
Integrating Visualization Software
into Learning Objects

Jens Peter Träff

Kongens Lyngby 2011
IMM-B.Sc.-2011-10

Technical University of Denmark
Informatics and Mathematical Modelling
Building 321, DK-2800 Kongens Lyngby, Denmark
Phone +45 45253351, Fax +45 45882673
reception@imm.dtu.dk
www.imm.dtu.dk

Summary

In this project we will develop a framework for integrating visualization into
learning objects, such that animations and explanatory text can be shown si-
multaneously.
We will in this project focus on Jeliot, a system that visualizes and animates
Java programs. Our primary goal is to find out if it is feasible to do this kind
of integration.
First we will describe what is understood by a learning object, why a framework
would be beneficial, which features are crucial and how we will achieve them.
Then we will present the model of the program, making up the core of the
framework. This is the part that handles all manipulation of the actual learning
object. We will dicuss various choices made to create the best possible program.
We will then proceed to present and discuss the user interaction. Which will be
how he/she will experience a learning object designed for this system.
A complete user guide can be found in the appendix.
Finally we will discuss how much work goes into creating learning objects for
this framework, how the framework will be distributed and how we can im-
prove the framework in the future. This will include minor improvements, and
integration of different concepts.

ii

Resumé

I dette projekt vil vi udvikle et system for at integrere visualiseringer i læring-
sobjekter, s̊aledes at animationer og forklarende tekst kan blive vist samtidigt.
Vi vil her fokusere p̊a Jeliot, et system der visualisere og animere Java pro-
grammer. Vores primære m̊al er at finde ud af om det kan betale sig at lave
denne form for integration.
Først vil vi beskrive hvad der forst̊as med et læringsobjekt, hvorfor s̊adan et sys-
tem ville være gavnligt, hvilke egenskaber der er grundlæggende for systemet og
hvordan vi vil opn̊a dem. Derefter vil vi præsentere modellen i vores program,
der er kernen i systemet. Det er denne del der h̊andtere alt manipulation med
det aktuelle læringsobjekt. Vi vil diskutere diverse valg der er blevet truffet
for at skabe det bedst mulige program. Vi vil da g̊a videre til at præsentere
og diskutere brugerens interaktion. Hvilket vil være hvordan han vil opleve et
læringsobjekt designet for dette system. En komplet brugervejledning kan blive
fundet i appendikset.
Til sidst vil vi diskutere hvor meget arbejde der skal lægges i at skabe læringsob-
jekter til dette system, hvordan systemet vil blive viderebragt og hvordan vi kan
forbedre systemet i fremtiden. Deriblandt mindre forbedringer og integrering af
andre koncepter.

iv

Preface

This thesis was prepared at DTU Informatics, the Technical University of Den-
mark in partial fulfillment of the requirements for acquiring the B.Sc. degree in
engineering. The project has been done from 1/2 2011 - 27/6 2011 and is worth
15 ECTS points.
Part of this project was done in the United States at the University of Con-
necticut.

The thesis deals with integration of visualization software and textual explana-
tion into Learning Objects. The main focus is to investigate if such a frame-
work can indeed by created and to make it more feasible for instructors to use
visualization software in learning objects. In this thesis we will develop such
a framework integrated with the Jeliot Animation Software. The project was
done under supervision from Professor Jørgen Villadsen, Technical University
of Denmark.
Co-Supervisor Professor Mordechai Ben-Ari, Weizmann Institue of Science, Is-
rael.
Author of Jeliot, Niko Myller, has kindly modified his program to comply with
the Visualization interface.

Lyngby, June 2011
Jens Peter Träff

vi

Acknowledgements

I will like to thank my advisor Jørgen Villadsen, who has kindly provided sup-
port on how to meet the requirements of DTU and set me up with this great
group of people who work with Jeliot and Learning Objects.

I will direct a speciel thanks to my Co-advisor Professor Mordechai Ben-Ari,
who has been a great support in developing this framework.

Author of Jeliot, Nico Myller has been very kind to adapt Jeliot to the Visual-
ization interface. Without that, this project would not have been possible.

Finally a thanks to my friend John Larsen, who has provided user feedback and
continuously questioned the report.

viii

Contents

Summary i

Resumé iii

Preface v

Acknowledgements vii

1 Introduction 3
1.1 What can be achieved by a framework 4
1.2 Jeliot and visualization software 5
1.3 Plan for the report . 6

2 Overall requirements 9
2.1 Features of this framework . 9
2.2 Overall design goals . 11

3 The Model 13
3.1 Design . 14
3.2 Implementation . 16
3.3 Tests . 19
3.4 Discussion of the Model . 25

4 The GUI 27
4.1 Design of GUI . 28
4.2 Implementation . 29
4.3 Test . 33
4.4 Discussion of the program . 42
4.5 Conclusion on the GUI . 44

x CONTENTS

5 Evaluation and future work 45
5.1 The Complete Framework . 45
5.2 Use and feasibility of LOjel . 45
5.3 Possible Improvements . 46

6 Conclusion 49

A Userguide to LOjel 51

B Source code for LOjel 59

Bibliography 99

CONTENTS 1

6

2 CONTENTS

Chapter 1

Introduction

In this paper I will present a framework for developing learning objects inte-
grated with visualization software. I will focus on working with Jeliot, a Java
animation software developed by Nico Myller1. Before starting, I’ll like to define
what is understood by a Learning object

Learning Objects

”Learning objects can be used for quick instruction and/or incorporation into
an online education curriculum. For the purposes of this site we define learning
objects as digital, re-usable pieces of content that can be used to accomplish a
learning objective. That means that a learning object could be a text document,
a movie, a mp3, a picture or maybe even a website. The key is to describe
why something is a learning object and in what context a person might learn
something from it. ” definition found at2.

For our purpose we will consider a learning object to consist of text and some
Java code. Since Jeliot is used to learn introductory programming, The learn-
ing objects created in this framework focuses on this aspect. Although we will

1Eastern University of Finland
2http://www.learning-objects.net/index.php

4 Introduction

design it such that it is as generic as possible.
Learning Object will at times be appreviated by LO.

1.1 What can be achieved by a framework

Learning objects today are mostly a loose collection of information from differ-
ent sources, i.e text, stepwise explanations and some sort of animation.
This can be relatively confusing for students trying to learn new information.
As a consequence, LO’s are hardly the selfcontained, easy-to-use, modules that
students can use as a complimentary source of knowledge/learning.
It has been argued in [5] that visualization software enhances learning of a
complicated topic like a new programming language. Learning Objects using
visualizations have been created to take advantage of this.
They, however suffer from lack of integration, i.e. text and animations are not
shown in the same window nor are they necessarily consistent. Furthermore
instructors have to spend a considerable amount of time creating the learning
objects with Jeliot as discussed in [4]:

By developing a framework for design of LOs integrated with visualization soft-
ware, we can achieve some of the traits mentioned in the Learning Object section
and mend some of the issues raised in previous paragraph.

• We can display text and animation simultaneously in the same window.
Removing the need to cycle through various windows open at the same
time.

• We can make it possible to display text and animation interleaved, thus
making it consistent.

• We can add stepwise descriptions. Linking hard-to-understand parts to
explanatory text, thus further add learning.

• Integrated LOs created by this framework will make it possible for students
to learn at their own pace, playing around with the text, animations and
explanations. Thus reinforce the learning from lectures.

• The amount of work the instructor has to put into a LO can be reduced
to just the actual information the students need. This should make using
LOs attractive to more instructors, and should greatly increase the use by
those already using the concept.

1.2 Jeliot and visualization software 5

Before defining key features of such a framework, we will take a look at the
visualization software.

1.2 Jeliot and visualization software

Jeliot is a animation system of programs in Java. It takes a program in
Java and automatically generates a detailed animation of the execution of the
program.
It animates each step in the code and keeps track of variables, methods and
earlier calls to methods.
This is excellent for assisting novice programmers in learning the concepts of
Java. It contains methods for controlling the animation. The user have the
ability to start, stop, restart and stepwise progress the animation. He can load
earlier code into the program too.
Those functions describe what can reasonably be expected as user control of a
visualization/animation software.

For more on Jeliot see [1] and [4]. Jeliot has an online website at [2].

1.2.1 Visualization interface

Visualization software commonly provides the user with some basic functional-
ity. This can be the ability to:

• play the animation

• stop the animation

• go stepwise forward in the animation

• restart the animation

• load something to be visualized

This suggests that we can come up with an interface Visualization that specifies
those features. Thus if an animation software implements the interface, we
should be able to work with it in our design of integrated learning objects. the
Visualization interface has been designed by prof. Mordechai Ben-Ari.

6 Introduction

1.3 Plan for the report

In the next chapter we will define keyfeatures, that we will strive to implement.
Following that we will deal with the design and implementation of the model
part of the framework, Which contains the main methods for manipulating the
LO.
Chapter 4 describes the development of the GUI and the whole program. This
part describes the control mechanisms and tests the functionality of the whole
framework.
Chapter 5 contains a short evaluation and some suggestions for future work,
that can be done on this framework. It is followed by a conclusion.
In Appendix A the userguide for the framework can be found.
In Appendix B the actual source code can be found.
Both the whole framework and the main program in the framework will be
named LOjel. It should be clear from the context which one are ment.

Before we move on to the requirements of the framework, we will define a few
terms:

Animation Step:

The animation in Jeliot occur in steps. Each animation step refer to one
step in Jeliot. When a step is said to be animating, it means that the actual
animation of the given step is being conducted.

Animation:

When talking about the animation, we refer to the animation of the whole LO.
That is of all the Java-code contained in the LO.
Throughout the report, animation might be used as a reference to the text of
the LO interleaved with the animation. It should be clear from the context
what is meant. When the animation is said to be running, it refers to the whole
animation being automatically progressed step by step.

1.3 Plan for the report 7

Step Description:

We distinguish between an animation step in Jeliot and the stepwise descrip-
tions prepared by the instructor. We will call each description prepared by an
instructor a step description.

8 Introduction

Chapter 2

Overall requirements

In this chapter we will analyse the overall requirements for a framework for
creating and displaying learning objects integrated with visualization software.
There are two kind of users, the students and the instructor. The students
will use the learning objects and are thus the main users of the program. The
instructor are the creator of the LO.
We will first look at it from the student’s point of view and then from the
instructors side. Finally we will present the overall design goals.

2.1 Features of this framework

In this section we take a look at desirable key features in our framework:

2.1.1 Student point of view

From the students point of view, it would be important that it is easy to use, is
beneficial for learning and stable. Some features that can help accomplish this
is:

10 Overall requirements

The ability to control the animation, that is, play, stop, step, reset,
step back
In this way the student gets absolute control of the pace of the animation and
can go stepwise forward at the tricky part of the subject.

Good synchronization between text and animation
This ensures that the student get the information in a simple way, and that the
stepwise explanation and animation together can help explain difficult concepts
in the LO.

Easily accessible explanatory text and a stepwise description
Preferably in the same window, this removes the need to cycle through different
windows and should give the student more focus on the actual content.

Easy to navigate in
In order to focus maximally on the learning of a new subject, it has to be easy
to operate. It should be easy to access a tutorial and help menues as well.

2.1.2 Instructor’s point of view

Overall product should be instructive and beneficial for student learn-
ing

Design process should be simple
This will help convince teachers/instructors that LO’s is an asset worth using in
teaching. It enables the instructor to focus on the actual content that he want
the student to learn.

Ability to link comments to specific steps of the animation
Enables the instructor to customize which steps he wants to add speciel infor-
mation for.

Good customizability regarding explanation and checks
Allows the instructor to emphasize the aspects he wants to focus on, and at the
same time gives the opportunity to do a simple evaluation of student under-
standing.

Should be easy to distribute to students
Otherwise to much time will spend on learning to master LOjel instead of the
actual content, which might lead to students/instructors choosing not to spend
time on LOs.

2.2 Overall design goals 11

Be able to check the final LO pretty easy
Should ease the development process, as the instructor is quickly able to deter-
mine if a certain element accomplishes his idea.

2.2 Overall design goals

To address the features we have described in the previous section, we will rely
on the following components:

• Use a classic Model-View-Control approach

• Use a system based on the Java class JFileChooser for opening the contents
of a LO

• Integrate Jeliot/the animation software such that size etc. can be ma-
nipulated

• Try to utilize design that emphasizes learning and assists in the learning
process

• Reduce the instructors workload to writing a few files and some synchro-
nization measures

By using a filechooser loading systems, we make it easy to choose between var-
ious examples and allows us to keep one copy of our framework opened, and
access the different LOs from there.
Loading the animation software into a component, allows us to resize and cus-
tomize the display to fit the student/instructor.
By making the animation software comply with Visualization interface, we are
able to control the pace of the animations and interleave it with text.
We will try to make some simple measures that should help reduce the cogni-
tive load. Such as making text and animation visible in the same window at the
same time, so minimal amount of scrolling will be needed.
By using a file based approach to construct the LOs, the instructor only has
to focus on writing those files and can easily make changes in his LO. Since
the instructor is the only one who knows how many animation steps each of his
explanatory steps corresponds to, he will have to specify this.

In the next chapter we will move on to the actual design of the framework.

12 Overall requirements

Chapter 3

The Model

In this chapter we will take a look at the program that will form our framework.

