

Kamili
a Platform-Independent Framework for
Application Development for Smart Phones

Lars Maaløe

Martin Wiboe

July 2011

Kamili

a Platform-Independent Framework for

Application Development for Smart Phones

IMM-B.Sc-2011-23

Kongens Lyngby, 2011

By

Lars Maaløe

Martin Wiboe

Copyright: Reproduction of this publication in whole or in part must

include the customary bibliographic citation, including

author attribution, report title, etc.

Published by: Department of Informatics and Mathematical Modelling

Richard Petersens Plads, Building 321

DK-2800 Kgs. Lyngby, Denmark

Request report from: www.imm.dtu.dk

 3

Summary

With smartphone ownership increasing every year, developers are creat-

ing mobile applications, or apps, at a quicker pace than ever before.

Smartphone manufacturers are competing for market share, causing a

number of different mobile platforms to coexist. As the number of plat-

forms increases, developers are looking for cross-platform development

solutions that allow the same application to run on multiple devices.

In this thesis, we examine the currently available solutions for cross-

platform development in the context of implementing a realistic example

application. We then develop a tool, Kamili, for rapid prototyping and

development of applications that run on several platforms using the Na-

ked Objects method of automatic user interface generation.

We implement the example application and discuss the implications of

working with multiple platforms and of using Kamili. We then describe

the development process and the testing methods employed, as well as

the possibilities for extensions of the tool.

4

Resumé

Antallet af smartphone-ejere er stigende, og i takt med dette udvikles

der flere mobile applikationer, apps, end nogensinde før. Smartphone-

producenternes konkurrence om markedsandele forårsager, at antallet

af forskellige mobilplatforme øges. En effekt af denne udvikling er, at

softwareudviklere efterspørger værktøjer, som muliggør udviklingen af

mobile applikationer der fungerer på flere platforme.

I denne opgave undersøger vi de eksisterende værktøjer af denne type.

Vores analyse tager udgangspunkt i udviklingen af en realistisk

eksempelapplikation. Derefter udvikler vi et værktøj, Kamili, som kan

anvendes til hurtig udvikling af prototyper og applikationer som kan køre

på flere platforme. I dette værktøj anvender vi Naked Objects-metoden

til automatisk generering af brugerflader.

Vi implementerer eksempelapplikationen og diskuterer implikationerne

af at arbejde med flere mobile platforme og ved anvendelse af Kamili.

Endelig redegør vi for den anvendte udviklingsproces og for test-

metoden samt for mulighederne der ligger i en fremtidig videreudvikling

af Kamili.

 5

Kamili

Preface

This thesis was prepared at the Department of Informatics and Mathe-

matical Modelling at The Technical University of Denmark in partial ful-

fillment of the requirements for acquiring a B.Sc. degree in engineering.

Kongens Lyngby, July 2011

Lars Maaløe

Martin Wiboe

Content

Summary ... 3

Resumé .. 4

Preface ... 5

1 Introduction .. 7

1.1 Project Objectives ... 8

1.2 Project Result & Name .. 9

2 Case Introduction ... 10

3 Background... 11

3.1 Focus Platforms .. 11

3.2 Devices ... 13

3.3 Existing solutions .. 14

3.4 Introduction to Naked Objects .. 16

4 Analysis... 18

4.1 Techniques for Cross-Platform Development 18

4.2 User Experience.. 21

4.3 Implementing the Case Using an Existing Solution 21

4.4 Creating our own UI Framework ... 23

5 Discussion ... 24

5.1 Project Goals ... 24

5.2 Technologies ... 24

5.3 Development Process ... 27

5.4 Design & Implementation ... 29

5.5 Project File Layout .. 38

5.6 Testing .. 38

6 Implementing the Case Application 43

6.1 Design Requirements ... 43

6.2 Implementation .. 45

7 Conclusion .. 50

References ... 51

Acknowledgements ... 58

Introduction 7

1 Introduction

The rate of smartphone adoption is accelerating worldwide. In 2010, Ap-

ple had sold more than 60 million iPhones worldwide since its release in

2007. [1] Other smartphone vendors all profit from the expanding de-

mand on the market. [2] This development has had a great impact on the

market for mobile apps.1 [3]

Apple introduced Apps to the iPhone in 2008, bringing increased reve-

nue for smartphone companies. [4] Apps have become a great showcase

for companies to share their advertisements, ideas and products to a

broad audience. [5] Developers use many of the hardware features that

enable a great variety of apps, such as geo-location and camera. In 2010,

the total app market reached 450,000 released apps with Google’s An-

droid Market and Apple’s App Store holding the largest proportion. [6]

The market for app development services has grown even larger than the

app market. Developers have realized that it is more profitable to start

an app development business than it is to publish ideas themselves. This

has resulted in a high increase of interest in the app creation services.

The need for additional app creation services is growing. [7]

According to [8], the term “cross-platform” can be defined as “the ability

of software to operate on more than one platform with identical (or al-

most identical) functionality.” While the term “platform” does not have a

universally accepted definition, we will use it in the way we have most

commonly seen it used: a “mobile platform” means a set of devices that

use the same operating system and have similar form factors. Google

Android is a platform. So is Apple iOS.

Several mobile platforms exist today, with the most recent major addi-

tion, Windows Phone 7 (WP7), launched in October 2010. [9] These new

platforms bring both opportunities and challenges to software develop-

ers, who must stay on top of recent developments. While it is indeed pos-

sible for software developers to gain proficiency in every platform, many

are increasingly looking towards cross-platform development tools, as

witnessed by the sheer number of such tools available. [10]

1 Application

8 Introduction

1.1 Project Objectives

The following question was the basis of this thesis:

?

This led us to four sub-question. The structure of this thesis is built

around the sub-questions, leading to the conclusion that is an answer to

the main question.

?

We address this question in chapter 3 and elaborate on the mobile OS’s

used in this project. Furthermore, we give a short introduction to the

hardware setup and features in the smartphone market today. The end of

chapter 3 gives an introduction to the existing cross-platform solutions

on the market.

?

Answered in chapter 4. We describe challenges in cross-platform devel-

opment. The chapter also contains an analysis of approaches to building

the UI framework.

?

Chapter 4 provides an examination of this question. We analyze cross-

platform advantages and disadvantages.

We supply this implementation in chapter 5. A further elaboration on the

project goals and requirements is included as well as a conclusion about

the technologies used in order to reach the goal. Furthermore we explain

the development process which has led to a working implementation of a

cross-platform tool. At the end, we test the extensibility of Kamili, and

describe our unit test method.

Chapter 2 introduces a case that gives a real life scenario that our tool

will hopefully be able to solve. In chapter 6 we solve the case and de-

scribe the advantages and disadvantages of the result.

Introduction 9

1.2 Project Result & Name

The result of this project should be a fully functional cross-platform tool

that is able to facilitate UI generation for at least two mobile platforms.

The rest of the underlying code is made portable through the use of third

party tools, so that our focus can remain on the UI alone.

The name of our project is Kamili, meaning ‘complete’ or ‘exact’ in Swa-

hili, reflecting our vision for it to make mobile applications run on all

platforms.

10 Case Introduction

2 Case Introduction

The following is the description of the case from Danish news: [11]

Troublemakers in the Danish nightlife are an increasing

phenomenon. The Danish government has made a decision

to allow pubs and nightclubs to keep a register on trouble-

makers. This allows the bouncers to keep the troublemakers

out of the specific bar or nightclub, and helps keeping a

proper behavior throughout the Danish nightlife.

We add further interpretation of the case:

It has been decided that the implementation of the register shall be digi-

tal. This allows the register to keep updated at a frequent rate, and it al-

lows the bouncers to access it easily. It is decided that the implementa-

tion should be tested as a mobile application. This application will make

it possible for the bouncer to access the register. The committee respon-

sible for the implementation is uncertain about whether a mobile appli-

cation is the smart choice. Therefore a prototype will be created.

The requirements for the prototype are as follows:

1. The application should be available on at least two mobile plat-

forms.

2. It must be possible for the bouncer to look up the status of a po-

tential troublemaker by entering his civil registration number.

3. Internet access to transfer the personal details back and fourth

from the register is required.

4. Due to the fact that this is a prototype, it should be possible to

change the features easily. The development should be as quick

as possible.

Background 11

3 Background

3.1 Focus Platforms

The design of Kamili emphasizes reusability and the ability to relatively

easily add new target platforms. For this report, we have decided to im-

plement the ability to target 2 platforms: iOS and WP7.

The following subchapters briefly describe each platform and the ad-

vantages and disadvantages for developers targeting the platform.

3.1.1 iOS

First released in early 2007, iOS is an operating system in the Mac OS X

family which targets mobile devices. iOS runs on recent versions of the

iPhone, iPad and iPod Apple devices. [12]

iOS was significant in popularizing smartphones among consumers, in-

troducing a touch-screen, gesture-based user interface that other com-

panies have been quick to adopt. [13]

With the App Store, introduced in 2008, Apple was among the first com-

panies to offer mobile developers a digital distribution network to sell

their software to iOS users. As of 2011, more than 15 billion apps have

been downloaded from the App Store, netting developers revenues in ex-

cess of $2.5 billion. [14]

For developers, the large iOS community and the high revenue from the

App Store are definitely an advantage of targeting this platform. Users of

iOS on average are more likely to buy apps than users of other major

mobile operating systems such as Google Android or RIM BlackBerry.

[15]

Another advantage is the low number of device models that run iOS,

meaning that developers do not have to perform testing on many differ-

ent devices compared to broader operating systems like Android.

To develop for iOS, one must use the Objective-C language, which is far

less popular than the .NET family of languages. [16] The iOS develop-

ment tools can be only used on a Mac – including the Interface Builder

tool for drawing a UI, the XCode tool for compiling, debugging and sign-

ing and the iPhone emulator. This means that the learning curve for new

developers is higher, as is the initial cost of starting development.

12 Background

Finally, apps for distribution through the App Store are subject to an ap-

proval process administered by Apple. There have been reports of apps

getting rejected with little justification [17] and of app approval rules be-

ing enforced in a seemingly inconsistent manner. [18]

The risk of getting an app rejected from the App Store is a disadvantage

of targeting the iOS platform.

3.1.2 Windows Phone 7

Windows Phone 7 is a recently created mobile operating system, re-

leased by Microsoft in October 2010. The system, which is based on the

Windows CE embedded operating system, represent Microsoft’s latest

foray into the mobile market, having seen its previous offerings overtak-

en in the marketplace mainly by iOS and Android. [19]

WP7 is licensed to several phone manufacturers and runs on

smartphones. Microsoft does impose some minimum system require-

ments that licensees must fulfill before being allowed to use the system.

[20]

Application developers can distribute their apps in an app store that is

similar to Apple’s. This store obviously has not yet obtained the same

revenue and customer base as the iOS one, which might be seen as a

disadvantage. However, the smaller amount of apps in the WP7 app

store, along with a continuous flow of new users coming to the platform,

could also be seen as an advantage.

The tools for developing for WP7 are Visual Studio 2010 on Windows or

MonoDevelop on Mac or Linux. Visual Studio is an effective and pleasant

development environment. [21,22]

The version of Visual Studio used for WP7 development can be down-

loaded free of charge. [23] Developers can utilize the popular .NET

framework while programming in the C# language, making the learning

curve flatter for many developers. The familiar and affordable develop-

ment environment is a clear advantage of WP7.

