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Summary

In this bachelor thesis some iterative methods for solving ill-posed discrete in-
verse problems have been modified. These iterative methods are the Landweber
method and the Cimmino methods. These methods produce regularized solu-
tions that are linear combinations of some basis vectors. It has been shown that
in some cases these basis vectors are a bad basis for the solution.

The work in the thesis has been to introduce a preconditioner that will change
these basis vectors. It has been shown that a preconditioner in some cases result
in a better solution.

When investigating preconditioners it was found that many natural choices were
rank deficient and therefore invalid. Therefore an α-value was inserted. The
effect on the solution of the placement and value of the α parameter was shown.
Also a catalogue of proposed preconditioners and a Matlab function to produce
these preconditioners has been made.

The preconditioning of the two SIRT methods has been implemented in Mat-
lab for constant relaxation parameter and a number of iterations as stopping
criteria.
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Chapter 1

Introduction

As the science of physics developed, solving inverse problems became more and
more relevant. According to wikipedia1 the theory of inverse problems evolved
with the soviet-armenian physicist Viktor Ambartsumian in the beginning of
the 20th century. Since then it has become a large field of research and is used
in almost any branch of science. Some inverse problems are straight forward to
solve and some are very complex - at this time impossible to solve. This means
that there are many mathematical approaches to solving these kind of problems.

In this bachelor thesis we will work with discrete inverse problems. They will
be of a nature that make them impossible to solve in an ordinary fashion. They
will be solved using some numerical methods known as SIRT. These methods
produce good results in some cases but in other they are far from a good solution.
This thesis will discuss how to use preconditioning to hopefully obtain better
solutions in some of these cases.

During the work it was discovered that preconditioning these problems led to a
thorough investigation of what effect it had. Therefore the focus of the thesis
became less on numerical implementation and more on theoretical and experi-
mental study of the effects.

The result is a catalogue of proposed matrices used for preconditioning dis-

1http://en.wikipedia.org/wiki/Inverse problem
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crete inverse problems, and a simple implementation on the two SIRT methods
Landweber and Cimmino in Matlab . Furthermore a Matlab function to
obtain the proposed matrices has been written.

1.1 Structure of the Thesis

The thesis will guide the reader into the world of inverse problems from to-
mography applications. Therefore a basic description of tomography will be
taken out and coupled with the theory of inverse problems. Some of the issues
regarding solving these inverse problems will be addressed to motivate the pre-
conditioning. Then a lot of work with preconditioning will be taken out and
the catalogue of preconditioning matrices is discussed. Finally the methods will
be effectively implemented in Matlab and we will see a difference of approach
between theory and practice.

Chapter 2 We will briefly explain what tomography is and how this produces inverse
problems. This will be used to get an understanding of why and how
tomography problems are ill-conditioned.

Chapter 3 Here we will start with an introduction to inverse problems. Then some of
the theory regarding solving discrete inverse problems will be explained. In
this chapter we will understand some of the characteristics of the solutions
from the SIRT methods through an example.

Chapter 4 This is one of the main chapter of the thesis. Here the preconditioning of
the system will be derived theoretically and the effects of different precon-
ditioners will be discussed.

Chapter 5 After having discussed the preconditioner’s effect it is time to implement
it effectively in Matlab , which is done here.

Chapter 6 Finally we will sum up the work done in this thesis and tasks for future
work will be proposed.

Appendix A This important appendix holds a list of proposed matrices used for pre-
conditioning. Also it will be shown which of the proposed matrices can be
used and which cannot.

Appendix B This appendix is a listing of the Matlab code that can be used to obtain
matrices for preconditioning.

Appendix C This appendix is a listing of preconditioning implemented to the Landwe-
ber method, with constant λ.
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Appendix D This appendix is a listing of preconditioning implemented to the Cimmino
method, with constant λ.
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Chapter 2

Tomography

Tomography is a method for ”looking inside objects”. The word derives from
the Greek words tomos which means part or section and graphein which means
to write. This describes the result of doing tomography. We get a slice of
the object investigated, commonly as an image. Tomography is used in many
applications from looking at objects in nano-scale with electron microscopy to
searching for oil reserves deep under ground. A commonly known application of
tomography is in CT-scanners, or Computerized Tomography scanners. Here a
set of X-rays are sent through the patient’s body, to see inside without having to
put him/her into surgery. Tomography is a non invasive method and therefore
very useful in many situations.

The CT-scanner works by sending a set of parallel X-ray beams, with known
intensity, through the patient and measuring the outgoing intensity. This is done
for several angles, typically covering 180◦. This can be seen as a projection of
the object onto a line for every angle. The tomography problem is to reconstruct
the object from these projections. Figure 2.1(a)1 illustrates how the CT-scanner
works. The X-ray emitter rotates and thereby a set of beams are sent through
the same cross section of the patient at different angles. Figure 2.1(b)2 shows the
result of the tomography. High absorption areas are bright and low absorption
areas (in this case the lungs) are dark.

1http://www.broadwayimagingcenter.com/wp-content/uploads/ucm115328.gif
2http://health.allrefer.com/health/thoracic-ct-bronchial-cancer-ct-scan.html
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(a) CT-scanning sends X-rays through a slice
of the body.

(b) Result of a CT-scanning is an image of a cross
section of the body.

Figure 2.1: Illustration of how a CT-scanner works.

We will now see the mathematical model of the described tomography problem.

2.1 Setting up the Tomography Problem

In setting up the problem we will look at the mentioned application, using
X-ray beams. The X-rays decay exponentially when passing through material.
Then let us first assume that the object under investigation is homogeneous, e.g.
consists of the same material all the way through, and has a linear attenuation
coefficient u, which specifies the material’s intensity absorption. Then the X-
ray intensity sent into the object, I0, and the intensity coming out, I, can be
calculated by:

I = I0e
−ux

where x is the length of the path that the beam went through the object.

Assume that the beam travels through several materials having different at-
tenuation coefficients, at different lengths. The output intensity can now be
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calculated as:
I = I0e

∑
−uixi

Now we say that the beam travels through infinitely many materials of different
absorption. We then get the attenuation function depending on how far on the
beam line we are, and we get an integral equation:

I = I0e
∫
L
−u(x)dx

The L denotes the path of the X-ray beam. For the two-dimensional and three-
dimensional cases we would have u(x, y) and u(x, y, z) respectively, or in general
u(x) and then one could substitute e.g. dxdydz with ds. So in general we would
have the equation:

I = I0e
−

∫
L
u(x)ds

Which can be rewritten as: ∫
L

u(x)ds = − log
I

I0
(2.1)

Now we have a mathematical description of what is measured for every beam in
Computerized Tomography. The goal of the tomography problem is to obtain
the function u(x), from measurements of different lines from different angles
through the object. In practice, though, the problem would often be discretized,
so the object would be split into a finite amout of fields known as voxels (3D)
or pixels (2D). We will see a way to do that in section 2.2.

2.2 Discrete Tomography Problems

Let us consider the two-dimensional case, as described earlier and seen in figure
2.1. Assume that the rays are parallel. We then have the situation seen in figure
2.23. We see a set of parallel beams sent through an object at different angles,
and the attenuation of each beam. If we discretize the object, we split it into
pixels, which gives us an N × N matrix X. This is seen in Figure 2.34 with
N = 5. Each pixel Xij describes the attenuation of the X-ray. Then if we stack
the columns of the matrix X we get an N2 vector x. Consider the k’th beam.
If it travels the length aki through pixel xi it will be attenuated by akixi. For
the entire beam we get that the total attenuation bk is given by:

bk =
∑
i∈Ik

akixi

3From the document ’Computerized Tomography’ used in course 02637. Made by Ph.D.
student at IMM DTU, Jakob Heide Joergensen.

4From the document ’Computerized Tomography’ used in course 02637. Made by Ph.D.
student at IMM DTU, Jakob Heide Joergensen.
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Figure 2.2: Parallel X-ray beams from two different angles, θ1 and θ2.

Figure 2.3: Trace of a single X-ray beam travelling through the yellow pixels of
the object. Both seen as matrix X and vector x.
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where Ik is the set of pixels in x which the beam, k, has travelled through (the
yellow ones in figure 2.3). If a pixel xi has not been hit by a beam, we say that
the beam has travelled the length 0 through it. Thereby giving:

bk =

N2∑
i=1

akixi (2.2)

We see that the right-hand side of (2.2) reminds us of the left-hand side of (2.1).

If we send a total of M beams through the object we will get a linear system of
equations. The vector b holds the calculated attenuations from (2.2) for every
beam. x is the discretized 2-dimensional object stacked as a vector, as in figure
2.3. We then introduce the M × N2 matrix A which holds the information of
how long every beam travels through every pixel. So that the k’th row in A is
equal to the vector ak for the k’th beam. Then we have the similar system of
linear equations:

Ax = b (2.3)

We remember from section 2.1 that we want to find these attenuations for every
pixel, that is determine x by solving the system of equations. In practice the
matrix A will be very big but also very sparse. Also there will be noise on the
data so that b = bexact + e. This is important to keep in mind when solving the
equations. This thesis will deal with these discrete tomography problems and
look into methods for solving (2.3).
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Chapter 3

Inverse Problems

Inverse problems appear in almost any scientific field. The basic idea of inverse
problems is that we want to determine some parameters from observed data.
For instance we could have a model, M , which depends on some parameters,
p, and gives some data, d. The relationship would then be M(p) = d. Say we
know the model and can observe the data, but do not know the parameters of
the model. We would have an inverse problem. If we knew the parameters and
the model, but could not observe the data, we would have a forward problem,
since we could simply plug in the parameters to the model and calculate the
data. In the case of M being a discrete linear operator we would have:

Mp = d (3.1)

This is equivalent to (2.3), where the situation is that we know our model,
observe some data and from that need to determine the parameters - in that
case attenuations.

Inverse problems can also have a continuous formulation. For instance the
integral equation (2.1) is a continuous inverse problem, where we have some
measurement on the right-hand side and an unknown function u, depending on
some parameters x, on the left-hand side.

In the following sections we will show why a classical method of solving a linear
system of equations will not be satisfactory in the tomography case (2.3). First
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however we take a brief look at the Hadamard conditions.