Overview of the framework

The framework consists of a program, the animation software, (in our case
Jeliot), and the files that provide the actual content to the LOs.
The program, which we call LOjel, follows a model-view-control approach. We
will in the following describe the model.

The model

The model consists of the Model class, the Visualization interface and a class,
JeliotLOVisualization that makes Jeliot comply with the requirements from the
Visualization interface.
The Model class is responsible for performing the actual computations and ex-
ecuting the various methods when called from the control part.

14 The Model

3.1 Design

The main problems we need to handle in the model are the following:

• Load text for explanations, checks and answers

• Synchronize stepwise explanation with animation as specified by thefile

• Advance the state of the LO by one step

• Allow the LO to progress automatically, Play

• Open a screen for file selection and choose an LO

• Rewind state back to start

• Be able to load a new LO, when one is already loaded

• Keep the methods generic whenever possible

Load text

The text should be loaded by using standard open functions. We will design
the functions such that LOs will require 4 different file format, and such that
the LO can be opened by clicking on any file with the LOs name before the
extension. We will use 4 files to increase customizeability and to make it easy
to craft each file. An overview of the fileformats can be found in table 3.1

Filecontent Extension Format
Java code java The Java program to be animated in Jeliot.
Explanatory text exp The background explanation text as it should appear.

Question chk
The text of the question, followed by a blank line,
followed by the word answer and answer on a new
line.

Step descriptions stp

The first line contains the total number of steps;
for each step, the following format is used:
step [step no.]: [number of animation steps][text]

Table 3.1: LO file formats

3.1 Design 15

Synchronization and display of text and stepwise explanations

First we have to decide on the internal representation of the active Learning
Object. We use a single counter to keep track of what step is currently ani-
mated. The value of this counter will denote the state of the current LO. When
we design methods for manipulating the state of the LO, we do it by updating
the state, display corresponding text, call appropriate action in the visualization
software.
Text from previous steps, and the explanatory text should still be visible.
This approach ensures that the stepwise explanations and animations will ap-
pear when and as specified by the instructor.

Forward one step

This is done by updating the program state, displaying the new text and then
calling the animation software to animate the next step. The text should be
displayed before the anim. software is called to ensure the text is viewable when
the animation is occuring.

Forward automatically

This function should be done by utilising the one-step-forward function, the
program sits in a loop and keep advancing the state of the LO. After each step,
we will pause a short time to give the animation, time to finish. This continues
until either the animation is halted or the animation is completed.
Choosing not to make use of the play-method guarenteed by the Visualization
interface provides more flexibility, as we can control the pace, stop the animation
after each completed step and add various functionality between steps.

LO opening

To make this user friendly, a filechooser dialogue should open on demand, and
then the user only has to click on one file, with the base filename of the learning
object of interest. Then the new LO should load into the program.

16 The Model

Rewind state

This should be handled by resetting all animation parameters, and rewinding
the state to 0. Then displaying the text corresponding to the state.

Loading a new LO

This will be done by resetting all parameters used in the current LO, and then
executing the load methods.

3.2 Implementation

The model consists of the Visualization interface, JeliotLOVisualization, a class
that adapts the visualization software to the interface and the Model class, a
class specified in this program. First we will show an overview of the model and
then we will proceed by describing the key methods in Model below (except for
the constructor and initializeVisualization in JeliotLOVisualization, all methods
are accessed via methods in the Model class):

3.2 Implementation 17

Model
Type: Name of field:
String description
String[] stepsDescription

int[] JeliotSteps
int currentstep
int actualJeliotStep

boolean run
LO frame LOframe

String baseFileName
Return type: Name of method

void load Text(
void load step explanation
void open
void loadLO
void forward animation one step
void play animation
void update labels
void stop animation
void totalRewind
void resetAll
void resetAnimation

Visualization
no fields

void load
JComponent initializeVisualization

void runFromStart
void step
void reset
void stop

JeliotLOVisualization
no fields

JComponent initializeVisualization
void load
void reset
void step

Table 3.2: Overview of the model

initializeVisualization

This method is responsible for loading the animation software into a JCompo-
nent.

open

Creates a JFileChooser, and extracts the basename of the file (name of file with-
outh extensions) selected by the user.

loadLO

Opens the selected Learning Object. This is done by applying the appropriate

18 The Model

file extensions to the previously extracted basename and then making use of the
two load methods specified below.

load Text

This function loads the content of the .exp file, which contain the explanatory
text provided by the instructor. The text is stored in a single String variable.

load step explanation

Loads the content of the .stp file, which contain the stepwise explanation pre-
pared by the instructor. It links step descriptions to animation steps, this
enables us to jump around in the program state, and still maintain synchroniza-
tion.
We use the two arrays jeliotSteps and stepsDescription to keep track of those fac-
tors. The size of the arrays are equal to the number of step descriptions provided
by the instructor, every entry in the arrays corresponds to a step description.
I.e. stepsDescription[0] holds the first step description and jeliotSteps[0] holds
how many animation steps this step description should be displayed for.
When loading the information we read the file line by line. This requires the
instructor to start every new step description by a new line starting with ”step”
and a ”:” everything after the colon will be displayed. The instructor can write
anything he wants after ”step” and before ”:”, like ”step 1:”. The way we load
allows the instructor to use more than one line for each step description.

forward animation one step

This function is responsible for performing the actions that will allow the anima-
tion and text to move one step forward. This is done by utilizing the programs
step counter, currentstep, by simply incrementing it. To advance the animation
the step method from the visualisation interface is used.

play animation

This function is responsible for starting the simulation and make it run on its
own. The program has a boolean field, run, determining whether play is active
or not. The method sits in a loop, executing the forward animation one step
method and then waiting a brief amount of time to give the animation step
time to finish before moving on to the next step. In this version a 3 second wait
is used. It sits in the loop until either the animation is stopped, or the whole
Java program has been animated.

3.3 Tests 19

stop animation

This method halts the running of the animation when called.
this is done by setting run to false.

restartAnimation

This function is responsible for rewinding the animation, such that it is ready
to start from the beginning.
We achieve this by resetting the programs animation parameters (including run),
and calling the reset method from the visualization interface.

resetAll

This method resets the whole program, so that a new LO can be loaded into
the display.
This is achieved by emptying all the arrays, disallocating them, and then reset-
ting all the necessary parameters.

update labels

Updates the current step the program is in, run, and then calls for the view-part
to show the corresponding text.

3.3 Tests

In this section we have tests of the primary methods in the model. When testing
the play/step methods we primarily test the text updates, the animations will
be tested in the GUI section.
The tests are carried out using the Constructor LO example. Where nothing is
mentioned the tests went as expected.
Figure 3.1 shows the constructor.stp file that defines the step descriptions to be
displayed, and how many steps corresponds to each step description:

20 The Model

Figure 3.1: Screenshot of the constructor44.stp file

First we, in a table, list the chosen test cases and their properties, then in a
second table we list input and output for those test cases.

Test of the Load step method

We will in this method test how bad format will influence the LO when loaded.

load step explanation
Case Properties Explanation

A .stp file follows the correct format the arrays should be loaded as
expectet

B one entry lacks number of animation
steps

What happens if one crucial in-
formation is missing

C one entry lacks ’:’ check what happens with a small
typo

D what happens if ”step” is not placed on
a new line

testing consequence of typo

3.3 Tests 21

load step explanation
Case Input Output

A the file in 3.1 arrays are loaded as expected
B the file in 3.1 but line two has

been altered such that ’3’ has
been removed

failure to load LO

C the file in 3.1 but line two has
been altered such that ’:’ has
been removed

failure to load LO

D the file in 3.1 but step 2 has been
moved such that it starts at the
same line step 1 ends.

step 2 is loaded as a part of step
1’s description, and not as an in-
dividual step

Test of forward animation one step method

These tests focuses on the text part and the model manipulations done. Tests
of the actual animation and synchronization is deferred to the GUI section.

forward animation one step
Case Property Explanation

A forward animation one step called
and new step description reached

Tests if it updates and displays
appropriate description

B forward animation one step called
and no new step description
reached

Tests if it updates and displays
appropriate description

C forward animation one step called
when animation is finished

After finishing further advance-
ment should retain the already
displayed information

D forward animation one step called
when play animation is on

Tests if the running of the anima-
tion continues after we manually
move one step forward

E forward animation one step called
when no LO is loaded

Tests what happens if no LO is
present

22 The Model

forward animation one step
Case Input Output

A forward animation one step at
currentstep 3

currentstep set to 4 and the cor-
responding text is displayed

B forward animation one step at
currentstep 2

currentstep set to 3 and the cor-
responding text is displayed

C forward animation one step at
currentstep 34

currentstep set to 35 all the al-
ready presented text remains

D forward animation one step at
currentstep 4 while run is true

currentstep set to 5, correspond-
ing text is shown, and the anima-
tion stops there

E forward animation one step at
currentstep 0 while no LO loaded

currentstep set to 1, nothing else
happens

Test of play animation method

In this method we test whether the animation runs automatically once started,
and if it is responsive to other controllers.

play animation
Case Property Explanation

A play animation called and anima-
tion just started

Tests if it updates and displays
appropriate description

B play animation called and anima-
tion finished

Tests if it proceeds after anima-
tion is finished

C play animation called when
play animation has already been
called

Tests what happens if Play is
called successively

D play animation called after a
stop animation has been called

Tests if it resumes as it supposed
to after a break

E play animation called when no
LO is loaded

Tests what happens if no LO is
present

3.3 Tests 23

play animation
Case Input Output

A play animation at currentstep 0 currentstep set to 1 and the cor-
responding text is displayed, cur-
renstep set to 2...

B play animation at currentstep 34 nothing happens, already dis-
played text remains

C play animation when
play animation has been called
previously

ignores the last play animation
call

D play animation after
stop animation

animation resumes from curren-
step

E play animation at currentstep 0
while no LO loaded

currentstep set to 1, nothing else
happens

Test of stop animation method

stop animation
Case Property Explanation

A Animation running tests if it can stop the animation
B Animation not running tests if it influences the run vari-

able when it is not supposed to

stop animation
Case Input Output

A stop animation when run is true run is false
B stop animation when run is false run is false

Test of the restartAnimation method

restartAnimation
Case Property Explanation

A Animation just started tests if works just after initializa-
tion

B Animation has run for a while Tests if there are any residues
due to the animation having run

C Animation finished Tests if parameters is influenced
by the animation having finished

24 The Model

restartAnimation
Case Input Output

A restartAnimation called at currentstep 0 parameters in restartAnimation is
reset to initial values

B restartAnimation called at currentstep 6 parameters in restartAnimation is
reset to initial values

C restartAnimation called at currentstep 34 parameters in restartAnimation is
reset to initial values

Test of resetAll method

resetAll
Case Property Explanation

A Animation has run tests how reset works if the ani-
mations have run

B Animation has finished Tests if finishing the animation
leaves residues that is not cleared
up

C LO just loaded Tests the case where a new LO
has just been loaded

resetAll
Case Input Output

A resetAll called at currentstep 6 parameters in resetAll is reset to
initial values and arrays are emp-
tied

B resetAll called at currentstep 34 parameters in resetAll is reset to
initial values and arrays are emp-
tied

C resetAll called after LO has just
been loaded

parameters in resetAll is reset to
initial values and arrays are emp-
tied

3.4 Discussion of the Model 25

3.4 Discussion of the Model

In the design we have chosen an approach, that once a LO is opened, moving
around in the animation is very simple.
Using an array to hold the step descriptions for each step, makes jumping around
in the animation very easy. This was done to ensure we would be able to im-
plement both forward, backward and restart functions.
The JeliotSteps array holds the cumulative animation steps corresponding to
each step description. This makes it easy to display the correct information at
all steps. At the same time the last entry holds the total number of steps in the
animation, which is used as a check multiple places.
During the load, those two arrays are filled. Now when using the LO, we only
need to update what step we are at, and then call the same display method.
Now each method for controlling the animation, consists of updating the cur-
rent step, calling the display method, and then a call to the animation software.
This gives a very simple design, that is easy to change, and adapt to different
preferences.
The tradeoff is a display method that has to do a few calculations. When im-
plementing the play animation method we chose not to use Jeliot’s own play
method, and instead define our own using the forward animation one step method
and the run boolean. By doing it this way we are able to control the pace of the
animation, we can easily stop it and we can synchronize it with text.
The main problem with this approach is that we have no way of knowing when
Jeliot has finished animating a step, and hence we have to impose a wait in
the method, to give it time to finish. With the methods we have available via
the Visualization interface, the wait is going to be rather arbitrary, as we have
to go with the highest encountered time, to ensure we never get out of synch.
with the text. This however may lead to unnecessary waits between animation
steps.
However had we chosen to use the built-in play method, it would have been very
hard to interleave the text with the animations.

26 The Model

Chapter 4

The GUI

In this chapter we will present the GUI. We have tried to implement the User
Interface to accomodate the requirements established in the section 1.3 and
1.4. The UI is the primary face of LOjel and is the environment the user will
experience learning objects in.

Description of the GUI

Before going into details we will show a view of the running LOjel GUI. It is
shown in figure4.1. The screenshot shows the text pane on the left, holding both
explanatory text and stepwise descriptions. the animation pane on right, is split
into an animation part and a part showing the Java code being executed. The
buttons located in the bottom left are used for controlling the animation.

