Some limitations on in(Pi) and out(Pi) of any Pi in a CSP network N =
P1 ‖ P2 ‖ ... ‖ Pn (i ∈ [1, n], n ≥ 1) are as follows:

• The input channel set and output channel set cannot be overlapped, thus,
in(Pi) ∩ out(Pi) = ∅. For example, Pi = (c?x→ STOP )�(c!8→ STOP )
is not allowed.

• If a channel c ∈ in(Pi), c cannot occur on the input channel set of any other
process Pj , j 6= i, thus, in(Pi) ∩ in(Pj) = ∅. It has the same limitations
on output channel set, out(Pi) ∩ out(Pj) = ∅. For instance, if P2 and P3

in Network N are defined:
P2 = c?x→ P2

P3 = c?y → STOP

We can find in(P2) ∩ in(P3) = {c}, so N is not discussed in this thesis.

According to the frequency of occurrence of one channel in a process of CSP
network, there are two kinds of CSP network in this thesis:
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• Simple Network, for any channel c ∈ in(Pi) ∪ out(Pi), if only one occur-
rance of channel event through c in Pi, such kind of network is called
Simple Network.

• Advanced Network, it does not have such kind of constraint on channels as
Simple Network. It allows channel events through channel c (c ∈ in(Pi)∪
out(Pi)), occurring several times in Pi.

2.4.2 Simple Network example

A simple vending machine [3] is a typical example for Simple Network, which is
to serve a cup of chocolate after inserting a coin. Its network (VM ) involves two
processes, process order is defined from customer’s side and the other process
makechoc is defined from the vending machine’s side. Two events coin and choc
appeared in VM, are described in Sect. 2.1, besides, one channel ch is used to
transmit data {start} between the two processes.

The simple CSP network VM = order ‖ makechoc

order = coin→ ch!{start} → order
makechoc = ch?{start} → choc→ makechoc

We can find that:
in(order) = ∅, out(order) = {ch}; in(makechoc) = {ch}, out(order) = ∅

Channel ch only appears once separately at processes order and makechoc, so
VM is a simple CSP network.

2.4.3 Advanced Network example

An Advanced Network example (ADNet) is as follows:

ADNet = P1 ‖ P2

P1 = c!4→ c!3→ P1

P2 = c?x→ c?y → c?z → P2

We can find sending events through channel c appear twice in P1, and receiving
events through channel c appear three times in P2, so ADNet is an Advanced
Network.
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2.5 Trace

A trace of the behavior of a process is a finite sequence of sequence of symbols
recording the events in which the process has engaged up to some moment. A
trace is denoted as a sequence of symbols, separated by commas and enclosed
in angular brackets. [3] Notice that <> is the empty sequence containing no
events.

For example, a CSP process P is defined:

P = a→ b→ P

Since there is a circle in process P, the sets of possible trace are infinite, and up
to some certain moments it could be:
<>, before process P has engaged in any events.
< a >, before executing the first event b.
< a, b >, finish executing the first circle.
< a, b, a >, before the event b in the second circle.
< a, b, a, b >, finishing executing the second circle.
...

For channel events, if it is a sending event such as c!v, the related symbol in
trace is denoted as c:v. If it is a receiving event as c?x, x ∈ Z, the related symbol
in trace is denoted as c:x, x ∈ Z. When c!v and c?x communicates with each
other, only v is transmitted. As a result, only event c:v will appear in trace
after concurrency.

Take the CSP network VM in Sect. 2.4.2 for example, the possible sets of trace
up to some certain time are as follows:

<>, before process VM has engaged in any events.
< coin >, before communicating through channel ch for the first customer.
< coin, ch : {start} >, before serving the first cup of chocolate.
< coin, ch : {start}, choc >, finish extracting the first cup of chocolate.
< coin, ch : {start}, choc, coin > before communicating through channel ch for
the second customer.
...

During translation, every trace of the CSP process can be reconstructed from
the signals in the corresponding ForSyDe model. We will give an example in
Sect. 4.8. However, we will not prove the correctness of the construction in this
thesis.
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Chapter 3

Formal System Design

In this chapter, we will give an introduction to ForSyDe models. It includes a
brief overview, signals and three sorts of processes in ForSyDe framework. Many
simple examples will be used to help to express ForSyDe models.

3.1 Overview

ForSyDe is an abbreviation of Formal System Design, which is a methodology
aimed at raising the abstraction level in system-level design, e.g. System on
Chip Systems, Hardware or Software. The components of ForSyDe systems are
processes and signals. In short, it is a system which is modeled as a network
of processes interconnected by signals. Figure 3.1 illustrates an example of a
ForSyDe framework, which contains two processes (P, Q) and three signals (S1,
S2, S3). This kind of ForSyDe framework with individual processes connected
by directed signals is called process network. It is a kind of data flow paradigm,
under which algorithms are described as directed graphs where the blocks rep-
resent computations (or functions) and the arcs represent data paths. [9]

A signal could contain a sequence of elements called tokens, and in ForSyDe it
must indicate how many tokens are taken from an input signal and how many
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tokens are sent through an output signal. It is indicated by the number at the
head and end points of a signal. Take Figure 3.1 for example, it shows P takes
one token from signal S1, and outputs one token through S2.

S3P Q1 1 1S1 S2 1

Figure 3.1: an example of ForSyDe framework

A concrete example of Figure 3.1 is given below.

Example 1
S1 contains five positive numbers < 1, 2, 3, 4, 5 >, since an element in a signal
is called a token, S1 has five tokens. As an input of P , one token is taken at a
time in order. Process P is a process which is defined by a function f(x) = x2,
and Q is also a process which is defined by a function g(y) = y + 1.

A behavior of the process network is given by a set of signals:

S1:< 1, 2, 3, 4, 5>
S2:< 1, 4, 9, 16, 25>
S3:< 2, 5, 10, 17, 26>

Note: the sequence of tokens in a group indicates that these tokens take place
one after another, and time interval between two tokens is one time unit. In
Example 1, P gets an integer 1 from S1 at the beginning, and after one time
unit P takes 2.

If a minor modification is done to S2 in Figure 3.1. Change the integer at
the end of the signal S2 from 1 to 2, shown in Figure 3.2. It means process
Q will take two tokens at a time. Because of the modification, S3 will get one
token when S2 has two tokens. and the speed of producing tokens of S2 is twice
faster than S3. If only one token left, Q will not receive any. As a result, the
function inside Q will contain two variables, such as g(x, y). A concrete example
is given below on the model in Figure 3.2.

S3P Q1 1 2S1 S2 1

Figure 3.2: an example with a modification to S2 in Fig. 3.1
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Example 2
Initialize input signal S1: <1, 2, 3, 4, 5>.
The functions in P and Q are:
P : f(x) = x2

Q : g(x, y) = y − x

As a result, the behavior of the process network is:

S1:< 1, 2, 3, 4, 5>
S2:< 1, 4, 9, 16, 25>
S3:< 3, 5>

It is easy to find that tokens in S3 have a wider space than S1 and S2, because
tokens which are in the same column take place at the same time. The result
shows that at the first time unit, only S1 and S2 carry tokens, then at the second
time unit, S3 has a token with the value 3, as well as S1 has a token 2 and S2
has a token 4. We can find that it still has a token with value 25 left in S2, but
Q will not accept it due to Q needs to take two tokens at a time.

3.2 Signals

From examples above, we can see that a signal can be defined as a sequence
of tokens, with a given type. It is classified as input signal, output signal and
internal signal in a process network. In Figure 3.1, S1 is an input signal, S2 is
an internal signal connecting P with Q, and S3 is an output signal.

Graphically, a signal is represented as an arrowed line. According to the di-
rection of arrow, it is easy to detect the start and end point of a signal.

Generally, the sequence of tokens could be infinite or finite. A token is a value of
a given type. The type could be any algebra type of a programming language.
It could be integer, string, or any compression type, but one signal cannot carry
values belonging to different types. In Example 1 and 2, the type of tokens is
integer, and five tokens in S1 are 1, 2, 3, 4 and 5.

Two special types of tokens are involved in this thesis:

• tokens for triggering, recorded as s, and they are only used to trigger next
processes without any meanings of data.

• tokens for terminating, recorded as low case t, they are only used to repre-
sent output tokens of process STOP . Since primitive CSP process STOP
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is a terminated CSP process, this type of tokens is a symbol for terminat-
ing the entire procedure.

In ForSyDe, it is important to notice that there is no time consumption in signal
channel. Therefore, in Figure 1, whenever S2 gets a token from P, this token
will be transferred to input point of Q concurrently.

3.3 Processes in ForSyDe

The definition of Processes in [7] is: “Processes are pure functions on signals,
i.e. for a given set of input signals a process always gets the same set of output
signals. It can also be viewed as a black box which performs computations over
its input signals and forward the results to adjacent processes through output
signals.”

A process with a function is called pure process. A pure process can only have
one output, for instance, processes P and Q in Example 1 and 2 are pure pro-
cesses. However, the process network in Figure 3.1 could also be considered
as one process, a hierarchical process. Therefore, a hierarchical process could
contain internal states with one or more processes. We call hierarchical process
as process for short in the rest of this document for convenience. Some typical
styles of processes are discussed below.

