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Summary 

 

 

This thesis deals with statistical methods and their application on the association between long-

term exposure to traffic-related air pollution (for up to 39 years) in Copenhagen and hospital 

admissions for pneumonia, in a prospective cohort study. The purpose of this study is to 

investigate whether the exposure to air pollution is a risk factor for pneumonia hospitalizations, 

as well as it is associated with recurrent admissions.  

The Danish Cancer Society provided data on 57053 participants of Danish Cancer, Diet and 

Health cohort, aged 50-65 years at baseline (1993-1997), which were followed in Danish 

hospital discharge register for all hospital admissions for pneumonia up to 2010. Traffic 

pollutants considered are nitrogen dioxide (NO2) and nitrogen oxides (NOx), available as mean 

annual levels estimated at residential addresses since 1971. We modelled the association 

between mean NO2 and NOx levels and hospitalizations for pneumonia using the Cox regression, 

in the full cohort and separately for people with and without previous hospital admissions for 

pneumonia and with and without co-morbidities defined by Charlson index.  

In order to explore the association between the exposure to air pollution and the first or 

recurrent pneumonia hospitalizations this thesis contains a variety of statistical survival 

methods both standard and extended. The applied models are the ordinary Cox model, 

Andersen-Gill model, Conditional Andersen-Gill model, Frailty model, and Conditional Frailty 

model. The model are first introduced and then applied.  

The investigation showed that during 12.7 years’ mean follow-up, 3024 (5.7%) out of 53239 

eligible people were admitted to hospital for pneumonia, and among those individuals 626 

(1.2%) had more than one pneumonia admission. Mean NO2 levels were significantly positively 

associated with risk for first pneumonia hospitalization in the full cohort (hazard ratio and 95% 

confidence interval per double mean exposure: 1.25; 1.14-1.36); in 46462 people without 

earlier hospitalizations for pneumonia or co-morbid conditions defined by Charlson (1.23; 1.11-

1.36), and in 6292 people with history of co-morbid conditions defined by Charlson (1.22; 1.02-

1.46).  
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The highest risk was observed in 485 people with a history of pneumonia hospitalizations (1.68; 

1.01-2.81) which led to the idea of investigating the effect of exposure to air pollution on 

recurrent pneumonia hospitalizations. Conditional Frailty model revealed that mean NO2 levels 

were also significantly positively associated with risk for recurrent pneumonia hospitalization in 

full cohort, up to 3 admissions per subject (1.30; 1.19-1.41). 

From these findings we concluded that living in areas with high traffic-related air pollution 

increases the risk of hospitalization for pneumonia. The effect was highest in people with prior 

hospitalizations for pneumonia.  
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Chapter 1 

Introduction 

1.1  Epidemiology and the Burden of Disease 
Epidemiology is the study of how disease is distributed in populations and the factors that 

influence or determine this distribution. The premise underlying epidemiology is that any heath 

condition is not at random; rather certain characteristics of individual predispose a person to, 

or protect against, a variety of different diseases. The characteristics may be primary genetic in 

origin, or may be the result of exposure to certain environmental factor. However, the most 

often the interaction of genetics and environment determine the development of disease. 

Epidemiology informs evidence-based medicine for identifying risk factors for disease and 

determining optimal treatment approaches to clinical practice and for preventive medicine [1].  

Investigating the cause and risk factors for disease, gives valuable information that can be used 

in prevention and reduction of a risk from a disease. Chronic diseases, characterized by long 

duration and slow progression, such as cardiovascular diseases (CVD), cancer, chronic 

respiratory diseases, and diabetes, are by far the leading cause of mortality in the world, 

representing 60% of all deaths [2]. One of the biggest and still unsolved concerns is cancer. Just 

couple of years ago the world’s leading cause of death was CVD disease. However, treatment 

improvements, successful risk factor management, and prevention have reduced CVD incidence 

and cancer has become the number one cause of death with steady rates over recent years [2]. 

During the second half of nineteenth century the cancer registries have been implemented and 

facilitated epidemiological studies which have shown that there is also strong relationship 

between lifestyle, in particular smoking and diet, and cancer [3,4]  

Other diseases also impose large public health burden and present challenges. Chronic 

respiratory diseases are in top ten leading causes of morbidity and mortality in the World. 

Chronic obstructive respiratory disease (COPD), mainly caused by smoking, but also 

occupational and environmental exposures to particles and dust, is projected to be the third 

leading cause of death and the fifth leading cause of disability by 2020 [5]. Asthma and allergic 

diseases are also on rise, both in children and adults [6]. Despite dramatic reduction in 

mortality from infectious disease in this century, respiratory infections still present a big 

problem in developing (low-income) countries [2], but also considerable problem in the 
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developed world. Namely, lower respiratory infection is in top four leading causes of death with 

increasing rates over years [7]. 

1.2  Pneumonia 
The most common infections that can affect the lower respiratory tract are pneumonia and 

bronchitis, whereas influenza affects both the upper and lower respiratory tracts. Pneumonia is 

a form of acute respiratory infection that affects the lungs. The lungs are made up of airways 

and small air sacs with thin walls called alveoli, which fill with air when a healthy person 

breathes, and where oxygen exchange with blood stream takes place. When an individual has 

pneumonia, the alveoli are filled with pus and fluid, which makes breathing painful and limits 

oxygen intake. Pneumonia is caused by a number of infectious agents, including viruses, 

bacteria, and fungi. The symptoms of pneumonia are rapid or difficult breathing, cough, fever, 

chills, loss of appetite, wheezing (more common in viral infections). Pneumonia is age – related 

with the vast majority among those over 65 years [2]. 

During the past decade, hospitalizations with pneumonia have increased by 20–50% in Western 

population. In the USA, pneumonia combined with influenza is the eight leading cause of death 

and the most frequent due to infectious disease [7-9]. Also the European Union recent statistics 

shows very high death rates for pneumonia, which are the highest in the United Kingdom, 

Belgium, Ireland, Portugal and Denmark [10]. With treatment and prevention improvements 

the average life length is increasing, therefore also the number of elderly, as well as the number 

of hospitalizations among older people [2]. The economic burden associated with hospital care, 

medications, and years of work lost due to morbidity and mortality is projected to escalate with 

increasing number of older people with chronic diseases in next few decades [8,11,12]. In 

Denmark, over 14000 people are admitted to hospital for pneumonia annually, and over 1600 

dies from pneumonia, mainly women. Furthermore, the number of people hospitalized for 

pneumonia over last decade is increasing in Denmark, whereas admissions for bronchitis 

remain stable [13]. 

1.3  Air Pollution Epidemiology  
Technological improvements and economical development lead to more comfortable life styles, 

better health care, and constant improvements in life expectancy. However, some drawbacks of 

economical prosperity have introduced new public health challenges; obesity and physical 

inactivity associated with modern lifestyle have contributed to a large CVD burden and recent 

diabetes epidemic [14]. Environment around us has also suffered from technological revolution 

and affected the human health. Side-products of economic development, increasing industrial 

activity, massive growth in transport sector (motorized vehicle and air), and accompanying 

need for more energy have lead to soil, water, and air contaminations which affect human 

health. Environmental epidemiology, defined as the epidemiologic study of the health 
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consequences of exposure that are involuntary and that occur in the general environment (air, 

water, diet, soil, etc.), attempts to explain how environment around us can cause a disease. A 

common feature in environmental epidemiology is that data are observed, and usually involve 

low-level exposure to the general public, which are difficult to measure and difficult to link to 

disease [13]. This is also true for air pollution, which was only recently (in last 60 years) 

recognized as a risk factor for a number of diseases. Air pollution epidemiology is a part of 

environmental epidemiology, discerning the complex link between air pollution and disease 

[15].  

The past air pollution problems (several decades ago) in the western world cities were mainly 

caused by emissions from combustion fossil fuels such as wood and coal burning used for 

domestic (heating and cooking) and industrial purposes. These sources of air pollution have 

been successfully controlled by policies limiting their use and providing alternatives, such as 

introduction of central heating in the major cities in the developed world, which contributed to 

major reductions in pollution for sulfur dioxide (SO2). Along with the reduction on emissions 

from fossil fuels, new threat to clean air both in developed and rapidly industrializing countries 

is now posed by traffic emissions. Petrol and diesel-powered motor vehicles emit a wide variety 

of pollutants, principally particulate matter (PM), carbon monoxide (C0), nitrogen oxide (N0x), 

and volatile organic compounds (VOCs), a mix of affect urban air quality. Traffic pollution 

problems are worsening worldwide, leading accordingly to recent increasing number of 

epidemiological studies focusing on this source of air pollution [16]. 

It is well established that exposures to elevated levels of air pollution over several days can 

exacerbate respiratory and cardiovascular disease triggering hospitalizations and death [17-19]. 

Accumulated effects of air pollution due to chronic, long-varying exposure to air pollution over 

many years have also been shown to cause the development of chronic respiratory and 

cardiovascular disease [17]. Also in Denmark, air pollution was linked to the risk for stroke [20], 

the respiratory diseases, such as asthma with children and adults [2,11], as well as COPD [12].  

Furthermore, the increase in chronic conditions such as heart disease, diabetes, chronic 

obstructive pulmonary disease and cancer have been suggested as important factors underlying 

this increasing trend of pneumonia hospitalizations. 

1.4  Air Pollution and Pneumonia 
The idea that air pollution can cause infectious disease such as pneumonia is rather new. 

Exposure to pollutants in air affects lungs by causing oxidative stress and inflammation in lung 

tissues, which is a biological mechanism behind COPD and asthma association with air pollution 

[11,12,21]. With respect to infectious disease, it is believed that long-varying exposure to air 

pollution and accumulated damage from this exposure in lung tissue predisposes individuals to 
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pneumonia. Specifically, combined with other risk factors, such as age, nutrition, smoking 

habits, alcohol intake, occupational exposure etc., exposure to air pollution reduces the ability 

of organism to defend against viruses and bacteria, especially in elderly, thus increasing the risk 

for pneumonia [22].  Data from animal experiments have illustrated that exposure to nitrogen 

dioxide (NO2) can impair the function of alveolar macrophages and epithelial cells, thus 

increasing the risk of lung infections, such as influenza and pneumonia [23]. 

Epidemiological evidence regarding the link between air pollution and pneumonia is very 

limited. Only single study to date has examined a link between long-term exposure to air 

pollution and risk of pneumonia [24]. This case-control study from Ontario, Canada, has 

recently found a link between long-term exposure to air pollution at home and pneumonia 

hospitalizations among elderly. This study lacked information on long residential address 

history, and thus long-term exposure was defined only as 2 to 9 years mean exposure prior to 

pneumonia diagnoses. Furthermore, inherent limitation of case-control studies is the recall and 

information bias when collecting confounder information retrospectively, after defining cases 

and controls. Finally, Neupane et al. did not have information on co-morbid conditions, which 

are well known to be important determinants for the risk of pneumonia, and possibly modifiers 

of air pollution effect. 

1.5  Purpose of this Study  
Here we studied the association between air pollution at residence for up to 40 years and the 

risk for first ever, as well as recurrent hospital admission for pneumonia in an elderly Danish 

cohort. We present several novel aspects in respect to literature [24]. First, we have a well 

defined large elderly cohort (57000 individuals) with a prospective assessment of risk factors for 

pneumonia. Secondly, pneumonia was assessed objectively from a nationwide hospital register. 

Finally, we tested for the first time whether the effect of air pollution was modified by a 

number of lifestyle factors as well as co-morbidities; and whether people with co-morbidities 

were more susceptible to the effect of air pollution than healthy people (without any disease at 

baseline), using Charlson co-morbidity index. 
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Chapter 2 

Cohort and health outcome 

This chapter consists of introduction to the cohort used in this study and the definition of the 

health outcome of interest – pneumonia. The cohort includes many variables, some of which 

information lie beyond the aim of this study. All relevant variables are described and 

corresponding characteristics have been further investigated. 

2.1 Cohort Studies 
In a cohort study a group of people is identified and followed over a period of time to see how 

their exposures affect their health outcomes. For ethical reasons, randomized people cannot be 

exposed to potentially harmful substance; therefore this is not a randomized study design. This 

type of study, called observational study, is normally used to look at the effect of suspected risk 

factors that cannot be controlled experimentally. For example, in order to study the association 

between some of the personal habits, lifestyle characteristics, uncontrolled exposures and 

occurrence of disease. 

There are two types of cohort studies. A prospective cohort study is where the investigator 

identifies the original population at the beginning of the study and accompanies the subjects 

concurrently through calendar time until the certain point where disease develops or doesn’t 

develop. The problem with this design is a need for long follow-up calendar time. The other 

type of cohort design is retrospective where the exposure is ascertained from past records and 

outcome is ascertained at the time the study has begun. It is also possible to conduct a study 

that is a combination of previous two types. 

2.2 The Danish Diet, Cancer and Health (DCH) Cohort Design  
The Danish Diet, Cancer and Health cohort used in this analysis consists of 57053 people (27178 

males and 29875 females) aged 50-65 years from Denmark, who lived in Copenhagen and 

Aarhus between December 1993 and May 1997. This cohort was conducted to investigate 

relations between lifestyle: dietary components, food and nutrition (by single item or 

combinations) and the incidence of cancer and chronic diseases. First, at baseline (1993-1997) 

all participants filled in a questionnaire concerning lifestyle factors. The questionnaire includes 

basic daily habits and more specific known or suspected risk factors for cancer development, 

such as smoking habits, alcohol intake, diet, occupational history etc. The information from 
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questionnaires is combined with biological specimens in order to investigate genetic 

susceptibility and gene-environment interactions with regard to diet, dietary components, and 

the risk of disease development [25].  

DCH prospective cohort study enables us to analyze diseases other than cancer, by linking 

people under the study to health registries, such as hospital registry. 

2.3 Health Outcome - Pneumonia 
Pneumonia is one of the leading causes of death from infectious disease with increasing rates 

all over the world [9]. Therefore, we are interested it investigating the association between 

lifestyle and air pollution exposure, and the risk for pneumonia hospitalizations in Denmark.  

 

DCH cohort study was primarily conducted for studding the risk of cancer and chronic diseases 

but since pneumonia can occur as co-morbidity in relation to many other chronic diseases, it is 

relevant outcome which explains some of the burden of chronic disease. In favor of this study is 

also the fact that the DHC cohort is constructed and planed to be used for cancer related 

investigations. The participants were aware of that when received the questionnaires, which 

might lead to having the biased answers. Therefore, use of this cohort in studding non-cancer 

related outcome, like pneumonia, reduces possible information and recall bias that could come 

from the awareness of investigated people about DCH cohort’s main use when answering 

questions about confounders.  

 

The unique civil registration number (CPR) allows for linkage of DCH cohort participant to the 

Danish National Hospital Discharge Register for extraction of their hospitalizations and 

corresponding diagnoses, defined by International Classification of Diseases (ICD) codes. To 

obtain date of death or emigration and detailed residential address history from 1971 to 2010 

we have used the Central Population Registry and for geographical coordinates the Danish 

Address Database. ICD is the international standard diagnostic classification of disease given by 

the Worlds Health Organization (WHO) for all general epidemiological, health management 

purposes and clinical use [26]. Relevant diagnosis are pneumonia (ICD-10 codes J12.x-J18.x), 

ornithosis (ICD-10 code A709.x), or legionelosis (ICD-10 code A481.x) occurring between the 

baseline and the end of follow-up, 31st of December 2009. (Corresponding ICD-8 codes are: 

480.xx-486.xx, 0.73.xx, and 471.xx respectively).  
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2.3.1 Danish Health Registries  
All Danish residents have a unique personal identification number called CPR, encoding sex and 

date of birth, which is administrated by the Danish Civil Registration System. Most public 

administrative records use this number for identification and linkage of citizens.  

The Central Population Registry together with the Danish Address Database contains 

information about emigration, death and change of address. 

 The Danish health system provides free health care and the National Health Insurance Service 

Registry (NHISR) contains information about all services provided by general and specialist 

practitioners in Denmark. Furthermore, the National Patient Register (NPR), established in 

1977, is the base of all patient – discharges from the hospitals together with given diagnosis, 

dating back to 1976. Diagnoses are coded corresponding to ICD which has couple of versions 

involving by time. Current classification follows ICD – 10, whereas before 1999 it was ICD – 8. 

The Register of Medical Product Statistics (RMPS), established in 1993 contains information of 

all prescriptions from Danish pharmacies including prescriptions by date, type, and amount. 

2.4 Potential Confounders 
When the relationship between exposure and the outcome of interest has to be examined one 

has to take into account that other factors could influence this relation. These factors are called 

confounders. Confounding occurs when a variable is associated with both the exposure and the 

disease under study. Therefore, in epidemiology the effect of the exposure under study on the 

disease (outcome) can be mixed with that of a third factor that is associated with the exposure 

and an independent risk factor for the disease. The consequence of confounding is that the 

estimated association between exposure and the outcome is not the same as true effect, which 

leads to wrong conclusions, since the effect attributed to the exposure of interest is actually 

caused by something else.  The confounders in some cases can completely remove the effect of 

exposure, but they can also just change the strength of the relationship [1]. 

For studying the effect of air pollution on pneumonia in DCH cohort, we first needed to 

examine which of available personal information could influence the risk of pneumonia 

hospitalization. Thus, before testing the relationship between air pollution exposure and 

pneumonia hospital admissions we need to examine potential confounding of other factors 

(Figure 1).  
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Figure 1: Confounding 

 

First, we considered well established risk factor for any disease age and gender. The risk for 

most diseases, including pneumonia, increases with age. Age at the baseline (from 1993 until 

1997) in modeled as the continuous variable (age as underlying time scale) or categorized in 

two levels around the mean. Gender is known to be a common determinant of disease risk, 

reflecting many factors that differ between genders, including biological differences, but also 

life-style, occupation, utilization of health care, prevention, etc. 

Secondly, lifestyle factors which have been found to be linked to risk of pneumonia in existing 

literature are considered, and these include: body mass index (BMI); smoking habits as smoking 

status, intensity, duration and exposure to environmental tobacco smoke; alcohol consumption 

as status for consuming some or no alcohol as well as intensity; nutrition habits as fruit and fat 

intake given in grams per day; physical activity in hours per week; and occupational exposure.  

Smoking status is defined as never, previously or currently smoker. Smoking intensity was 

calculated by equating a cigarette to 1g, a cheroot or a pipe to 3g, and a cigar to 5g of tobacco. 

Smoking related characteristic is also environmental tobacco smoke (ETS) which is the indicator 

of exposure to second-hand smoke at home or work for minimum 4 hours per day. Intensity of 

alcohol intake is defined as the number of drinks per week. Occupational exposure is defined as 

a minimum of 1 year employment in: mining; electroplating; shoe or leather manufacture; 

welding; painting; steel mill; shipyard; construction (roof, asphalt, or demolition); truck, bus, or 

taxi driver; asbestos or cement manufacture; asbestos insulation; glass, china, or pottery 

Air pollution exposure 

(Explanatory variable) 

  Pneumonia 

(Outcome of interest) 
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manufacture; butcher; auto mechanic; waiter; or cook; and reflects occupation earlier related 

to chronic lung disease, with focus on lung cancer, as this cohort was designed primarily to 

study cancer.  

Additional potential predictor is socio-economic-status (SES) defined as yearly income on 

municipality levels in Copenhagen. 

 

All potential confounders are defined as shown in Table 1.  

 

Risk factor Categories 

Age < 56 vs. ≥ 56 

Gender Female vs. male 

Education  < 8 years 
8-10 years 
≥ 10 years 

BMI Underweight ( < 20 kg/m2) 
Normal ( 20-30 kg/m2) 
Obese ( > 30 kg/m2) 

Nutrition     fruit intake 
                     fat intake 

Mean in 100g/day 
Mean in 100g/day 

 Sports             Not physically active 
< 3.5 hours/day 
≥ 3.5 hours/day 

Smoking Never 
Previously 
Current  < 15 g/day 
Current  15-25 g/day 
Current  ≥ 25 g/day 

ETS Yes / No  

Alcohol No alcohol use 
1-20 drinks/week 
≥ 20 drinks/week 

Occupational exposure Yes / No 

SES Yearly income/municipality 

Table 1: Definition of the potential confounders 
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2.5 Co-morbidity  - Major Chronic Diseases 
The Charlson index is a co-morbidity scoring system that includes weighting factors on the basis 

of disease severity. The system was developed originally as a prognostic indicator on the basis 

of patients with a variety of conditions admitted to a general medical service. It is commonly 

used in outcome studies to account for the impact of co-morbid conditions of patients and has 

been adapted and validated or use with hospital discharge data in ICD databases for the 

prediction of short – and long – term mortality [27].  

The Charlson index includes 19 major disease categories, such as congestive heart failure, 

peripheral vascular disease, COPD, diabetes, tumor, leukemia, AIDS etc., all of which are known 

to increase risk of pneumonia [28]. Additionally three more disease categories relevant for 

cases of pneumonia are included in co-morbidity scoring. Those are diagnosis of Hypertension, 

HIV (in addition to AIDS) and Gastro - oesophageal reflux. All the co-morbid diagnoses are 

presented in Table 2Error! Reference source not found.. 

Since diabetes is quite important risk factor for pneumonia, it needs to be treated more 

carefully [29]. Therefore, diabetes diagnoses are extracted from the Danish National Diabetes 

Register (NDR), which gives more details then using only LPR data. NDR contains information 

from 3 different sources, such as the National Patient Register (NPR), the health insurance 

databases (NHISR) and pharmacies records (RPMS) [30]. 