28 The GUI

Figure 4.1: Screenshot of LOjel GUI running

4.1 Design of GUI

In this section we look at the main problems we need to address in the GUI:

• Create a main screen that holds the components of the LO

• Provide the user with means to control the animation

• Display the text, such that it corresponds to the current animation

• Provide means for easy access to filehandling, functions and help menues

• Make the size of the screen and panels customizeable

The Main screen

The main screen is what the user will see. It has to present the components of
the LO in such a way that both text, code and animations are visible. Buttons

4.2 Implementation 29

for controlling the animation should also be visible.
A side by side layout should be used.

Animation control

The user should be able to control the animation, by use of self-explanatory but-
tons. To make it easier for the user to cycle through the animation, accelerator
keys will be implemented. The buttons should be easily accessible.

Text display

The text is displayed in a text pane at the left side of the screen. It should be
able to show both explanatory text and stepwise explanations. It must be able
to handle jumps in the animation. Finally it should ensure that the newest step
description is about halfway up in the screen, so the user better can keep his
focus on both animations and text.

Menues

Should be selfexplanatory, logicly ordered and provide the necessary functions.

Scalability

It should be possible to scale the panes in the screen, so that the animation
pane can be made larger to accomodate a complicated animation. The screen
should also be resizable.

4.2 Implementation

First shown is a diagram over the structure of LOjel, that provides an overview
of the classes used in the GUI
Only methods that are actually used are mentioned and get/set methods are
left out:

30 The GUI

Model

Type: Name of field:
String description
String[] stepsDescription
int[] JeliotSteps
int currentstep
int actualJeliotStep

boolean run
LO frame LOframe
String baseFileName

Return type: Name of method
void load Text
void load step explanation
void open
void loadLO
void forward animation one step
void play animation
void update labels
void stop animation
void totalRewind
void resetAll
void resetAnimation

LO frame

Model model
Text Panel textPanel
Status Panel statusP
Jeliot Panel jeliotP
Visualization viz
JSplitPane north
JSplitPane south

void initFrame
void actionPerformed
void keyPressed
void mousePressed

Text Panel

Font plainFont
LO Frame LOframe
JTextPane jtp
JScrollPane jsp
JTextArea disp

void setupLabels
void displayExplanation
void DisplaySteps
void removeStepText
void setJTextPaneFont

Status panel

Jeliot Panel

CheckDialogue

JPanel mainpanel
JTextPane helpt
JTextField answer
JPanel south
JPanel east

JTextPane displayAnswer
LO Frame LOframe
String correctAnswer

void setupText
void actionPerformed

JeliotLOVisualization

JComponent initializeVisualization
void load
void reset
void step

Visualization

void load
JComponent initializeVisualization

void runFromStart
void step
void reset
void stop

Figure 4.2: Overview of all classes in LOjel

The main component of the GUI will be LOframe, which is the frame holding the
rest of the components, it is the principal listener. following our model-view-
control approach, It is part of the control package. Text Panel, Status Panel,
Jeliot Panel, CheckDialogue are all in the view package. The model part has
been described in the previous chapter and resides in the model package.

4.2 Implementation 31

LO frame:
LO frame consists of a nested splitpane holding 3 panes. a text pane, an an-
imation software pane and a statuspane. Using a nested splitpane allows the
internal panes to be resized relative to each other
It features a menu-bar providing the user with various options. File has one se-
lection Load for loading an LO, Functions has the selection check my knowledge
which presents the student with a question that is part of the LO. Help has the
standard selections of About and Help which are standard
It is attached as a listener to all panes, buttons and menu items.
The view is made up of 3 panes, a text pane, an animation pane and a status-
pane. The following three classes make up the 3 panes:

Text Panel:
The text panel makes up the text pane and is responsible for displaying the
explanatory text and the stepwise descriptions according to the currentstep of
the program. It uses a scrollpane, when displaying a new step description, it
automatically scrolls the pane down, so the latest shown description is around
the middle of the pane.
All previous step descriptions and the explanatory text is still displayed.
The class contain methods for doing those tasks.

Jeliot Panel:
This panel makes up the animation pane and contains the animation software,
its only task is to display the animations. The panel utilizes a scrollpane.

Status Panel:
This makes up the statuspane which contains the 4 buttons used to control the
animation. Each button has a listener attached to it.

CheckDialogue:
Creates a new frame, where the question text, prepared by the instructor, is
displayed. An editable textfield is provided for getting the answer. A JLabel
display the answer to the question when prompted by the user.
A simple text loading method is used

Visualization:
This interface provides the methods allowed to control the visualization-software
from outside. The interface was provided by prof. Mordechai Ben-Ari

32 The GUI

JeliotLOVisualization:
This class is provided by author of Jeliot, Nico Myller to implement the Visual-
ization interface. Unfortunately at present, it does not implement every method
in the interface, why only some methods can be used. As stated in the previous
chapter we decided not to use the play and stop methods.

Controlling the animation

LO frame works as the main controller class. Below is a short description of how
it control the functions.

ActionPerformed

• When a button is clicked this method is called. The event string is analysed
and the approprate actions in Model are executed .
When calling Play, a new thread is created and calls the play animation
method in Model. This is done to prevent Jeliot from freezing the GUI
while animating.

• When a menu item is selected, this method calls the appropriate actions
in Model. The items are Load, Check my Knowledge, Help and About.

KeyPressed

LO frame implements key listener and is attached to all components. This allows
the user to use accelerator keys to control the animation. Whenever a key is
pressed keyPressed is called, and the method takes the appropriate action.
The following keystrokes are used:

Button Function Keyboard Shortcut
Step calls forward animation one step Space.
Play calls play animation Enter
Stop calls stop animation Esc
Restart calls restartAnimation Backspace

mousePressed

LOframe implements the mouse listener. This is primarily because a keylistener
component has to be in focus, for it to generate key-events. We use the mouse
listener to ensure that no matter which component (except the animation screen)
the mouse is pressed in, a mousePressed event is generated and this method

4.3 Test 33

transfer focus to Status Panel which has a keylistener attached.
mouseEvents generated when pressing the mouse in the animation panel are
apparently consumed by Jeliot.

4.3 Test

We have chosen to test the following areas of the GUI:

• Opening of a LO via filechooser

• Test of menu items

• Resizing of components

• Controlling the animation, including accelerators and synchronization

Before testing each functionality, we present the goal we want to achieve when
executing it.
We first list test cases and their properties, then we list input and expected
output for each test case:

Opening of LO via Filechooser

When testing for this we have the following goals we want to achieve: first that
the text and animations are loaded (which is tested in the model section), and
secondly the GUI displays the explanation in the textpanel, not scrolled down,
the code is shown and the ”curtains” are drawn back in the animation pane
Testcases are shown in 4.3 and 4.3

34 The GUI

Open functionality
Case Properties Explanation

A Files exists, formats are fine and
are in right directory

tests if the function open when
everything is as its supposed to
be

B Files exists, formats are fine, but
in wrong directory

Tests the programs reaktion to
missing a misplaced file

C format of .stp file is wrong Tests what happens if the stp file
is wrongly formattet

D format of .chk file is wrong Tests what happens when .chk
file is out of order

E .exp file is missing Tests what happens if the expla-
nation file is missing

F .chk file is missing Tests what happens if the check,
question and answer file is miss-
ing

G .stp file is missing Tests what happens if the step-
wise explanation file is missing

H .java file is missing Tests what happens if the java
file is missing

I animation of current LO has
started

Tests what happens if the exist-
ing LO is already running

4.3 Test 35

Open functionality
Case Input Output

A Files are the one from the con-
structorLO, all placed right

output as stated in goal.

B Files are the ones from the con-
structorLO but placed at the
toplevel directory

nothing happens, the current LO
continues to run

C the constructor.stp file has been
altered so a total number of steps
are missing

nothing happens

D the constructor.chk file has been
altered so ”answer” is no longer
there

new LO is opened but the check
dialogue doesn’t work

E the constructor.exp file is deleted nothing happens
F the constructor.stp file is deleted nothing happens
G the constructor.chk file is deleted same as in D
H the constructor.java file is

deleted
nothing happens

I same as A but a current LO is
already running

output as stated in goal

Test of Menu Items

When testing for this we have the following goals we want to achieve:
Every menu item should perform the desired actions and open up the various
dialogues.
We perform the tests simply by clicking the menu items from within the GUI,
below is the test results:

• Load correctly opens the filechooser and calls the appropriate methods

• Check my Knowledge correctly opens the check dialogue and behaves as
wanted

• About opens the about screen and loads the text from about.html

• Help opens the help screen and loads the text from help.html

36 The GUI

Test of resizing

Goal:
When resizing the various components, the internal drawings and proportions
are the same.
This test was done by opening the program and varying the size of the 3 main
panels and the main frame.
We observe that the goals are met.

Test of animation control and synchronization

Goal:
For each controller: when selected (clicked or by a keystroke) appropriate actions
should be executed. The text and animation should appear in as specified by
the instructor.

A series of test for each component is run, and afterwards we show that using
the accelerator keys the same functionality can be achieved. We will have done
the same tests for the accelerator keys as for the buttons, but we will refrain
from stating them in this report.

Step Forward

the goal of this function is to display the text corresponding to this step and
then show the animation.

4.3 Test 37

Step forward
Case Properties Explanation

A Step button is clicked once cur-
rentstep is 3

tests if the new text is displayed
and then the current animation
is done

B Step button is clicked twice, but
allowing the animation time to
finish

Tests if the step method can be
repeated

C Step button is clicked twice in
succession

Tests if the step method can han-
dle two succesive calls, without
loosing sync.

D Step button is clicked after the
animation is finished

Tests if the program can handle
LO’s after the animation is fin-
ished

E Step button is clicked when play
is active

Tests if step can be used, while
the animation is being run

F Step button is clicked when no
LO is loaded

Tests if step can be used, while
there is no LO

Step forward
Case Input Output

A Step button is clicked where cur-
rentstep is 3

output as stated in goal.

B Step button is clicked twice, but
second only after first animation
has finished, currentstep is 3

same as A, followed by the text
and animation of ensuing step

C Step button is clicked twice, cur-
rentstep is 3

same as B

D Step button is clicked where cur-
rentstep is 34

nothing visible happens, but cur-
renstep is advanced to 35

E Play is called followed by Step The animation is moved one step
forward, and the running of the
animations are stopped

F Step is called with no LO loaded nothing happens

In test case C, there was a slight mismatch between text and animation, as the
animation wasn’t allowed time to finish.

38 The GUI

Play

The goal of this function is to automatically advance the animation in a syn-
chronized fashion, call Step method, and then give it time to finish.

Play
Case Properties Explanation

A Play button is clicked just after
LO has been loaded

Tests if it fulfills the goal from a
standard starting point

B Play button is clicked, after step
forward

Tests if it is able to continue
playing from any given cur-
rentstep

C Play button is clicked after a Stop Tests if Play is able to re-
sume playing after having been
stopped

D Play button is clicked after a
Restart

Tests if Play is able to start play-
ing after having been reset

E Play button is clicked when ani-
mation has finished

Tests if it executes weird be-
haviour after the animation has
finished

F Play button is clicked succes-
sively

Tests if it can handle successive
hits

G Play button is clicked after a dif-
ferent LO has been loaded

Tests if Play can handle switched
LO’s

Play
Case Input Output

A a LO is loaded Play button is
clicked

output as stated in goal.

B Step button is clicked followed by
Play

output as stated in goal

C Stop button is clicked, followed
by Play

output as stated in goal

D Restart button is clicked, fol-
lowed by Play

output as stated in goal

E Play button is clicked at cur-
rentstep 34

nothing happens

F Play button is clicked twice output is as stated goal
G a LO is loaded, advanced one

step, then a new is opened and
Play button is clicked

output as stated goal

4.3 Test 39

Stop

The goal of this method is to stop the animation from running.

Stop
Case Properties Explanation

A Stop button is clicked while a
step is being animated

tests if it allows the current an-
imation to finish and then stops
running

B Stop button is clicked while wait-
ing for next step to be animated

Tests if it prevents a new step
from being drawn

C Stop button is clicked twice Tests if it can handle succesive
calls

Stop
Case Input Output

A Stop button is clicked after play
has been started and an anima-
tion is being done

running halts when animation is
finished

B Stop button is clicked after play
has been started and an anima-
tion has been done

same as A, no new step is allowed
to start

C Stop button is clicked while no
LO has been loaded

nothing happens

Restart

The Goal of this method is to bring the animation back to the initial point.
We tested the parameters in the previous chapter, so the primary focus is if the
animation gets reset.

40 The GUI

Restart
Case Properties Explanation

A Restart button is clicked just af-
ter a LO has been loaded

Tests if it works when a LO is
just loaded

B Restart button is clicked when
animation is running

Tests if it stops the animation
and restarts regardless of being
in the middle of a stepanimation

C Restart button is clicked when
animation is finished

Tests if can rewind the animation
when it is fully finished

D Restart button is clicked succes-
sively

Tests if it can handle successive
hits

Restart
Case Input Output

A Restart button is clicked after a
LO has been loaded

the curtains are drawn back
again, nothing else happens

B Restart button is clicked after a
step has been called

animation is immediately reset
and the curtains drawn back
again

C Restart button is clicked when
the animation is finished

animation is restartet and the
curtains are drawn back again

D Restart button is clicked twice animation is restartet and the
curtains are drawn back again
each time it is clicked

Testing the accelerator keys

Goal: Each key should result in the appropriate action taken, and be able to do
it regardless of the component currently in focus, except when the focus is in
the animation pane.
We first test if the keystrokes are linked to the right actions, and then we test
under what circumstances they work.