3.3.1 General Process

A general process is supposed to take one or more signals as its inputs and out-
puts. Figure 3.3 illustrates a general process with n input signals and m output

P

k1
I1

In

O1

Om
… …
kn tm

t1

Figure 3.3: a general process model

signals. An input signal (Ij) need to indicate the number of tokens (kj) that a
process P will take from it, where j ∈ [1, n], n > 0. Similarly, ti is the number of
tokens through output signal Oi, where i ∈ [1,m], m > 0. A concrete example
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is below with a model in Figure 3.4.

f
1

1
1

1I1

I2
O2

O1

1

I3
g

P

1

Figure 3.4: an example of general process

Example 3
P is a process with two functions:
f(v1, v2) = v1 + v2;
g(v2, v3) = v2 − v3;
where vj represents the related token of Ij .

O1: output value of f(v1, v2);
O2: output value of g(v2, v3).

Now, specify inputs,
I1:< 1, 3, 5, 7>
I2:< 1, 2, 3, 4>
I3:< 2, 2, 1, 1>

After calculation in P , outputs are:
O1:< 2, 5, 8, 11>
O2:< -1, 0, 2, 3>

There are two common properties of general processes:

• Functions in general processes are supposed to take no time delay, in other
words, once it can accept tokens from input signals, it will produce output
signals immediately.

• All of inputs of one pure process should be synchronized. In Figure 3.4,
the only way to execute process g is that I2 and I3 are both ready to send
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a token to it, otherwise it will wait. For instance, if we change the input
signals I3 in Example 3 with only three tokens. Now, the new example is
illustrated below in Example 4.

Example 4
Initialize three input signals as:

I1:< 1, 3, 5, 7>
I2:< 1, 2, 3, 4>
I3:< 2, 2, 1>

The behavior of the outputs is:
O1:< 2, 5, 8, 11>
O2:< -1, 0, 2>

Although, I2 has already prepared for the fourth value, I3 doesn’t contain
one more value at the moment. As a result, process g will not accept
values from any of input signals until I3 is ready for one more token.

3.3.2 Delay Process

As we mentioned before, a general process does not cost any time consumption,
but a Delay Process is a kind of process that consumes time. A single Delay
Process is in Figure 3.5, with one input signal In and one output signal Out.

Delay 11In Out

Figure 3.5: A ForSyDe model for a Delay Process

For a Delay Process, it contains an initial token in output signal, so the tokens
come from its input signal will always be one time unit delayed. A sample of
signals is below:

Example 5
In: < s1, s2, s3, s4>
Out:< s0, s1, s2, s3, s4>

s0 in signal Out is the initial token of the Delay Process, we can find that at
the first time unit, the Delay Process will output s0, then forward the tokens
from signal In.

A common usage of a Delay Process in ForSyDe is use it to control a loop, an
example which contains a loop could be modeled in Figure 3.6. Process P needs
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the output value to be another input value of itself, and the Delay Process is
used to send an initial token < P0 > to trigger the entire procedure. If we
remove the Delay Process in Figure 3.6, the output signal will connect with
input signal directly, shown in Figure 3.7.

Delay
(P0)

P

11

1

S1
S2

1

Figure 3.6: an example with a loop

P1

S1

S2
1

Figure 3.7: an example contains a loop without a Delay Process

However, the model in Figure 3.7 is illegal in ForSyDe, here, we illustrate an
example below.

Example 6
P : f(x) = x+ 1;

We assume process P can send an initial token < 0 > through S2 to trigger
the entire procedure, and the token < 0 > will go back to input point of P at
the first time unit. So without any time consumption, P takes a token < 0 >
from S1, sends < 1 > through S2, and then P also has to get the new input
< 1 >. All these procedures are supposed to be fulfilled at the first time unit.

The behavior of signals is:
S1:< 0(1) >
S2:< 0(1) >

At the first time unit, P is supposed to take two tokens < 0 > and < 1 >, but
the index at the end of signal S1 is 1, then P is not allowed to take two tokens
at the same time, therefore, a Delay Process is necessary.
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Example 7 below is with the model in Figure 3.6.

Example 7
P0 = 0;
Delay: it consumes one time unit, and replicates to forward values from S2 to
S1 100 times.
P is defined by a function f(x) = x+ 1.
S2: output value of f(x).

The behavior of signals is:
S1:< 0, 1, 2, 3, ..., 100>
S2:< 1, 2, 3, 4, ..., 101>

As a result, in ForSyDe model there is a requirement that every circle contains a
Delay Process, in this way to avoid inconsistent problems like Example 6 above.
Notice that a Delay Process always costs one time unit, but we could combine
several Delay Processes together to consume one or more time units.

3.3.3 Choice Process

In ForSyDe, there is a pair of choice operators, shown in Figure 3.8 related
to Choice1 and Choice2, and they are connected by a signal T. According to
signal T, both Choice1 and Choice2 will agree on the upper signals or the lower
signals to use, and for sure both choice operators will get the same signal from
T. For example, signal T can provide a Boolean value, true or false, if T sends
true, Choice1 will choose to send tokens through up1 and Choice2 will choose to
receive tokens through up2. On the contrary, if T sends false, Choice1 will pick
up down1 to send tokens and Choice2 will select down2 to get tokens. Process1
and Process2 will not affect the selection. Only the input signal T controls the
whole selection.

Constraints on index (k1, k2, ..., k10) beside each signal are defined below.

• k1: an arbitrarily integer x ∈ [1,∞)

• k2: either the same value as k1 or zero

• k3: either the same value as k1 or zero

• k4: the same value as k1

• k5: the same value as k1



3.3 Processes in ForSyDe 21

C
h
o
i
c
e
1

T

In

Process1

Process2

C
h
o
i
c
e
2

k1

up1

down1

up2

down2

Out

1 1

k10

k9

k8

k7

k6

k5

k4

k3

k2

Figure 3.8: a Choice Process model

• k6: an arbitrarily integer y ∈ [1,∞)

• k7: either the same value as k6 or zero

• k8: either the same value as k6 or zero

• k9: the same value as k6

• k10: the same value as k6

It is important that k2 and k3 cannot keep the same value at the same time,
which means if k2 is the same as k1, k3 must be zero, and it is the same on
the contrary. So as k7 and k8, they cannot keep the same value at the same
time too. It is because when we decide upper or lower signals to use by input
signal T, we need the selected signals to transmit tokens, and the non-selected
signals do not get any tokens. If we choose up1 and up2, k2 = k1, k3 = 0 and
k7 = k6, k8 = 0, otherwise, when down1 and down2 are selected, k3 = k1, k2 = 0
and k8 = k6, k7 = 0.

A concrete example is illustrated in Example 8 with the model in Figure 3.9.

Example 8
T: Sends a Boolean value randomly, token < T > represents true and < F >
represents false.
Choice1: If T sends true, up1 is selected, so Choice1 gets ready to forward a
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Figure 3.9: an example of a Choice Process

token from signal In to up1. Otherwise, down1 is selected to get ready instead.
Choice2: If T sends true up2 is selected, so Choice2 gets ready to forward a
token from up2 to signal Out. Otherwise, down2 is selected to get ready instead.

Functions in process P and Q are defined as:
P : f(x) = x2

Q : g(y) = y + 1

Initialize the input signals as:
In:< 1, 2, 3, 4, 5>
T :< T, F, F, T, F>

The behavior of signals is performed as follows:
In:< 1, 2, 3, 4, 5>
T :< T, F, F, T, F>
up1:< 1, 4>
down1:< 2, 3, 5>
up2:< 1, 16>
down2:< 3, 4, 6>
Out:< 1, 3, 4, 16, 6>



Chapter 4

Example based translations
from CSP to ForSyDe

In this chapter we will give examples to show how CSP processes to be translated
to ForSyDe frameworks. Primitive process and several non-parallel operators
in CSP will be described in ForSyDe model separately. In the next chapter the
translation will be generalized.

4.1 Primitive processes

For a single primitive process, the way to translate it is to map such kind of CSP
processes to pure processes in ForSyDe with one input signal and one output
signal. For example, primitive CSP processes STOP and SKIP are modeled
in Figure 4.1.

The input signals and output signals are:

• Sstart stop and Sstart skip: a start signal to declare that this process is
ready to proceed.
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1 1 Send_skip
SKIPSstart_skip

1 1 Send_stop
STOPSstart_stop

Figure 4.1: ForSyDe models for primitive processes STOP and SKIP

• Send skip: a procedural output signal which is connected to next process
or the environment.

• Send stop: this signal is never connected with other processes, since process
STOP represents communicating nothing. It can just be observed by the
environment.

4.2 Sending

A sending event c!v which represents sending a value v from channel c can be
modeled in Figure 4.2.

c!v1

11Sstart
Senv_in

Send
Senv_out1

Figure 4.2: a sending event c!v in ForSyDe

Two input signals and two output signals are involved in ForSyDe model:

• Sstart : a start signal to declare that this process of sending event is ready
to proceed.

• Senv in : an environment control input signal coming from its concurrent
partner to control the synchronization. The concurrent partner for sending
part is a receiving part of the same channel.

• Senv out : an environment control output signal to control other processes
which are dependent on this process. This signal is also connected to a
receiving part of the same channel.

• Send : a procedural output signal which is connected to next process or
the environment.
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4.3 Receiving

As a receiving part of a communication channel, it has the same model structure
as a sending part, which includes two input signals and two output signals.
Take c?x for example, it is modeled in Figure 4.3, where x could be any valid
transmitting through channel c.

c?x1

11Sstart
Senv_in

Send
Senv_out1

Figure 4.3: a receiving event c?x in ForSyDe

Four signals play similar roles as related signals in a process of sending event:

• Sstart : a start signal to declare that this process of receiving event is
ready to proceed.