The Danish National Registry of Patients is used to obtain previous diagnosis for each disease 

included in the Charlson index. We extracted diagnosis for each study member using hospital 

discharges, which are coded according to ICD – 8 and ICD – 10. 
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 Disease ICD 8 ICD 10 Score 

1 Myocardial infarction 410 I21;I22;I23 1 

2 Congestive heart failure 427.09; 427.10; 427.11; 
427.19; 428.99; 782.49 

I50; I11.0; I13.0; I13.2 1 

3 Peripheral vascular disease 440; 441; 442; 443; 444; 445 I70; I71; I72; I73; I74; I77 1 

4 Cerebrovascular disease 430-438 I60-I69; G45; G46 1 

5 Dementia 290.09-290.19; 293.09 F00-F03; F05.1; G30 1 

6 Chronic pulmonary disease 490-493; 515-518 J40-J47; J60-J67; J68.4; 
J70.1; J70.3; J84.1; J92.0; 
J96.1; J98.2; J98.3 

1 

7 Connective tissue disease 712; 716; 734; 446; 135.99 M05; M06; M08; M09; 
M30; M31; M32; M33; 
M34; M35; M36; D86 

1 

8 Ulcer disease 530.91; 530.98; 531-534 K22.1; K25-K28 1 

9 Mild liver disease 571; 573.01; 573.04 B18; K70.0-K70.3; K70.9; 
K71; K73; K74; K76.0 

1 

10 Diabetes type1 
 
Diabetes type2  

249.00; 249.06; 249.07; 
249.09  
250.00; 250.06; 250.07; 
250.09 

E10.0, E10.1; E10. 
 
E11.0; E11.1; E11.9 

1 

11 Hemiplegia 344 G81; G82 2 

12 Moderate to severe renal 
disease 

403; 404; 580-583; 584; 
590.09; 593.19;  
753.10-753.19; 792 

I12; I13; N00-N05; N07; 
N11; N14; N17-N19; Q61 

2 

13 Diabetes with end organ 
damage  -  type1 
                 -  type2 

 
249.01-249.05; 249.08 
250.01-250.05; 250.08 

 
E10.2-E10.8 
E11.2-E11.8 

2 

14 Any tumor 140-194 C00-C75 2 

15 Leukemia 204-207  C91-C95 2 

16 Lymphoma 200-203; 275.59 C81-C85; C88; C90; C96 2 

17 Moderate to severe liver 
disease 

070.00; 070.02; 070.04; 
070.06; 070.08; 573.00; 
456.00-456.09 

B15.0; B16.0; B16.2; 
B19.0; K70.4; K72; K76.6; 
I85 

3 

18 Metastatic solid tumor 195-198; 199 C76-C80 6 

19 AIDS 079.83 B21-B24 6 

(20) Hypertension 400-404 I10-I15 1 

(21) HIV (in addition to AIDS)  B20 1 

(22) Esophageal reflux 530.99 K21 1 

Table 2: Discharge diagnoses translation of the co-morbidity diseases defined by Charlson and additional 3 
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Chapter 3 

Air Pollution 

Air pollution is ubiquitous exposure that affects most people, especially the majority of 

population living in urban areas. Our main interest is to investigate the effect of traffic-related 

air pollution to risk of pneumonia. Therefore, the aim of this chapter is to introduce air 

pollution exposure used in the analysis as a short introduction by its classification, followed by 

data available and used in this analysis. 

Traffic-related pollution is nowadays the major threat to clean air in urban areas. In 

epidemiological studies traffic - related air pollution is defined typically by measure (central) 

exposure or modeled estimated (at residence) exposure to N02 , SO2 , PM2.5 or UFPs, and/or 

more simple proxy such as residential proximity to busy roads, calculated by GIS (Geographic 

Information System) [16]. 

3.1 Classification of Air Pollutants 
Common ambient air pollution can be grouped into two large classes: gasses, which are, 

measured by their chemical composition, and include sulfur dioxide (S02), nitrogen oxide (N0x), 

carbon monoxide (CO), and ozone (O3), and particles (PM), which have mixed and complex 

chemical structure and are thus measured by their physical properties, such as mass and 

number. 

3.1.1 Gasses 
Sulfur dioxide (S02) is prevalent in all raw materials, including crude oil, coal, and ore that 

contains common metals like aluminum, copper, zinc, lead, and iron. In the atmosphere SO2 

originates mainly from combustion of fossil fuels from stationary sources (heating, power 

generation) and in motor vehicles.  

Nitrogen oxide (N0x) is the generic term for a group of highly reactive gasses containing 

nitrogen and oxygen in varying amounts and it is form when fuel is burned at high 

temperatures, as in a combustion process. The primary sources are motor vehicles, and all the 

sources that burn fuels.  

N02 is generated from reaction of NO and O3 in the ambient air and it is a respiratory tract 

irritant that causes a spectrum of adverse health effects, depending on the dose of exposure. It 
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may also contribute to susceptibility to respiratory infections, especially in young and elderly, 

while in confined spaces, severe injury and even death may occur [31].  

3.1.2 Particulate matter 
Particulates, or particulate matter (PM), are tiny particles of solid or liquid suspended in the air. 

It is container or mix of many different components (chemical elements) from various sources, 

with local and regional variation affecting its toxicity. PM is the pollutant that has been most 

studied and most consistently associated with health effects. Particulate matter is commonly 

presented in size cuts, which are given in µm.  

PM2.5 (particles with aerodynamic diameter of 2.5 µm or less) is known as fine particles (FPs). It 

is measured by its mass or mass concentration, typically in unit µm/m3. 

The smallest particles, those with particles aerodynamic diameter of 0.1 µm or less, are known 

as ultrafine particles (UFPs). They are different from the large PM fractions because they 

contribute very little to the mass, but occur in magnitude higher numbers. Thus, UFPs are 

instead of mass, measured by numbers of number concentrations (number of particles/m3) 

[32].  

Deposition of PM is the airways depend on the particle size, anatomy of the airways and 

breathing. Coarse particles are deposited mainly in the upper airways. Particles less than 10 µm 

can be deposited further down in the bronchi, whereas particles with smaller diameters (FPs 

and UFPs) can travel all the way into alveoli, affecting lungs [33,34]. 
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3.2 AirGIS Model 
The Danish air pollution and human exposure modelling system (AirGIS model [35]) is based on 

a geographical information system (GIS), and used for estimating traffic-related air pollution 

with high temporal (an hour) and spatial (individual address) resolution. AirGIS calculates air 

pollution at a location as the sum of three contributors:  

1) Regional background, estimated from trends at rural monitoring stations and from 

national vehicle emissions [36]. 

2) Urban background, calculated from a simplified urban background (SUB) procedure that 

takes into account urban vehicle emission density, city dimensions (transport distance), 

and average building height (initial dispersion height) [37]. 

3) Local air pollution from street traffic, calculated with the Operational Street Pollution 

Model (OSPM) from data on traffic (intensity and type), emission factors for each 

vehicle type and EURO class, street and building geometry, and meteorology [38]. 

 

 

Figure 2: Schematic illustration of the flow and dispersion inside a street canyon (Berkowitz, 2000) 

 

Input data for the AirGIS system come from various sources: a GIS-based national street and 

traffic database, including construction year and traffic data for the period 1960–2005 [39], and 

a database on emission factors for the Danish car fleet [40], with data on light - and heavy - 

duty vehicles dating back to 1960, built and entered into the emission module of the OSPM. A 

national GIS database with building footprints supplemented with construction year and 

building height from the national building and dwelling register, national survey and cadastre 

wind 

Leeward Windward 

 
 

Recirculated pollution 
  

Direct emission 
 

Background pollution
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data-bases, and a national terrain-evaluation model, provided the correct street geometry for a 

given year at a given address. The geocode of an address refers to the location of the front door 

with a precision within 5 m for most addresses. With a geocoded address and a year, the 

starting point is specified in place and time, and the AirGIS system automatically generates 

street configuration data for the OSPM, including street orientation, street width, building 

heights in wind sectors, traffic intensity and type, and the other data required for the model. 

Air pollution is calculated in 2 m height at the façade of the address building.  

The dispersion models used to assess NO2 levels have been successfully validated against 

measured values. It has also applied in several studies, for instance in the studies of asthma, 

lung cancer and COPD in this cohort [11,12]. The AirGIS mode has been validated in two major 

ways. One way was to look at the correlation between modeled and measured half - year mean 

of NO2 concentrations at 204 positions in the greater Copenhagen area, which gave us a 

correlation coefficient ( ) of 0.90 with measured concentrations being on average 11% lower 

than the modeled [37]. We also compared modeled and measured one - month mean 

concentrations of NOx and NO2 over a 12 - year period (1995 - 2006) in a busy street in 

Copenhagen (Jagtvej, 25 000 vehicles per day, street canyon), which showed correlation 

coefficients ( ) of 0.88 for NOx and 0.67 for NO2. The modeled mean NOx concentration over 

the whole 12-year period was 6% lower than the measured [41]. Thus, the model predicted 

both geographical and temporal variation well. 

However, there are always some limitations that we have to be aware of. The exposure 

assessment method considers only outdoor concentrations at the residential addresses but not 

the indoor neither the work address, which might have some effect on the overall exposure. As 

we have no data on work address, outdoor concentrations of NO2 at residence will be used as a 

proxy of personal exposure, which results in some exposure misclassification. The use of 

outdoor levels of air pollution is a gold-standard in air pollution epidemiology [12,17,18,42], 

since personal measurements are expensive and not feasible in cohort studies. Furthermore, it 

has been documented that outdoor concentrations are reasonable proxies of personal 

exposure, since indoor penetration of traffic-related air pollution is high, and correlation 

between personal and outdoor concentrations for particles is high where for gases it should be 

even higher. 
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3.3 Exposure assessment 
The Danish GIS – based air pollution and human exposure modeling system (AirGIS) was used to 

model outdoor concentrations of traffic pollution at the residential addresses since 1971. The 

air pollution concentration values are taken for all cohort members with 80% or better 

residential history. Missing values due to missing address or missing geographical coordinates 

were substituted by the levels calculated for the proceeding address or, when the first address 

was missing, for the subsequent address.   

For each cohort member the exposure was assessed from the residential address history since 

1971, which was used to model outdoor levels of nitrogen dioxide (NO2) and nitrogen oxides 

(NOX) with the Danish AirGIS dispersion modeling system.  

Input for AirGIS model, as already explained in previous section, is: 

 Street / building geometry (street width, distances, building height, open sector) 

 Street network and traffic data (emission factor, density, speed, types, variation 

patterns over time) 

 Meteorology (temperature, wind speed, wind direction, solar influx) 

 

 

Figure 3: The 2½  dimensional Urban Landscape Model of the AirGIS system that automatically generates 
required street configuration and traffic input data for the Operational Street Pollution Model (OSPM) 

The output is air pollution exposure in terms of yearly mean NO2 and NOX concentrations at the 

residential addresses for all cohort members since 1971.  
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We also defined six air pollution proxies based on traffic data at the residential address at 

recruitment (1993 – 1997):  

 The presence of major road (density ≥ 5 000 vehicles/day) within a 50m radius 

 The presence of major road (density ≥ 5 000 vehicles/day) within a 100m radius 

 

 The presence of major road (density ≥ 10 000 vehicles/day) within a 50m radius 

 The presence of major road (density ≥ 10 000 vehicles/day) within a 100m radius 

 

 Traffic load, as the total number of kilometers driven by vehicles within a 100m radius 

 Traffic load, as the total number of kilometers driven by vehicles within a 200m radius 

 

 

Figure 4: Schematic representation of traffic loads in Albertslund, Denmark 
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Chapter 4 

Methodology 
 

This section gives some general theoretical background of analyzing the survival data. The 

statistical approaches used in this study are presented. First, an introduction to survival analysis 

is given, by basic definitions with notation, followed by its most used estimations. Then the 

main concept of the Cox proportional hazard model is presented from the theoretical aspect, 

with interpretation and validation, and also possible extensions as improvements of the basic 

model. 

4.1 Introduction to Survival Analysis 
The techniques for studding the outcome variable of interest as the time until an event were 

primarily developed in the medical and biological sciences. The event of interest in this case is 

most often the occurrence of the disease or death, giving the name Survival Analysis. The 

procedures used for analyzing the survival data are widely used in other areas too. For example 

in economics and sociology, so called duration analysis, or in engineering when one might wish 

to study time in use of a machine, which is called failure time analysis. Nevertheless, our focus 

is on biomedical data analysis [43]. 

In a survival analysis, we usually refer to the time variable as survival time. This name comes 

from the concept that an individual had “survived” over some follow-up time, which can be 

measured as the calendar time in years, months, weeks, days, etc. or alternatively age of 

individual, from the beginning of follow – up period until the event occurs.  It doesn’t have to 

mean that event is a negative individual experience; it can also be the time until person 

recovers, or goes back to work. The person’s survival time is denoted by  , and any specific 

value of interest for the random variable   is denoted by t. 

4.1.1 Censoring and truncation 
The duration of the study is most often limited in time. Therefore, in survival analysis one has to 

consider the subjects key analytical problem called censoring. In essence, censoring occurs 

when we have some information about the individual survival time, but don’t know it exactly. 

Hence, the data consists of complete and incomplete observations so ordinary linear regression 
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or other standard statistical methods can’t be applied and that is why survival data require 

specific statistical theory. 

The incomplete observations are termed censored survival times. The reasons for censoring 

might be when a person does not experience the event before the study end, a person is lost to 

follow – up during the study (e.g. moved) or when a person withdraws from the study because 

of some other event occurs that affects outcome of interest (e.g. death in case of studding the 

certain disease occurrence) or some other reason. We generally refer to this kind of data as 

right – censored. This is simply denoted by indicator variable with value 1 for event occurrence, 

or 0 for censorship. 

Furthermore, in a clinical study the initial event could be time of entry the study, time of 

admission to hospital, time of diagnosis etc, which corresponds to time 0 in the study time 

scale. The set of individuals for whom the event has not occur before the given time t, and who 

has not been censored before t, is termed the risk set at time t. Quite often there is a case of 

having different starting times for subjects under observation [43,44]. Although modeling 

survival data with age as time scale has similar expression in the models with time-on-study or 

calendar time as time scale, implicit mechanisms are many ways different. For example, at a 

given age, some subjects are not yet under observation whereas others may not be anymore. 

Therefore, the number of subjects at risk does not vary monotonically with age and risk sets are 

not nested. This structure defines and an open cohort, under which a subject’s observation is 

conditional to some characteristics at the recruitment, like pre-existing health condition, place 

of birth etc. Thus, using age as the time scale implies delayed entry with left-truncation 

occurring at the age at inclusion. Alternative time scale is calendar time with models adjusted 

for age, however age as underlying time scale is documented as the most unbiased and 

therefore mostly recommended time scale [45].  (Figure 5)  

 

o Censorship 

* Event 

 

 
 

  
Figure 5: Graphical presentation of left-truncated data 
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4.2 Survival function and hazard rate 
The survival data can’t be analyzed by ordinary statistical methods because of censoring and 

truncation. However, the concept for these analyses is not complicated. Two important terms 

needed are survival function and hazard rate.  

Basic terms needed to easier explain the concept are the probability density function (pdf) 

     of a continuous random variable: 

                                                                                                             (4.1) 

 

which describes the relative likelihood for an individual to have an event of interest in the time 

interval         . And cumulative distribution function (cdf) is: 

                                                                                                                            (4.2) 

   

The survival function,     , gives the expected proportion of individuals for whom the event 

has not yet happened by time t, for the predefined set of followed individuals. So, the survival 

function specifies the unconditional probability that the event of interest has not happened by 

time t.  

                                                                                
 

 
                      (4.3)      

The visualization of this can be done by plotting the survival curves of the survival functions. 

Theoretically, time is a continuous random variable ranged from zero to infinity, so that gives 

the smooth curve starting at study time 0 where all the individuals are under the risk, and 

decreasing over time tending to 0 when the time goes to infinity (Figure 6 – left). 

 

Figure 6: Graphical presentation of Survival curves – example 
Left: Smooth curve - in theory; right: Step function – jumps at the end of intervals – real case scenario 



25 

 

In practice the situation is a bit different. The survival curves are step function rather than 

smooth curves with jumps at the end of time intervals. It is also quite usual that the survival 

function decreases towards a positive value at the study end (Figure 6 – right) [43]. 

 The hazard rate,     , gives the instantaneous potential per unit time for the event to occur, 

given that the individuals have been under the risk up to time t. In contrast to the survival 

function, the hazard rate is defined by means of a conditional probability. Assuming that   is 

continuous, that it has probability density, one looks at the individuals who have not yet 

experienced the event of interest by time t and considers the probability of having the event in 

the small time interval stating at             . 

                                               
 

  
                                              (4.4) 

Note that, the hazard rate and survival function are giving opposite information. The survival 

function focuses on not experiencing the event, i.e. surviving, and the hazard rate focuses on 

occurrence of event, i.e. failing; and while the survival curve is a function that starts at 1 and 

declines over time, the hazard rate can essentially be any nonnegative function. The relation 

between hazard and survival function is given as: 

                                                                       
    

    
                                                      (4.5) 

This relation makes it fairly easy to obtain both functions by knowing only one [43,46]. 

 

4.3  Counting process formulation 
 Comparing to the basic description of survival data, where we only account for time to the 

event of interest (  ) and censoring status (  ), the concept of counting processes broads the 

scope of survival analyses to more elaborate processes. Counting process replaces the pair of 

variables         with the pair of functions              , where       represents the number of 

observed events within the interval       for subject   and       the status variable at time   

defined as: 

       
                                                        
                                                                                        

  

Here,      is left-continuous deterministic function based on past – predictable process, whose 

value at any time   is known infinitesimally before  . And      is right-continuous step function 

- counting process.  
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     represents the total number of events precisely at time  , and       the number of events 

at time   for each subject   under observation. Whereas      presents the number of subjects 

under observation and at risk at time   [46,47]. 

             
 
                                                         

 
    

This formulation generalizes analysis to multiple events and multiple at-risk intervals. However, 

the later is out of the scope of this study.  

 

4.4 Estimation 
The most common estimator of the survival function is the Kaplan – Meier estimator, which is 

the product limit method and estimates the survival function directly from the continuous 

survival time.  It is expressed as: 

                                                                   
     

     
                                                        (4.6) 

Where the time interval       is partitioned into smaller time intervals                , 

and        events in the time interval up to time    , and       individuals at risk prior to    

[43].  

Another estimator for the survival function was suggested by Therneau and Grambsch, and that 

is Breslow estimator: 

                                                                     
     

     
                                                      (4.7) 

It is quite similar to Kaplan – Meier estimator when there are many subjects at risk. For the 

finite samples, the relation                holds, since        . 

 

The estimation of hazard rate is in literature proven to be much easier on the cumulative 

hazard 

                                                                              
 

 
                                                     (4.8) 

 instead of hazard function itself, which follows from the fact that it easier to estimate 

cumulative distribution function than probability density function [44]. 
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The Nelson-Aalen is the most common non-parametric estimator of the cumulative hazard 

function based on a right censored data: 

                                                                     
     

     
                                                        (4.9.1) 

Intuitively, this expression is estimating the hazard at each distinct time of event    as the ratio 

of the number of events to the number at risk. The cumulative hazard up to time   is simply the 

sum of the hazards at all event times up to  , and has a nice interpretation as the expected 

number of events in       per unit at risk. This estimator has a strong justification in terms of 

the theory of counting processes [46]. 

 

The relation between cumulative hazard and survival function is                 , where 

the survival function can be based on Kaplan – Meier or Breslow estimate. 
 
The Nelson - Aalen estimator is essentially a method of moments estimator and thereby the 

variance can be estimated consistently by:  

                                                               
     

       
                                                   (4.9.2) 

However, Therneau and Grambsch suggest the alternative as the approximation for the log-

transformation because it improves the accuracy of the confidence intervals.  

 

4.5  Cox proportional hazard model 
The Cox model is a well - recognized statistical technique for analyzing survival data. The 

purpose of the model is to simultaneously explore if there is an effect of one or several 

variables on the survival. The Cox model is semi-parametric that specifies the hazard of     

subject as: 

                                  
                                    

                (5.1) 

 

Where first part is non-parametric, unspecified nonnegative function of time   , which can take 

any form, is called the baseline hazard.    is a covariate for     subject under the observation; 

and   is a   - dimensional column vector of coefficients representing the effect of the 

covariates. The exponential form ensures that the estimates are physically possible, since the 

event rates can’t be negative because once we have the event it can’t “unhappen”. 

The advantages of the Cox model are the simplicity of direct influence of covariates through 

their linear or log-linear combination and flexibility that baseline hazard gives to the model 

since no specific distribution is assumed for the baseline group. 
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Another advantage is very easy interpretation of the regression parameters as relative or log-

relative risks. The value of parameter may be interpreted as the change in relative risk when 

the covariate is increased by one unit and the model is corrected for the other covariates. 

The name proportional hazard model comes from the fact that the hazard ratio is constant over 

time. For two subjects   and   with fixed covariates    and    we have: 

 

                                                           
     

     
 

         

      
    

    

 
                                                      (5.2) 

Proportionality of the hazards is the key assumption of the Cox regression model.  

4.5.1  Estimation 
Because of the semi-parametric nature of the model, one can’t use ordinary likelihood methods 

to obtain estimates. Therefore, for estimating covariates parameters  , Cox developed a 

nonparametric method he called partial likelihood. Estimation of parameter values is then 

obtained by use of maximum partial likelihood estimation [46]. 

 

For uncensored subjects          and censored           , the partial likelihood is 

presented by: 

                                                             
         

                 

 
                                          (5.3) 

 

where       in denominator is summing over all individuals in the risk set       . 

By  log-transforming partial likelihood we get: 

                                                                                     
   

                 (5.4) 

 

naturally called log partial likelihood. 

In general, the partial likelihood is not ordinary likelihood in sense of being proportional to the 

probability of an observed dataset, however it can still be treated as a likelihood for purposes of 

asymptotic inference [46]. 
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The differentiated log partial likelihood      with respect to  , is the     gradient vector 

called score vector of the form: 

                                                                   
 

  
                

                                        (5.5) 

where the expectation is 

                                                             
                   

                 
                                             (5.6) 

 

And the maximum partial likelihood estimator    is found by solving the partial likelihood 

equation:  

        

For the real data with big dimensions this is very demanding and the computer algorithms are 

designed to deal with it. Functions which are used to fit a Cox proportional hazard regression 

model most often use the Newton-Raphson algorithm for solving the partial likelihood equation 

[46].  

