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Preface

The energy system stands at a crossroad, as electricity consumption and produc-

tion in Denmark is set to change significantly in the coming years. Electricity

generation will increasingly rely on wind energy, and consumption will adapt
accordingly by increasing its dependency on electricity rather than fossil fuels.

Plug-in hybrid electric vehicles are already appearing on the market, imposing
high constraints on the electricity grid. Ted Craver, chairman and CEO of the Cal-

ifornian utility Edison International, dares to go as far as saying that „there will

be more changes in the electricity industry in the next 10 years than there were
in the past 125 years we have been in business”. IT and communication lay the

ground for this paradigm shift, enabling actors to collaborate and communicate

more efficiently in the future power system, often referred to as the Smart Grid.

Traditionally, the power sector has adapted and reinforced the power grid by

laying more and thicker cables in the ground. A recent study by Energinet.dk
and the Danish Energy Association concluded that the social net cost of setting

up a Smart Grid is DKK 1.6 billion in contrast to the DKK 7.7 billion of a tradi-

tional expansion scheme. The value creation of a Smart Grid mainly comes from
the derivative benefits it creates, representing savings in electricity generation,

regulating power and reserves.

As this profound transformation occur, energy and information will have to tran-
sit together as a new entity, raising new challenges in terms of infrastructure and

security. The increasing reliance on fluctuating sources of energy propagates risk

and uncertainty to the whole electricity value chain, challenging existing market
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structures and balancing strategies.

Information and communication technologies along with statistical modelling

play a central role in forging the tools necessary to build a Smart Grid. As those

tools are beginning to be designed and developed, it is truly exciting to be able
to contribute with a small achievement on the way to solve one of the biggest

challenges of tomorrow.

Kongens Lyngby, Denmark
August 2011 Olivier Corradi & Henning Ochsenfeld
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Abstract

Integration of fluctuating energy such as wind power becomes more and more

essential in future energy systems. The reliance on it propagates risk and uncer-
tainty to the whole electricity value chain, challenging existing market structures

and balancing strategies. One solution is to take advantage of the flexibility of

consumers. This is done by acting on devices having a high inertia which there-
fore can be turned off during a short period of time without impacting user com-

fort. In this thesis, the heating system of households is considered, represented by

price-sensitive heat pumps. By reacting to a price signal, they automatically ad-
just their consumption in order to minimize energy costs. Such a price-responsive

population of households is investigated through a combination of a real-life ex-
periment and a simulation framework specially designed. The price-response is

modelled and extracted, and its dependencies on system parameters are exam-

ined. In the light of a real-life implementation, a non-linear forecasting model is
developed, requiring as data an aggregate metering of household consumptions,

the associated price signal and weather forecasts. Adaptive estimation of the

forecasting model is implemented, permitting the development of a predictive
controller generating prices for the simulated households. The proof-of-concept

is illustrated by following a constant consumption reference, yielding a reduction
in peak consumption of nearly 5% and a mean daily consumption shift of 11%.
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CHAPTER 1

Introduction and background

Denmark has ambitious political climate and energy targets to reduce CO2 emis-

sions, involving a deep integration of renewable energies, especially wind power,
into electricity generation. The objective is to integrate 50% wind energy by

2025. Due to its highly fluctuating nature, such a penetration of wind energy can

only be achieved if a high degree of flexibility is introduced in the consumption as
an efficient large-scale electricity storage solution is yet to be found. In a Smart

Grid, consumers will be able to interact with the power system, introducing com-

pletely new perspectives.

This project aims at demonstrating to which extent the flexibility of households

can be activated by means of a varying electricity price. We will focus on the
appliances that offer the highest flexibility potential, even though the procedure

may be generalized to other systems (and even to companies or industries).

Our goal is to create a proof-of-concept, and to investigate its potentials and limits.
As no such flexibility is available in the Danish society, we have based our study

on a combination of real data and on a simulation framework, specially designed
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for this purpose. The concept is then tested using the simulation framework, by

building a price generator steering the consumption of end users.
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1.1 The Danish electricity system

The Danish electricity system can be seen as a three-layer system consisting of

production, transmission and distribution/consumption. It contains two markets,
both liberalized: The retail market, where end users buy electricity from an elec-

tricity supplier, and the wholesale market, where market actors trade significant

amounts of electricity. The wholesale market is Nord Pool, the largest market for
electrical energy in the world. The retail market was liberalized in 2003, enabling

end users to chose their electricity provider, and the wholesale market was liber-
alized in 1999, to enhance free competition in cross–border electricity production

and trade, decoupling the transmission grid from electricity generation.

1.1.1 Actors

A variety of actors are present, with very different but crucial roles (Figure 1.1).

Central power stations

Combined

Heat and Power

Local Combined

Heat and Power

Wind turbines

Wind turbines

Industrial

autoproducers

Hydro

Households

Companies

Foreign

countries

Industries

400-132 kV

60-30 kV

0,4 kV

20-6 kV

Wind turbines

Foreign countriesProduction Transmission Distribution/consumption

O!shore wind farms

Source: Danish Energy Agency

Figure 1.1: The Danish electricity system consists of three layers: Production, transmission
and distribution/consumption.