• Senv in : an environment control input signal coming from its concurrent
partner to transmit data. The concurrent partner for receiving part is a
sending part of the same channel.

• Senv out : an environment control output signal to control other processes
which are dependent on this process. Here, this signal is connected to a
sending part of the same channel.

• Send : a procedural output signal which is connected to next process or
the environment.

4.4 Prefix

In ForSyDe, the way to represent Prefix symbol (→) is to connect a procedural
output signal of one process with a start signal of the next process.

For instance, a CSP description is that P = c?x → STOP , where event c?x
is a prefix of STOP. Both ForSyDe models for event c?x and primitive process
STOP have already discussed by Sect. 4.3 and 4.1. So a ForSyDe model for
CSP process P is illustrated in Figure 4.4. In this example, the signal Sc end

starting from process c?x and connecting with process STOP will be related to
the representation of a prefix symbol in CSP.
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c?x

1

11Sstart

S
e
n
v
_
i
n

Sc_end

S
e
n
v
_
o
u
t
1

STOP1 1 Send

Figure 4.4: A ForSyDe model for c?x→ STOP

The definitions of signals Sstart, Send in and Send out in Figure 4.4 are the same
as Sstart, Send in and Send out in Figure 4.3. Sc end is an internal signal repre-
senting the end of process c?x and a start signal of STOP . Send is the same as
Send in Figure 4.1.

4.5 Non-deterministic Choice

Non-deterministic choice is a choice decided by internal system. There is a prob-
lem while translating, since ForSyDe models are deterministic models. There-
fore, an extra simulator outside ForSyDe framework could be introduced to
provide a non-deterministic mechanism. A concrete example is given below.

CSP description:
P = (a?x→ STOP ) u (b?y → STOP )

From CSP description, there is an internal choice in P between channel a and
b. Once executing P , it will choose either channel a or channel b to be ready to
receive data.

In ForSyDe, a pair of choice operators which we have discussed in Sect. 3.3.3
is used to represent a CSP choice. As a result, the related ForSyDe model for
above example is shown in Figure 4.5.
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Figure 4.5: A ForSyDe model for a?x→ STOP u b?y → STOP

Signals between Choice1 and Choice2 have been described in details in Sect.
4.4, and other signals are defined as follows:

• Sstart : a start signal to declare that this choice process is ready to proceed.

• T : a control signal to choose whether (up1, up2) or (down1, down2) to
be prepared for using. An extra simulator outside ForSyDe model will
produce random tokens for the signal T to control the selection.

• Send : a procedural output signal which is observed by the environment,
since it forwards tokens from STOP process which cannot be connected
to other ForSyDe processes.
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4.6 Deterministic Choice

The example for deterministic choice is similar to non-deterministic, only one
operator’s modification, so the CSP description is as follows:

P = (a?x→ STOP )� (b?y → STOP )

The ForSyDe model for deterministic choice is very similar to the non-deterministic
choice model in Figure 4.5. The only difference between them is who is going
to connect with signal T . In deterministic choice ForSyDe model, signal T may
depend on another process or the environment, as we will see when we consider
about parallelism in Sect. 4.9.

4.7 Recursion

A recursive process in CSP is translated to a ForSyDe model containing a circle.
The simple example below shows how the translation of recursive process works.
The performance of P will repeat to receive data through channel c.

CSP description:
P = c?x→ P

The event c?x has already modeled in Figure 4.3, and the Delay Process is often
added at the end of the circle. Thus, process P could be modeled in Figure 4.6.

Send

c?x
1

Sstart
1

Delay
11

11

Senv_out Senv_in

Figure 4.6: A ForSyDe model for P = c?x→ P

According to the property of Delay Process, Sstart will contain one token at the
beginning, so when Senv in sends a token to the ForSyDe process c?x, c?x will
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be executed immediately. After one time unit delay, process c?x will wait for
another token from signal Senv in.

4.8 Pairwise communicating channel

In a Simple Network P1 ‖ P2 ‖ P3 ‖ ... ‖ Pn, which involves n processes in par-
allel. If there is a common channel in two different processes, one is for sending
data and the other is for receiving data, then the related processes in ForSyDe
model need to be connected with each other by their environment control signals
to guarantee the concurrent communication.

A concrete example with CSP processes P1 and P2 is given to show how to
construct a pairwise communicating channel.

CSP description:
P1 = c?x→ STOP
P2 = c!2→ STOP
where c has integer type, i.e. x ∈ Z

P2 is to send an integer 2 through channel c and then stop, while P1 is to
receive a value from channel c and stop.

As a result,
The set of traces of P1 is {<>} ∪ {< c : v >| v ∈ Z};
The set of traces of P2 is {<>} ∪ {< c : 2 >};
The set of traces of P1 ‖ P2 is {<>} ∪ {< c : 2 >}

The idea behind the translation of a parallel CSP process is to translate the
sending and receiving parts separately as we have seen examples of in Sect. 4.2
and Sect. 4.3, and then combine the two parts by connecting corresponding
environment control signals. This will be shown below.

As we have already discussed before, CSP process P1 and P2 can be modeled in
Figure 4.7 and Figure 4.8.

We can find there are two environment control signals Sv and Ss in process c?x,
and so as in process c!v.

Sv: an environment control signal for communication from the sending part to
receiving part.
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c?x
1

1 1

1Sp1_start

Sv

Sc?

Ss

STOP
11 Sp1_end

Figure 4.7: A ForSyDe model for P1 = c?x→ STOP

c!v
1

1 1

1Sp2_start

Ss

Sc!

Sv

STOP
11 Sp2_end

Figure 4.8: A ForSyDe model for P2 = c!2→ STOP

Ss: an environment control for synchronization from receiving part to sending
part.

Therefore, in a parallel CSP network, two environment signals of the same
channel are needed to be combined together. Here, combine Sv and Ss of P1

and P2, we can get a ForSyDe model for P1 ‖ P2 in Figure 4.9. In order to
understand the mechanism of channel communication, we visualize the internal
processes of the hierarchical process c!v.

c?x

1

11 1

1

1Sp1_start

Sv

Sp1_end

Ss

STOPSc?

Exe_c!v
1

1 11Sp2_start Sc!SYN
1

1 Sp2_end
STOP

1

Process c!v

Figure 4.9: A ForSyDe model for P1 ‖ P2

Processes and signals in the ForSyDe model for P1 ‖ P2 are described below.

Processes

• c?x: a process for receiving a value from channel c, function inside is
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c?x(x, v) = v, x and v are tokens from Sp1 start and Sv.

• Exe c!v: an internal process of c!v, it is used to sending tokens through
channel c, function inside is Exe c!v(x) = v. When getting a token x from
Sp2 start, output a value v, in this example, v = 2.

• SY N : an internal process of c!v, it is used to wait for a signal from the
receiving part in this way to guarantee synchronization. Function inside
is SY N(v) = v, which is used to forward a value from its input signal.

• STOP : a process for the primitive CSP process STOP.

Signals

• Sp1 start: a start signal of process c?x, when it contains a token, the process
c?x is ready to start.

• Sp2 start: a start signal of process Exe c!v, when it contains a token, the
process Exe c!v will start.

• Sv: an environment control signal starting from Exe c!v and connecting
with c?x, the tokens of Sv should be valid values for channel c.

• Ss: an environment control signal for synchronization from process c?x to
SY N .

• Sc?: an output signal from c?x to the next process.

• Sc!: an output signal from c!v to the next process.

• Sp1 end: an output signal of STOP in P1.

• Sp2 end: an output signal of STOP in P2.

Note : tokens in Sp1 start and Sp2 start are tokens for triggering, and tokens
in Sp1 end and Sp2 end are tokens for terminating. Besides, tokens in the other
signals here are all integer type.

The trace of the parallel process can be observed on Sc? and actually also on
Sc!, as values will appear on these signals when the sending and receiving parts
are synchronized.

The procedure of P2 is as follows, once there is a signal from Sp2 start, process
Exe c!v will be executed, Exe c!v(x) = 2, and send an integer 2 to process c?x
via Sv. Then it will wait a token from c?x to start the SY N , SY N(v) = v. So
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a token will be sent through Sc! to STOP , finally the terminal token will be
sent via Sp2 end.

While the procedure of P1 is that, when there is a data from Sv, another sig-
nal Sp1 start must also has a token at that moment so as to start executing
c?x(x, v) = v. c?x will send the data v through to processes SY N and STOP
through signals Ss and Sc? separately. Finally, a token will be sent through
Sp1 end to declare that P1 has finished.

Regard P1 ‖ P2 as a whole, there are two input signals (Sp1 start and Sp2 start)
and two output signals (Sp1 end and Sp2 end) in ForSyDe. Only input signals
will affect the whole procedure of P1 ‖ P2, therefore, there are four kinds of
possible combinations with the two inputs.

• Combination 1 Sp1 start does not contain any token, but Sp2 start contains
a token.

• Combination 2 Sp2 start does not contain any token, but Sp1 start contains
a token.

• Combination 3 Neither Sp1 start nor Sp2 start contains any token.

• Combination 4 Both of Sp1 start and Sp2 start contain tokens.

The behavior of signals are different according to four kinds of combinations of
inputs, and transmitted tokens are shown in Table 4.8.