In large sample cases the maximum partial likelihood estimators have properties similar to 

ordinary maximum likelihood. In particular,    is in large samples approximately multivariate 

normally distributed around the true parameter value   with a covariate matrix that may be 

estimated by the inverse of the expected information matrix         [44].  

 

4.5.2  Test statistics 
In order to test the null hypothesis        , one may apply the usual likelihood-based tests. 

Three most common test statistics will be presented here. Those are likelihood ratio, score and 

Wald test statistics. 

 The Likelihood ratio test st.:           
                                        

 

 The score test statistics:                 
       

      
        

 

 The Wald test statistics:                 
         

 
             

 

These three test statistics are asymptotically equivalent and all have chi-square distribution 

with p degrees of freedom under the null hypothesis giving the consistent parameters 

estimator    [46,47]. 
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4.5.3  Functional Form 
The Cox model assumes the proportional hazard structure with a log-linear model for the 

covariates, that is, with fixed covariates    : 

            
    

For continuous variables this implies that the ratio is the same for all subintervals on the 

variable scale. However, the data may show the threshold effects, usually for upper and lower 

range. For that reason, one should explore the correct functional form for the covariates.  

One of the simplest suggested approaches to examine if the proportional hazard assumption is 

violated is to plot the residuals from a null model against each covariate separately and 

superimposing a scatter-plot smoother. Intuitively, this is similar to the ordinary plots of 

response variable against each predictor used for uncensored data in linear models. However, 

as in uncensored data cases, this method may fail when correlations are present and also one 

should address appropriate weighting of the observations to account for different follow-up 

time.  

Another approach, which addresses linear and nonlinear relationship of covariates, is by using 

Poisson regression approach. In this case one can use any modeling tools available in programs 

for Poisson regression analysis and tease out the appropriate functional form. This is quite good 

method if the tools for Poisson data exist, but still involves very complex manipulations. 

However, an alternative is to model the functional form directly in the Cox model functions by 

fitting some available functions of the covariates. Particularly useful classes of functions for this 

purpose are regression and smoothing splines as flexible fitting functions. 

Splines are a very good way for exploring nonlinear relationship of covariates. Regression 

splines are a general tool in many statistical softwares, and therefore easy to implement. 

However, even though smoothing splines are easy to understand but they have high 

computational requirements.  Therefore, we restrict ourselves here on regression splines. 

The regression splines have several important properties. One useful property is locality of the 

influence, which, for example, doesn’t hold for polynomials. Then, those curves can be 

constrained to be linear beyond the last control point and that form of spline fit is often called 

natural splines or restricted cubic splines. The spline curves are controlled by the number of 

degrees of freedom and after the choice has been made it can directly be implemented in the 

proportional hazard model. Therefore, this is the most recommended way for analyzing the 

functional form of the covariates, especially in non-linear case. They are easy to fit, and they 

are computed within the Cox model standard tests of hypothesis. Confidence intervals are 

easily added as well [46,47].  
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4.5.4  Testing proportional hazards assumption 
The key assumption of the Cox regression model is the proportional hazard structure. This 

might fail in many ways. Therefore, the assumptions need to be validated in order to verify the 

use of Cox model, i.e. the relationship between subjects for any variable in the model needs to 

be independent of time. 

Plotting the residuals against time is one way of evaluation. This is visualization method where 

a line can be fit to the plot followed by a test for zero slope. If the test shows a slope 

significantly different from zero, one has the evidence of validation of the hazard 

proportionality assumption.  

Furthermore, many statistical softwares have an implemented function for checking the 

proportional hazard assumption, so it is a trivial check when performing the data analysis. It 

gives the test statistic and         for significance. In cases with high number of 

observations this method is more appropriate since the plots require sometimes reduced 

number of observations to be readable [43,46,47].  

 

4.6 Extending the Cox model 
In the ordinary Cox model only one kind of event and just one (first) event occurrence per 

subject is considered. The procedures for this kind of analysis are well-developed, simple to 

implement and interpret, which have very useful properties. However, the concern is still a 

waste of available information and therefore more details could be included. This improves the 

statistical power of the analysis and is used to more detailed investigations, but on the other 

hand the models to be performed are more complex. 

There is number of possible extensions of the general survival models and they are quite 

intuitive. First possible extension is when each subject can have the same type of event 

multiple times; that is recurrent events. E.g. occurrence of the same type of disease for a 

number exposed subjects might be of interest more than only once during the follow-up, since 

the effect of exposure might be stronger after already experiencing the disease.  

Second is called competing risks analysis, which is performed when only one event per subject 

is of interest, but that event might be of different types. E.g. the event of interest might be 

death but from different causes. 

And third kind of extension of the general model is when we have both several events and 

several types of events per subject, which belong to a group of multi - state models. 
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In ordinary Cox analysis of survival data each observation is considered as independent. In case 

of multiple events this becomes a problem when estimating the parameters’ variance, since a 

single subject with multiple events has number of rows which are not independent, and that 

needs to be taken into account. Also, heterogeneity across individuals should be addressed 

because some individuals might be more prone to disease than the others, in relation to some 

known or unknown factors. These are some of the important issues to be addressed when 

extending the ordinary Cox analysis. 

Furthermore, it is important to understand if the data set is unordered or ordered. In case of 

unordered data, there might be correlated groups within the data set, but still the outcome 

within the group is unordered, meaning that the event of interest for all the individuals in the 

group might occur without any within-group-order. On the other hand, ordered data’s expected 

outcome are sequential multiple events of the same type per subject [46]. 

This study has one specific event of interested – pneumonia, which can occur multiple times for 

each subject, so our focus is on the recurrent data. This section will be just a part of all possible 

Cox model extensions, and aims to describe different models for recurrent events of ordered 

data.  

4.6.1  Robust variance for recurrent events 
An important issue to be addressed, when working with multiple events, is the estimation of 

the variance component. The variance estimation for    parameters of the data with recurrent 

events can’t be obtained as it was for a single event per subject, because all the observations 

are no longer independent. Now the observations within each subject with multiple events 

must be considered as a cluster. This can be done by using grouped jackknife as the variance 

estimate for correlated data [46]. 

In general, jackknife is an alternative method used to derive a robust estimate of the variance 

for the Cox model. Jackknifing is a method that calculates the difference between the estimated 

parameters      and the estimates of the parameters leaving one observation out at the time 

(     ). The variance estimation is therefore systematically recomputed for each observation.  

Grouped jackknife does the same but for correlated data. This means, if the observations are 

not independent within a subject, grouped jackknife takes that into account and in every step 

leaves out one group of correlated data at the time, instead of one observation at the time. This 

way it provides a sober and robust estimate of the variance for the parameters in the model. 

However, a disadvantage of jackknife method is from the computational aspect. It is very 

intensive because recomputations are done in each step of estimation. Nevertheless, in some 

statistical softwares (e.g. R, SAS, Stata) there is straight forward implementation, just by 
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introducing cluster term for subjects with multiple events in the model. So the robust variance 

estimate for correlated data has high computational requirement but is possible to be obtained 

[46].  

4.6.2  Models for recurrent events 
The survival data with recurrent ordered outcome, i.e. sequential multiple events of the same 

type over time per subject, is lately of increasing interest. Modeling occurrence of repeated 

events is very important from medical point of view, since many diseases are expected to be 

recurrent [48]. This type of the analysis can be done by several approaches. However, the 

biggest challenge in this case is to set up the data and, in contrast to ordinary Cox model which 

is quite general and simple to use, these models have very high computational requirements.  

The main issues to address when considering recurrent event data is potential correlation 

among events, which violates the Cox model’s assumption that events occur independently, 

and dissimilarity of studied population. This leads to two important consequences: Cox model is 

both biased and inefficient. Therefore variations of the Cox model have been proposed for 

estimation with recurrent events to account for the events correlation and individual 

heterogeneity, those are: 

 Variance-corrected models,  

 Frailty models, and 

 Conditional models 

It is usually suggested to start the analysis with very simple model and proceed using models 

with increasing complexity, by correcting the variance, accounting for events correlation and 

individual heterogeneity. Thus, we present the simple intensity-based model and then more 

complex, extended Cox models of recurrent event analysis: Andersen-Gill, Conditional 

Andersen-Gill; Frailty and Conditional frailty model [46,49]. 

4.6.2. a  Intensity – Based model 

This is the simplest approach based on ordinary Cox model. It has strong assumptions but it 

very easy to implement and visualize. This class is suitable to model the full dynamics of the 

recurrent events process and the likelihood is available like in the general Cox model. It is 

recommended for calendar time data [50].  

The model is defined as 

              
                

 

which is formally identical to the ordinary Cox model for survival data. Data is presented the 

same as in the proportional hazard mode,       as number of event at time   for      subject, 
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      presents at-risk process for      subject prior to time  , and      subject’s covariates   , 

where the subjects  =1,2, … , n are independent. 

Here we allow recurring events per subject which results in several observations per each 

subject. Thus, data set will contain one row for each observation and time intervals correspond 

to time since entry to first event or from the last occurrence of event until a new one, and so on 

until the censoring or end of follow-up. Individuals without events have only a single 

observation and thus one row of data.  

Difference from the ordinary Cox model is in at-risk process      . In time to first event case, it 

would go from one to zero at the time   when an event occurs, and in the multiple events case 

it remains one as events occur. Visual form of this model can be seen on Figure 7, where arrow 

represents and event, and box the at-risk set, which is in this case the same after each event. 

 
Figure 7: The intensity-based model for recurrent data – schematic 

Arrow = event, Box = risk set  

 Even though intensity-based model takes multiple events into account, its disadvantage is that 

it assumes independency between all the events and it doesn’t distinguish when events belong 

to a certain subject.  

 4.6.2. b  Andersen - Gill model 
Very similar to intensity-based model is Andersen-Gill model. It is a counting process model, 

very easy to implement and interpret, but also with strong assumptions. Their schematic form 

is the same (Figure 7).  

Anderson-Gill model also assumes that all events are independent but the improvement 

compared to intensity-based model is that every subject is considered as one individual cluster. 

This way each subject contributes to the risk set for an occurrence of event as long at the 

subject is under observation at the time it experiences the event. Therefore, Andersen-Gill 

model considers correlation due to multiple events per subject by adjusting the standard error 
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estimates using robust variance described in Section 4.6.1. Still, disadvantage of this model is 

that it can’t make the difference between the occurrence of first and second, second and third 

event and so forth. So, the only improvement that this model gives is in robust variance 

estimation [46]. 

This variance-corrected model presents one way of dealing with the efficiency problem 

produced by heterogeneity across individuals. Even though Andersen-Gill corrects the variance, 

it still does not incorporate the heterogeneity into the estimates themselves and therefore 

remain biased [49].  

4.6.2. c  Frailty model 
In contrast to variance-corrected models, such as Andersen-Gill, frailty or random effect models 

deal with subject’s heterogeneity by making assumptions about frailty distribution and 

incorporating it into the model estimates. The idea of frailty model is to consider that 

individuals are dissimilar, i.e. some subjects are more susceptible to experience the event of 

interest than are others, and that some are more likely to have second, third and so forth 

event, than are others. To consider the possible heterogeneity of a subject, the distribution can 

be at least approximated [49].  

To visualize this approach we can again using arrows as events and boxes as individuals, and the 

schematic form is as presented in Figure 8. 

 

Figure 8: The frailty model for recurrent data – schematic 
Arrow = event, Box = risk set  
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The basic concept of frailty model is to add an unmeasured random effect in the hazard 

function to account for heterogeneity in subjects. Therefore, the structure of frailty model 

corresponds to proportional hazard framework with additional random effect as a continuous 

variable that describes excess risk or frailty for individuals.  

 

It has the form: 

                                                                       
                                                            (5.7) 

 

where    is a frailty term from a probability distribution with mean 0 and variance 1,   vector 

of coefficients, and again,       is the baseline hazard function,   vector of coefficients and    

matrix of observed covariates. For zero parameter   we get standard proportional hazard 

model, and if it’s not zero then we allow for unmeasured factors, which affect the hazard rate. 

 

When considering the same model in another form: 

                                                                             
                                                       (5.8) 

where        , we can see that frailty term acts multiplicatively on the hazard rate. The 

hazard rate is now conditional on both the covariates and the frailty. The assumption is that the 

distribution of    needs to be specified with mean 1 and unknown variance equal to some 

parameter  . This parameter is a measure of heterogeneity of the subjects. The event times are 

assumed to be independent conditional on the chosen parametric distribution, so inference 

may be made in standard fashion. The distribution of frailty term can in general be any positive 

distribution, such as Gaussian, t distribution or the most often used gamma distribution [43,49].  

4.6.2. d  Conditional models 
When analyzing medical data, it is frequently the case of having repeated events but correlated. 

This violates the ordinary Cox model’s assumption of all observations being independent. 

Therefore, the conditional models were proposed. 

The main assumption of conditional model is that events are correlated, meaning that subject 

cannot be at risk for second event before it experience the first and so on; in general, a subject 

is not at risk for     event before the       event occurs. To accomplish this each event is 

assigned to a separate stratum which allows the underlying intensity function to vary from 

event to event. Schematic form of conditional model for a subject with recurrent events is 

presented in Figure 9. 
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Figure 9: The conditional model for recurrent data – schematic 

Arrow = event, Box = risk set  

 

By accounting for events dependency we can improve variance-corrected models as well as 

random-effect models. Therefore, presented Andersen-Gill and frailty model can be stratified 

on event number and which leads to more appropriate models for fitting the recurrent data. 

Thus, these models are called Conditional Andersen-Gill and Conditional frailty model [46,49]. 
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Chapter 5 

Results 

This chapter presents main findings of this thesis. We start with description of the study 

population and pneumonia incidence rates. Then, the explorative analysis of cohort members’ 

characteristics and air pollution exposure is given. And finally, we present results of the 

modeling association between air pollution exposure at home over many years and risk for first 

and multiple hospital admissions for pneumonia in DCH cohort. 

5.1  Study population and event incidence 
Study population for this study consisted of 57053 DCH cohort members aged 50 – 65 years and 

who lived in Copenhagen or Aarhus between December 1993 and May 1997, who were 

followed in the Danish Hospital Discharge Register until the event (pneumonia hospitalizations), 

emigration or death  registered in CPR (censoring date), or 31st of December 2009. Several 

exclusion criteria were applied prior to definition of final study population. Initially, 571 people 

have excluded due to history of cancer before baseline. We have also excluded 962 cohort 

members for missing residential address at recruitment, 948 for whom less than 80% of 

residential address history was available from 1971 until the end of follow-up, and 1333 with 

missing information on one or more covariates, giving the of 53239 people eligible for the 

study. 

Of 53239 people we have found 3024 (5.7%) cases of admitted DCH cohort members for the 

first pneumonia between baseline and 31st of December 2009, with an average follow-up of 

12.7 years. The overall incidence rate was 4.5 cases per 1000 person-years. Among 3024 

individuals 626 (1.2%) had more than one pneumonia admission, that is repeated events. The 

repeated event (new hospital admission for pneumonia) was defined as at least 30 days after 

previous pneumonia hospitalization, which was suggested by medical experts as reasonable 

time window. In this cohort, there are up to 10 pneumonia cases per person during follow-up.  

To be able to study whether association between air pollution and hospitalizations for 

pneumonia is modified by some other pre-existing health condition; we have performed the 

analysis on different subsets of DCH population (Table 2). First, we consider dividing study 

population into healthy sub-population (no disease prior to baseline) and those with prior 

disease, and defined the co-morbid conditions by Charlson index of diseases before and after 
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baseline. See Section 2.5 and Table 2 for precise definition of co-morbidity in this cohort by 

Charlson index. We have found that of 53239 total people on study, 46947 (88.2%) individuals 

had no co-morbid diseases before baseline and were considered healthy population, whereas 

6292 (11.8%) had co-morbid conditions before baseline. Secondly, we considered the cases of 

pneumonia hospitalizations before the baseline, since we want to examine if air pollution effect 

differs for healthy individuals and ones with history of this specific disease. Of total of 53239 

people, 46462(87.3%) individuals did not have history of hospital admissions for pneumonia, 

whereas 485 (0.9%) individuals were admitted to hospital for pneumonia before baseline. 

 

5.2  Descriptive Data Analysis 
Before performing the main analysis we performed descriptive-analysis in order to describe the 

cohort data, air pollution exposure, and event incidence in DCH. Therefore, an exploratory data 

analysis is conducted to determine confounders, their effect on air pollution, and the 

relationship between pollution levels and the risk of experiencing pneumonia.  

5.2.1  Testing the potential confounders  
We needed to distinguish between effect of exposure to air pollution as the main risk factor for 

pneumonia, and potential effect of some characteristics of subjects under observation, which 

might affect air pollution - pneumonia association. To be able to do that we first need to test 

potential confounders. The covariates which we tested are recognized risk factors for 

pneumonia [51], and are presented by their definition and categorization used in this analysis, 

in Table 1. Furthermore, Table 3 shows distribution of these covariates in DCH cohort for total 

population and population subgroups considering history of pneumonia and Charlson index 

before baseline. 

Risk factor Categories Total population 
          

No pneumonia 
no CI diseases 
          

Pneumonia 
no CI diseases 

        
Age < 56 years 

≥ 56 years 
23923 (48.69%) 
27316 (51.31%) 

23343 (50.24%) 
23119 (49.76%) 

204 (42.06%) 
278 (57.94%) 

Gender Female 
Male 

27857 (52.32%) 
25382 (47.68%) 

24803 (53.38%) 
21659 (46.62%) 

258 (53.20%) 
227 (46.80%) 

Education  < 8 years 
8-10 years 
≥ 10 years 

17546 (32.96%) 
24586 (46.18%) 
11107 (20.86%) 

14700 (31.64%) 
21741 (46.79%) 
10021 (21.58%) 

156 (32.16%) 
230 (47.42%) 
99 (20.42%) 

BMI Underweight  
Normal  
Obese  

1906  (3.58%) 
43625 (81.94%) 
7708 (14.48%) 

1612 (3.47%) 
38519 (82.90%) 
6331 (13.63%) 

32 (6.60%) 
368 (75.88%) 
85 (17.52%) 



  40 

 

Nutrition     fruit 
                     fat 

Mean intake 
Mean intake 

181.63 g/day 
 85.29 g/day 

182.39 g/day 
85.21 g/day 

179.32 g/day 
87.17 g/day 

 Sports             Not ph. active 
< 3.5 h/day 
≥ 3.5 h/day 

24387 (45.81%) 
23598 (44.32%) 

5254 (9.87%) 

20560 (44.25%) 
21225 (45.68%) 

467 (10.07%)  

243 (50.10%) 
188 (38.76%) 
54 (11.13%) 

Smoking Never 
Previously 
Current: 
 < 15 g/day 
15-25 g/day 
≥ 25 g/day 

18876 (35.46%) 
15265 (28.68%) 

 
9813 (18.43%) 
6497 (12.20%) 
2782   (5.23%) 

17210 (37.05%) 
13087 (28.17%) 

 
8396 (18.07%) 
5429 (11.68%) 
2334 (5.03%) 

131 (27.01%) 
152 (31.34%) 
 93 (19.18%) 

 
 65 (13.40%) 
 44 (9.07%) 

ETS Yes 
No 

34148 (63.14%) 
19091 (35.86%) 

29283 (63.03%) 
17179 (36.97%) 

331 (68.25%) 
154 (31.75%) 

Alcohol No alcohol 
1-20 dr./week 
≥ 20 dr./week 

4435 (8.53%) 
36706 (70.55%) 
10885 (20.92%) 

3719  (8.16%) 
32381 (71.04%) 
  9480 (20.80%) 

322 (68.80%) 
 39  (8.34%) 

107 (22.86%) 

Occupational  
exposure 

Yes 
No 

14904 (27.99%) 
38335 (72.01%) 

12346 (26.77%) 
34026 (73.23%) 

134 (27.63%) 
351 (72.37%) 

SES Mean income 
(10000dkk/year) 

   

Table 3: Characteristics of Diet, Cancer and Health cohort for incidence of pneumonia and Charlson index 
diseases at follow-up 

 

The analysis of potential confounding effects is conducted using univariate Cox proportional 

hazard model 

            
    

for covariate   . The effects of all potential confounders by hazards rates, together with 

corresponding 95% - confidence intervals, and their significance level are given in Table 4. The 

univariate Cox analysis shows significant effect of most of tested covariates.  

All covariates except socio-economic status (SES) at neighborhood level showed significant 

association with hospitalization for pneumonia. High education, fruit intake and physical 

activity had significant preventive effect, whereas BMI, fat intake, alcohol intake, occupational 

exposure, and especially smoking significantly increased the risk for pneumonia 

hospitalizations. According to these results, the final models for testing the effect of exposure 

to air pollution on hospital admission for pneumonia should be corrected for all confounders.  

Socio-economic status (SES) was not associated with hospital admissions for pneumonia, which 

may be explained by the fact that SES was defined as an average income at municipality level. 
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However, pneumonia is known as age-related disease and this is elderly cohort, so the 

independence can’t be assumed. Also age in only two levels may not be enough, so we will still 

correct the final models for age by using it as underlying time scale, which is a typical unbiased 

time scale for cohort studies [45,52].  