Transmission system operator (TSO) Owns the high voltage installations (the
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backbone of the electricity system) and the international connections. Its

role is to transmit electrical power from generation plants to regional elec-
tricity distribution operators and to ensure stability and balance in the en-

ergy system. To do so, it accepts bids for regulating power on the regulat-

ing power market. The TSO is also involved in handling ancillary services
maintaining grid stability. Balancing the energy system means maintaining

grid frequency (related to speed of rotation of generators) by balancing the

amount of generated electricity with the amount consumed. In Denmark,
the TSO is represented by the state-owned monopoly Energinet.dk. Fur-

thermore, the TSO develops market rules and regulations that provide a
framework for a well–functioning energy market.

Distribution system operator (DSO) Operates the distribution network and me-
ters data on production and consumption. There are multiple DSOs in Den-

mark, acting as monopolies in each region.

Generating companies Produces electricity and sells it either directly to an elec-

tricity supplier or to Nord Pool.

Retailers Concludes contracts with consumers about the supply of electricity.
The electricity supplier buys electricity either at a power exchange market

(Nord Pool), from an electricity producer or from a third party electricity

trader. The end user has the right to change from one electricity supplier to
another through the retail market.

Balance responsible parties (BRP) Production, consumption and trade activi-

ties are assigned to the BRP who enters an agreement with Energinet.dk,

assuming responsibility for one or several specific activities (production,
consumption or trading). The BRP assumes the financial responsibility for

the imbalances they cause. Note that generating companies (produces)
have the possibility to sell regulating power directly to Energinet.dk via

the regulating power market if they act as a BRP. This is also the case for

retailers.

Nord Pool - the Nordic power exchange Nord Pool is the Nordic power exchange
market and is completely owned by Nordic TSOs.

The TSO and the DSOs are regulated monopolies, and are subject to strict reg-
ulation. One company can take on multiple roles, like e. g. DONG Energy who

represents both a balance responsible, retailer and producer.
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1.1.2 Various markets for electricity trading

Most of the trading between market actors is made via the power exchange Nord

Pool, a common Nordic power exchange market owned by all Nordic TSOs (Fin-
land, Norway, Sweden and Denmark). Nord Pool was established in 1996, and

Denmark fully joined in 2000. Over 75% of all electricity consumption in the

Nordic countries is traded through Nord Pool1.

Balancing market or

“intra-day” market

Elbas

Regulating

 power market

Reserves

Spot market or

“day-ahead” market

Elspot

Financial

market

DAY BEFOREDAYS, WEEKS,

MONTHS OR YEARS BEFORE

HOUR BEFORE OPERATING TIME

NORD POOL

>75% OF CONSUMED ELECTRICITY

IS TRADED ON NORD POOL

Figure 1.2: Different markets operate at different time scales in order to adjust to unforeseen
deviations from a consumption and production schedule.

Different markets operating at different time scales provide flexibility to un-

foreseen events that could cause deviations in the production and consumption
schedule (Figure 1.2). Those events could be infrastructure breakdowns, fluctu-

ations in wind energy or simply a manifestation of the stochastic behaviour of

consumers using energy when they see fit. The following markets are used [7]:

The day-ahead market: Elspot Electricity for delivery the next day is traded on

Elspot (also referred to as Nord Pool Spot). The trade results in a price
that may be characterised as the market price of electricity in the Nordic

countries. Elspot is based on the auction principle, i. e. all players that want

to buy or sell energy make bids consisting of a price (Euro) and quantity
(MW). Bidding is permitted up to 12:00 noon before the day of operation.

One hour after, Nord Pool establishes the market price (also called clearing
price or system price) by matching supply and demand curves (Figure 1.3).

The intra-day market: Elbas Electricity can be traded up to one hour before
the delivery hour on Elbas. This makes it possible for players to buy and

sell as required in order to ensure balance right up to the delivery hour,

1http://energitilsynet.dk

http://energitilsynet.dk


6 Introduction and background

for example in case of outages or deviations in the planned wind energy

production.

The Nordic regulating power market Also based on the auction principle, the

regulating power market permits electricity trading between the Nordic
TSOs and BRPs to maintain this balance. Trading on this market is pos-

sible up till 30 minutes before the operating hour. The TSOs can either
submit bids for increased production (upwards regulation) or reduced pro-

duction (downwards regulation). Capacity bought or sold is to be activated

in 15 minutes and kept until the end of the operating hour. The offered
volumes of regulating power bids are forwarded to the Nordic Operation

Information System (NOIS) which is a common Nordic list including bids

from Danish, Norwegian, Swedish, and Finnish partners. If there is a need
for upregulation, the Danish TSO activates (e. g. accepts bids from the BRP)

the needed volume of regulating power at the lowest bid price on the NOIS
list. On the other hand, in times with a need for downregulation, the TSO

accepts bids for selling the surplus volume to the BRP with the highest bid

for downregulation.