4.3 Test 41

Accelerator keys
Case Properties Explanation

A Space is hit while the focus is in
statuspanel

Test if Space works

B Enter is hit while the focus is in
statuspanel

Test if Enter works

C Esc is hit while the focus is in sta-
tuspanel

Test if Esc works

C Backspace is hit while the focus
is in statuspanel

Test if Backspace works

E Space is hit while the focus is not
in the mainframe

Test if it works while focus is out-
side the program

F Space is hit while the focus is in
the textpanel

Test if it works while focus is in
the textpanel

G Space is hit while the focus is in
the JeliotPanel

Test if it works while focus is in
the Jeliotpanel

H Space is hit after a button has
been clicked

Test if it can handle a button be-
ing clicked first

I Space is hit after a menu item has
been selected

Test if it can work after the menu
items have been selected

Accelerator keys
Case Input Output

A StatusPanel is set in focus and
Space is hit

step forward method is executed

B StatusPanel is set in focus and
Enter is hit

Play method is executed

C StatusPanel is set in focus and
Enter followed by Esc is hit

Play is started but stopped after
Esc is clicked

D StatusPanel is set in focus and
Backspace is hit

Restart is executed

E Another window is set in focus
and Space is hit

nothing happens

F TextPanel is set in focus and
Space is hit

step forward method is executed

G JeliotPanel is set in focus and
Space is hit

nothing happens

H Step button is clicked and Space
is hit

step forward method is executed

I Check my Knowledge is selected
and Space is hit

step forward method is executed

42 The GUI

4.4 Discussion of the program

Most of the features described in the introduction chapter have been imple-
mented and shown to work. However the ability to go one step back in the
animation has not been fully implemented. The actual call to the animation
software has been left out
The Visualization interface does not define methods that will allow us to smoothly
implement it and therefore we have left it out. With the current methods, we
would have had to reanimate the previous n-2 steps again, which would be in-
feasible.

For the accelerator keys to work, a panel with a KeyListener attached must be
in focus. We have implemented a MouseListener to ensure that each mouse click
transfers focus to Status Panel. There is one situation where it does not work;
when the animation pane is in focus all events are consumed by the visualization
software, rendering our listeners useless
To ensure the accelerator keys can be used, it is thus preferable that the user
clicks on either the textitstatuspane or the textpane. This is cumbersome and
clearly an element worth improving.

There is an issue with the buttons and accelerator keys in the case where Jeliot
asks for user input. The input has to be finished by an ’enter’ stroke, which
results in the transfer of focus to the 1. button which is the restart button. If
the user is not aware of this, and just hits another accelerator key, the whole
animation will restart.
This issue is hard to fix, since the method causing the focus transfer happens in
the animation software, which we have no access to. However we can minimize
the effect by switching the location of the restart and the more ’harmless’ stop
button.

As discussed in the previous chapter the play method has a predefined wait be-
tween each animation step. This causes situations with unnecessary wait time,
and where the animation is not finished when advancing to next step. This is
preferably remedied by implementing a sort of notification from the animation
software whenever it is done animating a step.
It would be obvious to put it in Visualization.

The lack of notification bring some other issues with it. One is the issue of the
user rapidly clicking on the buttons. As we saw in the test section. Restart and

4.4 Discussion of the program 43

Stop is no problem, Step initially works fine, but after mulitple hits the text
and animation gets out of sync. Play has the problem that in a very rare case,
we might end up having two threads running play animation at the same time,
which might lead to synchronization trouble.
To solve those issues we could deactivate the buttons when clicked, but we would
have to do it for an unknown period of time. Which might create unnecessary
long waits in controlling the animation. The best solution would be to work
with the authors of the animation software, to implement the notification sys-
tem.

We chose to implement an evaluation dialogue, where the instructor have the
opportunity to prepare questions for the student about concepts in the LO.
Since this program is primarily a demonstration of possibilities, the current im-
plementation only features a single question and answer, but it can easily be
changed to pose arbitrarily many questions.
Since the check questions are not critical to the LO, we have made it possible
to run the LO even though the .chk file is missing or in disorder

To make the overall user experience more smooth, we wanted to make the newest
step description appear approximately at center of the text pane. To achieve
this we automatically scroll the text pane down, whenever new text is added
(and if it is needed) and append some whitespace characters. The number of
whitespace characters can be argued about, some people prefer the newest text
at the top of the screen and some prefer as much previous text in the same
vision as possible. The number chosen seeks to accomodate both views.

The in-program help and about files are written as html files. This makes it
easy to display the same text both on the web and in the LOjel.

One of the key features was to make it easy for instructors to write new learning
objects We have reduced the workload significantly by reducing his/hers work
to only write 3 files (with a fourth optional). The only file requiring some work
besides crafting the actual content of the LO, is the stepwise explanation file.
However since only the instructor knows exactly how many animation steps he
want each of his step descriptions to cover, he would have to specify this anyway.
It might have been made easier by a conversion guide between type of animation
and animation steps, i.e. an assignment operation corresponds to 2 animation-
steps.

44 The GUI

4.5 Conclusion on the GUI

We have constructed a working program that fulfills almost every requirement
specified in the introduction. There are some small issues but nothing that ham-
pers the overall functionality. Use of the program and possible improvements
will be discussed in the next chapter.

Chapter 5

Evaluation and future work

In this chapter we will briefly look at how this framework is used and how we
can improve it.

5.1 The Complete Framework

The final framework consists of the LOjel program, the Jeliot program dis-
tributed as a .jar file, a doc directory containg help and about screens, an
example directory containing all files used for constructing LO’s. This is the
directory where all new LO’s should be placed. Finally a .bat file, LOjel.bat, is
provided as the driver file. Once clicked it will start LOjel up.
The framework is distributed in a zip file, that can be unpacked and run directly
using the bat file.

5.2 Use and feasibility of LOjel

The original purpose of this paper, was to investigate if it was feasible to con-
struct a framework for integrating visualization software with text into learning

46 Evaluation and future work

objects.
We showed in the last chapter that the essential features and most of the ones
we wanted, for such a framework, was met in LOjel.
Full instructions on how to use LOjel can be found in appendix A.
We tested how long it took to adapt a learning object to this framework, that
is an already existing LO where all text and java code exist in advance but as
seperate entities.
The tested LO was ”constructor 4.4” created by prof. Mordechai Ben-Ari, and
consists of some explanatory text, a piece of Java code, some keypoints regard-
ing the code and a few evaluation questions. It took at most 10 minutes to
adapt it to LOjel, which should be in the range of a ”feasible” amount of time
spent.
Afterwards we created a small LO, focusing on the While-loop construct. We
used a piece of code, Average.java, originally included in the Jeliot distri-
bution. We then created explanatory text, stepwise description and a single
evaluation question.
The whole creation process took approximately 30 minutes. Although the LO
was not done using refined pedagogical means and can be made much better, it
serves as an example that using LOjel can provide good LO’s without spending
insurmountable amounts of time.
The previous two examples indicates that it is indeed feasible to integrate visu-
alization software and text into learning objects using a framework like LOjel.

5.3 Possible Improvements

There are a number of possible improvements to the framework, some focuses
on improving the current functionalities while others focus on major added
functionality. Some of the suggestions have been touched upon in the discussion
in chapter 2.

Minor Improvements and issue fixes

Incorporating a notification method in the visualization interface. This should
enable us to synchronize text and animation better.
Expanding the Visualization with a one-step-rewind method. This will provide a
more flexible control system for the animation. With this method the student is
able to go 1 or 2 steps back and replay does step. With the current version, they
have to restart and then simulate all previous n-1 step. Which is cumbersome
and not beneficial for learning.

5.3 Possible Improvements 47

A label in the status pane indicating whether the system is currently animating
or not, would prevent ”good-intended” users from clicking a button multiple
times, because they was unsure if it was activated.
Another minor improvement would be the question and answer dialogue, that
could be improved both by handling more question/answers and by changing the
format of the dialogue, i.e. multiple choice could be used. This would greatly
enhance the feedback the student could get from the learning object.

Major Improvements

Development GUI
To assist the development process of an LO, we could create an instructor-mode
for the framework, where the text editor was editable.
In this state it should be possible to control the animation, and then at any
step in the animation, the instructor should be able to add text and save the
mapping to a file. We would then ease the creation of the .stp file and would
thus reduce the overall work needed by the instructor.

Development of intelligent question answer module
In the current version the evaluation is done by preprepared questions from
the instructor. By introducing a module for automatic question generation, we
would be able to evaluate and produce suggestions based on his needs. Further-
more this will reduce the workload for the instructors.
Jeliotis currently providing an option that generates questions about the out-
come of a given code line [3]. This prompts the student to be interactive and
think about the code, before it is executed and thereby enhances learning.
If this feature could be made available through the Visualization interface, learn-
ing objects in LOjel would benefit greatly.

48 Evaluation and future work

Chapter 6

Conclusion

We have in this project shown that it is possible to construct a framework that
integrates visualization software, in our particular case Jeliot, and explanatory
text into a learning object using a common interface. We have argued that
it is easy to use by students, and requires little effort in preparation by the
instructors.
We have thus proved the feasibility of integrating visualization and explanatory
text into learning objects through a common interface.

50 Conclusion

Appendix A

Userguide to LOjel

LOJEL—Learning Objects with JELIOT

User’s Guide

Version 1.0

Jens Peter Träff
Technical University of Denmark

DK-2800 Lyngby, Denmark

June 24, 2011

Copyright c© 2011 by Jens Peter Träff.

This work is licensed under the Creative Commons Attribution-ShareAlike 3.0 License. To view
a copy of this license, visit http://creativecommons.org/licenses/by-sa/3.0/;
or, (b) send a letter to Creative Commons, 543 Howard Street, 5th Floor, San Francisco, California,
94105, USA.

1 Introduction

LOJEL is a framework for creating and displaying learning objects (LOs) based upon JELIOT.
JELIOT is a system animation of program in JAVA. It takes a program in JAVA and automatically
generates a detailed animation of the execution of the program. LOJEL is designed to facilitate the
creation of LOs by integrating textual material with the JELIOT animations. Since the animations
are generated automatically by JELIOT, the effort needed to create LOs is much less that would be
required using generic multimedia software such as Flash.

For more on JELIOT see:

• A. Moreno, N. Myller, E. Sutinen, M. Ben-Ari. Visualizing programs with Jeliot 3. Confer-
ence on Advanced Visual Interfaces, Gallipoli, Italy, 2004, 373–376.

• M. Ben-Ari, R. Bednarik, R. Ben-Bassat Levy, G. Ebel, A. Moreno, N. Myller, E. Sutinen. A
decade of research and development on program animation: The Jeliot experience. Journal
of Visual Languages and Computing, 2011 (in press).
Available online at http://dx.doi.org/10.1016/j.jvlc.2011.04.004.

The JELIOT website is: http://cs.joensuu.fi/jeliot/.

Section 2 describes how to install and run LOJEL. Section 3 explains how to work the the LO-
JEL interface. Section 4 shows how an instructor creates learning objects for LOJEL. Section 5
documents the software package.

2 Installation and execution

LOJEL requires JAVA JRE 1.5 or above.

The program is distributed in a zip file: lojel-n-n.zip. Download the zip file and open it into
a clean directory. The zip-file contains the following directorys: src for the source files, bin for
the executable files, doc for the documentation and examples for the example LOs. Additional
files are help.html and about.html that are used for the help and about screens.

To run from the installation directory, use the following command:

java -cp bin;jeliot.jar control.Driver

This command is contained in the file LOjel.bat.

3 Graphical user interface

A screenshot of the LOJEL GUI is shown below in figure 1. In addition to a menu bar, there are
three panes in the frame: the text pane on the left, the animation pane on the right, and the status
pane on the bottom.

2

Figure 1: Screenshot of LOJEL

3.1 Menus

The File menu has one selection Load for loading an LO. The Function menu has the selection
Check my knowlegde which presents the student with a question that is part of the LO. The Help
and About screens are standard.

3.2 Text pane

The text pane consists of a scrollable non-edible text area. It is here that the explanatory text and
the stepwise explanations are shown. Whenever the description of a new step is displayed, the
pane is scrolled such that the new text is around the middle of the screen.

3.3 Animation pane

The animation pane contains the display of JELIOT: the source code on the left and the animation
on the right. Here is an explanation of the elements of this display.

When editing a program in JELIOT, animation pane is covered with a blue curtain. When you
move to the animation state, the curtain slides open and reveals a light brown background. When
you start the animation, the frame is divided into four separate areas with dashed white lines. The
areas in left-right, top-bottom order are: the Method Area, the Expression Evaluation Area, the
Constant Area, and the Instance and Array Area.

The Method Area displays the stack activation frames for all the methods that are currently being
processed. Activation frames are displayed as boxes that hold variables inside. Return values are

3

animated with a larger box holding the value inside. For variables of primitive or String type,
the value is displayed adjacent to the name; references are shown as arrow to Instance and Array
Area. A null is denoted by the electrical ground symbol.