Risk factor Categories HR (        )           

Age < 56 years 
≥ 56 years 

1 
0.94 (0.85 – 1.04) 

 
      

Gender Female 
Male 

1 
1.23 (1.16 – 1.33) 

 
          

Education  < 8 years 
8-10 years 
≥ 10 years 

1 
0.84 (0.78 – 0.91) 
0.80 (0.72 – 0.88) 

 
          
          

BMI Normal ( 20-30 kg/m2) 
Underweight ( <20 kg/m2) 
Obese ( >30 kg/m2) 

1 
2.03 (1.75 – 2.35) 
1.18 (1.07 – 1.30) 

 
        

          

Nutrition     fruit 
                     fat 

Mean intake (100 g/day) 
Mean intake (100 g/day) 

0.93 (0.90 – 0.95) 
1.34 (1.20 – 1.51) 

          
          

 Sports             Not ph. active 
< 3.5 h/day 
≥ 3.5 h/day 

1 
0.68   (0.67 - 0.86) 
0.76   (0.65 - 0.87) 

 
         
          

Smoking Never 
Previously 
Current < 15 g/day 
Current 15-25 g/day 
Current ≥ 25 g/day 

1 
1.33     (1.20 - 1.48) 
1.96     (1.76 - 2.17) 
2.68     (2.40 - 2.99) 
3.10     (2.69 - 3.56) 

 
          
        
        
        

ETS No 
Yes 

 
1.665    (1.53 - 1.81) 

 
        

Alcohol 1-20 drinks/week 
No alcohol use 
≥ 20 drinks/week 

1 
1.27     (1.13 - 1.44) 
1.36     (1.25 - 1.48) 

 
         
          

Occupational  
exposure 

No 
Yes 

1 
1.34 (1.25 – 1.45) 

 
           

SES Mean income 
(10000dkk/year) 

 
1.02 (0.91 – 1.13) 

 
      

Table 4: Univariate Cox analysis for potential confounders 
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Since the Cox proportional hazard model assumes log-linear structure for covariates we also 

need to consider their functional form. For that reason continuous variables are interesting to 

be analyzed in more detail to make sure we have the right form used in the models. As 

discussed in 4.3.3, good way to check the functional form is by fitting regression splines directly 

into the Cox model.  

From all defined confounders we decided to adjust for, first we addressed the form of age, as 

an important continuous variable. As already mentioned, this is the elderly cohort, so the risk 

for pneumonia is not expected to be different for different age groups. Therefore, there is no 

need for changing the form of age and models are adjusted for age as a linear function.  

Second interesting confounder is body mass index (BMI) of the study participants, as known 

pneumonia predictor [51]. It is continuous variable categorized in three levels, underweight, 

normal and obese. The assumption of linearity might be wrong here, since underweighted and 

obese people are proven to have higher chances to suffer from diseases. Therefore the 

functional form is presented by fitting restrictive cubic spline with 3 degrees of freedom (df) 

(Figure 10). It can be seen that the risk for pneumonia is not increased linearly with increasing 

BMI, but is low for normal BMI, whereas both low and high BMI are associated with increased 

risk for pneumonia,  Due to this violation of linearity, in this study we modeled BMI with spline, 

allowing for U shape. 

 

Figure 10: BMI functional form for DCH members – Original BMI values (left)  
and fitted restricted cubic spline with 3 df (right) 
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5.2.2  Air pollution exposure 
In DCH cohort, traffic-related air pollution is given at residential addresses for participants in 

two ways. First, the modeled exposure (airGis dispersion model) to nitrogen dioxide (NO2) and 

nitrogen oxides (NOx) available as yearly average values since 1971 for all the addresses in 

Copenhagen are the main exposure of interest in this study. Secondly, a more naive proxies pf 

exposure to traffic-related air pollution were defined as indicators of presence of major roads 

within 50 and 100m radius around the residence at baseline address, as well as, the intensity of 

traffic around the participants’ residential addresses at baseline. 

Personal exposure to NO2 and NOx for DCH cohort members was defined for analyses as 

cumulative mean of annual mean values since 1971 until the event, censoring date or end of 

follow-up (31th of December 2009). These mean levels varied widely among cohort members 

(Figure 11). 

 
Figure 11: Frequencies of 39-year accumulated mean levels of original and log-transformed nitrogen dioxide 

(NO2) and nitrogen oxides (NOx) at residences of 53239 DCH cohort members 
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From frequency plots (Figure 11 – upper panel) we can see very skewed distributions, i.e. there 

are not many observations with very high exposure values for both NO2 and NOx. Therefore, 

log-transformation of NO2 and NOx levels was performed and used in the analyses.  

Since the main aim is to investigate what is the effect of exposure to air pollution on the risk for 

pneumonia in DCH cohort, clear and easy interpretation of resulting rates is of course very 

important. Log-transformation is then a good choice, because it does not change the results, it 

deals with distribution skewness and is very easy to interpret. We used logarithm with base 2 

transformation, which gives estimated effect rates when doubling the exposure values (Figure 

11 – bottom panel).  

Moreover, the functional form of the relationship between NO2 and NOx and pneumonia is 

expected to be linear (from existing literature), and was estimated and presented in Figure 12, 

with the original mean values of the left panel and log-transformed version on the right. 

Transformation clearly improves the functional form, especially for NOx values. NO2 becomes 

very closer to linear, and NOx also until certain value where it becomes constraint. The behavior 

on the right end of NOx is explained by very few observations with quite high exposure values.   
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Figure 12: Functional form of mean original and log-transformed NO2 and NOx exposure values in DCH cohort 

 

The other proxy of exposure to air pollution data is based on traffic intensity data around the 

residence at baseline (time of recruitment into the cohort). We have defined indicator variables 

for the presence of major roads (those with traffic density of 10.000 and 5.000 vehicles per day) 

within 100m and 50m radius around the residential addresses, as well as the traffic load 

vraibles, which is the total number of kilometers driven by vehicles within 200m and 100m 

radius around residential addresses of cohort members at requirement.  

Distribution of traffic-related air pollution exposure for DCH cohort members by NO2 and NOx 

levels and traffic proxies is presented in Table 5. 
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Lengths of 
exposure 

Air pollution Total population 
          

 

No pneumonia 
no CI diseases 
          

Pneumonia 
no CI diseases 

        

Modeled     and 

     exposure 
 

Mean (SD)      Median 
 

Mean (SD)     Median 
 

Mean (SD)      Median 

39 years 
(1971 - ) 

             
            

17.52 (5.42)       15.80 
29.65 (22.23)     22.51 

17.47 (5.40)       15.76 
29.50 (22.12)     22.51 

17.85 (5.72)       15.83 
30.87 (22.68)     23.03 

29 years 
(1981 - ) 

             
            

18.80 (6.35)       16.32 
31.70 (26.59)     23.04 

18.74 (6.32)       16.25 
31.51 (26.44)     22.88 

19.15 (6.71)       16.50 
32.99 (28.49)     24.10 

19 years 
(1991 - ) 

             
            

18.74 (6.90)       15.79 
31.52 (29.42)     21.71 

18.69 (6.88)       15.79 
31.35 (29.32)     21.46 

19.04 (7.29)       15.79 
32.86 (31.68)     20.60 

1 year mean 
at baseline 

             
            

17.19 (5.19)       15.42 
28.76 (21.44)     22.17 

17.15 (5.17)       15.38 
28.61 (21.32)     22.06 

17.51 (5.46)       15.68 
29.91 (22.77)     22.51 

1 year mean 
at end-date 

             
            

16.92 (5.21)       15.18 
27.68 (20.17)     21.45 

16.88 (5.19)       15.12 
27.52 (20.04)     21.31 

17.28 (5.55)       15.33 
28.94 (21.87)     21.82 

1 year mean 
at baseline 

 
Mean (SD)      Median 

 
Mean (SD)     Median 

 
Mean (SD)      Median 

Traffic load 
 (105 vehicles km/day) 

within 100m radius 

 
10.88 (17.31)       3.48 

 
10.72 (17.24)       3.37 

 
11.15 (17.33)       3.89 

Traffic load  
(105 vehicles km/day) 
within 200m radius 

 
46.30 (54.00)     25.58 

 
45.75 (53.78)     24.95 

 
46.24 (55.40)     22.66 

1 year mean 
at baseline 

 
No. of cases (%) 

 
No. of cases (%) 

 
No. of cases (%) 

Major road (5000 v/day)  
within 50m radius 

 
8754 (16.44) 

 
7536 (16.22) 

 
86 (17.73) 

Major road (10000 v/day) 
within 50m radius 

 
4317 (8.11) 

 
3699  (7.96) 

 
47  (9.69) 

Major road (5000 v/day) 
within 100m radius 

 
16849 (31.65) 

 
14471 (31.15) 

 
156 (32.78) 

Major road (10000 v/day) 
within 100m radius 

 
9023 (16.95) 

 
7671 (16.51) 

 
92 (18.97) 

Table 5: Description of air pollution exposure in Diet, Cancer and Health cohort for  
incidence of pneumonia and Charlson index diseases at follow-up 
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5.2.3  Cumulative hazard rates and Survival curves 
In exploring the data, it is recommended to start with some simple univariate analysis and have 

a look at the shape of survival curves and hazard rates of covariates (predictors). Kaplan-Meier 

survival estimates give the insight into the shape of survival functions and Nelson-Aalen 

estimates of cumulative hazards for each predictor.  

Figure 13 presents Kaplan-Meier survival and Nelson-Aalen cumulative hazard, based on the null 

Cox model of DCH cohort data. The survival function shows the expected survival over the time, 

i.e. time in the study (age as time scale) without experiencing pneumonia, and cumulative 

hazard gives us information about event intensity. 

 

Figure 13: Survival curve (left) and Cumulative hazard (right) based on null Cox Model 

 
Note that survival curves and hazard rates are giving information from the opposite 

perspectives, which have predefined relationship. Thus, knowing one we can easily calculate 

the other because cumulative hazard is simply negative logarithm of the survival (      

          ). Therefore, we will for simplicity analyze only cumulative hazards further on.  
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It is important to explore the difference in cumulative hazards among factors of air pollution 

exposures which is our main predictor of interest, and also for all confounding variables 

relevant for this study.  

The exposure assessment of log-transformed NO2 and NOx in DCH cohort is grouped in quartiles 

and corresponding Nelson-Aalen estimates of cumulative hazards are presented in Figure 14. 

We can see that for first 5 to 10 years (from age of 50 until age of 55 – 60) all exposure groups 

are almost identical and intensity of pneumonia hospitalizations among DCH cohort members is 

low. From the age of 60, the intensity functions are increasing and higher air pollution exposure 

values have higher event rates. We have observed more pneumonia hospitalizations among 

people with higher air pollution exposure, and this result is consistent with our hypothesis.  

 

Figure 14: Cumulative hazard functions of exposure grouped in quartiles of DCH cohort 

 

The confounders with most significant effect on risk for pneumonia are discovered to be BMI, 

smoking and alcohol, and therefore cumulative hazard functions and their 95% confidence 

intervals of each of these are presented here, Figure 15, Figure 16 and Figure 17. The plots for the 

rest of covariates with confounding effect can be found in the Appendix C. 
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Figure 15: Cumulative hazard functions for BMI of DCH cohort members categorized in three groups 

 

Figure 16: Cumulative hazard functions for smoking habits of DCH cohort members categorized in five groups 
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Figure 17: Cumulative hazard functions for alcohol intake of DCH cohort members categorized in three groups 

 

Estimated cumulative hazards for BMI of DCH cohort members show noticeable difference for 

underweight group comparing to the other two, except at the beginning of the interval, where 

all are very similar. This implies that underweighted people are more likely to have higher 

intensity rate for pneumonia hospitalizations than the others. 

Next, we observed that smoking status of study participants is very important pneumonia 

predictor. Cumulative hazard rates reveal that smoking has very bad influence on pneumonia 

hospitalizations, meaning that pneumonia occurrence is more frequent for intensive smokers. 

Smoking more than 15 grams of tobacco per day has the highest pneumonia rates. This result is 

consistent with the fact, that smoking can make a serious damage to the lungs, and lead to 

respiratory diseases. 

The alcohol consumption is defined as number of drink per week for an individual. From 

estimated cumulative hazards we can see that middle group of 1-20 drinks per week has 

noticeable lower event intensity compared to other two. Non-drinkers and people with high 

alcohol consumption, more than 20 drinks per week, have very similar rates and are more likely 

to experience pneumonia. At the first look, it might seem strange to have group of people that 
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do not consume alcohol with so high event intensity. However this may be due to the fact that 

some of them can be already sick, even “too sick to drink”, since pneumonia can occur as co-

morbidity in relation to many other chronic diseases, or had former alcohol abuse [51].  

5.3  Time to first event analysis using ordinary Cox model 
The design of this analysis of DCH cohort data includes follow-up since time of recruitments 

until the first pneumonia hospitalization, or censoring caused by loss to follow-up by death or 

emigration, or the end of follow-up (31st of December 2009). The Cox analysis has been 

performed in order to investigate if there is an association between exposure to air pollution 

caused by traffic, and hospital admissions for pneumonia in Copenhagen area.  

Considering the confounders of cohort characteristics, there are three versions of fitted Cox 

model. First simple model was only adjusted for age. Second model was adjusted for age and 

for confounders which are known risk factors for pneumonia and are related to air pollution in 

terms of inhalation of harmful particles lungs, and include smoking status, duration and 

intensity, environment tobacco smoke (ETS) and occupational exposure. And the third model 

was adjusted for all relevant confounders. 

The risk for experiencing pneumonia associated to traffic-related air pollution exposure of DCH 

cohort members is investigated in two ways. First, the risk associated with the modeled 

exposure to NO2 and NOx available as yearly mean since 1971, and defined as cumulated mean 

in several exposure lengths. And secondly, more naïve proxies of exposure to air pollution were 

defined from data on traffic density around residence at baseline address (time to recruitment), 

which are describing the presence of major roads and traffic intensities around residential 

addresses of study participants.  

5.3.1  Association between NO2 and NOx  exposure and first 

pneumonia occurrence in DCH cohort 
Looking at traffic proxy of NO2 and NOx exposure first, we have modeled the exposure length of 

total cohort population (     ) in several ways. Using full available data of measured air 

pollution levels in Copenhagen since 1971 up to the end of follow-up, we have calculated 

cumulative mean exposure of up to 39 years. Secondly model includes exposure since 1981, 

which is at most 29 years when the study was ended, where we leave 10 years of so-called 

“burn-in” period. And third, up to 19 years long exposure time, from 1991 which is just couple 

of year before the recruitment. There are also two simple yearly exposure models, pollution 

level for the year at recruitment and for the year of hospitalization for pneumonia, censoring or 

end of follow-up.  
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Table 6 shows estimated hazard ratios (HR) and 95% confidence intervals for log-transformed 

NO2 and NOx exposure of 53239 DCH cohort participants, with 3024 cases of pneumonia 

hospitalization observed during follow-up. We discovered significant positive association 

between air pollution levels and admissions for pneumonia. All exposure models are consistent 

with this result and no significant difference in estimates using different exposure lengths is 

found. Therefore, we decided to use only one exposure proxy for the further analysis and that 

will be model with entire available exposure data, since 1971. 

 

The Spearman rank correlation coefficient between 39-year mean NO2 and NOx reveals that 

they are highly correlated (0.96). Thus, it is enough to consider one of these two and we will 

take NO2 for the further analysis. 

                                         
                         Cox Model 
 
Exposure for  
Total population 

 
l 
o 
g 

 
Adjusted for age 

 
HR (95%CI) 

 
Adjusted for age, 
smoking, ets and 

occupational exposure 
HR (95%CI) 

 
Fully adjusted* 

 
HR (95%CI) 

Cumulative mean 
exposure since 1971 

(to event, censoring or 
31. December 2009) 

 
NO2 

 
NOx 

 
1.42 (1.30 – 1.54) 

 
1.19 (1.14 – 1.25) 

 
1.29 (1.18 – 1.41) 

 
1.13 (1.08 – 1.18) 

 
1.25 (1.14 – 1.36) 

 
1.11 (1.06 – 1.16) 

Cumulative mean 
exposure since 1981 

(to event, censoring or 
31. December 2009) 

 
NO2 

 
NOx 

 
1.39 (1.28 – 1.50) 

 
1.17 (1.12 – 1.22) 

 
1.28 (1.18 – 1.38) 

 
1.11 (1.07 – 1.17) 

 
1.24 (1.14 – 1.34) 

 
1.10 (1.05 – 1.15) 

Cumulative mean 
exposure since 1991 

(to event, censoring or 
31. December 2009) 

 
NO2 

 
NOx 

 
1.35 (1.25 – 1.45) 

 
1.16 (1.11 – 1.21) 

 
1.26 (1.16 – 1.35) 

 
1.15 (1.05 – 1.26) 

 
1.22 (1.13 – 1.32) 

 
1.09 (1.05 – 1.14) 

 
Mean exposure at 

cohort baseline  
(1993–1997) 

 
NO2 

 
NOx 

 
1.46 (1.35 - 1.58) 

 
1.20 (1.15 – 1.25) 

 
1.36 (1.26 - 1.48) 

 
1.15 (1.10 – 1.20) 

 
1.33 (1.23 - 1.44) 

 
1.14 (1.09 – 1.18) 

Mean exposure at the 
end of follow-up  

(event date, censoring 
date or 31.Dec2009) 

 
NO2 

 
NOx 

 
1.20  (1.11 - 1.29) 

 
1.16 (1.11 – 1.21) 

 
1.13  (1.04 - 1.22) 

 
1.12 (1.07 – 1.17) 

 
1.11  (1.02 - 1.20) 

 
1.11 (1.06 – 1.16) 

Table 6: Association between NO2 and NOx exposure of different length and pneumonia incidence (n=3027)  
among 53239 DCH cohort participant  
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When considering different predefined subpopulation of total population, according to co-

morbidities prior to cohort baseline, we have found the same result of significant strong 

positive association between NO2 exposure since 1971 and hospital admissions for pneumonia. 

It is presented in Table 7 bellow, for categorical and linear exposure. Categorization is made in 

four groups as quartiles of log-transformed mean value.    

 

               
                       Model 
 
Population 

 
log 2 NO2 

 
Adjusted for age 

 
HR (95%CI) 

Adjusted for age, 
smoking, ets and 

occupational 
exposure 

HR (95%CI) 

 
Fully adjusted* 

 
HR (95%CI) 

 
Total population 

        
(3024 pneum.cases) 

Linear trend 1.42 (1.30 – 1.54) 1.29 (1.18 – 1.41) 1.25 (1.14 – 1.36) 
< 3.8 µg/m3 

3.8 – 4 µg/m3 

4 – 4.3 µg/m3 

≥ 4.3 µg/m3 

1 
1.34 (1.21 – 1.49) 
1.36 (1.23 – 1.50) 
1.55 (1.41 – 1.71) 

1 
1.30 (1.17 – 1.45) 
1.30 (1.18 – 1.44) 
1.40 (1.27 – 1.55) 

1 
1.28 (1.16 – 1.43) 
1.28 (1.16 – 1.42) 
1.35 (1.23 – 1.49) 

No Charlson index 
hospitalizations 
before baseline 

        
(2305 pneum. Cases) 

Linear trend 1.40 (1.27 – 1.55) 1.28 (1.16 – 1.41) 1.24 (1.13 – 1.38) 

< 3.8 µg/m3 

3.8 – 4 µg/m3 

4 – 4.3 µg/m3 

≥ 4.3 µg/m3 

1 
1.32 (1.17 – 1.49) 
1.37 (1.23 – 1.54) 
1.52 (1.36 – 1.70) 

1 
1.29 (1.14 – 1.45) 
1.31 (1.17 – 1.47) 
1.38 (1.23 – 1.54) 

1 
1.28 (1.13 – 1.44) 
1.30 (1.16 – 1.45) 
1.34 (1.20 – 1.50) 

History of co-morbid 
conditions defined 
by Charlson index 

       
(719 pneum.cases) 

Linear trend 1.37 (1.15 – 1.63) 1.28 (1.07 – 1.53) 1.22 (1.02 – 1.46) 
< 3.8 µg/m3 

3.8 – 4 µg/m3 

4 – 4.3 µg/m3 

≥ 4.3 µg/m3 

1 
1.28 (1.03 – 1.58) 
1.26 (1.02 – 1.56) 
1.55 (1.27 – 1.89) 

1 
1.24 (1.00 – 1.54) 
1.24 (1.01 – 1.53) 
1.42 (1.16 – 1.73) 

1 
1.23 (0.99 – 1.53) 
1.22 (0.99 – 1.51) 
1.35 (1.11 – 1.66) 

No Charlson index 
and no pneumonia 

before baseline 
        

(2231 pneum.cases) 

Linear trend 1.39 (1.26 – 1.53) 1.26 (1.14 – 1.40) 1.23 (1.11 – 1.36) 

< 3.8 µg/m3 

3.8 – 4 µg/m3 

4 – 4.3 µg/m3 

≥ 4.3 µg/m3 

1 
1.33 (1.18 – 1.50) 
1.37 (1.22 – 1.54) 
1.51 (1.35 – 1.69) 

1 
1.30 (1.15 – 1.47) 
1.31 (1.17 – 1.47) 
1.36 (1.22 – 1.53) 

1 
1.29 (1.14 – 1.45) 
1.30 (1.15 – 1.45) 
1.33 (1.18 – 1.49) 

History of pneum. 
hosp. without 
Charlson index 
before baseline 

      
(74 pneum.cases) 

Linear trend 1.74 (1.04 – 2.90) 1.71 (1.03 – 2.85) 1.68 (1.01 – 2.81) 

< 3.8 µg/m3 

3.8 – 4 µg/m3 

4 – 4.3 µg/m3 

≥ 4.3 µg/m3 

1 
0.94 (0.44 – 1.97)ᶧ 
1.33 (0.71 – 2.50)ᶧ 
1.91 (1.04 – 3.48) 

1 
1.04 (0.49 – 2.23)ᶧ 
1.45 (0.76 – 2.74)ᶧ 
1.90 (1.03 – 3.49) 

1 
1.07 (0.49 – 2.32)ᶧ 
1.49 (0.77 – 2.88)ᶧ 
 1.92 (1.03 – 3.58) 

*= adjusted for age, gender, bmi, smoking, ets, alcohol, education, occupational exposure, sport, fruit, fat 

        ᶧ = statistically non-significant  (   –               

Table 7: Association between NO2 exposure and pneumonia incidence on different DCH population groups 
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5.3.1. a  Discussion  
Overall for the total DCH population of 53239 individuals, the risk for hospital admission for 

pneumonia is 25% higher when doubling the exposure to NO2 in a fully adjusted model (Table 

7). When looking at the quartiles of log-transformed NO2 exposure, the group exposed to more 

than 4.3 µg/m3 (corresponding to around 20 µg/m3 of original exposure) has the highest hazard 

rate of 1.35 (1.23 – 1.49), which means that individuals from the group with highest NO2 

exposure, compared to the low exposure group of less than 3.8 µg/m3 (app.14 µg/m3 

originally), have approximately 35% higher risk to be hospitalized for pneumonia.  