Price (€)

Quantity (MW)

System price

Demand Supply

Figure 1.3: Suppliers and consumers make bids on a market according to their electricity
needs or available capacity. The aggregated demand curve is constructed by
ranking bids from highest to lowest, and the equilibrium price is then found as
the intersection of both curves.

If deviations from the scheduled production and consumption produce imbal-

ances in the system that no market can cover, the TSOs have emergency reserves
that can be used to restore balance (in the case of a major breakdown for exam-

ple).
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1.1.3 Imbalance settlements

The grid companies have the obligation to supply the Danish TSO Energinet.dk
with information on metered data for the consumption and production of each

BRP. Every day, Energinet.dk sends out to the BRP their metered consumption/pro-

duction for the day before. Imbalances between the schedule from the BRP and
the real amount metered, are then settled financially [8].

1.2 The concept of consumption control by price

In the current setup, supply and demand are balanced using markets to activate
the flexibility of production. Depending on market prices, the profitability of pro-

ducers mainly depends on the type of production used. For example, hydropower

is very flexible, as its resource (water) is storable. It has the advantage of being
able to produce when the electricity prices are high. On the contrary, wind en-

ergy is non-storable, and its profitability therefore directly fluctuates with the

wind itself and the market prices (if the operating costs remain constant). Some
production means, because of their expensive nature, are only activated in situa-

tions of very high demand, where the price is high enough to cover the operating
costs. As an example, diesel generators can quickly be activated – but to a high

cost. Furthermore, in the case of overproduction (too much wind for example),

producers can be paid to stop producing, enabling them to cover their operating
expenses preventing an unnecessary production.

In that sense, the flexibility of production is based on the logic of maximizing

profits by exchanging energy on the power markets. The flexibility of consump-
tion on the other hand is not fully activated, because the underlying structure

simply does not exist (both in terms of market and infrastructure). Because end-
users are hidden behind the electricity supplier, the TSO is not in direct contact

with the end-user, and therefore can not activate its available flexibility. However,

it is most likely that end users are willing to become flexible if price incentives
are provided. This flexibility of demand, or response to a certain control signal,

is called demand response.
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1.2.1 Different objectives for multiple actors

Consumers can be very different in their control objectives. Some might be very
interested in reducing costs, others in reducing environmental impact or

even in increasing comfort by adding intelligence in their homes (in the

case of households). Industry consumers are however most likely to have
an objective based on maximizing profit. Controlling the consumption of

end users means following and coordinating those multiple objectives. The
price incentive might be the most motivating control signal, but one could

imagine to control the consumption with a mixture of electricity price and

CO2 footprint of production.

The generating companies represent a broad range of actors, ranging from a

single wind turbine to large companies with a portfolio of power produc-
ing units. Its main objective is however to maximize profit, and has little

interest in controlling the consumption.

The TSO is responsible for ensuring the security of supply. Its objective is there-

fore to balance production and consumption, such that reserves are always

available when needed and such that no unused power is generated. The
TSO has no direct control over production or consumption. An indirect

form of control takes place through the regulating power market, where
electricity prices stabilize the exchange of power, both inside Denmark and

with the neighbouring countries. It could therefore be interesting for the

TSO to extend the power markets to the end-users, so that they also be-
come price-responsive, in the same way that power producers already react

to prices.

The DSO is responsible for the distribution of electricity and the subsequent in-

frastructure used. Its objective is to provide sufficient grid access at any

time and to avoid congestion in case of high load. By discriminating ge-
ographically electricity prices of end-users, the DSO could better manage

congestions and even prevent breakdowns of weak parts of the system.

The BRP and the electricity supplier (or retailer) buy or sell electricity. Their

objective is to maximize profits, and therefore they are interested in buy-
ing and selling at the right time. Furthermore, the BRP pays penalties for

the imbalance it has caused in deviating from its planned consumption or

production. Controlling the consumption with price is therefore a mean to
minimize the paid penalties by adjusting the consumption on a short time

scale such that it follows the submitted plan (Figure 1.4).

In the light of a proof-of-concept, we will focus on the control of consumption,
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Figure 1.4: One of the possible implementations of a control-by-price strategy would aim at
minimizing the penalties paid by the Balance Responsible Party by adjusting, on
a short time scale, the consumption such that it follows the original schedule.

following the objectives of the BRP. By improving the capabilities of the BRP to
follow a certain consumption schedule, higher shares of fluctuating energies can

then be introduced.

Identifying the flexible part of the consumption

In order to be able to control the consumption, one must assess which part of it is

actually flexible. The 2009 Danish electricity consumption can be broken down
three main parts [1].