3.1 Hadamard Conditions and Ill-Conditioned
Matrices

Jacques Hadamard was a French mathematician who introduced the therm well-
posedness to describe some properties of an inverse problem. The term and
understanding of it is straight forward. An inverse problem is well-posed if and
only if the following three properties are satisfied:

1 Existence: There exists at least one solution p satisfying (3.1).

2 Uniqueness: There is at most one solution.

3 Stability: The solution p is depending on a stable manner of the data.
This means that small changes in d results in small changes in p.

While Hadamard believed that all natural occurring phenomena would be well-
posed it has later been shown that this is not the case. Problems that are not
well-posed are said to be ill-posed.

Another concept we will be using in this chapter is the condition number of a
matrix. As stated in [2] the condition number of a square non-singular matrix
is defined as:

κ (A) =‖ A ‖‖ A−1 ‖ (3.2)

A matrix is said to be well-conditioned if it has a small condition number, and
ill-condition if high. The identity matrix has the smallest possible condition
number with κ (I) = 1.

3.2 Singular Value Decomposition

The Singular Value Decomposition (SVD) is a way to decompose a matrix. The
reader may know of LU-decomposition and QR-factorisation which are discussed
in [2, 1]. The SVD is as follows:

Theorem 3.1 Any matrix A ∈ Rm×n with m ≥ n can be factorized to:

A = U

[
Σ
0

]
V T
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where U ∈ Rm×m, V ∈ Rn×n are orthogonal and Σ ∈ Rn×n is diagonal:

Σ =


σ1 0 · · · 0

0 σ2
...

...
. . . 0

0 · · · 0 σn

 , σ1 ≥ σ2 ≥ · · · ≥ σn ≥ 0

It is clear that if m < n the factorization can be done on AT . In tomography,
however, m will be considerably larger than n. The proof of the theorem can
be seen in [1]. The columns in U and V are called singular vectors and the
diagonal elements in Σ are called singular values. Later we will see that these
singular vectors are in some way the main focus of this project.

If we consider U = [U1U2] where U1 ∈ Rm×n, we get the so called thin SVD :

A = U1ΣV T

Then we can write this as the outer product form:

A =

n∑
i=1

σiuiv
T
i (3.3)

which can be derived from:

A = U1ΣV T = [u1u2 · · ·un]


σ1

σ2
. . .

σn



vT1
vT2
...
vTn

 =

[u1u2 · · ·un]


σ1v

T
1

σ2v
T
2

...
σnv

T
n

 =

n∑
i=1

σiuiv
T
i

This outer product form we will use in section 3.3, to use SVD to solve a linear
system of equations such as (2.3).

3.2.1 SVD and Vector Spaces

First we will refresh our knowledge of the column space or range, R (A), of a
matrix, A. Consider the matrix A ∈ Rm×n, where A = [v1v2...vn]. Then the
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range of A is defined as:

R (A) = span {v1, v2, ..., vn}

which is equivalent to:

R (A) = {y | y = Ax ∀x ∈ Rn}

In similar fashion the null space, N (A), of a matrix, A, is a subspace of the
range and is defined as:

N (A) = {x | Ax = 0}

Also we remember that orthogonal matrices, such as U and V , have orthonormal
rows and columns.

Assuming A ∈ Rm×n has rank r ≤ n, then n − r of the singular values will be
equal to zero. That is:

σ1 ≥ σ2 ≥ ... ≥ σr ≥ σr+1 = ... = σn = 0 (3.4)

Now using the outer product form, (3.3), we get:

y = Ax =

n∑
i=1

σiuiv
T
i x =

r∑
i=1

σiuiv
T
i x =

r∑
i=1

(
σixv

T
i

)
ui =

r∑
i=1

αiui , αi ∈ R

Because of (3.4) it must hold that:

z =

n∑
i=r+1

σiuiv
T
i x =

n∑
i=r+1

σiuix
T vi =

n∑
i=r+1

(
σiuix

T
)
vi =

n∑
i=r+1

βivi = 0 , βi ∈ R

We see that z is within the null space since Az = 0.

We have now shown two important features of the singular vectors regarding
vector spaces:

Theorem 3.2 Given A = U

[
Σ
0

]
V T , with rank r, then:

1 The singular vectors u1, u2, ..., ur are an orthonormal basis in R (A) and

rank (A) = dim (R (A)) = r

2 The singular vectors vr+1, vr+2, ..., vn are an orthonormal basis in N (A)
and

dim (N (A)) = n− r
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Also we can now define the condition number of a matrix in terms of the singular
values. In (3.2) we saw how to determine the condition number of a square non-
singular matrix.

Having the SVD of a, not necessarily square, matrix A with rank r, the condition
number of A can be calculated by terms of the singular values:

κ (A) =
σ1
σr

(3.5)

This of course is very convenient if the SVD is already computed. We will now
see how to use the SVD to find the least squares solution of a linear system of
equations.

3.3 Least Squares Solutions with SVD

We will now see how the SVD can be used to find the least squares solution to
a linear system of equations. In tomography problems we will typically have
an overdetermined system of equations with perturbations, Ax ∼ b, where we
assume A has full rank. The SVD will then be:

A = [U1U2]

[
Σ
0

]
V T

where A,U1 ∈ Rm×n. The residual is then defined as:

‖r‖2 = ‖b−Ax‖2 = ‖b− [U1U2]

[
Σ
0

]
V Tx‖2 (3.6)

The x∗ that minimizes (3.6) is the least squares solution. From the above an
expression for x∗ can be derived. This is omitted here but can be seen in done in
[1, 3]. Note that the approaches in the two are somewhat different. The result
however is the same:

Theorem 3.3 Let the matrix A ∈ Rm×n, m ≥ n have full column rank and the
thin SVD A = U1ΣV T . Then the least squares problem min

x
‖Ax − b‖2 has the

unique solution:

x∗ = V Σ−1UT1 b =

n∑
i=1

uTi b

σi
vi

It is noticed that the solution is a linear combination of the singular vectors, vi.
To get a grasp of the issues with solving tomography problems, an example will
be taken out in section 3.5.
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3.3.1 Issues with Solving Tomography Problems with SVD

We have now seen how a tomography problem is set up and can be discretized.
We have also seen how to find the least squares solution to such a problem.
One might think it is a done deal and now straight forward to solve tomography
problems. However there are some complications that we will look into.

First of all, in practical applications the system matrix, A, will be very large
and therefore, if not impossible, then very time consuming to compute the SVD.
This will be disregarded for now, and taken care of in chapter 5. The other issues
will be illustrated by an example.

Using the ”shaw” test problem from the Regularization Tools Matlab toolbox1,
a tomography problem is set up (section 3.5). From (3.5) the condition number
of the system matrix, A, is calculated to:

κ (A) =
σ1
σ40

= O
(
1018

)
It is clear from the condition number that it is a very ill-posed problem. From
introductory numerical computation [2], it is known that working on a computer
with machine precession O

(
10−16

)
, as when working in Matlab , the solution

is not to be trusted, since every digit will be influenced by errors.

The Picard plot in figure 3.1, shows the behaviour of the described test problem.
First of all it is seen that the singular values decay as expected. Even though
it is a bit difficult we see that the quantity |uTi b| decay faster than the singular
values, σi until some point where it levels off. Also we see that at this point the

values of
|uT

i b|
σi

stop descending and start ascending. This is due to the fact that
the Discrete Picard Condition is no longer satisfied. More of the discrete Picard
condition can be seen in [3]. However we will now see how this influences the
solution.

|uTi b|
σi

=
|uTi (bexact + e) |

σi
=
|uTi bexact|

σi
+
|uTi e|
σi

In theory it is known that
|uT

i b
exact|
σi

decays as i increases [3]. This meaning
without noise and rounding errors. Knowing that e is gaussian white noise it is
clear that e ∼ constant regardless of which SVD components (i.e. values of i).
This means that as i increases and thereby the values of σi decrease, the values

of the quantity
|uT

i e|
σi

increase.

1http://www2.imm.dtu.dk/ pch/Regutools
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Since
|uT

i b
exact|
σi

decrease and
|uT

i e|
σi

increase, at some point the noised term will

dominate the sum. Meaning that when the values of term
|uT

i (bexact+e)|
σi

=
|uT

i b|
σi

starts increasing, the noise dominates. This means that at some point the SVD
components are dominated by noise and do not contribute in a good manner to
the solution - quite the contrary. A straight forward way to deal with this is to
simply disregard the latter SVD components. This is called Truncated Singular
Value Decomposition, TSVD, and is a regularized solution.

So in practice the least squares SVD solution will be very affected by noise.
Therefore we would like to regularize the problem.

3.3.2 Regularization

Before introducing the SIRT methods we will first look at way of constructing
a regularized solution. As mentioned a simple way of doing this is to simply
disregard the SVD components at some point, l, and obtain the TSVD solution:

x
[l]
TSV D =

l∑
i=1

uTi b

σi
vi (3.7)

However another way of regularizing the solution is to construct some variables,
[0; 1], which can be multiplied to the SVD components and in that way phase
out the components as they get noisy, instead of the brutal cut-off approach in

(3.7). Say we call these variables filter factors and denote them φ
[p]
i . (3.7) can

then be written as:

x
[p]
filtered =

n∑
i=1

φ
[p]
i

uTi b

σi
vi (3.8)

where p is some parameter, and we obtain a filtered solution.

Theorem 3.4 The truncated SVD solution (3.7) is equivalent to a filtered SVD
solution (3.8) with the following filter factors:

φ
[p]
i =

{
1 i ≤ l
0 i > l

An illustration of the filter factors is seen in figure 3.4. This shows that com-
pared to a truncated solution the filtered solution ensures a somewhat smoother
transition between which SVD components are included in the solution.
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3.4 Simultaneous Iterative Re-constructive Tech-
nique

The SIRT is a class of iterative methods to solve inverse problems. They start
with an initial vector x[0] (starting guess), often x[0] = 0, and they take the
general form of:

x[k+1] = x[k] + λTATM
(
b−Ax[k]

)
, k = 0, 1, 2, ... (3.9)

As seen in [3, 4] the Classical Landweber Method corresponds to setting T =
M = I in (3.9). The k’th iterate can be expressed as a filtered SVD soltion
(3.8) where the value λ, known as the relaxation parameter, determines the
filter factors:

φ
[k]
i = 1−

(
1− λσ2

i

)k
(3.10)

It is seen that for small singular values φ
[k]
i ∼ 0. We have now come to an

important conclusion.