Combination 1 Combination 2 Combination 3 Combination 4
Sp1 start <> < s > <> < s >
Sp2 start < s > <> <> < s >
Sv < 2 > <> <> < 2 >
Ss <> <> <> < 2 >
Sc? <> <> <> < 2 >
Sc! <> <> <> < 2 >
Sp1 end <> <> <> < t >
Sp2 end <> <> <> < t >

Table 4.1: The behavior of signals in P1 ‖ P2 ForSyDe model

As we known, every trace of the CSP process can be reconstructed from the
signals in the corresponding ForSyDe model. Check the output signals Sc? and
Sc!, we will find that only Combination 4 can output an integer 2, the other
three combinations cannot output any tokens. Related results of output to the
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traces of CSP process P1 ‖ P2, it is showed that the first three combinations
are related to trace <>, and the Combination 4 is related to the trace < c : 2 >.

4.9 Deterministic choice control

When there is a deterministic choice (�) in a CSP process, then this process is
controlled by another CSP process or the environment. Some concrete examples
are given below to show the how the parallel processes work. The choices in
examples are binary choice with one channel in each branch.

CSP description:
P3 = (a?x− > STOP )�(b?y− > STOP )
P4 = (a!3− > STOP )�(b!4− > STOP )
P5 = a!5− > STOP
where α(a) = α(b) = Z

P3 contains a deterministic choice which is used to choose channel a or channel
b to receive an integer, and then stops. P4 matches P3 perfectly, it also contains
a deterministic choice to send an integer 3 through channel a or send an integer
4 through channel b. P5 will send an integer 5 through channel a, and then stop.

We assume P3 is in a Simple Network, and there are four different related CSP
networks. The deterministic choice selection differs from different networks.

• Network 1 = P3 ‖ P4

If P3 is in parallel with P4, the performance of CSP process P3 ‖ P4

is to transmit 3 through channel a or 4 through channel b, then stop.
In ForSyDe, the two processes P3 and P4 can be modeled in Figure 3.8
separately, and connect related signals inside P3 and P4 to fulfill pairwise
communications of channel a and channel b, like in Figure 4.9. A ForSyDe
model for P3 ‖ P4 is in Figure 4.10.

Generally, in the entire thesis, signals in one figure with the same name
are assumed to be connected so as to make ForSyDe framework more
succinct. For example, in Figure 4.10, the output signal Sa v of process
a!v is connected to the input signal Sa v of process a?x, as they have the
same names.

In ForSyDe model, only use one choice signal T to control both choice
operators in P3 and P4. In this way, both P3 and P4 can agree on the
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Figure 4.10: A ForSyDe model for P3 ‖ P4
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upper signals or the lower signals to use. The way to control the signal T
is similar to non-deterministic choice, an extra simulator is used outside
this ForSyDe model to generate random data.

• Network 2 = P3

If only P3 inside CSP network contains channels a or b, this kind of CSP
network must communicate with the environment. We assume the envi-
ronment could perform any behavior in this thesis, so both channels a and
b are available. The problem becomes the same as Network1, then the
model for P3 is the same as Figure 4.5.

• Network 3 = P3 ‖ P5, and no communication with environment.

If P3 is in parallel with P5 without any communication with environm-
net, the performance of CSP process P3 ‖ P5 is always to transmit an
integer 5 via channel a, and then stop. P5 can be modeled similar to Fig-
ure 4.8 which performs like sending a value and stopping. The ForSyDe
model for P3 ‖ P5 without environment communication is modeled in Fig-
ure 4.11.
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Figure 4.11: A ForSyDe model for P3 ‖ P5 without environment communication

When Sp5 start contains a token, it will send a token through Sa v. This
token can be splited into two, one is used for communicating with process
a?x, and the other is connected to a process setChoice. Process setChoice
is a process which performs like that once receiving a token from signal
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Sa v, it will send a token through signal T to make a choice that choose the
upper signals. Since no communication with environment, it will always
choose the upper signals of the choice operators.

• Network 4 = P3 ‖ P5, and communication with environment is allowed.

Inside Network 4, only channel a can be chosen, but as we assumed before,
the environment can perform any behavior. Therefore, P3 can also get a
token via channel b from the environment. Since both of the choices are
available, it becomes the same problem as Network 1 too. The model for
P3 ‖ P5 is with environment communication is modeled in Figure 4.12.
Signal T is connected to an extra simulator, to choose either communicat-
ing inside Network 4 via channel a or communicating with environment
via channel b.
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Figure 4.12: A ForSyDe model for P3 ‖ P5 with environment communication



Chapter 5

Construct ForSyDe models for
Simple Network

In this chapter, we will generalize ForSyDe models for CSP processes. We will
also give a general idea about constructing pairwise communicating concurrency
in Simple Network and choice control frameworks.

5.1 General model

From a general point of view, every CSP process or event could be translated
to a process with one start input signal (Sstart), one procedural output signal

(Send), several environment control input signals (
−−−−→
Senv in) and environment con-

trol output signals (
−−−−−→
Senv out). The environment control signals are connected to

other processes. A general ForSyDe model is in Figure 5.1.

1

process
Sstart

Senv_in

1 Send

Senv_out

Figure 5.1: A general ForSyDe model
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The main idea of translating a CSP process is to separate each internal event
and process, translate every signal CSP event or primitive CSP process into a
ForSyDe model, then connect related signals together to make a whole ForSyDe
model.

In a CSP network, P1 ‖ P2 ‖ P3 ‖ ... ‖ Pn, where n ∈ [1,∞), Pi (i∈[1,n])
can include primitive processes, channel events. It also could be a binary selec-
tive process or a recursive process. However, any kind of CSP process can be
matched into model in Figure 5.1. Below, we will discuss some possible forms
of Pi.

5.1.1 Primitive process

A primitive process (SKIP or STOP) in Pi has empty vectors
−−−−→
Senv in and

−−−−−→
Senv out. So only Sstart and Send signals exist to stand for a start input signal
and a procedural output signal. A ForSyDe model for primitive process is in
Figure 5.2.

1
Primitive 
process

Sstart

Senv_in

1 Send

Senv_out0
0

Figure 5.2: A ForSyDe model for a primitive process

5.1.2 Channel event

Channel events are related to sending or receiving events in a CSP process.

If out(Pi) is not empty, it means CSP process Pi contains some sending events.
For an arbitrary channel [CHANNEL] with any communitation data type [DATA],
the single sending event is related to a fixed ForSyDe model in Figure 5.3.

Inside process CHANNEL!DATA, it contains two internal processes
Exe CHANNEL!DATA and SYN. Exe CHANNEL!DATA is the execution
part of sending event, and it outputs an environment control signal to a related
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1

CHANNEL!DATA
Sstart

Senv_in

1 Send

Senv_out1
1

Figure 5.3: A ForSyDe model for a single sending event

receiving part. SYN is used to wait for an environment control signal from
receiving part for synchronization. It is illustrated in Figure 5.4.

Senv_out

Exe_CHANNEL!DATA
1

1Sstart

Senv_in

SYN
1

1

Process CHANNEL!DATA

Send

Figure 5.4: A ForSyDe model for a sending event with internal processes

If in(Pi) is not empty, it means CSP process Pi contains some receiving events.
For an arbitrary channel [CHANNEL] with any communitation data type [DATA],
a single receiving event is related to a ForSyDe model in Figure 5.5.

1

CHANNEL?DATA
Sstart

Senv_in

1 Send

Senv_out1
1

Figure 5.5: A ForSyDe model for a single receiving event

Therefore, for any Pi, if there is one channel in it, a pair of signals Senv in and
Senv out will be added to the whole ForSyDe model of Pi. We assume c is a set
of channels involved in Pi, so c = in(Pi) ∪ out(Pi). Figure 5.6 shows Pi with a
set of channels c.
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1

Pi
Sstart 1 Send

Senv_in_c Senv_out_c1 1

Figure 5.6: A ForSyDe model for Pi with a set of channels c

5.1.3 Binary selective process

In CSP, two choice branches of binary selective process are separated by the
notation (u or �). We need to separate one branch from another, and get two
independent processes. The two processes are any arbitrary CSP processes X
and Y , and can be generally modeled in Figure 5.7.

1

X
Sstart_x

Senv_in_x

1 Send_x

Senv_out_x

1

Y
Sstart_y

Senv_in_y

1 Send_y

Senv_out_y

Figure 5.7: ForSyDe models for processes X and Y

In the ForSyDe model for a CSP choice operator, there are two upper signals
(up1 and up2) and two lower signals (down1 and down2) in Figure 3.8. Connect
up1 with Sstart x and up2 with Send x of process X, and connect down1 with
Sstart y and down2 with Send y of process Y . Therefore, the choice between
processes X and Y is modeled in Figure 5.8.
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Figure 5.8: A ForSyDe model for a choice between X and Y

Regardless internal signals, an abstract ForSyDe model for a binary selective
CSP process between two arbitrary processesX and Y is in Figure 5.9. Senv in choice

is also an environment control input signal, which decides process X or Y to be
chosen.

1

Pi

Sstart

Senv_in_x

1 Send

Senv_out_x
Senv_in_y

Senv_out_y1Senv_in_choice

Figure 5.9: An abstract ForSyDe model for a choice bewteen X and Y
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5.1.4 Recursive process

Recursion happens when a CSP process Pi contains itself in its own definition.
In the definition of a guarded recursive process, the right-hand side of the equa-
tion is always after at least one event. In ForSyDe, we know that any CSP
process Pi can be modeled to general model in Figure 5.1.

The way to describe recursion in ForSyDe is using a circle with a Delay Process.
The input signal of the Delay Process is signal Send of Pi, and the output signal
of the Delay Process is connected to the very beginning process in Pi as another
input signal of that process. So if Pi contains a recursion, it can be modeled in
Figure 5.10.

