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Summary

The PET scanners show the metabolic activity of the studied biological
tissues and they are very important in the clinical diagnosis of brain diseases.
They generate low resolution images that can be improved with the estimated
GM volume of the brain. The MRI scanners provide high resolution and can
be optimized for the segmentation of anatomical structures. Therefore, the goal
of this project is the improvement of a state-of-the-art automatic method that
segments MRI brain volumes into GM, WM and CSF tissues.

The ’New Segmentation’ method implemented in SPM8 allows multispec-
tral input data, but it assumes non-correlated modalities. Therefore, this thesis
modifies this method and its Matlab implementation in order to include correla-
tion between modalities in the generative model, and hence use all the potential
of multispectral approaches.

The modified method was compared to other uni-modal and multi-modal
methods in the segmentation of two different datasets. The results showed that
the multi-modal approaches were better that the uni-modal. In addition, the
obtained Dice scores of the modified method were slightly higher than the ones
of the original method. It was also visually checked the segmented volumes from
original and modified method, and it showed that the latter is able to segment
better the voxels that lie in the interface among several tissues.
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Chapter 1

Introduction

1.1 Motivation

Figure 1.1: Neurobiology Research Unit.

The Neurobiology Research
Unit (NRU) of Rigshospitalet in
Copenhagen (Denmark) has a
particular interest in the pre-
cise segmentation of sub-cortical
structures of the brain with
Positron Emission Tomography
(PET) scans. This kind of neu-
roimaging technique shows the
metabolic activity of the studied
biological tissues, and it is usually
corrupted by artifacts that can be
compensated with the anatomy of
the associated structures. For this anatomy estimation is used the Magnetic
Resonance (MR) images [89]. In addition, MRI scans have a higher resolution
(∼ 1mm) over PET (∼ 8mm) that allows an improved Partial Volume Effect
(PVE) correction [64].
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The high resolution MR images are segmented into Grey Matter (GM),
White Matter (WM) and CerebroSpinal Fluid (CSF) with a certain probability
to generate Volume Of Interest (VOI) brain templates that are used afterwards
in the reconstruction (co-registration) of PET images, as described by C. Svarer
et al. [79]. In this way, it is possible to correlate the number of receptors in
PET scans with the GM volume in MR images.

1.2 Dataset

The MRI dataset includes approximately 200 T1 and T2 weighted volumes
from a 3T scanner. The original resolution for T1 and T2 modalities is ∼ 1mm
and ∼ 1.1mm, respectively. Although, they are re-sliced to have a final resolu-
tion of ∼ 1mm isotropic voxels. The scans are recorded at the DRCMR [53] of
Hvidovre Hospital as part of the Center for Integrated Molecular Brain Imag-
ing (CIMBI) project [58]. There are also available another 200 images with an
old scanner and other images from brains with some pathologies, like Tourette
syndrome, Obsessive Compulsive Disorders, Obesity, Winter Blues depression,
and others; but they have been initially discarded for this project. All the scans
were acquired with the Magnetom Trio scanner of Siemens [57].

Figure 1.2: Magnetom Trio scanner
of Siemens.

The MR scans are made on volun-
teers, therefore the generated intensity
volumes are not clinical data. Besides, all
the images have been visually inspected
by experts to ensure ’healthy’ brains,
which implies not lesions or neurodegen-
erative diseases. Hence, they are treated
as Healthy Control (HC) subjects. The
age span of the volunteers goes from 20
to 90 years, with scarce samples around
40 years old. For some subjects, there are
several scans with some weeks or years in
between; and others will be asked to re-
peat the scan in the following months.

The whole data set have been recorded with the same scan and acquisition
protocol, which did not suffer any update or modification. The images have been
co-registered in order that T1 and T2 scans are in the same spatial coordinate
system and with the same resolution. However, the number of scans that have
been re-sliced after the normalization is much smaller. None of the volumes
have been hand-segmented, as it is a hard and time consuming process with
high variability.
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The Figure 1.3 depicts the T1 and T2 MRI scan of the subject f4395, who
is a real volunteer of the CIMBI project. This kind of representation is the
usual 2D way of representing 3D image data with the three orthogonal planes
(coronal, sagittal and transverse).

The MR images are based on received intensity, thus the visual representa-
tion is a grey scale volume, where brighter voxels are associated with a larger
intensity values. The subfigures of the top row represent the T1 scans. In a wide
sense, it can be stated that the dark voxels correspond to fluid-based tissues like
GM, and bright voxels to fat-based tissues like WM. The CSF is basically water,
thus it appears almost black. On the other hand, the bottom row represents the
T2 scans, and the intensity associations in this case are in general the opposite
than for the previously presented T1 scan. It can be seen in the figure that black
stripes have been added to give a regular cubic shape to the 3D scans with final
dimensions of 256 × 256 × 256 voxels. For the case of T2 MRI, the head is not
perfectly centered, and the back part of the head appears in the left of the image
for the sagittal plane, and in the top part of the image for the transverse plane.
This error is due to inhomogeneities of the magnetic field that are not corrected
by a shimming calibration.

Figure 1.3: Preview of some slices of the T1 and T2 MRI data from subject
f4395. Left column: Coronal plane. Middle column: Sagittal plane. Right
column: Transverse plane. The first row corresponds to the T1 scan, and the
second to T2.
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1.3 Baseline

The baseline of this project corresponds to the original pipeline for the MRI
brain segmentation, which is based on the ’Unified Segmentation’ method devel-
oped by J. Ashburner, K. Friston et al. [26]. This method is implemented in the
Matlab software of Statistical Parametric Mapping (SPM) [60]. It combines in
the same generative model the classification, bias field correction and template
registration. In fact, the segmentation itself is done by fitting the mixture pa-
rameters of a Mixture of Gaussians (MoG) model, where each cluster is modeled
by a Gaussian. Therefore, the tissue segmentation is done by an unsupervised
clustering technique.

The segmented volumes that DRCMR provides to the NRU are processed by
the SPM5 software plus the voxel-based morphometry (VBM)5 toolbox. How-
ever, at the DRCMR, they are working for other projects with SPM8 plus the
toolboxes VBM8 and template’o’matic, both from the Structural Brain Imaging
Group at the University of Jena [52]. According to the NRU, the reason for not
using the last version of the software lies on the fact that not clear improve-
ments of the new versions have been stated that justifies the migration of all the
previous segmented images into a new pipeline. However, it is now intended to
do this update, thus the starting point for further improvements is SPM8.

In the original pipeline, the T2 volumes are used to generate a binary mask
of brain voxels. This mask is used in the scalp-stripping step to hide T1 voxels
that correspond to air, skin, fat, muscle, bone or meninges. After this brain
tissue extraction, it is done the segmentation itself on the T1 volumes, where a
certain probability of being GM, WM, and CSF is assigned to the voxels inside
of the brain to generate the Tissue Probability Map (TPM)‘s.

The Figure 1.4 depicts the main steps of the segmentation procedure as
described previously. The top row corresponds to the original T1 scan. The
second row presents the brain mask extracted from T2 data as a red overlapping
layer on the T1 original slices. For the transverse plane, it can be seen how the
mask wrongly classifies part of the left eye muscle as brain tissue, namely as
CSF. The bottom row corresponds to the voxels after the scalp-stripping, which
are coloured according to their associated tissue class, where GM is in purple,
WM in turquoise and CSF in beige.
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Figure 1.4: Representation of the three main steps of MRI brain segmentation
done by the original pipeline, which consists on a T2 masking and SPM5+VBM5
applied on the T1 modality. The presented data correspond to subject f4395.
Left column: Coronal plane. Middle column: Sagittal plane. Right column:
Transverse plane. The top row corresponds to the original T1 scan. The second
row presents the brain mask extracted from T2 data as a red overlapping layer on
the T1 original slices. The bottom row corresponds to the brain tissue generated
by SPM5+VBM5, where GM is in purple, WM in turquoise and CSF in beige.
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1.4 Project goal

It seems that there is still space for the improvement of the actual MRI
brain segmentation pipeline. Thus, it is the scope of this project to analyze and
implement a feasible enhancement of the segmentation baseline based on the
available data and the start-of-the-art algorithms.

1.5 Specifications

Several meetings and discussions were needed to give shape of a specific
project description. It was needed to take into account what is feasible to do in
the available time according to the requirements of all involved entities. In this
sense, it must be appreciated the technical advices received from DTU, NRU
and DRCMR supervisors. Finally, it was agreed on several points that could be
improved during this thesis:

• Multispectral segmentation. The available dataset includes T1 and T2
MRI scans. Therefore, both modalities can be combined in the segmenta-
tion process, where T2 is not used just for masking. The tissues generally
have different intensity contrast in each modality. Therefore, the use of
both of them can increase the discrimination between different tissues.

• Increase the number of tissues. The current segmentation is based on
4 labels, i.e. GM, WM, CSF and rest. Several authors have proposed to
include more tissues in order to do a more realistic and robust character-
ization of the head tissues.

• Increase the number of clusters per tissue. The original baseline
characterizes each tissue with one cluster. Therefore, this number can be
increased in order to fit better the intensity distribution of each class.

During the development of this thesis, it was discovered that the Seg toolbox
(’New Segmentation’) in SPM8 has already implemented these three improve-
ments. However, the multispectral implementation of this method assumes
non-correlation among modalities. Therefore, the goal of this project is the
modification of the Seg toolbox in order that the method deals with correlated
modalities. Therefore, the baseline is the Seg toolbox of SPM8, and the valida-
tion is based on the visual inspection of the generated TPM, the Dice score after
the segmentation of brain phantoms and the estimation of a volume age-profile
for each tissue.
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1.6 Thesis Outline

The first chapter of this report corresponds to the Introduction, where
it is presented an overview of the thesis motivation, the available dataset, the
segmentation baseline and the goals.

The second chapter Background describes the brain anatomy, the MRI ac-
quisition technique and different automatic segmentation methods, with special
focus on SPM.

The third chapter Neuroimaging includes a detailed description of the
image processing steps done during the segmentation, namely clustering, reg-
istration, bias field correction, brain extraction and smoothing. In addition, it
is also described the applied intensity model, and the advantages of the multi-
spectral approach and the use of prior templates.

The fourth chapter Method & Implementation presents the mathemat-
ical equations that have been modified to account for the correlation among
modalities. Besides, it is also detailed how the modified equations are imple-
mented in a Matlab toolbox for SPM8.

The fifth chapter Validation analyzes the segmentation performance of the
different versions of the modified method with different dataset. Besides, the
modified method is compared to the original baseline (SPM5+VBM5) and the
original method (Seg toolbox of SPM8).

The sixth chapter Conclusions discusses the main features and results of
the modified method, and proposes future ideas to improve the results.

Finally, the Appendices includes further documentation of the concepts
presented in the core report.
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Chapter 2

Background

Figure 2.1: Brain of some-
one described as an idiot by
George Edward Shuttleworth
[Wellcome Images(CC) [59]]

The understanding of the brain is one
of the last frontiers of the human knowl-
edge. Neuroscience has been studying dur-
ing decades the nervous system, and specially
the brain, which controls the rest of the body
and where its neurons and synapses encode
the mind itself.

Science and technology have helped the
neurology medicine since the first X-ray im-
age in 1895 [35]. Since then, several advances
in physics, mathematics and electronic have
allowed to look from an enriched point of
view the structures and operations of our own
brain. All this neuroimaging development has
transformed the diagnosis and treatment of
neurological and neurosurgical disorders [21].

This chapter includes a brief description
of the brain structures and its mains parts.
Latterly, the MRI image scan technique is re-
vised beside the acquisition protocol.
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2.1 Brain Anatomy

This section describes the main features of the human brain, with special
focus on the anatomy, in order to establish a connection between what is seen
in the MRI scans and the real associated structure. The presented data are a
compendium from [46] [63] [74].

The brain is composed by more than 100 billions of neurons and it is the
centre of the Central Nervous System (CNS), where all the nervous connections
merge. It is placed inside of the head and fills most of its volume, which is around
1450 cm3 on average for human adults. Under the skin, fat, muscles and scalp,
the meninges are the last protection of the brain. They are composed by three
layers: dura mater, arachnoid mater, and pia mater. The brain is composed by
four main structures: cerebrum, diencephalon, brain stem and cerebellum, which
are depicted in the Figure 2.2 with colors red, violet, blue and green.

The cerebrum is the biggest part of the brain. It is approximately sym-
metrical, with two hemispheres, left and right. Each hemisphere can be divided
into four lobes depending on which part of the scalp covers it, namely, the names
are: frontal, parietal, occipital and temporal. It includes the cerebral cortex, basal
ganglia and limbic system. In a wide sense, the cortex is considered a cortical
structure, and the basal ganglia and limbic system are subcortical structures.

• The cerebral cortex is depicted in pink in the Figure 2.2, its external layer
is the neocortex, which is composed by Grey Matter (GM) and contains
most of the nerve cells. The surface is folded into sulci and gyri that
give its classical wrinkled appearance, and increases its outermost surface,
called pial surface. The formed intra-cerebral ventricles are filled by the
CerebroSpinal Fluid (CSF), which is mainly water that protects the cortex.
Under the neocortex but still inside of the cortex, it can be found the White
Matter (WM), which connects the nerve cells of the cortex to other parts
of the CNS with nerve fibers. Besides, it allows the connection between
both hemispheres through the corpus callosum.

• The basal ganglia is a subcortical structure depicted in orange in the Figure
2.2. It comprises mainly the striatum, which is composed by caudate,
putamen and pallidum.

• The limbic system is another subcortical structure presented in dark blue
in the Figure 2.2. It includes the hippocampus, amygdala, and others.
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The diencephalon (in violet) includes the thalamus, hypothalamus, subtha-
lamus, and epithalamus. The thalamus fills around the 80% of this part and it
is composed by GM. The brain stem (in blue) connects the brain to the spinal
cord. It can be split up into three parts: midbrain, pons, and medulla oblon-
gata. Its main tissue is WM. Finally, the cerebellum (in green) corresponds
to a separate and striped strucutre at the bottom of the brain. Its inner part
contains WM, and its thin cortex is composed by GM.

Figure 2.2: Human brain representation where the main anatomical structures
are highlighted. The four main parts of the brain are presented: cerebrum (red),
diencephalon (violet), brain stem (blue) and cerebellum (green). Besides, the
cortical and subcortical structures of the cerebrum are also presented: cerebral
cortex (pink), basal ganglia (orange) and limbic system (dark blue). [3D brain
images generated by Google Body [61].]

The goal of this project is the segmentation of White Matter (WM) and
Grey Matter (GM). The WM has a high content of fat, and the GM contains
more water. In turn, the CerebroSpinal Fluid (CSF) is mostly composed by
water. The different composition of these tissues gives a contrast in the MR
scans that permits its differentiation. This phenomenon is the basement of the
segmentation process, and it is presented with more details in the next section.

In this project, it is also analyzed the estimated volumes of several tissues.
The IntraCraneal Cavity (ICC) corresponds to the matter inside of the scalp.
Its volume is around 1700 cm3, where the brain fills the 80%, the blood a 10%
and the CSF another 10%. The brain is composed by the cerebrum in a 77%,
cerebellum in a 10%, diencephalon in a 4%, and brain stem in a 9%.
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2.2 Magnetic Resonance Imaging

This section explains the connection between the studied brain tissues and
the intensity values acquired by the different MR imaging modalities. It is
not intended that this section goes deep into the quantum phenomena and the
subsequent signal processing. For a more detailed study, it can be consulted the
Appendix A that is based on [9] [20] [23] [32].

There are different brain imaging modalities, like Magnetic Resonance Im-
age (MRI), Positron Emission Tomography (PET), Diffusion Tensor Imaging
(DTI), Computed Tomography (CT) and Single Photon Emission Computed
Tomography (SPECT).

The MRI was mainly developed around 1980 as an application of the already
studied phenomenon of Nuclear Magnetic Resonance (NMR), which leaded to
several Nobel prizes. It applies static and variant magnetic fields to make res-
onate the molecules of the body. The effect of stopping the variant magnetic
field generates signals that can be measured by a conductive field coil around
the body and processed to obtain a 3D grey-scale image. The intensity, recov-
ering time and frequency of the molecular vibrations determines the acquired
intensity pattern.

This imaging technique allows to focus on the detection of different molecules
by using different resonance frequencies.

• For example, if the scanner is adjusted to the Hydrogen’s nuclei 1
1H, the

result is a representation of the tissues depending on the level of fluid
density. This effect is due to the high number of either free or bounded
water molecules H2O in the body. Although water is the most abundant,
the Hydrogen’s nuclei can be also found in the body as fat CH2. This
technique is known as structural Magnetic Resonance Image (sMRI) or
simply MRI, because it represents the anatomy of the tissue structures.

• Likewise, the resonance frequency of the scanner can be fixed to detect
the position in the brain of the Oxygen’s nuclei 16

8 O. The brain consumes
more oxygen when is working, so several scans can detect the variation
of the oxygen density along the time for each voxel, which encodes the
variation of brain activity in each part of the brain. Therefore, it can be
temporally correlated brain activity and location. This kind of MRI that
focuses on the metabolism is known as functional Magnetic Resonance
Image (fMRI).
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Advantages

The MRI technique has several advantages compared to other neuroimaging
techniques. For example, it is fast and it does not use ionizing radiation; there-
fore, it can be used several times on the patients because the absorbed radiation
is minimal. Its isotropic resolution is around 1 mm3 with 3T MRI scanners,
which outperforms the 8 mm3 of PET. It has a high versatility, because it can
be used to study structural and functional brain features with different con-
figurations. Besides, it is not affected by the hardening beam effect of CT [5]
because the range of frequencies is small, and the attenuation coefficient of the
tissues is almost homogeneous.

Disadvantages

On the other hand, it is an expensive and complex technique. There are
many parameters that must be tuned up correctly in order to optimize the
image acquisition depending on the circumstances [72]. In addition, all the
metal objects of the patients should be removed before the scanning starts,
which is impossible for some kind of surgical implants. Besides, this technique
is only suited to analyse soft tissues because the bones have not a significant
contrast in the images.

2.2.1 Relation between intensity and tissue

In the sections A.1 and A.2 of the Appendices, it is explained in details the
relation between the acquired intensities by different modalities and the kind
of tissue in the body. In short, it can be stated that the T1 MR images
have brighter voxels for WM, darker for GM, and almost black for
CSF. The T1 images show a tumour with larger intensity value than a normal
tissue. Therefore, some lesions in the WM areas can look alike GM in T1 images
due to the increase of water. Besides, the voxels with muscle tissue appear
brighter than for fat. Almost the opposite intensity contrast will be expected
in T2 images. However, the exact intensity value for each tissue slightly vary
depending on which part of the brain is located.

In the Figure 2.3 it is depicted the intensity histogram of the T1 and T2
MRI data from the subject f4395. The GM, WM and CSF tissues have been
segmented by the original baseline. The T1 seems to have the classes more differ-
entiated than T2, which facilitates the segmentation. The intensities correspond
to the original volumes, which implies that the bias field correction is not taken
into account.
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(a) Histogram of T1 intensity. (b) Histogram of T2 intensity.

Figure 2.3: Intensity histogram of the segmentation for the subject f4395 using
T1 and T2 MRI. The black line corresponds to the GM, the blue one to the WM,
the green line to the CSF, and the red line to the total brain. The units of the
x-axis correspond to intensity values, and the y-axis to the number of voxels for
each intensity bin. All the histograms are built with 300 bins.

Here, it can be demonstrated the relation between intensities and tissues
that was previously presented. The WM is less fluid-based, thus the voxels
with mostly this tissue class will appear white in T1 and dark in T2, which
corresponds to high and low intensity values, respectively. In the case of GM,
it appears darker in T1, and brighter in the T2 images. Finally, the CSF shows
a small peak but also a big lobe that almost overlap all the classes.
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2.2.2 File Format

The MR images from the DRCMR are stored in a NIfTI-1 file format created
by the Neuroimaging Informatics Technology Initiative (NIfTI) [56], which is the
most spread standard. It allows several coordinate systems -like Montreal Neu-
rological Institute (MNI) space (MNI-152) or Talairach-Tournoux-, two affine
coordinate definitions -orthogonal transform with 6 parameters or general affine
transform with 12 parameters-, single (Nifti) or dual (Analize) file storage (.nii
or .hdr/.img), affine data scaling -truevalue = α · datavalue+ β-, several units
of spatio-temporal dimensions, and others.

Figure 2.4: Representation of the brain slices format for the sagittal, transverse
and coronal planes.

The usual presentation of MR images correspond to the three planes: coro-
nal, sagittal and transverse; as presented in the T1 scan of Figure 2.5. The
correspondence between the presented images and the spatial planes that cut
the brain is represented in the Figure 2.4.

Figure 2.5: Preview of the T1 MRI data from subject f4395. The presented
planes correspond to coronal, sagittal and transverse.
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2.3 Segmentation

The segmentation of the brain stands for its decomposition into different
volumes with similar structural or functional features. In the case of structural
MRI brain segmentation, the available data corresponds to a 3D map of voxels,
which are the analogous of pixels in a 2D map. These voxels are grouped
according to quantitative characteristics like intensity, colour or texture [72];
which implies that after the segmentation process, each voxel has an associated
label explaining to which group it belongs to. The usual labels are WM, GM
and CSF. The scalp, fat, skin, muscles, eyes and bones are preferable removed in
a previous step or modeled with a mask during a process called scalp stripping,
which will be briefly explained in the section 3.4.

The Figure 2.6 represents graphically the brain segmentation result on a
transverse slice of MRI T1. On the left, it appears the acquired image after
pre-processing with darker colour for fluid-composed tissues (GM) and brighter
colour for fat-based tissues (WM). On the right, it appears the estimated 2D seg-
mentation represented with three colours, where each tone represents each label.
In this way, red, green and blue stands for GM, WM and CSF, respectively.

Figure 2.6: Figure with a brain segmentation of a T1 MR image. Left: Descalped
MR image. Right: Segmented image. GM in red, WM in green and CSF in
blue. [Courtesy of Koen Van Leemput]

The segmentation of MR images has several and critical applications [11].
For individual subjects, it is used for quantitative image analysis, for example
volume/surfaces/edges estimation or visualization of the neuroanatomy. It is
also used for image guided therapy, which includes surgical and radiotherapy
planning [36]. When the study is applied to groups of subjects, the purpose is
usually to generate statistical atlases that encode the probability of finding each
tissue at each spatial location.
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The MRI segmentation can be performed by different algorithms that are
based on a wide range of principles. The segmentation process can be accom-
plished with different levels of manual interaction. In case of a high manual
interaction, the process is time consuming with high associated cost, as it is
needed an import amount of time by well-trained professional to accomplish this
task [72]. In addition, it introduces a high intra-subject and inter-subject vari-
ability due to the personal subjectivity [85], which reaches discrepancies higher
than 20% [37]. On the other hand, highly automated methods require a deeper
understanding of complex physical processes and mathematic modelling. This
challenging approach tries to create a robust, objective and cost-time saving
segmentation system.

2.3.1 Automatic Segmentation Methods

Image segmentation techniques have been applied to different fields apart
from medical imaging, like hand-written character recognition, people/objects
tracking, biometric systems, automated driving, etc. In addition, other medical
imaging segmentation techniques have been largely studied for SPECT, PET,
CT, X-ray. Therefore, there are lot of active research lines that are focused in
the improvement of the image segmentation. Therefore, these ideas can be used
as inspiration for MRI segmentation.

A preferable method must be fast, robust, and mostly automatic. Nowa-
days, there are several kinds of MRI segmentation techniques that apply dif-
ferent methods or combination of them. For example, they can be based on
thresholding [78], clustering [10], watershed [71] [30], snakes [4], histogram [69],
Finite mixture (FM) [45], Support Vector Machine (SVM) [27], Artificial Neural
Network (ANN) [84], or Hidden Markov Model (HMM) [91].

Classical literature distinguishes between data-driven and model-driven meth-
ods, although the border is not always clear. Data-driven uses just the data to
let it ’explain itself’, which makes it flexible and not biased, although sensitive to
the noise [34]. And model-driven methods assume that the structures of interest
have a repetitive shape; and thus, a probabilistic model can be created to ex-
plain its variations. This process comprises the registration of the images into a
common space, the probabilistic representation of the variations and the statis-
tical inference. In other words, it tries to find the parameters that fit the model
according the the data. The studied literature for this project focus on the last
one, specially in the technique based on Gaussian Mixture Models (GMM) done
by SPM. A result of the segmentation done by the original baseline (SPM5 +
VBM5) is presented in the Figure 2.7 for the GM, WM and CSF tissues.
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Figure 2.7: Segmentation of a T1 MRI volumes from subject f4395 done by
the original baseline. First, second and third columns correspond to coronal,
sagittal, and transverse planes, respectively. The first three rows correspond to
the GM, WM and CSF tissue classes, respectively. The last line is the overlapped
labels, where GM is in purple, WM in turquoise and CSF in beig.



2.3 Segmentation 19

2.3.2 Software Implementation

There are several free available tools to perform automatic MRI brain seg-
mentation. The most popular is SPM, which is based on the ’Unified Segmenta-
tion’ method. It uses a voxel-based approach with a statistical inference on the
GMM. This Matlab software is developed from the theory of K. Friston and J.
Ashburner from the University College of London [26] [26] [24]. As stated previ-
ously, this software/method is the baseline for this project. This implementation
has several extensions, one of them is the Expectation Maximization Segmenta-
tion (EMS) created by Koen Van Leemput [82] [47] [83]. This SPM extension
is a model-based automated segmentation with Markov Random Field (MRF)
as regularization that uses multispectral data to improve accuracy of lesions
segmentation. The VBM toolbox from the University of Jena applies a modu-
lation to include spatial constraints in the tissue volumes. Besides, it can work
without prior templates by using Maximum A Posteriori (MAP) techniques. It
also includes DARTEL normalization and PVE estimation.

FMRIB Automated Segmentation Tool (FAST)/FMRIB Software Library
(FSL) is a library developed by the Analysis Group of Functional Magnetic
Resonance Imaging of the Brain (FMRIB) in the Oxford University [76] [90].
The 3D segmentation and the inhomogeneity correction is done with a method
based on a Hidden Markov Random Field (HMRF) model and an Expectation
Maximization (EM) algorithm. In addition, FreeSurfer is another important
segmentation tool that is compatible with FSL and developed by the Martinos
Center for Biomedical Imaging in the Massachusetts General Hospital [8] [16].

Klauschen et al. [37] compared FSL, SPM5 and FreeSurfer with the same
images from the BrainWeb MRI database [55] in terms of GM and WM volumes.
In general, the three methods had a deviation up to >10% from the reference
values of gray and white matter. The best sensitivity corresponds to SPM.
The volumetric accuracy was similar in SPM5 and FSL, but better than for
FreeSurfer. The robustness against changes of image quality was also tested,
and FSL showed the highest stability for white (<5%), while FreeSurfer (6.2%)
scored the best for gray matter.

Although the previously mentioned software package are the most well-
known, there are several more available. However, there will not be further dis-
cussion about the methods in the rest of this thesis because of two main reasons.
First, because because the scope of this project and its goals are oriented on
an improvement of its current baseline with SPM, and not a comparison among
methods. Second, because the task of comparing methods is tough. It requires
high rigour, with a validation and a dataset equally fair for all the methods, and
with an implementation done with a deep knowledge and understanding of the
algorithms.
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2.3.3 Statistical Parametric Mapping

The ’Unified Segmentation’ method of J. Ashburner and K. Friston [3] cor-
responds to the Matlab implementation of SPM, which is distributed under the
terms of the General Public Licence (GNU). Although SPM8 includes some mi-
nor updates, these few improvements did not justify the upgrading from SPM5
in the past due to the associated migration problems, according to the NRU.
Now, the NRU has the intention of updating and improving the segmentation
pipeline, therefore SPM8 is the starting point of this project, which will be
modified to include multispectral data and a better characterization of the tis-
sue classes (with more tissue classes and more Gaussian clusters per tissue).

In the manual of SPM8, it can be found the sentence: ’Note that multi-
spectral segmentation (e.g. from a registered T1 and T2 image) is not yet im-
plemented, but is planned for a future SPM version’ [Page 44. SPM8 Manual].
However, during the the presentation of this project at the DRCMR, one par-
ticipant highlighted the existence of an in-built toolbox in SPM, called ’New
Segmentation’, which already performs multi-spectral. The help file of this tool-
box states that the general principles correspond to ’Unified Segmentation’ but
with some modification, as different deformation parameterization and the use
of extended set of probability map and multi-channel data. It also states that
the quality of the implementation has not been tested. Besides, the comments
in the code say that it is assumed not correlation among modalities. Although
this discover modified the initial goals, there is still room in this project for an
improvement by including correlation between T1 and T2.

Therefore, the actual starting point is the ’New Segmentation’ toolbox of
SPM8. This choice has the advantage of not wasting time in a costly full im-
plementation, and focus just on improving the state of the art algorithms. The
main drawback is the lack of publications or documentation about this toolbox
that explain the details about the method and its implementation, thus a re-
verse engineering must be done from the Matlab code. Therefore, it is needed to
understand the method, modify the Matlab implementation, and tune it up for
the available dataset. A little help can be the work of N. Weiskopf (Appendix
A of [88]), where it is briefly explained some parts of this extension.

The discover of this Matlab extension together with some comments from
the scientific community reinforces the chosen multispectral approach as an
important improvement of the MRI segmentation.
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2.3.3.1 Unified Segmentation

The ’Unified Segmentation’ is an unsupervised parametric method for MRI
segmentation that combines bias field correction, regularization and classifica-
tion in the same cost function.

• Bias field correction of the smooth and spatially varying intensity in-
homogeneities. It is based on a Discrete Cosine Transform (DCT) with
low parameterization.

• Regularization of templates and MRI volumes. It is also based on a
DCT with low parameterization.

• Classification of the voxel into different tissue classes. The Bayesian
framework permits to include templates as a priors. These priors corre-
spond to the Tissue Probability Atlases from the International Consortium
for Brain Mapping (ICBM).

Thus, the iterative process optimizes locally each of the three group of
parameters until convergence. A detailed description of these steps are included
in the two following sections.

2.3.3.2 New Segmentation

The ’New Segmentation’ is an extension of the ’Unified Segmentation’. It is
implemented as a Matlab toolbox for SPM under the name Seg, and it can be
found in the Batch options of SPM8. The main modifications from the original
method are:

• Possibility of multi-spectral segmentation, where it is assumed non-correlation
among modalities.

• Extended prior template set, with TPM for Bone and Soft Tissue (ST).

• Different initial affine registration

• Different treatment of the mixing proportions

• Different registration model and deformation parametrization

It is not the intention of the thesis to modify the bias field correction and
registration. However, it is needed to understand how they work due to the high
coupling with the classification step.
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Chapter 3

Neuroimaging Processing

This chapter includes the processing done after the acquisition of the MR
images. Although, this project focuses on the brain segmentation of SPM, there
are other steps in the pipeline that should be mentioned and understood. Some
of them improve slightly the result, but others are strictly needed. Each segmen-
tation method uses different layouts, different order of the blocks or different
algorithms. In the case of SPM some steps are even done iteratively [26] [83].

Each section of this chapter presents the definition of a different processing
step and several possible implementations of the same are discussed. Finally,
it is explained how SPM implements this step, and it is presented one example
with real MRI data.

The first section of Intensity Model describes the MoG model and justi-
fies several improvements from the baseline of ’Unified Segmentation’, like the
inclusion of more tissues and more clusters per class, or the multispectral ap-
proach with several modalities. In the section Registration and Bias Field
Correction, it is explained how the templates are spatially aligned to the raw
volumes and how the intensities inhomogeneities are corrected.

Finally, the last three sections include the results of the Scalp Stripping,
the effects of the Smoothing and the main features of Priors and Templates.
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3.1 Intensity model

The ’Unified segmentation’ of SPM is based on a generative model of the in-
tensity patterns from the brain MRI volumes. A Generative Model (c.f. discrim-
inative models [7]) estimates the distribution of the posterior P (θ | Y,M ) and
marginal probabilities P (θ | M ) to compute the joint probability P (Y | θ,M )
by using the Bayes’ rule [6]. This sort of modeling needs a deep understanding
of the brain and neuroimaging processing. In a simple statement, it could be af-
firmed that if one volume of the brain is composed by grey matter, the generative
model could predict the intensity distribution of the corresponding voxel/voxels
in the acquired image. The main drawback of this modeling approach is that the
assumed probability distribution of the variables could not fit the reality. An-
other minor disadvantage is the increase in the number of uncertainties, because
higher number of model parameters (latent variables) implies a more complex
model implementation and longer computation time. However, this point is
outweighed by the increase in accuracy.