Theoretically, apps run equally well across WP7 devices, but in practice

developers will have to test on more devices to ensure a positive experi-

ence across different screen sizes, processor speeds etc. The increased

device fragmentation is thus a disadvantage of WP7.

Background 13

3.2 Devices

A mobile platform will typically consist of several devices using the same

operating system. While the device does not affect the programming lan-

guage used to target the platform or the general UI guidelines, there are

differences between devices that developers need to be aware of.

3.2.1 Screen Size & Resolution

Screen size and resolution will often vary between devices, and this has

caused problems in the desktop world where older programs had the

size of common screen elements hardcoded in pixels. If the user wanted

to increase text size in such a system, graphics and screen elements of

incompatible programs would not scale properly. [24]

The major mobile operating systems all implement some kind of device-

independent pixel addressing scheme to assist developers in creating

apps that work on different screen sizes, but it is imperative that care is

taken to provide graphics in a scalable format etc.

Another example would be the platforms where different form factor de-

vices, such as tablets and smartphones, co-exist, like Android and iOS.

Even though applications may run on either form factor, some planning

is typically needed to maintain an optimal user experience across form

factors.

3.2.2 Hardware features

The hardware capabilities of devices vary in general. Some devices have

camera, compass or GPS antenna. Taking Android as an example, some

devices will be tablets, some will be smartphones and some will even be

TV boxes. [25]

It is up to the developer to let the application check that the required

features are present and fail gracefully if they are not there.

3.2.3 Connectivity

Most smartphones have an Internet connection, and many apps will rely

on this connectivity to work. However, the connection may be disrupted

due to poor signal strength, roaming etc. Mobile applications should be

prepared for when no connectivity is available.

14 Background

3.3 Existing solutions

In the app development industry, there are several cross-compilation and

cross-platform tools available. In this section we introduce three solu-

tions that we find interesting.

3.3.1 jQuery Mobile

The purpose of the jQuery Mobile project is to create a cross-platform

web user interface. It is sponsored by powerful organizations, such as

Nokia, Palm, BlackBerry, Adobe. [26] The technology is built on JavaS-

cript, CSS3 and HTML [27]. This gives the technology the freedom to

span over a wide selection of mobile devices. The main vision of the pro-

ject is:

“Delivering top-of-the-line JavaScript in a unified User Inter-

face that works across the most-used smartphone web

browsers and tablet form factors.” [28]

jQuery Mobile is built on the most commonly used web standards.

All developers of modern browsers, with at least a nominal

amount of market share, implement these technologies in their

product. The HTML code is the foundation of web documents, and

gives the web design structure. CSS defines the layout, color and

font setup. The jQuery JavaScript library enables dynamic fea-

tures to the implementation. The bottom line is that jQuery Mo-

bile has developed a comprehensive platform that enables devel-

opers to more easily implement complicated features and usable

designs. [29]

The disadvantage of the jQuery Mobile project is that developers

are restricted to the features in the libraries. This results in uni-

form products, which probably will not satisfy the customers that

are interested in design or innovate UI. Furthermore, the cross

platform capability and the adherence to web standards limit de-

vice-specific features.

3.3.2 Titanium Mobile

Titanium Mobile is developed by the company Appcelerator. [30] The

idea behind Titanium Mobile is very similar to jQuery Mobile. It gives the

Background 15

developer the freedom to build an application using JavaScript. Thereby

the developers do not need to learn the platform-specific languages like

Objective-C and Java in order to develop a fully functioning mobile appli-

cation. Despite the apparent similarity with jQuery Mobile, Titanium

Mobile uses a much different technology to deploy the application to a

specific mobile device. Where jQuery Mobile uses the browser technolo-

gies within the devices, Titanium Mobile compiles parts of the implemen-

tation into the native platform independent languages. [31]

Titanium analyzes and preprocesses the JavaScript, CSS and HTML

code. This is followed by a pre-compilation, which separates the code in-

to a hierarchy of symbols. The symbols are decided upon the applications

use of Titanium APIs. The symbol hierarchy is the foundation of the gen-

eration of a symbol dependency matrix, which maps to the underlying Ti-

tanium library. This is done in order to understand which APIs the appli-

cation needs. The files compiled to platform-specific object files. When

the compilation of the dependency matrix is complete, the native SDK

compilers are invoked in order to compile the application to the final na-

tive library [32].

Where jQuery Mobile uses the browser engine for the application, Tita-

nium Mobile uses the hardware in the mobile device. Using hardware

acceleration from native platform independent code gives a much faster

feel to the application. Titanium Mobile has some disadvantages, namely

that it is not possible to compile all of the JavaScript code into native

code. Some of the dynamic code runs through an interpreter, which

slows down the application compared to an application implemented in

pure native code. [31]

3.3.3 MonoTouch and Mono for Android

Mono is an open source project that enables developers to create C# and

.NET development on non-Windows operating systems. Mono is available

for Mac OS X, Linux, BSD etc. [33].

Novell developed MonoTouch, which is similar to the Mono framework.

It allows developers to develop iPhone applications using C# and .NET.

The MonoTouch applications are compiled to machine code on the iPh-

one. [33]

Novell also developed Mono for Android, built on the Mono framework.

This enables developers to develop C# and .NET applications for the An-

16 Background

droid platform. Contrary to MonoTouch, Mono for Android does not

compile to machine code. It deploys the Mono runtime to the specific de-

vice.

MonoTouch and Mono for Android do not support compilation of the

platform specific UI. In MonoTouch the UI is developed in Apple’s own

software which creates a XML file in the format .xib. In Mono for An-

droid the UI is developed in a XML file in the axml format. This fact pre-

vents the same Mono application from running on both platforms.

3.4 Introduction to Naked Objects

This section gives a general introduction to the concept of Naked Ob-

jects. This theory will be used later in the thesis.

Naked Objects was first presented on the annual ACM2 conference

OOPSLA3 in Seattle 2001. The designers Richard Pawson and Robert

Mathews of CSC’s Research Services proclaimed that they had invented

a new approach to designing a UI. [34] The main idea was quite simple.

They eliminated the implementation of user interface design altogether,

by creating objects that corresponds to the business objects. A Naked

Objects framework then creates the UI from the implementation of soft-

ware objects. The developers’ OOP layout will be “naked” to the users,

hence the two entities will be in a strong correlation, because they see

the same programmatic structure. [34]

Naked Objects is a counterpart to the Model-View-Controller pattern

that is very common within the software development society. The main

idea of the MVC pattern is that it separates the modules of the program.

This makes the program more agile. For example if new views are to be

implemented, then there are only two modules that need to be modified,

View and Controller, and so forth. Richard Pawson says that the MVC

pattern is so common, that it never is questioned or challenged. [35] Fur-

thermore, he says that the MVC pattern holds some shortcomings that

Naked Objects can handle [35] .

In Figure 1 the difference between a regular MVC pattern and a Naked

Object pattern is presented. First of all, the controller layer is removed

2 Association for Computing Machines

3 Object-Oriented Programming, Systems, Languages and Applications

Background 17

in the Naked Objects implementation. This result in a big decrease in the

developers workload because of one less layer to implement. Further-

more, the figure shows that the presentation layer in the Naked Objects

implementation gives a direct view of the domain objects, whereas the

presentation layer in the MVC pattern has a fully functional individual

presentation layer. Again the developer’s workload decreases substan-

tially by not having to implement the individual presentation layer.

Figure 1: The MVC pattern with data management vs. The Naked Object pattern

with data management [35]

Using Naked Objects has advantages and disadvantages. From a devel-

opment perspective, it decreases the development cycle, because the

domain objects carry the entire implementation. Furthermore it gener-

ates a common language between developers and users, which results in

a better understanding amongst the two entities [35]. It also minimizes

the amount of maintenance, and there is no risk that the user or devel-

opers level run out of sync [34]. The disadvantages of Naked Objects are

mostly on the usability constraints. The logic of a software developer

does not always respond to the logic of an end-user. Furthermore the

one-size-fits-all premise of Naked Objects does not always implement the

unique aspects of a UI [34].

18 Analysis

4 Analysis

There are several aspects of creating apps that work on multiple plat-

forms. Some are of a purely technical character, like how to use native

APIs in portable code, and some are of a “softer” kind, like how to main-

tain the proper look and feel across platforms.

In this chapter, we address the most important aspects and try to relate

these to some of the cross-platform solutions that exist today. We will al-

so be examining different approaches to, and the advantages of, con-

structing our own cross-platform solution. Our analysis is based on the

example case from [reference til kapitel om case].

4.1 Techniques for Cross-Platform Development

To develop native smartphone apps for a platform, it is necessary to

know the supported programming language or instruction set. If the

programming language is known, one can use the "official" developer

tools to produce the application. If the lower-level instruction set is

known, one can write in any programming language and create a custom

compiler that targets the platform. However, the binary instruction set

for a platform is not necessarily publicly documented. Additionally, creat-

ing a production-level compiler will take effort that is beyond most de-

velopers.

Another problem when developing a native app is the use of the plat-

form-specific Application Programming Interface (API). The API is the set

of methods that the operating system exposes to applications. To per-

form any non-trivial action, for example manipulating the UI or using the

geolocation hardware, one must invoke methods in the APIs. APIs vary

wildly across platforms, so it is necessary to create some kind of wrapper

before it is possible to write portable code.

There are several techniques for writing cross-platform applications.

Cross-compilation, interpretation and web technologies are some of the

options. The following subsections list some common techniques along

with their advantages and disadvantages.

Analysis 19

4.1.1 Cross-compilation

Cross-compilation is the process of generating native code to run on mul-

tiple platforms. An application created using this technique is indistin-

guishable from one written specifically for the platform.

Cross-compilation is difficult since it involves compiler design and low-

level optimization. On the other hand, this technique offers the best per-

formance when implemented correctly. Cross-compilation is typically

used with statically linking wrapper libraries, which may increase appli-

cation size. It is necessary to re-compile the application for each new

platform. Likewise, one must re-compile to update the linked library.

This technique has the advantage of being unencumbered by legal is-

sues, since it produces "real" native applications. Apple, for example,

does not currently allow interpreted applications to be distributed on iOS

devices [36]

The MonoTouch framework is an example of pure cross-compilation and

static linking. [37,38]

4.1.2 Interpretation

To achieve cross-platform compatibility using interpretation, one com-

piles the application to an intermediate format, which is then executed

by a dedicated program, the interpreter, on the target platform. Inter-

pretation is deployed in cross-platform desktop application frameworks,

for example Java [39] and most Android applications are developed and

distributed in an intermediate form for running in the Dalvik virtual ma-

chine on the device.

Interpreted applications have the advantage of not requiring recompila-

tion for new platforms. To add a new platform, one must simply develop

an interpreter for that platform. In addition to not requiring recompila-

tion of applications, it is also easier to develop a new interpreter than it

is develop a new native compiler, since the interpreter does not have to

perform code analysis and optimization. Since the interpreter will neces-

sarily include the API wrapper library, this can also be updated without

recompilation.

Additionally. interpreted applications will be smaller than statically

linked native applications because they do not have to include the wrap-

per library.

20 Analysis

Compared to native applications, interpreted programs generally have

worse performance, though this is highly dependent on the interpreter

design. [40]

Performance can be improved with on-platform compilation, so that

parts of the code are not interpreted but rather executed natively. The

decision about what parts of the program to compile can be made before

beginning execution by performing static code analysis, or it can be done

at run-time by compiling the most frequently executed parts of the code.

The latter technique is referred to as Just-In-Time (JIT) compilation. A

combination of both techniques is implemented in major frameworks.