Send1
Sstart 1

Delay
11

First process1 ...

S
e
n
v
_
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_
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Srecursion

Figure 5.10: A ForSyDe model for a recursive process Pi

There is a problem when the model for Pi begins with a ForSyDe choice operator,
because the choice operator in ForSyDe only allows one input signal. In this
case, we can add one process Help before the choice operator to handle this
issue, which is modeled in Figure 5.11.

The process Help is used to get one input signal to start the whole process Pi,
as well as another signal from Delay processes, and then forward tokens from
the start signal to its output.

Thus, Help(x, y) = x
where, x represents a token from Sstart; y represents a token from Srecursion
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Send1
Sstart 1

Delay
11

Help1 ...

Senv_in Senv_out

Srecursion

C
h
1

C
h
2...

Figure 5.11: A ForSyDe model for a recursive process Pi begins with a choice
operator

5.2 Concrete procedures

For any Pi in CSP network, Network = P1 ‖ P2 ‖ P3 ‖ ... ‖ Pn, i ∈ [1, n], the
procedures of translating Pi is as follow:

• Step 1 Analyze the CSP description to get sending and receiving channels
involved and the number of choice operators, in order to determine the
related environment control signals. It also needs to check whether it
contains Pi itself.

• Step 2 Translate the CSP process from beginning. If the part is an event
or a process except a binary selective process with form (X uY or X�Y ),
we can translate it into a ForSyDe model in Figure 5.1 directly. If it is
a binary selective process, use a ForSyDe model with choice operators in
Figure 5.8 to separate processes. For every separated process, repeat Step
2 until reach the end. During translation, if reaches Pi itself, just ignore
it, and leave it later.

• Step 3 Once getting to the end, if Pi is a recursive CSP process, add a
Delay Process to the end of Pi, make a circle back to the first process, and
details are in Sect. 5.1.4.

Now, follow the procedures above, there is an example to show how to translate
a CSP process Pi:

Pi = a?x→ (b?y → Pi)�(c?z → STOP )

Steps are described as follows with related figures, in which we ignore names of
signals and index beside signals.
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1. Analyze the whole Pi, find in(Pi) = {a, b, c}, and one choice operator
in CSP definition. The definition contains Pi itself, so it is a recursive
process.

2. Start from the first event a?x, translate to a ForSyDe process a?x.

a?x

Figure 5.12: Step 2: Translating a?x

3. The rest of Pi is a binary selective process (b?y → Pi)�(c?z → STOP ),
a pair of choice operators in ForSyDe is added following ForSyDe process
a?x.

P
i_
C
h
1

P
i_
C
h
2

a?x

...

...

Figure 5.13: Step 3: Add a pair of choice operators

4. One branch of the binary selective process is b?y → Pi, construct ForSyDe
model for b?y, and ignore Pi at this moment. Put the framework of b?y
to the upper position in the pair of choice operators.

P
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C
h
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P
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C
h
2

a?x
b?y

...

Figure 5.14: Step 4: Add a choice branch b?y → Pi
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5. The other branch of the binary selective process is c?z → STOP , construct
ForSyDe model for this branch and add it to the lower position in the pair
of choice operators.

P
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h
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P
i_
C
h
2

a?x
b?y

c?z STOP

Figure 5.15: Step 5: Add another choice branch c?z → STOP

6. It has already reached the end of CSP description, and Pi is a recursive
process, so a Delay Process should be add to the end, which with an output
signal connected to the process a?x.

P
i_
C
h
1

P
i_
C
h
2

a?x
b?y

c?z STOP

Delay

Figure 5.16: Step 6: Add a Delay Process

5.3 Pairwise communicating concurrency

Pairwise communication in a CSP network means one sender has only one fixed
receiver partner to communicate. The concurrency of pairwise communication
is to connect the environment control signals of both sending and receiving sides
to make sure data transmission can take place at the same time. In Sect. 5.1.2
we have general sending and receiving models for arbitrary channel [CHANNEL]
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with any communication data type [DATA]. After connecting Senv out of CHAN-
NEL!DATA to Senv in of CHANNEL?DATA, and Senv in of CHANNEL!DATA
to Senv out of CHANNEL?DATA, we will get the pairwise communication model
in Figure 5.17.

CHANNEL?DATA

1

1

1

1Sr_start

Ssend_data Ssyn

Exe_CHANNEL!DATA
1

1 1Ss_start SYN
1

Process CHANNEL!DATA

Sr_end

Ss_end

Figure 5.17: A general ForSyDe model for pairwise communication

The connected environment control signals are:

• Ssend data: it is from sending process to receiving process, and transmits
a valid data for communication.

• Ssyn: it is from receiving process to sending process, and sends the received
data back to sending part to guarantee synchronization of both sides.

5.4 Choice control

As we know, any binary selective CSP process can be modeled as Figure 5.9.
The way to control the selection is to find a corresponding signal to connect
with Senv in choice. For any process Pi which binary choice with any arbitrary
processes X and Y , it can be written as Pi = X u Y or Pi = X�Y . We as-
sume X ′ is a process which has the same communication channels as X, and
in(X) = out(X ′), out(X) = in(X ′). For binary choice control of Pi, we can
conclude two kinds of models.

Model One called Simulator Model, as there is an extra simulator exists. It is
shown in Figure 5.18, and this model is related to three cases.

The first case is non-deterministic choice between X and Y (X u Y ). Signal
Senv in choice is connected to an extra simulator outside ForSyDe model. This
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simulator can generate tokens through Senv in choice randomly.

1

Pi

Sstart

Senv_in_x

1 Send

Senv_out_x

Senv_in_y Senv_out_y

1
Senv_in_choice

simulator
Outside ForSyDe

Figure 5.18: Simulator Model for choice control

The second case is that Pi = X�Y . If a Pj (Pj 6= Pi) exists in the CSP net-
work, and Pj = X ′�Y ′, the ForSyDe model For Pi ‖ Pj is in Figure 5.19. The
environment control signals for channels in X and Y can be matched perfectly
between ForSyDe model Pi and Pj . An extra simulator is connected to Pi and
Pj with the same signal Senv in choice, in order to control choices in both pro-
cesses concurrently. If we only take Pi or Pj point of view, the process is under
Simulator Model separately.
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Pi

Spi_start
Senv_in_x

1Spi_end Senv_out_x

Senv_in_y

Senv_out_y

1

simulator

Outside ForSyDe

1
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Spj_start

1 Spj_end

1

Senv_in_choice

1

Figure 5.19: A ForSyDe model for Pi ‖ Pj

The third case is also for deterministic choice Pi = X�Y , but X ′ and Y ′

could be only one or none of them exists in CSP network. However, this CSP
network can communicate with environment, and we assume the environment
can perform any behavior, so there could be X ′ or Y ′ in the environment. As a
result, both choices of Pi are available, and an extra simulator is used to choose
whether X or Y to be executed.
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Model Two is called Process Model, since an extra process is needed to deter-
mine the choice. It is illustrated in Figure 5.20.

1

Pi

Sstart

Senv_in_x

1 Send

Senv_out_x

Senv_in_y Senv_out_y

1Senv_in_choicesetChoiceSenv_out_x’i 1 1

Figure 5.20: Process Model for a choice control with a selection of X

This model is only related to one case that Pi = X�Y , and no communication
with environment is allowed. Inside CSP network, only channels in one of the
two choice processes (X and Y ) have their communication partners in the rest
of processes. We assume X ′ which is modeled in Figure 5.21 is inside the CSP
network, but Y ′ is not in CSP network.

1

X’
Sx’_start 1 Sx’_end

Senv_in_x’ Senv_out_x’

Figure 5.21: A ForSyDe model for X ′

Signal Senv out x′i in Figure 5.20 is one of
−−−−−−−→
Senv out x′ in Figure 5.21, once pro-

cess setChoice gets a token from Senv out x′i, it will send a token through signal
Senv in choice to choose process X for Pi.



Chapter 6

Advanced Network
Communication

The communication between two processes we have discussed in the previous
chapters is based on Simple Networks. However, the CSP communication could
under Advanced Networks. We will introduce a new operator to resolve commu-
nication under Advanced Networks in this chapter.

6.1 A shared channel

First of all, let’s come to an example under an Advanced Network, which is
described below.

Network1 = P1 ‖ P2 ‖ P3

P1 = c?x→ d!4→ c?y → P1

P2 = c!5→ c!6→ c!7→ P2

P3 = d?y → P3

where α(c) = α(d) = Z

We can find that channel d only has one occurrence of the sending event d!4
in P1, and one occurrence of receiving event d?y in P3, so the communication
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between them could be related to the ForSyDe model in Figure 5.17. However,
towards channel c, there are three sending events in P2 and two receiving events
in P1. We can find several sending and receiving behaviors could be performed
on the same channel in an Advanced Network, and such kind of channel is called
as a shared channel in this thesis. Since both P1 and P2 contain a recursion,
there is no fixed collocation between one sending event and one receiving event
through a shared channel c.

6.2 Selector on a shared channel

In above CSP description, at most one sending event is ready at a time, due to
the sequential structure of processes, and so as receiving events. However, we
need to find which sending event and receiving event are supposed to commu-
nicate.

A pair of selectors (Selector, Selector’ ) is proposed to resolve the problem, a
structure of selector mechanism on channel c shown in Figure 6.1. We will find
that Selector and Selector’ of channel c are illustrated in the middle of sending
and receiving parts. For the Selector in Figure 6.1, there is an input signal
connected with a sending event, a pair of input and output signals related to a
receiving event, while the output signal of the pair is connected to the receiving
event. On the other hand, the Selector’ has an input signal coming from an
receiving event, a pair of input and output signals related to a sending event,
while the output signal of the pair is connected to the sending event.

c?x

1

1

Selector’

c!v
1

1

1

1

1

Selector

1

1

1

.
.
.