Namely, the generative model used in SPM corresponds to a Mixture of
Gaussians (MoG) or Gaussian Mixture Models (GMM), where each cluster is
modeled with a Normal (Gaussian) distribution. A multi-dimensional normal
distribution is parameterized by the intensity mean vector µ, and the intensity
covariance matrix Σ. The assumption of normal distribution restricts the shape
of the intensity distributions to a Gaussian bell. This restriction implies a small
number of parameters, but it also means a reduction of the degrees of freedom.
Therefore, there is trade-off between computation time and distribution flexi-
bility. In the Appendix B.1, it is presented a more detailed explanation of a
Gaussian distribution and its properties.

The aggregated intensity distribution is a Linear Combination (LC) of each
tissue distribution. Hence, it is needed another parameter that weights each
Gaussian contribution. This task corresponds to the mixing coefficient γk, where
k stands for the number of cluster. Likewise, the scaling factor is directly pro-
portional to the number of voxels that belong to each class. For example, a
256× 256× 256 MR scan from the subject f4395 is segmented by the ’Unified
Segmentation’ method, which associates one cluster (Gaussian) to each tissue
class. The total number of voxels is I = 16, 777, 216, from where 1, 246, 798 vox-
els are considered as brain tissue. Besides, 518, 104 voxels are classified as GM,
406, 343 voxels classified as WM, and 322, 351 voxels classified as CSF. There-
fore, the corresponding mixing coefficients are γGM = 0.4155, γWM = 0.3259,
and γCSF = 0.2585.

In the rest of this section, it is included an analysis of several ways to
improve the intensity model of the ’Unified Segmentation’ method. Hereafter,
the presented histograms are obtained after applying a threshold of 0.9 to the
generated TPM.
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3.1.1 Several Gaussians per tissue class

In the original case, the number of clusters (Gaussians) per tissue class is
one. However, this number can be larger, which implies that the aggregated
distribution for each tissue is non-Gaussian, and thus it can fit better the actual
intensity distribution of the MRI data. The Figure 3.1 presents the T1 and
T2 intensity histogram of the segmentation done by the original baseline for
the volumes from subject f4395. The overlapped red Gaussians approximate
the expected intensity distribution of GM, WM and CSF. The number of non-
brain voxels is large, specially for the Background (BG) class. Therefore, they
are are not represented in the histograms in order to appreciate better the
intensity distributions of the brain tissues. The size of each Gaussian depends
on the number of voxels classified as the associated tissue class. In this case,
the ratio of GM, WM and CSF voxels over the total number of brain voxels is
approximately: 40%, 35%, and 25%.

(a) Histogram of T1 intensity. (b) Histogram of T2 intensity.

Figure 3.1: Intensity histograms of the brain voxels for the subject f4395 us-
ing T1 and T2 MRI. It is overlapped three red Gaussian that approximate the
expected class distribution of GM, WM and CSF. The units of the y-axis cor-
respond to the number of voxels, and the units of the x-axis are the intensity
values. All the histograms are built with 300 bins of the same size. For the
T1 histogram, from the leftmost to the rightmost distribution, the tissues corre-
spond to CSF, GM and WM. Likewise, the order is inverse for the T2 histogram.

There is a big overlap among classes, which means that one voxel is not
purely composed by one single tissue. Due to the PVE, some voxels lie in the
interface between two (or more) classes. The resolution of the scanner is finite;
thus, the acquired intensity at this point is a mix of the different tissues. In
addition, the assumption of each tissue modeled by a Gaussian is not realistic.
An increase in the number of clusters makes the distribution non-Gaussian and
it can fit better the actual intensity distribution.
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Hence, it seems reasonable to increase the number of clusters per tissue,
although it implies a more complex mathematic implementation. Besides, it is
needed an extended mixing coefficient set because several clusters would share
the same TPM template.

Several authors have proposed different numbers of clusters per tissue class.
For example, J. Ashburner in the comments of the ’New Segmentation’ imple-
mentation proposes 2 for grey matter, 2 for white matter, 2 for CSF, 3 for bone,
4 for other soft tissues and 2 for air (background). However in the ’Unified
Segmentation’ method of J. Ashburner [3], it is proposed 3 for grey matter, 2
for white matter, 2 for CSF, and 5 for everything else. The lack of agreement
in the numbers can be explained if it is analyzed the differences of the datasets
used in each work. In other words, each MRI dataset depends on the the specific
acquisition protocol, the quality of the scanner, and the scanned subject cohort.
Therefore, each dataset is characterized by different parameters. Although, the
suggested numbers can be used as an approximation, the only way to optimize
these numbers is by empirical exploration on the available data.

3.1.2 Extended template set

More classes can be incorporated in order to model better other human
tissues, like bones, muscles, scalp, air... However, a distinction must be done
here among parcellation and segmentation methods. The former is intended
to localize areas of the brain, e.g. thalamus, hyppocampus, cerebral cortex,
amygdala, etc. On the other hand, the latter tries to detect the composition of
each voxel in terms of GM, WM and CSF.

For example, T. Tasdizen [80] suggests 9 tissue classes, namely gray matter,
white matter, cerebrospinal fluid, blood vessels and sinuses, eyes, bone, bone
marrow, muscle, and fat tissue. However, the number of classes used is also
constrained by the available segmented templates. Likewise, if there is not
previously segmented images for one kind of class, there is not prior probability
map that can be incorporated in the method. In this thesis, it is used the set of
templates included in the Seg toolbox of SPM8, which corresponds to the ’New
Segmentation’ method. It comprises 6 tissue classes, namely: GM, WM, CSF,
bone, ST and BG, which is mainly composed by hair and air. The TPM’s are
generated from 471 brains, with dimensions 121×145×121 and 1.5mm isotropic
voxel resolution. The main difference from the previous template set of ’Unified
Segmentation’ is the inclusion of tissue classes for ST and BG.

The Figure 3.2 present some slices of the bone and soft tissue in the brain.
Besides, the Figure 3.3 depicts the histogram for T1 and T2 of the brain tissues
plus an additional class that accounts for Bone and ST intensities. It can be
seen the important overlap between non-brain and brain voxels in the head.
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Figure 3.2: Slices of the T1 MRI scan from the subject f4395. The top row
contains head tissues, and the bottom row shows just Bone and ST.

(a) Histogram of T1 intensity. (b) Histogram of T2 intensity.

Figure 3.3: Intensity histogram of the head voxels for the subject f4395 using
T1 and T2 MRI. The black line corresponds to the GM, the blue one to the WM,
the green line to the CSF, the yellow one to the ST+Bone, and the red line to
the head voxels. The units of the x-axis correspond to intensity values, and the
y-axis is the number of voxels for each intensity bin. All the histograms are built
with 300 bins. The voxels with intensity values lower than 50 are dismisses, as
they can be considered BG.
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3.1.3 Multispectral

In the previous sections, it was presented some histograms that showed the
important overlap between classes. In fact, the overlap between GM and WM
is higher than 10% for T1 [22]. Therefore, a segmentation method cannot be
just based on the intensity distribution from one modality. One way to solve
this problem is with the use of priors that give spatial information about where
is more feasible to find each tissue. Another improvement is the combination
of several modalities with different intensity contrasts that increases the dimen-
sionality of the clustering and makes more feasible the discrimination among
several classes. For example, the multispectral approaches are better in the de-
tection of the WM lesions, where the uni-modal methods missclassify them as
GM. The ’New Segmentation’ method already includes prior templates and a
basic multispectral approach. However, the algorithm assumes non-correlation
among modalities, which will be modified in this project.

Therefore, the multispectral approach stands for the use of several imaging
techniques from the same anatomical structures. In order to gain something, it is
needed that the tissues have different responses to the MR pulse frequencies, i.e.
different intensity contrast from T1 than for T2. This constraint also imposes the
modifications of the algorithms that are based on intensity similarities, because
the intensity patterns between both modalities are different.

Figure 3.4: 2D intensity histogram for
T1 and T2 MRI. The red cloud corre-
sponds to GM, the green one to WM,
and the blue one to CSF.

For example, the Figure 3.4
presents the combined 2D histogram
for the GM, WM and CSF tissue.
Due to the thresholding processing of
the TPM’s, there only a small over-
lap among classes. Besides, the shape
of the intensity distributions on the
presented histogram depends on the
the applied segmentation method. In
other words, if the method tries to
fit the intensity distribution of each
class with 5 Gaussians, it would more
possible to see 5 groups per class. In
this case, the histograms are obtained
from the segmentation done by the
original baseline, which uses T1 for
segmentation, T2 for scalp-stripping,
and one cluster per tissue.
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The Figure 3.5 depicts the joint 2D intensity histogram for T1 and T2 with
the associated individual histograms, T1 on the left and T2 on the top. In the
individual histograms, it is overlapped three red Gaussian that approximates
the expected class distribution of GM, WM and CSF. It can be seen that the
increase of dimensionality by adding T2 allows a better separation of classes.
Hence, the fully multispectral approach that is developed in this thesis seems a
good improvement of MRI segmentation.

Figure 3.5: Joint 2D intensity histogram for the segmentation of the MRI scans
from the subject f4395, which is done by the original baseline. On the edges, it
is presented the associated 1D histograms of each modality, T1 on the left and
T2 on the top. In the individual histograms, it is overlapped three red Gaussian
that approximates the expected class distribution of GM, WM and CSF.
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3.2 Registration

The brain volumes are represented in a 3D coordinate reference system,
where each intensity value is a voxel located using three coordinates (x, y, z). In
case the volumes are acquired from different scanners, patients or time epochs,
the spatial correspondence of anatomical structures is partially lost. Therefore,
it is needed to apply a one-by-one mapping between both coordinate spaces [23].

The term image registration refers to the general transformation from two
different spaces. There are special cases of registration, like co-registration that
is used for intra-subjects registrations, re-alignment that is used for motion
correction within the same subject, and normalization that is used for inter-
subjects registrations. The latter usually implies the registration to a standard
stereotactic space, like MNI or Talairach [25].

SPM applies an affine (12 parameters) and non-linear (∼ 1000 parameters)
transformation. Both of them are encoded with a reduce number of parameters
in order to achieve an overall good shape matching without increasing the com-
plexity of the model. All the cortical structures are not perfectly matched due
to the low number of parameters. However, it is impractical to try a perfect
match between real brains, as there is no a one-to-one relationship and some
structures -like sulcus and gyrus- would need to be created. Therefore, it is
preferred an overall good registration, which will be followed by a smoothing
step that increases the Signal to Noise Ratio (SNR).

In case of using several scans from the same patient, either uni- or multi-
modal data, intra-subject registration is applied in the form of affine or rigid-
body transformation. When templates are used or studies are carried out
through several population groups, an inter-subject registration is used, which
applies an affine transformation followed by a non-linear warping. Some authors
also propose the use of just an affine transformation for inter-subject registration
in order to account only the overall brain dimension differences.

After applying the transformation, the images are re-sliced in order to have
intensity values associated to a spatially homogeneous cubic grid. This re-slicing
implies an interpolation that can be either done by Nearest Neighbour (NN) (0th
order), tri-linear (1st order), Lagrange polynomial (nth order), sinc or B-splines.
In addition, the interpolation can be also done using windowing techniques with
similar smoothing results. The interpolation method applied in SPM can be
checked in the Matlab function spm slice vol(), where the default is tri-linear.

The implicit low pass filtering of the transformation, re-sampling and inter-
polation decrease the quality (resolution) of the volumes. Thus, the question of
when and how it should be applied must be analyzed in order to avoid unnec-
essary data degradation. For this reason, it is usual to store the volumes in the
original space with the transformation parameters in the header.
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3.2.1 Affine Transformation

The Equation 3.1 presents the affine transformation T () from the original
volume X to the target volume Y , X → Y , where A is the transformation
matrix, and b is the intercept. The 3D volumes have dimensions 3xN , where
N is the number of variables in the volume. In the case of the MRI scans
from the DRCMR, the dimensions of the volumes are 256 × 256 × 256, thus
N = 17, 367, 040. The intercep encodes the translation, thus the expression
(.+) represents the addition of b to all the N variables of dimensions 3x1 in X,
which would be equivalent to add directly repmat(b, 1, N).

Y3xN = T {X3xN} = A3x3 ·X3xN (.+)b3x1 (3.1)

The affine transformation is a combination of linear transformations -namely
rotation, scaling and shear- and a translation (encoded in the intercept). It is
commonly applied a modification of the previous expression in order to deal
with homogeneous coordinates. The transformation matrix is converted into
an augmented matrix with one additional dimension. In case of volumes, the
augmented transformation matrix would have dimensions 4x4. Therefore, it is
needed also to increase the dimensionality of the volumes X and Y to 4xN .

[
Y
1

]
4xN

= T

{[
X
1

]}
4xN

=
[
A b
0 1

]
4x4
·
[
X
1

]
4xN

(3.2)

After this conversion, the transformation matrix A can be decomposed into
four individual transformation matrices, including translation, as presented in
the Equation 3.3. In addition, the transformation matrix becomes orthogonal.
Therefore, the inverse transformation, i.e. Y → X, can be easily obtained by
transposing the original transformation matrix, AT = A−1.

Aaffine =
[
A b
0 1

]
= Atranslation ·Arotation ·Ascaling ·Ashear (3.3)

The SPM function spm matrix() creates the previous transformation matrix
Aaffine. The default multiplication order of individual transformation matri-
ces is defined as: Translation, Rotation, Scale and Shear. As SPM uses pre-
multiplication format for the transformation matrix, the transformations will
be applied in the opposite order to the original volume.

The appendix B.6 includes a short Matlab example about the formation
and use of the matrix, and how affects the coordinates.
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The Figure 3.6 depicts in different skews the four steps of the affine trans-
formation: translation, rotation, scale and shear. For simplicity, the figure cor-
responds to a 2D space, however the same criteria will be applied for a 3D case.
In the tri-dimensional case, the translation and scale would have an additional
parameters in the z-axis, and the rotation and shear would have two additional
parameters accounting for the dimensionality increase.

Figure 3.6: Affine 2D transformation skews. It includes translation, rotation,
scale and shear of a regular square. The solid line square corresponds to the
original shape with normalized dimensions (width=1, height=1). The dashed
line square is the target square, i.e. original square after the individual trans-
formation characterized by its respective parameters.

The 3D affine transformation is characterized by 12 parameters (12 degrees
of freedom), grouped into 4 individual transformation matrices:

• 3 translation distances: tx, ty, tz.

• 3 rotation angles (pitch, roll, yaw): ux, uy, uz.

• 3 scaling (zoom) factors: zx, zy, zz.

• 3 shear factors: sx, sy, sz.

The specific implementation of the 4 individual transformation matrices is
presented in the following equations:

Atranslation =


1 0 0 tx
0 1 0 ty
0 0 1 tz
0 0 0 1

 (3.4)
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Arotation = Apitch ·Aroll ·Ayaw =


1 0 0 0
0 cos(ux) −sin(ux) 0
0 sin(ux) cos(ux) 0
0 0 0 1

 · (3.5)

·


cos(uy) 0 sin(uy) 0

0 0 0 0
−sin(uy) 0 cos(uy) 0

0 0 0 1

 ·

cos(uz) −sin(uz) 0 0
sin(uz) cos(uz) 0 0

0 0 0 0
0 0 0 1



Ascaling =


zx 0 0 0
0 zy 0 0
0 0 zz 0
0 0 0 1

 Ashear =


1 sx sy 0
0 1 sz 0
0 0 1 0
0 0 0 1

 (3.6)

Rigid Body Transformation

The rigid-body transformation is a simplification of the affine transforma-
tion where just rotation and translation are applied, thus perpendicularity and
parallelism is conserved (rigid transformation). It assumes not changes in the
shape of the brain, hence it can be used to register different scans from the same
subject. However, not all the motion artifacts can be corrected with this step.
All the non-rigid distortions are sources for errors, especially those connected
with fast movements inside the scan or movements correlated with an intensity
non-uniformity field.

For example, SPM applies a motion correction within the same subject
scans for fMRI. Each scan is acquired in slightly different epochs, thus even slow
voluntary or involuntary movements can shift the spatial synchronization across
the images. By taking into account that the resolution of the MR images used in
this project is ∼ 1mm, phenomena like breathing or hearth pulse can move the
brain a distance of the same magnitude order than the acquisition resolution.
In order to correct this artifact, SPM realigns the images acquired from the
same subject using a rigid body spatial transformation. This process is done
individually for each modality by minimizing the Sum of Squared Differences
(SSD) between images with the Gauss-Newton ascent iterative process. Once
the realignment parameters have been obtained, the images are transformed,
interpolated and re-sampled.
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3.2.2 Non-linear

The affine transformation is not enough when it is intended to register
volumes with local differences between them, which usually happens in inter-
subject studies or when templates are used. In these cases, it is needed to
apply a non-linear transformation (warping), like B-spline, thin plate, Fourier
basis functions, and others. The SPM normalization assumes that the template
is a warped version of the original image, therefore problems will arise when
brains include lesions or diseases, because it is not possible to match the same
structures between both brains.

The non-linear transformation in SPM is done with tri-dimensional basic
functions. Namely, the DCT is preferred over the Discrete Sine Transform
(DST), as it allows border deformation [25]. However, depending on the dataset,
others options could be preferable. For example, a combination of DCT and DST
permits free border and fix corners, or in case that more precision is required in
the deformation, other high-dimensional registration methods should be used.

The Equation 3.7 presents the 3D transformation U from X to Y as three
one-dimensional transforms. The term qj,k stands for the jth coefficient of the
kth dimension (k = 1...3), and dj (xi) is the jth basis function at position xi.

Y = X + U =

y1,i
y2,i
y3,i

 =

x1,i
x2,i
x3,i

+

u1,i =
∑J
j=1 qj,1dj (xi)

u2,i =
∑J
j=1 qj,2dj (xi)

u3,i =
∑J
j=1 qj,3dj (xi)

 (3.7)

The basis functions of one dimension dj (xi) for the the first M coefficients
can be obtained from the Equation 3.8, which expression has been extracted
from [31]. The first coefficient d (i,m = 1) for all the variables is constant. The
index i = 1..I goes through all the variables of the volume in one dimension.

d (i,m) =


√

1
I m = 1, i = 1..I√
2
I · cos

(
π(2i−1)(m−1)

2I

)
m = 2..N, i = 1..I

(3.8)

In a 2D case, with images X and Y of dimensions IxJ , the shifting field
U of same dimensions IxJ is composed by two fields that can be expressed as
U1 ≈ D1Q1DT

2 and U2 ≈ D1Q2DT
2 , where D1 and D2 have dimensions I ×M

and J ×N , respectively. Therefore, the matrix of coefficients Q has dimensions
M×N , where M is the number of coefficients and N = I×J is the total number
of variables. From the Equation 3.8 is possible to build the matrix D with the
first M coefficients of the basic function, that can be lately decomposed into the
two matrices D1 and D2.
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The SPM function spm dctmtx generates the basic functions for DCT.
For example, the Figure 3.7 presents the first basis functions generated from
spm dctmtx(N = 5,K = 5).

Figure 3.7: First basis functions of DCT, which correspond to the lowest fre-
quencies. They are generated from SPM in the same way that they are used for
the warping registration.

It is usually applied a two dimensional deformation field that is based on two
scalar fields. One for horizontal deformations in the X-plane, and another for
vertical deformations in the Y-plane. The deformation field in the X-plane shifts
the voxels right (light intensity) or left (dark intensity), while in the Y-plane
the voxels are shifted up (light intensity) or down (dark intensity).
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3.2.3 Dissimilarity function

In case that the spatial mapping between origin and source is not given, the
transformation parameters must be estimated using a similarity or dissimilarity
function that gives a metric about how good/bad two images fit. These functions
can be based on intensity (correlation metrics) or features (points, lines, etc). In
case of using multi-modal scans, only feature-based similarity function can be
used because the intensity pattern does not match among modalities. Therefore,
SPM includes Mutual Information (MI), Normalized Mutual Information (NMI)
and Entropy Correlation Coefficient for multi-modal studies.

The Equation 3.10 presents the MI similarity function for volumes X and
Y as the Kullback–Leibler distance, where H() is the entropy [44] [81]. The
indexes i, j go through all the intensity values of each volume.

SMI (X,Y ) =
∑
i,j

pXY (i, j)log pXY (i, j)
pX(i)pY (j) = H(X) +H(Y )−H(X,Y ) (3.9)

The NMI is shown in the Equation 3.10, where it can be checked the re-
lation between the similarity and dissimilarity function: SNMI (X,Y ) = 1 −
DNMI (X,Y ). To achieve a good registration, similarity and dissimilarity must
be maximized and minimized, respectively.

SNMI (X,Y ) = SMI(X,Y )
H(X) +H(Y )) = 1− H(X,Y )

H(X) +H(Y )) (3.10)

The term H(X) stands for the entropy of X, and H(X,Y ) is the joint
entropy of X and Y , as presented in the equation 3.11. When the registration
is improved, the joint entropy is decreased.

H(X) = −
∑
i

pX(i)log (pX(i)) (3.11)

H(X,Y ) = −
∑
i,j

pXY (i, j)log (pXY (i, j))

For within modality registration, SSD or Normalized Cross Correlation
(NCC) are available. The Equation 3.12 presents the latter one. The terms
µX and µY correspond to the mean intensity value in each volume.

SNCC (X,Y ) =
∑
i (Y − µY )

∑
i (X − µX)√∑

i (Y − µY )2∑
i (X − µX)2

(3.12)
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3.2.4 Regularization

In SPM, the parameter estimation is done iteratively together with the
bias field correction in order to minimize the cost function. In addition, a
regularization term is included to penalize the level of deformations according
to the expected spatial variability. Therefore, the cost function to maximize has
the form (1 − S(X,Y )) + λ · hreg, where λ stands for the elasticity constants.
When its value is too big, the deformation can be underestimated; on the other
side, too small values could lead to overfit the data. hreg is the regularization
function which is dependent on the size of the deformation. Three kinds of
linear regularization are used: membrane energy, bending energy and linear-
elastic energy.

The membrane energy for the deformation field u is presented in the Equa-
tion 3.13 as a sum over all the points in the three dimensions. The smaller is
the deformation, the smaller is the regularization term.

hreg =
∑
i

3∑
j=1

3∑
k=1

(
∂uij
∂xki

)
(3.13)

The Equation 3.14 presents the bending energy of the deformation.

hreg =
∑
i

((
∂u1j

∂x1i

)2
+
(
∂u1j

∂x2i

)2
+ 2

(
∂u1j

∂x1i∂x2i

)2
)

+ (3.14)

+
∑
i

((
∂u2j

∂x1i

)2
+
(
∂u2j

∂x2i

)2
+ 2

(
∂u2j

∂x1i∂x2i

)2
)

Finally, the Equation 3.15 presents the Linear-Elastic Energy with the two
elasticity constants λ and µ.

3∑
j=1

3∑
k=1

∑
i

λ

2

(
∂uji
∂xji

)(
∂uki
∂xki

)
+ µ

4

(
∂uji
∂xki

+ ∂uki
∂xji

)
(3.15)
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Example of registration with SPM

Finally, an example of the brain images registration is presented here. The
SPM co-registration tool is applied between T1 of subject f4395 (Nf4395t1 uw.img)
and the canonical T1 brain volumes from SPM (avg152T1.nii), which is aver-
aged from 152 brains. The interpolation is tri-linear, smoothing of 7mm, and
no warping. The affine transformation from the subject f4395 space to the
canonical space corresponds to the following matrix.

A =


0.500 0.011 −0.005 −20.756
−0.012 0.489 0.103 −10.513
−0.003 −0.103 0.489 16.614

0 0 0 1.0000

 (3.16)

The 2D histograms of the registration can be seen in the Figure 3.8, where
the middle plot represents the starting point. The left plot depicts the transfor-
mation from canonical to the subject f4505; and the right one the transformation
from the subject f4505 to canonical. The final histograms (right and left) have
higher and less diffuse values. This increase in the concentration of points in-
dicates that the matching of similar areas with different intensity patterns is
higher, thus better registration (smaller joint probability).

(a) 2D Histogram of the
transformation from canon-
ical to the subject f4505.

(b) 2D Histogram of T1 sub-
ject f4505 and canonical in
the original spaces.

(c) 2D Histogram of the
transformation from the
subject f4505 to canonical.

Figure 3.8: Example of volume registration in SPM with the associated 2D
histograms for the original and the two transformation directions.
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The Figure 3.9 depicts the original (in red square) and transformed volumes
in both directions. The main change can be seen in the sagittal plane (top-right)
where the canonical brain is looking down, and thus the angle of the original
brain is changed through a rotation. This rotation also change the visibility
of the eyes on the coronal plane. Although both volumes belong to the same
modality, the chosen dissimilarity function is the NMI because the intensity
patterns are slightly different between both volumes.

Figure 3.9: Example of volume registration in SPM. Four volumes are presented,
two original (with a red square) and two transformed. Each one is represented by
the three orthogonal planes: coronal, sagittal, transverse. The upper-left volume
corresponds to the original T1 volume of subject f4395, and the lower-right
corner is the original canonical T1 from SPM that is averaged from 152 brains.
The upper-right volume is the transformed T1 of subject f4505 taking as a
reference the T1 canonical, and the lower-left volume presents the transformation
of the T1 canonical to fit the T1 of subject f4505 .
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3.3 Bias Field Correction

The MR images are corrupted by a smooth signal intensity variation called
intensity non-uniformity, although some authors have used as well terms like RF
inhomogeneity or shading artifact. The main source of this perturbation is the
lack of homogeneity in the Radio Frequency (RF) field (non-ideal coil). Although
the visual diagnosis of images is robust to certain levels of non-homogeneity
(10%-30%) [75], it decreases greatly the performance of automatic segmentation
methods because most of these algorithms assume intensity homogeneity within
each class.

It must be distinguish two kinds of intensity inhomogeneity. One appears
usually in 2D multi-slice sequences due to the rapid inter-slice intensity variation,
and it can be solved by normalizing the intensities of each individual slice. The
second accounts for an intensity field that smoothly varies across the volumes
in 3D sequences. The latter is the motivation of this section, which is modeled
by a multiplicative field that becomes an additive effect in the log-transformed
domain. For a further study about sources of intensity inhomogeneity, the reader
is referred to work of A. Simmons et al. [73].

The correction of this intensity inhomogeneity can involve a parametric or
non-parametric representation. The former one is based on intensity distribu-
tion, like the MoG. The latter one is based on intensity histograms, where the
entropy of the log-transformed intensity histogram is minimized [75]. Although,
the first versions of SPM proposed a non-parametric approach [2], the most-
updated released version includes a parametric model of the bias field that is
integrated within the intensity generative model [3].

The bias field model created by SPM corresponds to a DCT, in the same way
that the wrapping for volume registration. Likewise, the bias field has ∼1000
parameters that are the coefficients of the lowest frequency basis functions. The
similarity function is based on the segmentation model in order to increase the
likelihood of the MoG, and the regularization can be based on either on bending
energy, or basis cutoff.

As it was previously mentioned, it is assumed that the bias field pi is mul-
tiplicative. There are different proposals to model how the interaction occurs
between the noise ni and the original intensity µi [3]. The Equation 3.17 presents
the observed intensity for the i-voxel, yi, where the main source of noise comes
from the scanner.

yi = µi
pi

+ ni (3.17)
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In the second model, it is assumed that the noise is due to variations of
tissue properties inside each voxel.

yi = (µi + ni)
pi

(3.18)

A combination of the two previous models is presented in Equation 3.19,
where it is included noise from the scanner and from the tissue variability.

yi = (µi + ni)
pi

+ n′i (3.19)

The last approach log-transforms the intensities of the first model in order
to use the advantages of the multiplicative field.

log (yi) = log (µi)− log (pi) + ni ⇒ yi = µi
pi
eni (3.20)

The SPM methods includes the second model, where it is assumed a good
quality scanner that does not introduces strong noise.

Example of registration with SPM

For example, the Figure 3.10 depicts the process of bias field correction in
SPM. The T1 volume used in the example corresponds to a simulated scan from
BrainWeb using the ICBM protocol [55]. The data has 1mm isotropic voxel
resolution, and it has been generated with 3% of noise (relative to the brightest
tissue), and 40% of intensity non-uniformity.

The two subfigures 3.10a and 3.10b, present the non-corrected and corrected
brain volumes, respectively. The non-corrected volume is the one obtained in
the scanner, and the corrected is the estimation of the original intensities by
assuming negligible noise. Finally, the subfigure 3.10c depicts the multiplicative
bias field that modulates the original intensities. The results of the corrected
volumes show brighter intensity values.
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(a) Brain with bias field not corrected.

(b) Brain with bias field corrected.

(c) Multiplicative bias field.

Figure 3.10: Example of bias field correction in SPM. The T1 brain volume has
1mm isotropic voxel, and it has been generated with 3% of noise, and 40% of
intensity non-uniformity. Each row presents a different step of the bias field
correction process with the 3 orthogonal planes: coronal, sagittal, transverse.
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3.4 Scalp-Stripping

This step classifies the voxels as either brain or non-brain. The result can be
either a new image with just brain voxels or a binary mask, which have a value
of ’1’ for brain voxels and ’0’ for the rest of tissues. In general, the brain-voxels
comprises GM, WM, and CSF of the cerebral cortex and subcortical structures,
including the brain stem and cerebellum, but not the cervical spinal cord. The
Figure 2.2 can help to visualize these parts. The scalp, dura matter, fat, skin,
muscles, eyes and bones are always classified as non-brain voxels.

For some methods, this step is mandatory and must be done before the
segmentation itself. However, other methods can take benefit of a brain mask,
like SPM, in order to decrease the misclassification errors of non-brain voxels.
Several methods have been proposed for this processing [42], e.g. Minneapolis
Consensus Strip (McStrip) [66], Hybrid Watershed Algorithm (HWA), SPM,
Brain Extraction Tool (BST) and Brain Surface Extractor (BSE). In the ’New
Segmentation’ of SPM8, new tissue templates are included to model non-brain
voxels, which helps indirectly the brain extraction. Besides, it is possible to use
masks of brain voxels to reduce the computation time because less number of
voxels are used, and also it avoids problems when spatial dependencies are taken
into account, like in the smoothing step.

In the Figure 3.11, it is presented an example of scalp stripping done by
the BST method of FSL on T1 MRI brain images. In the middle image, the
brain edge is depicted with a green line. The right-most subfigure presents the
remaining brain tissue after removing the scalp. In addition, it is also presented
the segmentation done by FAST.

Figure 3.11: Example of scalp stripping done by the BST method of FSL on
T1 MRI brain images. In the middle image, the brain edge is depicted with a
green line. The right-most subfigure presents the remaining brain tissue after
removing the scalp. In addition, it is also presented the segmentation done by
FAST. [Courtesy of S.M. Smith et al. [76]]
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Example of scalp stripping with SPM

The Figure 3.12 shows the brain extraction result done by the original
pipeline on the scan from the subject f4395. In this case, the T2 MR im-
ages are used to estimate the brain mask. The coronal, sagittal, and transverse
planes are presented in different states. In the first row, it is presented the row
T1 data, the second row depicts the estimated binary mask, and the bottom row
presents the overlapped mask in red on the original T1 images. In the transverse
plane can be seen that the masking is not perfect and some tissue that belongs
to the muscles of the right eye is included as brain tissue.

Figure 3.12: Result of the scalp stripping with the original pipeline on a T1
MR image from subject f4395. First, second and third columns correspond to
coronal, sagittal, and transverse planes, respectively. The top row shows the
original T1 volumes. The middle row depicts the estimated mask for each plane,
where ’0’ is associated to non-brain (black) and ’1’ is associated to brain (bright).
Finally, the last row presents an overlap of the mask on the raw images.
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The previously presented graphical scalp stripping can be also analyzed with
the associated intensity histograms. Likewise, the Figure 3.13 depicts the inten-
sity distribution of each step. The main source of no-brain voxels is associated
with the air, which appears as a big peak in the low intensity values for both
modalities. In addition, there are also small lobes of no-brain that correspond to
the skin, eyes, muscles, and other no-brain tissues. After the brain extraction,
it is easier to recognize from the histogram the pattern of intensities associated
with GM, WM, and CSF.