• Commercial activities and utilities, 11 918 GWh (37% of total)

• Industry and agriculture, 10 752 GWh (33% of total)

• Households, 9 495 GWh (30% of total)

As a starting point for simplicity, households are considered, accounting for 30%

of the total Danish electricity consumption. Inside Danish households, the elec-

tricity consumption is broken down into the following groups [1],

• Fridge and Freezer, flexible (16% of total)

• Washing and drying, somewhat flexible (15% of total)

• Heating (air+water), flexible (14% of total)

• TV/Hifi, not flexible (14% of total)
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• Light, not flexible (13% of total)

• Others, not flexible (10% of total)

• Computer, not flexible (10% of total)

• Cooking, not flexible (8% of total)

where flexibility describes the extent to which the appliances in the given cate-
gory are able to defer their consumption. Another way to phrase this would be to

define flexible appliances as systems that have a significant inertia, or sufficiently
long time constants, such that they can be turned off during a certain period of

time without significantly impacting user comfort.

Heating and cooling are found to represent the biggest portion (in consumption)
of price-responsive appliances. Their flexibility could be activated by lowering or

increasing their temperature thermostat (setpoint) depending on the electricity

price. Some hard comfort bounds can then be applied to prevent the temperature
setpoints to diverge from a certain comfort zone (Figure 1.5a).

Standardized price

Price sensitivity line

with slope k

Temperature

setpoint

adjustment

0

Max.

0

Min.

(a) A change in price yields a change of the heating
set point within a certain comfort zone.
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(b) Price smoothing strategies with τ = 24 hours.
Method 3 captures a doubling of the price as
an increase of +100%.

Figure 1.5

However, in order to adjust the temperature setpoint depending on a price, the

end-user has to assess how high or low the price of electricity is at a given point

in time. This can only be achieved if the current price is compared to a reference,
which could be a daily mean for example. This allows for slow price variations to

be filtered out (such as monthly or yearly variations), as one would like to avoid
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turning off appliances caused by increase of prices over one year for example.

The received market price pt can therefore be transformed into a dimensionless
standardized price ρt, which is then independent of currency and insensitive to

slow variations:

ρt =
pt − µt

σt

. (1.1)

µt is the price reference, and σt a standardization factor accounting for the price

volatility. A simple approach is to compute µt as the mean over 24 hours, and σt

as the standard deviation over the same 24 hours [9]. Note that this first method
equally weights past measurements.

[19] proposed a second method having µt computed as an average with expo-

nentially decaying weights, also called exponentially weighted moving average.
Nevertheless, the two previous approaches have the major drawback that when

the price is close to constant, the standard deviation is close to zero, yielding very

high fluctuations in the standardized price (Figure 1.5b).

We therefore propose the idea of computing the increase in price with respect

to a certain reference p̄t, where the latter is the exponentially weighted moving
average previously mentioned (method 3):

ρt =
pt

p̄t−1
− 1. (1.2)

The exponentially weighted moving average, in its recursive form, is stated as

p̄t = p̄t−1 +
∆t

∆t+ τ
(pt − p̄t−1) , (1.3)

where τ is the time constant accounting for how long a price is remembered

when computing the reference and ∆t denotes the sampling time. Note that

Equation (1.2) does not take the volatility into account.

The standardized price has now a simple interpretation: when a doubling of the

price occurs, the standardized price is +100%. The slope of the price sensitivity
line in Figure 1.5a can therefore be expressed in degrees Celsius per percentage

of increase of price. This method however assumes that the reference price is

different from zero, which is expected to be fulfilled (this can only occur if the
price is kept at zero during the whole time window over which the reference is

computed).
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Combining comfort and flexibility by introducing occupancy modes

Heating needs are different during the day. Having appliances able to control

temperature setpoints, it is possible to save energy when users are not home,
and to pre-heat in anticipation of their return. Inspired from the Olympic Penin-

sula experiment (described in Chapter 2), so-called occupancy modes are defined,

triggered by the user or according to a schedule. Three occupancy modes are in-
troduced: night mode, work mode and home mode. Each occupancy mode is

mapped to a setpoint, a price sensitivity and related comfort bounds. For ex-

ample, during work mode, the heating setpoint could be lowered, and the price
sensitivities increased. On the other hand, during night mode, the heating set-

point could stay the same, but the price sensitivity and comfort bounds could be
increased to allow for greater flexibility (thus saving money and energy).

1.2.2 Integration into the Danish electricity system

In order to take full benefits of price responsive users, the consumption has to be

measured close to real time. The resulting prices adjusting the consumption must

then accordingly be sent out right after the measurements have taken place. This
puts quite heavy constraints on the IT and communication infrastructure. Me-

tering is right now done by the grid companies, and is far from being realtime.

Launching in 2012, Energinet.dk’s DataHub2, aims at improving all communi-
cation on the Danish electricity market by centralizing the exchanged data and

standardizing the data models. However, this might not solve the costly problem
of installing the infrastructure needed for a real-time communication with end

users.

