
Desynchronization of digital circuits

Rasmus Madsen

Kongens Lyngby 2011
IMM-M.Sc-2011-32

Technical University of Denmark
Informatics and Mathematical Modelling
Building 321, DK-2800 Kongens Lyngby, Denmark
Phone +45 45253351, Fax +45 45882673
reception@imm.dtu.dk
www.imm.dtu.dk

IMM-M.Sc: ISSN 0909-3192, ISBN 32

Abstract

In theory asynchronous circuits hold some great advantages over synchronous
circuits, they are more robust towards variations in the environment such as
temperature changes and voltage drops. At the same time asynchronous cir-
cuits can be compared to fine grained clock gating of a synchronous circuits,
which if the circuit has idle time could save power. Finally asynchronous circuits
does not have a finite clock cycle it consists of multiple local clocks generated
by handshake controls, this should introduce a reduction in current spikes and
EMI noise.

The use of asynchronous circuits today is limited to small scale prototyping
and research experiments, the reason is that the computer aided design tools
does not support the design flow for asynchronous design. Also designing asyn-
chronous circuits is not so straight forward as designing synchronous ones, and
especially debugging can be some what of a challenge.

This Thesis focuses on developing a method of desynchronization, to change a
synchronous circuit into the asynchronous equivalent only by removing the clock,
and by substitution of flipflops with latches. The first task is to implement some
basic components in VHDL and create behavioral versions, the second task is
to create synthesizeable versions of these components. Third task is to test
on some examples and to establish a design flow for the synthesis and test of
desynchronous circuits.

ii

Preface

This thesis was carried out at the institute of Informatics and Mathematical
Modeling of Technical University of Denmark as a requirement for obtaining
the M.Sc. in engineering. the thesis is credited 30 ECTS points

The work was carried out from October 2010 to May 2011 under the supervision
of docent Jens Sparsø.

I would like to thank my supervisor Jens Sparsø for great support and guidance
throughput the project. Also i would like to thank Alberto Nannarelli and
Massimo Petricca for their invaluable help on the synopsys packages

Finally I would like to thank family and close friends for their help and support.

iv

Contents

1 Introduction 1

1.1 Project Motivation . 1

1.2 Aims of this thesis . 2

1.3 Thesis Overview . 2

2 Desynchronization 5

2.1 Introduction . 5

2.2 Desynchronization fundamentals 9

2.3 CAD tools - Basics . 13

3 Basic components and design flow 15

3.1 Basic components . 15

3.2 Synthesis . 27

3.3 Design flow - The steps of desynchronization 29

4 Example 1 - Accumulator (Accu) 35

4.1 Synchronous Accu . 35

4.2 Test and results . 40

5 Example 2 - Greatest common divisor(GCD) 43

5.1 Fine grained design - splitting the registers 48

6 Example 3 - Edge detector 55

6.1 Synchronous Edge . 55

7 Discussion 67

8 Conclussion 71

vi CONTENTS

A Small Design vision guide 73
A.1 Design vision . 73

B scripts and files for Synopsis and Matlab 77
B.1 compile script for synopsis synthesis 77
B.2 floorplan script for synopsis . 79
B.3 matlab file for comparing switching activity 81

C VHDL Code 85
C.1 VHDL for basic components . 85
C.2 VHDL for Synchronous Accu . 89
C.3 VHLD for Asynchronous Accu 94
C.4 VHDL code for Synchronous GCD 100
C.5 VHDL code for asynchronous GCD simple desynchronization . . 100
C.6 VHDL code for asynchronous GCD simple desynchronization . . 105

D VHDL Edge detection 111

List of Figures

2.1 Left: Push Channel - Right: Pull Channel 8

2.2 Validity schemes from [6] . 9

2.3 Synchronous Pipeline . 10

2.4 Asynchronous Pipeline . 11

3.1 A Handshake pipeline using C element 17

3.2 the Muller C element and its truth table 17

3.3 State transition graph of the simple latch controller, the dashed
lines express signal events from surrounding controllers 19

3.4 A Handshake pipeline using C element 19

3.5 State transition graph of the semi-decoupled latch controller, the
dashed lines express signal events from surrounding controllers . 20

3.6 Semi-decoupled Latch control Using asymmetric c-gates 20

viii LIST OF FIGURES

3.7 Comparison of 6 stages deep fifos one made from simple latch
controller, and one made from the semi-decoupled controller. The
outputs are the simple/semi signals. where the output represents
the state of each latch from controller nr 012..5, a one means the
latch is holding data where as a 0 means that the latch is not
holding any valid data . 21

3.8 STG of the fully decoupled latch controller. 22

3.9 Synthesizeable model of the semidecoupled latch from [2] 23

3.10 three ways of implementing a delay element 25

3.11 Simulation of an unbalanced delay element, the rising edge is
delayed approximately 20ns while the falling edge is only delayed
by 1 ns . 25

3.12 Implementation of the Fork and Join using a C-element figure
taken from [6] . 26

3.13 The C element before and after synthesis, the implementations
are similar but not identical. 28

3.14 Simulation of the Latch controller after synthesis. 28

3.15 modified asynchronous multiplexer and de-multiplexer 29

3.16 RTL of synchronous and asynchronous counter (asynchronous not
complete) . 32

4.1 Behavioral of the synchronous accumulator 36

4.2 Simple way to implement the eager consumer, the Request out is
returned as an acknowledge. 37

4.3 The Delay from last input arrives at the Adder till the result is
present at the output is only 200ps 38

4.4 Behavior of accumulator . 39

4.5 Schematic synchronous Accu . 39

4.6 block diagram asynchronous Accu 39

LIST OF FIGURES ix

4.7 Simulation of the behavior of the desynchronized accumulator . . 40

4.8 The simulation after synthesis, of the two implementations 41

4.9 Matlab result of the two simulations 41

5.1 RTL of the synchronous GCD 45

5.2 RTL of the asynchronous GCD 46

5.3 The Asynchronous behavioral of GCD 49

5.4 Gate implementation of choice logic to stall until calculation has
finished. 50

5.5 A fine grained version of GCD, signals from control to latches are
not shown for better overview . 51

5.6 Modelsim simulations of the three synthesized implementations . 52

5.7 Modelsim simulations of the three synthesized implementations . 53

6.1 The image before and after edge detection 56

6.2 Block diagram Edge detector . 57

6.3 RTL diagram of a simple synchronous counter 58

6.4 Block diagram Finite state machine 59

6.5 Block diagram after register extraction of the Finite state machine 60

6.6 Block diagram of the desynchronized Finite state machine, hand-
shake signals between FSM control and counters not shown. All
counters handshake with FSM . 61

6.7 Simulation of the Asynchronous FSM 62

6.8 1:3 De-multiplexer and 3:1 multiplexer 63

6.9 The RTL of the input register in the Edge detection datapath. . 64

x LIST OF FIGURES

6.10 Schematic of PxMem after desynchronization, only handshake
logic is shown . 65

6.11 Schematic of desynchronized datapath, wire ends are numbered
to indicated connections . 65

7.1 Regular delay matching and Predictive delay matching 70

A.1 Design vision when first opened 74

A.2 Design vision when first opened 74

A.3 Design vision when first opened 75

A.4 Design vision when first opened 75

A.5 Design vision when first opened 76

Chapter 1

Introduction

1.1 Project Motivation

Most circuits today are synchronous and with the scaling of the chips into the
sub micron, it becomes increasingly difficult to cope with circuit variations such
as clock-skew, voltage drops and temperature variations. [3, 2, 4] This is be-
cause all variations have to be accounted for in the design phase. One of the
methods currently used is the SSTA (statically static timing analysis [1]) where
as many variation parameters as possible are included to get a worst case esti-
mation. The problem with this solution is that once the design is manufactured,
it cannot adapt to changes and often results in including huge margins in the
design, in terms of timing. Another solution is to use elastic or adaptive design
[3]. Elastic or adaptive circuits are tolerant towards variations in the timing of
the circuit due to temperature changes, meaning even if the speed of a part of
the circuit is reduced, the behavior will still be correct.

A perfect example of an elastic circuit type is Asynchronous circuits. If asyn-
chronous circuits are robust towards the variations previously mentioned, it
might seem strange that almost no company implements this design strategy
into their commercial design. The reason for this could be that Asynchronous
circuits are very different and more difficult to design compared to synchronous

2 Introduction

circuits, and the fact that there are no CAD-tools (Computer Aided Design
tools) that support the synthesis and design flow of these makes designing a
tedious and time consuming task.

Desynchronization is the technique of taking a synchronous design or specifica-
tion and turning it into an asynchronous equivalent, by replacing the clock tree
and registers with latches and latch controllers that use a handshake protocol
to create local timing. The purpose of this thesis is to investigate the different
methods of desynchronization and to evaluate the possibility of handling these
using common CAD tools, by proposing a tool and design flow.

1.2 Aims of this thesis

The Goals of this thesis are

• to show the theory behind Desynchronization on a simple circuit using
boolean equations and simulate and check behavioral

• Establish a tool flow

• Establish Design flow

• Test on real Examples

1.3 Thesis Overview

The Construction of the remainder of this thesis is chapter: 2 gives an introduc-
tion to asynchronous circuit design, the chapter presents the needed background
to be able to desynchronize synchronous circuits. The last part of the chapter
presents the tools used in the tool flow.

Chapter 3 gives a description of the basic components used in desynchronization,
and it also describes the behavioral implementation in VHDL.The second part
of the chapter describes the desynchronization design flow, from synchronous
specification through desynchronization, synthesis and floorplanning and finally
verifying the design.

1.3 Thesis Overview 3

Chapters 4,5,6 present 3 different examples of desynchronization, the implemen-
tation and the test results.

Finally chapters 7 & 8 contains the discussion and conclusion respectively.

4 Introduction

Chapter 2

Desynchronization

The following chapter will give and introduction to the asynchronous circuit
design methodology, and in detail explain the differences between synchronous
and asynchronous design. Also the basic concepts like handshake, handshake
protocols, data validity are explained. The last part of this chapter gives a short
presentation of the problem of the EDA tools used today.

2.1 Introduction

Most digital circuits today have a globally distributed clock, which dictates the
time in a discrete manner. These are called synchronous systems. The sequence
of events is easy to understand since all events happen at the same time, namely
every time the clock ticks. This means that the designer knows at exactly what
point in time the data should be valid for all registers. The alternative to a
synchronous system is an asynchronous system. In an asynchronous system,
the clock is substituted with a set of handshake signals, that indicate when
new data is available and when this data has been stored. One can say that
the system is locally timed. Local clock signals are generated by the handshake
controls. The asynchronous designs are a lot more complex to understand, since
events will happen at what appears random times. There is no obvious sequence

6 Desynchronization

to follow and data is valid at different points in time. In theory, asynchronous
designs have some great advantages over synchronous ones.

• Low Latency - the speed is determined by local delays and not by the
slowest part of the design.

• Low Power consumption - in asynchronous design global idling is implied,
which means that only components that are needed is active, the rest is in
an idle state not consuming power. This can be compared to fine-grained
clock gating in a synchronous system.

• No clock distribution or clock skew problems - the clock is substituted by
handshake protocols.

• More robust against voltage drops and temperature variations - The matched
delay element will if routed properly be in the same area of the chip and
experience the same temperature differences therefore behave in the same
way as the corresponding combinatorial logic.

• Less sensitive to fabrication parameter variation

• Less Electromagnetic Interference (EMI) - since the system is locally timed
the ticks of each ”clock” happens at random points in time.

• Smaller current peaks, and smoother current consumption - the consump-
tion is spread over time.

2.1.1 Asynchronous design

To understand desynchronization, one must first know the basics about asyn-
chronous circuits. As stated in the introduction the asynchronous circuits does
not have a globally distributed clock, but is timed by latch controllers linked by
a handshake protocol. In handshake protocols there is a sender and a receiver,
and both can be the initiator of a handshake sequence. When the initiator is
ready it sends a request signal to the receiver telling that the next handshake
sequence can begin. When the receiver has processed the request it sends an
acknowledge signal telling that the required action has been completed(sending
or storing data).

2.1.2 Handshake protocols

There are two main types of handshake protocols:

2.1 Introduction 7

• bundled-data

• dual-rail data

The bundled-data has the request and acknowledge signals bundled together
with the data, but as separate signals. The dual-rail protocol has the request
and acknowledge signals incorporated in the data. This gives the most robust
design in terms of delay insensitivity and parameter variation, but also holds
the most complex implementation and area overhead.

Bundlet data protocol The bundled-data protocol can be split into two-
phase and four-phase bundled data. The difference being in the four phase
bundled data after each data transfer the request and acknowledge signals must
return to zero, so this is a level sensitive signal where only the 1 has mean-
ing. Every handshake must end with a return to zero period. This is costly
in terms of time and energy. The two-phase bundled data has the request and
acknowledge incorporated in the transitions, such that the transition 0 to 1 and
1 to 0 bears the same meaning. [6]. In theory the two-phase is faster and costs
less energy, but is more complex to implement in reality. In the remainder of
this thesis, only the four-phase handshake protocol will be used the reason for
this that in [6] it is stated to be the one that resemble synchronous behavior the
most, and is less complex than the alternatives. For a more detailed explanation
of the handshake protocols please see [6].

In all types of handshake protocols we distinguish between push and pull chan-
nels usually marked by a little dot in the corner of the initiating controller see
fig: 2.1. In the push channel case, latch-controller N sends a request to latch
controller N+1 telling it that it has new data ready to be sent. When ready, the
receiver stores the data in a latch and sends an acknowledge signal telling the
sender that the data has been received. The sender then takes the request signal
down, after that the receiver takes the acknowledge signal down, the handshake
sequence is over, and the next one can begin. It is vital that the request does
not arrive before the data is ready. The event at sender must be preserved at the
receiver end, this is achieved using delay elements matched to the delay through
the data path these are discussed in detail in 3. In the case of a pull channel,
the N+1 controller sends a request signal saying that it is ready to receive new
data. When new data is ready, the Nth sends and acknowledge signal along with
the data. When the data is stored by the initiating controller, it pulls down the
request signal, after which the sending controller pulls down the acknowledge
signal, just as in the case of the push channel. The difference is the direction of

8 Desynchronization

the request and acknowledge signals. In the case of a pull channel it is vital that
the acknowledge signal does not arrive before the data is valid at the receiving
end. To select a push channel over a pull channel is up to the designer and the
application.

Figure 2.1: Left: Push Channel - Right: Pull Channel

2.1.3 Data validity

When using bundled data, it is important to define when data is valid on the
receiving end. There are four different validity schemes for four phase bundled
data [6]. Common for all of them is that they express the requirement set by
the receiving end. In all of them, data should be valid some time before the
request signal arrives, and some time after the acknowledge signal. This can be
compared to the setup and hold constraints in synchronous design. The Choice
of validity scheme affects the implementation of the handshake component in
terms of area and speed, and therefore in some cases it can be advantageous to
use a mix of the different schemes. The four schemes are early, broad, late and
extended early, see fig: 2.2

Four data schemes for a push channel is listed below:

• In the case of the Data early scheme, the data is only valid from the request
signal is received until the acknowledge signal is sent from the receiver.

• Extended early guarantees valid data from receiver sees the rising request
signal until the request signal is pulled low again.

• With the broad scheme data is valid from rising request signal until the
falling acknowledge signal event.

2.2 Desynchronization fundamentals 9

Figure 2.2: Validity schemes from [6]

• The final scheme is the data late, in which data is only valid from request
falling event until the falling acknowledge event.

2.2 Desynchronization fundamentals

2.2.1 Desynchronization of a simple pipeline stage

When designing modern digital circuits, most of the time one strives for per-
formance goals in terms of speed (latency and throughput), low power, area,
and robustness. When it comes to speed, the latency of a circuit is determined
by the critical path of the system (the slowest path). To increase throughput,
circuits are often pipelined, and the slowest pipeline stage then determines the
clock period. The clock must be adjusted so there is enough time to complete
the calculation in the slowest stage. This naturally slows down faster stages
which then have to wait for the slow one to complete before starting the next
calculation. fig 2.3 show a synchronous pipeline, for all stages to be able to com-
plete the clock must have a cycle time of 12ns. This gives a latency of 3*12ns
= 36ns.

Asynchronous circuits do not have this drawback. Since every stage is locally
timed the latency of a circuit is equal to the sum of the delays in each pipeline
stage(29ns) fig 2.4. The deeper the pipeline, the greater the advantage. This
advantage drops with the increase in amount of data. If the pipeline is busy 100
percent of the time, the faster stages will be stalled waiting for the slow stage
to finish. Therefore there is only a gain in terms of latency up until a certain

10 Desynchronization

Figure 2.3: Synchronous Pipeline

occupation of the pipeline.

Low Power In the pipeline fig 2.3 all registers are clocked no matter if new
data is present or not, this is very expensive in terms of power. A way to
minimize this is to clock-gate parts of the circuit, to turn of parts of the circuit
that are not used. This is implicit in asynchronous circuits since only the parts
currently being used are active, the only power being dissipated in the idle part
is due to leakage, this can be compared to a very fine grained clock-gating, and
can result in a reduction of the overall power consumption. Again if the system
is busy 100% of the time, Asynchronous circuits might be more power hungry
due to the overhead in area (latch-controllers,forks and joins etc).
Desynchronization is a method to convert synchronous clocked gate logic into an
asynchronous equivalent. By substituting flipflop registers with latches, and the
clock-tree with a latch controlled handshake circuit leaving the combinatorial
parts untouched, only the timing of the circuit has been modified, the datapath,
and therefore the behavioral is the same.

Desynchronization is in theory straight forward, and is done in three steps

• Substitute all registers (flipflops) with a Master/Slave latch design

• Measure delay through every combinatorial path of the design for delay
matching

• Implement latch controllers and delay elements in appropriate places

Clock skew With the introduction of the nanometer scale designs, distribu-
tion of the clock is increasingly difficult, the fact that the clock may arrive later
in some areas of the design than others, pose a great challenge for the designers.
This problem is not present in asynchronous design, since there is no clock!

2.2 Desynchronization fundamentals 11

Figure 2.4: Asynchronous Pipeline

2.2.2 Granularity

One of the mentioned benefits of desynchronization is a decrease in power con-
sumption, since this is directly linked to the switching activity in the circuit.
And by removing the clock, the registers only switches when needed to. One of
the drawbacks of desynchronization is the overhead that comes with implement-
ing latch controllers, also two latches has a small area overhead compared to
a flipflop, some times the synthesis library used includes a register with access
to both latches inside, then the area is the same for the two latches. So more
latch controllers obviously result in a bigger area overhead. This leads to the
question of granularity.
How fine grained should the desynchronization be? As always there is no finite
answer, it depends on the application, but some guidelines for a set of best
practice are presented here:

• A separate controller should be used anywhere where data might arrive at
different times.

• A separate controller should be used anywhere where combinatorial logic
has more inputs, where only some is used in a given calculation. If there
are eight inputs to some logic put only two is needed in a given calculation,
it does not make sense to wait for all eight latches to fill up, the circuit
should continue as soon as the need values are ready. The guidelines will
be further explained through examples in 5

• In a combinatorial network receiving multiple inputs and always needing
all inputs, the latches holding the input data for the network should be

12 Desynchronization

controlled by the same controller. There is no point in having three con-
trollers for three sets of latches if all three always switches at the same
time. This would result in an unneeded overhead, also a join is needed to
merge all request signals into one request for the stage after the combina-
torial logic.

2.2.3 Methods of desynchronization

There are two obvious ways of desynchronizing a circuit. One is desynchronizing
the VHDL code, following the steps described in 3.3. This method is intuitive
and is probably the easiest to do when desynchronizing manually, because the
hierarchial structure of VHDL makes it easy to navigate and find connections
between components. This form of desynchronization, is done before synthesis.
There is another way to desynchronize, it is possible to do it after synthesis by
desynchronizing the synthesized netlist. Netlists are not difficult to read, but
they are definitely not as easy and intuitive as the VHDL code, and for large
designs it can be very difficult to keep track of nodes and wires. The netlist
could be an excellent choice for an automatic desynchronization algorithm. This
is beyond the scope of this thesis, the interested reader is encouraged to check
out [4, 5] for further reading about this subject.

2.2.4 Pros and cons of desynchronization

In reality desynchronization although the idea is simple, it is not so. One of the
main reasons for this is the lack of cad tools capable of handling the task. But
there is also the question of data-dependency and delay matching, and that is
why the use of asynchronous digital design is still limited to university research
and small scale prototyping. Also the fact that designers have to completely
rethink the way they design digital electronics, from clock ticks clearly indicating
when data is valid to a design where the different parts of the circuit deliver
valid data at random points in time. The fact that there is no global timing,
indicating when data is ready also makes testing and debugging very difficult.
when adding test stimuli to a circuit, the designer must make sure that the input
data is synchronized the corresponding request and acknowledge signals. The
gains of desynchronization have been presented in this chapter and it should be
clear that, at least in theory, a desynchronized circuit holds some advantages
over the synchronous equivalent.

2.3 CAD tools - Basics 13

2.3 CAD tools - Basics

This section is briefly commenting on the lack of EDA tools for asynchronous
design, and introducing the tools used for the design flow.

2.3.1 Modern EDA tools

The EDA (Electronic Design Automation) tools today cannot handle asyn-
chronous designs. The reason stated is, while having advantages and drawback
none of the proposed methodologies can produce an asynchronous circuit with
all the stated advantages [5] and therefore has not been adapted into any design
tools. There are also no CAD tools available for asynchronous synthesis, which
further complicate things, and forces designers to create own libraries or develop
own tools. The Muller C element is not a part of any library, but this can be
synthesized as a combination of simple gates.The routing of handshake signals
poses a challenge to the tools. The complicated timing implications makes it
complicated for the synthesis tools.