Figure 3.13: Intensity histogram of the scalp stripping done by the original
baseline for T1 and T2 MR image from subject f4395. The first and second
columns correspond to T1 and T2 histograms, respectively. The first row contains
the original histogram of the scans. In both cases, there is a big peak in the low
intensity values that corresponds to the voxels that do not belong to the human
body and they appear in black. The second row contains the histogram of the
scans after removing no-brain voxels. In this case, it is easier to recognize the
pattern of intensities associated with GM, WM, and CSF. Finally, the last row
depicts the histogram of the no-brain voxels for T1 and T2. The main source
of them is associated with the air, although there are also small lobes that
correspond to the skin, eyes, muscles, and other no-brain tissues.
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3.5 Smoothing

The voxel-wise segmentation has an intrinsic spatial dependency because
voxels of the same tissue class tend to be close, i.e. if one voxel is classified as
one tissue, it implies that close voxels have more probabilities to belong to the
same class. Therefore, spatial information must be included in the model by
averaging over neighboring voxels, which blurs the intensity data in the same
way that a low pass filtering.

The main goal of this step is to remove isolated dissimilarities among close
voxels, which increases the SNR and sensitivity. However, strong smoothness
can eliminate the edge information [72]. Therefore, there is a trade off between
SNR and image resolution. Besides, it provides an enhanced class overlapping
that deals better with PVE, which occurs when a voxel is composed by several
tissue classes. This process can be applied before or after the segmentation. In
the former case, it reduces the acquisition noise or residual differences after the
registration. In the latter case, it generates more uniform TPM’s.

Several methods have been proposed for that purpose. One of the most
used is based on MRF that ensures continuity of the tissue classes [43]. Other
approaches include active contour models like snakes or a Bayesian segmentation
based on local histograms [41]. For fMRI analysis, it is usually applied a weighted
average, where each voxel represents a weighted average over its close Region Of
Interest (ROI). Other neuroimgaing steps also introduces indirectly smoothness
in the segmentation, like the interpolation done during the registration or the
prior template matching.

In the case of SPM, the smoothing is done by the convolution of the volumes
with a Gaussian kernel. The process is parameterized by the Full Width at Half
Maximum (FWHM) of the Gaussian for each direction (x, y ,z). The proposed
values are 6mm for single subject analyses, and 8-10mm for group analysis.
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Example of smoothing with SPM

The Figure 3.14 presents the effect of smoothing. In this case the segmented
GM tissue volume of the subject f4395 obtained from the original baseline is
smoothed by a Gaussian kernel of FWHM=[8mm,8mm,8mm].

(a) The GM tissue volume. (b) The GM tissue volume after
smoothing.

Figure 3.14: Example of smoothing in SPM. The segmented GM tissue volume
(left column) is obtained from the original baseline. The smoothing is done
with a Gaussian kernel of FWHM=[8mm,8mm,8mm], and presented in the right
column. Each row presents a different plane: coronal, sagittal, transverse.



48 Neuroimaging Processing

3.6 Priors and Templates

A template corresponds to an image/volume which encodes the average
probability of finding different kinds of tissues at each spatial location. These
TPM’s encode an estimation of the spatial variability at each voxel. Therefore,
they are used as prior classification probability in the SPM Bayesian framework.
The inclusion of this prior knowledge into the method increases the robustness
and accuracy of the method, although also biases the result.

In order to generate a template, several brain volumes are segmented into
different tissue classes. Then, all the images are normalized in a common space,
which usually corresponds to the MNI space. And finally, a volume for each
tissue class is created after averaging and smoothing. The value at each voxel
indicates the probability (0-1) of finding the corresponding tissue class at this
position in the brain.

In addition, it is also needed an good initial estimation of the parameters,
which is used as a starting point of the iterative local optimization. In the case
of SPM, this point is simplified by assuming a multidimensional Normal distri-
bution for each parameter, which can be characterized by a mean vector and a
covariance matrix. The ’Unified Segmentation’ does the initial affine registra-
tion maximizing the MI between the volumes and the templates, after excluding
an estimation of the BG voxels. On the other hand, the ’New Segmentation’
method uses the same equations than for segmentation itself except that the
intensity distributions are modeled by histograms, and not by MoG.

The templates of SPM8 in ’New Segmentation’ includes 6 TPM’s that are
used as prior templates. They have dimensions 121 × 145 × 121 and 1.5mm
of spatial resolution. They are done from 471 brains by Cynthia Jongen of
the Imaging Sciences Institute at. Utrecht, NL. Each volume corresponds to a
different tissues class, namely GM, WM, CSF, Bone, ST and BG. The volumes
include probabilities, therefore each voxel value is in the range [0, 1] and for the
same voxel, the sum over the six maps is 1. Some slices for GM, WM and CSF
are presented in the Figure 3.15. Besides, all the TPM templates are included
in the Appendix E.2.
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Figure 3.15: Templates for GM, WM and CSF in the ’New Segmentation’ of
SPM8 for the coronal, transverse and sagittal planes. The last row corresponds
to a coloured overlap of the previous tissue probability maps.
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Chapter 4

Method & Implementation

This chapter presents the method and mathematical concepts that are ap-
plied in the proposed MRI brain segmentation method, which is a modification
of the ’New Segmentation’ SPM8 toolbox.

In the Objective Function section, it is introduced the mathematical
framework of the segmentation method. It comprises a MoG as the generative
model of the intensity distribution for the tissue classes, and a Bayes inference
that allows the inclusion of the prior templates into the model. The objective
function is also extended to include bias field correction and registration. In
addition, a regularization term is added in order to avoid unfeasible results of
the inhomogeneity correction and registration.

The Optimization section presents the minimization of the objective func-
tion, which is done iteratively with the EM algorithm due to the high coupling
of the parameters. The expressions of the mixture parameters for each iteration
are calculated with the Gauss-Newton method.

The main parts of the Matlab code are included in the Implementation
section, where several versions of the algorithm are analyzed.
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4.1 Objective Function

This section includes the steps to create the mathematical expression of the
objective function, which includes tissue classification, bias field correction, and
registration. However, the classification is done indirectly my optimizing the
mixture parameters of the model. Besides, a regularization term is added to
avoid not realistic inhomogeneity correction and registration.

Due to memory restrictions, the method deals with 2D-planes and only
masked voxels are analyzed, i.e. for each z-coordinate, the brain voxels of the
corresponding xy-slice are mapped into memory, and then the parameters of the
generative model are extracted for those voxels. In order to do it correctly, it is
needed to assume independent voxels. Although this assumption is not true, it
simplifies the operations and latterly in this chapter it will explained how this
voxel dependency can be included in the model.

Some relevant notation is presented here and is kept through the whole
chapter. The variable Kb indicates the number of tissue classes in which is
aimed to segment the brain. The variable K stands for the number of clusters,
which also corresponds to the number of Gaussians, as the MoG is used as clus-
tering method. The variable N stands for the number of modalities/channels,
which will determine the dimensionality of the method. The variable I stands
for the number of analyzed voxels of each xy-slice. Although, the number of
brain voxels inside of the mask changes for each z-coordinate, the notation Iz is
not used for simplicity.

4.1.1 Input data

The acquired MRI data Y correspond to the intensity values of each voxel
for T1 and T2 scans. They are represented as a bivariate sequence of I ele-
ments, where I stands for the number of voxels that are analyzed, and the
2-dimensionality comes from the chosen multispectral approach. The analytical
expression of the MRI data is presented in the Equation 4.1, where the original
3D matrix structure of the brain voxels is transformed into a vector that con-
catenates the intensity values. Therefore, for the i-voxel, yi,T1 represents the
T1 intensity and yi,T2 the T2 intensity. It is important that beforehand both
modalities are correctly registered in the same space coordinates.

Y = [Y1, · · ·Yi, · · ·YI ] =
[
YT1
YT2

]
=
[
y1,T1 · · · yi,T1 · · · yI,T1
y1,T2 · · · yi,T2 · · · yI,T2

]
(4.1)

The subscripts T1 and T2 were used to describe to which modality each
variable corresponds, either T1 or T2. It could be established a more generic
way using an index n = 1, ...N . However, in the scope of this project is only
intended to use two modalities, N = 2, thus the notation is easier to understand
in this format.
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4.1.2 Classes

A group of voxels that follows a similar intensity and spatial distribution
can be gathered into one cluster. As a tissue class tends to have similar MR
intensity values and locations inside the brain, it can be assumed that one cluster
can be associated to one tissue class; although this assumption will be latterly
expanded. The MoG is applied for clustering, thus each cluster is modeled by a
2D-Gaussian, which is parameterized by a mean vector and a covariance matrix,
as it will be presented with more details in the section 4.1.3.

Several classes

For each tissue class in which is aimed to segment the brain, it is needed a
template that encodes the prior probability of each voxel belonging to the class.
Although the brain segmentation is mainly focused in the detection of GM, WM
and CSF voxels, the increase in the number of classes can help to avoid classify-
ing non-brain tissues as part of the brain. The ’Unified Segmentation’ method,
implemented in SPM8, uses 4 tissue classes (Kb = 4), namely GM, WM, CSF,
and non-brain. The last class is a way to include the brain extraction within
the generative models in order to increase the robustness; and it is estimated
as one minus the rest of classes. However, already scalp stripped brains save
time because it is only needed to operate with brain voxels, I ↓. In the ’New
Segmentation’ method, implemented in the Seg-toolbox of SPM8, six different
tissue templates (Kb = 6) are used, namely GM, WM, CSF, bone, ST and BG.
The background class includes mainly air and subjects’t hair. In this project,
the same priors are used, therefore the number of tissue classes is fixed to six,
Kb = 6. Some slices of the used templates can be found in the Appendix E.2.

Several clusters per class

The first approach assumed that each cluster (Gaussian) is associated with
one tissue class (K = Kb). However, it is a more correct approach to in-
crease the number of clusters (Gaussians) that models one single tissue class
(K > Kb). One main reason to follow the latter proposal is due to the prob-
lems associated with PVE. When a voxel is composed by different tissues, the
intensity distribution differs from a pure tissue, thus it is needed to consider
these interfaces among structures as different tissue classes. They way that the
applied model deals with this problem is by assuming non-Gaussian intensity
distribution, which is achieved by associating several Gaussians to one tissue
class. The exact number of clusters per tissue class depends on the tissue itself.
In this case, the values proposed in the ’New Segmentation’ method are used.
They associate 2 clusters to GM, 2 clusters with WM, 2 clusters with CSF, 3
clusters with bone, 4 clusters with ST, and 2 clusters with BG. Therefore, the
total number of clusters (Gaussians) is fifteen, K = 15.
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4.1.3 Mixture of Gaussians

The Gaussian Mixture Models (GMM) or Mixture of Gaussians (MoG)
is a generative model that characterizes the intensity distribution as a linear
superposition of Gaussians, as presented in Equation 4.2, where the term K
corresponds to the total number of Gaussians.

P (Y) =
K∑
k=1

γk ·N (Y | µk,Σk) (4.2)

Therefore, the kth-cluster (Gaussian) of the MoG model is characterized
by the set of parameters: θk = {γk,µk,Σk}. If the parameters from the K
clusters are grouped into θ = {γ,µ,Σ}, the mixing coefficient γ is a vector with
dimensions Kx1, the mean vector µ has dimensions NxK, and the covariance
Σ has dimensions NxNxK, where N = 2 and K = 15. In the Matlab code,
these parameters corresponds to mg, mn and vr, respectively.

In the previous equation, the mixing proportion coefficient γk weights the
contribution of the kth-Gaussian N (Y | µk,Σk) to the linear superposition.
Between the ’Unified Segmentation’ and ’New Segmentation’ method, there is
a slightly difference treatment of this proportion factor. The former method
associates one cluster (Gaussian) per tissue class, and the latter one allows the
association of several clusters (Gaussian) to single one tissue class. The second
approach is followed in this project, thus it must be satisfied that

∑
k=kKb γk = 1

and 0 ≤ γk ≤ 1, where the term kKb stands for the k-indexes associated to the
Kbth-tissue class.

The mixing coefficient, as presented in the Equation 4.2, is spatially inde-
pendent. However, it has sense that the tissue mixing ratio depends on the
location. Therefore, this factor will be combined with the priors to include
spatial variations in the section 4.1.5.

The term N (Y | µk,Σk) of the previous expression corresponds to the
multivariate Gaussian distribution. The expression for an N -dimensional data
Y is presented in the Equation 4.3, where the kth-Gaussian is parameterized by
the mean vector µk and the covariance matrix Σk.

N (Y | µk,Σk) = 1
(2π)

N
2 |Σk|

1
2
exp

{
−1

2 (Y− µk)T Σ−1
k (Y− µk)

}
(4.3)
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The intensity distribution of the kth-cluster for the nth-modality is mod-
eled as an univariate Gaussian (Yn | C (Y) = k) ∼ N (µk,n, σ2

k,n), where C (Y)
stands for the class of the variable Y. As two modalities are used in this project,
the intensity distributions of the kth-cluster for T1 and T2 are modeled as
(YT1 | C (Y) = k) ∼ N (µk,T1, σ

2
k,T1) and (YT2 | C (Y) = k) ∼ N (µk,T2, σ

2
k,T2),

respectively.

The combination of both modalities leads to a bivariate normal distribution,
N (Y | µk,Σk) |N=2, which is presented in the Equation 4.4 for the kth-cluster
and the ith-voxel. This expression is obtained from Equation 4.3 by constraining
the number of dimensions. The process is detailed in the Appendix B.2.

N (Y = yi | µk,Σk) = 1

2π
√
σ2
k,T1 · σ2

k,T2 − σ2
k,T1T2

(4.4)

· exp

 −σ2
k,T1 · σ2

k,T2

2
(
σ2
k,T1 · σ2

k,T2 − σ2
k,T1T2

) · [(yi,T1 − µk,T1

σk,T1

)2
+
(
yi,T2 − µk,T2

σk,T2

)2
]

· exp

 σk,T1T2(
σ2
k,T1 · σ2

k,T2 − σ2
k,T1T2

) · [(yi,T1 − µk,T1) (yi,T2 − µk,T2)]


The Gaussian distribution for the kth-cluster is characterized by the mean

vector µk and the covariance matrix Σk, which expressions are presented in the
Equation 4.5.

µk =
[
µk,T1
µk,T2

]
2,1

, Σk =
[
σk,T1T1 σk,T1T2
σk,T2T1 σk,T2T2

]
=
[
σ2
k,T1 σk,T1T2

σk,T1T2 σ2
k,T2

]
2,2

(4.5)

The terms σk,nn′ are covariances, and σk,nn = σ2
k,n are variances, where

σk,n stands for the Standard Deviation (s.t.d.). As a Gaussian, the covari-
ance matrix is symmetric σk,nn′ = σk,n′n, their terms are real σk,nn′ ∈ R, and
their variances are non-negative σ2

k,n ≥ 0. Therefore, the covariance matrix is
positive-semidefinite, x′Σkx ≥ 0, ∀x ∈ Rn, and its determinant is non-negative,
det (Σk) ≥ 0. If non-singularity is imposed in order to have simple inverse of the
covariance matrix, the matrix is positive-definite, x′Σkx > 0, ∀x ∈ Rn, and its
determinant is always strictly positive, det (Σk) > 0 [15].
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The variable ρk is the correlation coefficient for each pair of modalities, as
presented in Equation 4.6.

ρk = σk,nn′

σk,n · σk,n′
= σk,nn′√

σk,nn · σk,n′n′
(4.6)

This parameter shows the degree of correlation between the nth and n′th
modality. In case this parameter vanishes to zero, ρk → 0, both modalities
would be uncorrelated for the kth-cluster. In addition, due to the Gaussian
distribution of the intensities, in case of non-correlation, the modalities would be
also independent. The ’unified Segmentation’ and ’New Segmentation’ methods
consider that the probability distribution of both modalities is uncorrelated,
σk,T1T2 = σk,T2T1 = 0, which leads to Σk = diag(σ2

k,n). This assumption shifts
the number of independent parameters to 2 ·N = 4. Although this assumption
is not true, it is applied in order to simplify the expressions.

In the proposed method of this thesis, this non-correlation is not assumed.
Therefore, the number of independent parameters is N · (N + 3)/2 = 5. This
small number of the degrees of freedom implies fast computation, however it
also implies a restriction on the shape of the intensity distribution. The total
number of parameters increases quadratically with the number of modalities,
although for small number of modalities (N ↓), like in this project (N = 2),
this point is not relevant. In this case, the 5 parameters correspond to the two
means µk,T1 µk,T2, the two variances σ2

k,T1 σ
2
k,T2, and the covariance σk,T1T2,

which in details correspond to:

• µk,T1: intensity mean of the kth-cluster for the T1 modality.

• µk,T2: intensity mean of the kth-cluster class for the T2 modality.

• σ2
k,T1: intensity variance of the kth-cluster for the T1 modality.

• σ2
k,T1: intensity variance of the kth-cluster for the T2 modality.

• σk,T1T2: intensity covariance of the kth-cluster between the T1 and T2.

There is also the possibility of using the correlation factor ρk instead of
the covariance σk,T1T2, as both of them include similar information. However,
this option is rejected as latterly the objective function is taken derivatives of
each parameter, and the dependencies between the correlation factor and the
variances would make more though the process.
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4.1.4 Bayesian Inference

The Bayesian inference provides a probabilistic framework to combine the
priors, the generative model M and the acquired data Y to estimate the model
parameters θ. In addition, this statistical inference allows the probabilistic com-
bination of different methods and data from multiple modalities, which cannot
not be done with Least Squares (LE) approaches [90]. Thus, it is possible to
infer the MAP at the same time from T1 and T2 MR images, which combination
is intended in this thesis.

This method introduces prior distributions of the parameters in the model
through the Bayes’ theorem. The priors corresponds to a set of templates that
represent how probable is to find the different tissue classes at each voxel, i.e.
TPM. Therefore, there is one template for each kind of tissue class, and it must
be fulfilled that the sum over all the templates for each voxel is one.

The Bayes’ theorem is presented in the Equation 4.7 for the data Y, the
model M , and the model parameters θ, also called hypothesis. The expres-
sion P (Y | θ,M ) is the conditional probability distribution that corresponds
to the likelihood function of the GMM. The term P (θ | Y,M ) is the poste-
rior distribution, P (Y | M ) is the marginal distribution, and P (θ | M ) is the
prior distribution. This expression is derived from the factorization of the joint
probability P (Y,θ,M ) = P (θ | Y,M ) · P (Y | M ) = P (Y | θ,M ) · P (θ | M ).

P (θ | Y,M ) = P (Y | θ,M ) · P (θ | M )
P (Y | M ) (4.7)

If the marginal probability is considered as a scaling factor, it can be stated
that the posterior probability is proportional to the likelihood multiplied by the
priors, i.e. posterior ∝ likelihood × prior. This posterior probability is the
one aimed to be maximized, however the sampling of the prior distribution can
be a tough task. Therefore, it is usually applied the Maximum Likelihood (ML)
method that assumes directly P (θ | Y,M ) ∝ P (Y | θ,M ). This assumption
can be based either on a flat distribution of the parameters around the peaks
of the likelihood function, or neglected because of a significantly big amount
of observed data set. Anyway, the ML estimation corresponds asymptotically
to the Bayesian inference [6]. The likelihood function is connected with the
conditional probability in this way: L(θ | Y,M ) ∝ P (Y | θ,M ). Into words, it
means that the likelihood of a set of parameter θ, given the observed data Y, is
equal to the probability of the observed data Y given the set of parameters θ.
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In conclusion, it can be stated that the ML and MAP estimation of the pa-
rameters θ of the model M from the observed data Y is obtained by maximizing
the conditional probability P (Y | θ,M ). In this case, the model is a MoG, where
the set of parameters correspond to γ,µ,Σ. Therefore, the likelihood function
has the expression P (Y | γ,µ,Σ), and is presented in the Equation 4.8.

P (Y | γ,µ,Σ) =
I∏
i=1

P (Yi = yi | γ,µ,Σ) (4.8)

=
I∏
i=1

(
K∑
k=1

P (Yi = yi, ci = k | γk,µk,Σk)
)

=
I∏
i=1

(
K∑
k=1

P (ci = k | γk) · P (Yi = yi | ci = k,µk,Σk)
)

The previous mathematical expression is obtained in three steps, which are
described with more details here:

• First, it is assumed that the intensity distributions of the voxels are Inde-
pendent and Identically Distributed (i.i.d) stochastic variables. Although
this assumptions is not true, it allows to estimate the total likelihood as a
simple multiplication of the individual likelihoods at each analyzed voxel
i = 1, · · · I. The likelihood of the ith-voxel corresponds to the expres-
sion P (Yi = yi | γ,µ,Σ), and stands for the probability of obtaining the

intensity value yi = [yi,T1, yi,T2]T at the ith-voxel, given the parameters
γ,µ,Σ. In order to compensate the errors from this assumption, the priors
and the smoothing will incorporate in the model the spatial dependencies
that are discarded here.

• In the second step, the individual likelihood is expressed as the integra-
tion of the joint probabilities at each cluster k = 1, · · ·K, which expression
is P (Yi = yi, ci = k | γk,µk,Σk). This joint probability corresponds to
the probability of obtaining the intensity value yi that belongs to the
kth-cluster, given the parameters γk,µk,Σk. As the range of clusters is
discrete, the integral is converted into a sum. This step shifts the segmen-
tation from classification to optimization of the model parameters.

• The last expression is obtained by applying the Bayes’ rule on the pre-
vious joint probability for each cluster. Thus, it can be expressed as
the product of the conditional probability P (Yi = yi | ci = k, γk, µk,Σk)
and the prior probability P (ci = k | γk,µk,Σk). The former does not de-
pend on the mixing coefficient, and the latter does not depend on the
Gaussians parameters, therefore the previous terms can be simplified,
i.e. P (Yi = yi | ci = k, γk,µk,Σk) = P (Yi = yi | ci = k,µk,Σk), and
P (ci = k | γk,µk,Σk) = P (ci = k | γk).
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The prior distribution P (ci = k | γk) is the probability of the ith-voxel of
belonging to the kth-cluster just taken into account the distributions of previ-
ously acquired data. The expression will be be modified in the section 4.1.5 to
include the information from the tissue templates.

The conditional distribution P (Yi = yi | ci = k,µk,Σk) corresponds to the
probability of obtaining an intensity value yi = [yi,T1, yi,T2]T , given that the
ith-voxel belongs to the kth-cluster and the parameters are θk = {µk,Σk}. Due
to the MoG model used in this method, this conditional distribution corresponds
to the bivariate Gaussian, which will be modified in the Section 4.1.6 in order
to include intensity inhomogeneity.

P (Yi = yi | ci = k,µk,Σk) = N (Y = yi | µk,Σk) |N=2 (4.9)

4.1.5 Priors

The applied statistical framework allows the inclusion of prior information.
If stationary priors are used, the prior probability for each cluster is just the
mixing proportions γk, as presented in the Section 4.1.3.

P (ci = k | γk) = γk (4.10)

However, if spatial priors are introduced from TPM, the term bik is added,
which stands for the probability of the ith-voxel belonging to the kth-cluster.
As the probability bik depends on the location, this modification helps to in-
clude spatial dependency in the model and compensate the assumption of voxels
independence.

P (ci = k | γk) = γk · bik∑K
j=1 γj · bij

(4.11)

The templates used as priors are generated from previously segmented im-
ages; thus, it is needed to register the tissue templates into the same space than
the MR images. The set of parameters α characterizes the image registration
with a non-linear warping using 3D DCT. This method is a low-dimensionality
(∼ 1000 parameters) approach, which implies a fast and simple processing. A
further description of the method was presented in the section 3.2.

P (ci = k | γk,α) = γk · bik(α)∑K
j=1 γj · bij(α)

(4.12)
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4.1.6 Intensity Inhomogeneity

The MR scans are corrupted by a smooth intensity perturbation that mod-
ulates the intensity values, thus it can be considered as a multiplicative field.
Even small levels of inhomogeneity can greatly decrease the performance of any
automatic segmentation method, therefore it is needed to compensate it.

The ’Unified Segmentation’ method models the bias field as a set of DCT
basis functions, as explained in the Section 3.3. This kind of model has a low
number of parameters and does not constraint the boundary values. Likewise,
the intensity variation of the ith-voxel for the nth-modality is expressed as
ρi,n(β), which is characterized by the vector of parameters β. The inclusion of
this smooth intensity variation in the MoG model modifies the mean, variance
and covariance values of the normal distribution for each cluster in the way
presented in the expressions of the Equation 4.13.

µk,n →
µk,n
ρi,n(β) , σ2

k,n →
(

σk,n
ρi,n(β)

)2
, σk,nn′ →

σk,nn′

ρi,n(β) · ρi,n′(β) (4.13)

These expressions are calculated by using the general property of the co-
variance Cov(aX, bY ) = ab ·Cov(X,Y ), where a, b ∈ R and X,Y are Random
Variable (r.v.).

The number of modalities in this project is two, T1 and T2, therefore the
modified mean vector and covariance matrix corresponds to the expressions of
the Equation 4.14 and 4.15, respectively.

µ̆k =
[
µ̆k,T1
µ̆k,T2

]
=


µk,T1

ρi,T1(β)

µk,T2

ρi,T2(β)

 (4.14)

Σ̆k =
[
σ̆2
k,T1 σ̆k,T1T2

σ̆k,T1T2 σ̆2
k,T2

]
=


(

σk,T1

ρi,T1(β)

)2
σk,T1T2

ρi,T1(β) · ρi,T2(β)

σk,T1T2

ρi,T1(β) · ρi,T2(β)

(
σk,T2

ρi,T2(β)

)2


(4.15)

Likewise, the normal distribution of the intensities modulated by the bias
field is characterized by the new parameters µ̆k and Σ̆k, which transforms:
N (Y | µk,Σk) |N=2 → N (Y | µ̆k, Σ̆k) |N=2. From the Equation 4.9, it can be
also applied that this bias field correction modifies the conditional probability
in the form: P (Yi = yi | ci = k,µk,Σk) → P (Yi = yi | ci = k,µk,Σk,β)
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Finally, the Equation 4.16 presents the intensity distribution with the in-
clusion of the intensity inhomogeneity parameterized by the vector β.

P (Yi = yi | ci = k,µk,Σk,β) = N (Y = yi | µ̆k, Σ̆k) |N=2 =
(4.16)

= ρi,T1(β) · ρi,T2(β)

2π
√
σ2
k,T1 · σ2

k,T2 − σ2
k,T1T2

·

· exp

 −σ2
k,T2

2
(
σ2
k,T1 · σ2

k,T2 − σ2
k,T1T2

) · (ρi,T1(β) · yi,T1 − µk,T1)2

·
· exp

 −σ2
k,T1

2
(
σ2
k,T1 · σ2

k,T2 − σ2
k,T1T2

) · (ρi,T2(β) · yi,T2 − µk,T2)2

·
· exp

 σk,T1T2(
σ2
k,T1 · σ2

k,T2 − σ2
k,T1T2

) · (ρi,T1(β) · yi,T1 − µk,T1) (ρi,T2(β) · yi,T2 − µk,T2)


As it would be expected, the probability has higher values the closer are

the intensity values to their corresponding means. The maximization of the
likelihood function has singularities that makes this task not well posed. When
the intensity value is close to the mean and the variance is small, the likelihood
function values goes to infinity, the same would happen when the variance is
too small σ → 0. Therefore, these singularities must be detected and heuristic
methods to solve them should be proposed [6].

The inclusion of registered priors and bias field correction increases the
total number of parameters, i.e. θ = {γ,µ,Σ,α,β}. Therefore, the likelihood
function has the form of the Equation 4.17, where the expressions for the prior
and conditional probability have been already estimated.

P (Y | θ) = P (Y | γ,µ,Σ,α,β) = (4.17)

=
I∏
i=1

(
K∑
k=1

P (ci = k | γk,α) · P (Yi = yi | ci = k,µk,Σk,β)
)
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4.1.7 Regularization

The estimated bias field must model smooth variations of intensity due to
RF field inhomogeneities and not fast intensity variations due different tissues,
which must be modeled by the different clusters. Therefore, a regularization
term P (α) is added in order to penalize unfeasible values of the parameters
according to prior information, which corresponds to the bending energy. Simi-
larly, the deformations of the registration can be also penalized in case of param-
eters too big or small from the expected values. In both cases, the probability
densities of the parameters are assumed to follow a centered Gaussian distribu-
tion, i.e. α ∼ N (0,Cα) and β ∼ N (0,Cβ).

The Equation 4.18 presents the regularization terms for prior registration
and bias field correction in terms of the parameters α β and their covariance
matrices Cα Cβ .

P (α) = exp{−
1
2α

TCα
−1α} , P (β) = exp{−

1
2β

TCβ
−1β} (4.18)

Figure 4.1: Example of regularization
terms, where the parameter values are
scaled by their variances. When the pa-
rameter is bigger than the variance, the
regularization term vanishes fast.

When the covariance is large, the
parameters are expected to be large,
which means more drastic deforma-
tions and less smooth bias field es-
timation, and vice versa. Therefore,
the value of the regularization terms
grows when the order of magnitude of
the parameters is similar or smaller
than the covariances, which means
that the argument of the exponential
(related to the Mahanolabis distance)
gets closer to zero (centered Gaus-
sian). The Figure 4.19 presents an
example of the parameters scaled by
their variances. It can be seen how
big values are highly penalized.

Therefore, fitting the MoG model with the regularization terms implies
maximizing the Equation 4.19.

P (Y,α,β | γ,µ,Σ) = P (Y | γ,µ,Σ,α,β) · P (α) · P (β) (4.19)



4.1 Objective Function 63

4.1.8 Cost Function

The total likelihood is estimated as the product of the individual likelihoods
of each voxel and the regularization terms. In order to transform the product
into a sum and make easier the optimization problem, the log() is applied to
the likelihood function to obtain the log-likelihood function. The log() is a
monotone transformation, thus the value of the arguments that maximizes the
likelihood are the same than for the log-likelihood. In order to avoid instability
problems with small arguments of the log() function, it is usually added a small
value to the argument. In SPM8, this small value is encoded in the variable
tiny = eps ∗ eps, where eps is an internal Matlab variable equal to 2−52 that
stands for the distance from the 1.0 to the next larger bigger number in the
same representation. Finally, to create the cost function F the sign of the log-
likelihood function is changed. Therefore, the maximization of the likelihood is
equivalent to the minimization of the Equation 4.20.

F = −log (P (Y,α,β | γ,µ,Σ)) = (4.20)

= −log (P (Y | θ)) − log (P (α)) − log (P (β)) =

= ε + 1
2α

TCα
−1α + 1

2β
TCβ

−1β

From the previous expression, the cost function ε corresponds to the objec-
tive function F without the regularization terms, and its expression corresponds
to the Equation 4.21.

ε = −log (P (Y | θ)) (4.21)

= −log

(
I∏
i=1

(
K∑
k=1

P (ci = k | γk,α) · P (Yi = yi | ci = k,µk,Σk,β)
))

= −
I∑
i=1

(
log

(
K∑
k=1

P (ci = k | γk,α) · P (Yi = yi | ci = k,µk,Σk,β)
))

The final objective function expression is presented in the Equation 4.22 of
the next page as a compendium of the previous presented steps.
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4.2 Optimization

Once the expression of the objective function F has been obtained, this
section describes how it is minimized, which implies fitting the model. Due to
the high coupling of the parameters θ, there is not a closed formulation to find
the solution. The chosen approach by the ’Unified Segmentation’ method is
based on Iterated Conditional Modes (ICM) [3], where each parameter is locally
optimized until the convergence criteria are satisfied. Each iteration comprises
the individual optimization of all the parameters, where in each individual op-
timization one parameter value is minimized while keeping the values of the
rest. Therefore, this local optimization requires a good starting point in order
to avoid convergence to a local minima.

The mixture parameters -γ,µ,Σ- comprise six variables for each cluster,
{γk, µk,T1, µk,T2, σ

2
k,T1, σ

2
k,T2, σk,T1T2}, which can be easily updated with the

EM method. However, the registration α and bias field correction β are charac-
terized by ∼ 1000, thus they are better optimized by the Levenberg-Marquardt
(LM) method. The modification of the original ’Unified Segmentation’ done in
this project does not involve any change in how the vector parameters α and
β are optimized, thus this section will focus just on the mixture parameters
that are optimized by the EM scheme. Therefore, it is enough to minimize the
objective function ε instead of F, because the regularization terms P (α) and
P (β) do not depend on the mixture parameters.