Theorem 3.5 The k’th iterate in the Classical Landweber Method can be ex-
pressed as a filtered SVD solution defined as:

x[k] = V Φ[k]Σ−1UT b =

n∑
i=1

φ
[k]
i

uTi b

σi
vi

where Φ[k] = diag
(
φ
[k]
1 , ..., φ

[k]
n

)
and φ

[k]
i = 1−

(
1− λσ2

i

)k
.

3.5 Tomography Test Problem

Using the shaw test problem from the Regularization Tools Matlab toolbox2, a
tomography problem is set up. In this case we have A ∈ R40×40 and a Gaussian
noise of 1.00%. The condition number of A, κ (A) = 2.1 · 108.

The Picard plot in figure 3.1 shows that only the approximately 5 or 6 first
singular vectors should be used for the solution. The filter factors (see figure 3.4)
used for obtaining the Landweber solution show that the 4 first singular vectors
are weighted a lot, compared to the rest. This corresponds to the observations
in the Picard plot. It is also noted, in figure 3.4, that even though the number
of iterations, k, increase the filter factors do not change significantly.

2http://www2.imm.dtu.dk/ pch/Regutools
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Figure 3.1: Picard plot of the shaw test problem from Regularization Tools,
with noise level 1.00%. Showing that at some point the noise will dominate the
SVD components.

Figure 3.2 shows the naive solution to the test problem. In line with the knowl-
edge from introductory numerical computation, the large condition number of
A makes the classical solution to a linear system of equations unreliable. The
solution looks like Gaussian noise and is far from the true solution, which is
easier to see in figure 3.5, where it is plotted together with the regularized solu-
tion obtained with the Landweber method. It should be noted that a constant
λ = 1

σ1
was used. A discussion of how λ can be chosen and changed throughout

the iterations can be seen in [4].

Looking at figure 3.5 we see that the Landweber solution approximates the
problem and has the same tendencies. However it seems to be shifted a little to
the left. This solution was obtained with 20 iterations and it did not improve
significantly with more iterations. The solution obtained with the Landweber
method is subject to two important factors:

1 The singular vectors seen in figure 3.3. No matter how many iterations
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Figure 3.2: Illustration of why the naive solution is not suitable for ill-posed
problems.

we use the solution is still a linear combination of the singular vectors.

2 The filter factors seen in figure 3.4. We see that as the number of iterations,

k, increase the change in the filter factors, φ
[k]
i , becomes smaller. This is

mathematically described in theorem 3.5.

In this case it looks from the regularized solution that the basis vectors, vi, was
an acceptable basis for the real solution. However this is not always the case, as
we will see in section 4.3. This can mean that a good solution is impossible to
obtain. The goal of the next chapter is to change the basis of the solution, i.e.
the singular vectors, and thereby obtain better solutions quicker, in some cases.

Another thing to note about the regularized solution is that it is somewhat
smoother than the real solution. This is a property of the SIRT methods which
Landweber is one of.
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Figure 3.3: Showing the first 9 singular vectors of the shaw test problem.
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Figure 3.4: Plot of the 9 first filter factors, φ
[k]
i , for a filtered SVD solution to the

shaw test problem. It is seen that the solution is primarily a linear combination
of the first 4 singular vectors.
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Figure 3.5: Showing the Landweber solution after 20 iterations, together with
the real solution.
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Chapter 4

Acceleration of SIRT using
Preconditioning

This chapter will look into the Simultaneous Iterative Reconstructive Technique
(SIRT) methods, to solve tomography problems. Especially we will look into
the Landweber algorithm and use preconditioning in the hope of getting better
results in some cases. As seen in section 4.3, the regularized solution does not
always lie within an appropriate subspace in regards of the real solution. That
is the basis for our solution, vi, i = 1, 2..., n, may be close to parallel in some
directions/dimensions.

4.1 Preconditioning in the Landweber Iterations

Because of the fact mentioned in section 3.5, where it was shown that the
basis from the SVD solution to the system was not necessarily good. This
might change by preconditioning the system. Preconditioning will transform
the system, so that the regularized solution will be described by another set
of basis vectors. It will however still be a regularized solution for the same
problem, just in another subspace.

To motivate the preconditioner, we will now transform our original problem,
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Ax = b by defining a matrix, L, and vector ξ such that:

x = L−1ξ
ξ = Lx

}
⇒

(
AL−1

)
Lx = b(

AL−1
)
ξ = b

(4.1)

Now the Generalized SVD (GSVD), which is described in [3], is used to deter-
mine a solution to the transformed system. We will not go into detail with the
GSVD here, but instead jump to the definition.

Consider the system Ax = b which is transformed into
(
AL−1

)
ξ = b, A,L ∈

Rm×n,m ≥ n. The GSVD is then defined as:

A = U ′1Σ′ (X ′)
−1

L = V ′M ′ (X ′)
−1 (4.2)

where U ′1, V
′ are orthogonal and Σ′,M ′ are diagonal.

Let us define a new system:

A′ξ = b , A′ = AL−1 (4.3)

Before it was shown that A′ from (4.3) has the SVD defined as:

A′ = U ′1Γ′ (V ′)
T

(4.4)

If we apply the Classical Landweber to the system (4.3) we will obtain the
iterations:

ξ[p] = V ′Φ′[p] (Γ′)
−1

(U ′1)
T
b =

n∑
i=1

φ
′[p]
i

u′Ti b

γ′i
v′i (4.5)

Theorem 3.5 gives the following definition of Φ′.

Φ′ =


φ
′[k]
1 · · · 0
...

. . .
...

0 · · · φ
′[k]
n

 (4.6)

where φ
′[k]
i = 1−

(
1− λ (γ′i)

2
)k

.

To define Γ′ we will now look at the GSVD defined in theorem 4.2, making the
following clear:

L−1 = X ′ (M ′)
−1

(V ′)
T

AL−1 = U ′1Σ′ (X ′)
−1
X ′ (M ′)

−1
(V ′)

T

= U ′1

(
Σ′ (M ′)

−1
)

(V ′)
T

(4.7)
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By letting A′ = AL−1, Γ′ can now be expressed using (4.4) and (4.7):

Γ′ = Σ′ (M ′)
−1

=

 σ′1 · · · 0
...

. . .
...

0 · · · σ′n


 µ′1 · · · 0

...
. . .

...
0 · · · µ′n


−1

=

 σ′1 · · · 0
...

. . .
...

0 · · · σ′n




1
µ′
1
· · · 0

...
. . .

...
0 · · · 1

µ′
n



=


σ′
1

µ′
1
· · · 0

...
. . .

...

0 · · · σ′
n

µ′
n

 (4.8)

⇒ γ′i =
σ′i
µ′i

, i = 1, 2, ..., n (4.9)

Using the GSVD we have now expressed γ′i as a fraction between σ′i and µ′i.
Thereby we have a good understanding of the preconditioned system. However
we want to transform the system back to our original vector space, during
so simply by multiplying with L−1. Remembering that ξ[k] lies within our
transformed vector space and x[k] within the original (see (4.1)). Using (4.5)
and theorem 4.2, getting back to the original vector space is done by:

x̄[k] = L−1ξ′[k]

= X ′ (M ′)
−1

(V ′)
T
V ′Φ′[k] (Γ′)

−1
(U ′1)

T
b

= X ′ (M ′)
−1

Φ′[k] (Γ′)
−1

(U ′1)
T
b (4.10)

Note the bar in the latter. This is to indicate that even though x̄ is in the
original vector space, the solution is not expressed by the same basis vectors as
x. This will be clear later.

We will now look into one of the factors of the result in (4.10) and use the
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expression for Γ′ from (4.8).

(M ′)
−1

Φ′[k] (Γ′)
−1

=

 µ′1 · · · 0
...

. . .
...

0 · · · µ′n


−1 

φ
′[k]
1 · · · 0
...

. . .
...

0 · · · φ
′[k]
n




σ′
1

µ′
1
· · · 0

...
. . .

...

0 · · · σ′
n

µ′
n


−1

=


1
µ′
1
· · · 0

...
. . .

...
0 · · · 1

µ′
n



φ
′[k]
1 · · · 0
...

. . .
...

0 · · · φ
′[k]
n




µ′
1

σ′
1
· · · 0

...
. . .

...

0 · · · µ′
n

σ′
n



=


1
µ′
1
φ
′[k]
1

µ′
1

σ′
1
· · · 0

...
. . .

...

0 · · · 1
µ′
n
φ
′[k]
n

µ′
n

σ′
n



=


φ
′[k]
1

σ′
1
· · · 0

...
. . .

...

0 · · · φ′[k]
n

σ′
n



=


φ
′[k]
1 · · · 0
...

. . .
...

0 · · · φ
′[k]
n


 σ′1 · · · 0

...
. . .

...
0 · · · σ′n


−1

= Φ′[k] (Σ′)
−1

(4.11)

Substituting (4.11) in (4.10) we get:

x̄[k] = X ′Φ′[k] (Σ′)
−1

(U ′1)
T
b

=

 | |
x′1 x′2 · · ·
| |




φ
′[k]
1

σ′
1
· · · 0

...
. . .

...

0 · · · φ′[k]
n

σ′
n


 (u′1)

T
b

(u′2)
T
b

...



=

 | |
x′1 x′2 · · ·
| |



φ
′[k]
1

(u′
1)

T
b

σ′
1

φ
′[k]
2

(u′
2)

T
b

σ′
2

...


= x′1φ

′[k]
1

(u′1)
T
b

σ′1
+ x′2φ

′[k]
2

(u′2)
T
b

σ′2
+ ...+ x′nφ

′[k]
n

(u′n)
T
b

σ′n

=

n∑
i=1

φ
′[k]
i

(u′i)
T
b

σ′i
x′i (4.12)
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where φ
′[k]
i = 1−

(
1− λ

(
σ′
i

µ′
i

)2)k
.