2.3.2 The tools used

The synthesis tool used in this thesis is Synopsys design compiler. The tool
is not directly able to handle desynchronized designs. How this is done is ex-
plained in detail in 4, 4, 6 Synopsys design compiler takes the VHDL files and
compiles them into a Verilog netlist that is then synthesized and floorplanned
into a new verilog file that can be used for simulation of the design with actual
delays etc. It also produce some reports of the circuit delay, node capacitances
etc important when delay matching, and performance investigation. for sim-
ulation of the RTL, and Synthesized designs Modelsim is used Modelsim can
handle mixedmode VHDL/Verilog files which makes simulating the synthesized
Verilog netlists using the original VHDL test bench easy. To compare the desyn-
chronized design with the original synchronous one. A Special matlab script has
been developed. The script takes a VCD file (Value Change Dump) and a file
containing node loads, and counts the switching activity.

this chapter introduced the basics of asynchronous circuits, and explained the
theory behind desynchronization, finally a short introduction to the tools used
for synthesis and test where presented, these are explained in detail in chapter
3, also the flow from VHDL to synthesized design is explained in detail.

14 Desynchronization

Chapter 3

Basic components and design
flow

The first part of this chapter will present the basic components of asynchronous
systems, the functionality of each of them will be explained in details, and how
and where they are used. The chapter will also present both behavioral models
for easy functional testing and synthesizeable models for implementation. The
second part will present the design flow of desynchronization from synchronous
VHDL specification to synthesize and simulation of the desynchronized design
using synopsis and modelsim.

3.1 Basic components

3.1.1 The Muller C element

To design asynchronous systems with correct behavior, one must take a look at
when signals are required to be valid. In synchronous design the clock tick is
used as an indicator of when all signals are valid. In between these ticks the
signals may exhibit hazards. Hazards in this case are when signal level changes
are not acknowledged by the system. In asynchronous design there is no click
indicating that signals are valid and therefore signals must be valid at all times.

16 Basic components and design flow

In chapter 2 the four phase bundled-data protocol was presented. Recalling the
handshake sequence for a new sequence to begin both Request and Acknowledge
signal must be 0 before a new handshake sequence can begin. At the same time
the controller must hold the data until the next controller has received it, this
pose a problem if we are limited to conventional logic gates. See 3.1 here 3
controllers in a pipeline are shown, the request signal is generated from the pre-
vious request and the next acknowledge. This means if there is a request from
n-1 and the acknowledge of n+1 is low, the controller N can proceed by raising
its request and at the same time storing data and sending an acknowledge to
the previous controller.

For the controller(n) to make a request the request from controller(n-1) must
be 1 AND the acknowledge from controller(n+1) must be zero. An AND gate
would be able to detect this, the output of an AND gate is only 1 when both
inputs are 1. When controller(n-1) receives the acknowledge signal from con-
troller(n), the handshake protocol dictates that it should now lower its request.
This is seen by controller(n) and by the logic of an AND-gate the request signal
for controller(n+1) will be lowered, and therefor the latch will be open. This
is not according to protocol where it has to wait for the acknowledge signal of
controller(n+1) to arrive before lowering the request. In this situation an OR
gate would do the trick.

This is because the AND-gate indicates when both signals are 1 the output will
be 1, but when the output is 0 no conclusions about the inputs other than at
least one must be 0 can be drawn. the OR-gate is the opposite it indicates when
both inputs are 0, and does not indicate more than at least one signal is one
when the output is one. To solve the problem of the controller where indication
of both cases is needed, a new gate is introduced. The Muller C element is a
gate that is 1 when both inputs are 1, and 0 when both inputs are 0, in any
other situation it holds the previous state. It is a state holding element that can
be compared to a set/reset latch. The C element and its truth table are shown
in 3.2. Using the Muller C element the handshake protocol will be kept in both
cases. A new request will not be made before the C element has received both
a request from the previous controller and an acknowledge from the succeeding
controller. At the same time a request will not be released before both the
previous request has been released and the succeeding acknowledge has arrived.
The pipeline in 3.1 is also called a Muller pipeline. The VDHL describing the
c-element can be found in appendix VHDL:Celement

3.1 Basic components 17

Figure 3.1: A Handshake pipeline using C element

Figure 3.2: the Muller C element and its truth table

3.1.2 Latch controllers

The Latch In asynchronous, design the flipflop is exchanged with a set of
level sensitive latches. A flipflop which triggers on the clock edges: when it
sees a rising clock edge data is copied from the input to the output and is not
replaced before the next rising clock edge. A level sensitive latch is either open
(transparent), data can flow directly from input to output or the latch is closed
(opaque) When the latch is opaque it holds the values of the data that was on
the output at the moment it closed. In this thesis the latch is in opaque state
when the control signal is high or logic 1, and transparent when the control
signal is low or logic 0.

Simple Latch controller A latch controller is as the word indicates a compo-
nent that controls when the latch is open (transparent) or closed (opaque) The
decision to close or open the latch is done by evaluating the request and acknowl-
edge signals from the surrounding controllers. The simplest controller is the one
presented earlier in the Muller pipeline. It is a circuit build from C-elements
and inverters, the circuit is shown again in figure 3.4 This time including the
latches controlled by the control circuit. This is the simplest implementation of
a latchcontroller, but it has some obvious draw backs. Only every other latch

18 Basic components and design flow

can hold data, this is because the input side Request and acknowledge signals
are strongly coupled to the request and acknowledge signals on the output side.

To better explain the behavior it is described using a State Transition Graph
(STG), STGs are a great way to capture behavior of the control circuit, and
at the same time it is intuitively easy to understand. The STG matching the
simple controller can be seen in figure: 3.3 the arcs represent transitions from
one state to another. The dashed arcs represent signal transitions of signals
from the environment, the Request and Acknowledge signals are Named Ri and
Ai for the input side, and Ro and Ao for the output side. The dots marks the
initial state. From the STG in fig: 3.3 and the pipeline in fig: 3.4 it becomes
clear that the pipeline is full when other latch is occupied, this is because Ao

must be zero, and that requires the next stage to be empty.By using a program
called petrify the STG can be transformed into boolean equations the result is
shown in eq: 3.1, this can also be done using State Graphs see [7] for more info
on this. More advanced designs that does not have this draw back is discussed
in the next sections.

Ro = Ri ∗ Āo +Ro(Ri + Āo)

Ai = Ro (3.1)

Semi-decoupled Latch controller The Semi-decoupled latch controller does
not have the same strong requirements from signals on the input side to signals
on the output side, the controller is allowed to engage in a new handshake se-
quence and store new data, as soon as it sees the Ro− while Ao might still be
1. At the same time the Ai may be produced as soon as data is received inde-
pendent of the state on the output side. To be able to start a new handshake
sequence on the input side, while the output side has yet to complete a new
internal state is added (A). see figure 3.5 This extra state is added automati-
cally by Petrify to make sure that there is no CSC violations, (CSC - Complete
State Coding, means all states have to be unique i.e may only appear once in
the STG). The boolean equations from petrify can be seen in eq: 3.2 There is
no equation for the Ai from the STG it can be seen that is always following
A and therefore it can be omitted in the equations. An implementation using
asymmetric c-gates is shown in fig: 3.6. While the Semi-decoupled latch con-
troller has the benefit over the simple latch controller that all pipeline stages
can be filled with data, it still holds a draw back. The recovery cycle on(return
to zero part of the handshake) each side of the controller is still linked. From

3.1 Basic components 19

Figure 3.3: State transition graph of the simple latch controller, the dashed lines
express signal events from surrounding controllers

Figure 3.4: A Handshake pipeline using C element

the STG it is clear that Ai can not return to 0 before Ao has been raised.

A simulation of A fifo consisting of Simple latch controller versus one consisting
of semi-decoupled controllers is shown in fig: 3.7 The simulation is made from
a 6 stage deep fifo, one for each of the two types of controllers, on the input
is an eager stage that feeds the next Req signal as soon as the first handshake
sequence is complete. On the output end of the pipeline is a lazy consumer,

20 Basic components and design flow

Figure 3.5: State transition graph of the semi-decoupled latch controller, the
dashed lines express signal events from surrounding controllers

Figure 3.6: Semi-decoupled Latch control Using asymmetric c-gates

it does not response to re request signal of the last fifo stage, which means at
some point the fifo will be full and stall. From Fig:3.7 its clear that the Fifo
made from simple latch controls stall after it has consumed 3 request signales
(tokens) leaving every other latch not holding data. On the other hand the Fifo
made from semi-decoupled controllers continues on until every latch holds data.

3.1 Basic components 21

Figure 3.7: Comparison of 6 stages deep fifos one made from simple latch con-
troller, and one made from the semi-decoupled controller. The outputs are the
simple/semi signals. where the output represents the state of each latch from
controller nr 012..5, a one means the latch is holding data where as a 0 means
that the latch is not holding any valid data

A+ = Ri ∗ R̄o

A− = R̄i ∗Ro ∗Ao

Ro+ = A ∗ Āo

Ro− = Ā (3.2)

Fully-decoupled latch controller The fully-decoupled latch controller fur-
ther relaxes the coupling from input side to output side, and removes the cou-
pling between the recovery cycles. The Decoupling is accomplished by inserting
another internal variable B. The resulting controller has input side handshake
and output side handshake that can run concurrent, which results in a very com-
plex STG se fig: 3.8 the Resulting boolean equations from petrify is shown in
eq: 3.3 again the latch control signal is always A therefore it has been removed
from the equations. Also from the equations it is obvious that the only thing
changed compared to the semi-decoupled controller is the equation for Ai in the
semi-decoupled case this was always following Lt, and therefore following A, in
the fully-decoupled controller it depends only on the Ri and internal variables.

The choice of controller used in this thesis is the semi-decoupled one, this is
from the conclusion that the fully decoupled one is far more complex to im-
plement and will result in an increase in area overhead that does not justify
the potential performance gain. In [7] It is shown that the fully decoupled is
almost twice as big in area, where the processing pipe time for a semi-decoupled
controller is 54.7ns and for the fully-decoupled controller it is 37.7ns only a gain
of approximately 30%, also the article notes that in FIFO applications the gain
in performance is not noticeable from the semi-decoupled to the fully-decoupled

22 Basic components and design flow

Figure 3.8: STG of the fully decoupled latch controller.

controller.

A+ = B̄ ∗ R̄o ∗Ri

A− = B ∗Ro ∗Ao

B+ = Ai

B− = Ā ∗ Āi

Ro+ = A ∗ Āo

Ro− = Ā

Ai+ = A ∗ B̄
Ai− = R̄i ∗B (3.3)

Master / Slave Design Each flipflop is substituted with a Master and a
Slave latch, which closely resembles the behavior of a flipflop (flipflop is con-
tructed from two levelsensitive latches) some synthesis libraries have flipflip
where control signals for both latches inside is available, this design can be used
with an advantage since this design is the most compact area wise. Another
important reason for using a double latch design is that with the master/slave
design at least one is opaque in any situation. If only one latch is used for each
flipflop a situation where all is open can take place, when a combinatorial block

3.1 Basic components 23

is calculating the next value the output of this block can change several times
before ending at the correct output, with all latches open this would result in
lots of very long wires being charged and discharged for no reason, and this can
be very expensive in terms of power. see fig: 2.3. The master and slave latch
needs to be initialized in opposite states so that one is holding and the other is
transparent for the design to function correctly.

Latch controller Behavioral and synthesizeable model To be able to
simulate and test the desynchronized designs, a behavioral of the latch controller
have been implemented in VHDL from the boolean equations in eq: 3.2 The
component is very simple and only mimics the behavioral of a latch controller
without any timing assumptions. The VHDL for the behavioral can be found in
Appendix C.3.3 after the correct behavior of a desynchronized circuit is verified,
a synthesizable model is needed for implementation. In article [2] a design
using only basic blocks is presented. At the same time the design presented
incorporates the master/slave design we want. The implementation is shown in
fig: 3.9 its the same as the one in the article with the small difference that the
inverting on the latch control wires is removed, this thesis used latches that a
opaque with control level 1, the article uses latches that are opaque with latch
control level 0. The implementation is done and tested in section:3.2.

Figure 3.9: Synthesizeable model of the semidecoupled latch from [2]

3.1.3 The matched delay

Completion Detection In synchronous design the clock serves as completion
detection, it is expected that all combinatorial stages has finished before the
next clock period. The clock period is fixed, and all stages has the exact same
amount of time to finish.This time is based on an timing analysis of the slowest

24 Basic components and design flow

stage in the design. There is no clock indicating when a stage is finished in
asynchronous design, this is done by the handshaking signals. The data is often
affected by some combinatorial delay caused by the combinatorial logic through
which it must pass, the handshake signals does not pass through the same logic.
Therefore it is vital to be able to predict the delay through a given stage, so
a matching delay can be inserted to slow the handshake signal indicating the
completion of a given stage. When delay matching a delay in inserted in to the
handshake protocol that matches the delay of the combinatorial circuit between
the latches controlled by the two controllers. It is crucial that the data is valid
before a latch closes therefore the minimum delay of the element inserted should
be equal or greater than the worst case delay of the combinatorial path.
If Handshake signals are routed on the chip as a bundle with the data, they
will experience the same variations an will therefore track the delay through the
combinatorial path very precisely. In the Push channels used in this thesis the
delay element is always placed on the Request wire.

A simple delay element one method to implement a delay element is an
inverter chain with n number of inverters to reach the desired delay. shown in
fig: 3.10a The drawback of this simple delay element is that the delay affects
both the data transfer and the return to zero period. But only the delay of the
rising request signal indicating that data is valid is necessary, since the return
to zero period does not indicate any data transfer in the combinatorial path.
Alternatives to the simple implementation is shown in fig: 3.10b and 3.10c the
advantage of these two is only the rising edge of the signal is affected by the delay,
The chain of AND-gates can if a large delay is needed have a very large fanout
which could be a problem, the mixed-gate chain from[2] has half the fanout and
is implemented with standard inverting C-mos logic, and is therefore preferred
for this thesis.

A short test of an implementation of mixed-gate implementation is shown in fig:
3.12 the return to zero delay is obviously a lot less than the rise delay.

3.1.4 Forks, Joins, Multiplexers and De-Multiplexers

Forks and Joins Two very important components when dezynchronizing is
forks and joins, these are used to keep track of 1 : many and many : 1 hand-
shaking. i.e to synchronize multiple datapaths, The fork synchronizes multiple
outputs and the join does the same with inputs. This is f.ex important when
feeding inputs to an adder the addition must not start until both inputs have
arrived. In order to synchronize the Muller c-element is used, in a fork the

3.1 Basic components 25

(a) Inverter Chain

(b) Chain of And gates

(c) Chain of mixed gates

Figure 3.10: three ways of implementing a delay element

Figure 3.11: Simulation of an unbalanced delay element, the rising edge is de-
layed approximately 20ns while the falling edge is only delayed by 1 ns

request signal is simply split and sent to the n-controls that needs it and c-
elements are used to synhcronize the acknowledge signals confirmation that all
receivers have stored the data. The join is the opposite, the c-element is used to
wait until all input controllers have data ready, then the request is asserted for
the next stage, when this have stored the data the acknowledge signal is simply
split into n signals for the input controllers. Only a synthesizeable model of the
fork and join have been implemented, since this is straight forward using the
synthesizeable C-element. The VHDL for these two components can be found
in appendix C.1.2

Multiplexer and De-multiplexer In some situations it is necessary to guide
a signal to one of multiple receivers, while the others are left idle. A compo-

26 Basic components and design flow

Figure 3.12: Implementation of the Fork and Join using a C-element figure taken
from [6]

nent that has this functionality is the the De-multiplexer. It forwards the input
request and the data to an output selected from a control signal. The Mul-
tiplexer is the opposite it Select one of multiple inputs and forwards it to an
output decided by a control signal. The other inputs are ignored and might
have requests pending, these will be stalled until the control signal decides to
forward this request. This functionality is an excellent way of disabling some
latch controllers keeping the respective latch at its current output by guiding
the incoming request via another path.
Asynchronous implementations of the two can be found in [?] but these cannot
be implemented directly in the examples used in this thesis. In desynchroniza-
tion the controllers for the multiplexers and de-multiplexers are already imple-
mented as combinatorial logic to use these control signals the components must
be modified slightly. The de-multiplexer shown in fig: 3.13b does not use any
c-elements this is because the request out should return to zero as soon at the
control signal changes or the input request i reset. This insures the transparency
to the handshake controls.
In the multiplexer 3.13a the input is chosen by an AND of the control signal
and the two request signals. The acknowledge is generated by a c-element of
the internal request and the acknowledge signal. The c-element ensures that the
acknowledge in is held high until the acknowledge out is reset to zero.

3.2 Synthesis 27

(a) Modified multiplexer (b) Modified de-multiplexer

3.2 Synthesis

Synthesis of the C element The muller c element is a special component
and is not included in standard synthesis libraries, so before the element can
be implemented, the synthesized model must first be verified. Using synopsis
to compile and synthesize the component. After synthesis the behavior is the
same, but to be certain the Verilog netlist of the synthesized module is checked.

1 module Celement(A, B, Y)
2 input A,B;
3 output Y;
4
5 A05NSVTX1 u1 (.A(A), .B(Y), .C(B), Z(Y));
6 end module;

A short run through of the above netlist: The module Celement has the inputs A
& B and the output Y, the component i instantiated using a library component
called A05NSVTX1 the SVT in the component name is indicating a standard
cell is used. The standard cell is a average model between the hight threshold
and low threshold cells. The A05NSVTX1 component has three inputs and
one output (this can be seen in the library file) instead of listing the Verilog
component file, the schematic of the Verilog instantiation is shown in fig: 3.13b
the schematic of the VHDL is shown in fig: 3.13a

The two gate implementations are very similar but not identical, so the behavior
is verified from the truth tables below, clearly the behavior is identical. So the
synthesis of the c element is complete and there should be no problem imple-
menting the C element in designs.

28 Basic components and design flow

(a) gate model of the VHDL C element (b) gate model of the Verilog C element

Figure 3.13: The C element before and after synthesis, the implementations are
similar but not identical.

Figure 3.14: Simulation of the Latch controller after synthesis.

Celement Verilog
A B yin y A B yin y
0 0 0 0 0 0 0 0
0 0 1 0 0 0 1 0
0 1 0 0 0 1 0 0
0 1 1 1 0 1 1 1
1 0 0 0 1 0 0 0
1 0 1 1 1 0 1 1
1 1 0 1 1 1 0 1
1 1 1 1 1 1 1 1

Synthesis of the double latchcontroller After synthesis the behavior of
the latch control is verified using modelsim, and the synthesized netlist. It is
very important that signal constraints are intact after synthesis. This is done
in the same way as with the c element, the behavior is shown from simulation
post synthesis in fig: ?? . The gate implmentation is the same as in the one
presented in 3.9.

Delay element The Delay elements cannot be synthesized using synopsis,
the tool will trim the delay chain since the input and output are the same,
and synopsys treats this as overhead in area since there is no logic function. A
work around to this is to make the netlist of the delay by hand, and insert it

3.3 Design flow - The steps of desynchronization 29

into the desired points in the synthesized netlist. This is not straight forward
but can be done. The easiest way is to define a component with no logic just
an input connect to an output, synopsis will keep the structure of the design.
After synthesis locate the dummy box and insert the Verilog code for the desired
delay. These files are very long (a chain of 20 gates gives approximately a delay
of 2ns) Therefore the Verilog file is not presented here.

Multiplexer and De-multiplexer Both of these components have some
timing requirements on the control signal. the control signal must be stabile
throughout the complete handshake sequence, it cannot change until the hand-
shake signals on the input side have returned to zero. The problem is illustrated
in the two simulations in 3.15.

(a) Simulation of mux, the problem of the control signal can be seen at 130ns

(b) Simulation of demux, the problem of the control signal can be seen at 150ns

Figure 3.15: modified asynchronous multiplexer and de-multiplexer

3.3 Design flow - The steps of desynchronization

This section will describe the design flow of desynchronization, From Syn-
chronous RTL level description in VHDL until synthesized design. The Process
takes several steps from recoding the VHDL, locating registers, substitution
with controllers, inserting forks and joins etc. Till synthesize and floorplanning,
and finally simulation and verification of the design. Also a simple comparison
between the synchronize circuit and the desynchronized equivalent is done.

30 Basic components and design flow

3.3.1 Optimizing VHDL for desynchronization

Compilers today are optimized for synchronous design, this makes it very easy
to describe synchronous design i VHDL using simple expressions like

1 if(clock ’event and clock=’1’)\\

the compiler immediately recognize this as a flipflop. The latch equivalent would
be:

1 if(control =’0’)\\

omitting the else clause will result in an inferred latch, which is good enough. A
good way to start desynchronization of a design is to take the register transfer
level(RTL) schematic and locate all registers. In most VHDL designs today the
registers is filtered into the combinatorial logic as shown here:

1 count : process(clk ,reset ,pause)
2 begin
3 if clk = ’1’ and clk ’event then
4 if reset =’1’ then
5 tempcountLow <= "00";
6
7 tempcountHigh <= 0 ;--tempcountHigh;
8 elsif pause =’1’ then
9 tempcountLow <=tempcountLow ;

10 tempcountHigh <= tempcountHigh;
11 elsif tempcountLow ="10" then
12 tempcountLow <= "00";
13 if (tempcountHigh = 89) then --90

column= 0-89
14 tempcountHigh <= 0;
15 else
16 tempcountHigh <= tempcountHigh +1;
17 end if;
18 else
19 tempcountLow <= tempcountLow +1;
20 tempcountHigh <= tempcountHigh;
21 end if;
22 end if;
23
24 end process;

This is a real counter used en a later chapter 6, its intuitively easy to understand
for a VHDL designer, the only problem is its not very easy to desynchronize.
The counter is obviously two registers one holding the lowcount value and one
holding the high count value, both is fed to some combinatorial circuitry that
calculates the next count values. the RTL schematic is shown in fig: 3.16a

3.3 Design flow - The steps of desynchronization 31

looking at the Schematic, the substitution of registers with latches seems straight
forward, done in fig: 3.16b, The VHDL code is not so straight forward. Instead
of implementing somesort of modified latch in every component its easier to
recode the VHDL into a two process structure. The sequential logic is put into
one process and the purely combinatorial is put into another. Demonstrated in
the VHDL code here :

1 count : process(clk ,reset)
2 if reset =’1’ then
3 tempcountLow <= "00";
4 tempcountHigh <= 0 ;--tempcountHigh;
5 elsif clk = ’1’ and clk ’event then
6 tempcountlow <= nextcountlow;
7 tempcounthigh <= nextcounthigh;
8 end process;
9 combi : process(tempcountlow , tempcounthigh ,pause)

10 begin
11
12 elsif pause =’1’ then
13 nextcountLow <=tempcountLow ;
14 nextcountHigh <= tempcountHigh;
15 elsif tempcountLow ="10" then
16 nextcountLow <= "00";
17 if (tempcountHigh = 89) then --90

column= 0-89
18 nextcountHigh <= 0;
19 else
20 nextcountHigh <= tempcountHigh +1;
21 end if;
22 else
23 nextcountLow <= tempcountLow +1;
24 nextcountHigh <= tempcountHigh;
25 end if;
26 end if;
27
28 end process;

Now the Register is in its own process and can be substituted by latch code or
by a latch component which we shall se in a later chapter. An alternative to the
two process structure is to create the combinatorial circuit as one component
and the register as another. This takes more time but makes desyncronization
even easier.