However, implementing these features takes significant effort — the JIT

compiler for Java, called HotSpot, consists of almost 250,000 lines of

code. [41]

The Titanium Mobile framework combines cross-compilation and inter-

pretation. [32]

4.1.3 Web Technologies

A rather new option is that applications can be developed using only

open web standards. Applications developed in this way are executed by

the Internet browser on the device. Web technologies represent a seri-

ous development towards having a common, standardized feature set

available across devices in both desktop and mobile platforms. Addition-

ally, the current web technologies have been designed for use on differ-

ent screen sizes and include accessibility features for use by disabled

people.

In practice, the implementation of web standards has been varying

across platforms - forcing developers to incorporate work-arounds in

their code or to target the lowest common denominator. However, most

mobile devices today contain reasonably advanced browsers with gener-

ally good support for standards. Web frameworks such as jQuery aim to

provide a completely uniform set of features across browsers. [42]

Most of the points about interpreted programs apply to web applications.

In addition, the web is inherently based on a client-server paradigm

which may not fit all application types. With mobile devices, a further

problem arises: connectivity is often sporadic, and cannot be relied upon.

This makes client-server applications more difficult to use on such devic-

es.

Analysis 21

As mentioned previous, to use the native features of the mobile platform

(such as geolocation, compass, proximity sensors, camera etc.), this

functionality must be exposed through the interpreter API. With web ap-

plications, the interpreter is the browser, so the functionality will have to

be included in a web standard. This makes it difficult to use the latest

functionality.

The jQuery Mobile framework allows for the creation of pure mobile web

applications. PhoneGap allows one to create a web application and bun-

dle it with a native application stub that includes an embedded browser.

This allows the application to behave more like a "real" native applica-

tion.

4.2 User Experience

Along with low-level technical difficulties within cross-platform develop-

ment tools, there are several other challenges. One is the "look & feel,”

which has to comply with the target platform.

This includes using the native widgets (such as buttons, menus etc.), ad-

hering to UI guidelines in general and communicating with the user

through platform-specific mechanisms. For example, an application

might provide detailed notifications for iOS and a "home screen widget"

for Android.

4.3 Implementing the Case Using an Existing Solution

4.3.1 jQuery Mobile

jQuery Mobile can be used to develop the mobile user interface of a web

application. To use this solution for implementing the case application,

one would implement the business logic in some web application lan-

guage like PHP or ASP.NET. Then a user interface must be built using

HTML and CSS with jQuery Mobile. The finished solution would be

served from a web server.

For applications developed in this way, there is a clear distinction be-

tween server-side code and client-side code, which is run on the device.

Since the product would run in a browser, the client-side code will be Ja-

vaScript. The server-side code would typically be PHP or C#. To imple-

ment an operation in the application, server-side code for serving the re-

quest and presenting the result must be implemented as well as client-

22 Analysis

side code to launch the request. In summary, the jQuery Mobile ap-

proach does require the use of several distinct languages and technolo-

gies.

As stated in the case description, it is anticipated that the application

changes regularly during development. A web application is well-suited

to address this requirement, since any updates deployed to the web

server will automatically take effect for all users and devices – there is

no need to publish an update through an app store.

Web applications are dependent on Internet connectivity for their use,

making them unsuited for applications that should be used offline like

text editors, dictionaries, calculators or games.

4.3.2 Titanium Mobile

Titanium Mobile provides the ability to write an application using JavaS-

cript and compile it to run on several mobile platforms. To use this for

implementing the case application, one would design the desired user in-

terface and implement it using the Titanium Mobile API.

As with jQuery Mobile, it would be necessary to create a server applica-

tion for servicing the “Bully look-up” requests from the application.

However, contrary to the jQuery approach, the server need not be con-

cerned with generating markup for presenting the result. Thus the serv-

er can be a simple service which communicates in JSON, XML or the

like. As in the case of jQuery Mobile, the server will probably be imple-

mented using a language other than JavaScript.

4.3.3 Disadvantages of Existing Solutions

Even though both tools are well-suited for cross-platform mobile devel-

opment, they might not be the best possible choices for implementing

the case application, which is a prototype that has a need for rapidly

adapting to change. In particular, both tools place emphasis on separat-

ing the logic from the user interface, necessitating the use of more than

one programming language and requiring more effort when implement-

ing changes in the early phase of the test application development.

It would be desirable to have a tool which allowed for rapidly implement-

ing changes across the business logic and the user interface, without re-

quiring separate effort for those areas.

Analysis 23

Additionally, it is desirable to be able to use the same programming lan-

guage for server and client code. While JavaScript servers do exist, they

are not commonly used. [43]

4.4 Creating our own UI Framework

This section examines the options available for creating a framework

that allows for easier, more agile user interface development.

4.4.1 Cross-Platform Markup Translated to Device UI

To make it possible to target multiple platforms, an abstraction markup

language could be allowed. This language should then allow developers

to specify the desired interface in a platform-independent manner. Such

markup languages already exist, most notably for use with Java [44,45]

A defining feature of our markup language would be simplicity, to facili-

tate easy changes.

When compiling for a specific platform, the UI markup would be trans-

lated to platform-specific UI code. We believe the benefit of this system

to be that it allows the developer a relatively high degree of freedom

while still providing cross-platform functionality. However, designing

such a system would require significant design effort because a common

set of functionality must be identified and wrapped into an intuitive ab-

straction. Additionally, we expect that the risk of breaking compatibility

would quickly increase with the flexibility of the language.

4.4.2 Auto-generated UI: Naked Objects

Rather than provide a comfortable abstraction across platforms, one can

simply decide to do away with UI design and have the UI generated au-

tomatically based on the domain objects in the application. When using

this approach, developers simply develop their application in a strictly

object-oriented fashion (and possibly subject to some restrictions) and

have a code-generator output platform-specific UI code that allows for

manipulating the business objects. [46]

The benefit of this approach is a truly rapid development process, since

UI design does not factor into the process at all. [46]

We estimate that adapting Naked Objects for the framework would re-

sult in increased flexibility and less resources needed to adapt the appli-

cation to changing requirements.

24 Discussion

5 Discussion

5.1 Project Goals

The main objective of this project is to implement a code generation tool

named Kamili. Kamili takes C# code as input and outputs an auto-

generated UI code that is compatible on a specific mobile device. The

satisfactory result is for Kamili to be able to generate code for two in-

comparable mobile platforms – WP7 and iOS. Kamili will also generate

plumbing code to enable the UI to manipulate the domain objects. Kamili

only generates device-specific UI and plumbing code – it is assumed that

the target platform can execute C# code.

5.2 Technologies

This section describes the technological choices made during the project.

We will discuss the reason for the decision as well as the implications of

a particular choice.

5.2.1 Using Naked Objects

After performing the analysis of possible approaches to our own UI

framework, we see that the approach of using a declarative, markup-

based user interface definition (see 4.4.1) is a real alternative to the ex-

isting solutions that were examined. But we also believe that the benefits

of using this approach are small compared to using the existing solutions

today. We find the declarative approach to be useful in platform-specific

solutions, because the markup elements can correspond directly to on-

screen controls. This is in fact the design mechanism for the three major

platforms. However, this approach means that UI and business logic

code are still separate and that both require changes whenever the ap-

plication is modified.

On the other hand, we have come to see Naked Objects as an interesting

and potentially powerful new way of constructing user interfaces. As al-

luded to in the analysis, we especially see the use of Naked Objects as an

improvement of the prototyping abilities of Kamili, making it possible for

developers to create functional applications rapidly.

Another benefit is that using the Naked Objects method will hopefully

encourage developers to use object-oriented techniques more consistent-

Discussion 25

ly than before, since the user interface will now reflect the actual design

of the application.

There are, of course, also weaknesses to using the method. We estimate

that Naked Objects will never be a replacement to the custom-made user

interfaces of today, since consumers have come to expect beautiful ap-

plications with innovative user interfaces and clever design. The auto-

matically generated user interfaces of Naked Objects might be accepta-

ble for prototypes, business applications or custom-built functionality

where aesthetics are not a primary concern.

Ultimately, we have decided to use Naked Objects as the user interface

design method in Kamili.

5.2.2 Using C#

The choice of programming language is an ever ongoing discussion, with

proponents of each language endlessly asserting its superiority over oth-

er languages. Our choice of language was made after the decision to use

the Naked Objects method, and as such we sought a language that was

object-oriented and statically typed. Both Java and C# conform to these

requirements, and both group members had used either language.

While we must both admit to having a personal preference of C#, mainly

due its elegant syntax for lambda expressions and the pace of language

updates and additions, we felt it was important to consider the suitability

of the language in mobile development.

The Java language is already used for developing native Android applica-

tions, making it an obvious choice for that platform. However, the re-

quirement was for the language to be usable on multiple platforms,

which meant that we would have to devise a way to get Java code run-

ning on another major platform. This can be done, but it would be an

enormous task when coupled together with implementing Naked Objects

for mobile development. As such, we saw Java as being a suboptimal

choice for the framework.

The C# language, too, is used natively only on a single platform, WP7,

for development with a subset of the .NET Framework. However, Novell

Inc. is the owner of the MonoTouch and Mono for Android projects (as

described in 3.3.3), meaning that it would at least be possible to use the

same syntax across the platforms. The Mono projects allows for the shar-

ing of business logic, but not UI code, meaning that our project would be

26 Discussion

relevant here. Finally, Mono does implement a subset of the .NET

Framework, meaning that not only language syntax, but also platform

features, could be used across the three major operating systems.

By using C#, it will also be possible for developers to focus on a single

language for both the client and server implementations. We believe that

this will improve the development process and encourage code reuse by

allowing sharing of types between the server and the client.

Based on the discussion above, we decided to use C# as the framework

language for Kamili. We also use C# to implement the Kamili generators.

5.2.3 Using MonoTouch and Windows Phone 7

To demonstrate the feasibility of our approach, we will implement func-

tionality to target two different platforms in Kamili. The immediate op-

tions for this is iOS (with MonoTouch), Android (with Mono for Android)

and Windows Phone 7 (with its native support for C#.)

We regarded it as most interesting to have target platforms of entirely

different families, meaning that we decided early on to include WP7 as a

target.

After that we had to decide whether to target MonoTouch or Mono for

Android. There would be little difference for developers, since the two

systems permit reuse of non-UI code between them. However, despite

the similar names, the two system are technically quite different with

MonoTouch compiling C# code into a native iOS binary and Mono for

Android using interpretation and requiring that the Mono runtime be

present on the target device. While both approaches are interesting and

viable, we found MonoTouch to be a more mature product, with better

support for debugging. We also like the idea of being able to produce na-

tive iOS binaries.

In conclusion, Kamili will allow developers to target WP7 and iOS using

MonoTouch.

5.2.4 Using the NRefactory Parser

Seeing as the Naked Objects method generates user interfaces from

source code, it quickly became apparent that we would need a parser in

order to process the source code programmatically.

Discussion 27

Parsing is an important subject in computer science, both because

parsers and grammar have a solid mathematical background and be-

cause parsing is the foundation of compilation. We had been using

ANTLR to generate a simple parser before, so we naturally considered

implementing a C# parser ourselves.

In the end, we decided that the subject of creating a parser was beyond

the scope of this report, and that it would add little value. Therefore, we

have used a parser called NRefactory, part of the SharpDevelop open

source project. The parser is implemented in C# and it will generate an

object graph from a source code file.

5.3 Development Process

This chapter explains our development process and the software design.