4.2.1 EM optimization

The Expectation Maximization (EM) is a well-known technique used to
determine the parameters of a mixture model. The method groups the points by
looking for the cluster centers and widths in the data through several iterations,
where the convergence criterion is based on minimizing the likelihood function.
Besides, this method generates a closed form expression of the parameters for the
next iteration. Although, it guarantees the convergence to a local minimum, it
is not guaranteed that this minimum is the global minimum of the log-likelihood
function [6] [17] [19].

In this case, a slightly different approach is used with the application of
the Generalized Expectation Maximization (GEM), where in each iteration the
objective function is smaller, but not necessarily minimized [49]. The method
generates an upper bound εEM of the objective function ε, where DKL corre-
sponds to the Kullback-Leibler distance [38].

ε ≤ εEM ⇔ ε ≤ ε+DKL , ∀ DKL ≥ 0 (4.23)
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In the Equation 4.24, it is presented the cost function ε. It was obtained in
the Equation 4.21 of the previous section, but it is repeated here for clarity.

ε = −
I∑
i=1

log (P (Yi = yi | θ)) (4.24)

The Equation 4.25 presents the Kullback-Leibler distance DKL, where the
term qi,k stands for some probability that is expected to be similar to the poste-

rior probability P (ci = k | Yi = yi,θ). It must satisfy that
∑K
k=1 qi,k = 1 after

applying the Bayesian rule.

DKL =
I∑
i=1

K∑
k=1

qi,k log

(
qi,k

P (ci = k | Yi = yi,θ)

)
= (4.25)

=
I∑
i=1

K∑
k=1

qi,k log (qi,k)−
I∑
i=1

K∑
k=1

qi,k log (P (ci = k | Yi = yi,θ))

Therefore the final upper bound of the the cost function corresponds to the
expression of Equation 4.26.

εEM = ε+DKL = −
I∑
i=1

log (P (Yi = yi | θ)) + (4.26)

+
I∑
i=1

K∑
k=1

qi,k log (qi,k) −
I∑
i=1

K∑
k=1

qi,k log (P (ci = k | Yi = yi,θ))

In order to minimize εEM , the method alternates between the E-step and
the M-step for each iteration. The former minimizes εEM with respect to qi,k,
while the latter does it with respect to θ. Each step has a slightly different
reformulation of the cost function, which is minimized to obtain a close equation
of the variables for the next iteration. The method stops when the convergence
criteria have been satisfied.
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E-step

In this step, the upper bound εEM is minimized with respect to the proba-
bility qi,k. The cost function ε does not depend on qi,k, thus the minimization
in this step only includes the Kullback-Leibler distance, εEM = DKL. When
the probability qi,k is equal to the posterior probability, the KL-distance is min-
imum. This minimum value corresponds to zero, DKL = 0, which also implies
that the upper bound of the cost function is equal to the cost function, ε = εEM .

qi,k = P (ci = k | Yi = yi,θ) ⇒ ε = εEM = DKL = 0 (4.27)

The value of the posterior probability for the (n)th-iteration, q
(n)
i,k , is calcu-

lated from the parameters of the (n− 1)th-iteration, θ(n−1). The Equation 4.28
presents this expression, where the Bayesian rule has been applied.

q
(n)
i,k = P

(
ci = k | Yi = yi,θ(n−1)

)
= (4.28)

=
P
(
Yi = yi, ci = k | θ(n−1)

)
P
(
Yi = yi | θ(n−1)

) =
P
(
Yi = yi, ci = k | θ(n−1)

)
∑K
k=1 P

(
Yi = yi, ci = k | θ(n−1)

)

The conditional probability P
(
Yi = yi, ci = k | θ(n−1)

)
of the previous ex-

pression is calculated from the Equation 4.29. It combines the MoG model, the
bias field correction and the priors that were explained in the previous section.

P
(
Yi = yi, ci = k | θ(n−1)

)
= P

(
ci = k | θ(n−1)

)
·P
(
Yi = yi | ci = k,θ(n−1)

)
=

=
(

γk · bik(α)∑K
j=1 γj · bij(α)

)
· ρi,T1(β) · ρi,T2(β)

2π
√
σ2
k,T1 · σ2

k,T2 − σ2
k,T1T2

·

· exp

 −σ2
k,T2

2
(
σ2
k,T1 · σ2

k,T2 − σ2
k,T1T2

) · (ρi,T1(β) · yi,T1 − µk,T1)2

 · (4.29)

· exp

 −σ2
k,T1

2
(
σ2
k,T1 · σ2

k,T2 − σ2
k,T1T2

) · (ρi,T2(β) · yi,T2 − µk,T2)2

 ·
· exp

 σk,T1T2(
σ2
k,T1 · σ2

k,T2 − σ2
k,T1T2

) · (ρi,T1(β) · yi,T1 − µk,T1) (ρi,T2(β) · yi,T2 − µk,T2)
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M-step

In this step, the upper bound of the cost function εEM is minimized with
respect to the parameters θ. Therefore, the updating equations of the parame-
ters for the (n)th-iteration, θ(n), are estimated from the resulting cost function

and the posterior probability for the (n)th-iteration, q
(n)
i,k , which was previously

updated in the E-step.

The first term of the Kullback-Leibler distance does not depend on the
parameters θ, therefore it is not included in the upper bound of the cost function
in this step, as showed in the Equation 4.30. This expression is a reformulation
of the Equation 4.26 where the Bayes’ rule has been applied in several steps.
Besides, the expression for the conditional probability P (Yi = yi, ci = k | θ)
was presented in the Equation 4.29.

εEM = −
I∑
i=1

log (P (Yi = yi | θ)) −
I∑
i=1

K∑
k=1

qi,k log (P (ci = k | Yi = yi,θ))

= −
I∑
i=1

log (P (Yi = yi | θ)) −
I∑
i=1

K∑
k=1

qi,k log

(
P (Yi = yi, ci = k | θ)

P (Yi = yi | θ)

)

= −
I∑
i=1

K∑
k=1

qi,k log (P (Yi = yi, ci = k | θ)) (4.30)

Although the values of the mixture parameters are different for each clus-
ter, the updating expression of each parameter is the same for all the clusters.
Therefore, the function to minimize corresponds to the upper bound of the func-
tion cost for the kth-cluster, εEMk

. The complete expression is presented in the
Equation B.8 of the Appendix B.3.

Therefore, the upper bound of the cost function for the kth-cluster of the
M-step is minimized with respect to the parameters θ. This process imply to
take derivatives of this expression with respect to each mixture parameter -
{γk, µk,T1, µk,T2, σ

2
k,T1, σ

2
k,T2, σk,T1T2}- and forced them to be zero. This

way, an updating expression for each mixture parameters is obtained.
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Mixing Coefficient

The cost function of the Equation B.8 is derived with respect to γk and
forced to be equal to zero.

∂ εEMk

∂ γk
= 1

γk

I∑
i=1

qi,k −
I∑
i=1

qi,k

(
bik(α)∑K

j=1 γj · bij(α)

)
= 0 (4.31)

Therefore, the updating equation for the mixing coefficient corresponds to:

γk
(n) =

∑I
i=1 qi,k

(n)∑I
i=1 qi,k

(n)
(

bik(α)∑K

j=1
γ

(n)
j
·bij(α)

) (4.32)

The Equation 4.32 can be compared with the original ’Unified Segmentation’
method, which corresponds to the equation (27) of [3], and it is presented in the
Equation 4.33. The original method has a slightly different expression because
it was probed empirically its convergence to a smaller cost function in each
iteration. Thus, the Equation 4.33 is also used in this project.

(γ̇k)(n) =
∑I
i=1 qi,k

(n)∑I
i=1

(
bik(α)∑K

j=1
γ

(n)
j
·bij(α)

) (4.33)
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Mean

The cost function of the Equation B.8 is derived with respect to µT1,k and
forced to be equal to zero.

∂ εEMk

∂ µk,T1
= −

σ2
k,T2(

σ2
k,T1 · σ2

k,T2 − σ2
k,T1T2

) I∑
i=1

qi,k (ρi,T1(β) · yi,T1 − µk,T1)

+ σk,T1T2(
σ2
k,T1 · σ2

k,T2 − σ2
k,T1T2

) I∑
i=1

qi,k (ρi,T2(β) · yi,T2 − µk,T2) = 0 (4.34)

The derivative of the cost function with respect to µT2,k has similar expres-
sion, where the modality indexes are interchanged, T1 ↔ T2. Therefore, the
updating equations for the means corresponds to:

µk,T1
(n) = (µ̇k,T1)(n) +

(
σk,T1T2

σ2
k,T2

)
· coefµ1∑I

i=1 qi,k
(4.35)

µk,T2
(n) = (µ̇k,T2)(n) +

(
σk,T1T2

σ2
k,T1

)
· coefµ2∑I

i=1 qi,k
(4.36)

These expressions can be compared with the original updating formulas. If
the cross variance vanishes towards zero, σk,T1T2 → 0, the updating expres-
sions for the mean of the modified method are equal than the original ’Unified
Segmentation’ ones of Equation 4.37 and 4.38.

(µ̇k,T1)(n) =
∑I
i=1 qi,k (ρi,T1(β) · yi,T1)∑I

i=1 qi,k
(4.37)

(µ̇k,T2)(n) =
∑I
i=1 qi,k (ρi,T2(β) · yi,T2)∑I

i=1 qi,k
(4.38)

The coefficients of the updating formulas of the mean for T1 and T2 are
presented in the Equation 4.39 and 4.40.

coefµ1 = −
I∑
i=1

qi,k (ρi,T2(β) · yi,T2 − µk,T2) (4.39)

coefµ2 = −
I∑
i=1

qi,k (ρi,T1(β) · yi,T1 − µk,T1) (4.40)
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Variance

The cost function of the Equation B.8 is derived with respect to σ2
T1,k and

forced to be equal to zero.

∂ εEMk

∂ σ2
k,T1

= 0 =
σ2
k,T2

2
(
σ2
k,T1 · σ2

k,T2 − σ2
k,T1T2

) I∑
i=1

qi,k (4.41)

−
σ4
k,T2

2
(
σ2
k,T1 · σ2

k,T2 − σ2
k,T1T2

)2

I∑
i=1

qi,k (ρi,T1(β) · yi,T1 − µk,T1)2

−
σ2
k,T1T2

2
(
σ2
k,T1 · σ2

k,T2 − σ2
k,T1T2

)2

I∑
i=1

qi,k (ρi,T2(β) · yi,T2 − µk,T2)2

+
σk,T1T2 σ

2
k,T2(

σ2
k,T1 · σ2

k,T2 − σ2
k,T1T2

)2

I∑
i=1

qi,k (ρi,T1(β) · yi,T1 − µk,T1) (ρi,T2(β) · yi,T2 − µk,T2)

The derivative of the cost function with respect to σ2
T2,k has similar ex-

pression than with respect to σ2
T2,k, except from the interchange of modality

indexes, T1 ↔ T2. Thus, the updating formula for the variance are presented
in the Equation 4.42 and 4.43.

σ2
k,T1

(n) =
(
σ̇2
k,T1

)(n) +
(
σk,T1T2

σ2
k,T2

)
· coef

(n)
σ1∑I

i=1 qi,k
(4.42)

σ2
k,T2

(n) =
(
σ̇2
k,T2

)(n) +
(
σk,T1T2

σ2
k,T1

)
· coef

(n)
σ2∑I

i=1 qi,k
(4.43)

Therefore, the updating equation for the variance σ2
k,m

(n)
corresponds to a

combination of the original formula (σ̇2
k,m)(n)

plus a coefficient coefσ scaled by
the cross variance σk,T1T2. This formulation allows to see clearly that when the
cross variance is zero, σk,T1T2 → 0, the original and modified method have the
same updating scheme.
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The updating formulas of the original method for the T1 and T2 variances
are presented in the Equation 4.44 and 4.44, respectively. The equations are
presented as dependent on the central moments and as dependent of the non-
central moments.

(
σ̇2
k,T1

)(n) =
∑I
i=1 qi,k (ρi,T1(β) · yi,T1 − µk,T1)2∑I

i=1 qi,k
= (4.44)

∑I
i=1 qi,k (ρi,T1(β) · yi,T1)2 − 2µk,T1

∑I
i=1 qi,k (ρi,T1(β) · yi,T1) + µ2

k,T1
∑I
i=1 qi,k∑I

i=1 qi,k

(
σ̇2
k,T2

)(n) =
∑I
i=1 qi,k (ρi,T2(β) · yi,T2 − µk,T2)2∑I

i=1 qi,k
= (4.45)

∑I
i=1 qi,k (ρi,T2(β) · yi,T2)2 − 2µk,T2

∑I
i=1 qi,k (ρi,T2(β) · yi,T2) + µ2

k,T2
∑I
i=1 qi,k∑I

i=1 qi,k

Finally, the coefficients that modify the original updating formulas of the
variance in order to include correlation between modalities T1 and T2 are pre-
sented in the Equation 4.46 and 4.47.

coefσ1 = σk,T1T2

I∑
i=1

qi,k +
(
σk,T1T2

σ2
k,T2

)
I∑
i=1

qi,k (ρi,T2(β) · yi,T2 − µk,T2)2

− 2
I∑
i=1

qi,k (ρi,T1(β) · yi,T1 − µk,T1) (ρi,T2(β) · yi,T2 − µk,T2) (4.46)

coefσ2 = σk,T1T2

I∑
i=1

qi,k +
(
σk,T1T2

σ2
k,T1

)
I∑
i=1

qi,k (ρi,T1(β) · yi,T1 − µk,T1)2

− 2
I∑
i=1

qi,k (ρi,T1(β) · yi,T1 − µk,T1) (ρi,T2(β) · yi,T2 − µk,T2) (4.47)
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Cross Variance

The cost function of the Equation B.8 is derived with respect to σT1T2,k
and forced to be equal to zero.

∂ εEMk

∂ σk,T1T2
= 0 = − σk,T1T2(

σ2
k,T1 · σ2

k,T2 − σ2
k,T1T2

) I∑
i=1

qi,k (4.48)

+
σ2
k,T2 · σk,T1T2(

σ2
k,T1 · σ2

k,T2 − σ2
k,T1T2

)2

I∑
i=1

qi,k (ρi,T1(β) · yi,T1 − µk,T1)2

+
σ2
k,T1 · σk,T1T2(

σ2
k,T1 · σ2

k,T2 − σ2
k,T1T2

)2

I∑
i=1

qi,k (ρi,T2(β) · yi,T2 − µk,T2)2

−
σ2
k,T1 · σ2

k,T2(
σ2
k,T1 · σ2

k,T2 − σ2
k,T1T2

)2

I∑
i=1

qi,k (ρi,T1(β) · yi,T1 − µk,T1) (ρi,T2(β) · yi,T2 − µk,T2)

−
σ2
k,T1T2(

σ2
k,T1 · σ2

k,T2 − σ2
k,T1T2

)2

I∑
i=1

qi,k (ρi,T1(β) · yi,T1 − µk,T1) (ρi,T2(β) · yi,T2 − µk,T2)

The solution of this expression for the unknown factor x = σk,T1T2 is a third
degree equation in the form:

ax3 + bx2 + cx1 + dx0 = 0 (4.49)

where the coefficients correspond to:

a =
I∑
i=1

qi,k

b = −
I∑
i=1

qi,k (ρi,T1(β) · yi,T1 − µk,T1) (ρi,T2(β) · yi,T2 − µk,T2)

c = − σ2
k,T1 σ

2
k,T2

I∑
i=1

qi,k + σ2
k,T2

I∑
i=1

qi,k (ρi,T1(β) · yi,T1 − µk,T1)2

+ σ2
k,T1

I∑
i=1

qi,k (ρi,T2(β) · yi,T2 − µk,T2)2

d = − σ2
k,T1 σ

2
k,T2

I∑
i=1

qi,k (ρi,T1(β) · yi,T1 − µk,T1) (ρi,T2(β) · yi,T2 − µk,T2)
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4.2.2 Central moments

The previous expressions were defined in terms of the central moments for
a 2-dimensional variable; therefore, they can be reformulated in an easier way
by introducing specific variables for these expressions.

The moment of zero order is:

mom0 =
I∑
i=1

qi,k

The elements of the central moment of first order are:

mom1cT1 =
I∑
i=1

qi,k (ρi,T1(β) · yi,T1 − µk,T1)

mom1cT2 =
I∑
i=1

qi,k (ρi,T2(β) · yi,T2 − µk,T2)

The elements of the central moment of second order are:

mom2cT1 =
I∑
i=1

qi,k (ρi,T1(β) · yi,T1 − µk,T1)2

mom2cT2 =
I∑
i=1

qi,k (ρi,T2(β) · yi,T2 − µk,T2)2

mom2cT1T2 =
I∑
i=1

qi,k (ρi,T1(β) · yi,T1 − µk,T1) (ρi,T2(β) · yi,T2 − µk,T2)

In the Appendix B.4, it is included a deep explanation about the central
and non-central moments for this case.
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Therefore, the coefficients of the updating formulas where the moments are
substituted by the previous variables are:

For the mean coefficients:

coefµ1 = − mom1cT2 (4.50)

coefµ2 = − mom1cT1 (4.51)

For the variance coefficients:

coefσ1 = σk,T1T2 mom0 +
(
σk,T1T2

σ2
k,T2

)
mom2cT2 − 2 ·mom2cT1T2 (4.52)

coefσ2 = σk,T1T2 mom0 +
(
σk,T1T2

σ2
k,T1

)
mom2cT1 − 2 ·mom2cT1T2 (4.53)

For the cross variance coefficients of the third degree equation:

a = mom0

b = − mom2cT1T2

c = − σ2
k,T1 σ

2
k,T2 mom0 + σ2

k,T2 mom2cT1 + σ2
k,T1 mom2cT2

d = − σ2
k,T1 σ

2
k,T2 mom2cT1T2

The mixing coefficient is not presented here because the equation of the
original and modified approach are the same.



76 Method & Implementation

4.3 Implementation

This section introduces the Matlab code of the updating expressions for the

E-step (q
(n)
i,k ) and M-step (γk

(n), µk,T1
(n), µk,T2

(n), σ2
k,T1

(n)
, σ2

k,T2
(n)

, σk,T1T2
(n)).

First, it is presented the Matlab framework of the implementation, which
corresponds to a toolbox in SPM8. The main flow of the program and the vari-
able structures are also explained in order to justify how the updating formulas
of this project are included.

4.3.1 SegT1T2 toolbox

The implementations starts with the creation of a toolbox with the name
SegT1T2, which is a modification of the Seg toolbox of ’New Segmentation’.
It allows the inclusion of only two input channels for the segmentation, which
must correspond to T1 and T2 MRI modalities. The extension of the filenames
for the program files and volume results of this toolbox is ’seg8T1T2’.

Several parts of the code from different files of the toolbox have been mod-
ified in order that the calls among functions works well with the new variables,
paths and filenames. However, the most important modifications from the orig-
inal toolbox can be found in the following files:

• tbx cfg preproc8T1T2.m: Configuration file that is modified conveniently
to use the corresponding paths, the new help/comments hints, and the
modified filename extension for the results. It also launches the function
spm preproc runT1T2() with the corresponding parameters.

• spm preproc runT1T2.m: Function that loads the priors, creates the ini-
tial affine registration between input volumes and templates, launches the
function spm preproc8T1T2(), and eventually saves the results.

• spm preproc8T1T2.m: Function that does the segmentation itself (fitting
the model), where the modified expressions for the optimization of the
mixture parameters are included. The input and output variables of this
function are deeply explained in the Appendix C.

Therefore, the rest of this section about Matlab implementation will focus
on the file spm preproc8T1T2.m.
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First, the function spm preproc8T1T2() creates an xyz grid in order to
index the voxels of the volumes, c.f meshgrid() and ndgrid() Matlab functions.
For efficiency reasons, not all the voxels are used for segmentation; by default,
only one over three voxels is analyzed, obj.samp=3. Therefore, the 3D spatial
grid [x0, y0, z0] and the volume dimensions d0=size([x0, y0, z0]) are reduced by
this factor from the original values. This spatial down-sampling also modifies
the transformation matrices.

Figure 4.2: Transverse slices that
correspond to xy-slices indexed by
the z-coordinate.

As it was mentioned at the beginning
of this chapter, due to memory restric-
tions, only one xy-slice is analyzed at each
time. Therefore, for each z-coordinate,
one 2D-slice is loaded and partial statis-
tics are estimated. The assumption of in-
dependence among voxels allows to work
in this way, and aggregate the partial re-
sults of all the slices at the end. The data
for each slice is stored in an internal vari-
able buf. This variable corresponds to an
array of structs with z=d0(3) elements,
which number stands for the number of
total xy-slices to analyze.

The variable buf has the following fields for each value of z:

• buf(z).msk <d0(3)xd0(3)> Logical 2D-mask with a value of ’1’ for voxels
of this slice to analyze, and zero for the rest. This mask is a combination
of the input mask (optional) and an additional mask where zero, infinite
and NaN values are also discarded.

• buf(z).nm <1x1 double> Number of voxels inside of the mask for this
slice, i.e. Iz. If this number is zero, it is not needed to analize this slice.

• buf(z).f <1x2 cell> Masked input MRI data in the form presented in the
Equation 4.1 for Y. Each one of the two elements of the cell is an array of
intensity values <nmx1 single>. Therefore, the first and second elements
of the cell are YT1 and YT2. They are mapped into memory with the
function spm sample vol().

• buf(z).dat <nmxKb single> Tissue Probability Maps that are sampled for
the xy-slice of the z-coordinate. This variable stands for the term bi,k in
the Equation 4.12. There are Kb different tissue classes; thus, there also
Kb different prior templates.

• buf(z).bf <1x2 cell> Masked bias field for each modality, TT1 and TT2,
where each channel is an array <nmx1 single>. Therefore, the first ele-
ment of the cell is ρi,T1(β), and the second is ρi,T2(β).
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Afterwards, the starting estimates of the parameters for the mixture model -
γ,µ,Σ-, the prior registration -α- and the bias field correction -β- are calculated
with the original method. The new updating expressions for the mixture model
parameters have not been included to calculate the initial values in order to
ensure stability in the first iteration.

The actual estimation of the parameters starts from the line 380 (aprox.)
of the file spm prepoc8T1T2.m. It comprises a maximum of 12 iterations,
iter1=1:12, and each iteration has three blocks: estimation of cluster param-
eters, estimation of bias field parameters, and estimation of deformation param-
eters. For each iter1 iteration, the log-likelihood value is eventually calculated in
order to check the convergence. For this thesis, only the first block (estimation
of cluster parameters) is relevant because the rest do not suffer any modifica-
tion from the original method. This block runs iteratively 20 times, subit=1:20,
which means a maximum of 240 times in total. Each iteration comprises the
evaluations of the updating equations for the E-step and M-step with the newly
calculated values. The evaluation of these expressions is done for each xy-slice
individually, z=1:length(z0). To gather all the previously mentioned steps in a
clear form, the Algorithm 1 presents the main control flow of this program.

Algorithm 1 Control flow of the function spm prepoc8T1T2.m

create struct buz
estimate starting value of parameters
for iter1 = 1→ 12 do
estimate cluster parameters
for subit = 1→ 20 do

for z = 1→ length(z0) do
E − step
M − step

end for
end for
estimate bias field parameters
estimate deformation parameters
update loglikelihood

end for

The numbers of the lines for the presented Maltab code in the rest of this
section are approximately the real numbering of the files. However, small dif-
ferences can arise due to the inclusion/deletion of comments or the elimination
of test code in the release version of the code that is used just for debugging.
In addition, some parts of the code are re-arrange from the original method in
order to have a more clear structure, although the logical flow remains the same.
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4.3.1.1 E-step in Matlab

This step updates the value of the probability qi,k. The updating expressions
are the same than in the original method, but they are repeated here to justify
that they are also useful for the modified multispectral approach. The reason
to re-use the code is that the assumption of non-correlation among modalities
is not applied here, although it was assumed in the original article [3].

First, it is presented the internal function likelihoods(), which estimates the
value of an N -dimensional Gaussian function of parameters µ (mn) and Σ (vr)
with respect to the value ρi,n(β) · yi,n ( bf{n} * f{n} ). Besides, the result is
multiplied by the mixing coefficient γ (mg).

function p = likelihoods(f,bf,mg,mn,vr)
K = numel(mg);
N = numel(f);
M = numel(f{1});
cr = zeros(M,N);
for n=1:N,

cr(:,n) = double(f{n}(:)).∗double(bf{n}(:));
end
p = zeros(numel(f{1}),K);
for k=1:K,

amp = mg(k)/sqrt((2∗pi)^N ∗ det(vr(:,:,k)));
d = cr − repmat(mn(:,k)’,M,1);
p(:,k) = amp ∗ exp(−0.5∗ sum(d.∗(d/vr(:,:,k)),2));

end

After calling the function likelihoods() with appropriate parameters, the
result is multiplied by the registered priors bik(α), which are stored in the
temporal variable b. Therefore, the variable q contains the conditional prob-
ability P

(
Yi = yi, ci = k | θ

)
from the Equation 4.29 without the factor∑K

j=1 γj · bij(α). As this term appears in the numerator and denominator of
the expression to estiamte qi,k, it is not needed to be calculated because it will
vanish anyway. The final qi,k value is obtained from the Equation 4.28, where a
small value tiny has been added to the denominator in order to ensure stability.

390 q = likelihoods(buf(z).f,buf(z).bf,mg,mn,vr);
391 for k1=1:Kb,
392 b = double(buf(z).dat(:,k1));
393 for k=find(lkp==k1),
394 q(:,k) = q(:,k).∗b;
395 end
396 clear b
397 end
398 sq = sum(q,2);
399 for k=1:K,
400 q(:,k) = q(:,k)./(sq+tiny);
401 end
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4.3.1.2 M-step in Matlab

In this step, the central and non-central moments are calculated, then the
values of the original mixture parameters are estimated, and finally the modified
updating formulas of the mixture parameters are evaluated using the moments
and original mixture paramters previously estimated.

Central and non-central Moments in Matlab

The estimation of the moments starts with the calculation of the variable cr,
which is the equivalent of the intensity modulated by the bias field (P (β) · Y ),
i.e. cr(i, n) = ρi,n(β) · yi,n. In the line 407 of the following code, the variable
buf(z).f{n} is the masked intensity value for the z-slice in the nth-channel, and
the variable buf(z).bf{n} is the exponential of the masked bias field for the z-
slice in the nth-channel. With this variables is finally obtained the non-central
moments of zero, first and second order.

Afterwards, the mean value is removed from the intensity values of the
variable cr and stored in the variable crc, i.e. crc(i, n) = ρi,n(β) · yi,n−µk,n, in
order to obtain the central moments of first and second order.

405 cr = zeros(size(q,1),N);
406 for n=1:N,
407 cr(:,n) = double(buf(z).f{n}.∗buf(z).bf{n});
408 end
409 for k=1:K,
410 % Non−central moments
411 mom0(k) = mom0(k) + sum(q(:,k));
412 mom1(:,k) = mom1(:,k) + (q(:,k)’∗cr)’;
413 mom2(:,:,k) = mom2(:,:,k) + (repmat(q(:,k),1,N).∗cr)’∗cr;
414 % Central moments
415 crc = cr − repmat(mn(:,k)’,size(q,1),1);
416 mom1c(:,k) = mom1c(:,k) + (q(:,k)’∗crc)’;
417 mom2c(:,:,k) = mom2c(:,:,k) + (repmat(q(:,k),1,N).∗crc)’∗crc;
418 end

It must be highlighted that the computation and the variables cr, mom0(k),
mom1(:, k), and mom2(:, :, k) was already implemented in the original method,
thus this part of the code is not genuine. They are reproduced here for a
clear visualization of the environment needed to calculated the central moments,
which implementation is genuine. In order to check that the equations of the
central moments and their Matlab implementation is correct, they are estimated
in other ways to check their validity. The other different approaches and the
results are presented in the Appendix B.4.
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Original mixture parameters in Matlab

Once the moments are estimated, the updating formulas of the original
method are evaluated. The equations are implemented in a matrix form and
stored in the variables mgX, mnX and vrX, which corresponds to the mixing
coefficient, mean vector and covariance matrix, respectively.

430 %%%%%%%%%%%%%%%%%%% Original Equations %%%%%%%%%%%%%%%%%%%%%%
431

432 % −−−−−−−−−−−−−−−−−− Mixing coefficient −−−−−−−−−−−−−−−−−−−−−
433 tmp = mom0(lkp==lkp(k));
434 mgX(k) = (mom0(k)+tiny)/sum(tmp+tiny);
435

436 % −−−−−−−−−−−−−−−−−−−−−−−− Mean −−−−−−−−−−−−−−−−−−−−−−−−−−−−−
437 mnX(:,k) = mom1(:,k)/(mom0(k)+tiny);
438

439 % −−−−−−−−−−−−−−−−−−−−−−− Variance −−−−−−−−−−−−−−−−−−−−−−−−−−
440 vrX(:,:,k) = (mom2(:,:,k) − ...
441 mom1(:,k)∗mom1(:,k)’/mom0(k))/(mom0(k)+tiny) + vr0;

In the previous code, the term tpm stands for

(
bik(α)∑K

j=1
γj ·bij(α)

)
.

The Equation 4.33 gives value for the mixture coefficient, while the Equa-
tions 4.37 and 4.38 give value for the two elements of the mean vector. However,
the variance is calculated with the Equation 4.54, in contrast to the previously
presented Equations 4.44 and 4.45. The main difference among them is that the
equation presented here is defined in terms of the non-central moments, and the
others are presented in terms of the central moments.

(
σ̇2
k,m

)(n) =
∑I
i=1 qi,k (ρi,m(β) · yi,m)2 − µk,m

∑I
i=1 qi,k (ρi,m(β) · yi,m)∑I

i=1 qi,k
(4.54)

Besides, in the original implementation of the variance, it is used the value
of the mean from the current iteration, (µk)(n). Although, this implementation
seems to work for the original method, some instability problems arose during
the implementation of the modified method that were solved by adding after-
wards two additional lines. These two lines over-write the values of the variances
for an expression in terms of the central moments, where the mean corresponds
to the previous iteration, (µk)(n−1).

445 % For estability
446 vrX(1,1,k) = mom2c(1,1,k)/(mom0(k)+tiny);
447 vrX(2,2,k) = mom2c(2,2,k)/(mom0(k)+tiny);
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Modified mixture parameters in Matlab

The next step is to update the previous values of the mixture parameters
with the formulas of the modified method. For each parameter, it is estimated its
coefficient and then the final value is calculated as a combination of the original
value and this coefficient. As a reminder, the original values were calculated
with the the original method, except for the case of the variances.

450 %%%%%%%%%%%%%%%%%%% Modified Equations %%%%%%%%%%%%%%%%%%%%%%
451 % −−−−−−−−−−−−−−−−−− Mixing coefficient −−−−−−−−−−−−−−−−−−−−−
452 mg(k) = mgX(k);
453

454 % −−−−−−−−−−−−−−−−−−−−−−−− Mean −−−−−−−−−−−−−−−−−−−−−−−−−−−−−
455 coefm1 = −mom1c(2,k);
456 coefm2 = −mom1c(1,k);
457 mn(1,k) = mnX(1,k) ...
458 + (ovr(1,2,k)∗coefm1)/(ovr(2,2,k)∗mom0(k)+tiny);
459 mn(2,k) = mnX(2,k) ...
460 + (ovr(1,2,k)∗coefm2)/(ovr(1,1,k)∗mom0(k)+tiny);
461

462 % −−−−−−−−−−−−−−−−−−−−−− Covariance −−−−−−−−−−−−−−−−−−−−−−−−−
463 % >> Variance
464 coefs1 = ovr(1,2,k)∗mom0(k) ...
465 + (ovr(1,2,k)/(ovr(2,2,k)+tiny))∗mom2c(2,2,k) ...
466 − 2∗mom2c(1,2,k);
467 coefs2 = ovr(1,2,k)∗mom0(k) ...
468 + (ovr(1,2,k)/(ovr(1,1,k)+tiny))∗mom2c(1,1,k) ...
469 − 2∗mom2c(1,2,k);
470 vr(1,1,k) = vrX(1,1,k) ...
471 + (ovr(1,2,k)∗coefs1)/(ovr(2,2,k)∗mom0(k)+tiny);
472 vr(2,2,k) = vrX(2,2,k) ...
473 + (ovr(1,2,k)∗coefs2)/(ovr(1,1,k)∗mom0(k)+tiny);

The expression of the mixture value is the same than in the original method.
The values of the coefficients are estimated with the Equations 4.50 and 4.51 for
the mean, while the Equations 4.52 and 4.52 are used for the variances. Finally,
the values µk,T1, µk,T2, σ2

k,T1 and σ2
k,T2 are updated with the Equations 4.35,

4.36, 4.42 and 4.43, respectively.