3.3.2 Substitution of Registers - The double latch design

The double latch design For easy implementation, and to avoid doing the
same routing over and over again the master and slave latches are combined
into one component this saves time since now only the to control signals have
to be routed, the in and outputs of the component can be connected directly to
the wires previously connect to the register. The latch is generic so that it can
be used for all purposes.

32 Basic components and design flow

(a) synchronous counter (b) asynchronous counter

Figure 3.16: RTL of synchronous and asynchronous counter (asynchronous not
complete)

Double latch controller As described the latches are combined two and
two in a master/slave design, where the slave is initialized opposite the master
latch. The controller design chosen for the implementation is already a double
controller design, that controls both the master and the slave and also handles
the initialisation. Therefore it makes sense to make a behaviorial for testing also
as double latch controller. The behavioral is just a component that combines
two identical copies of the latch controller behavioral implemented with the
boolean equations from eq:3.2.

Register substitution Now each register can be substituted with a double
latch component and a double latch control component, the latch inputs and
output are simply connected to the datapath, and the two control signals are
connected to the controller.

Inserting forks and joins Following the Data path from one latch to the
next from input to output, every time data is split into multiple latches a syn-
chronizing fork is inserted in the handshake signal at the same place, and every
time a latch receives data from multiple latches a synchronizing join is inserted.

Inserting matched delay elements Between each latch controller a delay
is inserted, for functional testing a simple after statement will do, it is recom-

3.3 Design flow - The steps of desynchronization 33

mended to implement the after as generic delay block, for easy substitution with
the actual delay block, at this point it is not important to calculate actual delay
values, as long as the delay is long enough.

Verifying the design The desynchronized circuit behavior is checked by sim-
ulation the design using modelsim and the original test bench, when the func-
tional behavior has been confirmed to be correct, all delay elements should be
substituted by a simple wire (the after statement does not synthesize)

If the design delivers data to environment a consumer needs to be added before
the design can be tested. this is done very simple by feeding the request out of
the circuit to the Acknowledge of the same channel after a small delay. also if
the design takes inputs from the environment a provider needs to be added at
the input, this can be done by feed the inverse Ack in to the request in after
some delay. this prevents the design from stalling due to lack of empty latches.

Synthesizing The design This thesis uses synopsys design compiler for syn-
thesis, its recommended to use design vision to understand how the synthesis
is done the first couple of times, design vision is a graphical interface to desing
compiler. A script for easy synthesis have been created this is easier to use when
comfortable with the synthesize process, and can be found in B.1
From synthesis an SSTA evaluation of the delays for each block can be found.
Using this file the delays can be easily inserted. Resynthesize the files including
the inserted delays, its crucial under synthesis that some of the components are
not altered, and synopsis will trim the delay element away if not constrained,
this can be done by using the dont touch feature. After synthesis the floorplan
can be run also using design vision or a script found in refsyn:floorplan The
synthesis is now completed, to get info on how to print all the needed reports,
and info about the constraint settings like don’t touch and timing check out the
guide in A

Simulation of the synthesized design After synthesis the design can be
simulation in a mixed simulation using the verilog netlist from synthesis and
the VHDL test bench from the original circuit.

Comparison Finally a comparison on the switching activity can be done us-
ing the developed matlab file found in B.3

34 Basic components and design flow

In this chapter all the basic components needed for desynchronization was pre-
sented, and explained in detail. The behavior after synthesis was verified. A
step by step guide to desynchronization was presented. The potential problems
of the multiplexer and de-multiplexer was identified. Also how to modify the
VHDL code for easy desynchronization was shown.

Chapter 4

Example 1 - Accumulator
(Accu)

In this chapter and the next two the theory presented in the previous chapters
will be put to practice, also the steps of desynchronization presented in 3.3.2
will be demonstrated. The first example is a simple test circuit constructed for
this thesis, an Accumulator that simply takes the input and adds it to the sum
of the previous inputs. The second example is still a simple circuit but it is
an real design, calculation the greatest common devisor of two inputs, the last
example is significantly bigger in size and complexity, this is an Edge detection
algorithm, designed to work as a hardware accelerator on a bus shared with a
general purpose processor. In all examples the 4-phase handshake protocol is
used, and all channels are push channels. This means the delay insertion will
always be on the request signal.

4.1 Synchronous Accu

To test the desynchronization theory we start with a very simple design. An
8 bit Accumulator which simply takes an input and add it to previous inputs,
have been designed for the purpose. A Schematic of the synchronous design can

36 Example 1 - Accumulator (Accu)

be seen in 4.5 and the VHDL code can be found ind Appendix C.2
The behavior is shown in fig 4.4. The value 1 is the first input, the corresponding
output will therefore be one(0 + 1 = 1), the next input is 3, the corresponding
output is 4 (1 + 3 = 4) and so forth. the formula for the output of the Accu-
mulator where xt is the input x at time t and yt is the output y at time t is:

y(t+1) = xt + yt (4.1)

A simulation of the behavior can be seen in fig: 4.1 showing the behavior is the
same as in 4.4

Figure 4.1: Behavioral of the synchronous accumulator

4.1.1 Desynchronization of Accumulator

The first attempt of desynchronizing the accumulator is following the desyn-
chronization steps from Chapter 2 to create a asynchronous behavioral of the
synchronous accu, and verify that the functional behavior is the same.
The first step is to recode the VHDL in such a way that the registers are in
their own processes, this is not necessary since the VHDL is constructed with
the purpose of desynchronization, the register is already separated from the
combinatorial network.

4.1.2 Steps 2 - 6

Register substitution Replacing all registers with a double latch component
and a controller is straight forward using the components designed for the pur-
pose, these are described in detail in chapter 3.
The challenge is to place the join and forks where needed, to find the places
where either a join or a fork is needed follow the data from input through the
registers and the adder to the output. The first thing to handle is the commu-
nication with the environment starting from the input there the environment
needs to indicate when new data is available and should be processed, and the
input register should be able to send an acknowledge back telling that the data

4.1 Synchronous Accu 37

Figure 4.2: Simple way to implement the eager consumer, the Request out is
returned as an acknowledge.

has been received. So the clock in topfile of the accumulator is replaced by
a requesti and an acknowledgei, The component also has an output with the
result of the accumulation, since this is purely testing there is nothing receiving
the output data so there is no need to implement a handshake channel on the
output side, instead an eager consumer is added, this will consume all data and
handshake signals instantaneously and return the required acknowledge. With
the very eager consumer the accumulator will work at its top speed. A very
simple implementation is shown in fig:4.2.

Joins and Forks From the input register the data flows through the com-
binatorial adder which takes two inputs, the input x, and the previous output
y, for the accumulator to calculate the correct result it is vital that the inputs
are both stabile before the result is saved in the output register. So clearly a
join is needed here to synchronize the two inputs into the adder. The output
of the adder is fed directly to the register no forks or joins needed here, but
on the other side of the output register, the output serves both as an output
of the component and as an input of the adder, to split the request signal and
synchronize the acknowledge signals from both receivers a fork is needed.

Inserting temporary delay elements The last thing before the a desyn-
chronous behavioral is ready for test is the insertion of matched delay elements.
Again following the datapath in the Synchronous design, there is only one path
where the data passes some combinatorial logic this is in the adder, the delay

38 Example 1 - Accumulator (Accu)

Figure 4.3: The Delay from last input arrives at the Adder till the result is
present at the output is only 200ps

is not known in advance so a delay that is ”big enough” is inserted, a delay of
8ns should be suffice. The delay should mimic the delay from input to output
of the adder so the insertion point must be from data is ready on both input of
the adder, hence between the join and the output register.

4.1.3 The desynchronized Accu

After desynchronization the schematic look like 4.6, the functional behavior is as
expected the exact same as the synchronous, the simulation is shown in fig:4.7
in the simulation is also the waveforms of the latch controls to show how the
handshake propagate through the circuit. The next step is to synthesize the
design using synopsis design compiler, the first synthesis is to get the actual
delay through the combinatorial path. This delay can be read from the timing
report of the synthesis and is shown in a simulation of the synthesized adder
in fig:4.3 From the last input arrives at the adder until it produces the correct
result is only 200ps, so a very short delay indeed. The Matched delay is adjusted
to 300ps, to give a little slack and the circuit is synthesized again.

Simulating the synthesized design After the matched delay have been
inserted, and a new synthesis have been completed, the resultant Verilog netlist
is synthesized using mixed-mode simulation in modelsim, the test bench used
to test the behavioral together with the synthesized netlist and the library files
of the used standard is needed. The result of the simulation i shown in fig: 4.7.
The simulation clearly shows the same behavior as the synchronous circuit, the
timing is a little different, since the speed of the asynchronous is determined by
the delay in the latch controllers and the inserted delay element and also by how
fast new input is presented, And the speed of the synchronous is determined
from the clock period, which has not been set for maximum speed.

4.1 Synchronous Accu 39

Figure 4.4: Behavior of accumulator

Figure 4.5: Schematic synchronous Accu

Figure 4.6: block diagram asynchronous Accu

40 Example 1 - Accumulator (Accu)

Figure 4.7: Simulation of the behavior of the desynchronized accumulator

4.2 Test and results

4.2.1 Post synthesis measurements

After simulation of the synthesized design it is time to compare the differences
in the two different implementations of the same circuit. To do that a value
change dump file (VCD file) have been created using modelsim for both the
synchronized and the desynchronized design. Besides the VCD file the report
from the synthesis containing nodal-capacitances is needed. The comparison of
these two is not to compare the latency or throughput of the circuit, but to
evaluate the switching activiy, and hence the EMI noise and current peaks. To
be able to compare these features a Matlab file have been developed and can be
found in appendix B.3 the file takes the VCD file as input and the capacitances
for each node. It then locates the switching of each node and multiplies it with
the node capacitance. this gives a good estimate of the current consumption
and EMI noise at the given time t.

To be able to analyze the results from the matlab script, the two simulations of
the synthesized circuits, they are shown in

In fig: 4.8 It can be seen that the actual calculations starts late in the sim-
ulation, approximately after 100ns. The idea is this should be obvious in the
asynchronous measurements that there is no switching activity until the calcu-
lation start, where as the clock will be ticking in the synchronous version.

4.2 Test and results 41

(a) Synthesized synchronous accumulator behavioral

(b) Synthesized asynchronous accumulator behavioral

Figure 4.8: The simulation after synthesis, of the two implementations

(a) Matlab result of the synchronous accu (b) Matlab result of the asynchronous accu

Figure 4.9: Matlab result of the two simulations

Both simulations are processed with the matlab script created for the thesis the
result is shown in fig:4.9

In the fig: 4.9a it is obvious that the clock ticks are very expensive, and that even
without any calculations the clock keeps ticking. In the asynchronous version
there is no switching activity until the reset is released after 100ns, The spikes
in both figures are when the reset is released and when the output of the adder
changes do to the inputs. From the analysis of the two simulations it seems that
the asynchronous has higher switching activity, but the overall average of the
spikes are lower than the average in the synchronous ones this mean a reduction
in the current spikes and EMI noise. At the same time the circuit is idle until
inputs are presented, which means it does not consume any power. This is a very
simple circuit, and the latch controls and the fork and joins results in more than
50% area increase which can explain the massive increase in switching activity.

42 Example 1 - Accumulator (Accu)

Area Reports
Sync Async increase

Combinatorial 144 263 82%
Non Combinatorial 298 421 41%

Total Area 443 685 55%

Chapter 5

Example 2 - Greatest
common divisor(GCD)

This example is about finding the greatest common devisor between two num-
bers. The greatest divisor means the highest positive integer than both numbers
can be divided by without leaving a remainder. An example the greatest com-
mon divisor between 156 and 30 is 6. This is usually written GCD(156, 30) = 6
the rest of this chapter will first be presenting the behavior of the synchronous
GCD, second the first attack at desynchronizing the design is presented the
first attempt is to get a basic desynchronized version, the second attempt will
look into the question of granularity, and try to answer the question of how fine
grained the desynchronization should be.

5.0.2 The synchronous greatest common devisor

There are several methods of calculating the GCD of two numbers, the imple-
mented algorithm uses a very simple iterative method where the largest of the
two numbers is replaced by the difference of the two, this is repeated until the
two numbers are equal, when this happens the greatest common divisor have

44 Example 2 - Greatest common divisor(GCD)

been found. The algorithm is shown in 5.1

A = 56 B = 12 Calculation

A B 56− 12 = 44

44 12 44− 12 = 32

32 12 32− 12 = 20

20 12 20− 12 = 8

8 12 12− 8 = 4

8 4 8− 4 = 4

4 4 4 = 4

GCD(56, 12) = 4 (5.1)

The synchronous GCD design presented is taken from an assignment in the
course 02154 at DTU. and the RTL can be seen in fig: 5.1
The VHDL implementation is done in a two process way with one process for the
three registers(register A, B and nextstate) and a process for the combinatorial
circuit(evaluate and subtract) The synthesized synchronous GCD behavior can
be seen in and the VHDL code can be found in C.4.

5.0.3 Desynchronization of GCD

In the GCD the registers are taken out into their own component for easy
substitution, The internal states is defined as type state in the VHDL:

1 type state_type is (WAIT_A ,SET_ACKA ,WAIT_B ,RESET_ACK ,EQUAL_CHECK ,
A_GREATER_CHECK ,WRITE_A);

This poses a problem when the state signal is needed outside the component,
therefore this signal must be recoded into a binary version. The recoding of the
states can be done with 3 bits, (there are 7 states)

WAIT A 000
SET ACKA 001
WAIT B 010

RESET ACK 011
EQUAL CHECK 100

A GREATER CHECK 101
WRITE A 110

45

Figure 5.1: RTL of the synchronous GCD

5.0.4 Steps 2 - 6

Since the registers are now i their own component it is simple to substitute the
registers with latches and a control component. In fig: 5.1 there is already a
request and an acknowledge signal, these are used to indicate when new data is
ready at the input of the GCD and when the result have been computed at the
output, they are not handshake signals in the asynchronous sense, the request at
the input does not return an acknowledge after an input have been received, and
the acknowledge at the output is not an indication that the component receiving
the result has actually received anything. The request and acknowledge signals
in the synchronous GCD should be thought of as a start and a finish signal and
nothing else.
To be able to communicate with the surroundings the clock signal is substituted
with a handshake channel (set of request and and acknowledge signals) at the
input and at the output.

46 Example 2 - Greatest common divisor(GCD)

Forks and Joins At this first approach there is only one register that holds
both A, B and Next state, this makes it fairly simple. From the synchronous
schematic the combinatorial logic takes two inputs, the input from the environ-
ment and the previous calculated results, as in the accumulator example this
indicates the need of a join to synchronize the inputs. The output of the combi-
natorial is connect both to the input of the logic and to the output of the GCD
component this as we know require a fork.

The Delay element From the synchronous simulation it can be seen that
the calculation of each stage takes about 5ns, to be on the safe side a delay of
10 ns is inserted. The first behavioral version of a desynchronized GCD is now
complete and is shown in fig: 5.2

Figure 5.2: RTL of the asynchronous GCD

Simulation of the first behavioral

47

In the simulation 5.3 the Behavior is correct although running a lot slower than
the synchronous version. Since this is just a behavioral the speed is not of inter-
est at this moment. What is on the other hand interesting is two observations.
The GCD handshakes with the environment at every calculation step, but no
data can be given to the GCD until it has finished calculating, and the data
coming from the GCD is not valid! Every time the GCD handshakes with the
environment with out data being handed over, the circuit uses unnecessary en-
ergy, we will try to solve this problem soon. Another observation is the first
version of the desynchronized GCD uses one big register to hold three kinds of
data. It might be possible that not all data changes at every handshake. From
eq 5.1 only one of the variables A or B is updated at any given calculation Again
updating an unchanged register is a waste of energy, but by implementing three
separate controllers, a lot of overhead is introduced and the power used by these
might be greater than the power saved. This problem will be investigated at
the end of this chapter.

Handshaking when needed First the problem addressed is at the output
channel, there is no need to pass invalid data on to the output of the GCD, this
problem can be solved by inserting a decision component, where the Request
out is simply passed back as an acknowledge until the finish signal indicates that
the GCD calculation has finished, then the request and acknowledge signals are
connected to the output. This action can be implemented with gates as shown
in fig: 5.4b

The input is slightly more difficult, the GCD should accept two input values,
and then stall handshaking until calculation is done, the protocol for the GCD
such that there will be an ack out on the calculation done signal when the first
value is received. This can be used as an ok signal to load another value, just
as it is used to send the request out from the GCD. The problem is the request
signal in to GCD will stay at logic 1 until an acknowledge has been replied
by the GCD, this will stall the join. The way to solve this i pretty straight
forward. Just as in the case at the output the request in signal is combined
with the inverse of the acknowledge signal via an AND gate. this will allow the
request in to stay at 1 waiting for the acknowledge out. The acknowledge out
should be stalled until the calculation done is raised, this is done by a simple
AND gate. The input logic design can be seen in fig: 5.4a
the behavioral have been tested using these two components, but since there is
no environment they are removed before creating a synthesizeable version.

48 Example 2 - Greatest common divisor(GCD)

5.1 Fine grained design - splitting the registers

The observation that only one register is updated at any cycle raises the ques-
tion, if something could be gained from splitting the next state, A and B registers
in to three separate registers. The splitting alone is not enough, since all three
would still update at all cycles, so an analysis into the combinatorial part that
decide which register needs to be updated needs to be done. To direct the data
into the right register could be done with a de-multiplexer, found on page 76 in
[6]. and explained in 3 The request out signals of controller A and B must be
Multiplexed together for correct behavior, Desynchronization of the more fine
grained GCD can be seen in fig: 5.5. The behaviorial of both asynchronous
versions are the same although processing time is different in the three. see fig:
fig:gcdsimuleringer

5.1.1 Post synthesis measurements

The VCD files of all three versions of the GCD (synchronous, first asynchronous,
fine grained asynchronous) have been analyzed using the matlab script, the area
estimation from the synthesis tool are listed below, The percentage increase in
area is calculated from synchronous to the area of the fine grained. There is
a huge increase in non combinatorial logic, this must be caused by the split-
ting of the registers. Interestingly the extra multiplexer, the handshake demux
and mux, plus the extra fork and join only causes and increase of 25% in the
combinatorial logic. The results show a decrease in spikelevels for both desyn-
chronized circuits, the finegrained version actually show a significant lowering
in the spikes, this must be from the one registers and control that is kept idle.

Area Reports GCD
Sync Async Fine Grained increase

Combinatorial 890 903 1095 25%
Non Combinatorial 373 764 716 92%

Total Area 1263 1667 1811 43%

5.1 Fine grained design - splitting the registers 49

Figure 5.3: The Asynchronous behavioral of GCD

50 Example 2 - Greatest common divisor(GCD)

(a) Logic needed at input (b) Logic needed at output

Figure 5.4: Gate implementation of choice logic to stall until calculation has
finished.

5.1 Fine grained design - splitting the registers 51

Figure 5.5: A fine grained version of GCD, signals from control to latches are
not shown for better overview

52 Example 2 - Greatest common divisor(GCD)

(a) Synchronous GCD post synthesis simulation

(b) Asynchronous GCD post synthesis simulation

(c) Asynchronous fine grained GCD post synthesis simulation

Figure 5.6: Modelsim simulations of the three synthesized implementations

5.1 Fine grained design - splitting the registers 53

(a) Matlab analysis of the synchronous GCD
simulation

(b) Matlab analysis of the synchronous GCD
Zoom

(c) Asynchronous GCD post synthesis simula-
tion

(d) Asynchronous fine grained GCD post syn-
thesis simulation

Figure 5.7: Modelsim simulations of the three synthesized implementations

54 Example 2 - Greatest common divisor(GCD)

Chapter 6

Example 3 - Edge detector

6.1 Synchronous Edge

The edge detector is taken from a project done in a course at DTU. The project
was to develop and implement a system that detects edges in a monochrome
intermediate format (CIF) image. The system is designed to work as a hardware
accelerator on a bus shared by a CPU. The design is divided into two main blocks
a datapath and a Finite state machine. The system receives a start signal from
the CPU, and after the image has been processed it raises a finish signal. The
actual edge detection algorithm implemented is the Sobel algorithm which is
a convolution filter that when applied both horizontally and vertically detects
the edges in an image. The filter uses 9 input pixels for every pixel processed.
These 9 pixel are previously read from the memory into some input registers.
Each read is 32 bits (4 pixels of 8 bit each). The Read and write protocol of
the edge detector is such that when the start signal arrives there is 6 reads to
buffer pixels, after these 6 reads, the calculation starts. While a pixel is being
processed the next four is read in from the memory, every time four pixels have
been processed they are saved in the memory. Besides the 6 buffering stages, a
pixel is processed at every clock cycle until the total image has been processed.
One of the difficulties in the problem was how to deal with edges, the algorithm
implemented used even mapping which basically means that the pixels at the
edges are re-used to get all 9 pixels needed for processing one. An example of a

56 Example 3 - Edge detector

(a) Cif image to be processed (b) Cif image after processing by edgedetector

Figure 6.1: The image before and after edge detection

Cif image and the result of the edge detection algorithm can be seen in 6.1, the
block diagram of the edge detection unit can be found in fig:6.2.

Finite state machine The finite state machine consist of 5 counters and the
state machine it self, the State machine and the counters produce all the control
signals for the edge detection unit, when to read and write from memory and
at what address, which input, and output register to store the pixels in, which
9 of the buffered pixels to use etc.