Considering co-morbidities defined by Charlson index specification of diseases, there is no 

significant difference in association between exposure and pneumonia incidence among people 

with or without co-morbid diseases. Hazard rates are consistent with the ones for the total 

population, so for the simplicity we will conduct further analysis only for the total DCH 

population. 

The strongest association can be seen among the group of DCH cohort members which have 

been hospitalized for pneumonia before baseline. However, the sample is quite small; of 485 

people only 74 had readmissions for pneumonia after baseline. Therefore, only marginally 

significant effect is obtained for the group with highest NO2 exposure (more than 4.3 µg/m3 of 

log-transformed exposure) and the other groups have no significant association. However, even 

though the effect is marginally significant, association is very strong. The hazard rate for 

doubling the exposure is 1.68 (1.01 – 2.81) and for the group exposed to more than 4.3 µg/m3 

even 1.92 (1.03 – 3.58). In other words, the individuals with history of pneumonia before 

baseline exposure to high level of air pollution are up to 92% more likely to experience a new 

event due to exposure to high levels of NO2.    
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5.3.2  Association between traffic proxies exposure and pneumonia 

incidence in DCH cohort 
In analyzing the effect of exposure to NO2 on pneumonia hospitalizations we also considered 

traffic proxy variables. Those are variables describing the exposure to air pollution coming from 

the presents of major roads and high traffic intensity around residential addresses at 

recruitment.  

Using Cox proportional hazard model we have also discovered significant positive association 

between traffic-related air pollution exposure and risk for pneumonia hospitalizations. In the 

Table 8 , we can see hazard rates and 95% confidence intervals for these 6 variables. All the 

traffic proxy variables are highly significant and imply that, for example, having heavy traffic 

roads within 50 or 100m meter radius from the residential address increases the risk for 

pneumonia from 10 to 15%. 

                                         
                         Cox Model 
 
Traffic-related 
air pollution exposure 

Adjusted for age 
 

HR (95%CI) 

Adjusted for age, 
smoking, ets and 

occupational exposure 
HR (95%CI) 

Fully adjusted* 
 

HR (95%CI) 

Major road (5000 v/day)  
within 50m radius 

 
1.19  (1.08 – 1.31) 

 
1.11 (1.02 – 1.22) 

 
1.09 (0.99 – 1.19) 

 
Major road (10000 v/day) 

within 50m radius 

 
1.27  (1.12 – 1.43) 

 
1.18 (1.04 – 1.33) 

 
1.15 (1.01 – 1.29) 

 

 
Major road (5000 v/day) 

within 100m radius 

 
1.22 (1.14 – 1.32) 

 
1.15 (1.07 – 1.24) 

 
1.12 (1.03 – 1.20) 

 
Major road (10000 v/day) 

within 100m radius 

 
1.26 (1.15 – 1.38) 

 
1.18 (1.07 – 1.29) 

 
1.14 (1.04 – 1.24) 

 
High traffic load 

 (106 vehicles km/day) 
within 100m radius 

 
 

1.057 (1.038 - 1.075) 

 
 

1.041 (1.022 - 1.060) 

 
 

1.035 (1.016 - 1.054) 
 

 
High traffic load  

(106 vehicles km/day) 
within 200m radius 

 
 

1.023 (1.017 - 1.029) 

 
 

1.018 (1.012 - 1.024) 

 
 

1.016 (1.010 - 1.022) 
 

*= adjusted for age, gender, bmi, smoking, ets, alcohol, education, occupational exposure, sport, fruit, fat 

Table 8: Association between presence of major roads (5000 or 10000 v/day) and high traffic loads around 
residential addresses and pneumonia incidence for total DCH cohort population           
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5.4  Recurrent events analysis using extended Cox model 
After finding quite strong positive association between air pollution exposure and first 

pneumonia hospitalization, we went a step further to utilize available data on all hospital 

admission for DCH cohort members, and examined if having multiple pneumonia admissions 

can also be related to air pollution. In addition to DCH cohort data used in previous (time to 

first event) analysis, we have added all the pneumonia cases after the first amission until the 

end of follow-up for all cohort members. In order to distinguish between hospital admissions 

for two different cases of pneumonia on a single subject, considered time gap between two 

distinct events is 30 days. 

In DCH cohort there are up to 10 pneumonia hospitalizations per subject, but with very low 

frequency (Figure 18). In order to get significant result we will reduce the number of repeated 

event to maximum 3 per subject.  

 

Figure 18: Distribution of number of events per subject in DCH cohort  
4 or more events (left) ; From simple to 3 events (right) 

 

In the analysis of survival data with multiple events difference occurs for individuals with 

recurrent events because events might be correlated and survival time is not the same. For 

example, subjects with 3 events have time defined as time at entry to the study (baseline: 1993 

– 1997) until first pneumonia hospitalization, from first until second and from second until 

third. This gives us multiple lines (rows) in the data ser for all the individuals with more than 
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one event occurrence. The end of time intervals could be censoring date if censoring happened 

earlier than subsequent admission.  

Before proceeding to with recurrent events models, it is interesting to see how survival curves 

and cumulative hazard rates look, for different number of events. The Kaplan – Meier estimate 

of survival and Nelson – Aalen estimate of cumulative hazard with 95% confidence intervals, for 

events number in DCH cohort, are presented in Figure 19. 

From the plots it can be seen that having three pneumonia hospitalizations is different than 

having only one or two. The survival rates at the beginning of the time scale are a bit lower for 

three events group but further, after the age of 55 or 60, the difference is larger. The 

cumulative hazards show that the group with three pneumonia hospitalizations per subject has 

higher event frequency than the other two. Having one or two events seems to have very 

similar properties except from around age of 70 to age of 75 where two events cases 

cumulative hazard and it’s 95% confidence interval are above the ones with only single event. 

This results leads to the conclusion that having pneumonia multiple times, more than twice, 

implies higher risk for new pneumonia occurrences. Therefore, we would expect that 

individuals with more than two pneumonia hospitalizations are more likely to experience it 

again.  

 

Figure 19: Cumulative hazard functions for events number of DCH cohort 
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5.4.1  Association between NO2 and NOx  exposure and  recurrent 

 pneumonia occurrence in DCH cohort 
There are couple of different models for recurrent data, as discussed in Section 4.6. Those are 

various extensions of ordinary Cox model and some are implemented in our study. We start 

with simple intensity-based model which is just ordinary Cox model of multiple events data. 

Next is variance-corrected Andersen Gill model, random effect Frailty model and, accounting 

for events dependency, Conditional models.  

Fitted extended Cox models are still given in three versions considering adjustments for 

confounders. Those are age adjusted, then model adjusted for age, environment tobacco 

smoke and occupational exposure, and last, fully adjusted model.  

Following tables, Table 9 and Table 10, present hazard ratios (HRs) and 95% confidence intervals 

of different Cox model extensions for recurrent DCH cohort data. Among total DCH population 

of       individuals, there are 3823 cases of pneumonia hospitalizations. The analysis reveals 

significant strong positive association between exposure to NO2 and NOx and risk for repeated 

pneumonia hospitalizations. Furthermore, among 485 DCH cohort members with history of 

pneumonia before baseline (before 1993 – 1997), there are 108 cases of pneumonia 

hospitalizations, which only marginally significant positive association. The significance is not 

strong due to a small sample size, i.e. after the baseline we have 74 out of 485 individuals that 

have experienced pneumonia, and only 20 with more than one event after the baseline.  

For modeling recurrent data we first used the simple Intensity - based model and the Andersen-

Gill model, which corrects for robust variance. Those two models are very similar and both have 

big disadvantage of make very strong assumptions.  Log-hazard rates of those two models are 

almost identical, as expected, and one of the assumptions is that all events are independent 

which is very unlikely to be the case in our data. For that reason we have fitted the conditional 

Andersen-Gill model, which corrects for the robust variance, but also includes events as 

dependent, which means second event can’t occur before the first nor third can before the 

second event. The hazard rates are still almost the same as in the previous models, so there still 

seems to be no improvement.  

Since the individuals under the study are dissimilar, meaning that we can’t expect them all to 

have same chances for being hospitalized for pneumonia, first or repeated, we need to account 

for subject’s heterogeneity. The random individual effect is included by fitting the Frailty model. 

Frailty model’s estimates are very significant and obviously higher than previous. Moreover, the 

model adjusted for age, smoking, ETS, and occupational exposure and fully adjusted model also 

returns very significant frailty estimate, allowing us to conclude that frailty term is needed in 

the model of recurrent DCH cohort data.  
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Again we should also include events correlation structure by stratifying on the event number. 

This is done by fitting the Conditional Frailty model. 

 

 

 

     
                     Extended 
                    Cox Model                         
Recurrent  
models for  
total population 
(3823 pneum. cases) 

 
l 
o 
g 
 

(linear 
trend) 

 
 

Adjusted for age 
 

HR (95%CI) 

 
 

Adjusted for age, 
smoking, ETS and 

occupational exposure 
HR (95%CI) 

 
 

Fully adjusted* 
 

HR (95%CI) 

 
Intensity-based  

Model 
 

 
NO2 

 
NOx 

 
1.43 (1.32 – 1.54) 

 
1.21 (1.16 – 1.26) 

 
1.30 (1.20 – 1.40) 

 
1.14 (1.10 – 1.19) 

 
1.25 (1.16 – 1.35) 

 
1.12 (1.08 – 1.17) 

 
Andersen – Gill   

model 

 
NO2 

 
NOx 

 
1.43 (1.31 – 1.56) 

 
1.21 (1.15 – 1.26) 

 
1.30 (1.19 – 1.42) 

 
1.14 (1.09 – 1.20) 

 
1.25 (1.15 – 1.37) 

 
1.12 (1.07 – 1.14) 

 
Conditional 

Andersen – Gill 
model 

 
NO2 

 
NOx 

 
1.42 (1.32 - 1.53) 

 
1.20 (1.15 – 1.25) 

 
1.33 (1.23 - 1.44) 

 
1.16 (1.11 – 1.21) 

 
1.30 (1.20 - 1.44) 

 
1.14 (1.09 – 1.19) 

 
Frailty 
model 

 
NO2 

 
NOx 

 
1.85 (1.51 – 2.27) 

 
1.44 (1.28 – 1.62)  

 
1.54 (1.27 – 1.86) 

 
1.29 (1.16 – 1.44) 

 
1.43 (1.19 – 1.73) 

 
1.24 (1.11 – 1.37) 

 
Conditional  

Frailty 
model 

 
NO2 

 
NOx 

 
1.45  (1.34 - 1.58) 

 
1.22 (1.17 – 1.28) 

 
1.33 (1.23 – 1.45) 

 
1.16 (1.11 – 1.22) 

 
1.30 (1.19 – 1.41) 

 
1.14 (1.09 – 1.20) 

*= adjusted for age,gender, BMI, smoking, ETS, alcohol, education, occupational exposure, sport, fruit, fat 

Table 9: Association between NO2 and NOx exposure and pneumonia incidence (      ) among 
      DCH cohort members using different extended Cox model for recurrent  
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5.4.1. a  Discussion  
The analysis of recurrent DCH cohort data is conducted using simple intensity-based model, 

which is ordinary Cox model on the recurrent data, and then the Andersen – Gill model of 

recurrent data, which only improvement compared to former is robust variance. These two 

models result in same hazard rates, approximately 1.25 for log-transformed NO2 values using 

fully adjusted model, which is also the same as in the analysis of the single pneumonia 

occurrence, presented in Section 5.3.  

Further, the analysis is conducted using more complicated models: frailty model, which includes 

the random individual effect, conditional Andersen – Gill and conditional Frailty model, which 

are no longer assuming independence between repeated events.  

     
                     Extended 
                    Cox Model 
                                   
Recurrent  
models for 
 population with 
pneumonia history 
(108 pneum. cases) 

 
 

l 
o 
g 

 
 

Adjusted for age 
 

HR (95%CI) 

 
 

Adjusted for age, 
smoking, ETS and 

occupational exposure 
HR (95%CI) 

 
 

Fully adjusted* 
 

HR (95%CI) 

 
Intensity-based  

Model 
 

 
NO2 

 
NOx 

 
1.78 (1.17 – 2.71) 

 
1.30 (1.04 – 1.63) 

 
1.69 (1.11 – 2.58) 

 
1.26 (1.01 – 1.58) 

 
1.75 (1.14 – 2.69) 

 
1.29 (1.02 – 1.63) 

 
Andersen – Gil   

model 

 
NO2 

 
NOx 

 
1.78 (1.06 – 2.98) 

 
1.30 (1.00 – 1.70) 

 
1.69 (1.02 – 2.81) 

 
1.26 (0.97 – 1.64) 

 
1.75 (1.07 – 2.87) 

 
1.29 (1.00 – 1.67) 

 
Conditional 

Andersen – Gill 
model 

 
NO2 

 
NOx 

 
1.35 (0.88 – 2.10)ᶧ 

 
1.17 (0.93 – 1.48)ᶧ 

 
1.24 (0.78 - 1.98)ᶧ 

 
1.11 (0.86 – 1.43)ᶧ 

 
1.25 (0.80 - 1.95)ᶧ 

 
1.11 (0.88 – 1.42)ᶧ 

ᶧ = statistically non-significant  (   –               

*= adjusted for age, gender, BMI, smoking, ETS, alcohol, education, occupational exposure, sport, fruit, fat 

Table 10: Association between NO2 and NOx exposure and pneumonia incidence (n=108) among 485 DCH cohort 
members with history of pneumonia before baseline using different extended Cox models for recurrent events 



61 

 

Among the total DCH population of 53239 individuals, the conditional Andersen – Gill model 

still didn’t show any significant improvement compared to previous models. However, fitted 

the Frailty and Conditional Frailty model are showing higher association between air pollution 

and multiple pneumonia hospitalizations. Frailty model adjusted for smoking, ETS and 

occupational exposure, fitted in the total DCH population for log-transformed NO2 exposure, 

results in 1.54 (1.27 – 1.86) hazard rate (95% confidence interval). This means that doubling the 

NO2 exposure value we would expect approximately 50% higher risk for recurrent pneumonia 

occurrence. The hazard rate corresponding to the conditional frailty model is 1.33 (1.23 – 1.45), 

which is a bit less than not accounting for the events dependency. However, it is very important 

to stratify on the event number, to make sure proper correlation structure for events is 

considered, so the conditional frailty model is suggested and reveals 33% higher risk for 

experiencing pneumonia for doubling NO2 exposure value.  

The strongest association can be seen among the group of DCH cohort members which have 

already had pneumonia before baseline, which is consistent with the result obtained in analysis 

of the single pneumonia occurrence. However, the sample is quite small, and that leads to only 

marginal significance of intensity-based and Andersen – Gill model, whereas for more 

complicated models association is no longer significant. Stronger association between air 

pollution exposure and recurrent data using these two models, compared to single event data, 

is probably only due to more pneumonia cases we get, since the fitted models are not different.  

On the first look, the fact that more complicated models of recurrent data, like frailty and 

conditional models, are not reviling significant association between air pollution exposure and 

pneumonia incidence among people with previous pneumonia hospitalizations might be a bit 

strange. However, if we consider that this group of people has experienced pneumonia before 

baseline at least once; having repeated pneumonia occurrences after the baseline doesn’t 

necessarily give any new information. Hence, if a person had previous pneumonia 

hospitalizations, then having multiple pneumonias during follow up will just add more cases to 

that person and won’t give more valuable information.  
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5.5  Model validation 
When fitting the Cox proportional hazard model, it is necessary to check model’s key 

assumption - proportionality. This assumption implies that the hazard ratio is constant over 

time for any two subjects with any combination of covariates.  

Tests and graphical diagnostics of the proportional hazard assumptions are based on scaled 

Schoenfeld residuals. Proportionality test of all relevant predictors (covariates) is done by 

correlating scaled Schoenfeld residuals with the log-transform age (underlying time scale). Each 

of the predictor’s proportional hazard test from the fully adjusted Cox model of total DCH 

population (given in Table 7) in presented in Table 11. 

                           

log NO2 0.05 7.03 0.01 
Gender 0.04 4.24 0.04 
BMI 0.04 5.97 0.02 
Smoking: previously -0.01 0.33 0.57 
Smoking: low 0.03 2.80 0.10 
Smoking: medium 0.02 0.94 0.33 
Smoking: high -0.003 0.04 0.85 
ETS 0.01 0.64 0.42 
Alcohol 0.02 1.08 0.30 
Education: Medium -0.01 0.22 0.63 
Education: High 0.005 0.08 0.77 
Occup. Exposure -0.04 4.17 0.04 
Physical activity: low 0.004 0.07 0.79 
Physical activity: high -0.007 0.13 0.71 
Fruit intake 0.03 2.04 0.15 
Fat intake -0.004 0.07 0.79 

Table 11: Checking proportional hazard assumption 

Test statistics mostly have low values, which corresponds to high         meaning that 
proportional hazard assumption in not violated. Only couple of predictors have low         
(less than 5%), where the proportionality is under the question. Those are gender with 
       and occupational exposure with       . The log-transformed NO2 and NOx 
exposure variables have respectively         and         significance levels of 
proportionality which validates the assumption. 

Graphical presentation helps to interpreting the results, thus plots of the scaled Schoenfeld 
residuals for each of the predictors are obtained. Residual plots for log-transformed NO2 and 
NOx exposure variables are presented in Figure 20 , for which test doesn’t shown any violation 
of the assumption; and in Figure 21 for gender and occupational exposure, where test shows 
that proportionality doesn’t hold. Plots of other predictors are presented in Appendix C. 
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Figure 20: Plots of scaled Schoenfeld residuals against log-transformed time scale (age) for  

logNO2 (left) and logNOx (right) 

 

 

 

Figure 21: Plots of scaled Schoenfeld residuals against log-transformed time scale (age) for  
gender (left) and occupational exposure (right) 
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The solid line in the plot is smoothing - spline fit and dashed lines represent    standard errors 

around the fit. The proportional hazard assumes coefficients to be constant over time, i.e. 

      , and thus the fit against age should be horizontal line with zero slope.  

In our case proportionality test shows significant violation for gender and occupational 

exposure but from the residuals plot, we can see that the smoothing-spline fit differ from 

horizontal line only at the beginning and the end of time scale. There we can also notice fewer 

numbers of observations which may change the fit shape. Except at the ends of time scale, fit 

seems to be very good.   

Since, the residuals plots where the most of the observations are is expected horizontal line, we 

can disregards the ends of time scale and conclude that the proportional hazard assumption 

does hold and discovered positive association between air pollution exposure and risk for 

pneumonia hospitalizations using Cox model is valid.  
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Chapter 6 

Conclusions and Discussion 
 

6.1  Conclusion 
This thesis was aimed to investigate epidemiological data available from the Danish Cancer 

Society. Applying statistical methods of the survival analysis we have been able to successfully 

show evidence of association between traffic-related air pollution and pneumonia 

hospitalizations in the city of Copenhagen.  

From the analysis among DCH cohort participants, both for first pneumonia hospitalization and 

recurrent, we have found that the exposure to NO2 and NOx as well as presence of high traffic 

loads around the residential addresses, is positively significantly associated with the risk of 

hospital admission for pneumonia. 

Considering the exposure length we have found no significant difference in the effect of up to 

39-, 29- or 19- year cumulative exposure. Therefore, all the maximum available data has been 

used as the main exposure proxy, which is since 1971 until the end of follow-up, and applied in 

all the analysis. Using 39-year exposure and fully adjusted model on the total DCH population 

showed strong positive association with pneumonia hospitalization, for NO2 exposure ( HR: 

1.25;    CI: 1.14 – 1.36) and a bit lower for NOx (HR: 1.11;    CI: 1.06 – 1.16). Since the NO2 

and NOx exposure are highly correlated (corr. coeff. 0.96), investigating effect of one is enough. 

A history of co-morbid diseases defined by Charlson index had no influence on the association 

between air pollution and pneumonia, as the identical associations were observed in cohort 

subset of people who were healthy (no co-morbidity conditions) and those with prior co-

morbid conditions. The conducted analysis on the total DCH population (       ) of the 

time to first pneumonia hospitalization revealed 35% higher risk for being hospitalized for 

pneumonia among individuals exposed to more than 20 µg/m3 of NO2, as compared those living 

in clean areas The strongest association is found among the individuals with pneumonia 

hospitalizations before baseline, where the risk is 92% higher for people exposure to high level 

of NO2 (20 µg/m3) than the ones with the lowest possible pollution levels (around 14 µg/m3).  

Furthermore, repeated pneumonia hospitalizations have never been studied before with 

respect to risk associated with exposure to air pollution, which makes this analyses novel. 
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Pneumonia is not a chronic disease, but it is a co-morbid condition of many other diseases and 

can occur multiple times, especially in elderly. For those reasons we wanted to see if recurrent 

occurrence is also related to air pollution exposure. 

 

The analysis of recurrent DCH data (up to three events) showed that the strong association 

between air pollution exposure and repeated pneumonia occurrences is still present. It was 

conducted using the same approach as in first pneumonia case, but also improved by 

considering individuals with repeated events as a cluster and thus correcting the variance, 

adding random individual effect since participants are dissimilar, and even further, accounting 

for events dependency.  

The intensity-based model, as well as Andersen – Gill model give similar results as the analysis 

of the first pneumonia data, but can’t be considered adequate for recurrent data. For that 

reason frailty and conditional models are preferable.  

Considering the individuals with multiple events as clusters and accounting for the events 

dependency using conditional Andersen – Gill model revealed strong association (for NO2: 1.30; 

1.20-1.40) and adding the random effect to account for the individual heterogeneity even 

stronger (for NO2: 1.43; 1.19-1.73).  