Note the similarities and differences between the expressions from (3.8) and
(4.12). One of the significant differences is that the original solution is a linear
combination of the vi vectors and the preconditioned solution is a linear com-
bination of the xi vectors. In the further analysis of preconditioning matrices,
L, we will look into how theses affect the filter factors.

The above theory holds for classical landweber. For the other SIRT methods, a
similar analysis can be carried out by replacing A with M

1
2A (where M is from

the particular SIRT method). We will not do so in this work.

The conclusion is again that the iterates x̄[k] are different from x[k]. This leaves
us with a question however: Which L-matrices should be used for preconditioning
the system? In the following we will discuss the choices of L-matrices and see
how they affect the solution.

4.2 Choice of L-matrices for Preconditioning

In principle virtually any invertible matrix could be used for preconditioning
the system. However it would be difficult to predict what influence it would
have on the solution. In this project the focus is on matrices that approximate
either the first or second derivative.

Keeping (4.1) and (4.10) in mind, we see that an L-matrix approximating a
derivative means that x̄[k] will be an integration of ξ[k]. As we know, integration
has a smoothing effect. Thereby using matrices that approximates differenti-
ation for preconditioning, we obtain a smoothed solution. The SIRT methods
have a partly smoothing property [3] and therefore they will normally be used
for problems where the solution is expected to be smooth. This is why the focus
has been on L-matrices that resemble discrete derivatives. A list of proposed
matrices for preconditioning is found in appendix A.

If we do not assume boundary conditions for the solution the L-matrix is rect-
angular (see appendix A). Since L has to be square (because of the fact that it
will be inverted) some boundary conditions have to be applied. Unfortunately
both reflective and periodic boundary conditions lead to rank deficient matrices
(see appendix A). Therefore either a zero boundary condition or insertion of
some scalar α into the matrix has to be done. In the following the properties of
these workarounds will be discussed.
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4.2.1 The Influence of Zero Boundary Conditions in L-
Matrices

A zero boundary condition, seen in e.g. Lzul2 (A.32) or Lzl2 (A.30), seem to
force the solution towards the starting guess on the boundary where it has
been applied. Experiments suggest that these conditions in the preconditioning
overrule trends in the solution. In this section we primarily look at starting
guesses x0 = 0. Figure 4.1(a) show the real solution to a test problem, figure
4.1(b) the Landweber solutions with zero boundary conditions to L2 in first
and last end points, and figure 4.1(c) shows the Landweber solutions with zero
boundary conditions on the last end points. This perfectly illustrates how the
zeros boundary conditions force the solution towards zero with the 0 as start
guess.

If we have an a priori knowledge of the solution, e.g. that it should be zero
at the last end point, we can use this to choose where to use the boundary
conditions in the L-matrices. As seen before we obtain bad solutions if we
apply zero conditions on a boundary where the solution is not zero. Figure
4.2 shows another problem where we cannot apply zero boundary conditions in
both the first and last end points. Instead they are applied on the two last end
points.

We have now seen that the zero boundary conditions seem to force the solution
towards zero. However until now we have used the zero vector as a starting
guess. One might think that it would behave differently with another starting
guess. Figure 4.3 shows that a good starting guess at the end points with zero
boundary conditions makes for good approximations to the solution in those
points. Unfortunately they do not influence the other elements of the solution
and therefore do not seem to be useful.

For now we will conclude that the zero boundary conditions can have a positive
effect on the solution (see 4.2(c)), however we need to have an a priori knowledge
of the values of the solution in at least one end. We may be able to use an
alternative strategy to the zero boundary conditions. This is discussed in section
4.2.3. In the following section we will see what effect the degree of differentiation
has on the solution.
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(a) Real solution.

(b) Landweber solution with L2 with zero boundary
conditions in both end points.

(c) Landweber solution with L2 with zero boundary
conditions in bottom end points.

Figure 4.1: Illustration of how the zero boundary conditions force the solution
towards the starting guess and overrule the properties in the real solution.
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(a) Real solution.

(b) Landweber solution with L2 with zero boundary
conditions in both end points.

(c) Landweber solution with L2 with zero boundary
conditions in bottom end points.

Figure 4.2: Illustration of how the zero boundary conditions can be used to
obtain a better solution.
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(a) Real solution.

(b) Landweber solution with L2 with zero boundary
conditions in both end points. First 5 elements of the
starting guess set to 1.

(c) Landweber solution with L2 with zero boundary
conditions in top end points. First 5 elements of the
starting guess set to 1.

Figure 4.3: Illustration of how the zero boundary conditions force the solution
towards the starting guess and overrule the properties in the real solution. Un-
fortunately it does not seem to affect the other elements and therefore not very
useful.
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(a) Real solution.

(b) First derivative with zero boundary condition in
the bottom point.

(c) Second derivative with zero boundary conditions
in the bottom points.

Figure 4.4: Illustration of the fact that it does matter whether or not L1 or L2

are used for preconditioning the system. Here L1 in figure 4.4(b) is preferable
to L2 in figure 4.4(c).
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(a) Real solution.

(b) First derivative with zero boundary condition in
the bottom point.

(c) Second derivative with zero boundary conditions
in the bottom points.

Figure 4.5: Illustration of the fact that it does matter whether or not L1 or
L2 are used for preconditioning the system. Here L2 in figure 4.5(c) may be
preferable to L1 in figure 4.5(b).
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4.2.2 The Influence of Choosing First or Second Deriva-
tive L-Matrices

We have not yet seen which effect it has whether or not we use a first or second
derivative approximating L-matrix. An illustration of where the first derivative
is preferable is seen in figure 4.4. In figure 4.5 one may discuss which of the
L-matrices give the better solution. Undoubtedly the L2 converges to the final
solution a lot quicker than L1. Which is better may depend on which properties
of the solution is wanted and how important the number of iterations is for the
user.

During experiments it has not been possible to determine some general features
separating the results using either first or second derivatives. Intuitively second
derivative matrices may be good for extra smooth solutions since we will then
do a double integration of ξ[k]. Unfortunately it has not been able to come up
with test problems that show tendencies to general differences between the two,
even though figure 4.7 supports this idea.

4.2.3 The Influence of α-Values in L-Matrices on Filter
Factors

We have now seen examples of how the zero boundary conditions affect the
solution by forcing it towards 0, with appropriate starting guess. In that respect
it was concluded that these boundary conditions are not necessarily desired, as
in figure 4.1. We will now see what effect the choice of α parameters has.

Using the same problem as in figure 4.1 a L1-matrix with α = 10−3 in the
lower right we get the filter factors as seen in figure 4.6. It is seen that the first
filter factor is dominating the others, meaning that the first singular vector, x′1
will dominate the solution (is seen from (4.12)). Of course this is an undesired
property since it limits the vector-space of which the solution can be expressed.
(4.6) shows that the filter factors among other depend on λ. In this project we
will not investigate the choice of λ but instead use λ = 1

γ′2
1

from [4] . This gives

the following expression for the second filter factor:

φ
′[k]
2 = 1−

(
1− 1

γ′21
γ′22

)k
(4.13)

As seen on the 1. axis of the plot in figure 4.6, the first singular value is very
big compared to the second. (4.13) shows that when this is the case the term



4.2 Choice of L-matrices for Preconditioning 37

Figure 4.6: First 9 filter factors for L1 with small α-value.

will dominate and the filter factors will stay small even with a high number of
iterations, k.

To understand why this is the case we keep (4.3) and (4.4) in mind. We then
take out an example with Lαl1 . We then have the situation that:

L =

[
L11 l
0 α

]
, L11 ∈ Rn−1×n−1, l ∈ Rn−1×1 (4.14)

where

L11 =


−1 1

. . .
. . .

−1 1
−1

 , L11 ∈ Rn−1×n−1

and

l =


0
...
0
1

 , l ∈ Rn−1×1
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Then we have that

L−1 =

[
L−111 − 1

αL
−1
11 l

0 α−1

]
(4.15)

From now we will define a vector z = − 1
αL
−1
11 l. Also we will define A such that:

A =
[
A1 a2

]
, A1 ∈ Rm×n−1, a2 ∈ Rm×1 (4.16)

Now an expression for AL−1 can be written:

A′ = AL−1

=
[
A1 a2

] [ L−111 z
0 α−1

]
=

[
A1L

−1
11 A1z + a2α

−1 ] (4.17)

Taking a closer look at the last column we see that:

A1z + a2α
−1 = α−1a2 − α−1AlL−111 l

= α−1
(
a2 −A1L

−1
11 l
)

(4.18)

We know that the values in A1, a2, L11 and l are of the order O
(
100
)

or lower.

If α is chosen as a small number, i.e. O
(
10−3

)
the inverse will become large. As

seen from (4.17) and (4.18) this will influence the last column in AL−1 which
will have high elements compared to the other columns.

From Gershgorin’s circle theorem applied to
(
AL−1

)T
AL−1,1 this means that

the matrix AL−1 will have one large singular value compared to the rest. The
size of this singular value is approximately equal to the norm of the large column.
This is observed in figure 4.6 where the first singular value is O

(
103
)

larger than
the second.

It can be shown that AL−1 will have one large singular value even though the
α-value is inserted in any other column. This can be shown by permutation as
in section 4.2.4.

We have now seen that small α-values should not be used. It can also be
concluded that large α-values will result in a column with small values which
will not influence the largest singular values. We will now look into how the α
influence the solution.

1Suggested by Per Christian Hansen, IMM DTU
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4.2.4 The Influence of α-Values in L-Matrices on the So-
lutions

We have seen that using a small α-value influences the filter factors in a way
that is not good for the solution. We will now see how a large α-value affects
the solution. This will be done for the Landweber method. The similar can be
done for the Cimmino method since the only difference is the M -matrix, but
that will not be done here.

Applied to the Landweber iterations, (4.18) gives that:

ξ[k+1] = ξ[k] + λk
(
AL−1

)T (
b−AL−1ξ[k]

)
=
O (1)

α−1

(4.19)

⇒ x̄[k] = L−1ξ[k] =
O (1) O (1)

0 α−1

O (1)

α−1

=
O (1)

α−2

(4.20)

This shows that for large α-values in the last column, the last element in the
regularized solution will be very small. We will now show what effect it will
have to have the α-value in another column. Say we have the matrix:

L =


−1 1

−1 1
. . .