Datapath The datapath handles the data flow. There is 9 32bit (4 pixels)
input registers capable of storing 36 pixel at the same time, at every clock cycle
9 out of the 36 is the input of the vertical and horizontal filters, the selection
of which nine is done by a multiplexer. After the filters the processed pixel is
stored in an output register that can store up to 4 pixels (32bit) when the output
register is full the 4 pixels are written to the memory. The output register is
capable of storing a pixel and writing to the memory in the same clock cycle.
This was done to avoid stalling the circuit every time pixels was written to the
memory.

6.1 Synchronous Edge 57

Figure 6.2: Block diagram Edge detector

6.1.1 Desynchronization of Finite state machine

To desynchronize the edge detector it is necessary to dissolve the system into
registers and combinatorial circuitry. Since this project was not made with the
thought of desynchronization, the VHDL is not formatted in an desynchroniza-
tion friendly way, so the first thing to do is take out all registers, such that the
only thing left is combinatorial blocks. Starting with the FSM block, Schematic
is shown in fig: 6.4 The FSM it self is a two process design just like the GCD,
so the register is easy to substitute, but the counters used are not formatted in
the same way, the VHDL code of a very simple counter is listed here:

1 counter : Process(Reset , clk)
2 begin
3 if(clk ’event and clk =’1’) then
4 if(Reset = ’1’) then
5 temp_count <= "0000";
6 else
7 temp_count <= temp_count +1;
8 end if;
9 end if;

10 end process;
11 count <= temp_count;

58 Example 3 - Edge detector

The register is not easily detectable, but from the RTL schematic fig: 6.3 of
the above code the register is easy to locate, and by using the RTL the counter
is recoded into a two process component for easy register extraction. After all
registers have been extracted fig: 6.5 the desynchronization of the FSM can
begin.

Figure 6.3: RTL diagram of a simple synchronous counter

6.1.2 Inserting latches, and locating forks and joins

The first step is to replace all registers with a double latch + controller, this
is simple after the re-coding done in the previous step. The next step is to
follow the data and insert a for every time data splits into multiple registers
and to insert a join every time a component receives multiple inputs. The FSM
delivers data out of the component, and also to every one of the counters there
are 5 counters + the data out and input to the combinatorial FSM block, which
means a fork of 1:7 is needed, all counters receive data from the FSM block,
but also the previous count serves as input, therefore a join is needed in front
of every counter control. Four of the counters delivers data out of the FSM top
component and also input to the counter it self, so here a fork of 1:2 is needed.
Some of the counters also delivers data back to the FSM block, this connect
does not need handshaking, when a request from the FSM block is a request to
calculate the value needed in the next handshake sequence, and the acknowledge
signal is not from the counter is not sent before the data is saved. The time
to calculate the new value requires a delay, but this delay can be placed on the
acknowledge wire. The Desynchronized FSM is shown in 6.6. The Behavior is
verified via simulation, the simulation is shown in 6.7

6.1 Synchronous Edge 59

Figure 6.4: Block diagram Finite state machine

60 Example 3 - Edge detector

Figure 6.5: Block diagram after register extraction of the Finite state machine

6.1.3 Desynchronization of Datapath

The Data path consist of nine 32 bit input registers that are used to store the
reads from the memory, after the input registers are the edge detection algorithm
and the result is stored an output register, that can read and write in the same
clock cycle. Reading and writing in the same clock cycle is not a problem after
desynchronization, since there is no global clock, hence no global cycle time, the
circuit will simply be stalled until the output have been saved in the memory.

Desynchronization of the input register (PxMem) the input register is
called PxMem short for pixel memory, it stores the pixels read from the memory
until they are needed for processing. The registers is already in individual

6.1 Synchronous Edge 61

Figure 6.6: Block diagram of the desynchronized Finite state machine, hand-
shake signals between FSM control and counters not shown. All counters hand-
shake with FSM

components, so there is no need for re-coding this block. There is a total of nine
32 bit registers, but only one is loaded with a new value at every read. The nine
registers are collected into groups of three, each group is a subcomponent of the
PxMem. To be able to only activate one or none of the registers in each block
a de-multiplexer is needed. There is already implemented a 2:3 decoder in each
block these 3 control signal currently used as a register enable, can be used as
control signals in the de-multiplexer. Also a multiplexer for selecting the correct
request signal from the registers is needed. Both components are shown in fig:
6.8. Only one register out of the nine is active at any given time, therefore the
same de-mux and mux can be used to select which of the three identical block
should receive the in put request. Each block receives 2 bit signal indicating

62 Example 3 - Edge detector

Figure 6.7: Simulation of the Asynchronous FSM

which registers are active ”00” means all three registers in the block are inactive,
to get the control signals of the mux and the de-mux simply OR the two control
signals. Only one delay element is needed since only one register is active at
the time, the element should be placed after the multiplexer and before request
out of PxMem. The schematic complete desynchronization of the PxMem can
be found in fig: 6.10

Desynchronization of the output register (savePxl) The savepxl com-
ponent is actually two separate registers. The pxl2bus is a simple 32bit register
which is very simple to dezynchronize, and the rest of the savepixel component
is a multiplexer and four 8bit (1 pixel) registers, according to the address the
input is saved into one of the four registers. When desynchronizing this part
there is two possibilities, either to desynchronize the four pixel registers as one
big, or as four separate. choosing the latter has more overhead since 4 sets of
controllers is needed, but there is a gain since three out of four of the registers
will be idle. and will therefor not contribute to power consumption. The lat-
ter is chosen. As in desynchronization of the PxMem a de-mux and a Mux is
needed, this time its a 1:4 de-mux and 4:1 mux.

Inserting forks, joins and delay elements After desynchronization of all
the register components in the datapath it is time to connect them. The datap-
ath receives data from several counters and from the FSM block therefor some
joins are needed to synchronize the results, the output is only to the bus so
only nor forks is needed in this component. The desynchronized version of the
datapath is shown in fig: 6.11

6.1 Synchronous Edge 63

(a) De-mux used in datapath (b) Mux used in datapath

(c) Handshake circuit of PxMem, latches not shown!

Figure 6.8: 1:3 De-multiplexer and 3:1 multiplexer

6.1.4 Connecting the FSM and the Datapath

The only thing left to do is to connect the two top components. There are is a
read/write decoder component also, this is purely combinatorial but some delay
is needed to simulated the delay that the data control signals experience through
this. The start signal that indicates that a new images is ready for processing
should be held long enough for a complete handshake sequence to take place to
ensure that the process actually starts.

Behavioral model It was not possible to finish a working behavioral of the
edge detection component before the deadline of this project. This is due to the
fact that debugging of asynchronous signals is very tedious work that often takes
days. The theory behind the desynchronization and the schematics presented
should although be correct since the subcomponents have been tested and found
error free. The problem could be in several places:

64 Example 3 - Edge detector

Figure 6.9: The RTL of the input register in the Edge detection datapath.

• Bad wiring, some handshake signals might be connected in a wrong way.

• A delay element may be placed in a wrong place, or might be missing.

6.1 Synchronous Edge 65

Figure 6.10: Schematic of PxMem after desynchronization, only handshake logic
is shown

Figure 6.11: Schematic of desynchronized datapath, wire ends are numbered to
indicated connections

66 Example 3 - Edge detector

Chapter 7

Discussion

In this chapter the outcome of the project is discussed and evaluated, also some
improvements are proposed together with ideas for future work.

7.0.5 Evaluation

There were two primary goals for this thesis, one was to develop a design flow for
desynchronization, the other was to try to prove some of the theoretical advan-
tages of desynchronization. The design flow was established, and the first two
examples show that it is indeed possible to desynchronize a synchronous specifi-
cation. The third example Edge detection algorithm is presented as a schematic
and the steps to desynchronize the component is described in detail although a
working behavioral was not reached, the FSM component and the datapath was
desynchronized with success and works as separate components. The results
obtained did not show give any solid reason to conclude that desynchronized
circuits hold any advantages over the synchronous, there are indications that
the average spikes of the switching activity is lowered. The reason that no
conclusive result where obtained is a combination of two.

• The task of learning the synthesis tool Synopsys was a big challenge, not
only to learn basic synthesis but the job of tweaking the compiler to be

68 Discussion

able to compile and synthesize the asynchronous component, for which
the tool was not designed for, proved to be more difficult than expected.
The use of synopsis was not seen as a part of the project but rather as
a method to evaluate and validate the desynchronized designs. but in
the end the tweaking and use of Synopsys for asynchronous systems could
probably fill a thesis project by itself.

• The two working examples are very small, and only uses one or two reg-
isters and controllers. Both of them only incorporates a single matched
delay. The use of matched delays indicates a fixed timing, and therefore
some what of a synchronization of the events. A synchronous pipeline
have clock ticks evenly spaced over time, the asynchronous pipeline may
not have evenly spaces ticks, but with the use of delay elements the tick
of each stage will arrive at the exact same time relative to the ticks of the
previous pipeline stage, so the use of matched delay elements in pipelines
will have a tendency to give a synchronous like result. In highly paral-
lel designs the matched delay element could prove to be a good way of
distribute the switching out in time. This theory was not tested in this
thesis. another method of distributing the clock tics could be another form
of completion detection, or completion prediction.

The desynchronization of the greatest common divisor indicates that the area
overhead of fine grained desynchronization is small and it also shows a decrease
in the switching spikes, but this test was done with an average capacitance
for a lot of internal nodes due to problems with the synthesis tool reporting.
Robustness towards temperature and voltage variations is not tested, so no
conclusion about the performance in tracking the combinatorial can be made.
One of the problems with Synopsis is the timing is based on a clock, so with
out a clock Synopsys does not provide any information about the timing in the
combinatorial circuits. A method suggested in [4] is to generate virtual clocks
to simulate the ticks of the handshake circuit.

7.0.6 Future work

Some future work could be:

Delay tracking It could be interesting to see how the matched delay tracks
the delay in the combinatorial path, the desynchronized circuit may hold some
advantages over the synchronous one in this matter.

69

Synthesis tool A better understanding of the synthesis tool, and how to use
it for asynchronous design, could very well give better test results, a possibility
could be to use Nanosim for the transient simulations. This should give a
very precise image of the switching activity and and the instantaneous power
consumption.

Completion prediction and completion detection In the desynchroniza-
tion method proposed the delay through the combinatorial paths of the circuit
is mimicked by a matched delay element, this delay is constant and must be
designed for the worst case scenario. In reality the general calculation time is
less, and maybe a lot less than the worst case design, at the same time the
constant delay also has a tendency to synchronize the timing in the circuit. An
improvement could be either to implement completion detection or completion
prediction.

The handshake protocol in this thesis is a four-phase bundled data protocol.
Another method could be to implement the dual-rail protocol. This has the
completion detection built into the data wires, and therefore there is no need
for a delay element. This would insure that the delay is always matched to the
actual calculation time, and the delay would automatically be adjusted for the
calculation done. The cost of implementing the dual-rail is area overhead, which
could prove to be significant.

Another solution could be completion prediction. Some combinatorial logic is
inserted to evaluate the input data, and based on this evaluation a delay is
chosen. The evaluation logic could control a simple multiplexer that selects one
of its inputs. The two implementations is shown in fig: 7.1 A good example of
this is in [8] where a carry prediction circuit is implemented to select the delay
through a Brent-Kung adder. The prediction evaluates how long the carry chain
in the adder will be. The selection is done between three different delay elements,
one for worstcase delay and two for speculative completion. This method is less
complex than the dual-rail structure and could give a significant performance
increase.

Granularity An investigation into how fine grained desynchronization should
go before the area overhead is too much compared to the gain in power con-
sumption.

70 Discussion

(a) The Matched delay implementation used in
this thesis

(b) The Matched delay implementation used in
this thesis

Figure 7.1: Regular delay matching and Predictive delay matching

Chapter 8

Conclussion

The difficulties in prediction and tracking variations become increasingly dif-
ficult with the introduction of nm-scale. A solution proposed is to use asyn-
chronous design instead of synchronous since asynchronous circuits in theory
hold some advantages over the synchronous equivalents.
This thesis has proposed an easy step by step guide to desynchronize a syn-
chronous circuit, where every step is explained and demonstrated in detail. A
design flow are proposed with reasonable success, the results produced by this
is inconclusive about the claimed advantages of the asynchronous circuit.

The Step by step guide and synthesis flow were tested on three circuits from very
small scale with only one register, to a relatively big Edge detection algorithm us-
ing multiple registers with choice components (mulitplexer and de-mulitplexer).
The desynchronizing of the edge detection circuit was not completed within the
deadline of this project. Also a small guide for general synthesis using Synopsys
was developed during this thesis.

The tests show that the use of matched delay elements have a tendency to
synchronize the switching activity, and therefore it has little advantage over
the synchronous equivalent. The theory about idling was proven, the examples
clearly shows that the asynchronous circuits does not have any switching activity
until the start signal.

72 Conclussion

Appendix A

Small Design vision guide

This is short step by step guide on how to synthesize VHDL in synopsis design
vision. The VHDL design to be synthesized is the asynchronous adder from the
thesis.

A.1 Design vision

Start design vision with the command designvision−db, the db command opens
design vision i database mode for easy storing of synthesis reports. When design
vision first opens, it will open an empty window. See fig: A.1

To import the VHDL files click file-¿Analyze, in the pop-up window click add.
Select all files except the test bench files and click ok. Synopsys need to read
the files bottoms-up, find the top files and move it to the bottom of the list
using the arrows. fig: A.2.

Click file -¿ elaborate, the window should now show all your components and
the hierarchial structure of the design. To see the design click schematic -¿ new
schematic. The design vision should now look like fig: A.3. Try to double click
the fork you should get something similar to fig A.4, Notice the delay component
does not hold any combinatorial logic, it is just a wire.

74 Small Design vision guide

Figure A.1: Design vision when first opened

Figure A.2: Design vision when first opened

A.1 Design vision 75

Figure A.3: Design vision when first opened

Figure A.4: Design vision when first opened

76 Small Design vision guide

click compile-¿compile design to synthesize. A pop-up telling you that some
schematics has changed. to see the new schematic click schematic -¿ new
schematic, in fig:A.5 the fork is shown after synthesis. The C-element in the
fork has changed. It is still a valid implementation of the C-element.

Figure A.5: Design vision when first opened

To save the design to a verilog netlist, click file-Save as and select verilog as
the format. the various needed reports can be created unsing report -¿ deired
report.

Appendix B

scripts and files for Synopsis
and Matlab

B.1 compile script for synopsis synthesis

1 sh date
2
3 ############################ i
4 ## Source RTL FILE paths ##
5 ############################
6 source ./scripts/rtl.tcl
7
8 ##
9 ## Setup logic and milkyway libraries ##

10 ##
11 source ./scripts/setup.tcl
12
13 ################
14 ## READ RTL ##
15 ################
16 set top_module DelayTop
17 analyze -format vhdl -define RUNDC -lib work ${rtl_files}
18
19 elaborate ${top_module} -lib WORK
20
21 ######################
22 ## POWER ESTIMATION ##
23 ######################
24
25 #set power_preserve_rtl_hier_names true
26 #link
27 #rtl2saif

78 scripts and files for Synopsis and Matlab

28
29 ###############################
30 ## READ TIMING CONSTRAINTS ##
31 ###############################
32 #set PERIOD 1.0
33 #create_clock -name "CLK" -period $PERIOD [get_ports clk]
34
35 current_design ${top_module}
36 uniquify
37 link
38
39 ###########################
40 ## Source Power domains ##
41 ###########################
42
43 # Top power domain
44
45 create_power_domain TOP
46
47 # Create power net info
48
49 create_power_net_info -power VDD
50
51 create_power_net_info -gnd VSS
52
53 # Power net info for top module
54
55 connect_power_domain TOP \
56 -primary_power_net VDD \
57 -primary_ground_net VSS
58
59 report_power_domain > ./report/power_domains
60
61
62 set_operating_conditions -max NomLeak -min NomLeak
63 #######################
64 ## Compile ##
65 #######################
66 current_design ${top_module}
67 compile
68
69 ################
70 ## DATA OUT ##
71 ################
72 change_names -rule verilog -hier
73 write -f verilog -h -out ./db/${top_module}_postsyn.v
74 write -f ddc -h -out ./db/${top_module}_postsyn.ddc
75 write_sdc -nosplit ./db/${top_module}_postsyn.sdc
76 write_link -nosplit -out ./db/${top_module}_postsyn.link
77 set mw_design_library ./MW_FPMULT
78 write_milkyway -out compile -over
79
80 ## REPORT
81 #########
82 check_mv_design -verbose > ./report/mv_check_compile.rpt
83
84 report_cell > ./report/${top_module}_postsyn_cells.rpt
85 report_area > ./report/${top_module}_postsyn_area.rpt
86 report_net > ./report/${top_module}_postsyn_net.rpt
87
88 #report_hier -nosplit -noleaf
89
90 report_timing -att \
91 -net \
92 -trans \

B.2 floorplan script for synopsis 79

93 -cap \
94 -input \
95 -volt \
96 -nosplit > ./report/${top_module}_postsyn_tim.rpt
97
98 report_power -hier -hier_level 1 -verb > ./report/${top_module}

_postsyn_power.rpt
99

100 sh date
101
102 #exit

B.2 floorplan script for synopsis

1 sh date
2
3 ##
4 ## Setup logic and milkyway libraries ##
5 ##
6
7 source ./scripts/setup.tcl
8
9 #####################

10 ## open dft cell ##
11 #####################
12
13 copy_mw_cel -from compile -to floorplan
14 open_mw_cel floorplan
15 link
16 link_physical
17
18 ###########################
19 ## Floorplan generation ##
20 ###########################
21
22 initialize_floorplan -control_type aspect_ratio \
23 -core_aspect_ratio 1.0 \
24 -core_utilization 0.7 \
25 -left_io2core 10 \
26 -bottom_io2core 10 \
27 -right_io2core 10 \
28 -top_io2core 10
29
30 derive_pg_connection -power_net VDD -ground_net VSS
31
32 #################
33 ## Placement ##
34 #################
35
36 create_fp_placement
37
38 ###############################
39 ## Power Network Synthesis ##
40 ###############################
41 create_rectangular_rings -nets {VDD VSS} \
42 -left_offset 1 -left_segment_layer M4

-left_segment_width 2 -extend_ll -extend_lh \
43 -right_offset 1 -right_segment_layer M4

-right_segment_width 2 -extend_rl -extend_rh \

80 scripts and files for Synopsis and Matlab

44 -bottom_offset 1 -bottom_segment_layer M3
-bottom_segment_width 2 -extend_bl -extend_bh
\

45 -top_offset 1 -top_segment_layer M3
-top_segment_width 2 -extend_tl -extend_th
-offsets absolute

46
47 create_power_straps -nets {VDD} \
48 -layer M4 \
49 -width 2 \
50 -direction vertical \
51 -start_at 31.2 \
52 -num_placement_strap 2 \
53 -increment_x_or_y 147
54
55
56
57 create_preroute_vias -nets {VDD} \
58 -from_layer M4 \
59 -from_object_strap \
60 -to_object_std_pin_connection \
61 -to_object_std_pin \
62 -within {{ -22.235 -4.945} {217 .200 220 .495}}
63
64
65 set_fp_rail_constraints -skip_ring -extend_strap core_ring
66 set_fp_rail_constraints -add_layer -layer M6 -direction horizontal

-max_strap 32 -min_strap 1 -min_width 0.2 -spacing minimum
67 set_fp_rail_constraints -add_layer -layer M5 -direction vertical -max_strap

32 -min_strap 1 -min_width 0.2 -spacing minimum
68 ###############
69 ## PNS VSS ##
70 ###############
71
72 synthesize_fp_rail -nets {VSS} -power_budget 2 -voltage_supply 1.0

-use_pins_as_pads
73
74 commit_fp_rail
75
76 ##############
77 ## PNS VDD ##
78 ##############
79
80 #set_fp_rail_voltage_area_constraints -net {VDD} \
81 # -power_budget 1 \
82 # -voltage_supply 1.0
83
84 synthesize_fp_rail -use_pins_as_pads -nets {VDD} -target_voltage_drop 200.0
85 commit_fp_rail
86
87 preroute_standard_cells -nets {VDD VSS} -connect horizontal \
88 -port_filter_mode off

-cell_master_filter_mode off \
89 -cell_instance_filter_mode off \
90 -voltage_area_filter_mode select
91
92 write -f verilog -h -out ./db/floorplan.v
93
94 remove_stdcell_filler -stdcell
95
96 save_mw_cel -increase_version
97
98 close_mw_cel
99

100 sh date

B.3 matlab file for comparing switching activity 81

101
102 exit

B.3 matlab file for comparing switching activity

1 clear all
2 %close all
3 %% inputs
4 clk = 1000; % in ns Rethink this
5 ResetName = ’Reset’;
6 %fileName = ’C:\ Rasmus\My Dropbox\Speciale\Matlab\Accu\Sync_accu_post_syn.vcd

’;
7 %fileName = ’C:\ Rasmus\My Dropbox\Speciale\Matlab\Accu\Async_Bool_noSynth.vcd

’;
8 %fileName = ’C:\ Rasmus\My Dropbox\Speciale\Matlab\Accu\Async_accu_req.vcd ’;
9 %%%%%%%%%%%%%%%%%%% ACCU %%%%%%%%%%%%%%%%%%%

10 %sync ACCU
11 %fileName = ’C:\ Rasmus\My Dropbox\Speciale\Projects\Accu\Vhdl_sync\VCD files\

sync_accu_synth.vcd ’;
12 %ASync_ACCU
13 %fileName = ’C:\ Rasmus\My Dropbox\Speciale\Projects\Accu\Vhdl_async\Syntesize

result\Async_accu_synth.vcd ’;
14
15 %%%% GCD %%%%
16 %fileName = ’C:\ Rasmus\My Dropbox\Speciale\Projects\GCD\modelsim_postsynth\

GCD_sync_post.vcd ’; %sync
17 %fileName = ’C:\ Rasmus\My Dropbox\Speciale\Projects\GCD\modelsim_postsynth\