In this implementation, it is used the term ovr, which stands for the previous
value of the covariance matrix, i.e. ovr(n) = vr(n−1), in order to ensure stability.
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Cross Variance in Matlab

The estimation of the cross-variance σk,T1T2 is quite different respect to
the previous parameters, because there is not an unique closed-form expression.
Its value is obtained from solving a 3th degree equation with real coefficients,
which has at least one real solution, x ∈ R [50]. In this case, the solution can be
positive or negative, as the cross-variance can have both signs. An example of
a cubic function in presented in the Figure 4.3, where it can be seen the three
zero-crossings that corresponds to each one of the three solutions.

Figure 4.3: Plot of a 3th degree equation
with three zero-crossings, which implies
three solutions to the equation.

To solve this cubic function, it
can be used a closed-form approach
with one expression for each solution,
or it can be solved by looking for the
roots of the equation. Both meth-
ods are presented in the Appendix B.5
with a test code to compare them.
However, the latter needs a starting
point that must be chosen carefully in
order to be able to find the three so-
lutions in a significant short time. In
addition, the former approach is more
precise and 40 times faster. There-
fore, it is chosen to look for the solu-
tions of the cubic equation with the
closed-form equations.

As it was stated in the Section 4.1.3, the covariance matrix is positive-
definite, x′Σkx > 0, ∀x ∈ Rn. Therefore, for the 2-dimensional case, it must
satisfy σ2

T1 · σ2
T2 > σ2

T1T2. In addition, the cross-variance must be real valued,
i.e. σT1T2 ∈ R. Hence, the criterion to select which one of the three solutions
is valid will be based on the previous two restrictions. In addition, due to the
finite numerical precision of Matlab, it is allowed a small margin of error, which
is namely tiny = 4.9304 ·10−032 for the first restriction, and 10−4 for the second.

Finally, in case that none of the solutions satisfy the criteria, the original
cross-variance value is chosen in order to ensure the stability of the method.
However, it has been empirically probed with the available dataset that this
point is never reached.
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The Algorithm 2 presents the logic flow of this part.

Algorithm 2 Algorithm to estimate the adequate cross-variance value

sol← get(sol1)
if
(
σ2
T1 · σ2

T2 − sol2 < tiny
)
OR

(
abs(imag(sol) > 10−4) then

sol← get(sol2)
if
(
σ2
T1 · σ2

T2 − sol2 < tiny
)
OR

(
abs(imag(sol) > 10−4) then

sol← get(sol3)
if
(
σ2
T1 · σ2

T2 − sol2 < tiny
)
OR

(
abs(imag(sol) > 10−4) then

sol← get(solOriginal)
end if

end if
end if
sol← real(sol)

The solution of the equation y = coef3ẋ3 + coef2ẋ2 + coef1ẋ + coef0 is
implemented in the following code, and corresponds to the previous algorithm.

475 % >> Cross−variance
476

477 % Coefficients
478 coef3 = mom0(k);
479 coef2 = −mom2c(1,2,k);
480 coef1 = −ovr(1,1,k)∗ovr(2,2,k)∗mom0(k) ...
481 +ovr(2,2,k)∗mom2c(1,1,k) + ovr(1,1,k)∗mom2c(2,2,k);
482 coef0 = −ovr(1,1,k)∗ovr(2,2,k)∗mom2c(1,2,k);
483

484 % Look for the correct solution
485 x = solution3th(coef3,coef2,coef1,coef0,1);
486 if ((vr(1,1,k)∗vr(2,2,k)−x^2)<tiny) || (abs(imag(x))>1e−4)
487 x = solution3th(coef3,coef2,coef1,coef0,2);
488 if (vr(1,1,k)∗vr(2,2,k)−x^2)<tiny || (abs(imag(x))>1e−4)
489 x = solution3th(coef3,coef2,coef1,coef0,3);
490 if (vr(1,1,k)∗vr(2,2,k)−x^2)<tiny || (abs(imag(x))>1e−4)
491 x = vrX(1,2,k);
492 end
493 end
494 end
495

496 % Give values
497 vr(1,2,k) = real(x);
498 vr(2,1,k) = vr(1,2,k);
499

500 % Ensure estability
501 vr(:,:,k) = vr(:,:,k) + vr0;
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In the previous code, it is used a Matlab function that returns one of the
three possible solutions of the cubic equation with coefficients coef3, coef2, coef1
and coef0. It corresponds to solution3th(coef3,coef2,coef1,coef0,opt), where opt
is an index to select one of the three possible solutions, opt ∈ {1, 2, 3}.

In the last line of code, a term vr0 is added to the covariance matrix in
order to ensure stability. By default, the interpolation method is NN, which
implies that the term is estimated as in the presented code, where pinfo(1,1)
satisfies that intensity = voxelvalue · pinfo(1) + pinfo(2).

480 vr0(n,n) = 0.083∗V(n).pinfo(1,1);

Stopping criterion

In each iteration, the log-likelihood value is estimated in the variable ll in
order to check how well fitted is the model with the current value of the param-
eters. It is calculated as a combination of the log-likelihoods from the mixture
parameters (llm), the registration parameters (llr), and the bias field parame-
ters (llrb). The approximate equations to obtain these values are presented in
the following code. In the case of the mixture log-likelihood, the variable sq
was previously calculated in the E-step, and it is also added a small vale tiny in
order to avoid instability when the argument of the logarithm is small.

llm = sum(log(sq + tiny));
llr=−.5∗sum(sum(sum(sum(Twarp1.∗optimNn(’vel2mom’,Twarp1,prm,scal)))));
llrb = chan(n1).ll;
ll = llm + llr + llrb;

The method establishes a stopping criterion to stop the simulation or to
change the step size of the LM optimization. Therefore, the likelihood difference
between two iterations must be bigger than tol1 = 1e−4. The Figure 4.4 presents
the correspondence between the likelihood and the log-likelihood.

Figure 4.4: Log-likelihood function.
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4.3.2 Modifications

The previously presented method and implementation has, at least, two
points that can be modified, namely:

• Starting values: The optimization is done locally, it is hence important
to start with good values in order to avoid the convergence to a local mini-
mum. The initialization of the moments and mixture parameters happens
before the main loop, as it was presented in the Algorithm 1. In the orig-
inal method, the updating equations are slightly changed in order to use
them in the initialization step. In this modified method, it is used the same
initialization equations than in the original method; however, another set
of equations can be derived from the updating equations of the modified
method. Therefore, one option is to use the initialization equations from
the original method, and the other option is to create other initialization
equations based on the modified method. In case of the second option and
without further knowledge, the same updating equations of the modified
method can be used for the initialization process.

• Updating values: The presented equations use the results from the pre-
vious iteration to update the parameter values. However, in the original
method, the most-updated values of the current iteration are used to up-
date the rest of parameters. An alternative implementation of the modified
method can try to speed up the value propagation without incurring in
instability problems.

Therefore, the combination of the two points generates four different ver-
sions of the modified algorithm. It must be highlighted that all these versions
use the modified updating equations that include correlation among modalities.

• The version 1 updates the parameters with the results of the previous it-
eration and the initialization equations correspond to the original method.

• The version 2 also uses just the values from the previous iteration, but
in the initialization step, it is used the modified updating equations.

• The version 3 updates the parameters with the most updated values of
the current iteration and uses the initialization of the original method.

• Finally, the version 4 updates the values with the most recently updated
parameters, but uses the updating equations of the modified method for
the initialization step.

All these combination will be analyzed in the next section in order to check
their performance. In the Appendices, it is included the relevant parts of code
for the original method (Appendix C.2), the modified method (Appendix C.3),
and the modified method with faster value propagation (Appendix C.4).



Chapter 5

Validation

This chapter presents the segmentation of several brain volumes done by
the modified method in comparison with the original method (’New Segmenta-
tion’) and the original baseline (SPM5+VBM5). The analyzed results comprise
the log-likelihood values, the mixture parameters and the generated probability
maps for each tissue class.

First, the Outputs section presents the variables and volumes that are gen-
erated during the segmentation. Besides, it is included a description of several
ways to interpret the generated tissue probability maps after the segmentation.
A brief discussion about the different approaches to address the performance of
the MRI brain segmentation methods is included in the section Golden Stan-
dard, where a special emphasis is placed in the choice of the ground truth.

The segmentation has been done with default parameters by the original
(Seg), and the four versions of the modified method (SegT1T2). In the section
Brain f4395, the dataset comprises the brain volumes of the subject f4395,
while in the section BrainWeb phantoms, it has been used a set of brain
phantoms with different levels of noise. For the last dataset, the methods are
compared in terms of the Dice score.

Finally, the section CIMBI dataset presents an analysis of the tissue brain
volumes acquired at the DRCMR, where the volume age-profile is estimated.
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5.1 Outputs

The first section of this chapter presents a short description about the out-
puts of the segmentation method, and how the generated probability maps for
each tissue are analyzed. The main output variables are the mixture parame-
ters and the final likelihood value. The former ones determine the shape of the
clusters, and the latter indicates how well these parameters fit the MRI dataset
according to the generative model. The variables are:

• Mixing coefficient (mg): <Kx1 double> array with the final γ values.

• Mean (mn): <2xK double> 2D matrix with the final µ values.

• Covariance (vr): <2x2xK double> 3D matrix with the final Σ values.

• Log Likelihood (ll): <1x1 double> final log-likelihood value.

For example, in the Table 5.1, it is presented the values of the mixing coeffi-
cient for the subject f4395, where the version 1 of the modified method has been
applied with default parameters. As it was stated, the ’New Segmentation’ deals
in a different way with this factor, and they represent the contribution/propor-
tion of each cluster to the corresponding tissue class. In this case, the number
of clusters is K = 15 and the number of tissue classes is Kb = 6, where the
specific associations among them is done with the variable lkp.

Table 5.1: Results of the brain tissue segmentation for the brain scans from
the subject f4395 with T1 and T2 MR modalities. The applied algorithm is the
version 1 of the modified method with default parameters.

Class name GM WM CSF
Class number (lkp) 1 1 2 2 3 3
Mixing factor (mg) 0.700 0.300 0.718 0.282 0.506 0.494

Class name Bone ST
Class number (lkp) 4 4 4 5 5 5 5
Mixing factor (mg) 0.370 0.437 0.194 0.180 0.271 0.354 0.195

Class name BG
Class number (lkp) 6 6
Mixing factor (mg) 0.891 0.109

Therefore, the clusters (Gaussians) are grouped together into Kb tissue
classes with the previous weighting values. The order of the clusters is random
inside each tissue class, e.g. the GM intensities modeled by the first cluster can
correspond to the second cluster for other version of the method or to no-one,
which can make difficult and worthless to compare clusters one by one.
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An automatic segmentation method ideally associates each voxel to one, and
only one, of the classes. Therefore, it can be created a random variable C that
has values in the range of k, where k ∈ [1,Kb], and Kb stands for the number
of different tissue classes. Hence, for the i -voxel, the value of Ci indicates to
which class the voxel has been assigned. This idea is mathematically presented
in the Equation 5.1, where I stands for the total number of voxels. The array
expression corresponds to a 3D volume where all the voxels have been placed in
order along one dimension.

C = [C1, · · ·Ci, · · ·CI ]T1xI , Ci ∈ [1,Kb] (5.1)

Due to the applied Bayesian framework, the result is not a direct association
between voxels and tissues, as in the previous case. The method generates
one probability map for each tissue class. Therefore, the previous expression
is expanded by Kb rows, as presented in the Equation 5.2, where each row
corresponds to a different tissue class and the term Ci,k stands for the probability
of the ith-voxel belonging to the kth-class.



C1,1 · · · Ci,1 · · · CI,1
...

...
...

C1,k · · · Ci,k · · · CI,k
...

...
...

C1,Kb · · · Ci,Kb · · · CI,Kb



T

KbxI

(5.2)

The previous expression is a stochastic matrix, which must satisfy that the
sum over all the classes must be one for each voxel. The matrix elements cor-
respond to probability values in the range [0, 1], where high probabilities are
associated to high intensities in the images (white), and vice versa.

0 ≤ Ci,k ≤ 1 , ∀i, k and

Kb∑
k=1

Ci,k = 1 (5.3)

Each row of the Equation 5.2 is stored in a different file, where is resized
into a 3D matrix that must satisfy I = height×width×depth. For example, the
generated tissue probability maps for the subject f4395 are stored in the files:
’c1gf4395 mpr.nii’, ’c2gf4395 mpr.nii’, ’c3gf4395 mpr.nii’, ’c4gf4395 mpr.nii’,
and ’c5gf4395 mpr.nii’. These files correspond to the GM, WM, CSF, bone
and ST. The BG map is not directly stored, but it can be generated as one
minus the rest of volumes. In the Appendix E.3, some slices of these generated
probability maps are presented.
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For volume studies, where it is not needed to specify an unique class for each
voxel, it is assumed that each voxel is composed by several tissues. Therefore,
the total voxel volume is split up into different classes. The volume ratio of each
tissue corresponds to the associated value of the probability map, and the total
volume of each class is obtained by simple integration over each TPM. This
formulation deals better with the PVE that happens when a voxel is composed
by several tissues, thus the acquired intensity value is a combination of different
intensity patterns. However, in case it is needed to associate each voxel to one,
and only one, tissue class in order to apply validation tests, there are three ways
to generate a result like the Equation 5.1 from the TPM of the Equation 5.2.

• Thresholding : A threshold value is established, and the voxels with higher
probability than this value for one class are assigned to this tissue. For
example, in the ’New Segmentation’ method, it is suggested a threshold
of 0.5 [3]. In case of setting a threshold smaller than 0.5, there can be
situations where two tissues have higher probabilities than the threshold
for one voxel, which generates an ambiguity problem. In addition, with
a threshold of 0.5, it is considered with the same weight a voxel with
probability 0.95 than another with probability 0.55.

• Majority Voting : An additional criterion to solve the previous ambiguity
consists on associating to each voxel the tissue label of the TPM with
higher probability. It implies a brute force search through all the voxels
and maps. This approach solves some ambiguity problems, and it is con-
sidered the common way to deal with TPM. However, there are situation
where this method is not optimal. If the voxel lies in the interface between
two tissues with probabilities for GM, WM and CSF of {0.50, 0.45, 0.05};
the voxel is considered as GM, although a proportional classification of
GM and WM would be more fair. In another situation, with for example
the following probabilities {0.35, 0.25, 0.40}, the voxel is classified as CSF,
even though it is more likely to be a brain voxel.

• Majority Voting + neighbourhood information: An improvement of the
previous method includes information from neighboring voxels in order
to assign the class membership. For example, the segmentation library of
FSL [76] [90] includes an MRF model that shifts the probabilities to either
0 or 1 depending on the class of the closest voxels. Besides, the VBM8
toolbox includes a denoising filter based on Spatial Adaptive Non-Local
Means (SANLM).

The second option is the one applied in this thesis, and its effect on the
probability maps will be also analyzed in the following section.
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5.2 Golden Standard

In the MRI brain segmentation field, there is not voxel-wise golden standard
(ground truth). This lack of a reliable correspondence between tissue classes and
the acquired intensity value of each voxel makes difficult to compare the accuracy
and reproducibility of the algorithms [93]. There is an extent literature about
several validation methods that can be grouped into three main ways depending
on which reference is used [70].

• Ex-vivo manual segmentation: The histological biopsy of the brain
could be the ground truth, as it directly addresses the kind of tissue.
However, it is needed to associate the part of the body under the micro-
scope to the group of acquired voxels before or after the dead, which is a
laborious and hard task. Besides, it is obvious that the study can only be
done on dead people. One example of this kind of database corresponds
to the Visible Human Project [1].

• Image manual segmentation: Traditionally, the expert manual seg-
mentation through visual analysis of the acquired images has been con-
sidered the reference standard. However, the process is time consuming
and costly, as it is needed an import amount of time by well-trained pro-
fessionals to accomplish this task [72]. In addition, it introduces a high
intra-subject and inter-subject variability due to the personal subjectivity
[85], which can reach discrepancy rates higher than 20% for the simulated
data and higher than 24% for the real data sets [37]. Some databases
with manual segmentations are available at the Internet Brain Segmenta-
tion Repository of Massachusetts General Hospital. The data include 20
Normal Subjects scanned with T1-weighted MRI and expert segmentation
with three tissue labels, namely GM, WM and no-brain [54].

• Phantoms: The most used validation technique consists on simulating
MR images by an artificial physical or digital generative model. These data
can be used to evaluate the performance of neuroimaging methods with a
common and realistic known truth [48]. For example, BrainWeb from MNI
[55] provides a Simulated Brain Database (SBD). It consists on simulated
MRI data volumes for T1, T2 and Proton Density (PD) modalities. Two
anatomical models -normal and Multiple Sclerosis (MS)- are available,
as well as different slice thicknesses, noise levels, and bias field [14] [40].
Although, these phantoms can provide an accurate reference standard,
they do not reproduce in a realistic way all the range of different scenarios
in the clinical data [86].

The last option is the one selected for this thesis because it provides a
reliable ground truth. However, it is not possible to make a generalization of
the obtained results as the brain and scanning variability is not totally included.
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5.3 Brain f4395 - Visualization

Once the method is implemented, it is needed to validate its performance.
Therefore, it is checked that the result is what is expected to be. In this case,
the T1 and T2 MRI brain volumes of the subject f4395 are segmented by the
original and the four versions of the modified method.

The Seg and SegT1T2 toolboxes can be tuned up with a set of parameters,
which are equal for both of them. The selection of the exact value for each
parameter depends on the dataset, and it is a laborious task that is usually
done through an empirical exploration. Therefore, the default values are used
in this first approach as they seem reasonable, although they are not optimal. A
brief description of these parameters and the default values are presented here:

• Number of Gaussians: Number of clusters (Gaussians) that are associated
to each tissue class. Due to the used template dataset, the number of tissue
classes is 6. Default value: [1,1,2,2,3,3,4,4,4,5,5,5,5,6,6], which means 15
Gaussians where 2 clusters are for GM, 2 clusters for WM, 2 clusters for
CSF, 3 clusters for Bone, 4 clusters for ST, and 2 clusters for BG.

• Sampling distance: Distance between voxels for the volume spatial down-
sampling step. It introduces a trade-off between segmentation accuracy
and computation speed. Default value: 3.

• Bias regularization: constant that weights the regularization term asso-
ciated to the bias field correction in the cost function. In case of low
intensity non-uniformity, it should be also small. Default value: 0.0001
(very light regularization).

• Bias FWHM : Bias smoothness in terms of the FWHM value of the Gaus-
sian filter. It encodes the limit between intensity variations due to the bias
field (low frequency) and due to the different tissues (high frequency). De-
fault value: 60 mm.

• Warping regularization: constant that weights the warping regularization
term in the cost function. The larger the value, the higher the penalization
to large warping parameters. Default value: 4.

• Affine regularization: Initial registration between volumes and templates.
Default value: ’ICBM space template - European brains’.

Although, the image registration and bias field correction have not been
directly changed from the original method, these steps are also analyzed in
order to check that the modification of the mixture parameters equations does
not decrease their performance.
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5.3.1 Original data

The T1 and T2 MR images are scanned by a 3T scan with a final resolution
of ∼ 1mm isotropic voxels. They are recorded at the DRCMR [53] of Hvidovre
Hospital. The Figure 5.1 presents some slices of the original data from the
subject f4395, which is the one used in this section. More slices are presented
in the Appendix E.1.

Figure 5.1: Original MRI brain volumes of the subject f4395. The top row
contains the T1 modality, and the bottom row has the T2 modality. The planes
of each column correspond to coronal, sagittal and transverse.

In the T2 images, it can be seen that the back part of the head is placed
in front of the nose. This effect is due to the field shim, which is a magnetic
field inhomogeneity generated by the ferromagnetic coil. This perturbation in-
troduces errors in the circular k-space needed to reconstruct the image from
the Discrete Fourier Transform (DFT). In order to avoid this effect, the scanner
must be correctly calibrate before the scan in a process called shim correction,
which can be active or passive. This error reduces the performance of the prior
template regularization, as the structures differ.
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In the previous chapter, it was stated that both modalities must be aligned,
which implies that it is needed a previous step to register T1 and T2 in the
same space. This pre-processing step is done at the DRCMR, and the result
is presented in the Figure 5.2. In addition, the brain volumes are normalized
into the ICBM/MNI space. They can be compared with the phantoms of the
Figure 5.9, which are originally created in this space. The position, shape and
intensities look alike; therefore, the brain volumes seem correctly aligned and
normalized. This previous normalization of the images implies a soft wrapping
of the prior templates. Besides, it can be seen in this figure the effect of the
shim artefact after the registration.

Figure 5.2: Registered brain volumes of the subject f4395 in the ICBM/MNI
space. The top row contains the T1 modality, and the bottom row has the T2
modality. The planes correspond to coronal, sagittal and transverse.

These volumes are segmented with the original (Seg) and the four versions
of the modified method (SegT1T2) with default parameters. The main results
are presented in the following points.
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5.3.2 Convergence

First, it is analyzed the convergence of the methods in terms of the needed
number of iterations until the stopping criterion is satisfied. Besides, the log-
likelihood value is also analyzed, which measures how well the parameters fit the
generative model. The parameter set includes mixture, registration and bias-
field. For the different methods, the Table 5.2 collects the final log-likelihood
value and the number of iterations until convergence.

Table 5.2: Performance of the original (Seg toolbox) and the modified methods
(SegT1T2 toolbox) in the segmentation of the brain from the subject f4395 with
default parameters. The results are expressed in terms of the final log-likelihood
value and the number of iterations until convergence.

updating initialization log-likelihood #iterations
Original - - −1.8405 · 106 83
Modified (v.1) slow original −1.8446 · 106 130
Modified (v.2) slow modified −1.8426 · 106 123
Modified (v.3) fast original −1.8405 · 106 175
Modified (v.4) fast modified −1.8419 · 106 175

The original method fits slightly better the model parameters than most of
the modified versions. However, the differences are really small, and this value
does not show directly the quality of the real segmentation but gives an idea
about how well the method converges. On the other hand, one result that is
more evident is the number of iterations. The original method needed much less
number of iterations, which in practice implies a smaller computation time.

The fact that the modified methods need more iterations to converge implies
that the improvement in each iteration is smaller. As the stopping criterion is
based on the log-likelihood difference between two consecutive iterations, there
are more chances to stop the optimization before it reaches the optimal point
because the fitting process is too slow. Besides, it seems contradictory that the
modified versions with ’fast’ propagation (v.3 & v.4) needed more iterations than
the versions with ’slow’ propagation (v.1 & v.2). However, they finally achieved
a good fitting with even better log-likelihood values, which could imply a bad
initialization (far from the local minimum) but a good updating (proper cost-
function minimization).
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The Figure 5.3 presents the evolution of the log-likelihood values at each
iteration for the original (red line) and the modified methods (blue or black
lines). The blue color corresponds to the modified versions with ’slow’ value
propagation (v.1 & v.2), while the ’fast’ propagation versions are in black (v.3
& v.4). The solid lines represent the versions with original starting equations
(v.1 & v.3), while the dotted ones are associated to the versions that apply
modified equations also for the parameter initialization (v.2 & v.4).

Figure 5.3: Log-likelihood value at each iteration for the original method (Seg
toolbox), and the four versions of the modified method (SegT1T2 toolbox). The
red line corresponds to the original method. The blue color corresponds to the
modified versions with ’slow’ value propagation, while the ’fast’ propagation
versions are in black. The solid lines represent the versions with original start-
ing equations, while the dotted ones are associated to the versions that apply
modified equations also for the parameter initialization.

The first 15/20 iterations correspond to the initialization step, which implies
much worse log-likelihood values. If the initialization equations cannot improve
further the log-likelihood value, the method starts using the updating equations.
This criterion makes that each method finishes the initialization at different
epoch, which can be seen in the plot as a jump. The version 2 (dotted blue line)
is the fastest in the beginning, but then it has problems in the last iterations to
minimize the cost function. The initialization step (iterations 1-20) for versions
3 and 4 places them in a worse starting situation, although they have a stable
evolution that reaches a good fitting in the end. The versions with modified
initialization equations (dotted lines) are slightly faster than with the original
initialization equations (solid lines) in all the cases. Although the version 3 of
the modified method is slow, the final fitting is very good; therefore, the rest of
this section will show the results for this method.
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5.3.3 Mixture Parameters

The segmentation algorithm is based on the GMM, where each cluster
(Gaussian) is parameterized by the mixture parameters. In the Table 5.3, it
is gathered the final estimated values for the original and the version 3 of the
modified method, which is presented with (*). In addition, in the Appendix
D.1, it is presented the evolution of the mixture parameters at each iteration
for the original and all the modified methods.

Table 5.3: Values of the mixture parameters after the segmentation of the MRI
brain scans from the subject f4395. The applied segmentation algorithms in-
clude the original and the version 3 of the modified method (*).

Class name GM WM CSF
Class number (lkp) 1 1 2 2 3 3
Mixing factor (mg) 0.7041 0.2959 0.5147 0.4853 0.6665 0.3335
Mixing factor (mg)* 0.6891 0.3109 0.6190 0.3810 0.6699 0.3301
Mean T1 (µT1) 328.27 276.58 393.75 417.09 215.78 141.09
Mean T1 (µT1)* 402.24 347.19 485.31 509.57 264.54 173.48
Mean T2 (µT2) 180.65 248.59 148.87 137.55 253.76 411.49
Mean T2 (µT2)* 310.88 415.01 252.79 232.38 460.47 715.15
Variance T1 (σT1) 662 3226 518 154 2848 400
Variance T1 (σT1)* 976 4739 774 192 4280 604
Variance T2 (σT2) 399 2733 392 117 10725 1109
Variance T2 (σT2)* 1171 7247 1011 261 29565 3538
Covariance (σT1T2) -217 -1630 -116 -57 -1394 -159
Covariance (σT1T2)* -393 -3130 -238 -90 -2379 -319

As it was previously stated, the order of the clusters inside each tissue class
is random. In addition, one cluster for one method can model the intensities
associated to several clusters by other method. Therefore, it cannot be directly
done a comparison one by one. The level of intensity inhomogeneity correction
also affects these cluster parameters, and this discrepancy of values between
original and modified method is due to this effect.

It is seen that all the presented tissues have a negative covariance, which
implies that larger T1 intensity values are associated with smaller T2 intensity
values, as it is explained with more details in the Appendix B.1. This result is
something expected, and it was previously commented in the Section A.2, where
the properties of the MRI scan were presented.
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In the Figure 5.4, it is presented a zoomed representation of the clusters
done by the original method and the version 3 of the modified method. The
Gaussians are parameterized by the values of the Table 5.3. Besides, in the
Appendix D.2, it can be found the zoomed out representation with all the tissue
classes done by the four modified methods. In the presented figure, it can be
seen that the patterns for GM and WM are similar, although the position and
variances are bigger for the modified method. As it was previously explained, the
main reason to this effect is the different bias field correction, which is stronger
for the modified method. In both methods, the clusters of GM and WM are
not greatly overlapped. However, the ST class overlaps them, which can only
be corrected by the spatial information from the prior templates. Finally, the
CSF has a big overlap over GM, as it was expected due to their similar intensity
patterns. The large clusters (high variance) indicates that the method does not
gain any information from them, thus they could be removed.

Figure 5.4: Zoom of the cluster representation done by the original and the
version 3 of the modified method. The lines correspond to the contour of the
Gaussians cut at FWHM, and weighted by the mixing coefficient. The contours
of the clusters done by the original method are presented with dotted lines,
the centers with the symbol *, and the text labels in red. The version 3 of
the modified method presents the contours with solid lines, the center with
the symbol +, and the text labels in blue. The depicted tissues comprise GM
(black), WM (blue), CSF (green), ST (red), bone (yellow), and BG (magenta).
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5.3.4 Bias Field Correction overview

In this point, it is analyzed the correction of the slow intensity inhomo-
geneities. Each modality is affected by a different perturbation pattern, there-
fore the bias field is modeled independently for T1 and T2.

The Figure 5.5 presents the results for the version 3 of the modified method
with default parameters on the brain f4395. The six columns correspond to the
three planes (coronal, sagittal and transverse) for T1 and T2 modalities. The
top row contains the original volumes, and the middle row presents the volumes
after the intensity inhomogeneity correction. Finally, the bottom row represents
the estimated bias field. In this figure, the images have been intensity scaled
and re-sized for visualization reasons.

In the figure, it can be seen two examples of how the bias field modulates the
intensity. The left-most circle presents an area of the brain than it was acquired
darker than it should be, while the right-most circle presents the opposite. In
addition, it can be seen how the central WM of the T2 volumes is corrected to be
more white. This increase in the brightness of the volumes could be the reason
why the mean and variances are much higher than in the modified method.

Figure 5.5: Bias Field correction for both T1 and T2 modalities. The top row
contains the original volumes for T1 and T2 in the three planes. The middle
row presents the volumes after the intensity inhomogeneity correction, and the
bottom row represents the estimated bias field.
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The Figure 5.6 presents the intensity histogram of the volumes before and
after the bias field correction for both modalities and methods. The presentation
is zoomed into the brain voxel intensities, and the big peak of dark intensities,
which correspond to BG voxels, is cropped. After the correction, the expected
Gaussian for each tissue appear more narrow and with less overlap among them.
Thus, it is easier to split them up. In addition, the intensity distributions are
more smooth and spread afterwards.

It can be seen that the modified method applies a stronger non-homogeneity
correction that shifts all the intensities to higher values (more bright). This effect
explains why the obtained cluster parameters have much higher mean, variance
and covariance values for the original method. Besides, there are more voxels
that are shifted from intensities of BG to intensities of brain tissues, which makes
that the number of brain voxels increases.

(a) Histogram of T1 inten-
sity, raw volume.

(b) Histogram of T1 inten-
sity after bias field correc-
tion by the original method.

(c) Histogram of T1 inten-
sity after bias field correc-
tion by the v.3 method.

(d) Histogram of T2 inten-
sity, raw volume.

(e) Histogram of T2 inten-
sity after bias field correc-
tion by the original method.

(f) Histogram of T2 inten-
sity after bias field correc-
tion by the v.3 method.

Figure 5.6: Effect of the bias field correction in terms of the intensity histogram.
The results corresponds to the segmentation of the T1 and T2 MRI scans from
the subject f4395 done by the original and the version 3 of the modified method.
The units of the y-axis correspond to the number of voxels, and the units of the
x-axis are the intensity values. All the histograms are built with 300 bins of the
same size.



5.3 Brain f4395 - Visualization 101

5.3.5 Segmentation overview

Brain extraction: The ’New Segmentation’ method includes an extended
set of templates with additional no-brain tissues in order to characterize better
Bone and ST voxels. The proposed modification takes advantage of it, and
also includes these extra tissue classes that helps in the scalp stripping process.
The results of the Figure 5.7 shows a good performance, although some isolated
voxels that are classified as brain are out of the cranium volume.

Tissue segmentation: In the Figure 5.7, it is presented the central slices
of the obtained probability maps for GM, WM and CSF. The segmentation is
done by the version 3 of the modified method with defaults parameters. From
the presented figures, it can be seen that the result of the process seems right,
although it is not yet possible to determine the quality. In the Appendix E.3,
it can be found more slices of these generated volumes. The bottom row of this
figure depicts an overlapped representation of the generated TPM. It is hardly
see any important overlap among tissues, which implies that the probability
values are close to one or zero.

Comparison with baseline: The segmentation result for the modified v.3
method can be compared with the original segmentation baseline, i.e. SPM5 +
VBM5. The segmentation for the subject f4395 done by the original baseline
was presented in the Figure 1.4 and 2.7, and the segmentation for the v.3 method
is presented in the Figure 5.7. For a clear visualization of the comparison, the
Figure 5.8 presents the overlap of tissue volumes between the original baseline
(red) and the modified v.3 method (green). The former detects more GM voxels
in the occipital lobe, in the lower part of the brain stem, and in the utter part
of the parietal lobe. However, the latter method finds in general more GM
voxels in the brain, which are classified as CSF by the original baseline. The
version 3 of the modified method finds more WM voxels in the brain stem,
cerebellum and inner part of the occipital lobe. Although it cannot be seen in
this plot, the v.3 method classifies correctly the right eye muscle as ST, instead
of as CSF like the original baseline does. The spinal cord is more expected
to be WM, as a continuation of the brain stem; however, the original baseline
classifies it as GM. The segmentation of the cerebellum is hard, because the
cortex has less than 1mm of width, smaller than the voxel resolution; therefore,
PVE problems arise. However, without a ground truth segmentation is not
possible to estimate objectively the quality differences between both methods,
although some segmentation errors were solved by the modified method.