. . .

−1 1
· · · α · · ·
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Using a permutation matrix, P , to switch two columns:

P =



1 0
0 1 0

. . .
. . .

0 1
. . .

1 0



We can permute the L matrix. Note that this is okay as long as we remember
to switch back after the iterations are done. This gives the following:

L̂ = LP =
L̂−111 l̂

0 α

(4.21)

From (4.20) it is now clear that last element in the permuted iterates, ξ̂[k], will
tend have very small values. However we need to do the backwards permutation
to return to our original coordinate system:
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x̄[k] = L−1ξ[k] = PL̂−1ξ̂[k]

= P
L̂−111 ẑ

0 α−1

O (1)

α−1

= P
O (1)

α−2

=
α−2

(4.22)

Using permutation we have now proved how the placement of α has an influence
on the solution. This means that if we have some a priori knowledge about where
the solution is close to zero, we can use this to place a large α-value at that
corresponding column in L. An example of this can be seen in appendix A.3.

4.3 Accelerating Effects and Better Solutions

As mentioned we use L-matrices that approximate differentiation since that will
have a smoothing effect on x̄ and thereby expectedly obtain better solutions in
fewer iterations on smooth problems. We have just seen how we can force the
solution to be near zero at a selected place. Even though it was discovered
because of practicalities with rank deficiencies, it is seen to have a very positive
influence on the solution.

Figure 4.7 shows the test problem from 3.5 with two preconditioned solutions. In
this case (the shaw test problem) preconditioning give worse results. In the plot
a first and second derivative matrix with zero boundary conditions were used.
The other of the discussed boundary conditions do not provide better results. It
is worth noticing that the solution obtained with the second derivative L-matrix
results in a smoother solution.
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Figure 4.7: Illustration of preconditioning not suitable for the shaw problem.
Zero boundary conditions applied to both L-matrices. However the result was
not significantly different with other boundary conditions

In some cases the classical Landweber produce bad solutions. The tendency is
to be close to zero in the end points. Sometimes this can be avoided with an a
priori knowledge and usage of α when preconditioning the system. Figures 4.8
and 4.13 show when preconditioning can become very effective. Note that not
only do they give much better end results, but they converge towards them in
few iterations.

Figures 4.9, 4.10, 4.11 and 4.12 show the singular vectors and filter factors to
the solutions in figure 4.8. It may be difficult to conclude, from the singular
vectors, which set give the best results. The important thing to note is that it
is clear to see that they are different and thereby may be able to span different
subspaces.

From the filter factors in figures 4.10 and 4.12 it is seen that both methods
primarily consist of linear combinations of their first 4 singular vectors. The 5
first singular vectors from the classical problem are all close to zero in the end



4.3 Accelerating Effects and Better Solutions 43

(a) Real solution.

(b) Classical Landweber.

(c) First derivative with large α in middle column.

Figure 4.8: A case where preconditioning is a better solution than the classical
Landweber. The relative norm between the real and regularized solution is
0.1038.
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Figure 4.9: First 9 singular vectors for the classical problem with the solution
in figure 4.8(b). Note that the first singular vectors tend to be zero in the end
points.

points and therefore not suited for this particular solution, whereas the singular
vectors from the preconditioned solution are different from zero from the 4th.
However the first 3 are not suited for this particular solution.

This suggests that it may be possible to use another L-matrix to obtain more
suitable singular vectors. For now we will be satisfied with showing how pre-
conditioning changes the basis for the solution and sometimes this is a better
basis for the solution.
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Figure 4.10: First 9 filter factors for the classical Landweber solution, with the
solution in figure 4.8(b).
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Figure 4.11: First 9 singular vectors for the regularized problem with the solu-
tion in figure 4.8(c).
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Figure 4.12: First 9 filter factors for the regularized Landweber solution, with
the solution in figure 4.8(b).
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(a) Real solution.

(b) Classical Landweber.

(c) First derivative with large α in last column.

Figure 4.13: A case where preconditioning is a good solution. The relative norm
between the real and regularized solution is 0.0305.



Chapter 5

Effective Implementation in
Matlab

We have now seen how the two SIRT methods Landweber and Cimmino can be
preconditioned and how this affect their solutions. In this chapter a discussion
of how to implement these methods effectively in Matlab will be taken out. A
code listing of the two implementations are found in appendices C and D. Also
a function for providing L-matrices has been written and is listed in appendix
B.

5.1 Landweber and Cimmino

For now the implementations are only made for constant λ. This choice has
been made since the theory of relaxation parameters has not been thoroughly
studied in the work with this thesis. If a λ is not provided by the user the default
value is set to λ = 1

γ2
1
, which should be a good choice to ensure convergence [4].

For the same reasons the only stop criteria for now is a number of iterations.

Both functions have a function header explaining how to use the function. This
acts as a help in Matlab . Following the header is a section of input checks and
setting of default values. The comments in the code should be self explanatory.
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It has been chosen that the fifth input can be either a starting guess or a
relaxation parameter. Since these are different data structures it is easy to
determine which is the case. After these checks and all necessary default values
have been set, the iterations begin.

When implementing these functions one has to keep in mind that the problems
typically will be large and sparse, as discussed in chapter 3. This means that an
alternative method may be preferred, when creating the M -matrix in Cimmino.
As it is now a fast method is used but this uses more memory and therefore
another, slower method, is out-commented and may be used if this becomes an
issue.

It also means that when calculating the largest singular value it is not a good
idea to use the built-in Matlab functions. For the functions in [4] the function
svds is used. However a similar function does not yet exist for calculating the
largest GSVD singular values. Therefore these are approximated by solving the
eigenvalue problem

(
ATA

)
V =

(
LTL

)
V D. 1

Instead of doing a lot of matrix multiplying and calculation of GSVD the Mat-
lab ’\’ operator is used on each iterate. The ’\’ operator solves the problem
Ax = B.

Remembering (4.3), the preconditioned iterates (λ is left out for now) are given
by:

ξ = (A′)
T

(b−A′ξ)

=
(
AL−1

)T (
b−

(
AL−1

)
ξ
)

= L−TAT
(
b−AL−1ξ

)
(5.1)

Since x = L−1ξ, (5.1) gives:

x = L−1ξ

= L−1L−TAT (b−Ax) (5.2)

This means that the Matlab operator, ’\’, can be used on every iterate instead
of multiplying and transposing L-matrices, which uses a lot of memory. We
exploit the fact that the Matlab operator is fastest for triangle matrices, since
it will then just be either a forward or backward substitution. Therefore a
triangle flag, TF, is set if L is a triangle matrix. If it is not, a QR-factorization
is done and thereby ensuring a quick solution.

1Suggested by Per Christian Hansen, IMM DTU
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This is a fast Matlab implementation and we never calculate the GSVD nor
filter factors. These were, however, very useful in the analysis.

5.2 get full l

The get full l function uses the existing get l to produce the rectangular
matrix. This is the sparse data structure since L by nature is very sparse.
Therefore full matrices (non-sparse data structures) will use a lot more memory
for large data sets.

At first glance it may seem irrelevant discussing effective implementation of
get full l since it mostly adds up to 2 rows and 4 elements into an array.
However it is relevant for large data sets. That is why rows are added to the
original L-matrix, instead of preallocating a completely new matrix. The fol-
lowing Matlab code shows two ways to create the full sized matrix and the
computation times as comments.

clear all

n = 10^5;

% Method 1

tic;

LL = get_l(n, 1);

L = spalloc(n, n, 3*(n-2)+4);

L(2:n, :) = LL;

toc

% 32 seconds

clear L LL

% Method 2

tic;

L = get_l(n, 1);

L = [spalloc(1,n,4); L];

toc

% 0.036 seconds

The latter method has been used in get full l. Without going into details,
the last method is faster for both small and large values of n, which is seen in
figure 5.1.
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Figure 5.1: Illustration of differences in computation times between two ways
of adding rows to a matrix.

The code in get full l itself is not very complex. There is a section of input
checks and setting of default values. The idea is primarily to set needed default
values and do a fair amount of input checks. However there may be some
situations which have not been taken into account. Further checks can easily
be inserted if needed.

Because of the combinations possible for the second derivative matrices, the
code may seem complex and be difficult to read. However the commenting and
structure of the code is written in a way so that it should be easy to understand.



Chapter 6

Conclusion

The main goal for this thesis was to investigate how ill-posed discrete inverse
problems could be preconditioned and later implemented in some SIRT methods
in an existing Matlab toolbox. To do this a general study of ill-posed discrete
inverse problems had to be taken out. It was then showed theoretically how the
Landweber method could be preconditioned. Then an investigation of possible
preconditioners were made. It turned out that the choice of preconditioners was
not as straight forward as expected. However some good footwork has been
done and the preconditioning of the Landweber and Cimmino methods have
been implemented in Matlab .

First of all it was theoretically shown that these ill-conditioned inverse problems
cannot be solved in an ordinary way, and that a regularized solution has to be
calculated. This was shown using a Picard plot and plot of the filter factors. We
then showed how the SIRT methods produce a regularized solution. We could
now start with the actual work - preconditioning the problem.

It has clearly been shown that preconditioning can have positive effects on the
SIRT methods. Preconditioning the problem leads to another set of basis vectors
which tend to be significantly different. It was also shown that it does matter
which preconditioner is used. When using an α-parameter in the preconditioner,
we showed that small values of α is a very poor choice, since the solution will
primarily be a linear combination of one singular vector because one filter factor
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will dominate the others. We also showed that choosing a large α-value in
column i will force the ith element in the solution towards zero.

In the work with the preconditioners we found that many of the obvious pre-
conditioners were rank deficient and therefore invalid, leading to the usage of α
parameters as mentioned above. A catalogue of valid and invalid preconditioners
has been made and can be used as a base for future work with preconditioning.

Lastly three Matlab functions have been made. One that can produce the
preconditioners in the catalogue. Then the preconditioned Landweber and Cim-
mino have been implemented effectively in Matlab . During that it has been
shown how a mathematical problem, sometimes is approached very differently
in theory and practice. In implementing the two methods only a number of
iterations is used as stopping criteria.