GCD_Async_post.vcd ’; %async Reset Med stort R
18 fileName = ’C:\ Rasmus\My Dropbox\Speciale\Projects\GCD\modelsim_postsynth\

GCD_FG_async_post.vcd’; %async Reset Med stort R
19
20 %%
21 clc
22 fid = fopen(fileName ,’r’);
23 filedata=textscan(fid ,’%s’, ’delimiter ’, ’\n’);
24 data = filedata {1};
25 fprintf(’ File loaded \n’);
26
27 fclose(fid);
28
29
30 %% find timescale
31 fprintf(’ Find Timescale \n’);
32 [TT]= regexp(data ,’timescale ’, ’match’);
33 Row = find(~ cellfun(@isempty ,TT)) ;
34 str1 = regexp(data(Row +1), ’p’,’split’);
35 str2 = str1 {1,1};
36 Timescales = str2num(str2 {1});
37 %% find Reset
38 fprintf(’ locate reset symbol and first reset high \n’);
39 [TT]= regexp(data ,ResetName , ’match’);
40 Row = ~cellfun(@isempty ,TT) ;
41 str1 = regexp(data(Row), ’ ’,’split’);
42 str2 = str1 {1,1};
43 RST = str2(find(strcmp(ResetName ,str2)==1) -1);
44 RSTfirst = strcat(’1’,RST);
45
46 %% find wire names and symbols and loads
47 fprintf(’find wire names and symbols\n’);

82 scripts and files for Synopsis and Matlab

48 [TT]= regexp(data ,’wire’, ’match’);
49 Row = ~cellfun(@isempty ,TT) ;
50 str3 = regexp(data(Row), ’ ’,’split ’);
51 DataNames = struct(’Name’,[],’symbol ’,[],’value ’ ,[]);
52 %Sync Accu
53 %DataNames.value

={0.00378700000000000;0.00378700000000000;0.00378700000000000;0.00378700000000000;0.00378700000000000;0.00378700000000000;0.00378700000000000;0.00378700000000000;0.00613300000000000;0.00966300000000000;0.00966300000000000;0.00966300000000000;0.00966300000000000;0.00966300000000000;0.00966300000000000;0.0123800000000000;0.0661840000000000;0.00593300000000000;0.00344600000000000;0.00743600000000000;0.00743600000000000;0.00743600000000000;0.00743600000000000;0.00743600000000000;0.00743600000000000;0.0103930000000000;0.00378700000000000;0.00378700000000000;0.00378700000000000;0.00378700000000000;0.00378700000000000;0.00378700000000000;0.00378700000000000;0.00378700000000000;};

54 %Async accu
55 %DataNames.value

={0.00335700000000000;0.00335700000000000;0.00335700000000000;0.00335700000000000;0.00335700000000000;0.00399600000000000;0.00399600000000000;0.00399600000000000;0.00613300000000000;0.00966300000000000;0.00966300000000000;0.00966300000000000;0.00966300000000000;0.00966300000000000;0.00966300000000000;0.0123800000000000;0.0324250000000000;0.00372700000000000;0.00187600000000000;0.00872300000000000;0.00872300000000000;0.0150160000000000;0.0150160000000000;0.0384710000000000;0.0384710000000000;0.0114290000000000;0.0348050000000000;0.0348050000000000;0.0150160000000000;0.0129200000000000;0.0150160000000000;0.0115100000000000;0.0114290000000000;0.0114290000000000;0.00335700000000000;0.00335700000000000;0.00335700000000000;0.00335700000000000;0.00335700000000000;0.00399600000000000;0.00399600000000000;0.00335700000000000;0.00344600000000000;0.00743600000000000;0.00743600000000000;0.00743600000000000;0.00743600000000000;0.00743600000000000;0.00743600000000000;0.0103930000000000;0.00335700000000000;0.00335700000000000;0.00335700000000000;0.00335700000000000;0.00335700000000000;0.00399600000000000;0.00399600000000000;0.00399600000000000;0.00335700000000000;0.00335700000000000;0.00335700000000000;0.00335700000000000;0.00335700000000000;0.00399600000000000;0.00399600000000000;0.00335700000000000;};

56 %sync GCD
57 %DataNames.value

={0.0879000000000000;0.00879800000000000;0.00697800000000000;0.00691700000000000;0.00691800000000000;0.00691900000000000;0.00692000000000000;0.00692100000000000;0.00692200000000000;0.00692300000000000;0.00724800000000000;0.00189400000000000;0.0189730000000000;0.0233130000000000;0.0233130000000000;0.0233130000000000;0.0233130000000000;0.0233130000000000;0.0233130000000000;0.0233130000000000;0;};

58 %async GCD
59 %DataNames.value

={0.0248400000000000;0.0126210000000000;0.0298400000000000;0.0298400000000000;0.0298400000000000;0.0298400000000000;0.0298400000000000;0.0298400000000000;0.0298400000000000;0.0189400000000000;0248400000000000;0248400000000000;0248400000000000;0248400000000000;0248400000000000;0.0189400000000000;0.0189400000000000;0.0189400000000000;0.0189400000000000;0.0189400000000000;0.0189400000000000;0.0089400000000000;0.0189400000000000;0.0189000000000000;0;0;0;0;};

60 %fine grained GCD
61 DataNames.value

={0.0387150000000000;0.00694700000000000;0.00353400000000000;0.00353400000000000;0.00353400000000000;0.00353400000000000;0.00353400000000000;0.00353400000000000;0.00353400000000000;0.00353400000000000;0.00417400000000000;0.0104310000000000;0.00189400000000000;0.00189400000000000;0.00189400000000000;0.00189400000000000;0.00189400000000000;0.00189400000000000;0.00189400000000000;0.00189400000000000;0.00189400000000000;};

62 for i=1: length(str3)
63 str4 = str3{i,1};
64 DataNames.Name{i,1}= char(str4 (5));
65 DataNames.symbol{i,1}= char(str4 (4));
66 %DataNames.value{i,1} = 1; % temp string that assigns all wires same

capacitance
67 end
68 %DataNames.value {17} = 1; % make the clk expensive
69 %% find changes in activity
70 fprintf(’find all signal changes ’);
71 p = ’#(?<Time >[^ \n]*)\n% [^%]*|#(? <Time >[^ \n]*)’;
72
73 names = regexp(data ,p,’names ’);
74 Row = find(~ cellfun(@isempty ,names)) ;
75
76
77 %% Extract values
78 fprintf(’extract timing values \n’);
79 x= length(Row);
80 activity(x,2) = 0; %generate array for fast calculation
81 for i=1:x
82 y = str2num(names{Row(i) ,1}.Time);
83 if isempty(y)
84 y=NaN;
85 end
86 activity(i,:) = [Row(i) y/10]; %timescale to ns (100ps means all times must

be mulitplies by 100 to get time in ps..(devide by 10 to get ns)
87 end
88 %% find activity in each section
89 fprintf(’calculate number of changes in interval \n’);
90
91 %interval = clk /100; % time increment for each interval
92 % nothing might happen in several concecutive intervals , so for faster
93 % algorithm calculation , seach for next time something happens and assume
94 % everyting happens within first section of that interval and nothing
95 % happens the rest.
96
97 %find the first reset event , dont count anything before reset , since we
98 %have no clue of the behaviour before this point
99 notEmpty = regexp(data ,RSTfirst ,’match ’);

100

B.3 matlab file for comparing switching activity 83

101 firstReset = find(~ cellfun(@isempty ,notEmpty)) ;
102
103 % find first event after reset (maybe change to finde reset low)
104 %place = find(activity (:,1)>firstReset (1) ,1,’first ’); % expression , number

of returns , first or last ’
105
106 place = find(activity (:,1) >73,1,’first ’);
107 %place = find(activity (:,1) >262,1,’first ’);
108 % if (activity(place ,2)== NaN)
109 % place = find(activity (:,1)>activity(place ,2) ,1,’first ’);
110 % end
111
112 c1 = activity(place ,1);
113
114 %i=place +1; % for test
115 x = length(activity);
116 z=1;
117 for i=place +1:x %
118 if (isnan(activity(i,2)))
119
120 else
121 val =0;
122 c2 = activity(i,1); %end point of interval
123 for j=(c1+1):(c2 -1) %find symbol and multiply with capacitance
124 symb = char(data(j));
125 temp_val = DataNames.value{find(~ cellfun(@isempty ,strfind(

DataNames.symbol ,symb (2))))};
126 val = val + temp_val (1);
127 end
128 counts(z,1) = val;
129
130 counts(z,2)=activity(i-1,2); %time of the count
131 z=z+1;
132 c1 = c2 ;
133 end
134 end
135
136 %% add activity within same interval.
137 simEnd = activity(x-1,2); %last noted time in simulation (this might need to

be added manually to the VCD file)
138 NrPoints = clk *100;
139 timesVctr = linspace(activity(place ,2),simEnd ,NrPoints);
140 intBeg =1;
141 i=2;
142 for i=2: length(timesVctr)
143 intEnd = find(counts (:,2)<timesVctr(i),1,’last’);
144 intv(i-1) = sum(counts(intBeg:intEnd ,1));
145 intBeg = intEnd +1;
146 end
147 intv(i)=0;
148 total_Ticks = sum(counts (:,1));
149 checksum=sum(intv);
150 figure
151 %if (checksum == total_Ticks)
152 intv=intv .*2.1;
153 bar(timesVctr ,intv)
154 xlabel(’ns’);
155 ylabel(’sum of tics * capacitance ’);
156
157 fprintf(’processing successfull ’);
158 % else
159 % fprintf(’processing failed! \n Number of ticks %d do not match

checksum %d \n’,total_Ticks , checksum);
160 % end

84 scripts and files for Synopsis and Matlab

Appendix C

VHDL Code

C.1 VHDL for basic components

C.1.1 c element

C.1.2 VHDL for Fork and Join

1 --
--

2 -- Company:
3 -- Engineer:
4 --
5 -- Create Date: 10:28:06 11/18/2010
6 -- Design Name:
7 -- Module Name: Fork - Behavioral
8 -- Project Name:
9 -- Target Devices:

10 -- Tool versions:
11 -- Description:
12 --
13 -- Dependencies:
14 --
15 -- Revision:
16 -- Revision 0.01 - File Created
17 -- Additional Comments:
18 --

86 VHDL Code

19 --
--

20 library IEEE;
21 use IEEE.STD_LOGIC_1164.ALL;
22 use IEEE.STD_LOGIC_ARITH.ALL;
23 use IEEE.STD_LOGIC_UNSIGNED.ALL;
24
25 ---- Uncomment the following library declaration if instantiating
26 ---- any Xilinx primitives in this code.
27 --library UNISIM;
28 --use UNISIM.VComponents.all;
29
30 entity Fork is
31 Port (Req_in : in STD_LOGIC;
32 Req_out : out STD_LOGIC_VECTOR (1 downto 0);
33 Ack_in : in STD_LOGIC_VECTOR (1 downto 0);
34 Ack_out : out STD_LOGIC);
35 end Fork;
36
37 architecture Behavioral of Fork is
38 signal ack_int : std_logic;
39 begin
40 Req_out <= (Req_in ,Req_in);
41 ack_int <= (Ack_in (0) and Ack_in (1)) or (ack_int and (Ack_in (0) or

Ack_in (1)));
42 Ack_out <= ack_int;
43
44 end Behavioral;

1 --
--

2 -- Company:
3 -- Engineer:
4 --
5 -- Create Date: 11:15:14 11/18/2010
6 -- Design Name:
7 -- Module Name: Join - Behavioral
8 -- Project Name:
9 -- Target Devices:

10 -- Tool versions:
11 -- Description:
12 --
13 -- Dependencies:
14 --
15 -- Revision:
16 -- Revision 0.01 - File Created
17 -- Additional Comments:
18 --
19 --

--

20 library IEEE;
21 use IEEE.STD_LOGIC_1164.ALL;
22 use IEEE.STD_LOGIC_ARITH.ALL;
23 use IEEE.STD_LOGIC_UNSIGNED.ALL;
24
25 ---- Uncomment the following library declaration if instantiating
26 ---- any Xilinx primitives in this code.
27 --library UNISIM;
28 --use UNISIM.VComponents.all;
29
30 entity Join is

C.1 VHDL for basic components 87

31 Port (Req_in : in STD_LOGIC_VECTOR (1 downto 0);
32 Req_out : out STD_LOGIC;
33 Ack_in : in STD_LOGIC;
34 Ack_out : out STD_LOGIC_VECTOR (1 downto 0));
35 end Join;
36
37 architecture Behavioral of Join is
38
39 SIGNAL req_int : std_logic;
40 begin
41
42 Ack_out <= (Ack_in , ACk_in);
43
44 Req_int <= (Req_in (0) and Req_in (1)) or (Req_int and (Req_in (0) or Req_in (1))

);
45
46 Req_out <= Req_int;
47
48 end Behavioral;

C.1.3 VHDL for mux and demux

1 --
--

2 -- Company:
3 -- Engineer:
4 --
5 -- Create Date: 21:57:12 05/21/2011
6 -- Design Name:
7 -- Module Name: async_multiplex - Behavioral
8 -- Project Name:
9 -- Target Devices:

10 -- Tool versions:
11 -- Description:
12 --
13 -- Dependencies:
14 --
15 -- Revision:
16 -- Revision 0.01 - File Created
17 -- Additional Comments:
18 --
19 --

--

20 library IEEE;
21 use IEEE.STD_LOGIC_1164.ALL;
22 use IEEE.STD_LOGIC_ARITH.ALL;
23 use IEEE.STD_LOGIC_UNSIGNED.ALL;
24
25 ---- Uncomment the following library declaration if instantiating
26 ---- any Xilinx primitives in this code.
27 --library UNISIM;
28 --use UNISIM.VComponents.all;
29
30 entity async_multiplex is
31 Port (Mux : in STD_LOGIC;
32 ReqA : in STD_LOGIC;
33 ReqB : in STD_LOGIC;
34 Req_out : out STD_LOGIC;

88 VHDL Code

35 AckA : out STD_LOGIC;
36 AckB : out STD_LOGIC;
37 Ack_out : in STD_LOGIC);
38 end async_multiplex;
39
40 architecture Behavioral of async_multiplex is
41 signal int_a , int_b , int_ackA , int_ackB :std_logic;
42 begin
43 int_a <= (Mux and reqA);
44 int_b <= (not(Mux) and ReqB);
45
46 Req_out <= int_a or int_b;
47
48 int_ackA <= (int_a and Ack_out) or (int_ackA and (int_a or Ack_out));
49 AckA <= int_ackA;
50
51 int_ackB <= (int_b and Ack_out) or (int_ackB and(int_b or Ack_out));
52 AckB <= int_ackB;
53
54
55
56 end Behavioral;

1 --
--

2 -- Company:
3 -- Engineer:
4 --
5 -- Create Date: 21:25:52 05/21/2011
6 -- Design Name:
7 -- Module Name: async_demux - Behavioral
8 -- Project Name:
9 -- Target Devices:

10 -- Tool versions:
11 -- Description:
12 --
13 -- Dependencies:
14 --
15 -- Revision:
16 -- Revision 0.01 - File Created
17 -- Additional Comments:
18 --
19 --

--

20 library IEEE;
21 use IEEE.STD_LOGIC_1164.ALL;
22 use IEEE.STD_LOGIC_ARITH.ALL;
23 use IEEE.STD_LOGIC_UNSIGNED.ALL;
24
25 ---- Uncomment the following library declaration if instantiating
26 ---- any Xilinx primitives in this code.
27 --library UNISIM;
28 --use UNISIM.VComponents.all;
29
30 entity async_demux is
31 Port (Mux : in STD_LOGIC;
32 Req_in : in STD_LOGIC;
33 ReqA : out STD_LOGIC;
34 ReqB : out STD_LOGIC;
35 Ack_in : out STD_LOGIC;
36 AckA : in STD_LOGIC;
37 AckB : in STD_LOGIC);

C.2 VHDL for Synchronous Accu 89

38 end async_demux;
39
40 architecture Behavioral of async_demux is
41 signal Int_A , Int_B : STD_LOGIC;
42 begin
43 Int_A <= (Mux and Req_in);-- or (Int_A and (Mux or Req_in));
44 ReqA <= Int_A;
45
46 Int_B <= (not(Mux) and Req_in);-- or (Int_B and(Not(Mux) or Req_in));
47 ReqB <= Int_B;
48
49 Ack_in <= AckA or AckB;
50
51 end Behavioral;

C.2 VHDL for Synchronous Accu

C.2.1 Top module Accu.vhd

1 --
--

2 -- Company: DTU IMM
3 -- Engineer: Rasmus Madsen
4 --
5 -- Create Date: 10:59:11 09/08/2010
6 -- Design Name: Accu top component (structural)
7 -- Module Name: accu - Behavioral
8 -- Project Name:
9 -- Target Devices:

10 -- Tool versions:
11 -- Description:
12 --
13 -- Dependencies:
14 --
15 -- Revision:
16 -- Revision 0.01 - File Created
17 -- Additional Comments:
18 --
19 --

--

20 library IEEE;
21 use IEEE.STD_LOGIC_1164.ALL;
22 use IEEE.STD_LOGIC_ARITH.ALL;
23 use IEEE.STD_LOGIC_UNSIGNED.ALL;
24
25 ---- Uncomment the following library declaration if instantiating
26 ---- any Xilinx primitives in this code.
27 --library UNISIM;
28 --use UNISIM.VComponents.all;
29
30 entity accu is
31 Port (input : in STD_LOGIC_VECTOR (7 downto 0);
32 clk : in STD_LOGIC;
33 reset : in STD_LOGIC;
34 outputs : out STD_LOGIC_VECTOR (7 downto 0)

90 VHDL Code

35);
36
37 end accu;
38
39 architecture Structural of accu is
40
41 component regist is
42 Port (input : in STD_LOGIC_VECTOR (7 downto 0);
43 output : out STD_LOGIC_VECTOR (7 downto 0);
44 clk : in STD_LOGIC;
45 reset : in STD_LOGIC);
46 end component;
47
48 component adder8bit is
49 Port (A : in STD_LOGIC_VECTOR (7 downto 0);
50 B : in STD_LOGIC_VECTOR (7 downto 0);
51 Sum : out STD_LOGIC_VECTOR (7 downto 0));
52 end component;
53
54 -- signals
55 signal Wire_sum , Wire_B ,Wire_C : STD_LOGIC_VECTOR (7 downto 0);
56 begin
57
58
59 register1 : regist port map(input =>input , output =>Wire_C , clk=>clk , reset

=>reset);
60 register2 : regist port map(input =>Wire_sum , output =>Wire_B , clk=>clk ,

reset=>reset);
61 adder1: adder8bit port map(A => Wire_C , B => Wire_B , Sum => Wire_sum);
62
63 outputs <= Wire_B;
64
65 end Structural ;

C.2.2 Register.vhd

1 --
--

2 -- Company: DTU IMM
3 -- Engineer: Rasmus Madse
4 --
5 -- Create Date: 11:21:56 09/06/2010
6 -- Design Name: Rigister model
7 -- Module Name: register - Behavioral
8 -- Project Name:
9 -- Target Devices:

10 -- Tool versions:
11 -- Description:
12 --
13 -- Dependencies:
14 --
15 -- Revision:
16 -- Revision 0.01 - File Created
17 -- Additional Comments:
18 --
19 --

--

20 library IEEE;

C.2 VHDL for Synchronous Accu 91

21 use IEEE.STD_LOGIC_1164.ALL;
22 use IEEE.STD_LOGIC_ARITH.ALL;
23 use IEEE.STD_LOGIC_UNSIGNED.ALL;
24
25 ---- Uncomment the following library declaration if instantiating
26 ---- any Xilinx primitives in this code.
27 --library UNISIM;
28 --use UNISIM.VComponents.all;
29
30 entity regist is
31 Port (input : in STD_LOGIC_VECTOR (7 downto 0);
32 output : out STD_LOGIC_VECTOR (7 downto 0);
33 clk : in STD_LOGIC;
34 reset : in STD_LOGIC);
35 end regist;
36
37 architecture Behavioral of regist is
38
39 begin
40 process(clk , reset)
41 begin
42 if(reset = ’1’) then -- active high
43 output <= "00000000";
44 elsif (clk =’1’ and clk ’EVENT) then
45 output <= input;
46 end if;
47 end process;
48
49 end Behavioral;

C.2.3 Adder.vhd

1 --
--

2 -- Company: DTU IMM
3 -- Engineer: Rasmus Madsen
4 -- Create Date: 12:39:24 09/08/2010
5 -- Design Name: 8 bit register model
6 -- Module Name: adder4bit - Behavioral
7 -- Project Name:
8 -- Target Devices:
9 -- Tool versions:

10 -- Description:
11 --
12 -- Dependencies:
13 --
14 -- Revision:
15 -- Revision 0.01 - File Created
16 -- Additional Comments:
17 --
18 --

--

19 library IEEE;
20 use IEEE.STD_LOGIC_1164.ALL;
21 use IEEE.STD_LOGIC_ARITH.ALL;
22 use IEEE.STD_LOGIC_UNSIGNED.ALL;
23
24 ---- Uncomment the following library declaration if instantiating

92 VHDL Code

25 ---- any Xilinx primitives in this code.
26 --library UNISIM;
27 --use UNISIM.VComponents.all;
28
29 entity adder8bit is
30 Port (A : in STD_LOGIC_VECTOR (7 downto 0);
31 B : in STD_LOGIC_VECTOR (7 downto 0);
32 Sum : out STD_LOGIC_VECTOR (7 downto 0));
33 end adder8bit;
34
35 architecture Behavioral of adder8bit is
36
37 begin
38
39 Sum <= A+B;
40
41 end Behavioral;

C.2.4 TestBench.vhd

1 --
--

2 -- Company: DTU IMM
3 -- Engineer:Rasmus Madsen
4 --
5 -- Create Date: 12:33:58 01/19/2011
6 -- Design Name: Test bench for Accu
7 -- Module Name: C:/ Rasmus/My Dropbox /3 ugers/Accu_modeltest/Accutest.vhd
8 -- Project Name: Accu_modeltest
9 -- Target Device:

10 -- Tool versions:
11 -- Description:
12 --
13 -- VHDL Test Bench Created by ISE for module: accu
14 --
15 -- Dependencies:
16 --
17 -- Revision:
18 -- Revision 0.01 - File Created
19 -- Additional Comments:
20 --
21 -- Notes:
22 -- This testbench has been automatically generated using types std_logic and
23 -- std_logic_vector for the ports of the unit under test. Xilinx recommends
24 -- that these types always be used for the top -level I/O of a design in order
25 -- to guarantee that the testbench will bind correctly to the post -

implementation
26 -- simulation model.
27 --

--

28 LIBRARY ieee;
29 USE ieee.std_logic_1164.ALL;
30 USE ieee.std_logic_unsigned.all;
31 USE ieee.numeric_std.ALL;
32
33 ENTITY Accutest IS
34 END Accutest;
35

C.2 VHDL for Synchronous Accu 93

36 ARCHITECTURE behavior OF Accutest IS
37
38 -- Component Declaration for the Unit Under Test (UUT)
39
40 COMPONENT accu
41 PORT(
42 input : IN std_logic_vector (7 downto 0);
43 clk : IN std_logic;
44 reset : IN std_logic;
45 outputs : OUT std_logic_vector (7 downto 0)
46);
47 END COMPONENT;
48
49
50 --Inputs
51 signal input : std_logic_vector (7 downto 0) := (others => ’0’);
52 signal clk : std_logic := ’0’;
53 signal reset : std_logic := ’0’;
54
55 --Outputs
56 signal outputs : std_logic_vector (7 downto 0);
57
58 -- Clock period definitions
59 constant clk_period : time := 10ns;
60
61 BEGIN
62
63 -- Instantiate the Unit Under Test (UUT)
64 uut: accu PORT MAP (
65 input => input ,
66 clk => clk ,
67 reset => reset ,
68 outputs => outputs
69);
70
71 -- Clock process definitions
72 clk_process :process
73 begin
74 clk <= ’0’;
75 wait for clk_period /2;
76 clk <= ’1’;
77 wait for clk_period /2;
78 end process;
79
80
81 -- Stimulus process
82 stim_proc: process
83 begin
84 -- hold reset state for 100ms.
85 wait for 10ns;
86
87 wait for clk_period *2;
88 reset <=’1’;
89 input <="00000000";
90
91 wait for clk_period *2;
92 reset <=’0’;
93 input <="00000000";
94
95 wait for clk_period;
96 reset <=’0’;
97 input <="00000001";
98
99 wait for clk_period;

100 reset <=’0’;

94 VHDL Code

101 input <="00000011";
102
103 wait for clk_period;
104 reset <=’0’;
105 input <="00000000";
106
107 wait for clk_period;
108 reset <=’0’;
109 input <="00000010";
110
111
112
113 -- insert stimulus here
114
115 wait;
116 end process;
117
118 END;

C.3 VHLD for Asynchronous Accu

C.3.1 Top module Accu.vhd

1 --
--

2 -- Company: DTU IMM
3 -- Engineer: Rasmus Madsen
4 --
5 -- Create Date: 10:59:11 09/08/2010
6 -- Design Name: Accu top component (structural)
7 -- Module Name: accu - Behavioral
8 -- Project Name:
9 -- Target Devices:

10 -- Tool versions:
11 -- Description:
12 --
13 -- Dependencies:
14 --
15 -- Revision:
16 -- Revision 0.01 - File Created
17 -- Additional Comments:
18 --
19 --

--

20 library IEEE;
21 use IEEE.STD_LOGIC_1164.ALL;
22 use IEEE.STD_LOGIC_ARITH.ALL;
23 use IEEE.STD_LOGIC_UNSIGNED.ALL;
24
25 ---- Uncomment the following library declaration if instantiating
26 ---- any Xilinx primitives in this code.
27 --library UNISIM;
28 --use UNISIM.VComponents.all;
29
30 entity accu is

C.3 VHLD for Asynchronous Accu 95

31 Port (input : in STD_LOGIC_VECTOR (7 downto 0);
32 start : in STD_LOGIC;
33 reset : in STD_LOGIC;
34 outputs : out STD_LOGIC_VECTOR (7 downto 0)
35);
36
37 end accu;
38
39 architecture Structural of accu is
40
41 component semi_decRingWinit is
42 Port (Reset : in STD_LOGIC;
43 Req_in : in STD_LOGIC;
44 Ack_in : out STD_LOGIC;
45 Req_out : out STD_LOGIC;
46 Ack_out : in STD_LOGIC;
47 Z : out STD_LOGIC_VECTOR (1 downto 0));
48 end component semi_decRingWinit;
49
50 component Join is
51 Port (Req_in : in STD_LOGIC_VECTOR (1 downto 0);
52 Req_out : out STD_LOGIC;
53 Ack_out : in STD_LOGIC;
54 Ack_in : out STD_LOGIC_VECTOR (1 downto 0));
55 end component Join;
56
57 component Fork is
58 Port (Req_in : in STD_LOGIC;
59 Req_out : out STD_LOGIC_VECTOR (1 downto 0);
60 Ack_out : in STD_LOGIC_VECTOR (1 downto 0);
61 Ack_in : out STD_LOGIC);
62 end component Fork;
63
64 component latch is
65 Port (Reset : in STD_LOGIC;
66 CTRL : in STD_LOGIC;
67 input : in STD_LOGIC_VECTOR (7 downto 0);
68 output : out STD_LOGIC_VECTOR (7 downto 0));
69 end component;
70
71
72
73 component adder8bit is
74 Port (A : in STD_LOGIC_VECTOR (7 downto 0);
75 B : in STD_LOGIC_VECTOR (7 downto 0);
76 Sum : out STD_LOGIC_VECTOR (7 downto 0));
77 end component;
78
79 -- signals
80 signal Wire_sum , Wire_A , Wire_B ,Wire_C , Btw_latch1 , Btw_latch2 :

STD_LOGIC_VECTOR (7 downto 0);
81 signal x_req ,x_ack ,y_req ,y_ack , z_req ,z_ack : std_logic;
82 signal join_req_in , join_ack_in ,fork_req_out , fork_ack_out : std_logic_vector

(1 downto 0);
83 signal join_req_out , join_ack_out , fork_req_in , fork_ack_in: std_logic;
84 signal M1 , S1 , M2 , S2: std_logic;
85 signal delay_in , delay_out : std_logic;
86
87 begin
88 Wire_A <= input;
89
90 delay_out <= delay_in after 8ns;
91
92 x_req <= not(x_ack) after 2 ns; --and start after 2ns;
93 z_ack <= z_req after 4ns;

96 VHDL Code

94
95 Latch_CTRL1 : semi_decRingWinit port map(Reset=>reset ,
96 Req_in

=>
x_req
,

97 Ack_in
=>
x_ack
,

98 Req_out

=>

join_req_in
(0)
,

99 Ack_out
=>

join_ack_in
(0)
,

100 Z
(0)
=>
M1
,

101 Z
(1)
=>

S1
)
;

102
103 Join1 : Join port map (Req_in=>join_req_in ,
104 Req_out=>delay_in ,
105 Ack_out=>y_ack ,
106 Ack_in=>join_ack_in

);
107
108 Latch_CTRL2 : semi_decRingWinit port map(Reset=>reset ,
109 Req_in

=>
delay_out
,

110 Ack_in
=>
y_ack
,

111 Req_out
=>
fork_req_in
,

C.3 VHLD for Asynchronous Accu 97

112 Ack_out
=>
fork_ack_in
,

113 Z
(0)
=>
M2
,

114 Z
(1)
=>
S2
)
;

115 Fork1 : Fork port map(Req_in=> fork_req_in ,
116 Req_out (0)=> z_req ,
117 Req_out (1)=>

join_req_in (1)
,

118 Ack_out (0)=> z_ack ,
119 Ack_out (1)=>

join_ack_in (1)
,

120 Ack_in=>fork_ack_in
);

121
122 Master1 : latch port map(input =>Wire_A , output =>Btw_latch1 , CTRL=>M1 ,

Reset=>reset);
123 Slave1 : latch port map(input =>Btw_latch1 , output=>Wire_C , CTRL =>S1 , Reset

=> reset);
124 Master2 : latch port map(input =>Wire_sum , output =>Btw_latch2 , CTRL=>M2 ,

Reset =>reset);
125 Slave2 : latch port map(input => Btw_latch2 , output =>Wire_B , CTRL=>S2 ,

Reset=>reset);
126 adder1: adder8bit port map(A => Wire_C , B => Wire_B , Sum => Wire_sum);
127
128 outputs <= Wire_B;
129
130 end Structural ;

C.3.2 latchcontrol top module.vhd

C.3.3 Latch control single latch.vhd

1 --
--

2 -- Company:
3 -- Engineer:
4 --
5 -- Create Date: 12:05:49 11/12/2010
6 -- Design Name:
7 -- Module Name: SemiDecoupledV2 - Behavioral
8 -- Project Name:

98 VHDL Code

9 -- Target Devices:
10 -- Tool versions:
11 -- Description:
12 --
13 -- Dependencies:
14 --
15 -- Revision:
16 -- Revision 0.01 - File Created
17 -- Additional Comments:
18 --
19 --

--

20 library IEEE;
21 use IEEE.STD_LOGIC_1164.ALL;
22 use IEEE.STD_LOGIC_ARITH.ALL;
23 use IEEE.STD_LOGIC_UNSIGNED.ALL;
24
25 ---- Uncomment the following library declaration if instantiating
26 ---- any Xilinx primitives in this code.
27 --library UNISIM;
28 --use UNISIM.VComponents.all;
29
30 entity SemiDecoupledV3 is
31 Port (Reset : in STD_LOGIC;
32 Init : in STD_LOGIC;
33 Req_in : in STD_LOGIC;
34 Ack_in : in STD_LOGIC;
35 Req_out : out STD_LOGIC;
36 Ack_out : out STD_LOGIC;
37 Z : out STD_LOGIC);
38 end SemiDecoupledV3;
39
40 architecture Behavioral of SemiDecoupledV3 is
41
42 Signal A, Rout_int , Z_int : STD_LOGIC;
43 begin
44
45 --PROCESS is
46 Semi: A <= Init when Reset = ’1’ else
47 ’1’ after 2ns when (Req_in and not Rout_int)= ’1’

else
48 ’0’ after 1ns when (not Req_in and Rout_int and

Ack_in) = ’1’;
49
50 Rout_int <= Init when Reset = ’1’ else
51 ’1’ after 2ns when (A and not Ack_in

) = ’1’ else
52 ’0’ after 1ns when A = ’0’ ;
53
54
55 Z_int <= Init when Reset =’1’ else
56 ’1’ after 2ns when A = ’1’ else
57 ’0’ after 1ns when A = ’0’;
58
59 Ack_out <= ’0’ when Reset = ’1’ else
60 ’1’ after 2ns when Z_int = ’1’

else
61 ’0’ after 1ns when Z_int = ’0’;
62 Req_out <= Rout_int;
63 Z <= Z_int;
64 --end process
65
66 end Behavioral;

C.3 VHLD for Asynchronous Accu 99

C.3.4 Adder

C.3.5 TestBench.vhd

1 --
--

2 -- Company:
3 -- Engineer:
4 --
5 -- Create Date: 15:02:30 03/17/2011
6 -- Design Name:
7 -- Module Name: C:/ Rasmus/My Dropbox/Speciale/Projects/Accu/Vhdl_async/

Async_accu/Test_async_accu.vhd
8 -- Project Name: Async_accu
9 -- Target Device:

10 -- Tool versions:
11 -- Description:
12 --
13 -- VHDL Test Bench Created by ISE for module: accu
14 --
15 -- Dependencies:
16 --
17 -- Revision:
18 -- Revision 0.01 - File Created
19 -- Additional Comments:
20 --
21 -- Notes:
22 -- This testbench has been automatically generated using types std_logic and
23 -- std_logic_vector for the ports of the unit under test. Xilinx recommends
24 -- that these types always be used for the top -level I/O of a design in order
25 -- to guarantee that the testbench will bind correctly to the post -

implementation
26 -- simulation model.
27 --

--

28 LIBRARY ieee;
29 USE ieee.std_logic_1164.ALL;
30 USE ieee.std_logic_unsigned.all;
31 USE ieee.numeric_std.ALL;
32
33 ENTITY Test_async_accu IS
34 END Test_async_accu;
35
36 ARCHITECTURE behavior OF Test_async_accu IS
37
38 -- Component Declaration for the Unit Under Test (UUT)
39
40 COMPONENT accu
41 PORT(
42 input : IN std_logic_vector (7 downto 0);
43 reset : IN std_logic;
44 outputs : OUT std_logic_vector (7 downto 0)
45);
46 END COMPONENT;
47
48
49 --Inputs
50 signal input : std_logic_vector (7 downto 0) := (others => ’0’);
51 signal reset : std_logic := ’0’;
52

100 VHDL Code

53 --Outputs
54 signal outputs : std_logic_vector (7 downto 0);
55
56 BEGIN
57
58 -- Instantiate the Unit Under Test (UUT)
59 uut: accu PORT MAP (
60 input => input ,
61 reset => reset ,
62 outputs => outputs
63);
64
65 -- No clocks detected in port list. Replace <clock > below with
66 -- appropriate port name
67
68
69 -- Stimulus process
70 stim_proc: process
71 begin
72 -- hold reset state for 100ms.
73 wait for 10ns;
74 input <="00000000";
75 reset <=’0’;
76
77 wait for 140ns;
78 input <="00000000";
79 reset <=’1’;
80
81 wait for 100ns;
82 input <="00000000";
83 reset <=’0’;
84
85 wait for 100ns;
86 input <="00000001";
87 reset <=’0’;
88
89 wait for 200ns;
90 input <="00000101";
91 reset <=’0’;
92
93
94
95 wait;
96 end process;
97
98 END;

C.4 VHDL code for Synchronous GCD

C.5 VHDL code for asynchronous GCD simple
desynchronization

1 --
--

C.5 VHDL code for asynchronous GCD simple desynchronization 101

2 -- Company:
3 -- Engineer:
4 --
5 -- Create Date: 12:31:06 12/15/2010
6 -- Design Name:
7 -- Module Name: GCD_async - Behavioral
8 -- Project Name:
9 -- Target Devices:

10 -- Tool versions:
11 -- Description:
12 --
13 -- Dependencies:
14 --
15 -- Revision:
16 -- Revision 0.01 - File Created
17 -- Additional Comments:
18 --
19 --

--

20 library IEEE;
21 use IEEE.STD_LOGIC_1164.ALL;
22 use IEEE.STD_LOGIC_ARITH.ALL;
23 use IEEE.STD_LOGIC_UNSIGNED.ALL;
24
25 ---- Uncomment the following library declaration if instantiating
26 ---- any Xilinx primitives in this code.
27 --library UNISIM;
28 --use UNISIM.VComponents.all;
29
30 entity GCD_async is
31 Port (Reset: in STD_LOGIC;
32 input_valid : in STD_LOGIC;
33 Data_in : in STD_LOGIC_VECTOR (7 downto 0);
34 Req_in : in STD_LOGIC;
35 Req_out : out STD_LOGIC;
36 Ack_in : in STD_LOGIC;
37 Ack_out : out STD_LOGIC;
38 output_valid : out STD_LOGIC;
39 Data_out : out STD_LOGIC_VECTOR (7 downto 0));
40 end GCD_async;
41
42 architecture Structural of GCD_async is
43
44 Component Latch is
45 Port (Reset : in STD_LOGIC;
46 CTRL : in STD_LOGIC;
47 input : in STD_LOGIC_VECTOR (7 downto 0);
48 output : out STD_LOGIC_VECTOR (7 downto 0));
49 end component;
50
51 component Latch3bit is
52 Port (Reset : in STD_LOGIC;
53 CTRL : in STD_LOGIC;
54 input : in STD_LOGIC_VECTOR (2 downto 0);
55 output : out STD_LOGIC_VECTOR (2 downto 0));
56 end component;
57
58 -- simple controller
59 component semi_decRingWinit is
60 Port (Reset : in STD_LOGIC;
61 Req_in : in STD_LOGIC;
62 Ack_in : out STD_LOGIC;
63 Req_out : out STD_LOGIC;
64 Ack_out : in STD_LOGIC;

102 VHDL Code

65 Z : out STD_LOGIC_VECTOR (1 downto 0));
66 end component;
67
68 --- implemented controller --
69 component Latch_control_top is
70 Port (Reset : in STD_LOGIC;
71 Req_in : in STD_LOGIC;
72 Ack_in : out STD_LOGIC;
73 Req_out : out STD_LOGIC;
74 Ack_out : in STD_LOGIC;
75 Z : out STD_LOGIC_VECTOR (1 downto 0));
76 end component Latch_control_top;
77
78 component gcd_core IS
79 PORT (--clk: IN std_logic; -- The clock

signal.
80 reset: IN std_logic; -- Reset the module

.
81 req: IN std_logic; -- Start

computation. (DATA IN)
82 AB: IN std_logic_vector (7 downto 0); -- The two

operands. (DATA IN)
83 ack: OUT std_logic; -- Computation is

complete.
84 C: OUT std_logic_vector (7 downto 0); -- The result.
85 reg_a: IN std_logic_vector (7 downto 0);
86 next_reg_a: OUT std_logic_vector (7 downto 0);
87 reg_b: IN std_logic_vector (7 downto 0);
88 next_reg_b: OUT std_logic_vector (7 downto 0);
89 state: IN std_logic_vector (2 downto 0);
90 next_state: OUT std_logic_vector (2 downto 0));
91 END component;
92
93 component Fork is
94 Port (Req_in : in STD_LOGIC;
95 Req_out : out STD_LOGIC_VECTOR (1 downto 0);
96 Ack_in : in STD_LOGIC_VECTOR (1 downto 0);
97 Ack_out : out STD_LOGIC);
98 end component;
99

100 component Join is
101 Port (Req_in : in STD_LOGIC_VECTOR (1 downto 0);
102 Req_out : out STD_LOGIC;
103 Ack_in : in STD_LOGIC;
104 Ack_out : out STD_LOGIC_VECTOR (1 downto 0));
105 end component;
106 component DelayElement is
107 Port (xin : in STD_LOGIC;
108 delayed_x : out STD_LOGIC);
109 end component DelayElement;
110
111 signal Int_regA , Int_NextA ,Int_regB , Int_NextB : std_logic_vector (7 downto 0)

;
112 signal IntState , Int_NextState : std_logic_vector (2 downto 0);
113 signal Latch_M , Latch_S : STD_LOGIC;
114 signal L_Int_A , L_Int_B : STD_LOGIC_vector (7 downto 0);
115 signal L_Int_State: STD_LOGIC_VECTOR (2 downto 0);
116 signal Int_req_in , Int_req_out , int_ack ,req_Join2control , req_control2fork :

std_logic;
117 signal ack_control2join , ack_fork2control : STD_LOGIC;
118 begin
119 --Int_req_in <= Int_req_out after 2ns; -- Delay element
120 Delay : DelayElement port map(xin=> Int_req_out ,
121 delayed_x

C.5 VHDL code for asynchronous GCD simple desynchronization 103

=>
Int_req_in
)
;

122
123 CORE: gcd_core port map (reset => Reset , req => input_valid , AB => Data_in ,

ack => output_valid , C => Data_out ,
124 reg_a => Int_regA

, next_reg_a
=>

Int_NextA ,
reg_b =>
Int_regB ,
next_reg_b
=> Int_NextB
,

125 state =>
IntState
,
next_state
=>

Int_NextState
);

126
127 join1 : Join port map(Req_in (0) => Req_in ,
128 Req_in (1) =>

Int_req_in ,
129 Req_out =>

req_Join2control
,

130 Ack_in =>
ack_control2join
,

131 Ack_out (0) => Ack_out ,
132 Ack_out (1) =>

Int_ack);
133
134 fork1 : fork port map (Req_in => req_control2fork ,
135 Req_out (0) =>

Req_out ,
136 Req_out (1) =>

Int_req_out ,
137 Ack_in (0) => Ack_in

,
138 Ack_in (1) =>

Int_ack ,
139 Ack_out =>

ack_fork2control
);

140
141 Latc_control : Latch_control_top port map (Reset => Reset , --

semi_decRingWinitLatch_control_top
142 Req_in

=>

req_Join2control
,

143 Ack_out

=>

ack_fork2control

104 VHDL Code

,

144 Req_out

=>

req_control2fork
,

145 Ack_in

=>

ack_control2join
,

146 Z
(0)

=>

Latch_M
,

147 Z
(1)

=>

Latch_S
)
;

148
149 L_A_M : Latch port map (Reset => Reset ,
150 CTRL =>

Latch_M ,
151 input =>

Int_NextA
,

152 output =>
L_Int_A)
;

153
154 L_A_S : Latch port map (Reset => Reset ,
155 CTRL =>

Latch_S ,
156 input =>

L_Int_A ,
157 output =>

Int_RegA
);

158
159 L_B_M : Latch port map (Reset => Reset ,
160 CTRL =>

Latch_M ,
161 input =>

Int_NextB
,

162 output =>
L_Int_B)
;

163
164 L_B_S : Latch port map (Reset => Reset ,

C.6 VHDL code for asynchronous GCD simple desynchronization 105

165 CTRL =>
Latch_S ,

166 input =>
L_Int_B ,

167 output =>
Int_RegB
);

168
169 L_S_M : Latch3bit port map (Reset => Reset ,
170 CTRL

=>

Latch_M
,

171 input

=>
Int_NextState
,

172 output

=>
L_Int_State
)
;

173
174 L_S_S : Latch3bit port map (Reset => Reset ,
175 CTRL

=>

Latch_S
,

176 input

=>
L_Int_State
,

177 output

=>
IntState
)
;

178
179
180
181 end Structural;

C.6 VHDL code for asynchronous GCD simple
desynchronization

106 VHDL Code

1 --
--

2 -- Company:
3 -- Engineer:
4 --
5 -- Create Date: 12:31:06 12/15/2010
6 -- Design Name:
7 -- Module Name: GCD_async - Behavioral
8 -- Project Name:
9 -- Target Devices:

10 -- Tool versions:
11 -- Description:
12 --
13 -- Dependencies:
14 --
15 -- Revision:
16 -- Revision 0.01 - File Created
17 -- Additional Comments:
18 --
19 --