We explain the reason behind any significant changes made.

Being just two group members, our communication and coordination

needs did not call for a very formal development methodology - these

needs could be addressed on an ad hoc basis. We have had good experi-

ences with following the agile approach to software development before,

and so we settled on a method with emphasis on working software and

ease of responding to change. These two key parameters are pillars of

the agile set of development methods, as outlined in the Agile Manifesto.

[47]

To maintain momentum, we followed a loose iterative process with the

end of each iteration coinciding with a status meeting - some of these

with attendance of the project advisor.

The free version control system Subversion was used for keeping code

history and for synchronizing any work done separately.

5.3.1 Implementation Order

We decided to target iOS for our first working prototype. The goal was to

have a working generator for iOS and a sample application demonstrat-

ing trivial functionality. In order to achieve this goal, quite a bit of re-

verse engineering had to be done since we were unable to find any de-

tailed documentation of Apple's Interface Builder file format. The files

are XML, but the meaning of the different elements had to be discovered

by using Interface Builder to manipulate the file and then examining

changes in the file.

28 Discussion

We completed this task by joint effort through using the pair program-

ming technique. [48] After a few days, we had a functional program that

could generate an iOS user interface from a C# class.

After completing the iOS prototype, we started work on the WP7 genera-

tor. It was important to demonstrate that our technique would actually

achieve cross-platform compatibility. Developing for WP7 is somewhat

similar to developing for iOS since the UI specification done in XML on

both platforms. When working with WP7, the markup language used is

called XAML. The format is intuitively structured, and the tags are well-

documented. [49]

Thus, no reverse-engineering was required, and we were able to create a

functioning WP7 generator in a short time. Like with the iOS code, our

focus here was to create a working product, and we wrote code with lit-

tle regard to proper object-oriented design techniques.

After demonstrating that our approach is feasible, we turned our atten-

tion to constructing a better design that would serve as the basis for the

final Kamili generator. The design goals and considerations are listed in

section 5.4, and we used a combination of manual refactoring, automatic

refactoring with Visual Studio 2010 and rewriting to implement the final

design.

In the figure above is an outline of the phases in the development of Ka-

mili. In the phase where we revised the OOP design, we implemented

testing (see 5.6.)

Kamili UI and Parser
iOS generator

limited UI features

WP7 generator

limited UI features

Example implemen-

tation

Adding UI objects

to generators

Example

implementation

Revision of OOP de-

sign

Test Case

implementation

Discussion 29

5.4 Design & Implementation

5.4.1 Rationale on Design Requirements

The specification of the design was based on a wish to implement a piece

of software that enables developers to input an implementation and let

the software generate platform-specific apps. During the research pro-

cess we realized that the amount of work that was needed to implement

a fully functional cross-platform compilation tool by far exceeded the

time window given for this assignment. This was one of the reasons why

we decided upon the use of the MonoTouch framework (see 5.2.3.) With

the help of this tool we had the ability, from C# code to generate plat-

form-specific apps for iOS. The MonoTouch framework did not imple-

ment the UI, here the developer needed to use the native tools given by

the platform provider – in this case Interface Builder. Furthermore we

realized that the C# plumbing code4 used by MonoTouch as opposed to

the one used by the WP7 platform were radically different. This led us to

the general requirement:

Kamili is a cross-platform tool, which is able to facilitate au-

to-generated UI for the iOS and WP7 platforms.

The output from Kamili, including plumbing code, can be

turned into a native application by the platform-specific

SDK.

The MonoTouch framework is used to compile the C# plumbing code to

native Objective-C code. WP7 is based on C#, so in this case there is no

reason to use third part compilation software.

Now that we had stated the general objective, we needed to define the

requirements to the auto-generated UI. Here we decided upon Naked

Objects, which is based on an ideology to not let the developer interfere

with UI (see 3.4.) This fits our solution perfectly, due to the fact that au-

to-generated UI can get much more complicated if the developer has no

constraints.

The functional design requirements were now stated, which led to the

next step in the process – the design requirements of the actual design.

4 Refers to the model code that controls the behavior of the UI.

30 Discussion

The first requirement was that the design should be object-oriented. Ka-

mili is a cross-platform tool. Therefor the extensibility requirements are

comprehensive. It must be simple to extend Kamili to support more mo-

bile platforms than two. An Object-Oriented design enables easy expan-

sion and maintenance of the software product. Further extensibility re-

quirements were stated within the UI feature-set. The goal of this pro-

ject is not to implement a fully commercial cross-platform tool - it is a

proof of concept. Therefor the UI features are restricted to the basics.

The design of Kamili must be able to easily handle additions to the UI

feature set.

The UI of Kamili should enable users to choose the source code and to

perform the generation.

5.4.2 System Design

The basic system requirements are fulfilled. There have been lots of chal-

lenges in this process and some are still to be solved. In this section we

outline the basic components of Kamili; we describe the challenges that

we have solved; last but not least we describe the challenges that have

not been solved.

5.4.2.1 Basic Components

The basic components of Kamili cover the ability to parse a C# class and

process the parsed output into a corresponding XML and C# code repre-

senting the UI and the plumbing code. The inputs obtained by Kamili are

properties and methods. C# has a concept called property accessors,

which is a piece of code containing the executable statements associated

with getting or setting the property. [50] Kamili only interprets methods

and properties where the access modifiers are stated as public; hence

the public methods and properties are the only ones implemented in the

UI. The reason for this specific interpretation of the access modifiers are

that it must be possible to implement code that is not visible in the UI.

Furthermore the UI would not be able to depend on methods or proper-

ties - declared different than public - due to the access being denied. In

the below code snippet is a C# class from which Kamili can generate a

simple app which enables you to throw dice. In this example there is only

one property that is not supposed to show in the UI – the random gener-

ator. The remaining properties and methods are supposed to obtain dif-

ferent objects in the resulting UI depending on their accessors.

Discussion 31

public class DiceGame
 {
 public string numberOfDice { get; set; }
 public string die1 { get; private set; }
 public string die2 { get; private set; }
 private Random dice = new Random();
 public void Throw()
 {
 if (numberOfDice.Equals("1"))
 {
 die1 = dice.Next(1, 7).ToString();
 die2 = "";
 }
 else if (numberOfDice.Equals("2"))
 {
 die1 = dice.Next(1, 7).ToString();
 die2 = dice.Next(1, 7).ToString();
 }
 else
 {
 die1 = "Please enter '1' or '2' in textbox.";
 }
 }
 }

When the source file of the Dice Game is applied to Kamili, the parser

will run through the code and identify properties and methods. In this

example are three properties and one method. Kamili holds an interme-

diate representation that divides the method into a method-object and

the properties into property-objects. The property-objects are distin-

guished as read-only or read-write, depending on whether the property

accessor can be written publicly or not.

The interpretation of the objects - created in the intermediate represen-

tation - has many outcomes. First of all we decided that the methods hav-

ing the void return type should be implemented as buttons in the UI. The

rationale supporting this decision is that a method is implemented to

perform a task. The task needs to be started somehow. We found that a

button would be able to start the execution of a task without changing

state and without any input. Second, the read-only properties were de-

cided to be a text representation in the UI - therefor the use of labels

was applied. Labels can only be written to by the internal code; hence no

user can interfere with the value of a label. Last, we defined the read-

write properties to be text representations that allow user interference –

32 Discussion

therefor textbox-objects were applied. Users will be able to change the

value of a textbox, and thereby change the value of the corresponding

property.

When the intermediate representation of Kamili has obtained the meth-

ods and properties from the source code, the platform generators re-

trieve the information needed to implement the UI and plumbing code.

On the iOS and WP7 platform the UI is interpreted from two different

formats of extensible markup language - .xib and .xaml. The generator

loads a platform specific UI template and initializes new markup docu-

ments. The markup of the iOS platform requires a definition and type of

the objects that are to be represented. Furthermore it requires connec-

tions and outlets, defining the action attached to the specific object. The-

se definitions are implemented into the respective positions in the newly

created markup document. The document is closed and saved. The

markup of the WP7 platform is simpler. It only requires the definitions

and types of the objects in order to create the UI. Like the iOS platform,

the objects are implemented to the appropriate positions of the docu-

ment. Afterwards it is closed and saved.

Both platforms needs separate C# plumbing code, which states the ac-

tions of the UI. The plumbing code is divided into an instantiation of the

source code class, an initialization method, an update method and meth-

ods for each UI entity. The initialization method initializes event-

handlers for the buttons and textboxes in the UI. Each time an event-

handler is invoked, the corresponding UI-method is called. This method

links to the source code of the application. The update method updates

the UI each time a property is changed. Below is a simplified version of

the auto-generated plumbing code for the dice game, targeting the WP7

platform. The structure of the plumbing code for the WP7 platform is

very similar to the iOS platform. There is essential difference within the

C# language that is used, which is the reason for two different imple-

mentations of the plumbing code.

public partial class MainPage : PhoneApplicationPage
 {
 // Constructor that initialize and updates
 ...
 private Kamili.Example2.DiceGame theInstance =
 new Kamili.Example2.DiceGame();
 public void InitializeEventHandlers()
 {

Discussion 33

 btnInvokeThrow.Click +=
 new RoutedEventHandler(btnInvokeThrow_Click);
 txtboxnumberOfDice.TextChanged += new

TextChangedEventHandler(txtboxnumberOfDice_TextChanged);
 //Code that implements watermarks
 ...
 }
 public void UpdateUI()
 {
 //Code that implements all UI objects in app
 ...
 }
 void btnInvokeThrow_Click(object sender,
RoutedEventArgs e)
 {
 // Invoke method
 theInstance.Throw();
 // Update UI
 UpdateUI();
 }
 public void txtboxnumberOfDice_TextChanged
 (object sender, TextChangedEventArgs e)
 {
 // Invoke method
 theInstance.numberOfDice = txtboxnumberOfDice.Text;
 // Update UI
 UpdateUI();
 }
 }

5.4.2.2 Solved Challenges

The challenges in developing Kamili have been comprehensive. What ob-

jects did the output of the parser represent? How should Kamili handle

new generators? How should the dependencies to the parser be imple-

mented? -and so forth. We have handled the challenges, and in this sec-

tion we will discuss the rationale behind the decisions that comprehends

them.

The design of the generators fostered serious consideration. We realized

that the implementation of three objects – buttons, labels, textboxes –

were far from enough if Kamili should be used for the implementation of

commercial apps. This resulted in a vision to implement generators with

high extensibility compatibilities. We stated that one entity of the gener-

34 Discussion

ator was the controls, referring to the objects. Each object should inherit

the abstract control definition. This enables a common implementation of

the objects specified by the generator. The figure below depicts the ar-

chitecture of the WP7 generator.

All the methods of the control apply to the object implementation. This

specific architecture implements the markup elements and the plumbing

code. If a new object is to be implemented, a new class is generated and

inheritance of the control-class is enabled. This is a simple way to ensure

that the structure of the architecture is kept and code redundancy is re-

duced. Even more important is that this structure simplifies the imple-

mentation of a new object.

The WP7 generator holds three more classes; one to save the platform

specific XML file; one to collect and save plumbing code and a class that

collects all parts of the generator and defines the objects to be created

from the methods and properties given by the intermediate representa-

tion.

Besides the creation of an inherited class, the addition of a new type of

UI control would also include altering the WinPhoneGenerator class, since

this class has knowledge of types and corresponding UI controls. The ob-

ject-oriented architecture could be improved substantially if the delega-

tion of UI elements were moved from the WinPhoneGenerator to the cor-

responding object classes. This would decrease the workload when a

new UI control was to be implemented in the generator. Furthermore, it

would enforce a stronger object-oriented design.