However, the most informative model to be used but also computationally most  intensive is 

conditional frailty model. This model includes random individual effect, which doesn’t assume 

individuals to be the same, as well as accounts for events dependency, allowing for example 

second event to occur only if the first already did etc., thus it is the most recommended suitable 

model for our data. Fitting fully adjusted conditional frailty model to the total DCH population 

revealed 30% higher risk of recurrent events for doubling NO2 values and 14% for NOx.   

The analysis of recurrent data showed strong positive association between traffic-related air 

pollution exposure and hospital admissions for pneumoni, but still the effect on the first 

pneumonia occurrence is a bit stronger. In the first pneumonia occurrence during follow-up, 

the strongest association was found among individuals with history of pneumonia before 

baseline which leaded to potentially significant analysis of recurrent pneumonias. Among the 

same group of individuals recurrent analysis didn’t show significant results, since the sample is 

quite small, but it can also be irrelevant since the first pneumonia after baseline for the 

individuals with history of pneumonia is already repeated event. For that reason, we can 

conclude that having a history of pneumonia admissions and high air pollution exposure 

significantly and considerably increases the risk for new pneumonia occurrences. However, the 

risk is not limited to this group. Exposure to air pollution is associated with risk for 
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hospitalization for pneumonia in the whole cohort, also in healthy individuals and those with 

other co-morbid conditions. 

 

6.2  Discussion 
The idea of investigating the effect of air pollution on the occurrence of pneumonia among 

elderly is quite new. It came from the existing literature, which has shown association between 

air pollution and risk for experiencing other disease, such as asthma, COPD and stroke; but also 

lack of investigations about long-term exposure to air pollution and pneumonia hospitalizations 

(only one study to date). Since pneumonia is known to be age-related disease and exposure to 

air pollution is known to be positively related to all major chronic lung diseases, the purpose of 

this study was to investigate how traffic-related air pollution in the area of Copenhagen 

influences the risk of experiencing pneumonia once or multiple times among elderly. 

The main founding of this study is that there is a strong positive association between long –

term exposure to traffic-related air pollution and pneumonia, as well as repeated pneumonia 

admissions. This association is the strongest for readmission for pneumonia in individuals with 

prior pneumonia hospitalizations. 

This thesis has contributed with an example of the methods used in survival analysis on the 

“real world” data. The Danish Diet, Cancer and Health cohort and all relevant data from the 

Danish registries systems ware obtained from the Danish Cancer Society and analyzed using 

ordinary Cox regression as well as its several extensions required for recurrent data analysis.  
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Chapter 7 

Considerations and Further Work 
 

7.1  Considerations 
We found that the traffic-related air pollutants NO2 and NOx are relevant for pneumonia 

hospitalization, NO2 having the strongest effect. NO2 is an airway irritant, which even at the low 

concentrations found in everyday life can cause respiratory tract infections by interacting with 

the immune system and may play a role in lung inflammation [53].  

We cannot conclude from our study that NO2 is of pathological significance in pneumonia or 

just an indicator of other harmful pollutants originating from traffic, especially particles. In any 

case, the results of this study provide evidence that traffic-related urban air pollution 

contributes to the development of pneumonia and that reductions in traffic emissions would be 

beneficial for public health. 

A consideration of our study regarding health outcome is that only pneumonia hospitalizations 

were considered, since we didn’t have self-reported data about pneumonia. This means that 

pneumonia occurrence is underestimated here since not all pneumonia cases are hospitalized, 

and that with pneumonia hospitalizations we studied the most serious pneumonia cases. 

Furthermore, we have couple of consideration from the statistical modeling point of view. In 

analyzing the survival data our goal was to use the Cox model, ordinary and extended. 

However, other possibilities could also be parametric models, such as exponential model, the 

Weibull model or log – logistic model [54]; or non-parametric models, such as additive hazard 

model [55]. Both advantages and disadvantages could arise using these models compared to 

the applied Cox models but it would be relevant to apply some of these models and see how 

well they fit the data.  

However, available literature says that fitting parametric model in case of testing couple of 

groups with different exposures or treatments, and looking at their comparisons, may need to 

be adjusted for other subject’s characteristics, which makes a lot of model assumptions. In this 

case it’s recommended to apply ordinary Cox regression, like in this study [54]. The situations of 

non-proportional hazard, which is not the case in this study, frequently occur when the 

covariates are time-varying. According to the literature, a possible way to handle that is to use 
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nonparametric Aalen additive hazard model which is very flexible and provides a good fit [55]. 

However, it is very important to test if all the covariates are time-varying or some of them are 

constant over time. In case of mixture of these two, a semi- parametric model would be more 

correct to apply since it gives more precise information about the estimated effects [55].  

7.1.1  Limitations 
Every “real – life” study has some limitations, so does this one. The dispersion models we used 

to assess NO2 and NOx concentrations at the addresses of study participants are only surrogates 

of real exposures and are inevitably associated with some exposure misclassification. However, 

the model have been validated [37] and applied in Denmark [11,12,56,57] and the United 

States [55] and possible misclassification is likely to be non-differential with respect to 

development of pneumonia. A previous comparison of measured NO2 concentrations with 

those calculated from a Danish dispersion model showed that misclassification was primarily of 

the Berkson type, typically associated with exposures predicted from the model. This type of 

error is not expected to bias the estimates, although it may decrease their precision [56]. 

A further limitation of the exposure assessment method is that we assessed only outdoor 

concentrations and lacked information on work address, commuting habits, and personal 

activities.  

7.1.2  Strengths 
The main strength of this study is the objective definition of incidence of pneumonia as the first 

admission, as well as repeated admissions, for this condition in the Danish Hospital Discharge 

Register, a nationwide register of routinely collected data with no loss to follow-up. Another 

strength is the large prospective cohort with available residential address history and 

information on potential confounders collected before admissions for pneumonia. As the 

Danish Diet, Cancer, and Health cohort was not originally designed to study pneumonia or air 

pollution; and pneumonia hospitalizations, vital status, and the information on addresses used 

in modeling air pollution were obtained from the reliable population-based registries; the 

possibility of information or recall bias with respect to health outcome or differential bias with 

respect to exposure is minimal. 

 

7.2  Further work 
The analyses of an effect of long-term exposure to air pollution could be extended with a study 

of several other relevant issues.  First, it would be interested to study whether the effect of 

exposure to air pollution on pneumonia is modified by any other factors, for example by 

smoking.  The effect may be same in smokers and non-smokers (implying no interaction), or 

perhaps stronger among smokers than non-smokers, suggesting additive harmful effects of 
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simultaneous exposure to tobacco smoke and air pollution.  It could also be so that smokers 

have marginal additional harmful effect from exposure to air pollution, and that effect of air 

pollution is limited only to non-smokers. No studies have yet provided data on modification of 

the effect on air pollution by smoking. Similarly, it would be interested to test for other 

potential effect modifiers, such as gender, age, or BMI. 

When dealing with recurrent data, an important question arises in the area of frailty models. 

The frailty distribution must be positive, thus mostly recommended is gamma distribution, also 

used in this study. However, other frailty distributions, such as Gaussian distribution, are also 

an option. For that reason, it might be relevant to investigate if another frailty distribution 

could capture more information from the data than the other, and thus leads to the frailty 

model with better performance. 

Other possibly very relevant analyses would be to incorporate the effect of short-term 

exposure to air pollution, that is levels of air pollution on the same or day before 

hospitalization.  The short-term exposure to air pollution has documented effect on pneumonia 

and other lung diseases.  However, these analyses would require data on daily mean levels of 

air pollution, which are routinely measured at background air pollution monitors in 

Copenhagen and Aarhus located centrally in these cities, and which cannot be assumed 

representative for all DCH cohort members.  Also, different statistical considerations would be 

necessary for this analysis, and that is why no studies exist yet that have looked into effect of 

short and long-term exposure to air pollution simultaneously on any lung disease. 
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Appendix A 

Definitions 
 

A 
Alveoli: Small air sacs or cavities in the lung that give the tissue a honeycomb appearance and 

expand its surface area for the exchange of oxygen and carbon dioxide. Branches off the 

bronchioles. [26] 

Andersen-Gill model: is a model used for recurrent event data. The model considers every 

patient as one individual cluster instead of every event as independent and thereby a robust 

variance can be estimated for the model. [46] 

 

B 
BMI: The Body Mass Index is a statistical measure which compares a person’s weight and 

height, and it is a widely used diagnostic tool to identify weight problems within a population. 

The formula for BMI is weight(kg)/(height(m))2. [2] 

Berkson misclassification (error model): is description of random error (or misclassification) in 

measurement. Unlike classical error, Berkson error causes little or no bias in the measurement. 

[26] 

 

C 
Cardiac diseases: are a group of disorders of the heart and blood vessels. [2] 

Censoring: is in association with survival analysis when an individual steps out of a trial early (of 

irrelevant reasons relative to the trial). If the patient do not have any events during the trial 

period, and is therefore still under risk, he will also be defined as censored in the end of the 

trial. [1] 

Confounding: In statistics, a confounding variable (also confounding factor, lurking variable, or 

confounder) is an extraneous variable in a statistical model that correlates (positively or 

negatively) with both the dependent variable and the independent variable. [26] 
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Cohort: In statistics, a group of subjects with a common defining characteristic – typically age 

group. But despite from an open population, which can include or exclude people, if they do 

not meet a certain defined criteria, the cohort is a specific group of people to be followed from 

one point in time to another. The start time could be at birth, or when diagnosed with a 

disease. [1] 

Counting process: is a process that records the (uncensored) events in e.g. survival data as time 

proceeds. [50] 

Cox regression: is a class of survival models in statistics.  It is a statistical technique that is used 

to determine the relationship between survival and several independent exploratory variables. 

Cox regression relates the time that passes before some event occurs to one or more covariates 

that may be associated with that quantity. [26] 
 

D 
Diabetes: is a metabolic disease affecting the way the bodies use digested food for growth and 

energy. Diabetics have a high blood sugar level, either because the body does not produce 

enough insulin, or because cells do not respond to the insulin that is produced. [2] 

 

E 
Epidemiology: is the study of how disease is distributed in population and the factors that 

influence or determine this distribution. [1] 

Environmental epidemiology: is the epidemiologic study of the health consequences of 

exposure that are involuntary and that occur in the general environment (air, water, diet, soil, 

etc.). [2] 

F 
Frailty model: is a model that incorporates an unmeasured random effect in the hazard 
function to account for heterogeneity in subjects, usually used on recurrent data. [46] 
 

H 
Hazard function: is a function used in survival analysis and is a product of two functions. Partly 

the baseline hazard function that characterizes how the hazard function changes as a function 
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of survival time. And partly of a function that characterizes how the hazard function changes as 

a function of subject covariates. [46] 

Hypertension: is a chronic medical condition in which the blood pressure is elevated. It is also 
referred to as high blood pressure or shortened to HT, HTN or HPN. [26] 
 

J 
Jackknife method: provides an alternative and reasonably robust method for determining the 

error from the data to the parameters. The jackknife derives estimates of the parameter of 

interest from each of several subsamples of the parent sample and then estimates the variance 

of the parent sample estimator from the variability between the subsample estimates. [46] 

 

K 
Kaplan-Meier: is an estimator of the survival function and is also called the product limit 

estimator. This estimator is widely used in survival analysis. [43] 

L 
Likelihood ratio test: is a statistical test used to compare the fit of two models. The test is 

based on the likelihood ratio, which expresses how many times more likely the data are under 

one model than the other. [26] 
 

N 
Non-parametric model: is a family of distributions that cannot be described using a finite 

number of parameters and is contrasted with the parametric model. [50] 

Null Cox model: is a Cox model without any explanatory variables; hence    is the overall 

population risk. [46] 

 

P 
Parametric (survival) models: is a family of distributions that can be described using a finite 

number of parameters. More specific, parametric survival model is one in which survival time is 

assumed to follow a known distribution. [43] 
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Particulate matter or fine particles: are tiny subdivisions of solid or liquid matter suspended in 

a gas or liquid. Particles often have irregular shapes with actual geometric diameters that are 

difficult to measure. [26] 

Pneumonia: is a form of acute respiratory infection that affects the lungs. The lungs are made 

up of small sacs called alveoli, which fill with air when a healthy person breathes. When an 

individual has pneumonia, the alveoli are filled with pus and fluid, which makes breathing 

painful and limits oxygen intake. [2] 

 

R 
Recurrent event data: is data where a single event can occur multiple times in a subject in a 

certain period. [46] 

Relative risk: is a ration of the probability of the event occurring in the exposed group versus a 

non-exposed group. It is also referred to as hazard ratio and is in Cox regression also called the 

odd ratio. [27] 

Robust variance: in ordinary Cox models with recurrent events data, where estimate of 

variance for the covariate effects treats each of the observations as independent, a robust 

variance can be introduced. If a subject do have multiple events it is therefore reasonable to 

use another estimation of variance which could be a grouped jackknife estimate. The estimate 

of variance would thereby be more robust. [46] 

 

S 
Semi-parametric model: In statistics is a model that has parametric and nonparametric 

components. [50] 

Survival analysis: is just another name for time to a single event analysis. The term survival 

analysis is used predominately in biomedical sciences where the interest is in observing time to 

death occurrence of disease. [43] 

 

Survival function: gives the probability of observing a survival time greater than or equal to 

some stated value. In most applied settings the interest lies in describing how long the subjects 

live, which is fundamental to a survival analysis. [43] 
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Appendix B 

Acronym table 
 

 

 

Acronym  Term 

     Body Mass Index 
    Confidence interval 

     Cardiovascular Diseases 
    Degree of freedom 
     Environmental tobacco smoke 
    Hazard ratio 
    Particulate Matter 
     Socio-economic status 
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Appendix C 

Supplementary figures 
This appendix contains supplementary figures of survival and cumulative hazard plots for each 

of the relevant confounders for this analysis. Then the Schoenfeld residuals of covariates from 

the fully adjusted Cox model where the proportional hazard assumption is valid are displayed. 

 

C.1  Survival Curves and Cumulative Hazards 
 

 

Figure 22: Survival func. and cumulative hazard func. for Gender of DCH cohort members 
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Figure 23: Survival func. and cumulative hazard func. for ETS status of DCH cohort members 

 

Figure 24: Survival func. and cumulative hazard func. for Educational status of DCH cohort members 
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Figure 25: Survival func. and cumulative hazard func. for physical activity of DCH cohort members 

 

Figure 26: Survival func. and cumulative hazard func. for Occupational exposure of DCH cohort members 
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C.2  Checking PH assumption – Schoenfeld residuals 

 
Figure 27: Plots of scaled Schoenfeld residuals against log-transformed time scale (age) for BMI 

 
Figure 28: Plots of scaled Schoenfeld residuals against log-transformed time scale (age) for Alcohol intake 
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Figure 29: Plots of scaled Schoenfeld residuals against log-transformed time scale (age) for Fat intake 

 
Figure 30: Plots of scaled Schoenfeld residuals against log-transformed time scale (age) for fruit intake 
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Appendix D 

R programming 
 

D.1 Data preparation 
 

#### DCH COHORT DATA 

#Questionnaire 

spskema = read.csv("D:/Pneumonia/Data/spskema.csv", header = TRUE, sep = ",") 

##Smoking status 

smoking = read.csv("D:/Pneumonia/Data/smokingsta.csv", header = TRUE, sep = ",") 

#Environmental tobacco smoke (ETS) 

ets <- read.csv("D:/Pneumonia/Data/ets.csv", header = TRUE, sep = ",") 

#Additionally excluded for cancer before baseline 

eksklud571 = read.csv("D:/Pneumonia/Data/eksklud571.csv", header = TRUE, sep = ",") 

#Vital status in 2006 

vitalsta2006 = read.csv("D:/Pneumonia/Data/vitalsta2006.csv", header = TRUE, sep = ",") 

#Merge data sets - spskema, smoking, ets, sport 

data1 <- merge(spskema, smoking, by.x = "knr", by.y = "id", all = FALSE) 

data2 <- merge(mm1, ets, by = "knr", all = TRUE) 

data3 <- merge(mm2, sport, by = "knr", all = TRUE) 

 

#Remove eksklud571 from the data 
exclude  <- which(data3[, 1] %in% eksklud571[,1]) 
data  <- data3[-exclude,] 

################################################## 

###Potential confounders and vital status 

data_pne <- data.frame(cbind(knr = data $knr, age = mm$age, gender = mm$kqn, bmi = mm$bmi,  

  education = mm$s56x01n, alcohol = mm$noalko, alco_int = mm$alko,  

  smoking = mm$rygning, smo_duration = mm$varighed, smo_int = mm$forbrug,  

               ets = mm$ets, occup_exp = mm$etsenrol, sport = mm$sport, sport_int = mm$tsportint, 

  fat = mm$fedt, fruit = mm$fruit)) 
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data_pne <- merge(data_pne, vital2006[,2:4], by = "knr", all = TRUE) 

#Extract relevant diagnoses from lpr data 

#LPR register for DCH cohort members 

lprdata <- read.csv("I:/Pneumonia/lprdata.csv", header = TRUE, sep = ",") 

 

#Pneumonia diagnosis in ICD-10 and ICD-8 

pne10 <- c("DJ120", "DJ121", "DJ122", "DJ123", "DJ124", "DJ125", "DJ126", "DJ127", "DJ128", "DJ129", 

      "DJ130", "DJ131", "DJ132", "DJ133", "DJ134", "DJ135", "DJ136", "DJ137", "DJ138", "DJ139", 

      "DJ140", "DJ141", "DJ142", "DJ143", "DJ144", "DJ145", "DJ146", "DJ147", "DJ148", "DJ149", 

      "DJ150", "DJ151", "DJ152", "DJ153", "DJ154", "DJ155", "DJ156", "DJ157", "DJ158", "DJ159", 

      "DJ160", "DJ161", "DJ162", "DJ163", "DJ164", "DJ165", "DJ166", "DJ167", "DJ168", "DJ169", 

      "DJ170", "DJ171", "DJ172", "DJ173", "DJ174", "DJ175", "DJ176", "DJ177", "DJ178", "DJ179", 

      "DJ180", "DJ181", "DJ182", "DJ183", "DJ184", "DJ185", "DJ186", "DJ187", "DJ188", "DJ189") 

pne8 <- c(48000:48699) 

 

#Ornithosis diagnosis in ICD-10 and ICD-8 

orn10 <- c("DA4810", "DA4811", "DA4812", "DA4813", "DA4814", "DA4815", "DA4816", "DA4817", 

"DA4818", "DA4819") 

orn8 <- c(07300:07399) 

 

#Leginellosis diagnosis in ICD-10 and ICD-8 

leg10 <- c("DA7090", "DA7091", "DA7092", "DA7093", "DA7094", "DA7095", "DA7096", "DA7097", 

"DA7098", "DA7099") 

leg8 <- c(47100:47199) 

 

diag <- c(pne10, pne8, orn10, orn8, leg10, leg8) 

 

#All pneumonia hospitalizations   

PNEdiag <- which(lprdata$c_diag %in% diag) 

 

#LPR subset for pneumonia 

lprPNE <- lprdata[PNEdiag,] 

 

#Subset of pneumonia cases before baseline 

lprPbef <- subset(lprPNE,lprPNE$d_inddt <= lprPNE$mdato)  

#No.of individuals hospotalized for the first time before baseline 

#length(unique(lprPbef$knr))       #746 
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#Subset of no pneumonia before baseline 

lprP <-  subset(lprPNE,lprPNE$d_inddt > lprPNE$mdato)  

 

bef <- which(data_pne$knr %in% unique(lprPbef$knr)) 

#data_Pbef <- data_pne[bef,] 

data_pne <- data_pne[-bef,] 

 

######### 

#Pneumonia status variable 

pne_sta <- matrix(NA, nrow=dim(data_pne)[1], ncol=2) 

colnames(pne_sta) <- c("knr", "pnesta") 

#1stcol - knr 

pne_sta[,1] <- data_pne$knr 

 

#2ndcol - status: 1 = pne, 0 = nopne 

for(i in 1:length(pne_sta[,2])) { 

 if(pne_sta[i,1] %in% individuals) pne_sta[i,2] <- 1  

 else pne_sta[i,2] <- 0 

 } 

 

data_pne <- merge(data_pne, pne_sta, by = "knr", all = FALSE) 

 

 

 

 

################################# 

#####   Time to 1st event!!!   

################################# 

 

#Censoring variable (status) 

censor <- matrix(NA, nrow=dim(data_pne)[1], ncol=3) 

colnames(censor) <- c("knr", "censorsta", "censordate") 

#1stcol - knr 

censor[,1] <- data_pne$knr 

 

#2ndcol - status: 1 = censored, 0 = not censored 

#3rdcol - censoring date 
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for(i in 1:length(censor[,2])) { 

 if(data_pne$status2006[i]==0 & data_pne$pnesta[i]==0) censor[i,2] <- 0 

 if(data_pne$status2006[i]==0 & data_pne$pnesta[i]==1) censor[i,2] <- 1 & censor[i,3] <- 

lprdata$d_inddto[i] 

 if(data_pne$status2006[i]==1 & data_pne$pnesta[i]==0) censor[i,2] <- 0 

 if(data_pne$status2006[i]==1 & data_pne$pnesta[i]==1) censor[i,2] <- 1 & censor[i,3] <- 

lprdata$d_inddto[i] 

  

 if(data_pne$status2006[i]==3) censor[i,2] <- 0 & censor[i,3] <- 6/27/2006 

 if(data_pne$status2006[i]==5) censor[i,2] <- 0 & censor[i,3] <- 6/27/2006 

 

 if(data_pne$status2006[i]==60) censor[i,2] <- 0 & censor[i,3] <- data_pne$sdato2006[i] 

 if(data_pne$status2006[i]==70) censor[i,2] <- 0 & censor[i,3] <- data_pne$sdato2006[i] 