The expression evaluation area animates the evaluation of expressions. Information on the results
of evaluating expressions are also shown here, as well as the dialog boxes for user input.

Whenever any literals (of any type) are needed by the code, they are brought to the animation from
the Constants box in the Constant Area.

Finally, the Instance and Array Area holds dynamically allocated objects, such as instances of
classes and arrays.

3.4 Status pane

The LO is controlled by four buttons in the status pane (Table 1).

Button Function Shortcut
Step Run one step of the animation and display corresponding text. Space
Play Run Step until Stop is clicked or the program ends. Enter
Stop Stop a Run. Esc
Restart Start at the beginning of the LO Backspace

Table 1: Animation toolbar commands.

Important:

• By step is meant a step of the LO, which may consist of more than one step of JELIOT.

• The Play command is executing by calling the Step command and then waiting 3 seconds
before proceeding with next step.

4 How to prepare a learning object

An LO for use with LOJEL consists of four files with the same name and with the extensions
shown in Table 2. They must all be in the same directory. Note that only the JAVA files is actually
required.

4

Filecontent Extension Format
JAVA code java The JAVA program to be animated in JELIOT.
Explanatory text exp Text.

Question chk
The text of the question, followed by a blank line,
followed by the word answer and answer on a new line.

Step descriptions stp

The first line contains the total number of steps;
for each step, the following format is used:
step [step no.]: [number of animation steps] [text]
example of a step file can be seen in figure: 2

Table 2: LO file formats

The JAVA file has to follow certain conventions; see the JELIOT documentation.

The explanatory text provides the information that introduces the student to the concept of the LO.
It is displayed in the text pane when the LO is loaded.

The question provides the instructor with the opportunity to have LOJEL ask the student a question
and check the answer.

The most important file is the Step file that coordinates the step-by-step explanation with steps of
the animation. A step of the LO can require JELIOT to execute several of its own steps. Therefore,
the instructor must provide a list of lines, one for each step of the LO, which specify the number
of steps of the animation and the text that is displayed at the same time. The instructor will have
to experiment to find the optimal number of JELIOT steps for one LOJEL step.

Figure 2: sample step file

5

5 Software documentation

This program is built according to classic Model-View-Control design. The main controller class
is the LO_frame, which instantiates the GUI and listens to all its components. It contains the
methods actionPerformed, mouseClicked and keyPressed which handle all the events gen-
erated by the menu items, buttons and the accelerator keys. It calls the appropriate methods for
handling the events.

The Model class is the main class in the model-part. It contain fields for storing and synchronizing
text and animation. It contains the following prime methods:

• load_text loads the explanatory text from the .exp file.

• load_step_explanation loads the stepwise description and links it to the appropriate ani-
mation steps. While loading the information, the method fills out the arrays jeliotSteps and
stepsDescription

• open opens the filechooser and extracts the basefilename from the file. This is used in the
loadLO method, which in turn calls the various load methods with the basefilename and the
appropriate extensions.

• forward_animation_one_step increments the current step, displays the new text and then
calls the animation software for it to advance the simulation by one step.

• play_animation successively calls the forward method until either the stop method is
called or the animation finishes. After each call the method waits for 3000 ms. to give
the animation time to finish.

• stop_animaiton stops the animation by setting a flag.

• resetAnimation resets all the animation parameters and displays the text corresponding to
the 0’th step.

• totalRewind Rewinds the animation by first calling the stop_animation method and then
calling resetAnimation.

• resetALL empties all arrays and resets all parameters to prepare for a loading of a new LO.

The interface Visualization specifies the interface between the animation software and LOjel: the
methods that the animation software has to implement.

JeliotLOVisualization is the class that adapts JELIOT to fit the requirements of the Visualization
interface.

The GUI consists of a number of classes specifying different components:

Text_Panel constructs the left text pane on the left side; it consists of a JTextArea placed in a
JScrollPane. displaySteps shows the stepwise explanation appropriate for the current animation

6

step and scrolls the pane down to keep the new text in focus. displayExplanation displays the
explanatory text.

Jeliot_Panel is the panel holding the animation software, in this case JELIOT. Status_Panel
is the bottom panel, it holds the animation control buttons. InfoWindow allows us to use html
documents to specify the help and about screens. checkDialogue generates the check dialogue,
using the text of the chk file; it provides a question for the student and can evaluate his answer.
Driver is the class that starts the whole program.

6 Known Issues

• The accelerator keys don’t work when JELIOT panel is in focus.

• A method for determining if the animation software is currently running has not yet been
implemented. Therefore, an arbitrary 3000 ms wait has been used.

7

Appendix B

Source code for LOjel

1 package model;

2

3 import java.awt.Rectangle;

4 import java.io.File;

5 import java.io.FileInputStream;

6 import java.io.FileNotFoundException;

7 import java.io.IOException;

8 import java.util.Date;

9 import java.util.Scanner;

10

11 import javax.swing.JFileChooser;

12 import javax.swing.JFrame;

13 import javax.swing.SwingUtilities;

14

15 import control.LO_frame;

16

17

18

19 /**The Model class is the internal representation of ←↩
the program and holds almost all methods used for←↩
manipulating the simulations and

20 * the learning object in generel.

60 Source code for LOjel

21 * @author Jens Peter Träff

22 *

23 */

24

25

26 public class Model {

27

28 public String description="";

29 public String [] stepsDescription; // estimate how ←↩
many steps are required later

30 public int[] jeliotSteps; // holds the cumulative ←↩
number of animsteps

31 public int currentStep;

32 private int actualJeliotStep; // represents the ←↩
actual step explanation currently being ←↩
displayed

33 private boolean run=false;

34 private LO_frame LOframe;

35 private String baseFileName="";

36 // private jeliotobject jeliot;

37

38

39 public Model(LO_frame LOframe){

40 this.LOframe= LOframe;

41 }

42 public int getActualJeliotStep () {

43 return actualJeliotStep;

44 }

45

46

47

48 /**Load the explanatory text into the string ←↩
variable "description"

49 * @param filename

50 * @throws FileNotFoundException

51 */

52 public void load_Text(String filename) throws ←↩
FileNotFoundException{

53

54 Scanner input= new Scanner(new File(filename));

55 while (input.hasNextLine ()){

56 description += input.nextLine ();

57 description += "\n";

58 }

61

59 }

60

61 /**Load the stepwise explanation , each step is ←↩
loaded into the stepsdescription

62 * array , and the corresponding animation steps ←↩
are placed in the JeliotStep array

63 * @param filename

64 * @throws FileNotFoundException

65 */

66 public void load_step_explanation(String filename)←↩
throws FileNotFoundException{

67 Scanner input= new Scanner(new File(filename));

68 if(input.hasNextInt ()){

69 int totalsteps=input.nextInt ();

70 stepsDescription= new String[totalsteps];

71 jeliotSteps = new int[totalsteps];

72 }

73 int currentStepReading =-1;

74 while (input.hasNextLine ()){

75 String nextLine=input.nextLine ();

76 if(nextLine.toLowerCase ().contains("step")){←↩
//this part can be done more smoothly , ←↩
investigate when possible

77 currentStepReading ++;

78

79 String s = nextLine.substring(nextLine.←↩
indexOf(":")+1); //skips the intro ←↩
part

80 Scanner read = new Scanner(s);

81 if(read.hasNextInt ()){ // reads number of ←↩
animation steps associated with this ←↩
explanation step

82 if (currentStepReading ==0){

83 jeliotSteps[currentStepReading]=←↩
read.nextInt ();

84 }else{

85 jeliotSteps[currentStepReading]=←↩
jeliotSteps[currentStepReading -1]+←↩
read.nextInt ();

86 }

87 }

88

89 read.close();

62 Source code for LOjel

90 // char x=nextLine.charAt(nextLine.indexOf ("←↩
step") +4+4);

91 // System.out.println(Character.←↩
getNumericValue(x));

92 stepsDescription[currentStepReading]= s.←↩
substring (3);

93 // System.out.println(currentStepReading);

94 }

95 else if (currentStepReading ==-1){

96 System.out.println("illegal input");

97 // alternative to skip a line?

98 }

99 else{

100 // System.out.println ("jeg er her");

101 stepsDescription[currentStepReading]+="\n←↩
" + nextLine;

102 }

103 }

104

105 // for (int i=0; i<jeliotSteps.length; i++){

106 // System.out.println (" jeliot step "+ i + " " +←↩
jeliotSteps[i]);

107 // }

108 // System.out.println (" indhold af nr 1 " + steps [0]←↩
+ " færdig ");

109 //TODO works quite well initially ,still needs to ←↩
figure out how to gorge the length of the ←↩
Jeliot animation ,

110 //and thus determine length of array ...

111 }

112

113 /**Open the fileChooser for loading a new Learning ←↩
Object

114 * @throws IOException

115 */

116 public void open() throws IOException{

117 JFrame parent = new JFrame ();

118 String selectedFileName;

119 JFileChooser FC = new JFileChooser("./ examples"←↩
);

120 int returnVal = FC.showOpenDialog(parent);

121 if(returnVal == JFileChooser.APPROVE_OPTION) {

122 selectedFileName = FC.getSelectedFile ().←↩
getName ();

63

123 baseFileName= selectedFileName.substring(0, ←↩
selectedFileName.indexOf(’.’));

124 baseFileName="./ examples/"+baseFileName;

125 loadLO(baseFileName);

126 }

127 }

128

129

130

131 public String getBaseFileName () {

132 return baseFileName;

133 }

134

135

136

137 /**When a file is chosen , the learning object using ←↩
this file is loaded and

138 * initialized

139 * @param filename

140 * @throws IOException

141 */

142 public void loadLO(String filename) throws ←↩
IOException{

143 //if program has previously been initialized , ←↩
reset all

144 if(jeliotSteps !=null){

145 resetAll ();

146 }

147 load_step_explanation(filename+".stp");

148 load_Text(filename+".exp");

149 LOframe.getViz ().load(filename+".java");

150 LOframe.getTextPanel ().displayExplanation ();

151 // LOframe.getTextPanel ().setVisible(true);

152 //find a way to give jeliot time to load the code

153 }

154

155 /**Move the animation one step forward

156 * @throws Exception

157 */

158 public void forward_animation_one_step () throws ←↩
Exception{

159 update_labels (1);

160 LOframe.getViz ().step (1);

161

64 Source code for LOjel

162 // move_jeliot_animation_one_forward

163 // jeliot.step (1);

164 //TODO calls update_labels (1) and then moves ←↩
animation forward .(calls jeliot)

165 }

166

167 /**Move the animation one step backwards

168 * not used in the current implementation

169 * @throws Exception

170 */

171 public void rewind_animation_one_step () throws ←↩
Exception{

172 update_labels (-1);

173 System.out.println("heree");

174 LOframe.getViz ().step(-2);

175 // jeliot.run(-1);

176 }

177

178 /**Update the labels , to reflect the actual step ←↩
currently animated.

179 * and call methods to update the text shown in the ←↩
textpanel

180 * @param stepsMoved

181 */

182 public void update_labels(int stepsMoved){

183 currentStep += stepsMoved;

184 LOframe.getTextPanel ().displaySteps ();

185 // LOframe.getJeliotP ().repaint ();

186 //TODO update the labels affected by a step change←↩
in the animation ,

187 }

188

189

190 /**only used for testing purposes

191 *

192 */

193 public void Display_text (){

194 System.out.println(description);

195 }

196

197 /**Automatically advances the simulation by calling ←↩
the step forward function

198 * waiting a short amount of time , and then advancing←↩
again. This continues until

65

199 * either the animation is finished or the Stop -←↩
method is called

200 * @throws Exception

201 */

202 public void play_animation () throws Exception{

203 if(run==true){

204 return;

205 }

206 run=true;

207 while(run && currentStep <jeliotSteps[jeliotSteps.←↩
length -1]){ //less than number of total steps

208

209 forward_animation_one_step ();

210 Thread.sleep (3000); //give jeliot time to finish ←↩
the animations

211 }

212

213 }

214

215 /**Stops the animation

216 *

217 */

218 public void stop_animation (){

219 run=false;

220 }

221

222 /**Rewinds the animation and stops it if it was

223 * playing

224 */

225 public void restartAnimation () {

226 stop_animation ();

227 resetAnimation ();

228

229 }

230

231 /**Resets the animation , and all animation parameters

232 *

233 */

234 private void resetAnimation () {

235 currentStep =0;

236 actualJeliotStep =0;

237 try {

238 LOframe.getViz ().reset();

239 } catch (Exception e) {

66 Source code for LOjel

240 // TODO Auto -generated catch block

241 e.printStackTrace ();

242 }

243 LOframe.getTextPanel ().removeStepText ();

244 update_labels (0);

245 }

246

247

248 /**Reset all parameters

249 * making the program ready for displaying a new ←↩
Learning Object

250 *

251 */

252 public void resetAll (){

253 description="";

254 for(int i=0; i<stepsDescription.length; i++){

255 stepsDescription[i]="";

256 }

257 for(int i=0; i<jeliotSteps.length; i++){

258 jeliotSteps[i]=0;

259 }

260 // for(int i=0; i<LOframe.getTextPanel ().←↩
getEndMarkers ().length; i++){

261 // LOframe.getTextPanel ().getEndMarkers ()[i]=0;

262 // }

263 LOframe.getTextPanel ().getDisp ().setText("");

264 currentStep =0;

265 actualJeliotStep =0;

266 //TODO write method to reset all parameters when ←↩
called

267 }

268

269

270

271 public void setActualJeliotStep(int actualJeliotStep)←↩
{

272 this.actualJeliotStep = actualJeliotStep;

273 }

274

275 }

1 /*

2

3 Universal Java interface to a visualization

67

4 Copyright 2010 by Moti Ben -Ari under GNU GPL

5

6 This interface is intended to enable pedagogical ←↩
software

7 (such as learning objects , learning management ←↩
systems ,

8 interactive learning environments) to control ←↩
visualizations

9 written in Java which will implement the interface.