Discussion 35

The overall architecture of the correspondence between the generator

and the parser was a big issue. The first version of Kamili included a

great deal of dependencies amongst the two elements. We realized that

this would result in an issue if the third-party NRefactory parser was up-

dated or replaced by a different improved parser. In this case all the

generators would need a comprehensive revision, which would be very

time consuming.

The solution to this problem was to implement an intermediate represen-

tation which handled the output of the parser. If a new parser was add-

ed, the intermediate representation would be the only entity that needed

corrections. In the figure below is the structure of the intermediate rep-

resentation. It enables a categorization of the dependencies amongst the

methods, properties and classes. Furthermore the structure is very ob-

ject-oriented, so if one needs to apply corrections to the interpretation of

methods, the only part to revise is the class representing methods.

In this project the two target platforms – WP7 and iOS – are a proof of

concept. Kamili must have the ability to expose apps to more platforms

in order to be a fully functional cross-platform tool. This resulted in de-

sign consideration regarding Kamili’s ability to target additional plat-

forms. We specified the main features of the design pattern:

1. Generators perform the same task.

2. The algorithms are similar, but implement different actions.

3. No dependencies must exist between the main application and

the generators.

The rationale on the requirements was that the generators all imple-

mented a representation of the UI and the underlying plumbing code.

Furthermore the algorithms used were assumed to be similar. Last but

not least, dependencies between the view and the generators would re-

36 Discussion

sult in mutual revision when one of the entities was to be changed. To

overcome the requirements we decided on using strategy patterns. [51]

The intent of strategy patterns is:

“Define a family of algorithms, encapsulate each one, and

make them interchangeable. Strategy lets the algorithm vary

independently from clients that use it.” [52]

We copied the structure of the theoretical presentation of strategy pat-

terns into the design of Kamili. See the figure below for a representation

with three platforms. The view will only have access to the

PlatformContext and thereby the dependencies are none. Furthermore

the interface structure of the generators declares the overall structure

and the similarities.

The two generators implemented in this project are very similar. They

implement the UI into markup and the logic into C# code. Therefor the

above structure could easily be optimized by collecting similarities be-

tween the two generators. This would be a plausible solution to the de-

sign if all platforms were generated this way. This is not the case. Some

platforms do not separate UI markup and logic, and this would result in

a completely different implementation of the generator; hence we cannot

enforce a structure on generator internals.

5.4.2.3 Future Options

Kamili is far from ready for commercial use. This section details some

possible future improvements and enhancements to the program.

The present layout in Kamili does not reflect real life app-scenarios. Ob-

jects like multiple windows, tabs, date-pickers etc. are not supported.

Supporting those will require extending the Naked Objects implementa-

tion.

Discussion 37

To improve the user experience, the object model could be richer. For

example, a namespace could be converted into a tabcontrol with each

tab representing a class in that namespace. Doing this would allow the

user to switch between objects being manipulated. Each namespace

could go in a separate view.

The support for property types should be improved, so that for example a

DateTime property would result in a timepicker control in the UI. Adding

this addition requires extending the intermediate representation, so that

generators can generate can generate the appropriate code.

At the present state, public methods – represented as buttons – are not

able to take parameters in a satisfactory way. If the execution of a meth-

od requires a parameter, properties need to be implemented in order for

the user to provide input. This solution makes the app unnecessarily

complex. To handle the parameters of a method using the Naked Objects

terminology a dialog should be prompted, so that the input values could

be given. Implementing this feature in Kamili would require a revision of

the methods representation in the intermediate layer. Furthermore, each

generator would need to support the new feature.

In many apps, controls can be enabled conditionally. E.g. if a form needs

to be filled in order to push a button that leads you to the next window,

the button should be disabled until the form has been filled. To allow for

this in Kamili, it might be possible to let developers decorate a method

with a predicate. This predicate should then be true before the method

can be executed.

The properties in Kamili only support the object type of String. When

the user enters a value, there is no way for the framework to know

whether this acceptable to the application. For example, the user might

be required to enter a valid e-mail address for a string property. One way

to implement this would be for the class to validate the e-mail address in

the property accessor and raise an exception, causing Kamili to show an

error message. A better way would be for the framework to generate

better controls based on the desired input type, for example if a property

was set as type int with read-write privileges, it should be interpreted to

a textbox that would only allow integers as input.

However, this approach cannot address custom validation requirements

such as that of the e-mail address above. To indicate which values are

acceptable to the object, an Exception could be thrown as suggested, but

38 Discussion

there might be better for the object to state what input is valid. One such

option would be for developers to decorate their properties with attrib-

utes containing predicates that define a set of acceptable values of the

type.

Code Contracts is another approach to solve this problem, because code

contracts allow developers to put pre- and post-condition predicates in

methods. This information could be used by Kamili to ensure that meth-

ods are only called when allowed. [53]

The use of an abstract class is common in the .NET framework. A simple

example is when a user needs to choose source of payment. In this ex-

ample the properties of the multiple credit-cards and debit-cards are

similar. Therefor an abstract class could provide the similarities and in-

herit them to each payment method. To support this functionality in Ka-

mili the Naked Objects framework needs consideration. A solution is to

implement the abstract class as a tab and in this tab implement the abil-

ity to choose each member class. In the example on payment methods,

the tab would be represented and in this tab each payment option should

be represented by buttons. They would lead to a new view consisting of

the representation of properties and methods in the payment method.

Ideally, this functionality should be automatically added whenever a

class has a property of abstract type.

5.5 Project File Layout

The project root is the Kamili folder. This folder contains the .sln solu-

tion which can be opened using Visual Studio 2010.

The solution contains several projects, the most important of which is the

Kamili.Converter project that contains the generator application.

There are also several examples included. The Kamili.Example4 project

is the example case application from this thesis, and the Ka-

mili.Example4.Server contains the server implementation.

The automated tests can be found in the KamiliTest project.

5.6 Testing

5.6.1 Methods

In a software development process it is of great importance to implement

testing. If tests are implemented correctly, they provide knowledge

Discussion 39

about errors and weaknesses of the implementation. There are many

methods and theories that can be used in order to test a system. Several

test levels has been processed while implementing Kamili. The test ap-

proaches used are divided into white-box testing and black-box testing.

First we will explain the processes undertaken by white-box testing.

“White-box testing: Testing that takes into account the in-

ternal mechanism of a system or component…” [54]

The white-box testing processes have been our main testing priority in

the development process. Each time new entities and classes has been

implemented, they have been thoroughly investigated. We have made

some decisions regarding the code coverage5 trade-offs though, which

we will explain later. The testing methods used in the white-box testing

process are unit tests and integration tests.

Unit testing is a common procedure to verify the validity of the smallest

units in an implementation. Each unit is isolated and proven valid or in-

valid. [55] Unit testing also gives an understanding of the functionality

given by a specific unit. This gives the programmer a powerful tool to re-

trieve understanding of functionality quickly. If a programmer were to

understand the specific code without the use of unit tests, it can be quite

time consuming due to object-oriented software having large levels of

dependencies. This also concludes that the proper way of unit testing, is

to avoid dependencies to other classes than the one tested.

Integration testing widens the perspective. Modules that has been un-

dergoing unit testing are combined, and the dependencies amongst them

are tested. [54] The result is giving the programmer an evaluation that

elaborates on the validity of the interaction between components. Due to

its foundation, integration testing is very dependent on the unit tests be-

ing implemented properly.

“Black-box testing: Testing that ignores the internal mecha-

nism of a system or component…” [54]

5 Refers to the degree of white-box testing on the specific implementation.

40 Discussion

The black-box testing processes has been used solely to conclude wheth-

er a given functionality lives up to the functional- and system require-

ment specifications. The testing method used to comprehend the re-

quirements is system tests. Without any understanding of the underlying

dependencies and implementation limitations, the testing process tries

out all requirements specifications. If the implementation passes all the

tests, a good approach of the system test, is to test beyond the require-

ments in order to acquire an understanding of the limitations.

5.6.2 Process

The unit testing process has been implemented using Microsoft Visual

Studio’s unit testing framework. This allows the unit test classes to be

auto-generated and each method to be initialized. With the frameworks

assertion method, it is possible to state the expected output, and com-

pare it to the actual output.

It has been a major concern, not to implement unit tests that have de-

pendencies to other entities in the implementation. This concern has

been difficult to follow, due to object-oriented design having many links

throughout the solution. The unit tests with many dependencies have

been implemented including new instantiations of the needed parame-

ters. This has been very time consuming, and it has led to a trade-off de-

cision.

The decision was regarding the amount of code coverage in the project.

We decided that the major testing concerns were the platform genera-

tors. These are by far the most complex objects of the solution and there-

for also the most likely foundation of errors. The first object that was im-

plemented was the iOS generator. We tried to follow the test driven de-

velopment recipe by creating the unit tests before the implementation of

methods and classes. This we found to be extremely difficult because of

sudden new additions of modifications to the pre-defined methods in the

development process. This ended in modifications of the unit tests in al-

most every development cycle. Furthermore the need for unit tests in

specific cases was re-considered. Because of the time consumption we

had to pick our battles. Thereby the code coverage of the iOS and the

WP7 generator has been limited to the extent that we find essential to

test. In the following figure are the code coverage results from the iOS

generator. At the bottom of the figure, two classes have not had any unit

testing. This decision is based on the two classes’ use of the other clas-

Discussion 41

ses. They do not provide any generation by them self. Therefore we did

not find it essential to test them, because the methods they use have

been tested.

The integration testing has been implemented using manual testing ap-

proaches to the project. Each time a development cycle ended we

checked the functionality of the independent paradigm. There has been a

lack of documentation of the individual functional tests, which eliminates

re-use and the possibility for other programmers to get a quick under-

standing of dependencies in the implementation. Despite the lacking

documentation the integration tests gave us an impression, whether

functionality was valid or not. We decided to make integration test only

on complex matters. Again this was a trade-off on the time consumption.

The system tests have been used to verify the output files of the genera-

tors. We implemented different example implementations and ran them

through the generator. This enabled us to see the output files generated

on different scenarios. We used the output files to generate iOS and WP7

projects, and tested the functionalities of the resulting apps. The func-

tionality requirements of the individual app were pre-defined and at the

end of a system test, we concluded whether the outcome justified the re-

quirements. System tests have also been used to test the UI of the gen-

erator; to see whether it acted as expected in different contexts.

5.6.3 Results

The resulting code coverage could have been much more extensive. We

made some interesting findings in the generated testing environment

though. This definitely resulted in the implementation to be of much

higher quality than if no testing were executed. If more testing was im-

plemented it is very likely that the resulting software would be even

42 Discussion

more bullet proof. The trade-off has its justifications though. This project

is a proof of concept; hence the purpose is not to sell the software as a

commercial product. If this was the case, the necessity of testing would

be much more essential. It is important to underline though, that the im-

plementation of unit tests are much easier to do during the development

process. If this project was to be commercialized, it might be worthwhile

to implement the rest of the testing.

Implementing the Case Application 43

6 Implementing the Case Application

We have been evaluating development tools and techniques from the

perspective of having to quickly implement a simple, but non-trivial, mo-

bile application. As described in [reference: intro to case], the purpose of

the application is to allow employees at night clubs to quickly check

guests against a central "troublemaker registry." By having this ability,

club owners can decrease the number of problematic guests in their es-

tablishments.