The control by price concept previously presented therefore aimed at operating
on an aggregated scale. The individual consumption of each household is not

needed: grid measurements (accounting for an aggregate of users) are sufficient

because as the number of measured end users grows, their usage patterns become
easier to model. It might be necessary to cluster different groups of users in order

to see those patterns better (geographically, by house sizes, etc.). Working on ag-
gregates is more robust to missing measurements, due to temporary breakdowns

or communication failures. Furthermore, electricity prices can be broadcasted

efficiently through the Internet, near real-time. Security measures have to be
taken into account, as the authenticity of the price sender has to be verified. This

leaves smaller infrastructure costs than extending the electricty grid by the use of

2http://www.energinet.dk/DA/El/DataHub/Sider/DataHub.aspx

http://www.energinet.dk/DA/El/DataHub/Sider/DataHub.aspx


1.2 The concept of consumption control by price 13

more stressable hardware, reduced to the installation of internet-connected price

responsive appliances and to the installation or upgrade of grid measurements
instruments that should be able to communicate near real-time. In this project,

we will assume near real-time to be 5-minutes. However, this time scale is still an

open question and the success of such an implementation will probably directly
depend on it.

Wind power largely causes imbalances in the Danish power system, accounting

for more than 40% of up- and downregulation imbalances. Because wind power
represents such a big portion of the production capacity, its fluctuations have

very costly consequences and limitations. As an example, negative prices have
been observed on Nord Pool as an effect of a very high wind production at a time

where neighbouring countries also have a high wind production. Turbines are

then shut down, as they are too expensive to operate compared to the income
they generate. In order to be able to integrate even more wind power, the Danish

power system has to be better at accommodating with its variability.

A simple but very concrete application of a control by price is therefore to help
the Balance Responsible Parties (BRP) reducing penalties they have to pay when

deviating from planned production/consumption schedules. If a BRP is able to
set up the appropriate metering capabilities of his customers, he could use a

price incentive to activate their flexibility. By reducing the paid penalties on

the regulating power market, one could say that the BRP sold flexibility to the
market.

Breakdown of the electricity price

Seen from the perspective of an end user buying from an electricity supplier, the

electricity price consists of several elements. The fraction of electricity price that
represents the energy content itself is only approximately 20% of the price that

the end user will pay [1], see Figure 1.6. Government taxes represent 37%, Value
Added Tax (VAT) 15% and transportation costs (15%).

For an end user to be really price responsive, the variable part of the price must

be significant. A political issue is then to change the electricity price structure
such that end users can become price responsive. Taxes could for example vary

with the Nord Pool prices instead of being fixed.
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Figure 1.6: The fraction of the electricity price that represents the energy content itself is
only approximately 20%. In order to vary the electricity price, the taxes must
also vary, as they account for more than half of the price.

1.2.3 Related projects

Several projects are related to this topic. The following list is not exhaustive,

but is representative of the projects we have been in contact with during this
thesis. Project descriptions have directly been taken from the project’s websites

or introductory reports.

iPower The iPower platform3 is also known as the Strategic Platform for Inno-
vation and Research within Intelligent Electricity (SPIR). The goal of this

platform is to contribute to the development of an intelligent and flexible

electricity system capable of handling a large part of sustainable electric-
ity production in areas where production varies due to weather conditions

(sun, wind etc). Over the next 5 years, 31 partners shall conduct research

and supervise the development of a transition towards production based,
flexible electricity consumption as opposed to the current electricity con-

sumption which is based on consumers’ needs. The total budget amounts
to DKK 120 mio. Risø National Laboratory for Sustainable Energy at the

Technical University of Denmark (Risø DTU) is the coordinator and has the

overall responsibility that the iPower platform achieves the desired results;
whereas Center for Electric Technology (CET) and Danish Technological

Institute (DTI) are responsible for coordinating the scientific part and inno-

vation part respectively.

Ensymora The Ensymora (ENergy SYstems MOdelling, Research and Analysis4)

3http://www.risoe.dtu.dk/Research/sustainable_energy/energy_systems/projects/IES_IPower.aspx
4http://www.ensymora.dk/

http://www.risoe.dtu.dk/Research/sustainable_energy/energy_systems/projects/IES_IPower.aspx
http://www.ensymora.dk/
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research project has the objective to develop and improve methods and

models used for energy systems analysis and planning. Those models aim at
better reflecting the large changes in future energy systems and at analysing

technical options, economic incentives, and policies related to both demand

and supply of electricity. In particular, the models are used to address the
challenges of a fossil free energy system. The project is hosted at the Sys-

tems Analysis Division of Risø DTU.

FlexPower FlexPower investigates the potential for using demand as a stable

and low cost resource for regulating power. In this project, a market is
designed and tested, make using of one-way price signals to activate elec-

tricity demand and small-scale generation as regulating power. The idea of
using price signals to activate new resources as ancillary services is also be

studied. The project runs from June 2010 to June 2013 with a total budget

of DKK 10 mio.