 

 if(data_pne$status2006[i]==80 & data_pne$pnesta[i]==0) censor[i,2] <- 0 & censor[i,3] <- 

data_pne$sdato2006[i] 

 if(data_pne$status2006[i]==80 & data_pne$pnesta[i]==1) censor[i,2] <- 1 & censor[i,3] <- 

lprdata$d_inddto[i] 

 if(data_pne$status2006[i]==90 & data_pne$pnesta[i]==0) censor[i,2] <- 0 & censor[i,3] <- 

data_pne$sdato2006[i] 

 if(data_pne$status2006[i]==90 & data_pne$pnesta[i]==1) censor[i,2] <- 1 & censor[i,3] <- 

lprdata$d_inddto[i] 

} 

 

#Remove dates after the follow up 

for(i in 1:dim(censor)[1])  

{ 

 ifelse(censor[i,3] >= cens_date, censor[i,3] <- cens_date, censor[i,3] <- censor[i,3]) 

} 

 

data_pne <- merge(data_pne, censor, by="knr") 

 

################## 

#Age of cohort members at the entry and the end of the study 

data_pne$agestart <- (data_pne$entrydate - data_pne$bdate)/365.25 

data_pne$ageend <- (data_pne$end_date - data_pne$bdate)/365.25 

 

################################## 

#Recurrent events  (at least 30days between two hospitalizations) 

lprP1 <- subset(lprP, lprP$count==1) 

lprMulti <- lprP[which(lprP$count!=1),] 
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dim(lprMulti)      # 3624    3 

 

lprMulti$multista <- rep(NA, length(lprMulti[,1])) 

 

for(i in 1:length(unique(lprMulti$knr)) ) { 

 mp <- which(lprMulti$knr==unique(lprMulti$knr)[i]) 

 

 for(j in 1:length(mp)) { 

  lprMulti$multista[mp[1]] <- 1 

  ifelse(lprMulti$d_inddto[mp[j+1]] >= (lprMulti$d_inddto[mp[j]]+31),  

  lprMulti$multista[mp[j+1]] <- 1, lprMulti$multista[mp[j+1]] <- 0) 

 } 

} 

 

#Hospitalizations with at least 30days between 

lprMulti1 <- lprMulti[which(lprMulti$multista==1),-4] 

 

###LPR for multiple event!!! 

lprP1 <- merge(lprP1, lprMulti1, all=TRUE) 

 

for(j in 1:length(lprP1$knr)) { 

 lprP1$count1[j] <- sum(lprP1$knr==lprP1$knr[j]) 

 } 

 

#Indiv. with multiple events 

length(unique(lprP1$knr[which(lprP1$count1!=1)]))  # 626  

 

######### 

aPl <- which(airPne$knr %in% lprP1$knr) 

air1 <- airPne[aPl,] 

 

air1$multipne <- rep(NA, length(air1$knr)) 

 

for( i in 1:length(unique(air1$knr))) { 

 a1 <- which(air1$knr==unique(air1$knr)[i]) 

 l1 <- which(lprP1$knr==unique(air1$knr)[i]) 

 

 for( j in 1:length(l1)) { 

  for( k in 1: length(a1)) { 

  ifelse((lprP1$d_inddto[l1[j]] >= air1$riskstart[a1[k]] & 

     lprP1$d_inddto[l1[j]] <= air1$riskend[a1[k]]),  
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     air1$multipne[a1[k]] <- 1, air1$multipne[a1[k]] <- 0 ) 

 }} 

} 

 

######### 

 

for(l in 1:length(lprP$knr)) { 

fdd <- ifelse(lprP$knr[l]==airPne$knr & lprP$d_inddto[l] >= airPne$riskstart &  

 lprP$d_inddto[l] <= airPne$riskend, 1, 0) 

} 

  

################# 

 

 

D.2 Testing potential confounders – Univariate Cox regression 
 

######################### 

##### CATEGORIES 

 

#Two age groups - under and over 56 years old 

#mean(data_pne$age) #56.17682 

#mean(data_pne$agestart)  #56.67808 

data_pne$age_cat <- cut(data_pne$age, c(0,56,1000),1:2) 

 

#BMI categories 

data_pne$bmi3 <- cut(data_pne$bmi,c(0,20,30,1000), c('underweight', 'normal', 'obese')) 

data_pne$obese <- cut(data_pne$bmi,c(0,30,1000),c('normal','obese')) 

 

#Smoking categories 

smoint_cat <- cut(data_pne$smo_int,c(0,15,25,1000),c("low","med","high")) 

current <- which(data_pne$smoking == 3) 

 

air$smo_cat <- replace(air$smoking, current, as.character(smoint_cat[current])) 

 

#Alcohol categories 

alc <- air$alco_int/12     # drinks per day 

alc_w <- alc * 7     # drinks per week 

air$alc_cat <- cut(alc_w, c(0,1,20,1000), c('no drinks','1-20drinks','21+drinks')) 
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#Physical activity 

sportint_cat <- cut(data_pne$sport_int,c(0,3.5,1000),c('low','high')) 

 

phactive <- which(data_pne$sport == 1) 

data_pne$sport_cat <- replace(data_pne$sport, phactive, as.character(sportint_cat[phactive])) 

 

############################################# 

data_pne$age_cat <- as.factor(data_pne$age_cat) 

data_pne$gender <- as.factor(data_pne$gender) 

data_pne$bmi_cat <- as.factor(data_pne$bmi_cat) 

data_pne$obese <- as.factor(data_pne$obese) 

data_pne$education <- as.factor(data_pne$education) 

data_pne$alcohol <- as.factor(data_pne$alcohol) 

data_pne$smoking <- as.factor(data_pne$smoking) 

data_pne$smo_cat <- as.factor(data_pne$smo_cat) 

data_pne$ets <- as.factor(data_pne$ets) 

data_pne$occup_exp <- as.factor(data_pne$occup_exp) 

data_pne$sport <- as.factor(data_pne$sport) 

data_pne$sport_cat <- as.factor(data_pne$sport_cat) 

 

#alco_int => continuous 100g/day 

#data_pne$smo_duration => continuous 

#data_pne$fedt & data_pne$fruit => continuous 100g/day 

 

##### 

attach(data_pne) 

 

########################### 

####### UNI COX MODEL ######### 

library(survival) 

 

#Age 

mod1 <- coxph(Surv(agestart, ageend, censorsta)~age_cat, data_pne) 

#Check proportional hazard assumption 

#cox.zph(mod1, transform="log") 

 

#Gender 

mod2 <- coxph(Surv(agestart, ageend, censorsta)~gender, data_pne) 

cox.zph(mod2, transform="log") 
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#BMI  

mod3 <- coxph(Surv(agestart, ageend, censorsta)~bmi_cat, data_pne) 

cox.zph(mod3, transform="log") 

 

#Education  

mod4 <- coxph(Surv(agestart, ageend, censorsta)~education, data_pne) 

cox.zph(mod4, transform="log") 

 

#Alcohol  

mod5 <- coxph(Surv(agestart, ageend, censorsta)~alc_cat, data_pne) 

cox.zph(mod5, transform="log") 

 

#Smoking  

mod6 <- coxph(Surv(agestart, ageend, censorsta)~smo_cat, data_pne) 

cox.zph(mod6, transform="log") 

 

#ETS  

mod7 <- coxph(Surv(agestart, ageend, censorsta)~ets, data_pne) 

cox.zph(mod7, transform="log") 

 

#Occupational exposure 

mod8 <- coxph(Surv(agestart, ageend, censorsta)~occup_exp, data_pne) 

# cox.zph(mod8, transform="log") 

 

#Physical activity  

mod9 <- coxph(Surv(agestart, ageend, censorsta)~sport_cat, data_pne) 

# cox.zph(mod9, transform="log") 

 

#Fruit and Fat  

#Mean fruit and fat consumption (100g/day) 

fat100 <- data_pne$fat/100 

fruit100 <- data_pne$fruit/100 

 

mod10 <- coxph(Surv(agestart, ageend, censorsta)~fat100, data_pne) 

mod11 <- coxph(Surv(agestart, ageend, censorsta)~fruit100, data_pne) 

# cox.zph(mod10, transform="log") 

# cox.zph(mod11, transform="log") 
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#Income 

kincome <- data_pne$Komincome/100000 

mod12 <- coxph(Surv(agestart, ageend, censorsta)~kincome, data_pne) 

#mod12_ph <- cox.zph(mod12, transform="log") 

 

###################  

#EXPOSURE 

 

mod_no2 <- coxph(Surv(agestart, ageend, censorsta)~no2, data_pne) 

mod_nox <- coxph(Surv(agestart, ageend, censorsta)~nox, data_pne) 

 

mod_logno2 <- coxph(Surv(agestart, ageend, censorsta)~log(no2,2), data_pne) 

mod_lognox <- coxph(Surv(agestart, ageend, censorsta)~log(nox,2), data_pne) 

 

cox.zph(mod_logno2, transform="log") 

cox.zph(mod_lognox, transform="log") 

 

#Checking functional form 

### SPLINES 

library(Design) 

d <- datadist(data_pne) 

options(datadist="d") 

 

#Age 

fit1 <- cph(Surv(agestart, ageend, censorsta) ~ rcs(age,3), data_pne) 

#BMI 

fit3 <- cph(Surv(agestart, ageend, censorsta) ~ rcs(bmi,3), data_pne) 

#Smoking 

fit4 <- cph(Surv(agestart, ageend, censorsta) ~ rcs(smo_duration,3), data_pne) 

#fit4a <- cph(Surv(agestart, ageend, censorsta) ~ rcs(smo_cat,3), data_pne) 

 

fit10 <- cph(Surv(agestart, ageend, censorsta) ~ rcs(fedt,3), data_pne) 

fit11 <- cph(Surv(agestart, ageend, censorsta) ~ rcs(fruit,3), data_pne) 

 

 

 

D.3 Modeling the exposure to air pollution 
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#Total population with 1st event 

air <- read.csv("D:/Pneumonia/Data/airKKHlong.csv", header = TRUE, sep = ",") 

length(unique(air$knr))  # 53239 

 

#Total population with multiple events  

air <- read.csv("D:/Pneumonia/Data/airKKHmulti.csv", header = TRUE, sep = ",") 

length(unique(air$knr))  # 53239 

 

###Compute cumulative mean NO2 and NOx exposure 

#No.of days at risk 

air$d <- as.vector(unlist(tapply(air$daysrisk, air$knr, cumsum))) 

 

#NO2 

air$deno2 <- as.vector(unlist(tapply(air$daysrisk * air$avno2_mod, air$knr, cumsum))) 

air$no2 <- air$deno2/air$d 

#NOx 

air$denox <- as.vector(unlist(tapply(air$daysrisk * air$avnox_mod, air$knr, cumsum))) 

air$nox <- air$denox/air$d 

 

#From '71 - entire exposure history (up to 40years) 

air71 <- air 

###Compute cumulative mean NO2 and NOx exposure 

#No.of days at risk 

air71$d <- as.vector(unlist(tapply(air71$daysrisk, air71$knr, cumsum))) 

 

#NO2 

air71$deno2 <- as.vector(unlist(tapply(air71$daysrisk * air71$avno2_mod, air71$knr, cumsum))) 

air71$no2 <- air71$deno2/air71$d 

#NOx 

air71$denox <- as.vector(unlist(tapply(air71$daysrisk * air71$avnox_mod, air71$knr, cumsum))) 

air71$nox <- air71$denox/air71$d 

 

#From 1981, and 1991 

air81 <- subset(air, air$year >= 1981) 

air91 <- subset(air, air$year >= 1991) 

###Compute cumulative mean NO2 and NOx exposure 

#No.of days at risk 

air81$d <- as.vector(unlist(tapply(air81$daysrisk, air81$knr, cumsum))) 

air91$d <- as.vector(unlist(tapply(air91$daysrisk, air91$knr, cumsum))) 

 

#NO2 
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air81$deno2 <- as.vector(unlist(tapply(air81$daysrisk * air81$avno2_mod, air81$knr, cumsum))) 

air81$no2 <- air81$deno2/air81$d 

 

air91$deno2 <- as.vector(unlist(tapply(air91$daysrisk * air91$avno2_mod, air91$knr, cumsum))) 

air91$no2 <- air91$deno2/air91$d 

 

#NOx 

air81$denox <- as.vector(unlist(tapply(air81$daysrisk * air81$avnox_mod, air81$knr, cumsum))) 

air81$nox <- air81$denox/air81$d 

 

air91$denox <- as.vector(unlist(tapply(air91$daysrisk * air91$avnox_mod, air91$knr, cumsum))) 

air91$nox <- air91$denox/air91$d 

 

#### 

#Cut off the data before baseline 

airPne <- subset( air, air$riskstart!=air$riskend) 

airPne71 <- subset( air71, air71$riskstart!=air71$riskend) 

airPne81 <- subset( air81, air81$riskstart!=air81$riskend) 

airPne91 <- subset( air91, air91$riskstart!=air91$riskend) 

 

length(unique(air$knr))   # 53239 

length(unique(airPne71$knr))  # 53239 

length(unique(airPne81$knr))  # 53239 

length(unique(airPne91$knr))  # 53239 

 

 

write.table(airPne, "D:/Pneumonia/Data/airMultifromBaseline.csv", sep=",", row.names=FALSE, 

col.names=TRUE, quote = FALSE) 

 

write.table(airPne71, "D:/Pneumonia/Data/air71fromBaseline.csv", sep=",", row.names=FALSE, 

col.names=TRUE, quote = FALSE) 

write.table(airPne81, "D:/Pneumonia/Data/air81fromBaseline.csv", sep=",", row.names=FALSE, 

col.names=TRUE, quote = FALSE) 

write.table(airPne91, "D:/Pneumonia/Data/air91fromBaseline.csv", sep=",", row.names=FALSE, 

col.names=TRUE, quote = FALSE) 

################## 

 

D.4 Ordinary Cox regression models - time to first pneumonia 

#Modeled exposure to NO2 and NOx 
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#Read data <- cummean exposure from '71, '81 or '91 (from baseline) 

airPne <- read.csv("D:/Pneumonia/Data/air71FromBaseline.csv", sep=",", header=T) 

airPne <- read.csv("D:/Pneumonia/Data/air81FromBaseline.csv", sep=",", header=T) 

airPne <- read.csv("D:/Pneumonia/Data/air91FromBaseline.csv", sep=",", header=T) 

 

## Spearman's rho - NO2 and NOx correlation 

rho <- cor(airPne$avno2_mod, airPne$avnox_mod, method = "spearman") 

rh1 <- cor(airPne$no2, airPne$nox, method = "spearman") 

rh2 <- cor(airPne$logno2, airPne$lognox, method = "spearman") 

 

####FACTORS 

airPne$gender <- as.factor(airPne$gender) 

airPne$bmi_cat <- as.factor(airPne$bmi_cat) 

airPne$education <- as.factor(airPne$education) 

airPne$alcohol <- as.factor(airPne$alcohol) 

#airPne$alc_cat <- as.factor(airPne$alc_cat) 

airPne$smoking <- as.factor(airPne$smoking) 

airPne$smo_cat <- as.factor(airPne$smo_cat) 

#smo_duration => continuous 

airPne$ets <- as.factor(airPne$ets) 

airPne$occup_exp <- as.factor(airPne$occup_exp) 

airPne$sport <- as.factor(airPne$sport) 

airPne$sport_cat <- as.factor(airPne$sport_cat) 

#fat & fruit => continuous 100g/day 

#data_pne$komincome <-  sesincome$Komincome 

 

############################## 

#Cubic splines 

 

fitTOT_no2 <- cph(Surv(ageriskstart, ageriskend, pne) ~ rcs(no2,4), airPne) 

fitTOT_nox <- cph(Surv(ageriskstart, ageriskend, pne) ~ rcs(nox,4), airPne) 

 

fitTOT_logno2 <- cph(Surv(ageriskstart, ageriskend, pne) ~ rcs(logno2,4), airPne) 

fitTOT_lognox <- cph(Surv(ageriskstart, ageriskend, pne) ~ rcs(lognox,4), airPne) 
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par(mfrow = c(2, 2)) 

plot(fitTOT_no2, xlab="NO2") 

plot(fitTOT_logno2, xlab="logNO2") 

plot(fitTOT_nox, xlab="NOx") 

plot(fitTOT_lognox, xlab="logNOx") 

############################## 

 

############################## 

#NO2 and NOx categories - quartiles 

airPne$logno2_cat <- cut(airPne$logno2, c(0, 3.8, 4, 4.3, 100), c(1:4)) 

airPne$lognox_cat <- cut(airPne$lognox, c(0, 4, 4.6, 5, 100), c(1:4)) 

 

############################## 

### COX proportional hazard ### 

############################## 

library(survival) 

 

#### FULL COHORT ##### 

attach(airPne) 

 

#Cubic splines 

library(Design) 

d <- datadist(airPne) 

options(datadist="d") 

 

#### Exposure to NO2 ###### 

#Cox PH adjusted for age 

m1TOTlogno2 <- coxph(Surv(ageriskstart, ageriskend, pne) ~ logno2, airPne) 

#cox.zph(m1TOTlogno2 , transform="log") 

 

#Cox PH adjusted for age, smoking, ets and occupational exposure 

m2TOTlogno2 <- coxph(Surv(ageriskstart, ageriskend, pne) ~ logno2 +  

   smo_cat + occup_exp + ets, airPne) 

#cox.zph(m2TOTlogno2 , transform="log") 

 

#Cox PH fully adjusted 

m3TOTlogno2 <- coxph(Surv(ageriskstart, ageriskend, pne) ~ logno2 +  

   gender + rcs(bmi,3) + smo_cat + ets + alcohol + alco_int +  

   education + occup_exp + sport_cat + fruit100 + fat100, airPne) 
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#Test hp assumption 

m3TOTzph <- cox.zph(m3TOTlogno2 , transform="log") 

 

####Exposure to NOx ###### 

#Cox PH adjusted for age 

m1TOTlognox <- coxph(Surv(ageriskstart, ageriskend, pne) ~ lognox, airPne) 

#cox.zph(m1TOTlognox , transform="log") 

 

#Cox PH adjusted for age, smoking, ets and occupational exposure 

m2TOTlognox <- coxph(Surv(ageriskstart, ageriskend, pne) ~ lognox +  

   smo_cat + occup_exp + ets, airPne) 

#cox.zph(m2TOTlognox , transform="log") 

 

#Cox PH fully adjusted 

m3TOTlognox <- coxph(Surv(ageriskstart, ageriskend, pne) ~ lognox +  

   gender + rcs(bmi,3) + smo_cat + ets + alcohol + alco_int +  

   education + occup_exp + sport_cat + fruit100 + fat100, airPne) 

m3xTOTzph <- cox.zph(m3TOTlognox , transform="log") 

plot(m3xTOTzph[1]) 

 

################### 

##Plots of the scaled Schoenfeld residuals against logNO2 exposure 

plot(m3TOTzph[1]) 

par(mfrow=c(1,3)) 

#gender 

plot(m3TOTzph[2]) 

#bmi 

plot(m3TOTzph[3]) 

#Occupational exposure 

plot(m3TOTzph[14]) 

 

par(mfrow=c(1,2)) 

plot(m3TOTzph[1]) 

plot(m3xTOTzph[1]) 

##### ############### 
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#NO2 categories 

no2_cat <- cut(no2, c(0, 13.6, 17.3, 19.5, 1000), c(1:4)) 

airPne$logno2_cat <- cut(logno2, c(0, 3.8, 4, 4.3, 100), c(1:4)) 

 

m1TOTlogno2_cat <- coxph(Surv(ageriskstart, ageriskend, pne) ~ logno2_cat, airPne) 

m2TOTlogno2_cat <- coxph(Surv(ageriskstart, ageriskend, pne) ~ logno2_cat +  

   smo_cat + ets + occup_exp, airPne) 

m3TOTlogno2_cat <- coxph(Surv(ageriskstart, ageriskend, pne) ~ logno2_cat +  

   gender + rcs(bmi,3) + smo_cat + ets + alcohol + alco_int +  

   education + occup_exp + sport_cat + fruit100 + fat100, airPne) 

 

 

############################## 

# Traffic proxy status variables – 1year mean exposure at baseline 

############################# 

 

#Read data 

traffic = read.csv("D:/Pneumonia/Data/trafficproxy.csv", header = TRUE, sep = ",") 

 

traffic$i50m10000 <- as.factor(traffic$i50m10000) 

traffic$i100m10000 <- as.factor(traffic$i100m10000) 

traffic$i50m5000 <- as.factor(traffic$i50m5000) 

traffic$i100m5000 <- as.factor(traffic$i100m5000) 

 

#Desc.Analysis 

sum(traffic $i50m5000); sum(traffic $i50m10000) 

sum(traffic $i100m5000); sum(traffic $i100m10000) 

 

#Data for DCH cohort members 

data_pneTR  <- traffic 

 

####FACTORS 

data_pneTR$gender <- as.factor(data_pneTR$gender) 

data_pneTR$bmi_cat <- as.factor(data_pneTR$bmi_cat) 

data_pneTR$education <- as.factor(data_pneTR$education) 

data_pneTR$alcohol <- as.factor(data_pneTR$alcohol) 

#airPne$alc_cat <- as.factor(data_pneTR$alc_cat) 

data_pneTR$smoking <- as.factor(data_pneTR$smoking) 

data_pneTR$smo_cat <- as.factor(data_pneTR$smo_cat) 

data_pneTR$ets <- as.factor(data_pneTR$ets) 
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data_pneTR$occup_exp <- as.factor(data_pneTR$occup_exp) 

data_pneTR$sport <- as.factor(data_pneTR$sport) 

data_pneTR$sport_cat <- as.factor(data_pneTR$sport_cat) 

 

####### COX MODEL ######### 

library(survival) 

 