10

11 The details of the parameters , etc., are to be ←↩
specified separately

12 for each visualization implementing the interface.

13

14 */

15 package model;

16 public interface Visualization {

17

18 // Initialize the visualization , possibly with ←↩
arguments

19 // The visualization is to be displayed in the ←↩
supplied frame

20 // Alternatively , the visualization could supply ←↩
the JFrame

21 public abstract void initialize(

22 javax.swing.JFrame frame , String args []) throws ←↩
Exception;

23 public abstract javax.swing.JFrame initialize(

24 String args []) throws Exception;

25

26 public abstract javax.swing.JComponent ←↩
initializeVisualization(

27 String args []) throws Exception;

28

29 // Load a file such as a program or algorithm to ←↩
visualize

30 public abstract void load(String fileName) throws ←↩
java.io.IOException;

31

32 // Get/Set internal options

33 public abstract String [] getOptions ();

34 public abstract void setOptions(String args []);

35

68 Source code for LOjel

36 // Run from start or run something , step , reset the←↩
visualization

37 public abstract void runFromStart () throws ←↩
Exception;

38 public abstract void run(String what) throws ←↩
Exception;

39 public abstract void step(int steps) throws ←↩
Exception;

40 public abstract void reset() throws ←↩
Exception;

41 public abstract void stop() throws ←↩
Exception;

42

43 // Query the visualization and return information

44 // such as the value of a variable

45 // For an object , its toString would be returned

46 public abstract int getIntValue (String name);

47 public abstract double getDoubleValue(String name);

48 public abstract String getStringValue(String name);

49 public abstract String getObjectValue(String name);

50 }

1 package model;

2

3 import java.io.File;

4 import java.io.IOException;

5

6 import javax.swing.JComponent;

7 import javax.swing.JFrame;

8

9 import jeliot.Jeliot;

10 import jeliot.gui.LoadJeliot;

11

12

13

14 /** This class adaps jeliot to visualization ←↩
interface

15 * @author Niko Myller

16 *

17 */

18 public class JeliotLOVisualization extends Jeliot ←↩
implements Visualization {

19

20 public JeliotLOVisualization () {

69

21 super("jeliot.io.*");

22 }

23

24 public JFrame initialize(String [] args) throws ←↩
Exception {

25 LoadJeliot.simpleStart(this);

26 handleArgs(args);

27 return gui.getFrame ();

28 }

29

30 public JComponent initializeVisualization(String []←↩
args) throws Exception {

31 LoadJeliot.simpleStart(this);

32 handleArgs(args);

33 return gui.getTopSplitPane ();

34 }

35

36 public void load(String fileName) throws ←↩
IOException {

37 final File programFile = new File(fileName);

38 if (programFile.exists ()) {

39 setProgram(programFile);

40 try {

41 reset ();

42 } catch (Exception e) {

43 e.printStackTrace ();

44 }

45 }

46 }

47

48 public void reset() throws Exception {

49 cleanUp ();

50 compile(null);

51 }

52

53 public void runFromStart () throws Exception {

54 playAnimation ();

55 }

56

57 public void step(int steps) throws Exception {

58 int count = 0;

59 // if the animation has ended or stopped to ←↩
wait for input

70 Source code for LOjel

60 // then the steps should end as well even ←↩
though there are steps left

61 // System.out.println ("" + (count < steps) + ":"←↩
+ !isFreezed () + ":" + !isFinished ());

62 while (count < steps && !isFreezed () && !←↩
isFinished ()) {

63 if (playStepAnimation ()) {

64 count ++;

65 }

66 Thread.sleep (100);

67 }

68 }

69

70 public void stop() throws Exception {

71 pauseAnimation ();

72 }

73

74 public void run(String what) throws Exception {

75 // TODO Auto -generated method stub

76 }

77

78 public void setOptions(String [] args) {

79 // TODO Auto -generated method stub

80 }

81

82 public double getDoubleValue(String name) {

83 // TODO Auto -generated method stub

84 return 0;

85 }

86

87 public int getIntValue(String name) {

88 // TODO Auto -generated method stub

89 return 0;

90 }

91

92 public String getObjectValue(String name) {

93 // TODO Auto -generated method stub

94 return null;

95 }

96

97 public String [] getOptions () {

98 // TODO Auto -generated method stub

99 return null;

100 }

71

101

102 public String getStringValue(String name) {

103 // TODO Auto -generated method stub

104 return null;

105 }

106

107 public void initialize(JFrame frame , String [] args←↩
) throws Exception {

108 // TODO Auto -generated method stub

109 }

110 }

1 package control;

2

3 import java.awt.Rectangle;

4 import java.io.FileNotFoundException;

5 import java.io.IOException;

6

7 import javax.swing.UIManager;

8

9 import view.WelcomeDialog;

10

11 /**Responsible for starting the program.

12 * @author Jens Peter Träff

13 *

14 */

15 public class Driver {

16 public static void main(String [] args) throws ←↩
Exception{

17

18 {

19 // first we set the LookAndFeel to the ←↩
operation system ’s default.

20 try

21 {

22 UIManager.setLookAndFeel(UIManager.←↩
getSystemLookAndFeelClassName ());

23 } catch (Exception e)

24 {

25 }

26

27

28 // Make a frame and show it

29 LO_frame frame = new LO_frame ();

72 Source code for LOjel

30 // frame.setVisible(true);

31

32 Thread.sleep (3000);

33

34 // frame.getViz ().runFromStart ();

35

36 // frame.getViz ().step (20);

37 }

38

39

40 }

41 }

1 package control;

2

3 import java.awt.BorderLayout;

4 import java.awt.Color;

5 import java.awt.Dimension;

6 import java.awt.FlowLayout;

7 import java.awt.Frame;

8 import java.awt.GridLayout;

9 import java.awt.Panel;

10 import java.awt.event.ActionEvent;

11 import java.awt.event.ActionListener;

12 import java.awt.event.KeyEvent;

13 import java.awt.event.KeyListener;

14 import java.awt.event.MouseEvent;

15 import java.awt.event.MouseListener;

16 import java.io.File;

17 import java.io.FileNotFoundException;

18 import java.io.IOException;

19 import java.util.Scanner;

20

21 import javax.swing.JComponent;

22 import javax.swing.JFrame;

23 import javax.swing.JLayeredPane;

24 import javax.swing.JMenu;

25 import javax.swing.JMenuBar;

26 import javax.swing.JMenuItem;

27 import javax.swing.JPanel;

28 import javax.swing.JPopupMenu;

29 import javax.swing.JScrollPane;

30 import javax.swing.JSplitPane;

31 import javax.swing.Timer;

73

32

33

34 import view.CheckDialog;

35 import view.InfoWindow;

36 import view.Java_source_code;

37 import view.Jeliot_Panel;

38 import view.Status_Panel;

39 import view.Text_Panel;

40 import view.WelcomeDialog;

41

42 import model.JeliotLOVisualization;

43 import model.Model;

44 import model.Visualization;

45

46 /** The LO_frame act as the root of the GUI , and ←↩
listens to all the panels , buttons

47 * and menus. It places a textpanel in the left part ←↩
of a nested splitpane , a jeliotpanel in

48 * the right , and a statuspanel in the south panel

49 * @author Jens Peter Träff

50 *

51 */

52 public class LO_frame extends JFrame implements ←↩
ActionListener , KeyListener , MouseListener {

53

54

55 private Model model;

56 private Text_Panel textPanel;

57 private JSplitPane center= new JSplitPane ();

58 private JSplitPane south = new JSplitPane(←↩
JSplitPane.VERTICAL_SPLIT);

59 private Status_Panel statusP;

60 private Jeliot_Panel jeliotP;

61 private Visualization viz = new ←↩
JeliotLOVisualization ();

62

63 /**Constructs the GUI and sets up all the panels

64 * add itself as listener to all member panels.

65 * @throws Exception

66 */

67 public LO_frame () throws Exception{

68 model=new Model(this);

69

70 // model.load_Text ("C:/ test2.txt");

74 Source code for LOjel

71 // model.Display_text ();

72 // model.load_step_explanation ("C:/ test3.txt");

73 initFrame ();

74 // Visualization viz = new JeliotLOVisualization←↩
();

75 String [] Config=new String [0];

76 JComponent vis=viz.initializeVisualization(←↩
Config);

77 // JSplitPane jeliot= new JSplitPane ();

78

79

80 //vis.setSize(new Dimension ((int) (this.←↩
getWidth ()), (int) (this.getHeight ())));

81 jeliotP=new Jeliot_Panel(new Dimension(this.←↩
getWidth (), (int) (this.getHeight ()*0.9)), ←↩
model , this);

82 statusP=new Status_Panel(new Dimension(this.←↩
getWidth (), (int) (this.getHeight () *0.05)),←↩
model , this);

83 textPanel= new Text_Panel(this);

84

85 center.setLeftComponent(textPanel);

86 center.setRightComponent(jeliotP);

87 setLayout(new BorderLayout ());

88 // center.setLayout(new GridLayout (1,2));

89

90 //set up the menubar

91 JMenuBar menub = new JMenuBar ();

92 setJMenuBar(menub);

93 JMenu menuf = new JMenu("File");

94 JMenu menue = new JMenu("Functions");

95 JMenu menuh = new JMenu("Help");

96 // JMenu sub = new JMenu("Open Demo");

97 menub.add(menuf);

98 menub.add(menue);

99 menub.add(menuh);

100

101 JMenuItem knowledge = new JMenuItem("Check my ←↩
knowledge");

102

103 JMenuItem tutorial = new JMenuItem("About");

104 JMenuItem help = new JMenuItem("Help");

105 JMenuItem open = new JMenuItem("Load");

106 menue.add(knowledge);

75

107 menuh.add(tutorial);

108 menuh.add(help);

109 menuf.add(open);

110 open.addActionListener(this);

111 help.addActionListener(this);

112 tutorial.addActionListener(this);

113 knowledge.addActionListener(this);

114

115

116

117 // JComponent visComp = viz.←↩
initializeVisualization(Config.DEFAULT_ARGS←↩
);

118 //add visComp to your GUI

119 //viz.load("C:/ Average.java"); //←↩
programFile.getCanonicalPath ()

120 JScrollPane jscroll = new JScrollPane(vis);

121 //add the panel to the frame

122 jeliotP.setBackground(Color.BLUE);

123 jeliotP.setLayout(new BorderLayout ());

124 jeliotP.add(jscroll , BorderLayout.CENTER);

125 jeliotP.addKeyListener(this);

126

127 // jeliotP.add(vis);

128

129

130 // center.add(jCode);

131 // center.add(textPanel);

132 // center.setRightComponent(jeliotP);

133 // ensure the dividerLocation is set right ←↩
always

134 int location1 = (int) (this.getWidth () *0.5);

135 center.setDividerLocation(location1);

136 // center.setPreferredSize(new Dimension(this.←↩
getWidth (), this.getHeight ()));

137 int location = (int) (this.getHeight () *0.98) ;

138 south.setDividerLocation(location);

139 textPanel.addKeyListener(this);

140 south.setRightComponent(statusP);

141 south.setLeftComponent(center);

142

143 // south.getLeftComponent ().setPreferredSize(new←↩
Dimension(this.getWidth (), (int) (this.←↩

getHeight () *0.05)));

76 Source code for LOjel

144 // add(textPanel , BorderLayout.WEST);

145 add(south , BorderLayout.CENTER);

146 //add(statusP , BorderLayout.SOUTH);

147 center.addKeyListener(this);

148 south.addKeyListener(this);

149 // Timer time = new Timer (100, this);

150 // time.setActionCommand ("time");

151 // time.start();

152 // textPanel.displaySteps ();

153 textPanel.addMouseListener(this);

154 statusP.addMouseListener(this);

155 addMouseListener(this);

156 pack();

157 //set the frame size to maximized

158 setExtendedState(Frame.MAXIMIZED_BOTH);

159 this.setVisible(true);

160

161 }

162

163

164 /**Initializes the frame , specifies size , location←↩
and default close operation

165 *

166 */

167 private void initFrame ()

168 {

169 setTitle("LO");

170 setSize(new Dimension (700, 700));

171 setLocation (100, 100);

172 setDefaultCloseOperation(EXIT_ON_CLOSE);

173

174

175 //pack();

176 }

177

178

179 public Visualization getViz () {

180 return viz;

181 }

182

183

184

185

186 public Jeliot_Panel getJeliotP () {

77

187 return jeliotP;

188 }

189

190 public Model getModel (){

191 return this.model;