Apart from the visual inspection of volumes and parameters done in this
section, the next section addresses the quality of the modified method with a
more objective approach.
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Figure 5.7: Probability and overlapped segmented tissues of MRI data from
subject f4395. The first three rows correspond to GM, WM and CSF, respec-
tively. The bottom row is a representation of the overlapped tissues for GM
(red), WM (green) and CSF (blue). The color of each pixel is an RGB combi-
nation weighted by the associated tissue probability. The images correspond to
the coronal, sagittal and transverse planes of the central brain slices.
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Figure 5.8: Overlapped probability maps generated by the original baseline
(SPM5 + VBM5) and the version 3 of the modified method for the MRI scans
from subject f4395. The rows correspond to GM, WM and CSF, respectively.
The color of each pixel is an RGB combination between the probabilities from
the original baseline (red) and the modified v.3 method (green). The images
correspond to the coronal, sagittal and transverse planes of the central brain
slices.
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5.4 BrainWeb phantoms - Dice Score

In the previous section, it was analyzed the results of the segmentation in a
general way, i.e. visualizing the log-likelihood value, the mixture parameters and
the generated probability maps. In this section, it is studied the segmentation
quality of the modified methods with respect to the original method. In order
to compare automatic segmentation methods, it is used a set of MRI brain
volumes where the ground truth is previously known. These data correspond to
the BrainWeb phantoms [55], which belongs to the Simulated Brain Database
(SBD) done by the McConnell Brain Imaging Centre (BIC) of the Montreal
Neurological Institute (MNI) [12] [13] [39] [40].

In this case, it is used volumes from the Normal anatomical model with
dimensions 181 × 217 × 181 and 1mm isotropic resolution. The T1 and T2
modalities are used with different noise levels: 3% and 9%, which are calculated
from the brightest tissue. The level of intensity non-uniformity is fixed to 20%.
There is the possibility to set this paramter to 0% or 40%. However, it is not
the goal of this thesis to analyze in details the bias field correction; thus, a single
middle value of perturbation level is chosen. In addition, if this value is set to
zero, the default parameters of the toolbox must be changed because the method
expects some level of bias field distortion, i.e. if there is not smooth intensity
non-homengeity in the scans, the method will try to fit it anyway (unless other
parameters are used), which will generate errors.

The Figure 5.9 and 5.10 depicts some slices of the BrainWeb phantoms for
the two levels of noise. It can be seen that there are some artifacts above the
head that will challenge the segmentation. These slices can be compared with
the brain volumes from the subject f4395, and it can be seen that the phantoms
are quite realistic brain MR images, although it is hard to say how well they
describe the reality.

In this section, the BrainWeb phantoms are segmented by six methods in
order to study their different performance, and all of them are executed with
default parameters. The analyzed methods comprise:

• Original method (Seg) with just T1 modality.

• Original method (Seg) with T1 and T2 modalities.

• Modified method (SegT1T2), version1, with T1 and T2 modalities.

• Modified method (SegT1T2), version2, with T1 and T2 modalities.

• Modified method (SegT1T2), version3, with T1 and T2 modalities.

• Modified method (SegT1T2), version4, with T1 and T2 modalities.
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Figure 5.9: BrainWeb phantoms for T1 and T2 modalities with 3% level of noise
and 20% of intensity non-uniformity level.

Figure 5.10: BrainWeb phantoms for T1 and T2 modalities with 9% level of noise
and 20% of intensity non-uniformity level.
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The original tissue classes for each voxel of the simulated MRI data are
available in a set of probaility maps called atlas. Hence, it is possible to com-
pare the results of the different segmentation methods with respect to a ground
truth. The chosen metric to evaluate the performance corresponds to the Dice
Similarity Coefficient (DSC) [18] [92]. This coefficient is widely used in the
quality evaluation of segmentation algorithms [67] [68] [82]. The generated re-
sult is a number between 0 and 1 for each label (tissue class), where the per-
fect segmentation gives a value of 1, and the random classification gives values
around 0.5. This coefficient is related to the Jaccard index with the expression:
J = D/(2 − D). The DSC is a measurement of the similarity (overlapping)
between two groups (volumes), and it does not give further information about
which is the source of errors in the segmentation, either type I or II.

In the Equation 5.4, it is presented the expression to obtain the Dice Co-
efficient for the tissue class k. The variables Ak and Bk represent two groups
of voxels. The former includes the voxels that are classified as the kth-class
by the method A, and the latter includes voxels classified as the kth-class by
the method B. The symbol ∩ stands for the intersection of two groups and
|.| for cardinality, Therefore, the expression |Ak ∩Bk| refers to the numbers of
voxels classified as the kth-class by both methods at the same voxels. In the
second term of this equation, the Dice Coefficient is presented in terms of the
confusion matrix elements, i.e. True Positive (TP), True Negative (TN), False
Positive (FP) and False Negative (FN). These values are obtained after applying
majority voting (or thresholding) to the TPM’s generated by each method.

Dicek = 2 |Ak ∩Bk|
|Ak|+ |Bk|

= 2 TPk
(TPk + FPk) + (TPk + FNk) (5.4)

In this case, the group A is obtained from the segmentation done by any of
the automatic algorithms, and the group B includes the true labels for each voxel
(atlas). Therefore, for each class and each dataset, six DSC values are obtained,
which correspond to the 2 original methods and the 4 modified methods. As
it was previously stated, two datasets are used with two different noise levels.
Finally, the tissues are grouped into 6 classes, which are GM, WM, CSF, Bone-
ST, BG and total.
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Once the TPM’s are obtained with the segmentation methods, they are
converted into binary maps, i.e. [0, 1] → {0, 1}. These maps have either one
or zero values, which represents tissue or not at each voxel. In this case, the
Majority Voting technique is applied. The process can be seen in the Figure
5.11 for the sagittal plane of the GM tissue maps. The slices of the middle
column have a noise reduction with respect to the first column. Besides, the
last column presents the probability change at each voxel with the overlapping
of the two previous columns, where yellow voxels indicate almost not change of
probability, red voxels show a decrease, and green voxels an increase. In the
case of the atlas, there are more probability changes (red/green voxels) after
Majority Voting than for the segmentation methods. This fact implies that the
generated TPM’s have values closer to either 1 or 0, which could imply problems
to deal with PVE. In the Appendix D.4, all the results are presented.

Figure 5.11: Majority Voting process for the original and modified v.3 segmen-
tation method. It is depicted the sagittal plane of the GM tissue maps. The
dataset correspond to the BrainWeb phantoms for T1 and T2 modalities with
3% level of noise and 20% of intensity non-uniformity level. The overlapped rep-
resentation in the last column depicts in yellow the voxels that barely changed
their values, in red the voxels that are not finally classified as tissue although
thay had a high probability value, and in green the voxels that are eventually
labelled as the tissue class without a high probability value.



108 Validation

After the segmentation and the majority voting process, the binary tissue
maps are voxel-wise compared to the atlases with the true tissue labels. This
comparison produces the confusion matrix values (TP, TN, FP and FN) that
are combined to generate the final DSC for each class and method.

The Figure 5.12 shows the performance of the segmentation methods in
terms of the Dice score for the BrainWeb phantoms with noise level of 3% and
9%. Each colour corresponds to a different tissue class, namely GM, WM, CSF,
Bone-ST, BG and total. And for each class, the results of the six methods are
presented in the same order. The complete data of the results is included in the
Appendix D.3, where three tables are presented with the results for 0%, 3% and
9% of noise level when applying majority voting and thresholding with values
0.7 and 0.9.

Figure 5.12: Comparison of six segmentation methods in terms of the Dice score
after applying majority voting on the probability maps. The methods includes:
original method with T1, original method with T1 and T2, modified method
(ver.1) with T1 and T2, modified method (ver.2) with T1 and T2, modified
method (ver.3) with T1 and T2, and modified method (ver.4) with T1 and T2.
The segmentation is analyzed for the labels: GM, WM, CSF, Bone-ST, BG and
total. The two dots for each type are associated with the BrainWeb phantoms
with 3% and 9% of noise level.
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Noise analysis: In all the cases, the results with 9% of noise give worse
performance (smaller Dice coefficient value) than for a level of 3%. This result
is expected becasue the visual inspection of the Figures 5.9 and 5.10 already
showed the strong quality degradation in the volumes when the noise level is
high. The uni-modal original method is less robust and scores much worse with
important levels of noise. Besides, the versions 3 and 4 are very stable in the
detection of ST, Bone and BG, where they show good results even on noisy
scans. The results for the last class is not too much representative because it is
biased by the results of the BG, which is the class with the biggest number of
voxels.

Multispectral analysis: The comparison between the original method
with one (T1) or two modalities (T1-T2) shows that the multispectral approach
achieves better results for the segmentation of all the classes, specially in the
classification of CSF voxels.

Modified methods analysis: The version 1 of the modified method scores
just better than the rest in the detection of CSF with low level of noise, while
the version 2 scores worse than all the multispectral methods for all the cases.
The version 3 and 4 of the modified method have similar results than the mul-
tispectral original method, except in the case of CSF where the version 3 scores
much better. As it was seen in the cluster representation of the Figure 5.4,
there is an important overlap between GM and CSF intensities; thus, a better
classification of the latter will improve the classification of the former. However,
in practice the modified v.3 scores just slightly better than the original in the
detection of GM.

As a compendium of the previous results, it can be stated that the modified
v.3 presents a Dice score slightly higher than the original method for all the
classes. Besides, in the case of CSF, the performance is much better; and in the
case of non-brain tissues, the method is very stable. Therefore, it can be stated
that the version 3 is the final version of the modified method, which is
slightly more accurate and robust than the original multispectral method.

The final part of this section compares visually the version 3 of the modified
method with the original method in order to analyze from where the improve-
ments come. Namely, it is presented one example for GM and other for CSF.
However, the results are very similar between both methods. It is not pre-
sented and example for WM because the differences between both method in
the segmentation of this tissue are not significant.
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The Figure 5.13 shows the segmentation results of the T1 and T2 MRI brain
volumes of the BrainWeb phantoms with 3% level of noise. The colours are
associated with the confusion matrix elements: yellow (TP), black (TN), green
(FP), and red (FN). It can be seen that both methods fail in the detection
of the corpus callosum border (green) and the main part of the brain stem
(red). The problem with the corpus callosum is that it is composed by pure
WM tissue, and it appears very brigth in the T1 scans. Therefore, the border
voxels between the corpus callosum (bright) and the water (dark) combines both
intensity contrasts, which implies a PVE. The brain stem is composed by WM,
although several detection methods missclasify it as GM. In the figure, it is
zoomed an area where the modified v.3 has less number of FP (green) and FN
(red) in an interface between GM and CSF.

Figure 5.13: Example of the improvement of the version 3 of the modified
method with respect to the original one in the segmentation of GM. The voxels
present the segmentation results of the T1 and T2 MRI brain volumes of the
BrainWeb phantoms with 3% level of noise. The colour is associated with the
confusion matrix elements: yellow (TP), black (TN), green (FP), and red (FN).
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In the Figure 5.14, it is presented a similar representation for the detected
CSF voxels. Although, the Dice score is better for the modified v.3 method than
for the original method, the visual differences are small. The main misclassi-
fication done by both methods falls outside of the brain. There are three big
green areas on the top of the image that shows that these voxels are wrongly
detected as CSF. Besides, the bottom of the slices shows more red points, which
implies that the methods were not able to detect CSF. The explanation for both
errors could come from a strong bias field correction. It seems that the bias field
correction tries to compensate the artefact above the head that was presented
in the Figures 5.9 and 5.10. In addition, it is presented another example where
the modified v.3 classified better the CSF tissue between both hemispheres.

Figure 5.14: Example of the improvement of the version 3 of the modified
method with respect to the original one in the segmentation of CSF. The voxels
present the segmentation results of the T1 and T2 MRI brain volumes of the
BrainWeb phantoms with 3% level of noise. The colour is associated with the
confusion matrix elements: yellow (TP), black (TN), green (FP), and red (FN).
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5.5 CIMBI database - Age-Profile

The MR images can greatly vary with different subjects and scanning proto-
cols. Therefore, the performance results obtained with the BrainWeb phantoms
cannot be directly extrapolated to other datasets, i.e. the evaluation of a method
is specific to the used dataset. Another proposed validation approach is based
on the expected brain atrophy through the years [76]. There are research lines
that have studied the decrease of GM and WM in the human ageing from post
mortem [62] and in vivo brains [33] [29]. Therefore, a segmentation algorithm
applied to the scans of patients of different ages should show the same charac-
teristic age-profile.

In the Appendix D.5, it is presented a discussion about the effects of the
ageing in the brain, i.e. brain atrophy. As a conclusion, it is stated that the
brain ageing can be characterized by a subtle decrease of GM and WM
volume, and a significat increase of CSF. In case that the segmentation
shows a severe decrease in the neocortical thickness (GM volume), it could be
assumed that the brain is affected by a disease that induces brain changes not
connected to the aging itself. As the dataset of this thesis only includes healthy
brains, it is not expected big GM variations. In addition, brain lesions in the
WM tissues have more water; thus, some automatic segmentation methods miss-
classify these areas as GM due to the PVE.

The Figure 5.15 presents the volume estimation for 6 subjects of the CIMBI
project. The cohort includes 4 females (26, 30, 54 and 64 years old) and 2 males
(53 and 56 years old). These brain have been segmented with default parameters
by the original and the version 3 of the modified method into GM, WM and
CSF. The volumes of each class are normalized by the ICC volume of each
subject. Besides, at the end of the Appendix D.5, it is presented a simple linear
regression analysis of the volume age profile of these subjects.

The results show a small decrease of GM, an increase of CSF, and con-
stant value of WM. In addition, there is not significant differences between both
methods. However, due to the small used dataset, it is not possible to infer any
further conclusions.
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Figure 5.15: Volume age profile for GM, WM and CSF generated from the the
segmentation of six volumes. The methods applied correspond to the original
and version 3 of the modified method with default parameters. The tissue classes
corresponds to GM, WM and CSF, which are depicted in black, blue and green,
respectively. The volumes of each class are normalized by the ICC volume of
each subject.
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Chapter 6

Discussion

This final chapter presents a resume of the the main conclusions gathered
from the literature study and the obtained segmentation results. Besides, several
ways are proposed to improve the performance of the modified segmentation
method developed in this thesis.

6.1 Resume

In the beginning of this report, it was analyzed the SPM implementation
for MRI brain segmentation, which is based on a MoG model. In this imple-
mentation, the mixture parameters that characterize each cluster are iteratively
optimized in order to minimize the cost function. This cost function also in-
cludes the template registration and the bias field correction. In a wide sense, it
could be said that the MoG introduces intensity information and the prior tem-
plates include spatial information in the model, while the bias field correction
reduces the intensity inhomogeneity perturbations. The result of the segmenta-
tion is a TPM that encodes the probability of belonging to a specific tissue class
at each voxel.
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This method relies on several assumptions:

• The intensity probability distribution of each tissue is modeled by one
Gaussian, which is efficient because of the low number of needed parame-
ters, but not realistic.

• The voxels are assumed to be spatially independent, thus the intensity
values can be considered as i.i.d variables. This restriction is partially
compensated by the inclusion of prior templates and smoothing.

• The intensity is assumed to be homogeneous within each tissue class, which
is not totally true as the intensity value for each tissue varies slightly
depending on its location in the brain.

It was analyzed the multispectral approach with 1D and 2D intensity his-
tograms for several tissue classes, and it was seen that the increase of dimension-
ality by adding the T2 modality allows a better separation of classes, which are
less overlapped. The only drawbacks were the need of co-registering T1 and T2
volumes in the same space, and the increase of model complexity. Besides, the
T2 scans are usually more noisy due to moving artifacts, because the patients
move inside of the scanner, which entails an increase of GM estimation. Al-
though the contribution of bias field correction, prior templates and registration
was also studied, the main focus was placed in the intensity model of SPM.

The ’New Segmentation’ method of SPM8 was the starting point of this the-
sis, which already includes an extended set of tissue templates, the possibility
of using several clusters per tissue class, and a multispectral approach. How-
ever, the method assumes non-correlation among modalities. This point was
modified in this project and its development and implementation comprised the
main workload of this thesis. Four different versions of the modified algorithm
were created, and all of them include correlation among modalities. The differ-
ences among them are based on the kind of initialization and the type of value
propagation scheme that is applied.

During the validation process, and without further knowledge about which
parameter values are better for each dataset, all the methods were executed
with default parameters. Two datasets were used for the validation, the first
one included the scans from the DRCMR, and the second one comprised the
BrainWeb phantoms for several levels of noise. Both datasets included T1 and
T2 modalities, although only the last one had maps with the true tissue labels for
each voxel. The generated TPM’s by each method were converted into binary
maps after applying majority voting to each voxel. The results of this process
showed that the original and modified methods have almost not overlap among
tissues and the probabilities at each voxel are close to either 0 or 1.
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The results obtained from the segmentation of the first dataset showed that
the modified methods need longer computation time than the original method;
although their final log-likelihood values were similar. Besides, it was visually
analyzed the generated tissue maps and the volume age-profile. The results
were correct for the original and the modified methods, but without a refer-
ence it was not possible to address quality differences. It was surprising that
the value of the mixture parameters obtained by the modified methods were
much higher than the ones obtained by the original one. This effect is due to
the strong estimated bias field correction that spreads the intensities and shifts
them towards larger values, i.e. the image is brighter. It must be reminded
that the bias field correction implementation is the same in the original and
modified method. Hence, the interaction between original bias field estimation
and modified updating equations of the mixture parameters generates this ef-
fect. Although the estimated bias field is stronger, the segmentation results
are correct, which means that the intensity inhomogeneity correction behaves
more like a kernel that transforms the intensities into another space where the
segmentation is easier.

The second dataset includes the atlas with the true labels for each voxel,
therefore it was possible to compare objectively the results. In this case, six
methods were compared, namely the original method with T1, the original
method with T1 and T2, and the four versions of the modified method with
T1 and T2 modalities. The Dice score showed that the multispectral approaches
were better that the uni-modal one for all the situations. In addition, the best
method was the version 3 of the modified method, which Dice scores were slightly
higher than the original method for all the classes. In addition, the performance
of v.3 method was much better for the CSF detection and much more stable for
non-brain tissues than the original method. Finally, it was visually inspected
the segmented volumes from original and v.3 method, which showed that the
latter method is able to segment better the voxels that lie in the interface be-
tween several tissues. Therefore, the version 3 of the modified method deals
better with PVE. However, both of them had problems in the detection of the
brain stem and the water around the corpus callosum.
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6.2 Future Work

The presented results showed that the version 3 of the modified method
performs slightly better than the original method, which assumes non-correlated
modalities. However, several problems are presented that give room for further
improvements of the method.

The modified methods had a slower optimization rate with more needed
iterations until convergence. One solution to this problem is the development
of another set of initialization equations that give better starting value to the
parameters. It was seen that versions 2 and 4, which had modified initialization
equations, were much faster in the beginning than versions 1 and 3. In addition,
after the initialization, the version 2 had a great convergence, although the
optimization in the final iterations was poor. Therefore, it can be implemented
a method that uses a new set of initialization equations during the initialization,
and afterwards the updating equations of the v.2 method are used for the first
iterations, and the updating equations of the v.3 method are used for the last
iterations.

Another problem is the bias field correction, which estimation was very
strong. Although the segmentation results were right, its behaviour was sur-
prising because it spread widely the intensity distributions when the modified
updating equations were used. In addition, for the case of the BrainWeb phan-
toms, it was seen that original and modified methods classified wrongly some
voxels out of the head. Although a better masking could avoid these problems,
the reason of classifying voxels out of the head as brain tissue is due to a strong
bias field estimation. Therefore, it would be needed to review the implementa-
tion of the bias field correction.

The subject cohort of the DRCMR dataset has a wide range of ages. Due
to the atrophy, the brain structures change through the time. In addition,
the brain variability, specially of the cerebral cortex, is very high among
individuals. Therefore, the idea of using just one averaged template like in
SPM [28] seems not enough. For example, Free Surfer includes 10 different
templates sets for kid, young and old brains [51]. Besides several authors have
proposed different methods to account for this brain variability, e.g. dictionaries,
hierarquical modeling, label fusion [67] or Simultaneous Truth and Performance
Level Estimation (STAPLE) [87].

An important source of errors is the alignment between T1 and T2,
which in the current pipeline is done as a pre-processing step. Therefore, it
is proposed to include the co-registration of both modalities in the cost func-
tion. Likewise, each iteration would update also the parameters that model the
registration between both modalities.



6.3 Conclusions 119

The SPM method assumes independent voxels; however, neigbouring
voxels are expected to belong to the same tissue class. Likewise, VBM applies
a HMRF to include spatial information in the model [91]. Besides, it is also
possible to apply smoothing techniques like a de-noising filter. For example,
the Optimized Rician Non-Local Means (ORNLM) filter is used in VBM5 and
Spatial Adaptive Non-Local Means (SANLM) filter is used in VBM8.

The ’New Segmentation’ method is very sensitive to the value parame-
ters. Therefore, it is needed to estimate which values are better for the toolbox
parameters in order that the segmentation of the DRCMR dataset is optimal.
However, the parameters that are optimal for one dataset could not be optimal
for another dataset. Therefore, the only way to set up the parameters without
a reliable ground truth is through empirical exploration.

6.3 Conclusions

Graphically, it was seen that the multispectral approach with T1 and T2 MRI
modalities could improve the brain tissue segmentation. The results of several
multispectral methods on two different datasets showed that this hypothesis
came to be true. In fact, the fully multispectral implementation proposed in this
thesis, where the modalities are not supposed to be non-correlated, is slightly
more accurate and robust than multispectral methods were this assumption is
kept. Therefore, future improvements in this study line seem to be promising.
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Appendix A

Magnetic Resonance

This section describes the MRI physics, specially the NMR effect. The
information is based on [9] [20] [23] [32].

A.1 Nuclear Magnetic Resonance

Nucleus with one single proton, like 1H, have positive charge. Under an
external magnetic field B0, the proton is polarized and they spin at a fixed
frequency wL, called Larmor frequency. They have a rotation movement around
its own axis called spin. The spin has two quantum states ±1/2 depending on
the direction. They are namely parallel and anti-parallel, and state for a low and
high energy state, respectively. The energy level difference between both states
is proportional to the applied field. This rotating magneto induces a magnetic
moment m pointing in the direction of the rotation axis. The proton has no
mass, therefore instead of spinning, it suffers a precession movement around the
axis. This movement is characterized by the magnetic moment m describing a
circumference, which a certain tilt angle α, as presented in the Figure A.1.
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Figure A.1: Representation of the precession movement of one proton in the
coordinate axes. The vector m corresponds to the magnetic moment spinning
at a frequency wL under the external magnetic field B0. Left: parallel direction
corresponding to a low energy state. Right: anti-parallel direction corresponding
to a high energy state.

The Equation A.1 shows the dependency of the spin frequency wL respect
to the gyromagnetic radio γ and the intensity of the applied magnetic field B0.
The magnetic field unit is Tesla T , which is equivalent to 1e4 gauss.

wL = −γ ·B0 (A.1)

The gyromagnetic radio for the Hydrogen 1H is approximately 42.57 MHz/T,
thus in a 3T scanner the associated spin frequency is around 127Hz. The higher
is the applied static field, the better the image quality. The data for this project
is acquired with a 3 Tesla scanner. The static field of MRI can be compared with
other common magnetic fields, like the human brain with less than 1e−8 gauss,
the Earth with around 0.5 gauss in average or a typical refrigerator magneto
of 50 gauss. The choice of the Hydrogen is due to its high magnetic response,
and high abundance in biological tissues, specially as water. In this point, it
appears one of the advantages of MRI, its working frequency is much lower than
the one used for CT and X-rays, which can be higher than 30PHz. Radiation
with frequencies higher than 1PHz are considered as ionizing and they break the
molecular bonds; in opposite to the non-ionizing ones that just heat. In human
tissues, the nuclei 1H appears combined in water H2O and fat CH2 with slightly
different resonant frequencies which creates the contrast in the MR images.
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A.1.1 Perturbation

In the nature, the magnetic moments m of each nuclei are usually pointing
in random directions and with different phases. As explained previously, if an
external magnetic field B0 is applied, the nucleus will torque its precession axis
following the magnetic field. It is considered that this applied field is static
and space homogeneous. However, the lack of phase coherence makes that the
overall macroscopic magnetic field net M can be almost neglected. For example,
the Equation A.2 represents the ratio of nucleus with parallel and anti-parallel
spin according from the Boltzmann’s equation, where h stands for the Planck’s
constant and k for the Boltzmann’s constant. At an ambient temperature of
T = 27◦+ 273.15◦, the excess of spin-up particles accounts for just 10 parts per
million (ppm).

spin up

spin down
= exp

(
γ · h ·B0

k · T

)
(A.2)

In order to increase the coherence among particles, a non-static magnetic
field perturbation BRF is applied in the form of RF pulse at the corresponding
Larmour frequency. In order to increase the effect, the applied pulse is usually
normal to the original static field B0, and in a narrow frequency band around wL.
This perturbation induces another precession movement with spinning frequency
w1 in the BRF direction meanwhile the field is applied. The combination of both
precession movements created by B0 and BRF determines the movement of the
magnetic moment of the particle. As the static field is stronger than the non-
static, the precession frequency wL will be bigger than w1, which generates
a spiral trajectory of the macroscopic field M , and thus an increase in the
transverse magnetization.

From a quantum point of view, this perturbation will excite the nucleus and
flip the spin of some particles. If they were in a lower energy state (spin-up or
parallel direction), they will shift to a higher energy one (spin-down or anti-
parallel direction). On the other hand, if they were already in a high energy
state, they will release energy as a photon at the resonance frequency and they
will shift to a low energy state. This growing number of anti-parallel particles
increases the flip angle, which could reaches values close to 180o. Although, a
single particle can only have two precession angles, i.e. parallel 0o and anti-
parallel 180o, a volume of several particles can have values between 0o and 180o

as an average over all the particles included in the volume.
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During this phase, the number of particles of both spins are equal. The
macroscopic magnetization M precesses at the Larmour frequency in the trans-
verse plane, i.e. xy-plane. After this 90◦ flip, the longitudinal component in the
z-direction of the magnetic field vanishes.

The stimulated NMR response on the 1H nucleus is presented in Figure
A.2. On the left, it is presented the random spin moment alignment of the nu-
cleus when no external field is applied. On the middle, it is depicted the nuclei
polarization trying to follow the applied magnetic field B0 in the parallel direc-
tion. On the right, it is presented the precession movement change under the
perturbation. Usually, the angle of attack is close 90o to increase the observed
energy. The final flip angle is an average over all the particles in the volume.

Figure A.2: Nuclear Magnetic Resonance on the 1H nucleus, composed by one
proton. On the left, it is presented the random spin moment alignment of the
nucleus when no external field is applied. On the middle, it is depicted the
nuclei polarization trying to follow the applied magnetic field B0 in the parallel
direction. The alignment is not perfect due to the plasticity of the materials;
however, for simplicity, the ideal case is presented. On the right, it is presented
the precession movement change under the the RF perturbation of the BRF
field. The combination of both magnetic fields creates a spiral trajectory of the
magnetic moment that is not presented, again for simplicity. Usually, the angle
of attack is close 90o to increase the observed energy. The final flip angle is an
average over all the particles in the volume.
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A.1.2 Relaxation

Once the perturbation is over, the relaxation period starts and the thermal
equilibrium is recovered. The signal received in the coils during this phase is
called free-induction decay (FID) signal. During this process, the total mag-
netic moment M gradually goes back to the original z-direction and the phase
coherence is lost. This decay can be characterized by two relaxation times, T1
and T2, related to the exponential nature of this process that follows the Bloch
Equations. T1 lasts longer than T2, T1 > T2. As presented in the Figure A.3,
after the 90◦ flip, the transverse field Mxy is maximum and the longitudinal Mz

is minimum. The decay of both fields to the the 63% of its respective maximum
value determines the corresponding values. In addition, other parameters can
also been acquired from the FID with NMR imaging, like PD and T ∗2 , which
stand for the proton density and envelope of the T2 decay, respectively. However
they are not included in the dataset of this project, so no further comment will
be done.

The two relaxation times can be characterized as follows:

• T1 (spin-lattice relaxation). It measures the recovery of magnetic field
in the direction of the static magnetic field B0 (longitudinal). It is due to
the particle moving back to the low energy state after emitting a photon at
the Lambour frequency. The usual values are about 240 to 810 msec, and
they comprise the time to recover the 63% of the original magnetization
in the longitudinal direction.

• T2 (spin-spin relaxation). It represents the decay of the magnetic field
orthogonal to B0 (transverse) due to the dephasing of spins caused by
proton interaction with its environment. They are usually in the range
of 40-100 msec, which is the time of decay for the 63% of the transverse
magnetization.

The solids, like the scalp, have no signal in MRI due to the short relaxation
time. The gases and the free pure water have both equal T1 and T2, which
for the water can last even for some seconds because of the great absorption of
the RF signal that keeps them in phase. In liquids, the T1 is bigger than T2.
Therefore, the GM has bigger value for T1 than for T2, while the opposite occurs
with the WM.

The shorter is the relaxation time, the brighter is the acquired MR image.
Thus, a T1 image will have brighter voxels for WM, darker for GM,
and almost black for CSF. In addition, for T1, a tumour has bigger acquired
intensity value than a normal tissue, and muscle tissue bigger than fat. There-
fore, some lesions can resemble GM in T1 images. Almost the opposite contrast
will be expected in T2 images.
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Figure A.3: Relaxation time T1 (red) and T2 (ble) during the perturbance and
relaxation processes. The epoch of the 90◦ flip is marked with a vertical dashed
line. The top plot presents the time-evolution of the longitudinal component of
the magnetic field Mz (in red), from where it is extracted the T1 value. The
bottom plot includes the transverse field Mxy and the T2 time.

A.2 Image Generation

The images that are arranged to prevail either T1 or T2 are called T1-
weighted and T2-weighted, respectively. Sophisticated RF pulse sequences are
carried out in order to determine correctly both relaxation time values from the
FID. Scanning for a long time creates better quality images, but introduces other
artifacts due to the patient motion, and also it is a more expensive procedure.
Two important parameters are used to increase the contrast of the images: echo
time (TE) and time repetition (TR). TE stands for the time at which the signal
is measured after the RF emission; and TR is the time between two consecutive
RF emissions. If both are small compared to the relaxation time of T1, the
T1 contrast is enhanced and generates the T1-weighted images. The gradient
echo (GRE) and saturation recovery (SR) techniques are used for this purpose.
On the other hand, a T2-weighted image is acquired with long time constants,
like spin echo (SE) technique does. In order to spatially associate the inten-
sity value of each voxel with its 3D position, a gradient of the magnetic field
B0 is applied to generate planes with different Larmour frequency. Therefore,
at each plane the spins will have different frequency, i.e. gradients transform
spatial dimensions into frequency dimensions. Afterwards, with complex signal
processing based on DFT the intensity images are reconstructed. The direction
of the field can be changed as a roll to create a k-space that can be decoded in
the Fourier domain. Sometimes, the periodicity of the transformation creates
wraparound effects in the reconstructed images. Besides, the acquisition times
of this procedure can be shorten by the Echo-Planar Imaging (EPI) technique.
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Mathematics

This chapter includes mathematic equations of some parts of the imple-
mentation that are included here with more details. In order to ensure a clear
understanding, some pages are horizontally formatted, i.e. landscape. The in-
cluded concepts are:

• Theory of the Gaussian distribution in one and two dimensions.

• Mathematical process to obtain the 2D Gaussian distribution expression
from the multidimensional normal equation.

• Full expression of the upper bound of the cost function in the M-step.

• Theory and Matlab implementation of the central and non-central mo-
ments.

• Solution of a third degree equation in Matlab.