#Presence of major road- 10000 cars/day- within 50m radius at residential address 

mod1t <- coxph(Surv(ageriskstart, ageriskend, pne)~data_pneTR$i50m10000, data_pneTR) 

mod1ta <- coxph(Surv(ageriskstart, ageriskend, pne)~data_pneTR$i50m10000 + 

  smo_cat + occup_exp + ets, data_pneTR) 

mod1tb <- coxph(Surv(ageriskstart, ageriskend, pne)~data_pneTR$i50m10000 + 

  gender + rcs(bmi,3) + smo_cat + ets + alcohol + alco_int +  

  education + occup_exp + sport_cat + fruit100 + fat100, data_pneTR) 

 

#Presence of major road- 10000 cars/day- within 100m radius at residential address 

mod2t <- coxph(Surv(ageriskstart, ageriskend, pne)~data_pneTR$i100m10000, data_pneTR) 

mod2ta <- coxph(Surv(ageriskstart, ageriskend, pne)~data_pneTR$i100m10000 + 

  smo_cat + occup_exp + ets, data_pneTR) 

mod2tb <- coxph(Surv(ageriskstart, ageriskend, pne)~data_pneTR$i100m10000 + 

  gender + rcs(bmi,3) + smo_cat + ets + alcohol + alco_int +  

  education + occup_exp + sport_cat + fruit100 + fat100, data_pneTR) 

 

#Presence of major road- 5000 cars/day- within 50m radius at residential address 

mod3t <- coxph(Surv(ageriskstart, ageriskend, pne)~data_pneTR$i50m5000, data_pneTR) 

mod3ta <- coxph(Surv(ageriskstart, ageriskend, pne)~data_pneTR$i50m5000 + 

  smo_cat + occup_exp + ets, data_pneTR) 

mod3tb <- coxph(Surv(ageriskstart, ageriskend, pne)~data_pneTR$i50m5000 + 

  gender + rcs(bmi,3) + smo_cat + ets + alcohol + alco_int +  

  education + occup_exp + sport_cat + fruit100 + fat100, data_pneTR) 

 

#Presence of major road- 5000 cars/day- within 100m radius at residential address 

mod4t <- coxph(Surv(ageriskstart, ageriskend, pne)~data_pneTR$i100m5000, data_pneTR) 

mod4ta <- coxph(Surv(ageriskstart, ageriskend, pne)~data_pneTR$i100m5000 + 

  smo_cat + occup_exp + ets, data_pneTR) 

mod4tb <- coxph(Surv(ageriskstart, ageriskend, pne)~data_pneTR$i100m5000 + 

  gender + rcs(bmi,3) + smo_cat + ets + alcohol + alco_int +  

  education + occup_exp + sport_cat + fruit100 + fat100, data_pneTR) 
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#Traffic loads 

data_pneTR$strint2 <- data_pneTR$strint200m/1000000 

data_pneTR$strint1 <- data_pneTR$strint100m/1000000 

 

mod5t <- coxph(Surv(ageriskstart, ageriskend, pne)~data_pneTR$strint1, data_pneTR) 

mod5ta <- coxph(Surv(ageriskstart, ageriskend, pne)~data_pneTR$strint1 + 

  smo_cat + occup_exp + ets, data_pneTR) 

mod5tb <- coxph(Surv(ageriskstart, ageriskend, pne)~data_pneTR$strint1 + 

  gender + rcs(bmi,3) + smo_cat + ets + alcohol + alco_int +  

  education + occup_exp + sport_cat + fruit100 + fat100, data_pneTR) 

 

mod6t <- coxph(Surv(ageriskstart, ageriskend, pne)~data_pneTR$strint2, data_pneTR) 

mod6ta <- coxph(Surv(ageriskstart, ageriskend, pne)~data_pneTR$strint2 + 

  smo_cat + occup_exp + ets, data_pneTR) 

mod6tb <- coxph(Surv(ageriskstart, ageriskend, pne)~data_pneTR$strint2 + 

  gender + rcs(bmi,3) + smo_cat + ets + alcohol + alco_int +  

  education + occup_exp + sport_cat + fruit100 + fat100, data_pneTR) 

############################## 

 

 

D.4 Extended Cox regression models – recurrent pneumonias 

 

#Read data – DCH with recurrent pneumonias 

airPne <- read.csv("D:/Pneumonia/Data/recurrentData.csv", sep=",", header=T) 

 

####FACTORS 

airPne$gender <- as.factor(airPne$gender) 

airPne$bmi_cat <- as.factor(airPne$bmi_cat) 

airPne$education <- as.factor(airPne$education) 

airPne$alcohol <- as.factor(airPne$alcohol) 

#airPne$alc_cat <- as.factor(airPne$alc_cat) 

airPne$smoking <- as.factor(airPne$smoking) 

airPne$smo_cat <- as.factor(airPne$smo_cat) 

#smo_duration => continuous 

airPne$ets <- as.factor(airPne$ets) 

airPne$occup_exp <- as.factor(airPne$occup_exp) 

airPne$sport <- as.factor(airPne$sport) 

airPne$sport_cat <- as.factor(airPne$sport_cat) 
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############################### 

### COX proportional hazard ### 

############################### 

library(survival) 

 

#NO2 categories 

#no2_cat <- cut(no2, c(0, 13.6, 17.3, 19.5, 1000), c(1:4)) 

airPne$logno2_cat <- cut(airPne$logno2, c(0, 3.8, 4, 4.3, 100), c(1:4)) 

airPne$lognox_cat <- cut(airPne$lognox, c(0, 4, 4.6, 5, 100), c(1:4)) 

attach(airPne) 

 

#Cubic splines 

library(Design) 

d <- datadist(airPne) 

options(datadist="d") 

 

#### NO2 ###### 

m3logno2 <- coxph(Surv(ageriskstart, ageriskend, pne) ~ logno2 +  

   gender + rcs(bmi,3) + smo_cat + ets + alcohol + alco_int +  

   education + occup_exp + sport_cat + fruit100 + fat100,  

   data= subset(airPne, count <=1) ) 

 

m3logno2cat <- coxph(Surv(ageriskstart, ageriskend, pne) ~ logno2_cat +  

   gender + rcs(bmi,3) + smo_cat + ets + alcohol + alco_int +  

   education + occup_exp + sport_cat + fruit100 + fat100,  

   data= subset(airPne, pne_noci==1 & count <=1 ) ) 

 

#PH assumption check 

m3firstzph <- cox.zph(m3logno2, transform="log"); m3xfirstzph <- cox.zph(m3lognox, transform="log") 

 

##Plots of the scaled Schoenfeld residuals against log-transformed age as underlying time-scale 

#logno2 and lognox exposure 

par(mfrow=c(1,2)) 

plot(m3firstzph[1]) 

plot(m3xfirstzph[1]) 

 

#gender 

plot(m3firstzph[2]) 

#Occupational exposure 

plot(m3firstzph[14]) 
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############################### 

#Recurrent models 

############################### 

 

#Intensity-based model 

#Cox PH adjusted for age 

m1logno2IB <- coxph(Surv(ageriskstart, ageriskend, pne) ~ logno2, airPne) 

#Cox PH adjusted for age smoking, ets and occup.exposure 

m2logno2IB <- coxph(Surv(ageriskstart, ageriskend, pne) ~ logno2 +  

   smo_cat + ets + occup_exp, airPne) 

#Cox PH fully adjusted 

m3logno2IB <- coxph(Surv(ageriskstart, ageriskend, pne) ~ logno2 +  

   gender + rcs(bmi,3) + smo_cat + ets + alcohol + alco_int +  

   education + occup_exp + sport_cat + fruit100 + fat100, airPne) 

cox.zph(m1logno2IB, transform="log") 

cox.zph(m2logno2IB, transform="log") 

cox.zph(m3logno2IB, transform="log") 

 

#Andersen - Gill (variance-corrected) model 

#Cox PH adjusted for age 

m1logno2AG <- coxph(Surv(ageriskstart, ageriskend, pne) ~ logno2 + cluster(knr), airPne) 

 

#Cox PH adjusted for age smoking, ets and occup.exposure 

m2logno2AG <- coxph(Surv(ageriskstart, ageriskend, pne) ~ logno2 +  

   smo_cat + ets + occup_exp + cluster(knr), airPne) 

 

#Cox PH fully adjusted 

m3logno2AG <- coxph(Surv(ageriskstart, ageriskend, pne) ~ logno2 +  

   gender + rcs(bmi,3) + smo_cat + ets + alcohol + alco_int +  

   education + occup_exp + sport_cat + fruit100 + fat100 + cluster(knr), airPne) 

cox.zph(m1logno2AG, transform="log") 

cox.zph(m2logno2AG, transform="log") 

cox.zph(m3logno2AG, transform="log") 

 

#Conditional AG 

m1logno2AGc <- coxph(Surv(ageriskstart, ageriskend, pne) ~ logno2 + cluster(knr) + strata(enum),   

    airPne) 

m2logno2AGc <- coxph(Surv(ageriskstart, ageriskend, pne) ~ logno2 +  

   smo_cat + ets + occup_exp + cluster(knr) + strata(enum), airPne) 

 

m3logno2AGc <- coxph(Surv(ageriskstart, ageriskend, pne) ~ logno2 +  
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   gender + rcs(bmi,3) + smo_cat + ets + alcohol + alco_int +  

   education + occup_exp + sport_cat + fruit100 + fat100 +  

   cluster(knr) + strata(enum), airPne) 

cox.zph(m1logno2AGc, transform="log") 

cox.zph(m2logno2AGc, transform="log") 

cox.zph(m3logno2AGc, transform="log") 

 

#Frailty (random effect) model 

m1logno2f <- coxph(Surv(ageriskstart, ageriskend, pne) ~ logno2 + frailty(knr), airPne) 

 

m2logno2f <- coxph(Surv(ageriskstart, ageriskend, pne) ~ logno2 +  

   smo_cat + occup_exp + ets + frailty(knr), airPne) 

 

m3logno2f <- coxph(Surv(ageriskstart, ageriskend, pne) ~ logno2 +  

   gender + rcs(bmi,3) + smo_cat + ets + alcohol + alco_int +  

   education + occup_exp + sport_cat + fruit100 + fat100 +  

   frailty(knr), airPne) 

 

cox.zph(m1logno2f , transform="log") 

cox.zph(m2logno2f , transform="log") 

cox.zph(m3logno2f , transform="log") 

 

#Conditional Frailty model 

m1logno2f <- coxph(Surv(ageriskstart, ageriskend, pne) ~ logno2 + frailty(knr)+strata(enum), airPne) 

 

 

 

m2logno2f <- coxph(Surv(ageriskstart, ageriskend, pne) ~ logno2 +  

   smo_cat + occup_exp + ets + frailty(knr) )+strata(enum), airPne) 

 

m3logno2f <- coxph(Surv(ageriskstart, ageriskend, pne) ~ logno2 +  

   gender + rcs(bmi,3) + smo_cat + ets + alcohol + alco_int +  

   education + occup_exp + sport_cat + fruit100 + fat100 +  

   frailty(knr) )+strata(enum), airPne) 

 

cox.zph(m1logno2f , transform="log") 

cox.zph(m2logno2f , transform="log") 

cox.zph(m3logno2f , transform="log") 

 

################################# 

#### NOx ###### 



101 

 

 

#Intensity-based model 

m1lognoxIB <- coxph(Surv(ageriskstart, ageriskend, pne) ~ lognox, airPne) 

m2lognoxIB <- coxph(Surv(ageriskstart, ageriskend, pne) ~ lognox +  

   smo_cat + ets + occup_exp, airPne) 

m3lognoxIB <- coxph(Surv(ageriskstart, ageriskend, pne) ~ lognox +  

   gender + rcs(bmi,3) + smo_cat + ets + alcohol + alco_int +  

   education + occup_exp + sport_cat + fruit100 + fat100, airPne) 

 

#Andersen - Gill (variance-corrected) model 

m1lognoxAG <- coxph(Surv(ageriskstart, ageriskend, pne) ~ lognox + cluster(knr), airPne) 

m2lognoxAG <- coxph(Surv(ageriskstart, ageriskend, pne) ~ lognox +  

   smo_cat + ets + occup_exp + cluster(knr), airPne) 

m3lognoxAG <- coxph(Surv(ageriskstart, ageriskend, pne) ~ lognox +  

   gender + rcs(bmi,3) + smo_cat + ets + alcohol + alco_int +  

   education + occup_exp + sport_cat + fruit100 + fat100 + cluster(knr), airPne) 

 

#Conditional AG 

m1lognoxAGc <- coxph(Surv(ageriskstart, ageriskend, pne) ~ lognox + cluster(knr) + strata(enum),  

   airPne) 

m2lognoxAGc <- coxph(Surv(ageriskstart, ageriskend, pne) ~ lognox +  

   smo_cat + ets + occup_exp + cluster(knr) + strata(enum), airPne) 

m3lognoxAGc <- coxph(Surv(ageriskstart, ageriskend, pne) ~ lognox +  

   gender + rcs(bmi,3) + smo_cat + ets + alcohol + alco_int +  

   education + occup_exp + sport_cat + fruit100 + fat100 +  

   cluster(knr) + strata(enum), airPne) 

 

#Frailty model 

m1lognoxf <- coxph(Surv(ageriskstart, ageriskend, pne) ~ lognox + frailty(knr), airPne) 

m2lognoxf <- coxph(Surv(ageriskstart, ageriskend, pne) ~ lognox +  

   smo_cat + ets + occup_exp + frailty(knr), airPne) 

m3lognoxf <- coxph(Surv(ageriskstart, ageriskend, pne) ~ lognox +  

   gender + rcs(bmi,3) + smo_cat + ets + alcohol + alco_int +  

   education + occup_exp + sport_cat + fruit100 + fat100 + frailty(knr), airPne) 

 

#Conditional Frailty 

m1lognoxfc <- coxph(Surv(ageriskstart, ageriskend, pne) ~ lognox + frailty(knr) + strata(enum), airPne) 

 

m2lognoxfc <- coxph(Surv(ageriskstart, ageriskend, pne) ~ lognox +  

   smo_cat + ets + occup_exp + frailty(knr) + strata(enum), airPne) 

m3lognoxfc <- coxph(Surv(ageriskstart, ageriskend, pne) ~ lognox +  
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   gender + rcs(bmi,3) + smo_cat + ets + alcohol + alco_int +  

   education + occup_exp + sport_cat + fruit100 + fat100 +  

   frailty(knr) + strata(enum), airPne) 

 

##### #################### 

### Survival(KM) and Cumulative hazard (NA)#### 

 

# Null Cox model 

tsurv <- survfit(Surv(ageriskstart, ageriskend, pne) ~ 1, data=subset(airPne, count <=1)) 

par(mfrow=c(1,2)) 

plot(tsurv, xlim=c(50,80), xlab="Age", ylab="Survival", conf.int=T, mark.time=F) 

plot(tsurv, xlim=c(50,80), xlab="Age", ylab="Cumulative Hazard", fun="cumhaz", conf.int=T,  

   mark.time=F) 

 

###### 

#Cumulative hazard function plots by use of the Nelson-Aalen estimator 

fitGender <- survfit ( Surv(ageriskstart, ageriskend, pne) ~ gender, data =airPne)  

fitSmo <- survfit ( Surv(ageriskstart, ageriskend, pne) ~ smo_cat, data =airPne)  

fitEts <- survfit ( Surv(ageriskstart, ageriskend, pne) ~ ets, data =airPne)  

fitAlco <- survfit ( Surv(ageriskstart, ageriskend, pne) ~ alc_cat, data =airPne)  

fitOccup <- survfit ( Surv(ageriskstart, ageriskend, pne) ~ occup_exp, data =airPne)  

fitEduc <- survfit ( Surv(ageriskstart, ageriskend, pne) ~ education, data =airPne)  

fitSport <- survfit ( Surv(ageriskstart, ageriskend, pne) ~ sport_cat, data =airPne)  

fitBMI <- survfit ( Surv(ageriskstart, ageriskend, pne) ~ bmi_cat, data =airPne)  

 

fitEv <- survfit ( Surv(ageriskstart, ageriskend, pne) ~ events, data=subset(airPne, events!=0))  

 

######### 

#Indiv. with history of Pneumonia - #485 

 

m1clogno2IB <- coxph(Surv(ageriskstart, ageriskend, pne) ~ logno2, data=subset(airPne, pne_noci==1)) 

m2clogno2IB <- coxph(Surv(ageriskstart, ageriskend, pne) ~ logno2 +  

   smo_cat + ets + occup_exp, data=subset(airPne, pne_noci==1)) 

m3clogno2IB <- coxph(Surv(ageriskstart, ageriskend, pne) ~ logno2 +  

   gender + rcs(bmi,3) + smo_cat + ets + alcohol + alco_int +  

   education + occup_exp + sport_cat + fruit100 + fat100, data=subset(airPne,  

   pne_noci==1)) 

 

#Andersen - Gill (variance-corrected) model 

m1clogno2AG <- coxph(Surv(ageriskstart, ageriskend, pne) ~ logno2 + cluster(knr), data=subset(airPne,  

     pne_noci==1)) 
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m2clogno2AG <- coxph(Surv(ageriskstart, ageriskend, pne) ~ logno2 +  

   smo_cat + ets + occup_exp + cluster(knr), data=subset(airPne, pne_noci==1)) 

m3clogno2AG <- coxph(Surv(ageriskstart, ageriskend, pne) ~ logno2 +  

   gender + rcs(bmi,3) + smo_cat + ets + alcohol + alco_int +  

   education + occup_exp + sport_cat + fruit100 + fat100 + cluster(knr),  

   data=subset(airPne, pne_noci==1)) 

 

#Conditional  AG  

m1clogno2AGc <- coxph(Surv(ageriskstart, ageriskend, pne) ~ logno2 + cluster(knr) + strata(enum),  

    data=subset(airPne, pne_noci==1)) 

m2clogno2AGc <- coxph(Surv(ageriskstart, ageriskend, pne) ~ logno2 +  

   smo_cat + ets + occup_exp + cluster(knr) + strata(enum), data=subset(airPne,  

   pne_noci==1)) 

m3clogno2AGc <- coxph(Surv(ageriskstart, ageriskend, pne) ~ logno2 +  

   gender + rcs(bmi,3) + smo_cat + ets + alcohol + alco_int +  

   education + occup_exp + sport_cat + fruit100 + fat100 +  

   cluster(knr) + strata(enum), data=subset(airPne, pne_noci==1)) 

 

#Frailty model  

m1clogno2f <- coxph(Surv(ageriskstart, ageriskend, pne) ~ logno2 + frailty(knr), data=subset(airPne,  

   pne_noci==1)) 

m2clogno2f <- coxph(Surv(ageriskstart, ageriskend, pne) ~ logno2 +  

   smo_cat + ets + occup_exp + frailty(knr), data=subset(airPne, pne_noci==1)) 

m3clogno2f <- coxph(Surv(ageriskstart, ageriskend, pne) ~ logno2 +  

   gender + rcs(bmi,3) + smo_cat + ets + alcohol + alco_int +  

   education + occup_exp + sport_cat + fruit100 + fat100 + frailty(knr),  

   data=subset(airPne, pne_noci==1)) 

 

#Conditional Frailty  

m1clogno2fc <- coxph(Surv(ageriskstart, ageriskend, pne) ~ logno2 + frailty(knr) + strata(enum),  

   data=subset(airPne, pne_noci==1)) 

m2clogno2fc <- coxph(Surv(ageriskstart, ageriskend, pne) ~ logno2 +  

   smo_cat + ets + occup_exp + frailty(knr) + strata(enum), data=subset(airPne,  

   pne_noci==1)) 
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m3clogno2fc <- coxph(Surv(ageriskstart, ageriskend, pne) ~ logno2 +  

   gender + rcs(bmi,3) + smo_cat + ets + alcohol + alco_int +  

   education + occup_exp + sport_cat + fruit100 + fat100 +  

   frailty(knr) + strata(enum), data=subset(airPne, pne_noci==1)) 

 

############ 

### log NOx 

m1clognoxIB <- coxph(Surv(ageriskstart, ageriskend, pne) ~ lognox, data=subset(airPne, pne_noci==1)) 

m2clognoxIB <- coxph(Surv(ageriskstart, ageriskend, pne) ~ lognox +  

   smo_cat + ets + occup_exp, data=subset(airPne, pne_noci==1)) 

m3clognoxIB <- coxph(Surv(ageriskstart, ageriskend, pne) ~ lognox +  

   gender + rcs(bmi,3) + smo_cat + ets + alcohol + alco_int +  

   education + occup_exp + sport_cat + fruit100 + fat100, data=subset(airPne,  

   pne_noci==1)) 

 

#Andersen - Gill (variance-corrected) model 

m1clognoxAG <- coxph(Surv(ageriskstart, ageriskend, pne) ~ lognox + cluster(knr), data=subset(airPne, 

pne_noci==1)) 

m2clognoxAG <- coxph(Surv(ageriskstart, ageriskend, pne) ~ lognox +  

   smo_cat + ets + occup_exp + cluster(knr), data=subset(airPne, pne_noci==1)) 

m3clognoxAG <- coxph(Surv(ageriskstart, ageriskend, pne) ~ lognox +  

   gender + rcs(bmi,3) + smo_cat + ets + alcohol + alco_int +  

   education + occup_exp + sport_cat + fruit100 + fat100 + cluster(knr),  

    data=subset(airPne, pne_noci==1)) 

 

#Conditional AG  

m1clognoxAGc <- coxph(Surv(ageriskstart, ageriskend, pne) ~ lognox + cluster(knr) + strata(enum),  

    data=subset(airPne, pne_noci==1)) 

 

 

m2clognoxAGc <- coxph(Surv(ageriskstart, ageriskend, pne) ~ lognox +  

   smo_cat + ets + occup_exp + cluster(knr) + strata(enum), data=subset(airPne,  

    pne_noci==1)) 

m3clognoxAGc <- coxph(Surv(ageriskstart, ageriskend, pne) ~ lognox +  

   gender + rcs(bmi,3) + smo_cat + ets + alcohol + alco_int +  

   education + occup_exp + sport_cat + fruit100 + fat100 +  

   cluster(knr) + strata(enum), data=subset(airPne, pne_noci==1)) 

##### 
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