This chapter describes the design and implementation of the case appli-

cation which we will refer to as BullyReg. We will explore the design de-

cisions and tradeoffs that were made in order to create the application

using Kamili.

Throughout this chapter, we will only focus on the client application. It is

assumed that a server implementation exists which can be used by our

application. We have indeed created such a sample server implementa-

tion, and it is included in the project source code.

6.1 Design Requirements

The most basic functionality is that BullyReg should take a civil registra-

tion (CPR) number as input and return information on

1. whether the number is valid

2. if so, the name of the person it belongs to.

3. the “bully status” of the person: a Boolean value indicating whether
this person has been known to cause trouble before.

6.1.1 Server Communication

The database is centralized, meaning that BullyReg will communicate

with a central server to retrieve the information. Thus, some data ex-

change format and protocol must be decided upon.

One option is to use Microsoft Windows Communication Foundation

(WCF), which is an API for inter-process communication and building

service-oriented applications that can be used through various protocols

and data formats. [56]

With WCF, it is possible to share types (known as Data Contracts) be-

44 Implementing the Case Application

tween the server and client applications, and automatically generate

code to call methods and pass objects across the wire. [57]

The disadvantage of WCF is the additional complexity introduced by in-

cluding it in the solution, and the fact that the automatically generated

code has to be generated manually for use in MonoTouch on iOS. [58]

To avoid these disadvantages, we will implement the functionality our-

selves rather than use WCF.

The .NET framework has extensive native support for processing XML

data [59], and XML is a standardized method for data transfer, making it

a good choice for implementing the communication in BullyReg.

One issue makes XML less than ideal for use on a mobile device, namely

its rather large overhead and inefficient encoding. The W3C has recom-

mended a compact XML alternative designed for use on mobile devices,

the EXI Format. [60]

We will only be exchanging small amounts of data with the server, so the

efficiency issue is less important. Due to the ease of working with XML,

we will use this format in BullyReg.

Our application will be using HTTP requests for exchanging the XML da-

ta with the server since this is both suitable for our purposes and the on-

ly protocol supported by Windows Phone. [53]

6.1.1.1 Format Specification

Assuming that the server resides at example.com, the application will

perform the look-up by executing a HTTP GET request for

http://example.com/DoLookup.ashx?cpr={cpr}

where {cpr} denotes the civil registration number for which to perform

the look-up. The number must be a string of 10 numerical digits, option-

ally with a hyphen (-) inserted after the 6
th

 digit.

After retrieving the data, the server will return the result as an XML

document similar to the following

<?xml version="1.0" ?>
<result>
 <name>John Smith</name>
 <cpr>1234567890</cpr>
 <knownbully>no</knownbully>

Implementing the Case Application 45

 <cprvalid>yes</cprvalid>
</result>

Note that if cprvalid is “no” then name and knownbully will be empty.

cprvalid is “no” if the provided civil registration number is not valid.

6.1.2 Application Design

Due to our prototype implementation of the Naked Objects technique,

the entire application must be contained in a single class. This class will

contain the functionality to accept civil registration number input, per-

form the server query and display the result of the query.

We create a BullyReg class, which has a read/write string property CPR

for entering the civil registration number for the current request.

The BullyReg class also has properties Name and BullyStatus, both of

type string, to display the results of the latest query. These two proper-

ties have private setters, meaning that they cannot be altered through

the UI but only from a method in the class itself.

Finally, there is also a void method CheckStatus for performing the serv-

er request.

It will be possible to encapsulate the desired functionality in this class.

The auto-generated UI will allow the user to enter the civil registration

number and then press a button to perform the request.

6.2 Implementation

6.2.1 Using a Shared Subset of Types

The implementation of BullyReg is relatively forward, as the functionality

will to a large extent be provided by the built-in types of the framework.

However, a general problem in creating an application with Kamili is to

make sure to only use the subset of the framework classes that are avail-

able on every platform targeted.

We first implemented BullyReg using the XmlDocument class for working

with the XML, but this class is not available on Windows Phone 7, mean-

ing that we had to use XDocument instead. This class is supported on both

iOS and Windows Phone 7.

It is fortunate that XDocument can be used on both platforms — had this

not been the case, it would have been necessary to implement the XML

parsing ourselves or use a different format.

46 Implementing the Case Application

To perform the HTTP requests, we used the WebClient class, which is a

simplified wrapper around the low-level WebRequest class. [24] This class

is available on all platforms, and it exposes a method DownloadString

which retrieves a text string over HTTP.

The DownloadString method is blocking, meaning that calls to it block

the application thread until the method has completed running. Since

network operations are slow and unpredictable, this is a problem if the

method is called from the application UI thread. If this is the case, the

user will experience a complete “freeze” of the application until the

method completes.

Presumably to avoid this issue, Microsoft has not made the

DownloadString method available on WP7. Developers must use the

OpenReadAsync method instead. This method launches a background

download thread and then returns immediately. When the download is

complete, an event handler is executed.

6.2.2 Multi-threaded Execution

Using the OpenReadAsync method makes the application multi-threaded.

Multi-threading has numerous advantages, especially on modern hard-

ware where multiple CPUs can execute code in parallel, but developers

also need to be aware of a number of issues when writing multi-threaded

applications. [61]

We will not describe these issues thoroughly here, but one is that of

“synchronizing” threads; when different bits of application code run in

parallel, the execution order of instructions cannot be guaranteed. For

example, an application may have one thread that computes the result of

some calculation, and another thread to display the result to the user.

Since these operations run in parallel, synchronization is needed here to

make sure that the display thread does not try to display the result be-

fore the computation is finished. Such synchronization can be imple-

mented in a variety of ways, e.g. by the use of semaphores. [62]

For applications generated with Kamili, a button is shown for every

method in the source class. When the user presses this button, the

method is executed on the class instance and the UI is updated. In this

case, the CheckStatus method launches the download thread and exe-

cutes immediately, causing the UI to be updated prematurely. When the

download thread has retrieved the look-up result, no UI update is per-

formed.

Implementing the Case Application 47

The following subsections describe possible solutions for this problem

along with the benefits and disadvantages of each solution.

6.2.2.1 Solution: Adding a “Refresh UI” button

Application developers could simply implement an empty RefreshUI

method in their class. When users click this button, the framework will

execute the empty method and update the UI. This is similar to web pag-

es in a browser: the user must press "Refresh" in the browser to retrieve

the latest version of the web page.

This solution has the advantage of being simple to implement and of not

requiring changes to the framework. However, there are also significant

disadvantages: the user experience will suffer, and the user might not be

aware that the Refresh button has to be pressed continuously. Addition-

ally, this solution breaks the Naked Objects principle by having applica-

tion developers implement code that controls the UI.

6.2.2.2 Solution: Force single-threading

Even though Microsoft has not supplied the blocking DownloadString

method, one could relatively easily make the CheckStatus method wait

for the download to complete by using a semaphore. The CheckStatus

method would create the semaphore with initial value 0, launch the

download thread and then wait on the semaphore (referred to as the P

operation [62]). The download thread would perform the download, up-

date the class variables and finally increment (or V) the semaphore, per-

mitting the CheckStatus method to complete.

The advantages of this solution include that no changes have to be im-

plemented in the framework to accommodate multi-threaded applica-

tions. But this solution is clumsy and requires extra work of the pro-

grammer. Having to include manual thread synchronization will make

the program more susceptible to deadlocks and race conditions if not

implemented properly. [62]

This solution would also cause the application to be unresponsive while

the download is performed, which is what the multi-threaded design was

created to avoid. Finally, it can also be argued that this solution too

breaks with the Naked Objects principles, since it requires the pro-

grammer consider the UI when creating his application.

48 Implementing the Case Application

6.2.2.3 Solution: Make the source class raise an event whenever

a property value changes

The underlying problem is that the auto-generated code does not have

any knowledge about when a value is actually changed; it only knows

when the user performs some operation on the object by using the UI. To

make this knowledge available to the framework, the Kamili generator

could automatically alter the source class to define a PropertyChanged

event. In every property, the set block would be appended to raise this

event whenever the property is changed. The auto-generated code would

then include a handler for that event and make sure to update the UI

whenever a property value changes. [63]

The main advantage of this approach is that it can be implemented in the

Kamili generator and thus does not impose any requirements on the pro-

grammer. There is also a theoretical performance benefit since it is no

longer necessary to update the UI after each method is executed. A dis-

advantage of this technique is that it requires altering the source class.

Even though this can be done automatically, it introduces a new layer of

complexity and thus a new source of error.

Our current design (see 5.4.2) does not allow for a generator to alter the

class code, making this solution more difficult to implement.

6.2.2.4 Solution: Update the UI regularly by using a timer

A timer could run in a separate thread and periodically trigger a UI up-

date.

This solution is fairly simple to implement, which is an advantage. It is

also the only solution which takes into account properties that are com-

puted and change without being assigned a new value. For example, an

object might have a property that indicates the number of seconds since

some event. This computation would be done in the property get block.

However, it is a wasteful solution, constantly updating the UI when no

changes have occurred. There is also a problem with the user experi-

ence: text boxes correspond directly to string properties, and when the

user has entered a new value in the text box, the property is updated. If

the UI were to be updated by a timer at the same time that the user was

entering a new value, the changes would be lost.

Implementing the Case Application 49

6.2.2.5 Conclusion

For the BullyReg application, we have implemented the “Refresh button”

solution, since it is a correct solution that does not require changes to

the framework.

We believe that the best long-term solution would be to raise an event

whenever a property is updated. This solution is best because it adheres

to the Naked Objects principles and it is an efficient way of keeping the

UI updated.

It would be beneficial to combine this with the timer approach to address

the issue of automatically changing properties. For example, the timer

could update the UI with values of only the read-only properties6, since

these will never trigger an update by being the target of an assignment.

The figure below shows the app running on WP7 and iOS emulators.

6 That is, properties that have no setter at all, not those that have a private setter (like

BullyReg.Name)

50 Conclusion

7 Conclusion

In this thesis, we have argued that the market for mobile applications is

expanding. The appearance of several new and competitive platforms is

a part of this development, and developers are increasingly seeking ways

to target several platforms with a single application.

We have succeeded in answering the questions from the Project Objec-

tives through our examination of the currently available solutions for

cross-platform development. Our findings indicate that the available

tools provide the ability to develop for more than one platform, but that

these tools are not very well-suited for rapid prototyping and that some

of them require skills in several technologies before they can be used ef-

ficiently.

We have achieved our aim in designing and implementing a proof-of-

concept tool for creating apps that work on several platforms. Our solu-

tion is not revolutionary in that it does build on existing technology, and

it is far from ready for production use. However, it is clear that user in-

terface development using the Naked Objects technique is beneficial in

the mobile world. We have demonstrated that the technique is applicable

to the mobile situation where no common user interface can be found

across platforms. The method of completely avoiding any UI considera-

tions during development can help to free developers from worrying

about device specifics.

Our results suggest that framework authors should incorporate automat-

ically generated interfaces into their products to a larger extent, since

this could increase developer productivity. We suggest that more re-

search is needed to establish whether productivity gains hold for creat-

ing larger and more complex projects rather than simple prototypes.

During the writing of this thesis, we have become aware of the multitude

of approaches to mobile development, and it seems readily apparent that

our solution is neither the first nor the last of its kind. We had no previ-

ous knowledge of auto-generated user interfaces, but we find the con-

cept interesting and we believe that it would be valuable to explore more

sophisticated applications of the technique in a future paper.