.
.
.

Sending part Receiving part

Figure 6.1: A selector mechanism on channel c

First, we will take a look at the upper half of Figure 6.1, only consider about
the Selector and processes which are connected to the Selector. So for a CSP
network Network1 in Sect. 6.1, we can model a ForSyDe framework for P1 and
P2 in Figure 6.2, in the ForSyDe framework, we can find that the sending part
is corresponding to P2, and receiving part is corresponding to P1.

Let’s take sending and receiving part separately. From sending part point of
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P2=c!5->c!6->c!7->P2 P1=c?x->d!4->c?y->P1

Figure 6.2: A ForSyDe model for the example with the Selector on channel c

view, each of three senders of channel c has an environment control signal to
connect to Selector as three input signals of the Selector. However, among the
three input signals, only one of them can send a token carrying a valid data at
a time.

Towards the receiving part, there is a pair of input and output signals and each
pair is related to one receiver. For each pair, the input signal of the Selector is
a branch from a start signal of a receiver, and the output signal of the Selector
is connected with an environment control input signal from that receiver. For
instance, signals Sp2 start and Sv x in Figure 6.2 are in a pair which is related
to the receiver process c?x. After getting a token from its sending part, the
Selector will check all of input signals from the receiving part. If there is one of
input signals contains a token, and for sure this input signal belongs to a pair,
the Selector will forward the token to its output signal of that pair. If no token
exists in any input signal from its receiving part, the Selector will wait and keep
the data until one of its input signals from receiving part has a token.

When a receiver has got a token, it needs to send a token back to the sender who
starts the communication so as to accomplish the entire communication. So the
lower half of Figure 6.1 with the Selector’ is to achieve this function. Regardless
non-relevant signals and processes with channel c, the other half with Selector’
is modeled in Figure 6.3. We can find that the Selector’ has two input signals
connected to receivers and three pairs of input and output signals related to
senders. The functionality of the Selector’ is the same as the Selector.
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Figure 6.3: A ForSyDe model for the example with the Selector′ on channel c

Notice that signals with the same name in Figure 6.2 and 6.3 are supposed to
be the same signals.

The whole procedure of data communication on a shared channel is that when
one of senders sends a token to the Selector, the Selector will forward the token
to only one receiver who prepares for receiving. If no receiver is ready to get the
data, it will keep the data inside Selector until one receiver is ready. After the
receiver finishing receiving, the receiver will send a token to the Selector′, the
Selector′ can also forward the token to the sender who starts this communication
and waits for a reply, unlike Selector, there always be a sender who is ready to
get this feedback token.

6.3 Functions in selector

From the above example, we can see that both Selector and Selector′ have the
same functionality, and we call such kind of ForSyDe model as selector model,
which is consist of several input signals from a sending part, and several pairs
of input and output signals from a receiving part. Below, let’s take a look at
the general procedure of the selector model.

In a selector model, it will check all the input signals from the sending part for
every time unit, if there is no tokens at that moment, and no tokens are produced
for output. If a token appears at one input signal from the sending part, check
all the input signals from the receiving part to find which receiver can receive
this token, and then forward this token to that related output signal. If none of
receivers is ready for getting that token, the token will be stored in selector until
one receiver prepares for taking it. Notice that the model only allows one sender
and one receiver are activated, thus, if one of senders or receivers does not finish
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communicating, other senders or receivers cannot prepare for executing.

We shall now describe details of how a selector can be modeled in ForSyDe.
First, let’s have a look at two functions f(x), f̂(x), which are modeled sepa-
rately in Figure 6.4.

f(x)1x y1
f(x)1x y1

A ForSyDe model for f(x) A ForSyDe model for f(x)

Figure 6.4: ForSyDe models for f(x) and f̂(x)

Process f(x):
Input signal x ∈ A, A is a valid data set by a certain definition, such as integer,
float.
Output signal y ∈ B, B is also a valid data set by a certain definition, and
y = f(x).
f(x) is a one-to-one map, to fulfill A→ B.

Process f̂(x):
Input signal x ∈ Â, Â = {None} ∪A.

Output signal y ∈ B̂, B̂ = {None} ∪B, and y = f̂(x).
Here, None represents the signal x does not contain any tokens.

The definition for f̂(x) is:

f̂(x) =

{
None, x = None
f(x), x ∈ A

In ForSyDe, process f̂(x) will check signal x for every time unit. At a cer-
tain time unit, if no token appears, no token is sent out through y, and if there
is a token a via signal x, a ∈ A, it will send a related token f(a) through signal y.

Now, we extends the function f̂(x) with several input signals (−→x ) connected

with senders and several pairs of input and output signals (
−−−−→
start y and −→y ) re-

lated to receivers to model the selector. A general ForSyDe model for selector
is in Figure 6.5.

For all xi ∈ −→x , xi ∈ Â, since at most one of the input signals from the sending
part can contain a token at a certain time unit, the function selector(−→x ) is de-
fined as:
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selector1x
y1

start_y1

Figure 6.5: A ForSyDe model for selector

selector(−→x ) =

{
None, any xi ∈ −→x , xi = None
f(xi) = xi, xi, xj ∈ −→x ; any xj 6= xi, xi ∈ A, xj = None

From the equation of function selector(−→x ), two results can be reached.

• If there is no input signal contains a token, selector(−→x ) = None, all the
output signals −→y will not get any tokens.

• If just one input signal xi is available, selector(−→x ) = xi. Only one signal

yj (yj ∈ −→y ) with a related signal start yj (start yj ∈
−−−−→
start y) containing

a token could get the token with the value xi, and any other signal yk
(yk 6= yj , yk ∈ −→y ) will not receive any token. However, if no start yj has
a token at that moment, the token will be kept inside selector, until one
start yj signal contains a token.

A way to store a token inside selector is discussed here. We can introduce a
Delay Process connected with selector, shown in Figure 6.6. When the selector
has got a value from −→x but none of

−−−−→
start y has a token, the value could be sent

to the Delay Process first. Then at the next time unit, this value will be sent
back to the selector, and at that moment the selector will check

−−−−→
start y again

to see whether the value could be sent out.

selector
1x y1

start_y1

Delay

1

1

1

1

Figure 6.6: A ForSyDe model for selector with a Delay Process
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6.4 An example with selector

A simple example is in Figure 6.7, which illustrates a model containing a selector
with two senders and two receivers.

selector
1x1

y11

start_y11
1x2 y21

start_y21

Figure 6.7: An example with selector

Since x1 and x2 cannot contain tokens at the same time, and so as start y1 and
start y2, the possible combinations of input signals from sending part are given
in Table 6.1. v in table represents a valid data from a sender. The combinations
of start y1 and start y2 are collected in Table 6.2, where s represents a valid
token.

Combination x1 x2 Meaning
Send 1 None None No senders contain a value
Send 2 v None x1 contains a token, v
Send 3 None v x2 contains a token, v

Table 6.1: Possible combinations of x1 and x2

Combination start y1 start y2 Meaning
Receive 1 None None No receivers are ready to get a token
Receive 2 s None y1 is ready to get a token
Receive 3 None s y2 is ready to get a token

Table 6.2: Possible combinations of start y1 and start y2

Combine the Send i with Receive j, i, j ∈ {1, 2, 3}, we find get different output
signal combinations through y1 and y2. Mathmatically, there are nine combina-
tions between Send i and Receive j, however, only three results may take place.
The results and their related sending and receiving combinations are shown in
Table 6.3.
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Results Combinations
Neither y1 nor y2 can get a token Send 1×Receive j, Send i×Receive 1, (i, j ∈ {1, 2, 3})
y1 can get a token v Send 2×Receive 2, Send 3×Receive 2
y2 can get a token v Send 2×Receive 3, Send 3×Receive 3

Table 6.3: Results and related input combinations

From the results, we will find that only if Send 1 or Receive 1 take place, there
is no token to transmit out. When Send 2 or Send 3 happens, y1 may output
a token if Receive 2 takes place, and y2 may output a token if Receive 3 takes
place.



Chapter 7

An alternative approach

Besides translation from CSP to ForSyDe model, an alternative approach will be
discussed briefly in this chapter. CSP processes are translated to a task graph,
and then schedule a task graph on multi-core platforms.

7.1 Task Graph

A task graph [8] is a task scheduling area, where the nodes represent the tasks
and the edges represent the communications between the tasks. Scheduling
a task graph onto multi-core platforms with several processors is a trade-off
between maximizing concurrency and minimizing interprocessor communication
costs. An example of task graph is illustrated in Figure 7.1.

This example contains five tasks: T1, T2, T3, T4 and T5. The execution time
of each task is assigned beside the node, such as the execution time of T3 is 3
time units. The communication time between two tasks is assigned next to a
related arrow, just like one time unit is the communication time cost between
T1 and T3.

We have to notice that the communication time between two connected tasks
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Figure 7.1: A sample for task graph

in task graph is only taken into account when the two tasks are scheduled on
different processors, so if the two connected tasks are scheduled on the same
processor, the communication time could be ignored.

Below, we introduce a very realistic example to show how the translation and
scheduling after translation work.