EcoGrid The key objective of the EcoGrid EU project5 is to demonstrate the ef-
ficient operation of a distribution power system with high penetration of

many and variable renewable energy resources The demonstration will take

place on the Danish island Bornholm with more than 50 % electricity con-
sumption from renewable energy production. A real-time market concept

will be developed to give small end-users of electricity and distributed re-

newable energy sources new options (and potential economic benefits) for
offering TSO’s additional balancing and ancillary services. The total budget

for EcoGrid EU is EUR 21 million of which approximately half is financed
by the EU. The project is expected to have its formal outset medio 2011.

eFlex The DONG Energy E-Flex project6 is a demand-response project designed

to evaluate the readiness and motivation of household customers to use

energy in a flexible manner. A total of 155 qualified households have been
identified, and each household is provided with a home energy manage-

ment solution, which enables the residents to monitor and control the en-

ergy consumption, and to individually notice and register the impact and
effects which their changes in behaviour can cause in the electricity distri-

bution system and on the environment.

5http://energinet.dk/EN/FORSKNING/EcoGrid-EU/Sider/EU-EcoGrid-net.aspx
6http://www.dongenergy.dk/distribution/da/privat/eflex/Pages/projekteflex.aspx

http://energinet.dk/EN/FORSKNING/EcoGrid-EU/Sider/EU-EcoGrid-net.aspx
http://www.dongenergy.dk/distribution/da/privat/eflex/Pages/projekteflex.aspx
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1.3 Problem formulation

Consider the following notations:

ci = Consumption at time index i

pi = Price at time index i

zi = Forecasted external variables at time index i

t = Time index at which a price schedule has to be generated (scheduling time)

k = Lookahead time

K = Maximum forecasting horizon

ct = Vector of consumptions up to time t

pt = Vector of prices up to time t

Ẑt = Matrix of forecasted external variables up to time t

Ft = Information set available at time t

pt,k = k-step ahead price generated at time t

ct,k(·) = k-step ahead consumption depending on prices generated at time t

c
∗

t,k = k-step ahead desired consumption target at time t

wt,k = k-step ahead consumption cost weight factor at time t

p
min
t,k = k-step ahead lower price limit at time t

p
max
t,k = k-step ahead upper price limit at time t

p
∗

t,k = k-step ahead desired price level at time t

λt,k = k-step ahead penalty associated with deviation from that price level

Every time a control action is to be taken, prices are to be generated up to a hori-
zon K with the objective of following a set of future consumption targets. This

can be seen as an optimization problem where future expected costs are mini-
mized, given the information set Ft = (ct,pt, Ẑt+K) available at time index t.
It is therefore assumed that the external variables have been forecasted up to

horizon K.

Because the cost of deviating from the consumption reference varies with time,

future costs are weighted with a factor wt,k. Furthermore, in order to keep the
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price constrained, one could penalize the control signal (imposing a soft con-

straint) or even restrict it to a certain range. Both solutions are considered here.

Note that a k-step ahead variable associated with a scheduling time t is not

uniquely identified by the subscript t + k as several overlapping schedules can

refer to the same time index t + k. In order to distinguish future values at the
same time index t + k associated with different schedules, the subscript t, k is

used, denoting the k-step ahead value for the scheduling time t.

At a given time index t, the optimal price schedule pt,1, . . . , pt,k up to a horizon
K is obtained by minimizing the (future) expected costs

L(pt,1, . . . , pt,K) = E

{

K
∑

k=1

wt,k

∥

∥ct,k (pt,1, . . . , pt,k,Ft)− c∗t,k
∥

∥

2

+ λt,k

∥

∥pt,k − p∗t,k
∥

∥

2
∣

∣

∣

∣

Ft

}

(1.4)

subject to constraints on future prices pt,k (the control signal), and on the future
consumption ct,k (the controlled signal)

pmin
t,k ≤ pt,k ≤ pmax

t,k (1.5)

0 ≤ ct,k < cmax
t,k . (1.6)

Note that the expectation operator is used in Equation (1.4) because the future

consumption ct,k is unknown.

Furthermore, using the fact that E{·2} = E{·}2 + Var {·} (from the definition of
variance) and because the expectation is a linear operator, one can rewrite the

loss function to

L(pt,1, . . . , pt,K) =

K
∑

k=1

(

wt,k

(

E {ct,k (pt,1, . . . , pt,k,Ft) |Ft} − c∗t,k

)2

+ wt,k

(

Var {ct,k (pt,1, . . . , pt,k,Ft) |Ft}
)

+ λt,k

(

pt,k − p∗t,k
)2

)

. (1.7)

As we will see in Section 5.2.1, the conditional expectation in Equation (1.7) is
actually the optimal k-step prediction of the consumption, and the conditional

variance is the associated uncertainty.
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Minimizing this loss function therefore not only implies finding prices such that

the predicted consumption follows the reference: it also implies finding a fore-
casting model for the consumption, and its related uncertainty. This uncertainty

might vary depending on the price, and therefore it must be taken into account

when selecting the optimal price schedule.