• 2D example of registration in Matlab.
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B.1 Gaussian distribution

In the Mixture of Gaussians (MoG) model used in SPM, each cluster is
modeled with a Normal (Gaussian) distribution, which can be parameterized by
the intensity mean vector µ, and intensity covariance matrix Σ.

Figure B.1: Normal (Gaussian) Distribution
with parameters µ = 2, and σ = 0.5.

The Figure B.1 depicts the
uni-dimensional Gaussian distri-
bution bell, which is character-
ized by the parameters µ = 2,
and σ = 0.5 (σ2 = 0.25). Most
of the probability is around the
mean value and it decreases fast
when the variance is small, i.e.
the bell is more narrow. The inte-
gral of the probability density re-
turns probability. Therefore, the
area under the curve for x = ±σ
accounts for the 68% of the total
probability, for x = ±2σ accounts
for the 95%, and for x = ±3σ ac-
counts for the 99.7%.

The general expression of uni-dimensional Normal distribution is presented
in the Equation B.1. The maximum amplitude is at the center of the bell,
x = µ, which corresponds to a value of f (x)max = 1/

√
2πσ, while the FWHM

is FWHM = 2
√

2Ln(2)σ.

f (x) = 1√
2πσ

e−
x−µ
2σ2 (B.1)

The Equation B.2 presents the bi-dimensional Normal distribution for the
variables x1 and x2. It is characterized by the mean (µ1,µ2) and variance (σ1,σ2)
for each variable. In addition, it counts with an additional parameter that
measures the correlation between them, the cross covariance σ12.

f (x1, x2) = 1
2π
√
σ2

1 · σ2
2 − σ2

12
e

{
−σ2

1·σ
2
2

2(σ2
1·σ

2
2−σ

2
12)
·
[

(x1−µ1)2

σ2
1

+ (x2−µ2)2

σ2
2

−2σ12· (x1−µ1)(x2−µ2)
σ2

1·σ
2
2

]}
(B.2)
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In case both variables are non-correlated, σ12 = 0, the joint probability is
just the product of both distributions, and the distribution variances lies on
the reference axes. However, if the variables are dependent, the 2D Gaussian
bell appears rotated. The Equation B.3 presents the expression to calculate the
rotation angle of the Gaussian respect to the reference system. This angle cor-
responds to the rotation of the eigenvector axes from the original distribution
to one with σ12 = 0. In addition, this characteristic allows to express a distri-
bution with no diagonal covariance matrix into one distribution with diagonal
covariance, just by rotating the reference axes.

ϕ = 1
2 atan

(
2 σ12

σ2 − σ2

)
(B.3)

The tan() function is π-periodic, thus it gives two valid solutions in the
interval [0, 2π), which correspond to ϕ and ϕ+ π. In addition, in case the axis
of the Gaussian are equal, σ1 = σ2, the angle has four solution in [0, 2π), namely{
ϕ, ϕ+ π

2 , ϕ+ π, ϕ+ 3π2
}

. The obtained angle has the same sign than the
cross covariance and the correlation. Therefore, for a positive cross covariance
higher values of x1 implies higher values of x1, and the apposite.

σ12 > 0 ⇒
{
x1 ↑ ⇒ x2 ↑
x1 ↓ ⇒ x2 ↓

σ12 < 0 ⇒
{
x1 ↑ ⇒ x2 ↓
x1 ↓ ⇒ x2 ↑

The values of the covariance depends on the scale and units of the dataset.
Therefore, in order to compare the dispersion of values between two variables,
it is usually applied the correlation coefficient, which normalized each centered
variable by its covariance.

x → x− µ
σ

The following code collects these ideas in order to estimate from the 2D
covariance matrix the rotation angle.

% Extract eigenvectors and eigenvalues from ovariance matrix.
[EigenVectors,EigenValues] = eig(CovarianceMatrix);
% Angle of rotation and angles of the axis
AngleRotation = 0.5∗atan(2∗CovarianceMatrix(1,2)/...

(CovarianceMatrix(1,1)−CovarianceMatrix(2,2)))∗(180/pi);
AnglesAxis = atan2(EigenVectors(2,:),EigenVectors(1,:))∗(180/pi);
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The Figure B.2 presents a 2G Gaussian distribution with the parameters
µ = [2, 3], σ = [1, 4], and σ12 = 0. The bigger is the variance for each variable,
the wider is the distribution along its axis, as it can be seen. In this case, both
variables are independent, thus the maximum dispersion of values occurs is the
reference axes.

Figure B.2: 2D Gaussian with 0 degrees rotation. The parameters are µ = [2, 3]
and σ = [1, 4], and σ12 = 0. The symbol ’+’ is to the center of the bell.

In the Figure B.3, it is depicted a 2G Gaussian distribution with different
parameters. In this case, the variance values are larger, thus the points are
more spread and the distribution maximum is smaller. Besides, the negative
cross-covariance rotates the maximum dispersion axes with a negative angle.

Figure B.3: 2D Gaussian with -45 degrees clockwise rotation. The parameters
are µ = [1, 1] and σ = [10, 10], and σ12 = −5. The symbol ’+’ corresponds to
the center of the bell.
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The segmentation method of SPM tries to estimate the Gaussians param-
eters that characterize each cluster, while several clusters are associated to one
tissue class. In the MoG, there are several problems in the detection of Gaus-
sians, specially when they too much close among them. When the distance
between them is too small and their variances are big, the lobes are overlapped
and the mean of the Gaussian is shifter. If the distance is even smaller, it could
be impossible to estimate how many Gaussians are, ans maybe is just detected
o big distribution that aggregates all of them. In the Figure B.4, it is presented,
wlog, the previous problems for the case of two Gaussians.

(a) Only one Gaussian detected. (b) Gaussian means are shifted.

Figure B.4: Example of two problems in the MOG model. In blue is drawn the
original two distributions, and in red is presented the aggregation of them.
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B.5 Solution to a third degree equation

This point describes two possible approaches to give value for the cross-
variance in the M-step of the EM‘optimization, which corresponds to a third
degree equation. This kind of functions can be solved with closed-form expres-
sions or looking for the zero-crossings. Here, it is presented a small benchmark
to compare both approaches. In both cases, the final solution is chosen according
to the criteria discussed in the Section 4.3.

The first method uses the former approach with closed-form expressions.

% Closed−form equations
x = solution3th(coef3,coef2,coef1,coef0,1);
if ((vr(1,1,k)∗vr(2,2,k)−x^2)<tiny)||(abs(imag(x))>1e−4)

x = solution3th(coef3,coef2,coef1,coef0,2);
if (vr(1,1,k)∗vr(2,2,k)−x^2)<tiny)||(abs(imag(x))>1e−4)

x = solution3th(coef3,coef2,coef1,coef0,3);
if (vr(1,1,k)∗vr(2,2,k)−x^2)<tiny||(abs(imag(x))>1e−4)

x = vrX(1,2,k);
end

end
end
solution = real(solution);

This function returns the solution of a 3rd degree equation with coefficients
coef3, coef2, coef1 and coef0.

function solution = solution3th(coef3,coef2,coef1,coef0,opt)
% Function that returns the solution of a 3rd degree equation:
% ’y = coef3∗x^3 + coef2∗x^2 + coef1∗x + coef0’

switch opt
case 1

solution = (((coef0/(2∗coef3) + coef2^3/(27∗coef3^3) ...
− (coef1∗coef2)/(6∗coef3^2))^2 + (coef1/(3∗coef3) ...
− coef2^2/(9∗coef3^2))^3)^(1/2) − coef2^3/(27∗coef3^3) ...
− coef0/(2∗coef3) + (coef1∗coef2)/(6∗coef3^2))^(1/3) ...
− (coef1/(3∗coef3) − coef2^2/(9∗coef3^2))/(((coef0/(2∗coef3) ...
+ coef2^3/(27∗coef3^3) − (coef1∗coef2)/(6∗coef3^2))^2 ...
+ (coef1/(3∗coef3) − coef2^2/(9∗coef3^2))^3)^(1/2) ...
− coef2^3/(27∗coef3^3) − coef0/(2∗coef3) ...
+ (coef1∗coef2)/(6∗coef3^2))^(1/3) − coef2/(3∗coef3);

case 2
solution = (coef1/(3∗coef3) ...
− coef2^2/(9∗coef3^2))/(2∗(((coef0/(2∗coef3) ...
+ coef2^3/(27∗coef3^3) − (coef1∗coef2)/(6∗coef3^2))^2 ...
+ (coef1/(3∗coef3) − coef2^2/(9∗coef3^2))^3)^(1/2) ...
− coef2^3/(27∗coef3^3) − coef0/(2∗coef3) ...
+ (coef1∗coef2)/(6∗coef3^2))^(1/3)) ...
− (((coef0/(2∗coef3) + coef2^3/(27∗coef3^3) ...
− (coef1∗coef2)/(6∗coef3^2))^2 + (coef1/(3∗coef3) ...
− coef2^2/(9∗coef3^2))^3)^(1/2) − coef2^3/(27∗coef3^3) ...
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− coef0/(2∗coef3) + (coef1∗coef2)/(6∗coef3^2))^(1/3)/2 ...
− coef2/(3∗coef3) − (3^(1/2)∗((((coef0/(2∗coef3) ...
+ coef2^3/(27∗coef3^3) − (coef1∗coef2)/(6∗coef3^2))^2 ...
+ (coef1/(3∗coef3) − coef2^2/(9∗coef3^2))^3)^(1/2) ...
− coef2^3/(27∗coef3^3) − coef0/(2∗coef3) ...
+(coef1∗coef2)/(6∗coef3^2))^(1/3) + (coef1/(3∗coef3) ...
− coef2^2/(9∗coef3^2))/(((coef0/(2∗coef3) ...
+ coef2^3/(27∗coef3^3) − (coef1∗coef2)/(6∗coef3^2))^2 ...
+ (coef1/(3∗coef3) − coef2^2/(9∗coef3^2))^3)^(1/2) ...
− coef2^3/(27∗coef3^3) − coef0/(2∗coef3) ...
+ (coef1∗coef2)/(6∗coef3^2))^(1/3))∗1i)/2;

case 3
solution = (coef1/(3∗coef3) ...
− coef2^2/(9∗coef3^2))/(2∗(((coef0/(2∗coef3) ...
+ coef2^3/(27∗coef3^3) − (coef1∗coef2)/(6∗coef3^2))^2 ...
+ (coef1/(3∗coef3) − coef2^2/(9∗coef3^2))^3)^(1/2) ...
− coef2^3/(27∗coef3^3) − coef0/(2∗coef3) ...
+ (coef1∗coef2)/(6∗coef3^2))^(1/3)) ...
− (((coef0/(2∗coef3) + coef2^3/(27∗coef3^3) ...
− (coef1∗coef2)/(6∗coef3^2))^2 + (coef1/(3∗coef3) ...
− coef2^2/(9∗coef3^2))^3)^(1/2) − coef2^3/(27∗coef3^3) ...
− coef0/(2∗coef3) + (coef1∗coef2)/(6∗coef3^2))^(1/3)/2 ...
− coef2/(3∗coef3) + (3^(1/2)∗((((coef0/(2∗coef3) ...
+ coef2^3/(27∗coef3^3) − (coef1∗coef2)/(6∗coef3^2))^2 ...
+ (coef1/(3∗coef3) − coef2^2/(9∗coef3^2))^3)^(1/2) ...
− coef2^3/(27∗coef3^3) − coef0/(2∗coef3) ...
+ (coef1∗coef2)/(6∗coef3^2))^(1/3) + (coef1/(3∗coef3) ...
− coef2^2/(9∗coef3^2))/(((coef0/(2∗coef3) ...
+ coef2^3/(27∗coef3^3) − (coef1∗coef2)/(6∗coef3^2))^2 ...
+ (coef1/(3∗coef3) − coef2^2/(9∗coef3^2))^3)^(1/2) ...
− coef2^3/(27∗coef3^3) − coef0/(2∗coef3) ...
+ (coef1∗coef2)/(6∗coef3^2))^(1/3))∗1i)/2;

end

The second method consist on looking for the roots of the equations, i.e. find
the zero-crossing points where the sign of the function changes. In this case, it is
used the Matlab function fzeros() that applies a bisection method. As a starting
point, the chosen values are {varOriginal,−varOriginal,+varOriginal}.

% Bilinear interpolation
[x_value,fval,exitflag] = ...

fzero(@(x) coef3∗x^3+coef2∗x^2+coef1∗x+coef0,vrX(1,2,k));
if ((vr(1,1,k)∗vr(2,2,k)−x_value^2)<tiny) || ¬exitflag

[x_value,fval,exitflag] = ...
fzero(@(x) coef3∗x^3+coef2∗x^2+coef1∗x+coef0,10∗vrX(1,2,k));
if (vr(1,1,k)∗vr(2,2,k)−x_value^2)<tiny || ¬exitflag

[x_value,fval,exitflag] = ...
fzero(@(x) coef3∗x^3+coef2∗x^2+coef1∗x+coef0,−10∗vrX(1,2,k));

if (vr(1,1,k)∗vr(2,2,k)−x_value^2)<tiny || ¬exitflag
x_value = vrX(1,2,k);

end
end

end
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The following code presents the test of the two methods:

% −−−−−−−−−−−−−− Test of both methods −−−−−−−−−−−−−−−−

% Parameters
N = 1000;
time1 = 0; time2 = 0;

% N iterations
for i=1:N

% Coefficints
coef3 = 100∗randn(1);
coef2 = 100∗randn(1);
coef1 = 100∗randn(1);
coef0 = 100∗randn(1);

% Exact solution
tic
solution1 = solution3th(coef3,coef2,coef1,coef0,1);
solution2 = solution3th(coef3,coef2,coef1,coef0,2);
solution3 = solution3th(coef3,coef2,coef1,coef0,3);
time1 = time1 + toc;

% Bilinear interpolation
tic
x_value1 = fzero(@(x) coef3∗x^3+coef2∗x^2+coef1∗x+coef0, 0);
x_value2 = fzero(@(x) coef3∗x^3+coef2∗x^2+coef1∗x+coef0, −1000);
x_value3 = fzero(@(x) coef3∗x^3+coef2∗x^2+coef1∗x+coef0, 1000);
time2 = time2 + toc;

end

% Display
disp([’Averaged time by exact method: ’,num2str(time1/N),’secs’]);
disp([’Averaged time by bilinear interp: ’,num2str(time2/N),’secs’]);

The final time per iteration was time1 = 0.0046 and time2 = 0.00010836,
both of them in seconds. It means that the exact method is 40 times faster.
In addition, the bilinear interpolation method was not always able to find the
three solution; although when it did it, the magnitude difference between both
methods was neglectable.
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B.6 Registration

Example in Matlab, where a 1-unit square is transformed according to the
four individual affine transformations. The code uses the pre-multiplication of
the 2D affine transformation matrix.

Figure B.5: Affine Transformation example in 2D. The original shape is a blue
square with vertices [0,0], [0,1], [1,0] and [1,1]. In the top-left figure, it is applied
a scaling of {2,4}. In the top-righ figure, it is applied a translation of {3,-1}. In
the top-left figure, it is applied a rotation of π/4. In the bottom-right figure, it
is applied a shear of 2.
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1 % Original square
2 X=[0 0 1 1;0 1 0 1];
3 X_ext=[X; 1 1 1 1];
4

5 % Scaling
6 scaling=[2 4];
7

8 A=[scaling(1) 0; 0 scaling(2)];
9 A_ext=[A(1,:) 0; A(2,:) 0; 0 0 1];

10

11 Y_ext=A_ext∗X_ext;
12 Y=Y_ext(1:2,:);
13

14 figure,
15 subplot(2,2,1)
16 title([’Scaling (zoom), z_{x}=’,num2str(scaling(1)),...
17 ’ and z_{y}=’,num2str(scaling(2))])
18 hold on
19 scatter(X(1,:),X(2,:),’b’);
20 scatter(Y(1,:),Y(2,:),’r’);
21 line([X(1,1) X(1,2) X(1,1) X(1,3) X(1,4) X(1,3) X(1,4) X(1,2)],...
22 [X(2,1) X(2,2) X(2,1) X(2,3) X(2,4) X(2,3) X(2,4) X(2,2)],...
23 ’Color’,’b’)
24 line([Y(1,1) Y(1,2) Y(1,1) Y(1,3) Y(1,4) Y(1,3) Y(1,4) Y(1,2)],...
25 [Y(2,1) Y(2,2) Y(2,1) Y(2,3) Y(2,4) Y(2,3) Y(2,4) Y(2,2)],...
26 ’Color’,’r’)
27 hold off
28 axis([−5 5 −5 5])
29 grid on
30

31

32 % Translation
33 trans=[3 −1];
34

35 A=[1 0; 0 1];
36 A_ext=[A(1,:) trans(1); A(2,:) trans(2); 0 0 1];
37

38 Y_ext=A_ext∗X_ext;
39 Y=Y_ext(1:2,:);
40

41 subplot(2,2,2)
42 title([’Translation, t_{x}=’,num2str(trans(1)),...
43 ’ and t_{y}=’,num2str(trans(2))])
44 hold on
45 scatter(X(1,:),X(2,:),’b’);
46 scatter(Y(1,:),Y(2,:),’r’);
47 line([X(1,1) X(1,2) X(1,1) X(1,3) X(1,4) X(1,3) X(1,4) X(1,2)],...
48 [X(2,1) X(2,2) X(2,1) X(2,3) X(2,4) X(2,3) X(2,4) X(2,2)],...
49 ’Color’,’b’)
50 line([Y(1,1) Y(1,2) Y(1,1) Y(1,3) Y(1,4) Y(1,3) Y(1,4) Y(1,2)],...
51 [Y(2,1) Y(2,2) Y(2,1) Y(2,3) Y(2,4) Y(2,3) Y(2,4) Y(2,2)],...
52 ’Color’,’r’)
53 hold off
54 axis([−5 5 −5 5])
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55 grid on
56

57

58 % Rotation (yaw)
59 angle=pi/4;
60

61 A=[cos(angle) −sin(angle); sin(angle) cos(angle)];
62 A_ext=[A(1,:) 0; A(2,:) 0; 0 0 1];
63

64 Y_ext=A_ext∗X_ext;
65 Y=Y_ext(1:2,:);
66

67 subplot(2,2,3)
68 title([’Rotation, \alpha=\pi/’,num2str(pi/angle(1))])
69 hold on
70 scatter(X(1,:),X(2,:),’b’);
71 scatter(Y(1,:),Y(2,:),’r’);
72 line([X(1,1) X(1,2) X(1,1) X(1,3) X(1,4) X(1,3) X(1,4) X(1,2)],...
73 [X(2,1) X(2,2) X(2,1) X(2,3) X(2,4) X(2,3) X(2,4) X(2,2)],...
74 ’Color’,’b’)
75 line([Y(1,1) Y(1,2) Y(1,1) Y(1,3) Y(1,4) Y(1,3) Y(1,4) Y(1,2)],...
76 [Y(2,1) Y(2,2) Y(2,1) Y(2,3) Y(2,4) Y(2,3) Y(2,4) Y(2,2)],...
77 ’Color’,’r’)
78 hold off
79 axis([−5 5 −5 5])
80 grid on
81

82

83 % Shear
84 shear=[2];
85

86 A=[1 shear(1); 0 1];
87 A_ext=[A(1,:) 0; A(2,:) 0; 0 0 1];
88

89 Y_ext=A_ext∗X_ext;
90 Y=Y_ext(1:2,:);
91

92 subplot(2,2,4)
93 title([’Shear, s_{x}=’,num2str(shear(1))])
94 hold on
95 scatter(X(1,:),X(2,:),’b’);
96 scatter(Y(1,:),Y(2,:),’r’);
97 line([X(1,1) X(1,2) X(1,1) X(1,3) X(1,4) X(1,3) X(1,4) X(1,2)],...
98 [X(2,1) X(2,2) X(2,1) X(2,3) X(2,4) X(2,3) X(2,4) X(2,2)],...
99 ’Color’,’b’)

100 line([Y(1,1) Y(1,2) Y(1,1) Y(1,3) Y(1,4) Y(1,3) Y(1,4) Y(1,2)],...
101 [Y(2,1) Y(2,2) Y(2,1) Y(2,3) Y(2,4) Y(2,3) Y(2,4) Y(2,2)],...
102 ’Color’,’r’)
103 hold off
104 axis([−5 5 −5 5])
105 grid on
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SPM

This chapter includes a deeper explanation of the variables and the Matlab
code of the file spm preproc8T1T2.m of the ’SegT1T2’ toolbox for SPM8.

A common variable struct used for both MRI data and templates corre-
sponds to the output of the function spm vol(). From the complete filename of
the volumes, this function creates a struct with the following fields:

• V.fname <string> path, name and extension of the file with the volumes,
which can be stored in either format .nii or .hdr/.img.

• V.mat <4x4 double> pre-multiplication affine transformation matrix.

• V.dim <1x3 double> dimensions of the original volume for the x, y and z
coordinates.

• V.dt <1x2 double> format of the NIFTI-1 files according to spm type().

• V.pinfo <3x1 double> scaling factor of each plane.

The following two sections present the main input and output variables with
information about its dimensions and a short description. It can be assumed
that: N = 2, Kb = 6, and K = 15.
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C.1 Input Variables

The input variable is obj, which main fields are:

Volumes: MRI individual brain volumes to segment. There are two modal-
ities, T1 and T2, which are stored in obj.image(1) and obj.image(2). Afterwards,
the volumes are stored in V=obj.image.

• obj.image <2x1 struct> individual volumes in the format of spm vol().

Tissue Probability Maps: The struct is obtained from the function
spm load priors8() that loads the volumes into memory with spm slice vol().

• obj.tpm.V <Kbx1 struct> templates in the format of spm vol().

• obj.tpm.M <4x4 double> pre-multiplication affine transformation matrix.

• obj.tpm.dat <Kbx1 cell> mapped volumes in a 3D matrix.

• obj.tpm.bg1 <Kbx1 double> background value for each template.

• obj.tpm.bg2 <Kbx1 double> background value for each template.

• obj.tpm.tiny <1x1 double> tiny value ∼ 10−3.

• obj.tpm.deg <1x1 double> B-spline degree.

Affine Transformation: Transformation between the voxels of the tem-
plates and the voxels of the individual volumes to segment.

• obj.Affine <4x4 double> pre-multiplication affine transformation matrix.

Gaussians per tissue: Look-up table with the number of clusters associ-
ated to each tissue class.

• obj.lkp <Kx1 double> lkp=[1,1,2,2,3,3,4,4,4,5,5,5,5,6,6];

The transformation matrices of the different variables must accomplish that:
obj.tpm.M ∗ X = Affine ∗ V (1).mat ∗ Y , where X corresponds to a volume
in the voxel-template coordinates and Y is a volume in the voxel-individual
coordinates. As, both channels are previously registered in the same space, the
affine transformation for both modalities is the same, V (1).mat = V (2).mat.
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C.2 Original Code

Part of the code from the file spm preproc8.m that corresponds to the Seg
toolbox. This extract shows how the values for the mixture parameters are
estimated.

374 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
375 % Estimate cluster parameters
376 %−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
377 for subit=1:20,
378 oll = ll;
379 mom0 = zeros(K,1)+tiny;
380 mom1 = zeros(N,K);
381 mom2 = zeros(N,N,K);
382 ll = llr+llrb;
383 for z=1:length(z0),
384 if ¬buf(z).nm, continue; end
385 q = likelihoods(buf(z).f,buf(z).bf,mg,mn,vr);
386 for k1=1:Kb,
387 b = double(buf(z).dat(:,k1));
388 for k=find(lkp==k1),
389 q(:,k) = q(:,k).∗b;
390 end
391 clear b
392 end
393 sq = sum(q,2)+tiny;
394 ll = ll + sum(log(sq + tiny));
395 cr = zeros(size(q,1),N);
396 for n=1:N,
397 cr(:,n) = double(buf(z).f{n}.∗buf(z).bf{n});
398 end
399 for k=1:K, % Moments
400 q(:,k) = q(:,k)./sq;
401 mom0(k) = mom0(k) + sum(q(:,k));
402 mom1(:,k) = mom1(:,k) + (q(:,k)’∗cr)’;
403 mom2(:,:,k) = mom2(:,:,k) + (repmat(q(:,k),1,N).∗cr)’∗cr;
404 end
405 clear cr
406 end
407

408 %fprintf(’MOG:\t%g\t%g\t%g\n’, ll,llr,llrb);
409

410 % Priors
411 %nmom = struct(’mom0’,mom0,’mom1’,mom1,’mom2’,mom2);
412 if exist(’omom’,’var’) && isfield(omom,’mom0’) && ...
413 numel(omom.mom0) == numel(mom0),
414 mom0 = mom0 + omom.mom0;
415 mom1 = mom1 + omom.mom1;
416 mom2 = mom2 + omom.mom2;
417 end
418

419 % Mixing proportions, Means and Variances
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420 for k=1:K,
421 tmp = mom0(lkp==lkp(k));
422 mg(k) = (mom0(k)+tiny)/sum(tmp+tiny);
423 mn(:,k) = mom1(:,k)/(mom0(k)+tiny);
424 vr(:,:,k) = (mom2(:,:,k) − mom1(:,k)∗mom1(:,k)’/mom0(k))/ ...
425 (mom0(k)+tiny) + vr0;
426 end
427

428 if subit>1 || iter>1,
429 spm_chi2_plot(’Set’,ll);
430 end
431 if ll−oll<tol1∗nm,
432 % Improvement is small, so go to next step
433 break;
434 end
435 end
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C.3 Modified Code

Part of the code from the file spm preproc8T1T2.m that corresponds to the
SegT1T2 toolbox. This extract shows how the values for the mixture parameters
are estimated.

376 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
377 % Estimate cluster parameters
378 %−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
379 for subit=1:20,
380 oll = ll;
381 mom0 = zeros(K,1)+tiny;
382 mom1 = zeros(N,K);
383 mom2 = zeros(N,N,K);
384 mom1c = zeros(N,K);
385 mom2c = zeros(N,N,K);
386 ll = llr+llrb;
387 for z=1:length(z0),
388 if ¬buf(z).nm, continue; end
389 q = likelihoods(buf(z).f,buf(z).bf,mg,mn,vr);
390 for k1=1:Kb,
391 b = double(buf(z).dat(:,k1));
392 for k=find(lkp==k1),
393 q(:,k) = q(:,k).∗b;
394 end
395 clear b
396 end
397 sq = sum(q,2)+tiny;
398 for k=1:K,
399 q(:,k) = q(:,k)./sq;
400 end
401 ll = ll + sum(log(sq + tiny));
402 cr = zeros(size(q,1),N);
403 for n=1:N,
404 cr(:,n) = double(buf(z).f{n}.∗buf(z).bf{n});
405 end
406 for k=1:K, % Moments
407 % Non−centered moments
408 mom0(k) = mom0(k) + sum(q(:,k));
409 mom1(:,k) = mom1(:,k) + (q(:,k)’∗cr)’;
410 mom2(:,:,k) = mom2(:,:,k) + (repmat(q(:,k),1,N).∗cr)’∗cr;
411 % Central moments
412 crc = cr − repmat(mn(:,k)’,size(q,1),1);
413 mom1c(:,k) = mom1c(:,k)+(q(:,k)’∗crc)’;
414 mom2c(:,:,k) = mom2c(:,:,k)+(repmat(q(:,k),1,N).∗crc)’∗crc;
415 end
416 clear cr crc
417 end
418

419 %fprintf(’MOG:\t%g\t%g\t%g\n’, ll,llr,llrb);
420

421 % Priors
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422 %nmom = struct(’mom0’,mom0,’mom1’,mom1,’mom2’,mom2);
423 if exist(’omom’,’var’) && isfield(omom,’mom0’) && ...
424 numel(omom.mom0) == numel(mom0),
425 mom0 = mom0 + omom.mom0;
426 mom1 = mom1 + omom.mom1;
427 mom2 = mom2 + omom.mom2;
428 end
429

430 % Mixing proportions, Means and Variances
431 mgX = zeros(size(mg));
432 mnX = zeros(size(mn));
433 vrX = zeros(size(vr));
434 ovr = vr;
435 for k=1:K,
436 %%%%%%%%%%%%% Original Equations %%%%%%%%%%%%%%%%
437 % −−−−−−−−−−−− Mixing coefficient −−−−−−−−−−−−−−−
438 tmp = mom0(lkp==lkp(k));
439 mgX(k) = (mom0(k)+tiny)/sum(tmp+tiny);
440 % −−−−−−−−−−−−−−−−−− Mean −−−−−−−−−−−−−−−−−−−−−−−
441 mnX(:,k) = mom1(:,k)/(mom0(k)+tiny);
442 % −−−−−−−−−−−−−−−−− Variance −−−−−−−−−−−−−−−−−−−
443 vrX(:,:,k) = (mom2(:,:,k) − ...
444 mom1(:,k)∗mom1(:,k)’/mom0(k))/(mom0(k)+tiny) + vr0;
445 % For estability
446 vrX(1,1,k) = mom2c(1,1,k)/(mom0(k)+tiny);
447 vrX(2,2,k) = mom2c(2,2,k)/(mom0(k)+tiny);
448 %%%%%%%%%%%%% Modified Equations %%%%%%%%%%%%%%%%
449 % −−−−−−−−−−−− Mixing coefficient −−−−−−−−−−−−−−−
450 mg(k) = mgX(k);
451 % −−−−−−−−−−−−−−−−−− Mean −−−−−−−−−−−−−−−−−−−−−−−
452 coefm1 = −mom1c(2,k);
453 coefm2 = −mom1c(1,k);
454 mn(1,k) = mnX(1,k) ...
455 + (ovr(1,2,k)∗coefm1)/(ovr(2,2,k)∗mom0(k)+tiny);
456 mn(2,k) = mnX(2,k) ...
457 + (ovr(1,2,k)∗coefm2)/(ovr(1,1,k)∗mom0(k)+tiny);
458 % −−−−−−−−−−−−−−−−− Variance −−−−−−−−−−−−−−−−−−−
459 % >> Variance
460 coefs1 = ovr(1,2,k)∗mom0(k) ...
461 + (ovr(1,2,k)/(ovr(2,2,k)+tiny))∗mom2c(2,2,k) ...
462 − 2∗mom2c(1,2,k);
463 coefs2 = ovr(1,2,k)∗mom0(k) ...
464 + (ovr(1,2,k)/(ovr(1,1,k)+tiny))∗mom2c(1,1,k) ...
465 − 2∗mom2c(1,2,k);
466

467 vr(1,1,k) = vrX(1,1,k) ...
468 + (ovr(1,2,k)∗coefs1)/(ovr(2,2,k)∗mom0(k)+tiny);
469 vr(2,2,k) = vrX(2,2,k) ...
470 + (ovr(1,2,k)∗coefs2)/(ovr(1,1,k)∗mom0(k)+tiny);
471 % >> Cross−variance
472 % Coefficients
473 coef3 = mom0(k);
474 coef2 = −mom2c(1,2,k);
475 coef1 = −ovr(1,1,k)∗ovr(2,2,k)∗mom0(k) ...
476 + ovr(2,2,k)∗mom2c(1,1,k) + ovr(1,1,k)∗mom2c(2,2,k);



C.3 Modified Code 161

477 coef0 = −ovr(1,1,k)∗ovr(2,2,k)∗mom2c(1,2,k);
478 % Look for the correct solution
479 solution = solution3th(coef3,coef2,coef1,coef0,1);
480 if ((vr(1,1,k)∗vr(2,2,k)−solution^2)<tiny) || ...
481 abs(imag(solution))>1e−4
482 solution = solution3th(coef3,coef2,coef1,coef0,2);
483 if (vr(1,1,k)∗vr(2,2,k)−solution^2)<tiny || ...
484 abs(imag(solution))>1e−4
485 solution = solution3th(coef3,coef2,coef1,coef0,3);
486 if (vr(1,1,k)∗vr(2,2,k)−solution^2)<tiny || ...
487 abs(imag(solution))>1e−4
488 solution = vrX(1,2,k);
489 end
490 end
491 end
492 % Give values
493 vr(1,2,k) = real(solution);
494 vr(2,1,k) = vr(1,2,k);
495 % Ensure estability
496 vr(:,:,k) = vr(:,:,k) + vr0;
497 end
498

499 if subit>1 || iter>1,
500 spm_chi2_plot(’Set’,ll);
501 end
502 if ll−oll<tol1∗nm,
503 % Improvement is small, so go to next step
504 break;
505 end
506 end
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C.4 Modified Code (version 2)

Part of the code from the file spm preproc8T1T2.m that corresponds to the
SegT1T2 toolbox. This extract shows how the values for the mixture parameters
are estimated. This second version corresponds to an implementation where the
updating equations use the most-updated values of the current iteration, and
not the values from the previous iteration.