7.2 Example based mapping CSP to task graph

7.2.1 VM system overview

VM system in this chapter is a system to serve coffee as well as chocolate, which
is more complicated than VM in Sect. 2.4.2. A customer can insert a coin to
choose chocolate or coffee. If chocolate is needed, the machine will make a cup
of chocolate after well. If coffee is chosen, the machine will crush coffee beans,
after that it will grow coffee.

The paths of serving chocolate and coffee are independent, as a result, VM
can take the order of chocolate and coffee one after another without any con-
flict. When a customer orders a chocolate, it takes some time to make. So
during the processing time, the VM can accept another order of chocolate, but
the new order is pending until the last cup of chocolate is finished. Towards
serving coffee, during the processing of crushing beans, the VM will accept a
new order of coffee as a pending order until VM finishes crushing beans and
starts to grow coffee. If there is a pending order in this system, VM cannot
accept another order, regardless the same drink or not.
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7.2.2 CSP description for VM

Events
This simple VM includes six events as follows, three external events from cus-
tomers and three internal events.

External events:

• coin: the insertion of a coin in the slot

• choc: the selection of ordering a cup of chocolate

• coffee: the selection of ordering a cup of coffee

Internal events:

• makingchoc: the procedure of extracting a chocolate from the dispenser

• crushing: the procedure of crushing coffee beans

• growing: the growth of coffee from the dispenser

Processes
Process VM is consist of four processes, which sending or receiving messages
between each other. The definition of four processes is:

• order: order one drink

• makechoc: make a cup of chocolate

• crushbean: crush coffee beans

• growcoffee: grow a cup of coffee

Channels
The channels between different processes are defined below:

• ch: a channel from order to makechoc

• bean: a channel from order to crushbean

• gr: a channel from crushbean to growcoffee
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Only one message {start} is transfered in these three channels, after sending or
receiving this message, the process can move on. The frame of processes and
channels are shown in Figure 7.2.

order

makechoc crushbean growcoffee

ch bean

gr

Figure 7.2: frame of processes and channels

CSP description
order = coin→ (choc→ ch!{start} → order)

�(coffee→ bean!{start} → order)

makechoc = ch?{start} → makingchoc→ makechoc

crushbean = bean?{start} → crushing → gr!{start} → crushbean

growcoffee = gr?{start} → growing → growcoffee

VM = order ‖ makechoc ‖ crushbean ‖ growcoffee

7.2.3 Task graph

Each event in CSP can be mapped to a node in task graph, and assigned a rea-
sonable execution time, which is not mentioned in CSP. Task nodes for events
involved in VM system and their execution time are shown in table 7.1.

Events coin choc coffee makingchoc crushing growing
Task node T1 T2 T3 T4 T5 T6
Execution Time 1 1 1 4 4 3

Table 7.1: nodes and execution time
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The translation of some notations are discussed below.

The prefix notation between two events in CSP is related to an arrow between
two related nodes in task graph. For example, event coin is a prefix of choc, so
there is an arrow from task node T1 to T2.

Communication channels in CSP are also mapped to an arrow between two
related nodes. The arrow starts from a node, which is the prefix of the sending
part of the channel, and it ends up with a node, which is the next event or
the next primitive process of the receiving part of the channel. For instance,
channel gr has event crushing as its prefix of the sending part gr!{start}, and
event growing is its successor of the receiving part gr?{start}. So an arrow
which starts from T5 and ends up with T6 is related.

The way to represent recursion is an arrow which starts from the related last
node and points back to the first node. If there is only one event involved in a
process, such as makechoc, this arrow goes back to the only task node T4.

Choice in task graph cannot tell the differences between deterministic and non-
deterministic choices. When coming to a selective process, use many arrows
starting from the same node, but ending up with different nodes to represent
more branches. In process order, after event coin, two events can be chosen,
as a result, two arrows both starting from node T1, but going to T2 and T3
separately are related.

Task graph of VM is illustrated in Figure 7.3. Left side of task graph (T1,
T2, T4) is serving chocolate, while right side (T1, T3, T5, T6) is serving coffee.

T1

T6

T5T4

T3T2

1

44

11

2
2

11

2

1

1 1

3

1
1

Figure 7.3: task graph for VM
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7.2.4 Executing on multi-core platforms

Single-core platform contains one processor, in this case, it doesn’t need to con-
sider about the communication time in task graph. However, it has to execute
task nodes one by one, some concurrent tasks cannot show their advantages.
For instance, the VM gets two orders, one is for coffee, and the other is for
chocolate. Task scheduling in processor P is shown in Figure 7.4.

T
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0

P T
3

T
5

T
6

1 2 6 9

coffee chocolate

T
1
T
2

T
4

11 15
T

Figure 7.4: task scheduling in single processor

We can find VM serves coffee and chocolate sequentially since only one proces-
sor exists, and it costs 15 time units to finish serving. For single processor, it
consumes 9 time units to serve coffee, and 6 time units to serve chocolate. If
order n cups of coffee and m cups of chocolate, the total time is to sum up the
individual processing time, as a result, (9n+6m) time units are needed.

Multi-core platform contains at least two processors and links between pro-
cessors. In VM system, if we order one coffee and one chocolate in a platform
with two processors with the architecture in Figure 7.5. It is scheduled as in
Figure 7.6.

P1 P2L

Figure 7.5: topology graph with two processors

In Figure 7.6, all tasks have finished being scheduled at time 9, it saves 40%
time compare with single processor. Processor P1 executes tasks serving coffee,
while P2 executes tasks serving chocolate. L is the link between P1 and P2, and
communication time from T3 to T1 is scheduled on it.
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Figure 7.6: one coffee and one chocolate scheduled on two processors

We can also introduce three processors platform like in Figure 7.7, and sched-
ule more than two orders, e.g. one coffee and two chocolate orders, which are
scheduled in Figure 7.8.

P1 P2
L1

P3
L3 L2

Figure 7.7: topology graph with three processors

Figure 7.8 shows P1 serves one coffee, and P2 serves one chocolate as in Figure
7.6. After ordering one chocolate, VM can also accept another order of choco-
late, which is executed on P3. However, the later order of chocolate has to wait
until T4 in P2 has finished, then starts a new T4 in P3 at time 9. The total
time consumption is 13 time units, while in single platform it needs 21 time
units.
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Figure 7.8: one coffee and two chocolates scheduled on three processors
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Conclusion

In this project we study the translation of a high-level model to a system-level
model. The main part of this document illustrates what CSP and ForSyDe
models are, and how to translate some subsets of CSP to ForSyDe models.

There are two reasons for this:

• CSP adds significantly to the expressiveness and abstractness which can
be used in connection with ForSyDe.

• The translation shows how CSP can be executed on a platform with mas-
sive parallelism.

We have used some concrete examples first to show how the translation works,
begin with simple CSP operators without concurrency, and then described how
to extend these simple components to a concurrent mechanism. The concurrency
discussed in this document covers communication concurrency under both Sim-
ple Network and Advanced Network. We have also discussed about controlling
a choice selection under a parallel platform. After elaborating example based
translations, we have generalized a ForSyDe framework for an arbitrary CSP
process and some events. We’ve concluded general procedures of translating a
CSP process, a way to construct pairwise communicating concurrency and a
solution to control a choice selection as well.
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We have also tried an alternative approach by translating CSP to task graphs.
Task graph is a low-level model as well, since every single task is supposed to
be scheduled on single or multi-core platforms. This approach does not appear
so positive as events in CSP will be scattered after being translated to inde-
pendent tasks, and it is not clear to see the interactions among processes in
CSP. Besides, the concurrency expressed there is a concurrency due to several
processors on multi-core platforms, not concurrent processes in CSP. However,
we can represent a CSP process by a hierarchical process in ForSyDe, and any
process in ForSyDe can be parallel to other processes, so interactions among
such ForSyDe processes can show how the concurrency performs. As a result,
from the expression of concurrency point of view, ForSyDe has its advantage on
this translation CSP to a low-level model, compared with task graph.

We have achieved two main goals proposed at the beginning, although there
may be some leakages during translation. We succeed to translate some subsets
of CSP, such as primitive process, prefix, recursion, pairwise communication,
and binary choice, to ForSyDe models. We also solve communication concur-
rency, and choice control problem in ForSyDe. Besides, this thesis could be a
supplementary material for ForSyDe.

However, there are still many aspects we could improve. For example, when
translating communication concurrency, we only consider about the situation
that one sender is connected with one receiver. What if there are more receivers
but only one sender is related? Signals for sending data could split to more
branches without any problems, but only one environment control input signal
of the sender is not enough. In this case, we may solve it by changing the model
or duplicating the sender. Another issue is that, now only binary choice is con-
sidered in one process, but it could be more. One idea to figure it out is to
combine more choice operators in ForSyDe together. One more difficult issue is
if processes have common non-channel events, no evidence to show which one
should take place earlier, unlike communication on channels. The solution of
this issue is still hung.

Therefore, we could solve above issues first in the next research stage. Then con-
sider about implementation of an application to display CSP on top of ForSyDe
model, since all of the translations of models are discussed theoretically, we need
an implementation to check whether it could work well.

During the research, we also find some shortcomings of ForSyDe, as follows:

• Document about ForSyDe is quite poor, the most knowledge we based on
is from [7]. Expressiveness from the limited literature does not give us a
clear definition and usage of some ForSyDe components.
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• There are some limitations in connection with software design. It seems
that ForSyDe lacks an abstract mechanism, for example, if we need a
selector like in Figure 6.5, we have to invent it from very basic ForSyDe
principles.