--

20 library IEEE;
21 use IEEE.STD_LOGIC_1164.ALL;
22 use IEEE.STD_LOGIC_ARITH.ALL;
23 use IEEE.STD_LOGIC_UNSIGNED.ALL;
24
25 ---- Uncomment the following library declaration if instantiating
26 ---- any Xilinx primitives in this code.
27 --library UNISIM;
28 --use UNISIM.VComponents.all;
29
30 entity GCD_async is
31 Port (Reset: in STD_LOGIC;
32 input_valid : in STD_LOGIC;
33 Data_in : in STD_LOGIC_VECTOR (7 downto 0);
34 Req_in : in STD_LOGIC;
35 Req_out : out STD_LOGIC;
36 Ack_in : in STD_LOGIC;
37 Ack_out : out STD_LOGIC;
38 output_valid : out STD_LOGIC;
39 Data_out : out STD_LOGIC_VECTOR (7 downto 0));
40 end GCD_async;
41
42 architecture Structural of GCD_async is
43
44 Component Latch is
45 Port (Reset : in STD_LOGIC;
46 CTRL : in STD_LOGIC;
47 input : in STD_LOGIC_VECTOR (7 downto 0);
48 output : out STD_LOGIC_VECTOR (7 downto 0));
49 end component;
50
51 component Latch3bit is
52 Port (Reset : in STD_LOGIC;
53 CTRL : in STD_LOGIC;
54 input : in STD_LOGIC_VECTOR (2 downto 0);
55 output : out STD_LOGIC_VECTOR (2 downto 0));
56 end component;
57
58 -- simple controller
59 component semi_decRingWinit is
60 Port (Reset : in STD_LOGIC;

C.6 VHDL code for asynchronous GCD simple desynchronization 107

61 Req_in : in STD_LOGIC;
62 Ack_in : out STD_LOGIC;
63 Req_out : out STD_LOGIC;
64 Ack_out : in STD_LOGIC;
65 Z : out STD_LOGIC_VECTOR (1 downto 0));
66 end component;
67
68 --- implemented controller --
69 component Latch_control_top is
70 Port (Reset : in STD_LOGIC;
71 Req_in : in STD_LOGIC;
72 Ack_in : out STD_LOGIC;
73 Req_out : out STD_LOGIC;
74 Ack_out : in STD_LOGIC;
75 Z : out STD_LOGIC_VECTOR (1 downto 0));
76 end component Latch_control_top;
77
78 component gcd_core IS
79 PORT (--clk: IN std_logic; -- The clock

signal.
80 reset: IN std_logic; -- Reset the module

.
81 req: IN std_logic; -- Start

computation. (DATA IN)
82 AB: IN std_logic_vector (7 downto 0); -- The two

operands. (DATA IN)
83 ack: OUT std_logic; -- Computation is

complete.
84 C: OUT std_logic_vector (7 downto 0); -- The result.
85 reg_a: IN std_logic_vector (7 downto 0);
86 next_reg_a: OUT std_logic_vector (7 downto 0);
87 reg_b: IN std_logic_vector (7 downto 0);
88 next_reg_b: OUT std_logic_vector (7 downto 0);
89 state: IN std_logic_vector (2 downto 0);
90 next_state: OUT std_logic_vector (2 downto 0));
91 END component;
92
93 component Fork is
94 Port (Req_in : in STD_LOGIC;
95 Req_out : out STD_LOGIC_VECTOR (1 downto 0);
96 Ack_in : in STD_LOGIC_VECTOR (1 downto 0);
97 Ack_out : out STD_LOGIC);
98 end component;
99

100 component Join is
101 Port (Req_in : in STD_LOGIC_VECTOR (1 downto 0);
102 Req_out : out STD_LOGIC;
103 Ack_in : in STD_LOGIC;
104 Ack_out : out STD_LOGIC_VECTOR (1 downto 0));
105 end component;
106
107 signal Int_regA , Int_NextA ,Int_regB , Int_NextB : std_logic_vector (7 downto 0)

;
108 signal IntState , Int_NextState : std_logic_vector (2 downto 0);
109 signal Latch_M , Latch_S : STD_LOGIC;
110 signal L_Int_A , L_Int_B : STD_LOGIC_vector (7 downto 0);
111 signal L_Int_State: STD_LOGIC_VECTOR (2 downto 0);
112 signal Int_req_in , Int_req_out , int_ack ,req_Join2control , req_control2fork :

std_logic;
113 signal ack_control2join , ack_fork2control : STD_LOGIC;
114 begin
115 Int_req_in <= Int_req_out after 5ns; -- Delay element
116
117 CORE: gcd_core port map (reset => Reset , req => input_valid , AB => Data_in ,

ack => output_valid , C => Data_out ,

108 VHDL Code

118 reg_a => Int_regA
, next_reg_a
=>

Int_NextA ,
reg_b =>
Int_regB ,
next_reg_b
=> Int_NextB
,

119 state =>
IntState
,
next_state
=>

Int_NextState
);

120
121 join1 : Join port map(Req_in (0) => Req_in ,
122 Req_in (1) =>

Int_req_in ,
123 Req_out =>

req_Join2control
,

124 Ack_in =>
ack_control2join
,

125 Ack_out (0) => Ack_out ,
126 Ack_out (1) =>

Int_ack);
127
128 fork1 : fork port map (Req_in => req_control2fork ,
129 Req_out (0) =>

Req_out ,
130 Req_out (1) =>

Int_req_out ,
131 Ack_in (0) => Ack_in

,
132 Ack_in (1) =>

Int_ack ,
133 Ack_out =>

ack_fork2control
);

134
135 Latc_control : semi_decRingWinit port map (Reset => Reset , --

semi_decRingWinitLatch_control_top
136 Req_in

=>

req_Join2control
,

137 Ack_out

=>

ack_fork2control
,

138 Req_out

=>

req_control2fork
,

C.6 VHDL code for asynchronous GCD simple desynchronization 109

139 Ack_in

=>

ack_control2join
,

140 Z
(0)

=>

Latch_M
,

141 Z
(1)

=>

Latch_S
)
;

142
143 L_A_M : Latch port map (Reset => Reset ,
144 CTRL =>

Latch_M ,
145 input =>

Int_NextA
,

146 output =>
L_Int_A)
;

147
148 L_A_S : Latch port map (Reset => Reset ,
149 CTRL =>

Latch_S ,
150 input =>

L_Int_A ,
151 output =>

Int_RegA
);

152
153 L_B_M : Latch port map (Reset => Reset ,
154 CTRL =>

Latch_M ,
155 input =>

Int_NextB
,

156 output =>
L_Int_B)
;

157
158 L_B_S : Latch port map (Reset => Reset ,
159 CTRL =>

Latch_S ,
160 input =>

L_Int_B ,
161 output =>

Int_RegB
);

162
163 L_S_M : Latch3bit port map (Reset => Reset ,

110 VHDL Code

164 CTRL

=>

Latch_M
,

165 input

=>
Int_NextState
,

166 output

=>
L_Int_State
)
;

167
168 L_S_S : Latch3bit port map (Reset => Reset ,
169 CTRL

=>

Latch_S
,

170 input

=>
L_Int_State
,

171 output

=>
IntState
)
;

172
173
174
175 end Structural;

Appendix D

VHDL Edge detection

1 --
--

2 -- Company: course 02154
3 -- Engineer: Rasmus Madsen s033176
4 --
5 -- Create Date: 13:20:28 11/16/2008
6 -- Design Name:
7 -- Module Name: BitFlipper - Behavioral
8 -- Project Name:
9 -- Target Devices:

10 -- Tool versions:
11 -- Description:
12 --
13 -- Dependencies:
14 --
15 -- Revision:
16 -- Revision 0.01 - File Created
17 -- Additional Comments:
18 --
19 -- 4 pixel flipper. this unit can be used to reverse the orde of the 4 inputs

. sot that ABCD -> DCBA
20 --

--

21 library IEEE;
22 use IEEE.STD_LOGIC_1164.ALL;
23 use IEEE.STD_LOGIC_ARITH.ALL;
24 use IEEE.STD_LOGIC_UNSIGNED.ALL;
25
26 ---- Uncomment the following library declaration if instantiating
27 ---- any Xilinx primitives in this code.
28 --library UNISIM;

112 VHDL Edge detection

29 --use UNISIM.VComponents.all;
30
31 entity BitFlipper is
32 Port (Word_in : in STD_LOGIC_VECTOR (31 downto 0);
33 flip : in STD_LOGIC;
34 Word_out : out STD_LOGIC_VECTOR (31 downto 0));
35 end BitFlipper;
36
37 architecture Behavioral of BitFlipper is
38
39 begin
40
41 flipbits : process(flip ,Word_in) is
42 begin
43 case flip is
44 when ’1’ =>
45 Word_out (31 downto 24) <= Word_in (7 downto 0);
46 Word_out (23 downto 16) <= Word_in (15 downto 8);
47 Word_out (15 downto 8) <= Word_in (23 downto 16);
48 Word_out (7 downto 0) <= Word_in (31 downto 24);
49 when others =>
50 Word_out (31 downto 24) <= Word_in (31 downto 24);
51 Word_out (23 downto 16) <= Word_in (23 downto 16);
52 Word_out (15 downto 8) <= Word_in (15 downto 8);
53 Word_out (7 downto 0) <= Word_in (7 downto 0);
54 end case;
55 end process flipbits;
56 end Behavioral;

1 --
--

2 -- Company:
3 -- Engineer:
4 --
5 -- Create Date: 14:19:30 05/09/2011
6 -- Design Name:
7 -- Module Name: count4bit_FF - Behavioral
8 -- Project Name:
9 -- Target Devices:

10 -- Tool versions:
11 -- Description:
12 --
13 -- Dependencies:
14 --
15 -- Revision:
16 -- Revision 0.01 - File Created
17 -- Additional Comments:
18 --
19 --

--

20 library IEEE;
21 use IEEE.STD_LOGIC_1164.ALL;
22 use IEEE.STD_LOGIC_ARITH.ALL;
23 use IEEE.STD_LOGIC_UNSIGNED.ALL;
24
25 ---- Uncomment the following library declaration if instantiating
26 ---- any Xilinx primitives in this code.
27 --library UNISIM;
28 --use UNISIM.VComponents.all;
29
30 entity count4bit_FF is
31 Port (clk : in STD_LOGIC;

113

32 lastval_in : in STD_LOGIC_VECTOR (3 downto 0);
33 count_in : in STD_LOGIC_VECTOR (3 downto 0);
34 lastval_out : out STD_LOGIC_VECTOR (3 downto 0);
35 count_out : out STD_LOGIC_VECTOR (3 downto 0);
36 targetR_in : in STD_LOGIC;
37 targetR_out : out STD_LOGIC);
38 end count4bit_FF;
39
40 architecture Behavioral of count4bit_FF is
41
42 begin
43 clocked : Process(clk , lastval_in , count_in , targetR_in)
44 begin
45 if (clk ’event and clk =’1’) then
46 count_out <= count_in;
47 lastval_out <= lastval_in;
48 targetR_out <= targetR_in;
49 end if;
50 end process;
51 end Behavioral;

1 --
--

2 -- Company: course 02154
3 -- Engineer: Rasmus madsen
4 --
5 -- Create Date: 22:30:48 11/16/2008
6 -- Design Name:
7 -- Module Name: counter_4bit - Behavioral
8 -- Project Name:
9 -- Target Devices:

10 -- Tool versions:
11 -- Description: 4bit counter with syncronous reset/load
12 --
13 -- Dependencies:
14 --
15 -- Revision:
16 -- Revision 0.01 - File Created
17 -- Additional Comments:
18 -- should be made into one generic counter when design works
19 --

--

20 library IEEE;
21 use IEEE.STD_LOGIC_1164.ALL;
22 use IEEE.STD_LOGIC_ARITH.ALL;
23 use IEEE.STD_LOGIC_UNSIGNED.ALL;
24
25 ---- Uncomment the following library declaration if instantiating
26 ---- any Xilinx primitives in this code.
27 --library UNISIM;
28 --use UNISIM.VComponents.all;
29
30 entity counter2bit is
31 Port (--clk : in STD_LOGIC;
32 reset : in STD_LOGIC; -- active high
33 pause : in STD_LOGIC;
34 countLow_in : in STD_LOGIC_VECTOR (1 downto 0);
35 countHigh_in : in STD_LOGIC_VECTOR (6 downto 0);
36 count_out_low : out STD_LOGIC_VECTOR (1 downto 0);
37 count_out_high :out STD_LOGIC_VECTOR(6 downto 0)
38);
39 end counter2bit;

114 VHDL Edge detection

40
41 architecture Behavioral of counter2bit is
42
43 --signal tempcountLow : STD_LOGIC_VECTOR (1 downto 0);
44 --signal tempcountHigh : integer := 0;
45 --signal tempcountHigh : STD_LOGIC_VECTOR(6 downto 0);
46
47 begin
48 count : process(reset ,pause ,countLow_in ,countHigh_in)
49 begin
50 --if clk = ’1’ and clk ’event then
51 if reset =’1’ then
52 count_out_low <= "00";
53 count_out_high <= "0000000" ;--0 ;--

tempcountHigh;
54 elsif pause =’1’ then
55 count_out_low <= countLow_in ;
56 count_out_high <= countHigh_in;
57 elsif countLow_in ="10" then
58 count_out_low <= "00";
59 if (countHigh_in = "1011001")then --

89) then --90 column= 0-89
60 count_out_high <= "0000000";

--0
61 else
62 count_out_high <= countHigh_in +1;
63 end if;
64 else
65 count_out_low <= countLow_in +1;
66 count_out_high <= countHigh_in;
67 end if;
68 --end if;
69
70 end process;
71 --count_out_low <= tempcountLOW;
72 --count_out_high <= conv_std_logic_vector(tempcountHigh ,7);
73 --count_out_high <=tempcountHigh;
74
75
76 end Behavioral;

1 --
--

2 -- Company: course 02154
3 -- Engineer: Rasmus madsen & Morten R. Jørgensen
4 --
5 -- Create Date: 22:15:40 11/17/2008
6 -- Design Name:
7 -- Module Name: EdgeTop - Behavioral
8 -- Project Name:
9 -- Target Devices:

10 -- Tool versions:
11 -- Description:
12 --
13 -- Dependencies:
14 --
15 -- Revision:
16 -- Revision 0.01 - File Created
17 -- Additional Comments:
18 --
19 --

--

115

20 library IEEE;
21 use IEEE.STD_LOGIC_1164.ALL;
22 use IEEE.STD_LOGIC_ARITH.ALL;
23 use IEEE.STD_LOGIC_UNSIGNED.ALL;
24
25 ---- Uncomment the following library declaration if instantiating
26 ---- any Xilinx primitives in this code.
27 --library UNISIM;
28 --use UNISIM.VComponents.all;
29
30 entity FSMTop is
31 Port (--clk : in STD_LOGIC; -- not used anymore
32 reset : in std_logic;
33 start : in STD_LOGIC;
34 hold : in STD_LOGIC;
35 done : out STD_LOGIC; --x
36
37
38 Regcount : out STD_LOGIC_VECTOR (3 downto 0); --x
39
40 -- FIFO control --
41 FIFOadress :out STD_logic_vector (1 downto 0); --x
42 FIFOread : out STD_LOGIC; --x
43 FIFOwrite : out STD_LOGIC; --x
44 -- mem counters --
45 MemColumCountOut: out STD_LOGIC_vector (6 downto 0);

--x
46 OffsetOut : out STD_LOGIC_VECTOR (1 downto 0); --x
47 Rowcount : out STD_LOGIC_VECTOR (8 downto 0); --x
48 -- write counter --
49 WriteAddress : out std_logic_vector (31 downto 0);

--x
50 read_write: out std_logic; -- 0 read , 1 = write --x
51 --test --
52 PxNr_out: out STD_LOGIC_VECTOR (8 downto 0); --x
53 stateout : out STD_LOGIC_VECTOR (3 downto 0);--

testing purpose only x
54
55 write_req : out std_logic;
56 write_ack : in std_logic;
57 offset_req : out std_logic;
58 offset_ack : in std_logic;
59 px_req : out std_logic;
60 px_ack : in std_logic;
61 reg_req : out std_logic;
62 reg_ack : in std_logic;
63 fsm_req : out STD_LOGIC;
64 fsm_ack :in STD_LOGIC
65);
66 end FSMTop;
67
68 architecture Behavioral of FSMTop is
69 ---------------signals here ---------------
70 signal regSel ,regPs ,regVal : STD_LOGIC;
71 signal bufSel ,bufPs ,bufVal : STD_LOGIC;
72 signal columnSel ,columnPs ,columnVal : STD_LOGIC;
73 signal rowPs ,rowSel ,rowVal : STD_LOGIC;
74 signal regL ,bufL : STD_LOGIC_VECTOR (3 downto 0);
75 signal columnL : STD_LOGIC_VECTOR (8 downto 0);
76 signal rowL : STD_LOGIC_VECTOR (8 downto 0);
77 --signal MemRCount : STD_LOGIC_VECTOR (8 downto 0);
78 --signal MemCCount :STD_LOGIC_VECTOR (6 downto 0);
79 signal ResetOffsetCounter :STD_LOGIC;
80 signal ResetMemCCount :STD_LOGIC;
81 signal OffsetPause : STD_LOGIC;

116 VHDL Edge detection

82 signal MemColPause : STD_LOGIC;
83 signal Wreset : STD_LOGIC;
84 Signal Wpause : STD_LOGIC;
85 signal int_state , int_sxt_state , int_mux_in , int_stateout : STD_LOGIC_VECTOR

(3 downto 0);
86 signal buf_lastval_in , buf_count_in , buf_lastval_out , buf_count_out :

STD_LOGIC_VECTOR(3 downto 0);
87 signal buf_target_in : STD_LOGIC;
88 signal reg_lastval_in , reg_count_in , reg_lastval_out , reg_count_out :

STD_LOGIC_VECTOR(3 downto 0);
89 signal reg_target_in : STD_LOGIC;
90 signal temp_reached_row_in ,temp_reached_column_in , temp_reached_row_out ,

temp_reached_column_out :STD_LOGIC;
91 signal temp_count_row_in , temp_count_column_in , temp_count_row_out ,

temp_count_column_out :STD_LOGIC_VECTOR (8 downto 0);
92 signal temp_count_low_in , temp_count_low_out : STD_LOGIC_VECTOR(1 downto 0)

;
93 signal temp_count_high_in , temp_count_high_out : STD_LOGIC_VECTOR(6 downto 0)

;
94 signal Wcount_in , Wcount_mem_in , Wcount_out : STD_LOGIC_VECTOR (31 downto 0);
95 signal NotReset : STD_LOGIC;
96 ------request and acknowledge signals

--
97 signal Write_req_in , Write_ack_in , write_req_out , write_ack_out : std_logic;

-- Write
98 signal offset_req_in , offset_ack_in , offset_req_out , offset_ack_out :

std_logic; -- offset
99 signal px_req_in , px_ack_in , px_req_out , px_ack_out: std_logic; -- pxcounter

100 signal reg_req_in , reg_ack_in , reg_req_out , reg_ack_out: std_logic; -- re
counter

101 signal buf_req_in , buf_ack_in , buf_req_out , buf_ack_out : std_logic; -- buf
102 signal fsm_req_del , fsm_ack_in , fsm_req_out , fsm_ack_out: std_logic;
103
104 signal Fork_write_req_out , Fork_write_ack_out : STD_LOGIC_VECTOR (1 downto 0);
105 signal Fork_req_delay: STD_LOGIC;
106 signal offset_write_req_out , offset_write_ack_out : STD_LOGIC_VECTOR (1 downto

0);
107 signal offset_req_delay: STD_LOGIC;
108 signal px_write_req_out , px_write_ack_out : STD_LOGIC_VECTOR (1 downto 0);
109 signal px_req_delay: STD_LOGIC;
110 signal reg_write_req_out , reg_write_ack_out : STD_LOGIC_VECTOR (1 downto 0);
111 signal reg_req_delay: STD_LOGIC;
112 signal buf_req_delay: STD_LOGIC;
113
114 signal fsm_7Req , fsm_7Ack : std_logic_vector (6 downto 0);
115
116 signal CTRL_upcount32bit , CTRL_counter2bit , CTRL_counter9bit , CTRL_buf ,

CTRL_reg , CTRL_FSM : STD_LOGIC_VECTOR (1 downto 0);
117 ---------------components here -------------------
118 component FSM_latch is
119 port (CTRL : in STD_LOGIC_VECTOR (1 downto 0); -- only difference (

clk)
120 hold : in STD_LOGIC;
121 reset : in STD_LOGIC;
122 Next_state : in STD_LOGIC_VECTOR (3 downto 0);
123 state : out STD_LOGIC_VECTOR (3 downto 0);
124 muxCtrl: in STD_LOGIC_VECTOR (3 downto 0);
125 stateout: out STD_LOGIC_VECTOR (3 downto 0));
126 end component FSM_latch;
127
128 component fork7port is
129 Port (Req_in : in STD_LOGIC;
130 Ack_in : out STD_LOGIC;
131 Req_out : out STD_LOGIC_VECTOR (6 downto 0);
132 Ack_out : in STD_LOGIC_VECTOR (6 downto 0));

117

133 end component fork7port;
134
135 component muxCTRL is
136 Port (next_state : in STD_LOGIC_VECTOR (3 downto 0);
137 muxCtrl_in : in STD_LOGIC_VECTOR (3 downto 0);
138 muxCtrl : out STD_LOGIC_VECTOR (3 downto 0));
139 end component muxCTRL;
140
141 component FSM is
142 Port (--clk : in STD_LOGIC;
143 --reset: in STD_LOGIC;
144 start: in std_logic;
145 -- hold : in STD_LOGIC;
146 -- FIFO control signals --
147 FIFOadress :out STD_logic_vector (1 downto 0);
148 FIFOread : out STD_LOGIC;
149 FIFOwrite : out STD_LOGIC;
150 -- register counter 0-8 + 15(15 = no register)--
151
152 regSelectReset : out STD_LOGIC;
153 regPause : out std_logic;
154 regLoad : out

STD_LOGIC_VECTOR (3 downto 0);
155 -- regValReached : in STD_LOGIC;
156
157 --- px column counter 0-351 --
158 columnReset : out STD_LOGIC;
159 columnPause : out STD_LOGIC;
160 columnLoad : out