192 }

193

194

195

196 @Override

197 public void actionPerformed(ActionEvent e) {

198 if(e.getActionCommand ().equals("Step")){

199 try {

200 System.out.println("here");

201 statusP.requestFocusInWindow ();

202 model.stop_animation ();

203 model.forward_animation_one_step ();

204 statusP.requestFocusInWindow ();

205 } catch (Exception e1) {

206 // TODO Auto -generated catch block

207 e1.printStackTrace ();

208 }

209 }else if(e.getActionCommand ().equals("Play")){

210 Thread c=new Thread(new Runnable () {

211 public void run() {//we have to run a ←↩
different thread to utilize this

212 try {

213 statusP.requestFocusInWindow ();

214 model.play_animation ();

215

216 } catch (Exception e) {

217 // TODO Auto -generated catch block

218 e.printStackTrace ();

219 }

220 }

221 });

222 c.start();

223

224

225

226 } else if(e.getActionCommand ().equals("Stop")){

227 System.out.println("in stop");

228 model.stop_animation ();

229 statusP.requestFocusInWindow ();

78 Source code for LOjel

230 }

231

232 else if (e.getActionCommand ().equals("Restart")){

233 try {

234 model.restartAnimation ();

235 statusP.requestFocusInWindow ();

236 // model.rewind_animation_one_step ();

237 } catch (Exception e1) {

238 // TODO Auto -generated catch block

239 e1.printStackTrace ();

240 }

241 }

242 else if (e.getActionCommand ().equals("About")){

243 WelcomeDialog wel;

244 InfoWindow w;

245 // try {

246 w=new InfoWindow("./doc/about.html", ".",←↩
null , "about");

247 w.reload ();

248 w.setVisible(true);

249 //// wel = new WelcomeDialog(this);

250 //// wel.showIt ();

251 // } catch (FileNotFoundException e1) {

252 //

253 // e1.printStackTrace ();

254 // }

255 }

256 else if (e.getActionCommand ().equals("Help")){

257 WelcomeDialog wel;

258 InfoWindow w;

259 // try {

260 w=new InfoWindow("help.html", "./doc", ←↩
null , "help");

261 w.reload ();

262 w.setVisible(true);

263

264 }

265

266 else if (e.getActionCommand ().equals("Check my ←↩
knowledge")){

267 CheckDialog check;

268 try {

269 check = new CheckDialog(new JFrame (), ←↩
this);

79

270 check.showIt ();

271 } catch (FileNotFoundException e1) {

272 // TODO Auto -generated catch block

273 e1.printStackTrace ();

274 }

275 } else if (e.getActionCommand ().equals("Load"))←↩
{

276 try {

277 model.open();

278 } catch (IOException e1) {

279 // TODO Auto -generated catch block

280 e1.printStackTrace ();

281 }

282 }

283

284 // // below is just for fun

285 // else if(e.getActionCommand ().equals ("time")){

286 // System.out.println (" jeppe");

287 // if(this.jeliotP.count <10){

288 // this.jeliotP.count ++;

289 // }else this.jeliotP.count =0;

290

291 }

292

293

294 // textPanel.displaySteps ();

295

296 @Override

297 public void keyPressed(KeyEvent e) {

298

299 if(e.getKeyChar ()==’ ’){

300 try {

301 model.forward_animation_one_step ();

302 } catch (Exception e1) {

303 // TODO Auto -generated catch block

304 e1.printStackTrace ();

305 }

306 }else if (e.getKeyCode ()== KeyEvent.VK_BACK_SPACE){

307 model.restartAnimation ();

308 } else if (e.getKeyCode ()== KeyEvent.VK_ENTER){

309 model.stop_animation ();

310 Thread c=new Thread(new Runnable () {

311 public void run() {//we have to run a ←↩
different thread to utilize this

80 Source code for LOjel

312 try {

313 model.play_animation ();

314 } catch (Exception e) {

315 // TODO Auto -generated catch block

316 e.printStackTrace ();

317 }

318 }

319 });

320 c.start();

321 } else if (e.getKeyCode ()== KeyEvent.VK_ESCAPE){

322 model.stop_animation ();

323 }

324

325 }

326

327

328 @Override

329 public void keyReleased(KeyEvent arg0) {

330

331 }

332

333

334 @Override

335 public void keyTyped(KeyEvent arg0) {

336 // TODO Auto -generated method stub

337

338 }

339

340

341

342

343

344

345 public Text_Panel getTextPanel () {

346 return textPanel;

347 }

348

349

350 @Override

351 public void mouseClicked(MouseEvent e) {

352 // TODO Auto -generated method stub

353 System.out.println("joo");

354 }

355

81

356

357 @Override

358 public void mouseEntered(MouseEvent e) {

359 // TODO Auto -generated method stub

360

361 }

362

363

364 @Override

365 public void mouseExited(MouseEvent e) {

366 // TODO Auto -generated method stub

367

368 }

369

370

371 @Override

372 public void mousePressed(MouseEvent e) {

373 System.out.println(e.getComponent ().hasFocus ());

374 if(e.getComponent ().equals(statusP)){

375 statusP.requestFocusInWindow ();

376 }

377

378 }

379

380

381 @Override

382 public void mouseReleased(MouseEvent e) {

383 // TODO Auto -generated method stub

384

385 }

386

387 }

1 package view;

2

3 import java.awt.BorderLayout;

4 import java.awt.Button;

5 import java.awt.Color;

6 import java.awt.Dimension;

7 import java.awt.FlowLayout;

8 import java.awt.Font;

9 import java.awt.Rectangle;

10

11 import javax.swing.JLabel;

82 Source code for LOjel

12 import javax.swing.JPanel;

13 import javax.swing.JScrollPane;

14 import javax.swing.JSpinner;

15 import javax.swing.JTextArea;

16 import javax.swing.JTextField;

17 import javax.swing.JTextPane;

18 import javax.swing.ScrollPaneConstants;

19 import javax.swing.SwingUtilities;

20 import javax.swing.text.BadLocationException;

21 import javax.swing.text.MutableAttributeSet;

22 import javax.swing.text.Position;

23 import javax.swing.text.StyleConstants;

24 import javax.swing.text.StyledDocument;

25

26 import model.Model;

27

28 import control.LO_frame;

29

30 public class Text_Panel extends JPanel{

31

32 private static final Font plainFont = new Font(←↩
Font.MONOSPACED , Font.PLAIN , 14);

33 // private static final Font highlightFont = new Font←↩
(" Serif", Font.ITALIC , 18);

34 private LO_frame LOframe;

35 private int endMarker;

36 // private StyledDocument doc;

37 private JTextPane jtp;

38 public JTextPane getJtp () {

39 return jtp;

40 }

41 private JTextArea disp;

42 private JScrollPane jsp;

43

44 public Text_Panel(LO_frame LOframe) {

45

46 setLayout(new BorderLayout ());

47 this.LOframe = LOframe;

48 setPreferredSize(new Dimension ((int) (LOframe.←↩
getWidth ()*0.5) , LOframe.getHeight ()));

49 setBounds (0, 0, (int) (LOframe.getWidth ()*0.2) ,←↩
LOframe.getHeight ());

50 setupLabels ();

51 }

83

52

53 /**constructs the text area and scrollpane

54 *

55 */

56 public void setupLabels ()

57 {

58 jtp=new JTextPane ();

59 disp=new JTextArea ();

60 jtp.setPreferredSize(new Dimension(this.←↩
getWidth (), this.getHeight ()));

61 //jtp.setBounds(0, 0, 200, this.getHeight ());

62 //doc = jtp.getStyledDocument ();// find out what←↩
styled document does

63 jtp.setEditable(false);

64 jsp=new JScrollPane(jtp);

65 jsp.setBounds(0, 0, this.getWidth (), this.←↩
getHeight ());

66 //jtp.scrollRectToVisible ()

67 add(jsp , BorderLayout.CENTER);

68 jtp.addMouseListener(LOframe);

69 jtp.addKeyListener(LOframe);

70

71 // addStylesToDocument(doc);

72

73 }

74

75 public int getEndMarkers () {

76 return endMarker;

77 }

78

79 /**Displays the explanatory text

80 *

81 */

82 public void displayExplanation (){

83 disp.append(LOframe.getModel ().description +"\n←↩
");

84 jtp.setFont(plainFont);

85 jtp.setText(disp.getText ());

86 // endMarkers=new int[LOframe.getModel ().←↩
jeliotSteps[LOframe.getModel ().jeliotSteps.length←↩
-1]];

87 // int endOfPlainText =0;

88 // try {

89 // doc.remove(0, doc.getLength ());

84 Source code for LOjel

90 // doc.insertString(1,LOframe.getModel ().←↩
description +"\n", null);

91 // endOfPlainText=doc.getEndPosition ().←↩
getOffset ();

92 // doc.insertString(endOfPlainText , "Now ←↩
follows the Animation and explanation \n", null);←↩
//text for the instructor to specify?

93 // // setJTextPaneFont(jtp , plainFont ,Color.←↩
black , endOfPlainText ,doc.getEndPosition ().←↩
getOffset (), false);

94 // } catch (BadLocationException e) {

95 // // TODO Auto -generated catch block

96 // e.printStackTrace ();

97 // }

98 // int startOfStepText=doc.getEndPosition ().←↩
getOffset (); // marks the end of the plain text , ←↩
and where the explanations are supposed to start ,←↩
might be done more smartly to allow ←↩

interchangeability ...

99 // endMarkers [0]= endOfPlainText;

100 // endMarkers [1]= startOfStepText;

101 // // setJTextPaneFont(jtp ,plainFont ,Color.black , ←↩
0, endOfPlainText , false);

102 }

103

104

105 /**This method displays the step description at ←↩
the current step.

106 *

107 *

108 */

109 public void displaySteps () {

110 Model local=LOframe.getModel ();

111 if(local.currentStep ==1 || local.currentStep >←↩
local.jeliotSteps[local.getActualJeliotStep←↩
()]){

112 if(local.currentStep !=1){

113 local.setActualJeliotStep(local.←↩
getActualJeliotStep ()+1);

114 }

115 disp.append(local.stepsDescription[local.←↩
getActualJeliotStep ()] + "\n");

116 jtp.setText(disp.getText ());

117 String breakk="";

85

118 // ensure that the newest text is 2/3 up ←↩
the page

119 for(int c=0; c<10; c++){

120 breakk +="\n";

121 }

122 jtp.setText(disp.getText ()+breakk);

123 }

124

125 int last = jtp.getText ().length ();

126 // try {

127 // System.out.println(jtp);

128

129 System.out.println(jtp.getSize ());

130 // jtp.scrollRectToVisible(jtp.modelToView(last));

131 jtp.scrollRectToVisible(new Rectangle(0, last , ←↩
2,2));

132 jtp.setCaretPosition(last);

133 // catch (javax.swing.text.BadLocationException e)

134 // {System.err.println (" Error setting caret ←↩
position when writing\n" +

135 // "\n");}

136

137 }

138

139 /**Removes the old text from the textpane

140 * used when restarting animation.

141 */

142 public void removeStepText (){

143 jtp.setText("");

144 disp.setText("");

145 displayExplanation ();

146 }

147

148

149 /**This method changes the font of text between ←↩
offset and length. currently not used

150 * @param jtp

151 * @param font

152 * @param c

153 * @param offset

154 * @param length

155 * @param highlight

156 */

86 Source code for LOjel

157 public static void setJTextPaneFont(JTextPane jtp , ←↩
Font font , Color c, int offset , int length , ←↩
boolean highlight) {

158 // Start with the current input attributes for ←↩
the JTextPane. This

159 // should ensure that we do not wipe out any ←↩
existing attributes

160 // (such as alignment or other paragraph ←↩
attributes) currently

161 // set on the text area.

162 MutableAttributeSet attrs = jtp.←↩
getInputAttributes ();

163

164 // Set the font family , size , and style , based on←↩
properties of

165 // the Font object. Note that JTextPane supports ←↩
a number of

166 // character attributes beyond those supported by←↩
the Font class.

167 // For example , underline , strike -through , super -←↩
and sub -script.

168 StyleConstants.setFontFamily(attrs , font.←↩
getFamily ());

169 StyleConstants.setFontSize(attrs , font.getSize ())←↩
;

170 StyleConstants.setItalic(attrs , (font.getStyle () ←↩
& Font.ITALIC) != 0);

171 StyleConstants.setBold(attrs , (font.getStyle () & ←↩
Font.BOLD) != 0);

172

173 // Set the font color

174 StyleConstants.setForeground(attrs , c);

175

176 //set the background color (highlighting)

177 /* if(highlight){

178 StyleConstants.setBackground(attrs , Color.←↩
YELLOW);}

179 else{

180 StyleConstants.setBackground(attrs , Color.WHITE←↩
);

181 }

182 */

183

184 // Retrieve the pane’s document object

87

185 StyledDocument doc = jtp.getStyledDocument ();

186

187 // Replace the style for the entire document. We ←↩
exceed the length

188 // of the document by 1 so that text entered at ←↩
the end of the

189 // document uses the attributes.