Four steps have consequently been identified in the development of the project:

First, collect data from experiments and simulations. Second, identify the dy-

namics of the aggregated consumption as a response to a price signal. Third,
construct a forecasting model to predict the aggregated consumption. Finally,

build a price generator (controller) able to follow a certain consumption target.



CHAPTER 2

The Olympic Peninsula
experiment

Up to now, electricity consumers have been primarily ’passive’, with predictable

and regular consumption patterns. With the necessity of activating consumer

flexibility, consumers will play an increasingly important role in the power sys-
tem. In order to understand and assess the lurking flexibility potentials, field

experiments must be conducted. One of those experiments is the Olympic Penin-
sula Project, part of the Pacific Northwest GridWiseTM Testbed Demonstration

Projects, led as a field demonstration of smart grid technologies by the Pacific

Northwest National Laboratory (PNNL) for the U.S. Department of Energy (DOE) [9].



20 The Olympic Peninsula experiment

2.1 The experiment

The Olympic Peninsula experiment took place in the Washington and Oregon
states between April 2006 and March 2007 aiming at demonstrating to what ex-

tent it is possible to control the electricity consumption using electricity prices.

The concrete objective was to to constrain the power delivered by the feeder sup-
plying this area. For this purpose, an electricity price signal was sent out every

five minutes to residential and commercial energy management systems, induc-

ing actions on the devices under their control. In the light of the project, we want
to restrict our focus on residential control. 27 households1 participated in this

project. Firstly, the appliances triggered a control action increasing or lowering
the consumption of connected devices depending on the price level. Secondly,

those appliances formulated price offers (bids) expressing the current electricity

needs of the individual residents. The aggregated electricity bids (demand) and
production capacities of the generators (supply) together with feeder constraints

(supply limits) yielded a clearance price that was sent out to customers every 5

minute (Figure 2.1). The calculation of the clearing price was done by intersect-
ing supply and demand curves. This means that in this experiment, the controller
generating the prices was the market itself. To be able to deal with real-cash
incentives without changing the existing electricity market structure, a ’shadow’

market was established, restricted to the project participants.

Production
plants

Residential
appliance

Supply and demand
economic equilibrium

supply bids

demand bids

clearance price

Figure 2.1: Market control in the Olympic Peninsula experiment. Energy producers and con-
sumers bid on the market according to their needs or available capacity. The
resulting clearing price is obtained by matching supply and demand curves lead-
ing to an economic equilibrium.

HVAC (Heating, Ventilation and Air Conditioning) devices, water heaters and
cloth dryers of participating customers were controlled in the experiment. The

1The Olympic Peninsula experiment report [9] mentions 31 but only 27 are measured
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major part of the devices consisted however of heating since not every household

was equipped with controlled cloth dryers and space-cooling systems.

Appliances adjusted the consumption of the connected devices according to the

concept introduced in Section 1.2, i. e. comfort definitions and price sensitivities

of the appliances varied over the day by means of occupancy modes, triggered by
the user or according to a schedule. For heating and cooling devices, the inter-

preted (standardized) price signal caused a shift in the setpoint, depending on a

price sensitivity parameter, and associated comfort bounds. For each heating and
cooling appliance, each occupancy mode was mapped to a specific setpoint, price

sensitivity and their associated comfort bounds. Those mappings were individu-
ally assigned by each of the participants before the start of the experiment.

Two groups were available: the Real–Time Pricing (RTP) group of 27 partici-

pants described above and a comparative control (CTRL) group of 26 participants
which had no price incentives.

The following section describes the available data set in more detail and how it

was processed in order to obtain a solid basis for later modelling.

2.2 Preparing the dataset

The following measurements are available, recorded over an experimental period
of one year:

• Aggregated energy consumption of the RTP and the comparative CTRL
group (15 minutes scale)

• Broadcasted clearance prices (5 minutes scale)

• Occupancy modes of customers (5 minutes scale)

• Initial configurations of comfort parameters depending on occupancy modes

• Weather (temperature, humidity, dewpoint, wind velocity, wind direction,
barometer) from three regions (60 minutes scale)

• Solar irradiance data obtained from SolarAnywhere.com [24]
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The data suffers from the fact that the time series were partly incomplete, either

due to general coarser recording intervals, or to intermittent data losses during
recording. Figure 2.2 shows where the missing values are located.
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Figure 2.2: Missing data points are indicated in black area. The top row is showing the times
where at least one gap in one of the time series is present, where the missing
values for the individual time series are shown in the bottommost three.

2.2.1 Aligning time scales and handling missing values

As prices and consumption are recorded on different time scales, two datasets
are prepared, with two different reference sampling rates: One on a 5-minutes

scale and one on a 15-minutes scales. Variables sampled at a lower sampling rate

than the reference are interpolated using cubic splines, and variables sampled at
a higher sampling rate are averaged out.