376 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
377 % Estimate cluster parameters
378 %−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
379 for subit=1:20,
380 oll = ll;
381 mom0 = zeros(K,1)+tiny;
382 mom1 = zeros(N,K);
383 mom2 = zeros(N,N,K);
384 ll = llr+llrb;
385 for z=1:length(z0),
386 if ¬buf(z).nm, continue; end
387 q = likelihoods(buf(z).f,buf(z).bf,mg,mn,vr);
388 for k1=1:Kb,
389 b = double(buf(z).dat(:,k1));
390 for k=find(lkp==k1),
391 q(:,k) = q(:,k).∗b;
392 end
393 clear b
394 end
395 sq = sum(q,2)+tiny;
396 for k=1:K,
397 q(:,k) = q(:,k)./sq;
398 end
399 ll = ll + sum(log(sq + tiny));
400 cr = zeros(size(q,1),N);
401 for n=1:N,
402 cr(:,n) = double(buf(z).f{n}.∗buf(z).bf{n});
403 end
404 for k=1:K, % Moments
405 % Non−centered moments
406 mom0(k) = mom0(k) + sum(q(:,k));
407 mom1(:,k) = mom1(:,k) + (q(:,k)’∗cr)’;
408 mom2(:,:,k) = mom2(:,:,k)+(repmat(q(:,k),1,N).∗cr)’∗cr;
409 end
410

411 clear cr
412 end
413

414 % Central moments
415 mom1c = zeros(N,K);
416 mom2c = zeros(N,N,K);
417 for z=1:length(z0),
418 if ¬buf(z).nm, continue; end
419 q = likelihoods(buf(z).f,buf(z).bf,mg,mn,vr);
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420 for k1=1:Kb,
421 b = double(buf(z).dat(:,k1));
422 for k=find(lkp==k1),
423 q(:,k) = q(:,k).∗b;
424 end
425 clear b
426 end
427 sq = sum(q,2)+tiny;
428 for k=1:K,
429 q(:,k) = q(:,k)./sq;
430 end
431 cr = zeros(size(q,1),N);
432 for n=1:N,
433 cr(:,n) = double(buf(z).f{n}.∗buf(z).bf{n});
434 end
435 for k=1:K, % Moments
436 % Central moments
437 aux_mn = mom1(:,k)/(mom0(k)+tiny);
438 crc = cr − repmat(aux_mn’,size(q,1),1);
439 mom1c(:,k) = mom1c(:,k) + (q(:,k)’∗crc)’;
440 mom2c(:,:,k) = mom2c(:,:,k)+(repmat(q(:,k),1,N).∗crc)’∗crc;
441 end
442

443 clear cr crc aux_mn
444 end
445

446

447 %fprintf(’MOG:\t%g\t%g\t%g\n’, ll,llr,llrb);
448

449 % Priors
450 %nmom = struct(’mom0’,mom0,’mom1’,mom1,’mom2’,mom2);
451 if exist(’omom’,’var’) && isfield(omom,’mom0’) ...
452 && numel(omom.mom0) == numel(mom0),
453 mom0 = mom0 + omom.mom0;
454 mom1 = mom1 + omom.mom1;
455 mom2 = mom2 + omom.mom2;
456 end
457

458 % load(’execution2.mat’)
459

460 % Mixing proportions, Means and Variances
461 mgX = zeros(size(mg));
462 mnX = zeros(size(mn));
463 vrX = zeros(size(vr));
464 %ovr = vr;
465 for k=1:K,
466 %%%%%%%%%%%%% Original Equations %%%%%%%%%%%%%%%%
467 % −−−−−−−−−−−− Mixing coefficient −−−−−−−−−−−−−−−
468 tmp = mom0(lkp==lkp(k));
469 mgX(k) = (mom0(k)+tiny)/sum(tmp+tiny);
470 % −−−−−−−−−−−−−−−−−− Mean −−−−−−−−−−−−−−−−−−−−−−−
471 mnX(:,k) = mom1(:,k)/(mom0(k)+tiny);
472 % −−−−−−−−−−−−−−−−− Variance −−−−−−−−−−−−−−−−−−−
473 vrX(:,:,k) = (mom2(:,:,k) − ...
474 mom1(:,k)∗mom1(:,k)’/mom0(k))/(mom0(k)+tiny) + vr0;
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475 % For estability
476 %vrX(1,1,k) = mom2c(1,1,k)/(mom0(k)+tiny);
477 %vrX(2,2,k) = mom2c(2,2,k)/(mom0(k)+tiny);
478 %%%%%%%%%%%%% Modified Equations %%%%%%%%%%%%%%%%
479 % −−−−−−−−−−−− Mixing coefficient −−−−−−−−−−−−−−−
480 mg(k) = mgX(k);
481 % −−−−−−−−−−−−−−−−−− Mean −−−−−−−−−−−−−−−−−−−−−−−
482 coefm1 = −mom1c(2,k);
483 coefm2 = −mom1c(1,k);
484 mn(1,k) = mnX(1,k) ...
485 + (vr(1,2,k)∗coefm1)/(vr(2,2,k)∗mom0(k)+tiny);
486 mn(2,k) = mnX(2,k) ...
487 + (vr(1,2,k)∗coefm2)/(vr(1,1,k)∗mom0(k)+tiny);
488 % −−−−−−−−−−−−−−−−− Variance −−−−−−−−−−−−−−−−−−−
489 % >> Variance
490 coefs1 = vr(1,2,k)∗mom0(k) ...
491 + (vr(1,2,k)/(vr(2,2,k)+tiny))∗mom2c(2,2,k) ...
492 − 2∗mom2c(1,2,k);
493 coefs2 = vr(1,2,k)∗mom0(k) ...
494 + (vr(1,2,k)/(vr(1,1,k)+tiny))∗mom2c(1,1,k) ...
495 − 2∗mom2c(1,2,k);
496

497 vr(1,1,k) = vrX(1,1,k) ...
498 + (vr(1,2,k)∗coefs1)/(vr(2,2,k)∗mom0(k)+tiny);
499 vr(2,2,k) = vrX(2,2,k) ...
500 + (vr(1,2,k)∗coefs2)/(vr(1,1,k)∗mom0(k)+tiny);
501 % >> Cross−variance
502 % Coefficients
503 coef3 = mom0(k);
504 coef2 = −mom2c(1,2,k);
505 coef1 = −vr(1,1,k)∗vr(2,2,k)∗mom0(k) ...
506 + vr(2,2,k)∗mom2c(1,1,k) + vr(1,1,k)∗mom2c(2,2,k);
507 coef0 = −vr(1,1,k)∗vr(2,2,k)∗mom2c(1,2,k);
508 % Look for the correct solution
509 solution = solution3th(coef3,coef2,coef1,coef0,1);
510 if ((vr(1,1,k)∗vr(2,2,k)−solution^2)<tiny) || ...
511 abs(imag(solution))>1e−4
512 solution = solution3th(coef3,coef2,coef1,coef0,2);
513 if (vr(1,1,k)∗vr(2,2,k)−solution^2)<tiny || ...
514 abs(imag(solution))>1e−4
515 solution = solution3th(coef3,coef2,coef1,coef0,3);
516 if (vr(1,1,k)∗vr(2,2,k)−solution^2)<tiny || ...
517 abs(imag(solution))>1e−4
518 solution = vrX(1,2,k);
519 end
520 end
521 end
522 % Give values
523 vr(1,2,k) = real(solution);
524 vr(2,1,k) = vr(1,2,k);
525 % Ensure estability
526 vr(:,:,k) = vr(:,:,k) + vr0;
527

528 end
529
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530

531 if subit>1 || iter>1,
532 spm_chi2_plot(’Set’,ll);
533 end
534 if ll−oll<tol1∗nm,
535 % Improvement is small, so go to next step
536 break;
537 end
538 end



166 SPM



Appendix D

Results & Validation

This chapter includes the results of the segmentation for the original method
and modified versions with more details.

First, it is included the evolution of the mixture parameter values at each
iteration in the segmentation of the T1 and T2 MRI scan from the subject f4395.
The used methods comprise the original method and the four versions of the
modified method.

Secondly, it is presented a representation of the clusters for the original and
the four versions of the modified method in the segmentation of the MR scan
from the subject f4395. It must be highlighted that due to the strong bias field
correction, the intensity values are much different.

The third section presents 3 tables with the Dice scores and likelihood values
of the original and modified methods in the segmentation of BrainWeb phan-
toms with several noise levels. In addition, it is included the results for several
probability processing methods, i.e. majority voting and threshold, where the
extracranial class is a compendium of ST, bone and BG.

The fourth section presents and overlapped representation of the confusion
matrix elements for each voxel in the segmentation of the BrainWeb phantoms
by original and v.3 modified method.

Finally, the fourth section presents the effect of the atrophy in the volumes
of several brain tissues.
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D.2 Representation of the clusters for all the tis-
sue classes.

Figure D.7: Representation of the clusters for all the tissue classes done bu
the version 1 of the modified method. The lines correspond to the contour
of the Gaussian cut at FWHM, and weighted by the mixing coefficient. The
contours of the clusters done by the original method are presented with dotted
lines, the centers with the symbol *, and the text labels in red. The version 1
of the modified method presents the contours with solid lines, the center with
the symbol +, and the text labels in blue. The depicted tissues comprise GM
(black), WM (blue), CSF (green), ST (red), bone (yellow), and BG (magenta).
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Figure D.8: Representation of the clusters for all the tissue classes done bu
the version 2 of the modified method. The lines correspond to the contour
of the Gaussian cut at FWHM, and weighted by the mixing coefficient. The
contours of the clusters done by the original method are presented with dotted
lines, the centers with the symbol *, and the text labels in red. The version 2
of the modified method presents the contours with solid lines, the center with
the symbol +, and the text labels in blue. The depicted tissues comprise GM
(black), WM (blue), CSF (green), ST (red), bone (yellow), and BG (magenta).
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Figure D.9: Representation of the clusters for all the tissue classes done bu
the version 3 of the modified method. The lines correspond to the contour
of the Gaussian cut at FWHM, and weighted by the mixing coefficient. The
contours of the clusters done by the original method are presented with dotted
lines, the centers with the symbol *, and the text labels in red. The version 3
of the modified method presents the contours with solid lines, the center with
the symbol +, and the text labels in blue. The depicted tissues comprise GM
(black), WM (blue), CSF (green), ST (red), bone (yellow), and BG (magenta).
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Figure D.10: Representation of the clusters for all the tissue classes done bu
the version 4 of the modified method. The lines correspond to the contour
of the Gaussian cut at FWHM, and weighted by the mixing coefficient. The
contours of the clusters done by the original method are presented with dotted
lines, the centers with the symbol *, and the text labels in red. The version 4
of the modified method presents the contours with solid lines, the center with
the symbol +, and the text labels in blue. The depicted tissues comprise GM
(black), WM (blue), CSF (green), ST (red), bone (yellow), and BG (magenta).
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D.4 Segmentation of the BrainWeb phantoms.

Figure D.11: Representation of the quality of the original segmentation method
for GM, WM and CSF, before Majority Voting. The voxels are presented
in yellow (TP), black (TN), green (FP), and red (FN) depending if their classi-
fication result in comparison with the ground truth. The segmented MRI brain
volumes correspond to the BrainWeb phantoms of T1 and T2 modalities with a
1mm resolution, 3% level of noise and 20% of intensity non-uniformity level.
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Figure D.12: Representation of the quality of the original segmentation method
for GM, WM and CSF, after Majority Voting. The voxels are presented in
yellow (TP), black (TN), green (FP), and red (FN) depending if their classifi-
cation result in comparison with the ground truth. The segmented MRI brain
volumes correspond to the BrainWeb phantoms of T1 and T2 modalities with a
1mm resolution, 3% level of noise and 20% of intensity non-uniformity level.
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Figure D.13: Representation of the quality of the modified version 3 seg-
mentation method for GM, WM and CSF, before Majority Voting. The
voxels are presented in yellow (TP), black (TN), green (FP), and red (FN) de-
pending if their classification result in comparison with the ground truth. The
segmented MRI brain volumes correspond to the BrainWeb phantoms of T1 and
T2 modalities with a 1mm resolution, 3% level of noise and 20% of intensity
non-uniformity level.
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Figure D.14: Representation of the quality of the modified version 3 segmen-
tation method for GM, WM and CSF, after Majority Voting. The voxels are
presented in yellow (TP), black (TN), green (FP), and red (FN) depending if
their classification result in comparison with the ground truth. The segmented
MRI brain volumes correspond to the BrainWeb phantoms of T1 and T2 modali-
ties with a 1mm resolution, 3% level of noise and 20% of intensity non-uniformity
level.
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D.5 Atrophy.

The brain functions decline after certain age in different manners, as the
decrease of short-term memory, verbal ability, and intellectual performance, or
the increase of the reaction time. This lost of capacity is due to the brain
atrophy, i.e. loss of brain parenchyma and changes in the associated anatomical
structures (e.g. decreased efficiency of neurotrasmitters in survival neurons).
Taking into account that the variations of human neocortex volume are equally
distributed among different people, it is possible to study the pattern of changes
on average.

In the ageing process, it is detected a large decrease of cortex volume that
goes together with a large decrease of the pial surface (external boundary of the
cortex) and a small decrease of the neocortical thickness. This process contrasts
with the known effects in the brain of some common diseases, like Acquired
Immune Deficiency Syndrome (AIDS) or Alzheimer Disease (AD), where the
neocortical thickness is the most affected [65] [77]. Thus, it can be isolated the
age-related changes in the brain from diseases that affect the brain.

B. Pakkenberg et al. [62] did a study with 94 human brains from Danish
dead people between 20 years and 90 years old. The study showed that the brain
variation was mostly determined by the gender and age. Specifically for the age,
taking into account the overall life span, it was observed a 12.3% decrease of
cortex volume, 28% of white matter, but not significant variations were found
in neocortical thickness or gray matter volume. In addition, the volume losses
appeared together with an increase of CSF.

Another study of the brain atrophy was done by T. L. Jernigan et al. [33]
with MRI from healthy volunteers aged from 30 to 99 years. The results showed
that the hippocampus losses were significant, and the frontal lobes were affected
by a decrease of cortical volume and an increase of white matter abnormalities.
In addition, the decrease of white matter over the life range in the cerebral and
cerebellar structures was bigger that the gray matter, with 14% in the cerebral
cortex, 35% in the hippocampus, and 26% in the cerebral white matter.

The Figure D.15 depicts the results of this last study as the correlation
between volume and age for different tissues. Each subfigure presents a different
tissue: cerebral cortex, and cerebral white matter. It can be seen a big brain loss
around the 55 years old. The graph shows a scarce number of samples around
the mentioned age because it is usually hard to include an important number
of volunteers in this range of years. This problem is also concerning the CIMBI
projects, where the volunteers in range around 40 years old is limited.
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(a) Estimated volume of cerebral cortex by age.

(b) Estimated volume of cerebral WM by age.

Figure D.15: Estimated volumes related to the age. The filled line corresponds
to the smooth trend and the dashed lines to the variability. Three subjects of
32, 80 and 81 years are highlighted. [Courtesy of B. Pakkenberg et al. [62]]
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Finally, C. R. G. Guttmann [29] evaluated brain tissue of 72 healthy volun-
teers with ages from 18 to 81 years using MRI. The proportion of white matter
of brain older than 59 years was much lower, while the CSF fraction was bigger,
and the gray matter did not suffer a significant variation. These results are sim-
ilar to the ones presented in the previous studies and they are also consistent
with neuropathologic reports in human beings.

Table D.4: Atrophy of the brain related to the ageing, as a measure of the ICC
volume variation of different tissues. Mean value and deviation are presented.
[Data from C. R. G. Guttmann [29]]

Age(%) GM(%) WM(%) CSF(%) Lesion(%)
23.3± 7.6 48.7± 1.8 38.9± 2.8 7.1± 3.1 0.25± 0.13
45.6± 2.7 46.0± 1.4 37.5± 1.8 9.9± 2.0 0.40± 0.17
55.0± 2.3 44.6± 1.9 38.5± 2.2 10.6± 2.0 0.30± 0.13
66.0± 2.9 46.6± 2.3 35.0± 2.7 12.3± 2.9 0.30± 0.10
73.5± 3.0 47.2± 3.3 33.0± 4.1 13.4± 2.1 0.29± 0.11

The results of the study are presented in the Table D.4. It can be seen
how GM volume slightly decreases and the WM suffers an important decrease.
However, there is a in increase of GM after the 50-years that is not expected.
Although, it is not explained in the article, sometimes the increase of GM in old
patients is due to the missclassification of lesions as GM.

As a conclusion, it can be stated that the brain ageing can be char-
acterized by a subtle decrease of GM and WM volume, and a big
increase of CSF. In case that the segmentation shows a severe decrease in
the neocortical thickness or gray matter volume, it could be assumed that the
brain is affected by a disease that induces brain changes not connected to the
aging itself. As the dataset of this thesis only includes healthy brains, it is not
expected GM variations.

In the Figures D.16 and D.17, it is presented a simple linear regression
analysis of the volume age profile of six subjects. Six brains from the CIMBI
database have been segmented by the original and modified v.3 method into
GM, WM and CSF. The volumes of each class are normalized by the ICC of
each subject. The results show a small decrease of GM, an increase of CSF,
and a constant value of WM. However, due to the small used dataset, it is not
possible to infer any further conclusion.
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(a) Regression analysis for the volume age profile of GM.

(b) Regression analysis for the volume age profile of WM.

(c) Regression analysis for the volume age profile of CSF.

Figure D.16: Linear regression analysis of the volume age profile of six sub-
jects. Six brains from the CIMBI database have been segmented by the original
method into GM, WM and CSF.
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(a) Regression analysis for the volume age profile of GM.

(b) Regression analysis for the volume age profile of WM.

(c) Regression analysis for the volume age profile of CSF.

Figure D.17: Linear regression analysis of the volume age profile of six subjects.
Six brains from the CIMBI database have been segmented by the modified v.3
method into GM, WM and CSF.
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Appendix E

Volumes

This chapter presents different brain volumes for several slices in the three
planes (coronal, sagittal, transversal).

• MRI Data. Co-registered MR volumes for T1 and T2 modality from the
scans of the subject f4395.

• Tissue Probability Maps as Templates. In includes 6 TPM’s that are used
as prior templates. They have dimensions 121× 145× 121 and 1.5mm of
spatial resolution. They are done from 471 brains by Cynthia Jongen of
the Imaging Sciences Institute at. Utrecht, NL. Each volume corresponds
to a different tissues class, namely GM, WM, CSF, bone, ST and BG. In
addition, two additional volumes are presented, which correspond to the
overlapping of the different tissues.

• Segmentation of volumes from subject f4395. In includes 6 probability
maps generated from the version 3 of the modified method. The segmen-
tation has been done with default parameters for the data of the subject
f4395. In addition, two additional volumes are presented, which corre-
spond to the overlapping of the different tissues.

• Segmentation of BrainWeb phantoms. Performance results of the original
method and version 3 of the modified method. The slices are presented
before and after Majority Voting.
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Appendix F

Matlab code

This chapter includes the Matlab code of several functions that have been
used to depicts volumes generated by SPM segmentation.

• classify voxels(): Function that coverts a probability map into a binary
map. It applies majority voting or thresholding on the tissue volumes.

• plot volume(): Scrip that plots several slices of one volume in the three
planes (coronal, sagittal and transverse).

• plot volume overlap(): Script that presents the overlap of 2 or three vol-
umes for several planes.

• GenerateRGB(): Function that combines three images into one RGB im-
age with different levels of scaling.



212 Matlab code

classify voxels()

1 function [atlasc,volc,results] = classify_voxels(atlas,vol,th,mask)
2 % Function that asigns the tissue class according to the
3 % generated TPM after the segmentation, thus converts
4 % probability maps into binary maps
5 % atlas: true labels in a cell with four 3D matrices.
6 % GM, WM, CSF, no−brain and BG
7 % vol: segmented volumes in a cell with four 3D matrices.
8 % GM, WM, CSF, no−brain and BG
9 % th: labeling threshold; if th=0, mojority voting

10 % mask: it can be a mask of an intensity map
11 %
12 % example: atlas={GMatlas,WMatlas,CSFatlas,nobrainatlas,BGatlas};
13 % vol ={GMvol,WMvol,CSFvol,nobrainvol,BGvol};
14 % [atlasc,volc,results] = classify_voxels(atlas,vol,0);
15 %
16 % Author: Angel Diego Cuñado Alonso (diegoalonso@ieee.org)
17 % Technical University of Denmark, DTU (2011)
18 %
19

20

21 % Mask
22 if nargin < 4,
23 mask = single(ones(size(vol{1})));
24 end
25

26

27 %%%%%%%%%%%%% Assign tissue labels (atlas) %%%%%%%%%%%%%%%%%
28 % GM, WM, CSF and no−brain voxels
29 atlasc{1} = single(zeros(size(atlas{1})));
30 atlasc{2} = single(zeros(size(atlas{2})));
31 atlasc{3} = single(zeros(size(atlas{3})));
32 atlasc{4} = single(zeros(size(atlas{4})));
33 atlasc{5} = single(zeros(size(atlas{5})));
34 if th==0
35 % Select class according to maximum probability
36 [x,idx] = max([atlas{1}(:), atlas{2}(:), atlas{3}(:), ...
37 atlas{4}(:), atlas{5}(:)],[],2);
38 clear x
39 atlasc{1}(idx==1) = mask(idx==1);
40 atlasc{2}(idx==2) = mask(idx==2);
41 atlasc{3}(idx==3) = mask(idx==3);
42 atlasc{4}(idx==4) = mask(idx==4);
43 atlasc{5}(idx==5) = mask(idx==5);
44 else
45 % Select class according to threshold
46 atlasc{1}(atlas{1}(:)>th) = mask(atlas{1}(:)>th);
47 atlasc{2}(atlas{2}(:)>th) = mask(atlas{2}(:)>th);
48 atlasc{3}(atlas{3}(:)>th) = mask(atlas{3}(:)>th);
49 atlasc{4}(atlas{4}(:)>th) = mask(atlas{4}(:)>th);
50 atlasc{5}(atlas{5}(:)>th) = mask(atlas{5}(:)>th);
51 end
52



213

53 %%%%%%%%%%%% Assign tissue labels (volumen) %%%%%%%%%%%%%%%%%
54 % GM, WM, CSF and no−brain voxels
55 volc{1} = single(zeros(size(vol{1})));
56 volc{2} = single(zeros(size(vol{2})));
57 volc{3} = single(zeros(size(vol{3})));
58 volc{4} = single(zeros(size(vol{4})));
59 volc{5} = single(zeros(size(vol{5})));
60 if th==0
61 % Select class according to maximum probability
62 [x,idx] = max([vol{1}(:), vol{2}(:), vol{3}(:), ...
63 vol{4}(:), vol{5}(:)],[],2);
64 clear x
65 volc{1}(idx==1) = mask(idx==1);
66 volc{2}(idx==2) = mask(idx==2);
67 volc{3}(idx==3) = mask(idx==3);
68 volc{4}(idx==4) = mask(idx==4);
69 volc{5}(idx==5) = mask(idx==5);
70 else
71 % Select class according to threshold
72 volc{1}(vol{1}(:)>th) = mask(vol{1}(:)>th);
73 volc{2}(vol{2}(:)>th) = mask(vol{2}(:)>th);
74 volc{3}(vol{3}(:)>th) = mask(vol{3}(:)>th);
75 volc{4}(vol{4}(:)>th) = mask(vol{4}(:)>th);
76 volc{5}(vol{5}(:)>th) = mask(vol{5}(:)>th);
77 end
78

79

80 %%%%%%%%%%%%%%%%%%%%%%%% Classify %%%%%%%%%%%%%%%%%%%%%%
81 % Dice=(2TP)/(2TP+FP+FN)
82 for i=1:5
83 results{i}.TP = nnz((volc{i}==atlasc{i}).∗(volc{i}==1));
84 results{i}.TN = nnz((volc{i}==atlasc{i}).∗(volc{i}==0));
85 results{i}.FP = nnz((volc{i}6=atlasc{i}).∗(volc{i}==1));
86 results{i}.FN = nnz((volc{i}6=atlasc{i}).∗(volc{i}==0));
87 results{i}.Dice = (2∗results{i}.TP)/...
88 (2∗results{i}.TP+results{i}.FP+results{i}.FN);
89 end
90

91

92 return
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plot volume()

1 function plot_volume(vol,num_slices,opt)
2 % Script that plots slices of the three planes of the brain volume
3 % vol: 3D matrix of the brain intensity values of each voxel
4 % num_slices: total (odd) number of plotted slices per plane
5 % opt: plot option, opt=0 uses imagesc(), opt=1 uses image()
6 %
7 % Author: Angel Diego Cuñado Alonso (diegoalonso@ieee.org)
8 % Technical University of Denmark, DTU (2011)
9 %

10

11 % Default options
12 if nargin < 2, num_slices = 5; end
13 if nargin < 3, opt = 0; end
14

15 figure
16 colormap(gray)
17

18 % Estimate slices to represent (odd number)
19 if mod(num_slices+1,2), num_slices = num_slices+1; end
20 half_slice = round(size(vol)/2)’;
21 step_slice = floor(half_slice/(((num_slices−1)/2)+1));
22 slice = zeros(3,num_slices);
23 slice(:,(num_slices+1)/2) = half_slice;
24 for i=1:(num_slices−1)/2
25 slice(:,((num_slices+1)/2)−i) = half_slice−i∗step_slice;
26 slice(:,((num_slices+1)/2)+i) = half_slice+i∗step_slice;
27 end
28

29 % Coronal
30 for i=1:num_slices
31 subplot(3,num_slices,i)
32 plane=fliplr(rot90(reshape(vol(:,slice(2,i),:),size(vol,1),

size(vol,3))));
33 if opt, image(plane); else imagesc(plane); end
34 title([’Coronal (’,num2str(slice(2,i)),’)’]);
35 axis image; set(gca,’XTick’,[],’YTick’,[]);
36 end
37

38 % Sagittal
39 for i=1:num_slices
40 subplot(3,num_slices,i+num_slices)
41 plane = fliplr(rot90(reshape(vol(slice(1,i),:,:),size(vol,2),

size(vol,3))));
42 if opt, image(plane); else imagesc(plane); end
43 title([’Sagittal (’,num2str(slice(1,i)),’)’]);
44 axis image; set(gca,’XTick’,[],’YTick’,[]);
45 end
46

47 % Transverse
48 for i=1:num_slices
49 subplot(3,num_slices,i+2∗num_slices)
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50 plane = rot90(reshape(vol(:,:,slice(3,i)),size(vol,1),size(vol
,2)));

51 if opt, image(plane); else imagesc(plane); end
52 title([’Transverse (’,num2str(slice(3,i)),’)’]);
53 axis image; set(gca,’XTick’,[],’YTick’,[]);
54 end
55

56 % Maximize figure window
57 set(gcf, ’Position’, get(0,’Screensize’));
58

59 end

plot volume overlap()

1 function plot_volume_overlap(vols,num_slices,opt)
2 % Script that plots several slices of the three planes of the
3 % overlaped brain volume
4 % vols: cell of 3D matrices of brain intensity values, with
5 % maximum 3 co−registered volumes with the same dimensions
6 % num_slices: total (odd) number of plotted slices per plane
7 % opt: plot option, opt=0 uses imagesc(), opt=1 uses image()
8 %
9 % example: plot_volume_overlap({vol1, vol2, vol3},[100,90,100])

10 %
11 % Author: Angel Diego Cuñado Alonso (diegoalonso@ieee.org)
12 % Technical University of Denmark, DTU (2011)
13 %
14

15 % Different number of input volumes
16 switch numel(vols),
17 case 1,
18 Nvol = 1;
19 dim = size(vols{1});
20 vols = {vols{1},zeros(dim,’uint16’),zeros(dim,’uint16’)};
21 case 2,
22 Nvol = 2;
23 dim = size(vols{1});
24 vols = {vols{1},vols{2},zeros(dim,’uint16’)};
25 case 3,
26 Nvol = 3;
27 dim = size(vols{1});
28 otherwise,
29 Nvol = 1;
30 dim = size(vols);
31 vols = {vols,zeros(dim,’uint16’),zeros(dim,’uint16’)};
32 end
33

34 % Default options
35 if nargin < 2, num_slices = 5; end
36 if nargin < 3, opt = 0; end
37



216 Matlab code

38 % Estimate slices to represent (odd number)
39 if mod(num_slices+1,2), num_slices = num_slices+1; end
40 half_slice = round(dim/2)’;
41 step_slice = floor(half_slice/(((num_slices−1)/2)+1));
42 slice = zeros(3,num_slices);
43 slice(:,(num_slices+1)/2) = half_slice;
44 for i=1:(num_slices−1)/2
45 slice(:,((num_slices+1)/2)−i) = half_slice−i∗step_slice;
46 slice(:,((num_slices+1)/2)+i) = half_slice+i∗step_slice;
47 end
48

49 % Extract the images and overlap
50 plane = cell(3,3);
51 planes = cell(3,num_slices);
52 for i=1:num_slices
53 for j=1:3
54 plane{j,1}=fliplr(rot90(reshape(vols{j}(:,slice(2,i),:),dim

(1),dim(3))));
55 plane{j,2}=fliplr(rot90(reshape(vols{j}(slice(1,i),:,:),dim

(2),dim(3))));
56 plane{j,3}=rot90(reshape(vols{j}(:,:,slice(3,i)),dim(1),dim

(2)));
57 end
58 for k=1:3
59 planes{k,i} = GenerateRGB(plane{1,k},plane{2,k},plane{3,k

},2);
60 end
61 end
62

63 % Plot
64 figure
65 colormap(gray)
66 planes_str = [’ Coronal ’;’ Sagittal ’;’Transverse’];
67 slice_order = [2,1,3];
68 for j=1:3
69 for i=1:num_slices
70 subplot(3,num_slices,i+(j−1)∗num_slices)
71 if opt, image(planes{j,i}); else imagesc(planes{j,i}); end
72 title([planes_str(j,:),’ (’,num2str(slice(slice_order(j),i))

,’)’]);
73 axis image; set(gca,’XTick’,[],’YTick’,[]);
74 end
75 end
76 set(gcf, ’Position’, get(0,’Screensize’)); % Maximize figure

window
77

78 end
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GenerateRGB()

1 function rgb_out = GenerateRGB(imageRed, imageGreen, imageBlue, opt)
2 % Function that overlaps three images in different RGB channel
3 % imageRed, imageGreen, imageBlue: 2D matrices of each image
4 % opt=0: original values; opt=1: 255; opt=2: scaled values
5 % Ex. figure; imagesc(GenerateRGB([0 0;0 0],[0,0;0 0],[1 2;3 4],1));
6 %
7 % Author: Angel Diego Cuñado Alonso (diegoalonso@ieee.org)
8 % Technical University of Denmark, DTU (2011)
9 %

10

11

12 % Format images
13 imageRed = double(imageRed);
14 imageGreen = double(imageGreen);
15 imageBlue = double(imageBlue);
16

17 % Scaling factor
18 if nargin < 4, opt=0; end
19 switch opt,
20 case 0,
21 scaling = 1;
22 case 1,
23 scaling = 255;
24 case 2,
25 scaling = (2^8)./[max(imageRed(:)),max(imageGreen(:)),max(

imageBlue(:))];
26 end
27 scaling = cast(scaling,’double’);
28

29 % Initialize red, green, and blue matrices
30 blue = zeros(max([size(imageRed);size(imageGreen);size(imageBlue

)]),’double’);
31 green = blue;
32 red = blue;
33

34 % Scale images
35 red(1:size(imageRed,1), 1:size(imageRed,2)) = scaling(1) ∗

imageRed;
36 green(1:size(imageGreen,1), 1:size(imageGreen,2)) = scaling(2) ∗

imageGreen;
37 blue(1:size(imageBlue,1), 1:size(imageBlue,2)) = scaling(3) ∗

imageBlue;
38

39 % Combine the red, green, and blue components into an RGB image.
40 rgb_out = cast(cat(3, red, green, blue),’uint8’);
41

42 return
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