6.1 Future Work

The future work may include an expansion of the preconditioner catalogue.
Since the differential approximations produce smooth solutions and the SIRT
methods have a smoothing effect, it may useful to use integration preconditioners
in some cases.

During the work with this thesis we have only looked at 1D problems, since the
focus has been to investigate the preconditioning effects. Clearly the next step
could be to define preconditionres for 2D and 3D. This means that the Matlab
function should be expanded.

It could also be investigated what effect preconditioning has on the stopping
criteria in the existing SIRT methods. Also the methods could be able to use
variable relaxation parameters even though a preconditioner is used. This work
has only implemented preconditioners to two of the SIRT methods. This could
also be done in CAV and DROP.



Appendix A

L-Matrices For
Preconditioning

This appendix holds a selection of possible L-matrices for preconditioning in-
verse problems. For each matrix a short description of why this is proposed.
If possible an example of it’s influence on the solution will be shown. Some
matrices are rank deficient and therefore cannot be inverted which is needed.

In the following we have looked at the most reasonable L-matrices for precon-
ditioning tomography systems. We found out that unfortunately some of the
mathematically nice matrices do not have full rank and can therefore not be
used for preconditioning, since an the matrices are inverted. Here will follow a
list of which matrices have full rank:

First derivative zero boundary condition (A.7), (A.8)

First derivative with α (A.9), (A.10)

Second derivative zero boundary condition (A.30), (A.31), (A.32)
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Second derivative zero boundary condition with α (A.33), (A.34), (A.35),
(A.36)

Second derivative reflective boundary condition with α (A.19), (A.20),
(A.21), (A.22)

Second derivative periodic boundary condition with α (A.26), (A.27),
(A.28), (A.29)

Before looking into which matrices can be used and which boundary conditions
could be applied, we will give a list of figures illustrating how these what these
boundary conditions mean. As show (A.11) and (A.11) approximating a deriva-
tive we will run out of points. This issue can be solved by substituting with
other points. Figures A.1 A.2, A.3 and A.4 show which points the different
methods used in this appendix use.

Figure A.1: Illustration of periodic boundary conditions.



A.1 First Derivative Matrices, L1 57

Figure A.2: Illustration of reflective offset boundary conditions.

A.1 First Derivative Matrices, L1

The first derivative discrete approximation is calculated as:

f ′ (x) =
f (x+ h)− f (x)

h
(A.1)

For this application the 1
h can be left out since we multiply with the inverse

cancelling out that term. Defining a L-matrix representing the first derivative
we get a non-square matrix since we cannot approximate it from the last point.

L1 =


−1 1 0 · · · 0

0 −1 1
...

...
. . .

. . .
...

0 · · · · · · −1 1

 , L1 ∈ Rm×m−1 (A.2)

A way to approximate the derivative for the last point is to set a boundary
condition. One is to choose a reflective boundary condition which give the
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Figure A.3: Illustration of reflective not offset boundary conditions.

following matrix:

Lrl1 =


−1 1

−1 1
. . .

. . .

−1 1
1 −1

 , Lrl1 ∈ Rm×m (A.3)

However Lr1 has rank m − 1 since rm−1 = −rm. The equivalent holds even
though we insert the boundary condition in the first row:

Lru1 =


1 −1
−1 1

. . .
. . .

−1 1
−1 1

 , Lru1 ∈ Rm×m (A.4)
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Figure A.4: Illustration of zero boundary conditions.

The L1 with periodic boundary condition looks like:

Lpl1 =


−1 1

−1 1
. . .

. . .

−1 1
1 −1

 , Lpl1 ∈ Rm×m (A.5)

Also Lpl1 has rank m− 1 since rm = −r1− r2− ...− rm−1 = 0T . Again the same
is the case for the periodic upper implementation:

Lpu1 =


1 −1
−1 1

. . .
. . .

−1 1
−1 1

 , Lpu1 ∈ Rm×m (A.6)

An alternative to using either reflective or periodic boundary conditions is to
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assume that the boundary is zero. This means that the terms regarding the
boundary can be neglected, since they will become 0 anyway:

Lzl1 =


−1 1

−1 1
. . .

. . .

−1 1
−1

 , Lzl1 ∈ Rm×m (A.7)

Lzu1 =


1
−1 1

. . .
. . .

−1 1
−1 1

 , Lzu1 ∈ Rm×m (A.8)

Instead of having to use the zero boundary condition it is possible to add an
arbitrary scalar α, to ensure full rank:

Lαl1 =


−1 1

−1 1
. . .

. . .

−1 1
α

 , Lαl1 ∈ Rm×m (A.9)

Lαu1 =


α
−1 1

. . .
. . .

−1 1
−1 1

 , Lαu1 ∈ Rm×m (A.10)

The choice of α has an influence on the solution as well as on the condition
number of the matrix.
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A.2 Second Derivative Matrices, L2

The second derivative discrete approximation is calculated as:

f ′′ (x) =
f (x+ h)− 2f (x) + f (x− h)

h2
(A.11)

Similar to the first derivatives, the term 1
h2 can be left out for this applica-

tion since we multiply by the inverse and it evens out. Defining a L-matrix
representing the second derivative we get a non-square matrix since we cannot
approximate it from the first and last point.

L2 =


1 −2 1 0 · · · 0

0 1 −2 1
...

...
. . .

. . .
. . .

...
0 · · · · · · 1 −2 1

 , L2 ∈ Rm×m−2 (A.12)

Similar to the first derivative matrices one can here use either reflective or
periodic boundary conditions to get a square matrix. For the second derivative
however we can either apply the boundary conditions on the both top and
bottom row, two top rows or two bottom rows, i.e. applied on the first, last or
both end points. Let us take a look at the different L-matrices.

For the reflective boundary conditions the mirror line can be set either right at
the endpoint or h

2 after the endpoint as illustrated on figure REFERENCE!

The reflective not offset boundary conditions applied on the two bottom rows:

Lrl2 =



1 −2 1
1 −2 1

. . .
. . .

. . .

1 −2 1
2 −2

1 −2 1


, Lrl2 ∈ Rm×m (A.13)

Lrl2 has rank m− 1. It is clearly seen that rm−2 = rm.



62 L-Matrices For Preconditioning

The reflective not offset boundary conditions applied on the two top rows:

Lru2 =



1 −2 1
−2 2
1 −2 1

. . .
. . .

. . .

1 −2 1
1 −2 1


, Lru2 ∈ Rm×m (A.14)

Lru2 has rank m− 1. It is clearly seen that r1 = −r3.

The reflective not offset boundary conditions applied on the top and bottom
rows:

Lrul2 =



−2 2
1 −2 1

. . .
. . .

. . .

. . .
. . .

. . .

1 −2 1
2 −2


, Lrul2 ∈ Rm×m (A.15)

Lrul2 has rank m− 1, since r1
2 + r2 + r3 + ...+ rm−1 + rm

2 = 0T .

So the reflective not offset boundary conditions produce rank deficient L-matrices.
Now the reflective offset boundary conditions will be considered.

The reflective offset boundary conditions applied on the two bottom rows:

Lrol2 =



1 −2 1
1 −2 1

. . .
. . .

. . .

1 −2 1
1 −1
1 −1


, Lrol2 ∈ Rm×m (A.16)

Lrol2 has rank m− 1. It is clearly seen that rm−1 = rm.

The reflective offset boundary conditions applied on the two top rows:

Lrou2 =



−1 1
−1 1
1 −2 1

. . .
. . .

. . .

1 −2 1
1 −2 1


, Lrou2 ∈ Rm×m (A.17)
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Lrou2 has rank m− 1. It is clearly seen that r1 = r2.

The reflective offset boundary conditions applied on the top and bottom rows:

Lroul2 =



−1 1
1 −2 1

. . .
. . .

. . .

. . .
. . .

. . .

1 −2 1
1 −1


, Lroul2 ∈ Rm×m (A.18)

Lroul2 has rank m− 1, since r1 + r2 + ...+ rm−1 + rm = 0T .

As with the first derivatives it is bad news regarding the reflective second deriva-
tives. Again a parameter, α, can be used to ensure the matrix has full rank.
Looking into what caused the rank deficiency in the matrices, α can be inserted
in either the top or bottom row. There is no motivation for inserting α e.g. r2
in Lrou2 . Then it can easily be shown that this gives four matrices depending on
which of the 6 are used as basis. The four matrices are:

Lrlαl2 =



1 −2 1
1 −2 1

. . .
. . .

. . .

1 −2 1
1 −1

α


, Lrlαl2 ∈ Rm×m (A.19)

Lruαu2 =



α
−1 1
1 −2 1

. . .
. . .

. . .

1 −2 1
1 −2 1


, Lruαu2 ∈ Rm×m (A.20)

Lruαl2 =



−1 1
1 −2 1

. . .
. . .

. . .

. . .
. . .

. . .

1 −2 1
α


, Lruαl2 ∈ Rm×m (A.21)
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Lrlαu2 =



α
1 −2 1

. . .
. . .

. . .

. . .
. . .

. . .

1 −2 1
1 −1


, Lrlαu2 ∈ Rm×m (A.22)

It is noted that it has no effect whether or not the mirror line is offset, which is
a nice property.

We will now look at the periodic boundary conditions, which gives three matri-
ces, where the boundary conditions are applied either on the two bottom rows,
two top rows or on the top and bottom rows, i.e. end points.

The periodic boundary conditions applied on the two bottom rows:

Lpl2 =



1 −2 1
1 −2 1

. . .
. . .

. . .

1 −2 1
1 1 −2
−2 1 1


, Lpl2 ∈ Rm×m (A.23)

Lpl2 has rank m− 1. It is clearly seen that r1 + r2 + ...+ rm−1 + rm = 0T .

The periodic boundary conditions applied on the top and bottom rows:

Lpu2 =



1 1 −2
−2 1 1
1 −2 1

. . .
. . .

. . .

1 −2 1
1 −2 1


, Lpu2 ∈ Rm×m (A.24)

Lpu2 has rank m− 1. It is clearly seen that r1 + r2 + ...+ rm−1 + rm = 0T .
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The periodic boundary conditions applied on the two top rows:

Lpul2 =



−2 1 1
1 −2 1

. . .
. . .