Inspired by the definition of selector (Sect. 6.2) in CSP translation, it
would be interesting to add a notion of a component to ForSyDe and to
define a rich set of connectors for composing components. Such concept
would enhance the applicability of ForSyDe significantly.



68 Conclusion



Appendix A

Wireless Sensor Networks

In appendix, we describe a CSP network of wireless sensor network, which was
supposed to be translated to a ForSyDe framework when starting this thesis.
Due to this CSP network is quite complicated and our skills of translation is not
mature enough, we have to give it up. However, we hope such translation from
complicated CSP networks to ForSyDe models can be achieved in the future.

A.1 Overview

Wireless sensor network (WSN) [10] is a network which is consist of an arbitrary
number of nodes and one sink, shown in Figure A.1. Each node has its own
identical number to correspond, and there are two major functions in nodes:

• To collect and produce data from its physical environment.

• To route data from itself and neighboring nodes towards a basic sink which
collects all data produced by the WSN for further processing.

The routing algorithm of every node is to find the shortest distance from itself
to the sink, and then send data to its neighboring node which is on the shortest
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Figure A.1: Model of Wireless Sensor Network

path. The distance between two neighboring nodes is a sum up of the physical
distance and energy distance. Physical distance depends on the geographical
distance of two nodes, and it is a fixed value between two neighboring nodes,
while energy distance is relevant to power of battery. Therefore, if the battery
of one node is lower than a particular level, the energy distance between itself
and its neighboring nodes will increase. So if the battery of one node is charged
above or discharged below that level, it has to change its own routing table and
broadcast to its neighboring nodes.

A.2 CSP description

We will give an introduction to all of variables, constants, events, channels and
processes before we show details about CSP network of WSN.
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A.2.1 Variable and Constant

Constant Type Meaning
C Integer an upper bound of the capacity of Node’s battery
L Integer a particular level to control the change of routing table
N Integer the total number of nodes

Table A.1: Table of constants in WSN

Varible Type Meaning
C(i) Float the current amount of battery of Node(i)
S(i) Set of integers a set of identical numbers of current

available neighboring nodes of Node(i)
T (i) routeTable type the current routing table of Node(i)
I(A) Integer the identical number of the neighboring node on

the shortest path to the sink
data any valid types the routing data inside WSN

Table A.2: Table of varibles in WSN

Note: i is an identical number of a Node, 1 ≤ i ≤ N ; routeTable is the type of
routing table.

A.2.2 Events

Event Meaning
absorbing solar panel is absorbing sunshine
charging charge the battery
processing the device is doing its work
discharging discharge the battery
updating(T (i)) update the routing table and get a new T (i)
getNodeSets(S(i)) get the set S(i) of available neighboring nodes
get(I(A)) get the identical number I(A) of a neighboring node

by algorithm A
sink processing the sink is doing further processing

Table A.3: Table of events in WSN
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A.2.3 Processes

There are eight processes in a single Node(i), and one process for sink. Processes
in Node(i) will be identical with number i, details are shown in Table A.4.

Processor Meaning
Solar(i) Absorb sunshine when it is allowed
Charge(i) charge the battery when it’s possible
Processor(i) get the data from neighboring nodes;

control the update of routing table and data forwarding
Discharge(i) discharge the battery when it gets a request
Device(i) a device in Node(i) which needs to consume battery to work
Update(i) update the routing table and find the current S(i) to broadcast
Forward(i) prepare for sending data, and get a neighboring node number I(A)
Output(i) Output data to neighboring nodes or sink
Sink Collect data from other nodes

Table A.4: Table of processes in WSN

A.2.4 Channels

A picture of process Node(i) is shown in Figure A.2. The Figure illustrates
communication channels between internal processes in Node(i) and two com-
munication channels which are connected with its neighboring node Node(n).

Details about every channel involved in Node(i) and messages through each
channel will be elaborated below.

• sun(i): from outside to Solar(i)
{sunshine} - when the solar panel detects sunshine
{shadow} - when no sunshine could be detected

• request(i): from Solar(i) to Charge(i)
{charge} - send a charging request battery
{stop} - send a command to stop charging battery

• reply(i): from Charge(i) to Solar(i)
{full} - reply that battery is full
{start} - send a command to start to charge battery
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• battery(i): from outside to Charge(i)
{full} - send a signal to declare that battery is full

• up1(i): from Charge(i) to Processor(i)
{update} - when battery reaches a particular level (L) after charging, while
battery is lower than L before charging, send this message to update the
routing table

• up2(i): from Discharge(i) to Processor(i)
{update} - when battery is below a particular level (L) after discharging,
while battery is higher than L before discharging, send this message to
update the routing table
{start} - start to discharge the battery
{failed} - when a discharing request is refused

• consume(i): from Processor(i) to Discharge(i)
{discharge} - when the processor needs to work, send a discharging request

• d consume(i) from Device(i) to Discharge(i)
{discharge} - when the device needs to work, send a discharging request
{fin} - after finishing its work, send a feedback to declare the work has
finished

• d reply(i): from Discharge(i) to Device(i)
{start} - start to discharge the battery
{failed} - when a discharing request is refused

• broadcast(i): from Update(i) to Output(i)
{routeTable, nodeSet} - routeTable is the updated routing table T (i);
nodeSet is the set of available neighboring nodes S(i)

• route(i): from Forward(i) to Output(i)
{data, n} - data is what should be sent to the sink; n is an identical
number of this neighboring node or the sink

• back(i): from Output(i) to Discharge(i)
{fin} - after finishing routing data or broadcasting routing table, send a
feedback to declare that the data transmission has finished

• i.comin(n): from Output(i) of Node(i) to Processor(n) of Node(n)
{data} - what should be sent to the sink or routing table of Node(i)

• n.comin(i): from Output(n) of Node(n) to Processor(i) of Node(i)
{data} - what should be sent to the sink or routing table of Node(n)
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Figure A.2: A picture for Node(i)
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Process Sink also has its own identity Isink, and it contains channels which are
connected with its neighboring nodes. If the sink has one neighboring node
Node(n), the picture of Sink is illustrated in Figure A.3.

Sink n.comin(Isink)

Figure A.3: A picture for Sink

Channel n.comin(Isink) is from Output(n) of Node(n) to Sink, with any valid
type of message {data} by definition. Sink is the terminal of the data transmis-
sion, so after getting the data, it could do further processing.

A.2.5 CSP network

The entire CSP netwrok for WSN is illustrated below:

WSN =‖i∈N Node(i) ‖ Sink

Node(i) = Solar(i) ‖ Charge(i) ‖ Processor(i) ‖ Discharge(i) ‖ Device(i)

‖ Update(i) ‖ Forward(i) ‖ Output(i)

Solar(i) = sun(i)?{sunshine} → request(i)!{charge} →

(reply(i)?{full} → Solar(i))

�(reply(i){start} → absorbing → (reply(i)?{full} → Solar(i))

�(sun(i)?{shadow} → request(i)!{stop} →

Solar(i)))
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Charge(i) = request(i)?{charge} →

if C(i) == C then reply(i)!{full} → Charge(i)

else if L ≤ C(i) < C then reply(i)!{start} → charging →

(battery(i)?{full} → reply(i)!{full} → Charge(i))

�(request(i)?{stop} → Charge(i))

else reply(i)!{start} → charging →

(battery(i)?{full} → reply(i)!{full} → up1(i)!{update}

→ Charge(i))

�(request(i)?{stop} →

if C(i) ≥ L then up1(i)!{update} → Charge(i)

else Charge(i))

Device(i) = d consume(i)!{discharge} → (d reply(i)?{failed} → Device(i))

�(d reply(i)?{start} → processing →

d consume(i)!{fin} → Device(i))

Update(i) = updating(T (i))→ getNodeSets(S(i))→ broadcast(i)!{T (i), S(i)}

→ Processor(i)

Forward(i) = get(I(A))→ route(i)!{data, I(A)} → Processor(i)
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Processor(i) = (up1(i)?{update} → consume(i)!{discharge} →

(up2(i)?{start} → Update(i))

�(up2(i)?{failed} → Processor(i)))

�(up2(i)?{update} → consume(i)!{discharge} →

(up2(i)?{start} → Update(i))

�(up2(i)?{failed} → Processor(i)))

�n.comin(i)?{data} →

if data == routeTable then consume(i)!{discharge} →

(up2(i)?{start} → Update(i))

�(up2(i)?{failed} → Processor(i))

else consume(i)!{discharge} →

(up2(i)?{start} → Forward(i))

�(up2(i)?{failed} → Processor(i))
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Discharge(i) = (d consume(i)?{discharge} →

if batteryLow then d reply(i)!{failed} → Discharge(i)

else d reply(i)!{start} →

if C(i) ≥ L then discharging → d consume(i)?{fin} →

if C(i) < L then up2(i)!{update} → Discharge(i)

else Discharge(i)

else discharging → d consume(i)?{fin} → Discharge(i))

�(consume(i)?{discharge} →

if batteryLow then up2(i)!{failed} → Discharge(i)

else up2(i)!{start} →

if C(i) ≥ L then discharging → back(i)?{fin} →

if C(i) < L then up2(i)!{update} → Discharge(i)

else Discharge(i)

else discharging → back(i)?{fin} → Discharge(i))

Output(i) = (broadcast(i)?{T (i), S(i)} →‖j∈S(i) i.comin(j)!{T (i)} → back(i)!{fin}

→ Output(i))

�(route(i)?{data, n} → i.comin(n)!{data} → back(i)!{fin} → Output(i))

Sink = n.comin(I(sink))?{data} → sink processing → Sink
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