STD_LOGIC_VECTOR (8 downto 0);
161 columnValueReached : in STD_LOGIC;
162 --px row counter 0-287 --
163 rowReset : out STD_LOGIC;
164 rowPause : out STD_LOGIC;
165 rowValueReached : in STD_LOGIC;
166 -- buffer counter 0-6 used to buffer in the

beginning of a new row --
167 bufReset : out STD_LOGIC;
168 bufPause : out std_logic;
169 bufLoadvalue : out STD_LOGIC_VECTOR (3

downto 0);
170 bufValReached: in STD_LOGIC;
171 -- MEM Counters --
172 -- MemRowCount : in STD_LOGIC_VECTOR (8 downto 0);
173 ResetMemColumCount: out STD_LOGIC;
174 MemColPause : out STD_LOGIC;
175 ResetRowOffsetCounter : out STD_LOGIC;
176 RowOffsetPause : out STD_LOGIC;
177 -- write counter --
178 Writereset : out STD_LOGIC;
179 writepause : OUT STD_LOGIC;
180 read_write: out std_logic; -- 1 read , 0 = write
181
182 --
183 done : out STD_LOGIC;
184 -- stateout : out STD_LOGIC_VECTOR (3 downto 0); --);

-- for testing purpose only
185 -- addressOut : out STD_LOGIC_VECTOR (31 downto 0));
186 --- new in/outs due to extraction of FF ----
187 next_state : out std_logic_vector (3 downto 0);
188 state : in std_logic_vector (3 downto 0));
189 --Muxctrl_in: in std_logic_vector (3 downto 0));
190 end component FSM;
191
192 component count4bit_latch is

118 VHDL Edge detection

193 Port (Reset : in STD_LOGIC;
194 CTRL : in STD_LOGIC_VECTOR (1 downto 0);
195 lastval_in : in STD_LOGIC_VECTOR (3 downto 0);
196 count_in : in STD_LOGIC_VECTOR (3 downto 0);
197 lastval_out : out STD_LOGIC_VECTOR (3 downto 0);
198 count_out : out STD_LOGIC_VECTOR (3 downto 0);
199 targetR_in : in STD_LOGIC;
200 targetR_out : out STD_LOGIC);
201 end component count4bit_latch;
202
203 component counter_4bit is
204 Port (--clk : in STD_LOGIC;
205 resetToLoad : in STD_LOGIC; -- active high
206 load : in STD_LOGIC_vector (3 downto 0);
207 pause: in std_logic;
208 count_in : in STD_LOGIC_VECTOR (3 downto 0);
209 lastval_in : in STD_LOGIC_VECTOR (3 downto 0);
210 ReachedTaget : out std_logic;
211 lastval_out : out STD_LOGIC_VECTOR (3 downto 0);
212 count_out : out STD_LOGIC_VECTOR (3 downto 0));
213 end component counter_4bit;
214
215 component counter9bit_latch is
216 Port (CTRL : in STD_LOGIC_VECTOR;
217 Reached_row_in : in STD_LOGIC;
218 Reached_colum_in : in STD_LOGIC;
219 Count_row_in : in STD_LOGIC_VECTOR (8 downto 0);
220 Count_column_in : in STD_LOGIC_VECTOR (8 downto 0);
221 Reached_row_out : out STD_LOGIC;
222 Reached_column_out : out STD_LOGIC;
223 count_row_out : out STD_LOGIC_VECTOR (8 downto 0);
224 count_column_out : out STD_LOGIC_VECTOR (8 downto 0));
225 end component counter9bit_latch;
226
227 component counter9bit is
228 Port (--clk : in STD_LOGIC;
229 resetToLoad : in STD_LOGIC; -- active high
230 load : in STD_LOGIC_vector (8 downto 0); -- 9 bits

represent up to 512 dec
231 pause: in std_logic;
232 reset_column : in STD_LOGIC;
233 Reached_row_in : std_LOGIC;
234 Count_column_in : in STD_LOGIC_VECTOR (8 downto 0);
235 Count_row_in : in STD_LOGIC_VECTOR (8 downto 0);
236 ReachedTaget_column : out std_logic; --reached 0
237 ReachedTaget_Row : out std_logic; -- reached 288
238 count_out_column : out STD_LOGIC_VECTOR (8 downto 0);
239 count_out_row : out STD_LOGIC_VECTOR (8 downto 0)
240);
241 end component counter9bit;
242
243
244 component counter2bit_latch is
245 Port (CTRL : in STD_LOGIC_VECTOR (1 downto 0);
246 count_Low_in : in STD_LOGIC_VECTOR (1 downto 0);
247 count_High_in : in STD_LOGIC_VECTOR (6 downto 0);
248 count_Low_out : out STD_LOGIC_VECTOR (1 downto 0);
249 Count_High_out : out STD_LOGIC_VECTOR (6 downto 0));
250 end component counter2bit_latch;
251
252 component counter2bit is
253 Port (--clk : in STD_LOGIC;
254 reset : in STD_LOGIC; -- active high
255 pause : in STD_LOGIC;
256 countLow_in : in STD_LOGIC_VECTOR (1 downto 0);

119

257 countHigh_in : in STD_LOGIC_VECTOR (6 downto 0);
258 count_out_low : out STD_LOGIC_VECTOR (1 downto 0);
259 count_out_high :out STD_LOGIC_VECTOR(6 downto 0)
260);
261 end component counter2bit;
262
263
264 component upcounter32bit_latch is
265 Port (CTRL : in STD_LOGIC_VECTOR (1 downto 0);
266 count_in : in STD_LOGIC_VECTOR (31 downto 0);
267 count_mem_in : in STD_LOGIC_VECTOR (31 downto 0);
268 count_out : out STD_LOGIC_VECTOR (31 downto 0);
269 count_mem_out : out STD_LOGIC_VECTOR (31 downto 0));
270 end component upcounter32bit_latch ;
271
272 component upcounter32bit is
273 Port (reset : in STD_LOGIC;
274 pause : in STD_LOGIC;
275 count_in : in STD_LOGIC_VECTOR (31 downto 0);
276 count_out : out STD_LOGIC_VECTOR (31 downto 0);
277 count_out_mem : out STD_LOGIC_VECTOR (31 downto 0)

);
278 end component upcounter32bit;
279
280 component Latch_control_top is
281 Port (Reset : in STD_LOGIC;
282 Req_in : in STD_LOGIC;
283 Ack_in : out STD_LOGIC;
284 Req_out : out STD_LOGIC;
285 Ack_out : in STD_LOGIC;
286 Master: out STD_LOGIC;
287 Slave: out STD_LOGIC);
288 end component Latch_control_top;
289
290 component Fork is
291 Port (Req_in : in STD_LOGIC;
292 Req_out : out STD_LOGIC_VECTOR (1 downto 0);
293 Ack_out : in STD_LOGIC_VECTOR (1 downto 0);
294 Ack_in : out STD_LOGIC);
295 end component Fork;
296
297 component Join is
298 Port (Req_in : in STD_LOGIC_VECTOR (1 downto 0);
299 Req_out : out STD_LOGIC;
300 Ack_out : in STD_LOGIC;
301 Ack_in : out STD_LOGIC_VECTOR (1 downto 0));
302 end component Join;
303
304 ----------------Test --------------
305 --------------------
306
307 begin
308
309 FSM_control : Latch_control_top port map(Reset => NotReset ,
310 Req_in

=>

fsm_7Req
(0)
,

311 Ack_in

=>

120 VHDL Edge detection

fsm_7Ack
(0)
,

312 Req_out

=>

fsm_req_out
,

313 Ack_out

=>

fsm_ack_out
,

314 Master

=>
CTRL_FSM
(0)
,

315 Slave

=>
CTRL_FSM
(1)

)
;

316
317 FSM_fork : fork7port port map(Req_in => fsm_req_del ,
318 Ack_in => fsm_ack_out ,
319 Req_out => fsm_7Req ,
320 Ack_out => fsm_7Ack);
321
322 fsm_req_del <= fsm_req_out after 1us;
323 fsm_req <= fsm_7Req (1);
324 fsm_7Ack (1) <=fsm_ack ;
325
326 State_FF : FSM_latch port map (CTRL => CTRL_FSM ,
327 hold => hold ,
328 reset => reset ,
329 Next_state =>

int_sxt_state ,
330 state => int_state ,
331 muxCtrl =>

int_stateout ,
332 stateout =>

int_mux_in);
333
334 mxc : muxCTRL port map(next_state => int_state ,-- int_sxt_state ,
335 muxCtrl_in =>

int_mux_in ,
336 muxCtrl =>

int_stateout)
;

337
338 statemachine : FSM port map (--clk => clk ,
339 --

121

reset

=>

reset
,

340 start

=>

start
,

341 --
hold

=>

hold
,

342 regSelectReset

=>

regSel
,

343 regPause

=>

regPs
,

344 regLoad

=>

regL
,

345 --
regValReached
=>

regVal
,--
regisers

346 bufReset

=>

bufSel
,

347 bufPause
=>

bufPs
,

348 bufLoadvalue

=>

122 VHDL Edge detection

bufL
,

349 bufValReached

=>

bufVal
,

--
buffer

350 columnReset

=>

columnSel
,

351 columnPause
=>

columnPs
,

352 columnLoad

=>

columnL
,

353 columnValueReached

=>

columnVal
,

--

column

354 rowReset

=>

rowSel
,

355 rowPause
=>

rowPs
,

--

not

connected

356 rowValueReached

123

=>

rowVal
,

--

row

357 FIFOadress

=>
FIFOadress
,

358 FIFOread

=>

FIFOread
,

359 FIFOwrite
=>
FIFOwrite
,

360 done

=>

done
,

361 --
stateout

=>

int_stateout
,

362 --
MemRowCount
=>

MemRCount
,

363 ResetMemColumCount

=>

ResetMemCCount
,

364 ResetRowOffsetCounter

=>

ResetOffsetCounter
,

365 RowOffsetPause

=>

124 VHDL Edge detection

OffsetPause
,

366 MemColPause

=>

MemColPause
,

367 writereset

=>

Wreset
,

368 writepause

=>

Wpause
,

369 read_write

=>

read_write
,

370 next_state

=>

int_sxt_state
,

371 state

=>

int_state
)
;

372 --
Muxctrl_in

=>

int_mux_in

)
;

373
374 buf_Join : Join port map(Req_in (0) => buf_req_delay ,
375 Req_in

(1)

=>

fsm_7Req

125

(3)
,

376 Req_out

=>

buf_req_in
,

377 Ack_out
=>

buf_ack_in
,

378 Ack_in
(0)

=>

buf_ack_out
,

379 Ack_in
(1)

=>

fsm_7Ack
(3)
)
;

380 buf_req_delay <= buf_req_out after 1us;
381
382 buf_control : Latch_control_top port map(Reset => NotReset ,
383 Req_in

=>

buf_req_in
,

384 Ack_in

=>

buf_ack_in
,

385 Req_out

=>

buf_req_out
,

386 Ack_out

=>

buf_ack_out
,

126 VHDL Edge detection

387 Master

=>
CTRL_buf
(0)
,

388 Slave

=>
CTRL_buf
(1)

)
;

389
390 bufFF : count4bit_latch port map (Reset => reset ,
391 CTRL

=>
CTRL_buf
,

392 lastval_in
=>

buf_lastval_in
,

393 count_in

=>

buf_count_in
,

394 lastval_out

=>

buf_lastval_out
,

395 count_out

=>

buf_count_out
,

396 targetR_in

=>

buf_target_in
,

397 targetR_out

=>

bufVal
)
;

127

398
399 bufcounter : counter_4bit port map (resetToLoad => bufSel ,
400 load

=>

bufL
,

401 pause

=>

bufPs
,

402 ReachedTaget

=>

buf_target_in
,

403 count_in
=>

buf_count_out
,

404 count_out

=>

buf_count_in
,

405 lastval_in

=>

buf_lastval_out
,

406 lastval_out

=>

buf_lastval_in
)
;

407
408 reg_Join : Join port map(Req_in (0) => reg_write_req_out (0),
409 Req_in

(1)

=>

fsm_7Req
(2)
,

410 Req_out

128 VHDL Edge detection

=>

reg_req_in
,

411 Ack_out
=>

reg_ack_in
,

412 Ack_in
(0)

=>

reg_write_ack_out
(0)
,

413 Ack_in
(1)

=>

fsm_7ack
(2)

)
;

414
415 reg_control : Latch_control_top port map(Reset => NotReset ,
416 Req_in

=>

reg_req_in
,

417 Ack_in

=>

reg_ack_in
,

418 Req_out

=>

reg_req_out
,

419 Ack_out

=>

reg_ack_out
,

420 Master

=>
CTRL_reg

129

(0)
,

421 Slave

=>
CTRL_reg
(1)

)
;

422
423 reg_fork: Fork port map(Req_in => reg_req_delay ,
424 Req_out

=>

reg_write_req_out
,

425 Ack_out

=>

reg_write_ack_out
,

426 Ack_in

=>

reg_ack_out

)
;

427
428 reg_req_delay <= reg_req_out after 1us;
429 reg_req <= reg_write_req_out (1); --reg_req is output of component
430 reg_write_ack_out (1) <= reg_ack;
431
432 regFF : count4bit_latch port map (Reset => reset ,
433 CTRL

=>
CTRL_reg
,

434 lastval_in
=>

reg_lastval_in
,

435 count_in

=>

reg_count_in
,

436 lastval_out

=>

130 VHDL Edge detection

reg_lastval_out
,

437 count_out

=>

reg_count_out
,

438 targetR_in

=>

reg_target_in
,

439 targetR_out

=>

regVal
)
;

440
441 regcounter : counter_4bit port map (resetToLoad => regSel ,
442 load

=>

regL
,

443 pause

=>

regPs
,

444 ReachedTaget

=>

reg_target_in
,

445 count_in

=>

reg_count_out
,

446 count_out

=>

reg_count_in
,

447 lastval_in

131

=>

reg_lastval_out
,

448 lastval_out

=>

reg_lastval_in
)
;

449
450 Px_Join : Join port map(Req_in (0) => px_write_req_out (0),
451 Req_in

(1)

=>

fsm_7Req
(4)
,

452 Req_out

=>

px_req_in
,

453 Ack_out
=>

px_ack_in
,

454 Ack_in
(0)

=>

px_write_ack_out
(0)
,

455 Ack_in
(1)

=>

fsm_7Ack
(4)
)
;

456
457 px_control : Latch_control_top port map(Reset => NotReset ,
458 Req_in

=>

px_req_in
,

132 VHDL Edge detection

459 Ack_in

=>

px_ack_in
,

460 Req_out

=>

px_req_out
,

461 Ack_out

=>

px_ack_out
,

462 Master

=>
CTRL_counter9bit
(0)
,

463 Slave

=>
CTRL_counter9bit
(1)

)
;

464
465 Px_fork: Fork port map(Req_in => px_req_delay ,
466 Req_out

=>

px_write_req_out
,

467 Ack_out

=>

px_write_ack_out
,

468 Ack_in

=>

px_ack_out

)
;

469
470 px_req_delay <= px_req_out after 1us;
471 px_req <= px_write_req_out (1);

133

472 px_write_ack_out (1) <= px_ack ;
473
474 pxFF : counter9bit_latch port map (CTRL => CTRL_counter9bit ,
475 Reached_row_in

=>

temp_reached_row_in
,

476 Reached_colum_in

=>

temp_reached_column_in
,

477 Count_row_in

=>

temp_count_row_in
,

478 Count_column_in

=>

temp_count_column_in
,

479 Reached_row_out

=>

temp_reached_row_out
,

480 Reached_column_out

=>

temp_reached_column_out
,

481 count_row_out

=>

temp_count_row_out
,

482 count_column_out
=>

temp_count_column_out

)
;

483
484 pxcounter : counter9bit port map(resetToLoad => columnSel ,
485 reset_column

=>

134 VHDL Edge detection

rowSel
,

486 load

=>

columnL
,

487 pause

=>

columnPs
,

488 ReachedTaget_column

=>

temp_reached_column_in
,

489 ReachedTaget_row

=>

temp_reached_row_in
,

490 count_out_column

=>

temp_count_column_in
,

491 count_out_row

=>

temp_count_row_in
,

492 Reached_row_in

=>

temp_reached_row_out
,

493 Count_column_in

=>

temp_count_column_out
,

494 Count_row_in

=>

temp_count_row_out

135

495)
;

496
497 offset_Join : Join port map(Req_in (0) => offset_write_req_out (0),
498 Req_in

(1)

=>

fsm_7Req
(5)
,

499 Req_out

=>

offset_req_in
,

500 Ack_out
=>

offset_ack_in
,

501 Ack_in
(0)

=>

offset_write_ack_out
(0)
,

502 Ack_in
(1)

=>

fsm_7ack
(5)

)
;

503
504 offset_control : Latch_control_top port map(Reset => NotReset ,
505 Req_in

=>

offset_req_in
,

506 Ack_in

=>

offset_ack_in
,

507 Req_out

136 VHDL Edge detection

=>

offset_req_out
,

508 Ack_out

=>

offset_ack_out
,

509 Master

=>
CTRL_counter2bit
(0)
,

510 Slave

=>
CTRL_counter2bit
(1)

)
;

511 offset_fork : Fork port map(Req_in => offset_req_delay ,
512 Req_out

=>

offset_write_req_out
,

513 Ack_out

=>

offset_write_ack_out
,

514 Ack_in

=>

offset_ack_out

)
;

515
516 offset_req_delay <= offset_req_out after 1us;
517 offset_req <= offset_write_req_out (1);
518 offset_write_ack_out (1) <= offset_ack;
519
520 offset_FF : counter2bit_latch port map (CTRL => CTRL_counter2bit ,
521 count_Low_in

=>

temp_count_low_in
,

137

522 count_High_in

=>

temp_count_high_in
,

523 count_Low_out

=>

temp_count_low_out
,

524 Count_High_out

=>

temp_count_high_out
)
;

525
526 offsetcounter : counter2bit port map (reset => ResetOffsetCounter ,
527 pause

=>
OffsetPause

,

528 count_out_low

=>

temp_count_low_in
,

529 count_out_high

=>
temp_count_high_in
,

530 countLow_in

=>

temp_count_low_out
,

531 countHigh_in

=>
temp_count_high_out
)
;

532
533 Write_join : Join port map(Req_in (0) => Fork_write_req_out (0),
534 Req_in

(1)

=>

138 VHDL Edge detection

fsm_7Req
(6)
,

535 Req_out

=>

Write_req_in
,

536 Ack_out
=>

Write_ack_in
,

537 Ack_in
(0)

=>

Fork_write_ack_out
(0)
,

538 Ack_in
(1)

=>

fsm_7ack
(6)

)
;

539
540 Write_control : Latch_control_top port map(Reset => NotReset ,
541 Req_in

=>

Write_req_in
,

542 Ack_in

=>

Write_ack_in
,

543 Req_out

=>

write_req_out
,

544 Ack_out

=>

139

write_ack_out
,

545 Master

=>
CTRL_upcount32bit
(0)
,

546 Slave

=>
CTRL_upcount32bit
(1)

)
;

547
548
549 write_fork : Fork port map(Req_in => Fork_req_delay ,
550 Req_out

=>

Fork_write_req_out
,

551 Ack_out

=>

Fork_write_ack_out
,

552 Ack_in

=>

write_ack_out

)
;

553
554 Fork_req_delay <= write_req_out after 1us;
555 write_req <= Fork_write_req_out (1);
556 Fork_write_ack_out (1) <= write_ack;
557
558 writecounter_FF : upcounter32bit_latch port map(CTRL =>

CTRL_upcount32bit ,
559 count_in

=>

Wcount_in
,

560 count_mem_in

=>
Wcount_mem_in
,

140 VHDL Edge detection

561 count_out
=>

Wcount_out
,

562 count_mem_out

=>

WriteAddress
)
;

563
564 writecounter : upcounter32bit port map (reset => Wreset ,
565 pause

=>

Wpause
,

566 count_in

=>

Wcount_out
,

567 count_out

=>

Wcount_in
,

568 count_out_mem

=>
Wcount_mem_in
)
;

569
570
571 ---------------TEST ---
572
573
574 ---
575 --NotReset <= not(reset);
576 NotReset <= reset;
577 -- Buf counter signal --
578 stateout <= int_stateout;
579
580 -- reg counter signal --
581 regcount <= reg_count_out;
582
583 ---px counter 9 bit FFout --
584 Rowcount <= temp_count_row_out;
585 PxNr_out <= temp_count_column_out ;
586 rowVal <= temp_reached_row_out ;
587 columnVal <= temp_reached_column_out ;
588 --------------------------------------
589 ----------- offset counter -----------
590 OffsetOut <= temp_count_low_out;

141

591 MemColumCountOut <=temp_count_high_out;
592 end Behavioral;

142 VHDL Edge detection

Bibliography

[1] K. Killpack F. Dartu C.S Amin, N. Menezes. Stastistic simple timing anal-
ysis: how simple can we get? 2005.

[2] Luciano Lavagno Jordi Cortadella. Desynchronization: synthesis of asyn-
chronous circuits from sunchronous specifications. IEEE Transactions on
Computer Aided design og intergraded circuits, 25(10), 2006.

[3] et al. Josep Carmona, Jordi Cortadella. Elastic circuits. IEEE Transactions
on Computer Aided design og intergraded circuits, 28(10), 2009.

[4] Davide Pandini Christos P. Sotiriou Nikolas Andrikos, Luciano Lavagno. A
fully automated desynchrononization flow for synchronous circuits. 2007.

[5] Martin Simlastik and Viera Stopjakova. Automated synchronous-to-
asynchronous circuits conversion: A survey. pages 348–358, 2008.

[6] Jens Sparsø. Asynchronous Circuit Design - A tutorial. Technical University
of Denmark, 2006.

[7] Paul Day Steven Furber. four-phase micropipeline latch control circuits.
page 8.

[8] Peter A. Beerel Ayoob E. Dooply Steven M. Nowick, Kenneth Y. Yun. Spec-
ulative completion for the design of high-performance asynchronous dynamic
adders. 1997.