. . .

. . .
. . .

. . .

1 −2 1
1 1 −2


, Lpul2 ∈ Rm×m (A.25)

Lpul2 has rank m− 1. It is clearly seen that r1 + r2 + ...+ rm−1 + rm = 0T .

The periodic boundary conditions are naturally very alike no matter which end
points they are applied. Using the α parameter to ensure full rank, we get the
following four options:

Lplαl2 =



1 −2 1
1 −2 1

. . .
. . .

. . .

1 −2 1
1 1 −2

α


, Lplαl2 ∈ Rm×m (A.26)

Lpuαu2 =



α
−2 1 1
1 −2 1

. . .
. . .

. . .

1 −2 1
1 −2 1


, Lpuαu2 ∈ Rm×m (A.27)

Lpuαl2 =



−2 1 1
1 −2 1

. . .
. . .

. . .

. . .
. . .

. . .

1 −2 1
α


, Lpuαl2 ∈ Rm×m (A.28)
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Lplαu2 =



α
1 −2 1

. . .
. . .

. . .

. . .
. . .

. . .

1 −2 1
1 1 −2


, Lplαu2 ∈ Rm×m (A.29)

Just as for the first derivative we can use the zero boundary condition, giving
the following three full rank matrices:

Lzl2 =



1 −2 1
1 −2 1

. . .
. . .

. . .

1 −2 1
1 −2

1


, Lzl2 ∈ Rm×m (A.30)

Lzu2 =



1
−2 1
1 −2 1

. . .
. . .

. . .

1 −2 1
1 −2 1


, Lzu2 ∈ Rm×m (A.31)

Lzul2 =



−2 1
1 −2 1

. . .
. . .

. . .

. . .
. . .

. . .

1 −2 1
1 −2


, Lzul2 ∈ Rm×m (A.32)

Also the zero boundary conditions can be used together with an α parameter,
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giving four matrices:

Lzlαl2 =



1 −2 1
1 −2 1

. . .
. . .

. . .

1 −2 1
1 −2

α


, Lzlαl2 ∈ Rm×m (A.33)

Lzuαu2 =



α
−2 1
1 −2 1

. . .
. . .

. . .

1 −2 1
1 −2 1


, Lzuαu2 ∈ Rm×m (A.34)

Lzuαl2 =



−2 1
1 −2 1

. . .
. . .

. . .

. . .
. . .

. . .

1 −2 1
α


, Lzuαl2 ∈ Rm×m (A.35)

Lzlαu2 =



α
1 −2 1

. . .
. . .

. . .

. . .
. . .

. . .

1 −2 1
1 −2


, Lzlαu2 ∈ Rm×m (A.36)

A.3 A priori based L-matrices

In the preceding sections some L-matrices has been chosen as approximations
to first and second derivatives. Because of rank deficiency with the classical
boundary conditions some α-values has been used as a workaround. Naturally
these have been put at the end points since these are difficult to estimate.
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However it has been shown section 4.2.4 that the choice of α-value can force the
solution to be close to 0 at that point. That is if an α = O

(
103
)

is inserted in
the first column of L, the first element in the solution will roughly become 0.

This means that an a priori knowledge of the solution is useful when choosing
L-matrices, e.g. if we know the solution should be zero in the last end point, it
is a good idea to chose a L-matrix with an ”large” α-value in the last column.
However this knowledge of the influence of α can also be used when the solution
is not 0 on the boundaries, but perhaps in the middle. In that case the α-
parameter should be placed in the middle column. Not only do we obtain a
good solution but in few iterations.

To illustrate this we consider the cosine test-problem in figure A.5. It is clearly
seen that the knowledge of where the solution is 0 is basis for a much better
solution. In the example the (A.9) and (A.37) was used.

Lαl501 =


−1 1

−1 1
. . .

. . .

−1 1
· · · α · · ·

 , Lαl501 ∈ R100×100 (A.37)
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(a) Real solution.

(b) First derivative with α = 103 in the last column.

(c) First derivative with α = 103 in the middle col-
umn.

Figure A.5: Illustration of how the placement of the α-value can be used when
there is an a priori knowledge of the solution. The only difference in the two
solutions is that α is in the last column or the middle column.
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Appendix B

get full l.m

Contents

• Input checks and initilization
• Creating the matrix

function L = get_full_l(n, d, ul, alpha, col, zrp)

% GET_FULL_L Computes discrete derivative operators.

%

% L = get_full_l(n, d)

% L = get_full_l(n, d, ul, alpha)

% L = get_full_l(n, d, ul, alpha, col)

% L = get_full_l(n, d, ul, alpha, col, zrp)

%

% Computes the discrete approximation L to the derivative operator

% of order d on a regular grid with n points.

%

% Input:

% n Dimensions of L. dim(L) = n x n.

% d Degree of differentiation (1 or 2).
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% ul Value to determine if boundary conditions should be applied

% in the upper or lower row. 1 for upper, 2 for lower and 3

% for both (i.e. zero boundary conditions for 2. derivative).

% For 2. derivative ul can be an array. The the first element

% specifies where to put the boundary conditions and the

% second element specificies where to put alpha.

% alpha The alpha value. If alpha = 0 the zero boundary condition is

% applied.

% col Integer specifieing which column the alpha parameter should

% be placed.

% zrp Zero, reflective or periodic boundary conditions when using

% alpha for 2. derivative matrices. 0 for zero, 1 for

% reflective and 2 for periodic.

% Output:

% L Sparse matrix approximating the derivative operator of

% degree d.

%

% Default values:

% d = 1

% ul = 2

% alpha = 0

% col = 1 if ul = 1 and col = n if ul = 2

% zrp = 0

% Lars Holtse Bonde and Per Christian Hansen, July 2011, IMM DTU.

Input checks and initilization

% Cheking n

if nargin < 1

error(’Too few inputs’)

elseif n <= 0 || round(n) ~= n

error(’n should be a positive integer’)

end

% Checking d or applying default value

if nargin < 2

d = 1;

elseif d <= 0 || round(d) ~= d || ~any(d == [1, 2])

error(’d should be either 1 or 2’)

end
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% Checking ul or applying default value

if nargin < 3

ul = 2;

elseif (length(ul) == 1 && ~any(ul == [1,2,3])) || ...

(length(ul) == 2 && (~any(ul(1) == [1,2,3])) || ...

~any(ul(1) == [1,2,3]))

error(’elemnts in ul should be either 1, 2 or 3’)

end

if ~any(length(ul(:)) == [1, 2])

error(’ul should be either scalar or array of length 2’)

end

if length(ul) == 2 && (~any(ul(1) == [1, 2]) || ~any(ul(2) == [1, 2]))

error(’elements in ul do not match’)

end

if length(ul) ~= 1 && d ~= 2

error(’cannot have multiple elements in ul for first derivative’)

end

if d == 1 && ul == 3

error(’cannot have ul = 3 when d = 1’)

end

% Ensuring ul to be a scalar if d == 1 and an array if d == 2

if d == 1

ul = ul(1);

elseif d == 2 && length(ul) == 1

ul = [ul, ul];

end

% Checking alpha or applying default value

if nargin < 4

alpha = 0;

elseif length(alpha(:)) ~= 1

error(’alpha should be a scalar’)

end

% Checking col or applying default value

if nargin < 5

if ul == 1

col = 1;

else

col = n;

end

elseif col <= 0 || col > n ||col ~= round(col)

error(’col should be an integer in the range [1; n]’)

end
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% Checking zrp or applying default value

if nargin < 6

zrp = 0;

end

Creating the matrix

% Obtaining the basic matrix using GET_L.

L = get_l(n, d);

% 1. derivative.

if d == 1

% If boundary conditions in top row.

if ul == 1

L= [spalloc(1, n, 1); L];

% If an alpha value, it is set. Otherwise using zero boundary

% conditions.

if alpha

L(1, col) = alpha;

else

L(1, 1) = 1;

end

% If boundary conditions in bottom row.

else

L = [L; spalloc(1, n, 1)];

L(n-1, n) = -1;

% If an alpha value, it is set. Otherwise using zero boundary

% conditions.

if alpha

L(n, col) = alpha;

else

L(n, n) = -1;

end

end

% 2. derivative.

else

% If boundary conditions in top rows.

if ul(1) == 1 && ul(2) == 1

L = [spalloc(2, n, 4); L];

% If an alpha value is set

if alpha



75

L(1, col) = alpha;

% If reflective boundary condition

if zrp == 1

L(2, 1) = -1;

L(2, 2) = 1;

% If periodic boundary condition

elseif zrp == 2

L(2, 1) = -2;

L(2, 2) = 1;

L(2, n) = 1;

% If zero boundary condition

else

L(2, 1) = -2;

L(2, 2) = 1;

end

% If no alpha it must be zero boundary conditions in 1. and 2. row

else

L(1, 1) = 1;

L(2, 1) = -2;

L(2, 2) = 1;

end

% If boundary conditions in bottom rows.

elseif ul(1) == 2 && ul(2) == 2

L = [L; spalloc(2, n, 4)];

% If alpha value is set

if alpha

L(n, col) = alpha;

% If reflective boundary condition

if zrp == 1

L(n-1, n-1) = 1;

L(n-1, n) = -1;

% If periodic boundary condition

elseif zrp == 2

L(n-1, 1) = 1;

L(n-1, n-1) = 1;

L(n-1, n) = -2;

% If zero boundary condition

else

L(n-1, n-1) = 1;

L(n-1, n) = -2;

end

% If no alpha it must be zero boundary conditions in last two rows

else

L(n-1, n-1) = 1;
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L(n-1, n) = -2;

L(n, n) = 1;

end

% If boundary conditions in both top and bottom rows.

else

L = [spalloc(1, n, 3); L; spalloc(1, n, 3)];

% If an alpha value is set

if alpha

% If alpha is in top row

if ul(2) == 1

L(1, col) = alpha;

% If reflective boundary condition

if zrp == 1

L(n, n-1) = 1;

L(n, n) = -1;

% If periodic boundary condition

elseif zrp == 2

L(n, 1) = 1;

L(n, n-1) = 1;

L(n, n) = -2;

% If zero boundary condition

else

L(n, n-1) = 1;

L(n, n) = -2;

end

% Else alpha must be in bottom row

else

L(n, col) = alpha;

% If reflective boundary condition

if zrp == 1

L(1, 1) = -1;

L(1, 2) = 1;

% If periodic boundary condition

elseif zrp == 2

L(1, 1) = -2;

L(1, 2) = 1;

L(1, n) = 1;

% If zero boundary condition

else

L(1, 1) = -2;

L(1, 2) = 1;

end

end

% If no alpha it must be zero boundary conditions in first and
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% last row

else

L(1, 1) = -2;

L(1, 2) = 1;

L(n, n-1) = 1;

L(n, n) = -2;

end

end

end

end % function end
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Appendix C

precondlandweber.m

Contents

• Input checks, initilization and preperation
• The landweber iterations

function X = precondlandweber(A, L, b, K, x0, lambda)

% PRECONDLANDWEBER Preconditioned Landweber method.