190 doc.setCharacterAttributes(offset ,length , attrs ,←↩
false);

191 }

192

193 public JTextArea getDisp () {

194 return disp;

195 // TODO Auto -generated method stub

196

197 }

198

199

200 }

1 package view;

2

3 import java.awt.BorderLayout;

4 import java.awt.Color;

5 import java.awt.Dimension;

6

7 import javax.swing.JButton;

8 import javax.swing.JPanel;

9

10 import control.LO_frame;

11

12 import model.Model;

13

14 /**This panel holds the buttons for controlling the ←↩
animation

15 * and is where future information related to ←↩
animation control should be displayed to

16 * the user.

17 * @author Jens Peter Träff

18 *

19 */

20 public class Status_Panel extends JPanel {

21

22

88 Source code for LOjel

23 public Status_Panel(Dimension dimension , Model ←↩
model , LO_frame LO_frame) {

24 setPreferredSize(dimension);

25 setLayout(new BorderLayout ());

26 JPanel x = new JPanel ();

27 JButton forward= new JButton("Step");

28 JButton rewind= new JButton("Restart");

29 JButton play = new JButton("Play");

30 JButton stop = new JButton("Stop");

31 x.add(rewind);

32 x.add(play);

33 x.add(stop);

34 x.add(forward);

35 this.add(x, BorderLayout.WEST);

36 stop.addActionListener(LO_frame);

37 rewind.addActionListener(LO_frame);

38 play.addActionListener(LO_frame);

39 forward.addActionListener(LO_frame);

40 x.addKeyListener(LO_frame);

41 this.addKeyListener(LO_frame);

42

43 }

44

45 }

1 package view;

2

3 import java.awt.Color;

4 import java.awt.Dimension;

5 import java.awt.Graphics;

6

7 import javax.swing.JLabel;

8 import javax.swing.JPanel;

9

10

11

12 import model.Model;

13 import control.LO_frame;

14

15 public class Jeliot_Panel extends JPanel {

16

17 public Jeliot_Panel(Dimension dimension , Model ←↩
model , LO_frame LO_frame) {

18 setPreferredSize(dimension);

89

19 setBackground(Color.white);

20 this.addMouseListener(LO_frame);

21 // model.getJeliot ().initialize(this);

22 }

23 }

1 /*

2 * Created on 28.10.2004

3 *

4 * To change the template for this generated file go ←↩
to

5 * Window - Preferences - Java - Code Generation - ←↩
Code and Comments

6 */

7 package view;

8

9 import java.awt.Image;

10 import java.io.File;

11 import java.io.IOException;

12 import java.net.URL;

13 import java.util.ResourceBundle;

14

15 import javax.swing.JEditorPane;

16 import javax.swing.JFrame;

17 import javax.swing.JScrollPane;

18 import javax.swing.event.HyperlinkEvent;

19 import javax.swing.event.HyperlinkListener;

20

21 import jeliot.util.DebugUtil;

22 import jeliot.util.ResourceBundles;

23

24 /**

25 * When creating a subclass of infoWindow you should ←↩
create a public

26 * constructor that populates the udir and fileName ←↩
fields and calls

27 * reload () method.

28 *

29 * @author Niko Myller

30 */

31 public class InfoWindow extends JFrame implements ←↩
HyperlinkListener {

32

33 /**

90 Source code for LOjel

34 * The resource bundle for gui package.

35 */

36 static protected ResourceBundle messageBundle = ←↩
ResourceBundles

37 .getGuiMessageResourceBundle ();

38

39 /**

40 * The pane where helping information will be ←↩
shown.

41 */

42 protected JEditorPane editorPane = new ←↩
JEditorPane ();

43

44 /**

45 * The pane that handles the scrolling of the ←↩
editor pane showing the content.

46 */

47 protected JScrollPane jsp;

48

49 /**

50 * User directory where Jeliot was loaded.

51 */

52 protected String udir;

53

54 /**

55 * File name where the content should be read.

56 */

57 protected String fileName;

58

59 /**

60 * constructs the HelpWindow by creating a JFrame←↩
.

61 * Sets inside the JFrame JScrollPane with ←↩
JEditorPane editorPane.

62 * Sets the size of the JFrame as 400 x 600

63 *

64 * @param fileName file where the content is ←↩
loaded

65 * @param udir directory of the current ←↩
invocation

66 * @param icon Icon to be shown in the upper ←↩
right corner of the window.

67 * @param title title of the JFrame

68 */

91

69 public InfoWindow(String fileName , String udir , ←↩
Image icon , String title) {

70 super(title);

71

72 this.fileName = fileName;

73 this.udir = udir;

74

75 editorPane.setEditable(false);

76 editorPane.addHyperlinkListener(this);

77

78 jsp = new JScrollPane(editorPane);

79 jsp.setVerticalScrollBarPolicy(JScrollPane.←↩
VERTICAL_SCROLLBAR_ALWAYS);

80 getContentPane ().add(jsp);

81

82 setIconImage(icon);

83

84 reload ();

85 setSize (600, 600);

86

87 }

88

89 /**

90 *

91 */

92 public void reload () {

93 try {

94 File f = new File(udir , fileName);

95 showURL(f.toURI().toURL());

96 } catch (Exception e) {

97 if (DebugUtil.DEBUGGING) {

98 e.printStackTrace ();

99 }

100 }

101 }

102

103 /**

104 * Shows the given url in the editor pane.

105 *

106 * @param url The document in the url will be ←↩
showed in JEditorPane editorPane.

107 */

108 public boolean showURL(URL url) {

109 try {

92 Source code for LOjel

110 editorPane.setPage(url);

111 } catch (IOException e) {

112 try {

113 editorPane.setPage(Thread.←↩
currentThread ()

114 .getContextClassLoader ().←↩
getResource(fileName));

115 } catch (IOException e1) {

116 try {

117 editorPane.setPage(this.getClass←↩
().getClassLoader ()

118 .getResource(fileName));

119 } catch (IOException e2) {

120 try {

121 editorPane.setPage(Thread.←↩
currentThread ()

122 .←↩
getContextClassLoader←↩
().getResource(←↩
fileName.←↩
substring(←↩
fileName.←↩
lastIndexOf("/") ←↩
+ 1)));

123 } catch (IOException e3) {

124 try {

125 editorPane.setPage(this.←↩
getClass ().←↩
getClassLoader ()

126 .getResource(←↩
fileName.←↩
substring(←↩
fileName.←↩
lastIndexOf("←↩
/") + 1)));

127 } catch (IOException e4) {

128

129 System.err.println(←↩
messageBundle

130 .getString("bad.←↩
URL")

131 + " " + url);

132 if (DebugUtil.DEBUGGING) ←↩
{

93

133 e1.printStackTrace ();

134 }

135 return false;

136 }

137 }

138 }

139 }

140 }

141 return true;

142 }

143

144 /* (non -Javadoc)

145 * @see javax.swing.event.HyperlinkListener#←↩
hyperlinkUpdate(javax.swing.event.←↩
HyperlinkEvent)

146 */

147 public void hyperlinkUpdate(HyperlinkEvent e) {

148 if (e.getEventType ().toString ().equals(

149 HyperlinkEvent.EventType.ACTIVATED.←↩
toString ())) {

150 showURL(e.getURL ());

151 }

152 }

153 }

1 package view;

2

3

4

5

6 import java.awt.BorderLayout;

7 import java.awt.Dimension;

8 import java.awt.FlowLayout;

9 import java.awt.Frame;

10 import java.awt.event.ActionEvent;

11 import java.awt.event.ActionListener;

12 import java.io.File;

13 import java.io.FileNotFoundException;

14 import java.util.Scanner;

15

16 import javax.swing.JButton;

17 import javax.swing.JDialog;

18 import javax.swing.JLabel;

19 import javax.swing.JPanel;

94 Source code for LOjel

20 import javax.swing.JScrollPane;

21 import javax.swing.JTextArea;

22 import javax.swing.JTextField;

23 import javax.swing.JTextPane;

24 import javax.swing.text.BadLocationException;

25 import javax.swing.text.MutableAttributeSet;

26 import javax.swing.text.StyleConstants;

27 import javax.swing.text.StyledDocument;

28

29 import control.LO_frame;

30

31

32 /**This class constructs and sets up the Check ←↩
dialogue used for evaluation question

33 * Jens Peter Träff S082971

34 *

35 *

36 */

37

38

39 public class CheckDialog extends JDialog implements ←↩
ActionListener{

40 private JPanel mainPanel = new JPanel ();

41 private JTextPane helpt;

42 private JTextField answer;

43 private JPanel south;

44 private JTextPane displayAnswer;

45 private JPanel east;

46 private String correctAnswer="";

47 private LO_frame LOframe;

48 /**

49 * Constructs a new frame with the help dialog in ←↩
it

50 * @param Frame

51 * @throws FileNotFoundException

52 */

53 public CheckDialog(Frame frame , LO_frame LOframe) ←↩
throws FileNotFoundException

54 {

55 super(frame ,"Check dialog",true);

56 this.LOframe=LOframe;

57 this.setLocation (100 ,100);

58 this.getContentPane ().add(mainPanel);

59 helpt = new JTextPane ();

95

60 helpt.setBounds (100, 100, 300, 300);

61 JScrollPane js=new JScrollPane(helpt);

62 setupText ();

63 js.setPreferredSize(new Dimension (300, 300));

64 mainPanel.setLayout(new BorderLayout ());

65 mainPanel.add(js, BorderLayout.CENTER);

66 answer= new JTextField (20);

67 answer.setEditable(true);

68

69 displayAnswer= new JTextPane ();

70 displayAnswer.setPreferredSize(new Dimension←↩
(200, 100));

71 JLabel information = new JLabel("evaluation of ←↩
you answer:");

72

73 // answer.setSize (100, 20);

74 south=new JPanel ();

75 east= new JPanel ();

76 south.setLayout(new FlowLayout ());

77 east.setLayout(new BorderLayout ());

78 south.add(answer);

79 east.setPreferredSize(new Dimension (200, 300));

80 east.add(displayAnswer , BorderLayout.SOUTH);

81 east.add(information , BorderLayout.CENTER);

82 JButton jb=new JButton("check answer");

83 south.add(jb);

84 jb.addActionListener(this);

85 this.add(south , BorderLayout.SOUTH);

86 this.add(east , BorderLayout.EAST);

87 this.pack();

88 }

89

90 public void showIt ()

91 {

92 setVisible(true);

93 }

94

95

96 /**

97 * The text itself

98 * It loads the text from the basefilename in ←↩
model and .chk extension.

99 * @throws FileNotFoundException

100 */

96 Source code for LOjel

101

102 private void setupText () throws ←↩
FileNotFoundException {

103 Scanner input= new Scanner(new File(LOframe.←↩
getModel ().getBaseFileName ()+".chk"));

104 String description="";

105 boolean question=true;

106 while (input.hasNextLine () && question){

107 String q=input.nextLine ();

108 if(!q.equals("answer")){

109 description += q;

110 description += "\n";

111 } else {question=false ;}

112

113

114 }

115 // Scanner input1= new Scanner(new File(LOframe.←↩
getModel ().getBaseFileName ()+".ans"));

116 correctAnswer="";

117 while (input.hasNextLine ()){

118 correctAnswer += input.nextLine ();

119 }

120 StyledDocument doc = helpt.getStyledDocument ();

121 MutableAttributeSet attrs = helpt.←↩
getInputAttributes ();

122 StyleConstants.setFontFamily(attrs , "italic");

123 StyleConstants.setFontSize(attrs , 16);

124 // doc.setCharacterAttributes (0, 300, attrs , ←↩
false);

125 try {

126 doc.insertString (0,description ,

127 attrs)

128

129

130 ;

131 } catch (BadLocationException e) {

132 // TODO Auto -generated catch block

133 e.printStackTrace ();

134 }

135 }

136

137 @Override

138 public void actionPerformed(ActionEvent e) {

97

139 if(e.getActionCommand ().equals("check answer"))←↩
{

140 String userAnswer=answer.getText ();

141 if(userAnswer.equals(correctAnswer)){

142 displayAnswer.setText("the answer is true←↩
, you are ready to move on");

143 }else {

144 displayAnswer.setText("your answer is not←↩
 quite right , try taking another look←↩
 at the animations");

145 }

146 }

147 }

148

149

150 }

98 Source code for LOjel

Bibliography

[1]

[2]

[3]

[4] Mordechai Ben-Ari, Roman Bednarik, Ronit Ben-Bassat Levy, Gil Ebel,
Andrés Moreno, Niko Myller, and Erkki Sutinen. A decade of research and
development on program animation: The jeliot experience. 2011.

[5] Ronit Ben-Bassat Levy and Mordechai Ben-Ari. A survey of research on the
jeliot program animation system. 2009.

	Summary
	Resumé
	Preface
	Acknowledgements
	1 Introduction
	1.1 What can be achieved by a framework
	1.2 Jeliot and visualization software
	1.3 Plan for the report

	2 Overall requirements
	2.1 Features of this framework
	2.2 Overall design goals

	3 The Model
	3.1 Design
	3.2 Implementation
	3.3 Tests
	3.4 Discussion of the Model

	4 The GUI
	4.1 Design of GUI
	4.2 Implementation
	4.3 Test
	4.4 Discussion of the program
	4.5 Conclusion on the GUI

	5 Evaluation and future work
	5.1 The Complete Framework
	5.2 Use and feasibility of LOjel
	5.3 Possible Improvements

	6 Conclusion
	A Userguide to LOjel
	B Source code for LOjel
	Bibliography