Conclusion 51

References

[1] Philip Elmer-DeWitt. (2010, September) CNN. [Online].

http://tech.fortune.cnn.com/2010/09/06/apples-ios-pie-chart/

[2] Canalys. (2011, January) Canalys. [Online].

http://www.canalys.com/pr/2011/r2011013.html

[3] Electronista Staff. (2010, March) electronista. [Online].

http://www.electronista.com/articles/10/03/05/mobile.app.revenues.would.top.15b.in.

3.years/

[4] Apple. (2008, June) Apple. [Online].

http://www.apple.com/pr/library/2008/06/09Apple-Introduces-the-New-iPhone-

3G.html

[5] Douglas MacMillan, Peter Burrows, and Spencer E. Ante. (2009,

October) businessweek. [Online]. Douglas MacMillan, Peter Burrows and

Spencer E. Ante

[6] Paulina Tourn and Ralf-Gordon Jahns. (2011, January)

Research2Guidance. [Online]. http://www.research2guidance.com/in-2010-

around-450000-smartphone-apps-have-been-published-guiding-the-app-

development-market-to-become-a-multi-billion-dollar-market./

[7] Egle Mikalajunaite. (2011, July) Research2Guidance. [Online].

http://www.research2guidance.com/the-application-development-market-will-grow-

to-us100bn-in-2015/

[8] The Linux Information Project. (2005, December) The Linux

Information Project (LINFO). [Online]. http://www.linfo.org/cross-

platform.html

[9] Joshua Topolsky. (2010, October) Engadget. [Online].

http://www.engadget.com/2010/10/11/live-from-microsofts-windows-phone-7-

launch-event/

[10] Sudheer Raju. (2011, March) ToolsJournal. [Online].

http://www.toolsjournal.com/tools-world/item/157-10-of-best-cross-platform-mobile-

development-tools

http://tech.fortune.cnn.com/2010/09/06/apples-ios-pie-chart/
http://www.canalys.com/pr/2011/r2011013.html
http://www.electronista.com/articles/10/03/05/mobile.app.revenues.would.top.15b.in.3.years/
http://www.electronista.com/articles/10/03/05/mobile.app.revenues.would.top.15b.in.3.years/
http://www.apple.com/pr/library/2008/06/09Apple-Introduces-the-New-iPhone-3G.html
http://www.apple.com/pr/library/2008/06/09Apple-Introduces-the-New-iPhone-3G.html
Douglas%20MacMillan,%20Peter%20Burrows%20and%20Spencer%20E.%20Ante
Douglas%20MacMillan,%20Peter%20Burrows%20and%20Spencer%20E.%20Ante
http://www.research2guidance.com/in-2010-around-450000-smartphone-apps-have-been-published-guiding-the-app-development-market-to-become-a-multi-billion-dollar-market./
http://www.research2guidance.com/in-2010-around-450000-smartphone-apps-have-been-published-guiding-the-app-development-market-to-become-a-multi-billion-dollar-market./
http://www.research2guidance.com/in-2010-around-450000-smartphone-apps-have-been-published-guiding-the-app-development-market-to-become-a-multi-billion-dollar-market./
http://www.research2guidance.com/the-application-development-market-will-grow-to-us100bn-in-2015/
http://www.research2guidance.com/the-application-development-market-will-grow-to-us100bn-in-2015/
http://www.linfo.org/cross-platform.html
http://www.linfo.org/cross-platform.html
http://www.engadget.com/2010/10/11/live-from-microsofts-windows-phone-7-launch-event/
http://www.engadget.com/2010/10/11/live-from-microsofts-windows-phone-7-launch-event/
http://www.toolsjournal.com/tools-world/item/157-10-of-best-cross-platform-mobile-development-tools
http://www.toolsjournal.com/tools-world/item/157-10-of-best-cross-platform-mobile-development-tools

52 Conclusion

[11] Berlingske Tidende. (2011, June) Berlingske Tidende online.

[Online]. http://www.b.dk/nationalt/diskoteker-faar-oplysninger-om-boeller-0

[12] Mathew Honan. (2007, January) MacWorld. [Online].

http://www.macworld.com/article/54769/2007/01/iphone.html

[13] Dan Frommer. (2011, June) BusinessInsider.com. [Online].

http://www.businessinsider.com/iphone-android-smartphones-2011-6

[14] Apple. (2011, July) Apple.com. [Online].

http://www.apple.com/pr/library/2011/07/07Apples-App-Store-Downloads-Top-15-

Billion.html

[15] Amy Thomson. (2010, September) Bloomberg.com. [Online].

http://www.bloomberg.com/news/2010-09-13/iphone-app-downloads-outpace-

android-blackberry-nielsen-says.html

[16] Bryan Costanich, Developing C# Apps for iPhone and iPad Using

MonoTouch: iOS Apps Development for.NET Developers.: Apress,

2011.

[17] Jack Schofield. (2010, May) The Guardian Online. [Online].

http://www.guardian.co.uk/technology/2010/may/10/ipad-apple

[18] MG Siegler. (2010, February) TechCrunch.com. [Online].

http://techcrunch.com/2010/02/23/apple-iphone-pornography-ban/

[19] Gartner. (2011, February) Gartner Newsroom. [Online].

http://www.gartner.com/it/page.jsp?id=1543014

[20] Thomas Newton. (2010, October) recombu.com. [Online].

http://recombu.com/news/what-is-windows-phone-7_M12576.html

[21] Martin Heller. (2010, April) InfoWorld. [Online].

http://www.infoworld.com/d/developer-world/infoworld-review-visual-studio-2010-

delivers-182

[22] Huw Collingbourne. (2010, April) PCPro.co.uk. [Online].

http://www.pcpro.co.uk/reviews/software/357286/microsoft-visual-studio-2010-

professional

[23] Microsoft. (2011, June) Microsoft Developer Network. [Online].

http://www.b.dk/nationalt/diskoteker-faar-oplysninger-om-boeller-0
http://www.macworld.com/article/54769/2007/01/iphone.html
http://www.businessinsider.com/iphone-android-smartphones-2011-6
http://www.apple.com/pr/library/2011/07/07Apples-App-Store-Downloads-Top-15-Billion.html
http://www.apple.com/pr/library/2011/07/07Apples-App-Store-Downloads-Top-15-Billion.html
http://www.bloomberg.com/news/2010-09-13/iphone-app-downloads-outpace-android-blackberry-nielsen-says.html
http://www.bloomberg.com/news/2010-09-13/iphone-app-downloads-outpace-android-blackberry-nielsen-says.html
http://www.guardian.co.uk/technology/2010/may/10/ipad-apple
http://techcrunch.com/2010/02/23/apple-iphone-pornography-ban/
http://www.gartner.com/it/page.jsp?id=1543014
http://recombu.com/news/what-is-windows-phone-7_M12576.html
http://www.infoworld.com/d/developer-world/infoworld-review-visual-studio-2010-delivers-182
http://www.infoworld.com/d/developer-world/infoworld-review-visual-studio-2010-delivers-182
http://www.pcpro.co.uk/reviews/software/357286/microsoft-visual-studio-2010-professional
http://www.pcpro.co.uk/reviews/software/357286/microsoft-visual-studio-2010-professional

Conclusion 53

http://msdn.microsoft.com/en-us/library/ff402530(v=vs.92).aspx

[24] Microsoft. (2010, July) Microsoft Developer Network. [Online].

http://msdn.microsoft.com/en-us/library/dd464660(v=vs.85).aspx

[25] Google. (2010) Google TV. [Online]. http://www.google.com/tv/

[26] The jQuery Project. (2010) jQuery Mobile Framework. [Online].

http://jquerymobile.com/

[27] The jQuery Project. (2011) jQueryMobile. [Online].

http://jquerymobile.com/demos/1.0a4.1/#docs/about/intro.html

[28] The jQuery Project. (2010) jQuery Mobile Overview. [Online].

http://jquerymobile.com/demos/1.0a4.1/#docs/about/intro.html

[29] Matt Doyle. (2010, November) elated. [Online].

http://www.elated.com/articles/jquery-mobile-what-can-it-do-for-you/

[30] Apple. Apple Developer. [Online].

http://developer.apple.com/technologies/ios/cocoa-touch.html

[31] Jeff Haynie. (2011, June) Re: Questions regarding Titanium Mobile.

E-mail.

[32] CEO of Appcelerator Jeff Haynie. (2010, March) How Does

Appcelerator Titanium Mobile Work? [Online].

http://stackoverflow.com/questions/2444001/how-does-appcelerator-titanium-mobile-

work

[33] Wallace B. McClure, Martin Bowling, Craig Dunn, Chris Hardy,

and Rory Blyth, Professional iPhone Programming with MonoTouch

and.Net/C#.: Wrox, 2010.

[34] Larry Constantine. (2002) Foruse. [Online].

http://foruse.com/articles/nakedobjects.pdf

[35] Richard Pawson. (2004) Naked Objects. [Online].

http://downloads.nakedobjects.net/resources/Pawson%20thesis.pdf

[36] Apple. (2010) Wired Magazine. [Online].

http://www.wired.com/images_blogs/gadgetlab/files/iphone-sdk-agreement.pdf

[37] Novell. (2009, November) MonoTouch Documentation. [Online].

http://msdn.microsoft.com/en-us/library/ff402530(v=vs.92).aspx
http://msdn.microsoft.com/en-us/library/dd464660(v=vs.85).aspx
http://www.google.com/tv/
http://jquerymobile.com/
http://jquerymobile.com/demos/1.0a4.1/#docs/about/intro.html
http://jquerymobile.com/demos/1.0a4.1/#docs/about/intro.html
http://www.elated.com/articles/jquery-mobile-what-can-it-do-for-you/
http://developer.apple.com/technologies/ios/cocoa-touch.html
http://stackoverflow.com/questions/2444001/how-does-appcelerator-titanium-mobile-work
http://stackoverflow.com/questions/2444001/how-does-appcelerator-titanium-mobile-work
http://foruse.com/articles/nakedobjects.pdf
http://downloads.nakedobjects.net/resources/Pawson%20thesis.pdf
http://www.wired.com/images_blogs/gadgetlab/files/iphone-sdk-agreement.pdf

54 Conclusion

http://monotouch.net/Documentation/Linker

[38] Novell Inc. (2010, April) Mono-Project. [Online]. http://www.mono-

project.com/newstouch/archive/2010/Apr-09.html

[39] ORACLE. (1997) ORACLE Sun Developer Network. [Online].

http://java.sun.com/docs/white/langenv/Security.doc3.html

[40] Theodore H. Romer, Dennis Lee, Geoffrey M Voelker, and Alec

Wolman, "The Structure and Performance of Interpreters," in

Proceedings of the Seventh International Conference on

Architectural Support for Programming Languages and Operating

Systems, 1996.

[41] OpenJDK. (2011) OpenJDK Web site. [Online].

http://openjdk.java.net/groups/hotspot/

[42] Wikipedia Contributors. (2011) Wikipedia, the free encyclopedia.

[Online]. http://en.wikipedia.org/wiki/Mobile_browser#Popular_mobile_browsers

[43] Assaf Arkin. (2010, December) Labnotes blog. [Online].

http://labnotes.org/2010/12/29/2011-is-year-of-the-server-side-javascript/

[44] Xoetrope. XUI Zone. [Online].

http://www.xoetrope.com/zone/intro.php?zone=XUI

[45] OpenLaszlo. (2010, February) OpenLaszlo.org. [Online].

http://www.openlaszlo.org/lps4.9/docs/developers/language-preliminaries.html

[46] Naked Objects Group. (2009, December) Naked Objects. [Online].

http://www.nakedobjects.org/introduction.html

[47] Kent Beck. (2001) Manifesto for Agile Software Development.