%

% X = precondlandweber(A, L, b, K)

% X = precondlandweber(A, L, b, K, x0)

% X = precondlandweber(A, L, b, K, lambda)

% X = precondlandweber(A, L, b, K, x0, lambda)

%

% Implements the preconditioned Landweber iteration for the linear system

% Ax = b, using constant lambda.

%

% xi^{k+1} = x^k + lambda*L^(-1)*L^(-T)*A^T*(b-A*x^k)

%

% Input:
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% A m times n matrix.

% L n times n matrix for preconditioning the system. Assumed

% created using GET_FULL_L.

% b m times 1 vector containing the right-hand side.

% K Number of iterations. If K is a scalar, then K is the maximum

% number of iterations and only the last iterate is saved.

% If K is a vector, then the largest value in K is the maximum

% number of iterations and all iterates corresponding to the

% values in K are saved.

% x0 n times 1 starting vector. Default: x0 = 0.

% lambda The relaxation parameter. Has to be a scalar.

% Output:

% X Matrix containing the saved iterations.

%

% Notes:

% * If 5 inputs and fifth input is a scalar it is assumed to be lambda.

% Otherwise it assumed to be x0.

% * Accepts b and x0 even though they are not column vectors, but

% converts them.

% * Accepts if elements in K are not sorted, but then sorts them.

% Lars Holtse Bonde, Maria Saxild-Hansen and Per Christian Hansen, July

% 2011, IMM DTU

Input checks, initilization and preperation

% Enough input arguments

if nargin < 4

error(’Too few inputs’)

end

% L square and full rank

[mL, nL] = size(L);

if mL ~= nL

error(’L must be square’)

elseif rank(L) ~= mL

error(’L must be have full rank’)

end

% A matching L

[mA, nA] = size(A);

if nA ~= mL
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error(’Number of coloumns in A must match dimension of L’)

end

% A matching b

b = b(:);

if length(b) ~= mA

error([’Size of A and b do not match (number of rows in A must ’ ...

’be equal to length of b’])

end

% Values used to estimate if lambda is ok, or create default value

% Approximating gamma(1) since that is all we need, and eases

% computation for large problems

gamma = sqrt(eigs(A’*A, L’*L, 1, ’LM’, struct(’disp’, 0)));

% Default x0 or checking if x0 matches A.

% Checking if x0 is to be interpreted as lambda.

if nargin < 5

x0 = zeros(nA,1);

lambda = 1/gamma^2;

% If 5 inputs, check if x0 is not lambda and create lambda

elseif nargin < 6 && (size(x0,1) ~= 1 ||size(x0,2) ~= 1)

% Checking x0

x0 = x0(:);

% Creating default lambda

lambda = 1/gamma^2;

% If 5 inputs and x0 is lambda, specify it and create default x0

elseif nargin < 6

lambda = x0;

x0 = zeros(nA,1);

else

x0 = x0(:);

end

% Otherwise 6 inputs and lambda is already defined.

% Checking x0

if length(x0) ~= nA

error(’Length of x0 does not match number of coloumns in A’)

end

% Checking if lambda is within interval from MSH

if lambda < 0 || lambda > 2/gamma^2

warning(’MATLAB:UnstableRelaxationParameter’,...
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’lambda is outside the suggested interval [0; 2/gamma^2]’)

end

% Checking dimensions of and elements in K

if length(size(K)) ~= 2

error(’K must be either scalar or vector’)

else

K = K(:);

% Checking if K has duplicate values

K = sort(K, ’ascend’);

for i = 2:length(K)

if K(i-1) == K(i)

error(’K has duplicate values’)

end

end

end

% Creating X to hold iterate solutions

X = zeros(nA, length(K));

% Checking if L is a triangle matrix

if isequal(L,triu(L)) || isequal(L,tril(L))

TF = 1;

LT = L’;

else

TF = 0;

R = triu(qr(L));

RT = R’;

end

% Preparring iterate values

AT = A’;

xk = x0;

i = 0;

% Clearing unused values

clear mL nL mA nA gamma x0

The landweber iterations

for k = 1:K(end)
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h = AT*(b-A*xk);

if TF

h = L\(LT\h);

else

h = R\(RT\h);

end

xk = xk + lambda*h;

% Checking if xk should be saved

if any(k == K)

i = i+1;

X(:,k) = xk;

end

end

end % function end
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Appendix D

precondcimmino.m

Contents

• Input checks, initilization and preperation
• The cimmino iterations

function X = precondcimmino(A, L, b, K, x0, lambda)

% PRECONDCIMMINO Preconditioned Cimmino method.

%

% X = precondcimmino(A, L, b, K)

% X = precondcimmino(A, L, b, K, x0)

% X = precondcimmino(A, L, b, K, lambda)

% X = precondcimmino(A, L, b, K, x0, lambda)

%

% Implements the preconditioned Cimmino iteration for the linear system

% Ax = b, using constant lambda.

%

% xi^{k+1} = x^k + lambda*L^(-1)*L^(-T)*A^T*(M.*(b-A*x^k))

%

% Input:
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% A m times n matrix.

% L n times n matrix for preconditioning the system. Assumed

% created using GET_FULL_L.

% b m times 1 vector containing the right-hand side.

% K Number of iterations. If K is a scalar, then K is the maximum

% number of iterations and only the last iterate is saved.

% If K is a vector, then the largest value in K is the maximum

% number of iterations and all iterates corresponding to the

% values in K are saved.

% x0 n times 1 starting vector. Default: x0 = 0.

% lambda The relaxation parameter. Has to be a scalar.

% Output:

% X Matrix containing the saved iterations.

%

% Notes:

% * If 5 inputs and fifth input is a scalar it is assumed to be lambda.

% Otherwise it assumed to be x0.

% * Accepts b and x0 even though they are not column vectors, but

% converts them.

% * Accepts if elements in K are not sorted, but then sorts them.

% Lars Holtse Bonde, Maria Saxild-Hansen and Per Christian Hansen, July

% 2011, IMM DTU

Input checks, initilization and preperation

% Enough input arguments

if nargin < 4

error(’Too few inputs’)

end

% L square and full rank

[mL, nL] = size(L);

if mL ~= nL

error(’L must be square’)

elseif rank(L) ~= mL

error(’L must be have full rank’)

end

% A matching L

[mA, nA] = size(A);

if nA ~= mL
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error(’Number of coloumns in A must match dimension of L’)

end

% A matching b

b = b(:);

if length(b) ~= mA

error([’Size of A and b do not match (number of rows in A must ’ ...

’be equal to length of b’])

end

% Values used to estimate if lambda is ok, or create default value

% Approximating gamma(1) since that is all we need, and eases

% computation for large problems

gamma = sqrt(eigs(A’*A, L’*L, 1, ’LM’, struct(’disp’, 0)));

% Default x0 or checking if x0 matches A.

% Checking if x0 is to be interpreted as lambda.

if nargin < 5

x0 = zeros(nA,1);

lambda = 1/gamma^2;

% If 5 inputs, check if x0 is not lambda and create lambda

elseif nargin < 6 && (size(x0,1) ~= 1 ||size(x0,2) ~= 1)

% Checking x0

x0 = x0(:);

% Creating default lambda

lambda = 1/gamma^2;

% If 5 inputs and x0 is lambda, specify it and create default x0

elseif nargin < 6

lambda = x0;

x0 = zeros(nA,1);

else

x0 = x0(:);

end

% Otherwise 6 inputs and lambda is already defined.

% Checking x0

if length(x0) ~= nA

error(’Length of x0 does not match number of coloumns in A’)

end

% Checking if lambda is within interval from MSH

if lambda < 0 || lambda > 2/gamma^2
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warning(’MATLAB:UnstableRelaxationParameter’,...

’lambda is outside the suggested interval [0; 2/gamma^2]’)

end

% Checking dimensions of and elements in K

if length(size(K)) ~= 2

error(’K must be either scalar or vector’)

else

K = K(:);

% Checking if K has duplicate values

K = sort(K, ’ascend’);

for i = 2:length(K)

if K(i-1) == K(i)

error(’K has duplicate values’)

end

end

end

% Creating X to hold iterate solutions

X = zeros(nA, length(K));

% Checking if L is a triangle matrix

if isequal(L,triu(L)) || isequal(L,tril(L))

TF = 1;

LT = L’;

else

TF = 0;

R = triu(qr(L));

RT = R’;

end

% Preparring iterate values

% Caculating the norm of each row in A. This calculation can require a

% lot of memory. The commented lines can be used instead. They are

% slower, but uses less memory!

AL = A/L;

normAi = full(abs(sum(AL.*AL,2)));

%normAi = zeros(m,1);

%for i = 1:m

% ai = full(AL(i,:));

% normAi(i) = norm(ai)^2;

%end
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% Defining the M matrix.

M = 1/mA*(1./normAi);

I = (M == Inf);

M(I) = 0;

AT = A’;

xk = x0;

i = 0;

% Clearing unused values

clear mL nL mA nA gamma x0

The cimmino iterations

for k = 1:K(end)

h = AT*(M.*(b-A*xk));

if TF

h = L\(LT\h);

else

h = R\(RT\h);

end

xk = xk + lambda*h;

% Checking if xk should be saved

if any(k == K)

i = i+1;

X(:,k) = xk;

end

end

end % function end
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