[Online]. http://agilemanifesto.org/

[48] Laurie Williams and Alistair Cockburn. (2000) NCSU. [Online].

http://collaboration.csc.ncsu.edu/laurie/Papers/XPSardinia.PDF

[49] Microsoft Corporation. (2011) Microsoft Developer Network.

[Online]. http://msdn.microsoft.com/en-us/library/cc189036(v=vs.95).aspx

[50] Microsoft. (2003) MSDN. [Online]. http://msdn.microsoft.com/en-

us/library/aa287786(v=vs.71).aspx

http://monotouch.net/Documentation/Linker
http://www.mono-project.com/newstouch/archive/2010/Apr-09.html
http://www.mono-project.com/newstouch/archive/2010/Apr-09.html
http://java.sun.com/docs/white/langenv/Security.doc3.html
http://openjdk.java.net/groups/hotspot/
http://en.wikipedia.org/wiki/Mobile_browser#Popular_mobile_browsers
http://labnotes.org/2010/12/29/2011-is-year-of-the-server-side-javascript/
http://www.xoetrope.com/zone/intro.php?zone=XUI
http://www.openlaszlo.org/lps4.9/docs/developers/language-preliminaries.html
http://www.nakedobjects.org/introduction.html
http://agilemanifesto.org/
http://collaboration.csc.ncsu.edu/laurie/Papers/XPSardinia.PDF
http://msdn.microsoft.com/en-us/library/cc189036(v=vs.95).aspx
http://msdn.microsoft.com/en-us/library/aa287786(v=vs.71).aspx
http://msdn.microsoft.com/en-us/library/aa287786(v=vs.71).aspx

Conclusion 55

[51] Erich Gamma, Richard Helm, Ralph Johnson, and John Vlissides,

Design Patterns.: Addison-Wesley Professional, 1994.

[52] Erich Gamma, Richard Helm, Ralph Johnson, and John Vlissides,

Design Patterns.: Addison-Wesley Professional, 1994.

[53] Microsoft Coporation. (2011) Microsoft. [Online].

http://research.microsoft.com/en-us/projects/contracts/

[54] The Institute of Electrical and Electronics Engineers. (1990,

September) idi. [Online]. http://www.idi.ntnu.no/grupper/su/publ/ese/ieee-se-

glossary-610.12-1990.pdf

[55] Adam Kolawa and Dorota Huizinga, Automated Defect Prevention:

Best Practices in Software Management.: Wiley-IEEE Computer

Society Press, 2007.

[56] Microsoft. (2010, March) Microsoft Developer Network. [Online].

http://msdn.microsoft.com/library/ee958158.aspx

[57] Microsoft. (2011) Microsoft. [Online].

http://www.microsoft.com/windowsembedded/en-us/windows-embedded.aspx

[58] Novell. (2009, October) MonoTouchWiki. [Online].

http://wiki.monotouch.net/HowTo/WebServices/Using_WCF

[59] Aaron Skonnard. (2001, January) MSDN Magazine. [Online].

http://msdn.microsoft.com/en-us/magazine/cc302158.aspx

[60] World Wide Web Consortium. (2011, March) W3.org. [Online].

http://www.w3.org/TR/exi/

[61] Edward A. Lee, "The Problem With Threads," Berkeley, CA 94720,

U.S.A., 2006.

[62] Edsgar W. Dijkstra, "Cooperating sequential processes,"

Eindhoven, The Netherlands, 1965.

[63] Microsoft. (2009) Microsoft Developer Network. [Online].

http://msdn.microsoft.com/en-us/library/8627sbea(v=VS.100).aspx

[64] Steve McConnell, Code Complete, 2nd. Ed. Redmond, USA:

Microsoft Publishing, 2009.

http://research.microsoft.com/en-us/projects/contracts/
http://www.idi.ntnu.no/grupper/su/publ/ese/ieee-se-glossary-610.12-1990.pdf
http://www.idi.ntnu.no/grupper/su/publ/ese/ieee-se-glossary-610.12-1990.pdf
http://msdn.microsoft.com/library/ee958158.aspx
http://www.microsoft.com/windowsembedded/en-us/windows-embedded.aspx
http://wiki.monotouch.net/HowTo/WebServices/Using_WCF
http://msdn.microsoft.com/en-us/magazine/cc302158.aspx
http://www.w3.org/TR/exi/
http://msdn.microsoft.com/en-us/library/8627sbea(v=VS.100).aspx

56 Conclusion

[65] Tom Sullivan. (2003, May) InfoWorld. [Online].

http://www.infoworld.com/d/developer-world/sun-seeks-grow-java-developer-base-

10-million-299

[66] Eric Palto. (2008, January) ezinearticles. [Online].

http://ezinearticles.com/?History-of-Multi-Touch-Technology&id=3443137

[67] Steve McConnell, Code Complete, 2nd ed. Redmond, WA, USA:

Microsoft Press, 2004.

[68] Wallace B. McClure, Martin Bowling, Craig Dunn, Chris Hardy,

and Rory Blyth, Professional iPhone® Programming with

MonoTouch and.NET/C#.: Wrox, 2010.

[69] David Lyons. (2010, April) newsweek. [Online].

http://www.newsweek.com/2010/04/01/microsoft-s-unsung-success.html

[70] Alan Kay. (2003, August) Dr. Alan Kay on the Meaning of "Object-

Oriented Programming". [Online]. http://userpage.fu-

berlin.de/~ram/pub/pub_jf47ht81Ht/doc_kay_oop_en

[71] Joab Jackson. (2011, July) pcworld. [Online].

http://www.pcworld.com/businesscenter/article/235399/ballmer_windows_phone_7_

not_successful_yet.html

[72] Mathew Honan. (2009, January) Macworld. [Online].

http://www.macworld.com/article/54769/2007/01/iphone.html

[73] Horace Dediu. (2011, January) asymco. [Online].

http://www.asymco.com/2011/01/31/fourth-quarter-mobile-phone-industry-overview/

[74] College of Lake County. (1998, January) Gopher - Introduction.

[Online]. http://www.clc.cc.il.us/home/com589/gopher.htm

[75] Robert Cailliau. (1995, November) A Short History of the Web.

[Online]. http://www.inria.fr/Actualites/Cailliau-fra.html

[76] Mette Lindegaard Attrup and John Rydding Olsson,.:

Økonomforbundets Forlag, 2008, p. s. 148.

[77] F. Anklesaria et al. (1993, March) The Internet Gopher Protocol.

[Online]. http://tools.ietf.org/html/rfc1436

http://www.infoworld.com/d/developer-world/sun-seeks-grow-java-developer-base-10-million-299
http://www.infoworld.com/d/developer-world/sun-seeks-grow-java-developer-base-10-million-299
http://ezinearticles.com/?History-of-Multi-Touch-Technology&id=3443137
http://www.newsweek.com/2010/04/01/microsoft-s-unsung-success.html
http://userpage.fu-berlin.de/~ram/pub/pub_jf47ht81Ht/doc_kay_oop_en
http://userpage.fu-berlin.de/~ram/pub/pub_jf47ht81Ht/doc_kay_oop_en
http://www.pcworld.com/businesscenter/article/235399/ballmer_windows_phone_7_not_successful_yet.html
http://www.pcworld.com/businesscenter/article/235399/ballmer_windows_phone_7_not_successful_yet.html
http://www.macworld.com/article/54769/2007/01/iphone.html
http://www.asymco.com/2011/01/31/fourth-quarter-mobile-phone-industry-overview/
http://www.clc.cc.il.us/home/com589/gopher.htm
http://www.inria.fr/Actualites/Cailliau-fra.html
http://tools.ietf.org/html/rfc1436

Conclusion 57

[78] Monty Alexander. (2008, March) ezinearticles. [Online].

http://ezinearticles.com/?Touch-Screen-Smartphone&id=3661945

[79] Microsoft. (2011) Microsoft. [Online]. http://msdn.microsoft.com/en-

us/library/ff402535(v=vs.92).aspx

[80] O'Reilly Media. (2005, August) O'Reilly Media. [Online].

http://www.oreillynet.com/wireless/2005/08/23/whatissmartphone.html

[81] Deloitte LLP. (2009) Deloitte. [Online].

http://www.deloitte.co.uk/TMTPredictions/telecommunications/Smartphones-clever-

in-downturn.cfm

[82] Nokia Communications. (2011, February) microsoft. [Online].

http://www.microsoft.com/presspass/press/2011/feb11/02-11partnership.mspx

[83] ArticleBase. (2011, July) articlebase. [Online].

http://www.articlesbase.com/marketing-tips-articles/mobilising-your-brand-web-vs-

native-apps-4992936.html

[84] Apple. (2010) Apple. [Online].

http://developer.apple.com/library/ios/#documentation/Miscellaneous/Conceptual/iPh

oneOSTechOverview/Introduction/Introduction.html#//apple_ref/doc/uid/TP4000789

8

[85] Apple. (2010) Apple. [Online].

http://developer.apple.com/library/ios/#referencelibrary/GettingStarted/URL_iPhone

_OS_Overview/_index.html#//apple_ref/doc/uid/TP40007592

[86] Open Handset Alliance. (2009) What is Android? [Online].

http://developer.android.com/guide/basics/what-is-android.html

http://ezinearticles.com/?Touch-Screen-Smartphone&id=3661945
http://msdn.microsoft.com/en-us/library/ff402535(v=vs.92).aspx
http://msdn.microsoft.com/en-us/library/ff402535(v=vs.92).aspx
http://www.oreillynet.com/wireless/2005/08/23/whatissmartphone.html
http://www.deloitte.co.uk/TMTPredictions/telecommunications/Smartphones-clever-in-downturn.cfm
http://www.deloitte.co.uk/TMTPredictions/telecommunications/Smartphones-clever-in-downturn.cfm
http://www.microsoft.com/presspass/press/2011/feb11/02-11partnership.mspx
http://www.articlesbase.com/marketing-tips-articles/mobilising-your-brand-web-vs-native-apps-4992936.html
http://www.articlesbase.com/marketing-tips-articles/mobilising-your-brand-web-vs-native-apps-4992936.html
http://developer.apple.com/library/ios/#documentation/Miscellaneous/Conceptual/iPhoneOSTechOverview/Introduction/Introduction.html#//apple_ref/doc/uid/TP40007898
http://developer.apple.com/library/ios/#documentation/Miscellaneous/Conceptual/iPhoneOSTechOverview/Introduction/Introduction.html#//apple_ref/doc/uid/TP40007898
http://developer.apple.com/library/ios/#documentation/Miscellaneous/Conceptual/iPhoneOSTechOverview/Introduction/Introduction.html#//apple_ref/doc/uid/TP40007898
http://developer.apple.com/library/ios/#referencelibrary/GettingStarted/URL_iPhone_OS_Overview/_index.html#//apple_ref/doc/uid/TP40007592
http://developer.apple.com/library/ios/#referencelibrary/GettingStarted/URL_iPhone_OS_Overview/_index.html#//apple_ref/doc/uid/TP40007592
http://developer.android.com/guide/basics/what-is-android.html

58 Conclusion

Acknowledgements

Christian W. Probst, Associate Professor, Project Supervisor

Jeff Haynie, Appcelerator CEO, Interviewee