For rather slowly varying variables as e. g. the outside temperature, this inter-

polation seems reasonable and is assumed not to introduce any errors in the
time series as long as the interpolation is restricted to a small number of missing

samples. But for variables with highly varying dynamics, e. g. the consumption,
this interpolation might erroneously introduce unwanted dynamics that lead to

difficulties in the modelling stage later on.

Therefore, we restrict our investigation to periods of time where the data set is
almost complete, e. g. only a few individual samples of slowly varying variables,

such as the weather, are missing. Sufficiently represented periods for the seasons
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summer, autumn and winter are then selected (Table 2.1).

Period Name # days # samples Months

(5/15 min scale) considered

1 Summer 19 5472/1824 July, August
2 Autumn 32 9216/3072 October, November

3 Winter 42 12096/4032 January, February, March

Table 2.1: Selected data periods, where few missing values occur.

2.2.2 Weather variables

The weather variables are given for three different project regions. However,
no corresponding information about the location of individual households was

provided. Therefore, all variables related to the weather are averaged over the

three project regions in order to obtain a representative variable for later data
analysis.

The solar irradiance, however, was not included in the data set. We obtained rep-

resentative measurements taken at Eugene, Oregon, through SolarAnywhere.com
[24].

2.2.3 Estimating the aggregated consumption

At each measurement time, the mean and variance of the individual consump-

tion of each house is recorded. But although the time series of the metered
consumption is complete, not all houses where taken into consideration during

the measurements (Figure 2.3). This could come from network errors or from
not having all the metering devices running at all times.

The aggregated consumption can then be estimated by extrapolating the mean

individual consumption alongside its uncertainty (the variance). One should
note that the uncertainty (variance) associated with the aggregated consump-

tion evolves proportionally with the square of the number of missing houses.
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Figure 2.3: Even though the time series is complete, the number of houses used in the com-
putation of the mean and variance of the individual consumption of each house
varies with time.

2.2.4 Comfort settings

Customer behaviour was recorded over the entire period of the project by means

of a distribution of activated occupancy modes over time, represented by its mean

and variance. As mentioned earlier, the participating customers configured cool-
ing and heating devices by assigning those configurations to occupancy modes.

For each device, those configurations, or comfort settings, consisted for each oc-

cupancy mode of the setpoint Ts, the maximum and minimum tolerated setpoint
{Tmin

s , Tmax
s }, and the parameter k reflecting the price responsivity (k = 0 is un-

responsive). Since we do not have access to the exact values ki, we assume a
ranking of the indices from lowest to highest responsivity such that

0 < k1 < k2 < k3 < . . . (2.1)

The switching of comfort settings over time is triggered by 8 occupancy modes

O ∈ {1, . . . 8}. However, the association between comfort settings and occupancy
modes was fixed once at the project start and was not changed during the project:

users did not adjust their comfort settings during time. The mean of those initial
assignments is depicted in Figure 2.4. Among the 27 price responsive households,

a total number of 40 different devices were initially configured.

Because the three first occupancy modes are triggered 94% of the time, we will
focus our analysis on those three, and ignore the others. Those densities, sepa-

rated into weekdays and weekends, are highly dependent on the time of the day.
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pancy modes.

Figure 2.4: Mean heating setpoints, mean price sensitivities and associated mean comfort
bounds for the first three occupancy modes. Averaged over 40 devices. It can be
distinguished between a night, home and work mode.

We distinguish between a night mode, a home mode and a work mode, whereas
the latter one is understandably less probable during weekends (Figure 2.5). The

number Ni(t) of devices active in a certain occupancy mode O = i at time t is
recorded on a 5 minutes time scale. This allows for estimating a time dependent

probability density function P (O, t) by means of a histogram approximation, i. e.

the i’th bin represents the amount of devices activated with mode i. The his-
togram approximation to the probability density function can be written as

P (O = i, t) =
Ni(t)

Nall(t)
, (2.2)

where Nall(t) denotes the total number of recorded devices at time t.

Similarly, temperature setpoints and their associated bounds and price sensitiv-

ity vary over time. Let us consider the conditional probability density functions
P (Ts|O), P (Tmax

s |O), P (Tmin
s |O) and P (k|O) linking the triggered occupancy

mode and the resulting effective parameter. Using the law of total probability,

time varying probability density functions describing the evolution of the mean
and variance of setpoints, bounds and price sensitivities can be obtained (Equa-

tion (2.3)).
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Figure 2.5: Three occupancy modes are mainly activated: home mode (1), work mode (2)
and night mode (3). The corresponding probabilities of activations are displayed
with an area corresponding to one standard deviation.
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Figure 2.6: Effective comfort values over one day. Comfort bounds and price sensitivities are
rather constant relative to the setpoint.
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P (Ts)(t) =

2
∑

i=0

P (O = i, t) D(Ts|O = i) (2.3a)

P (Tmax
s )(t) =

2
∑

i=0

P (O = i, t) P (Tmax
s |O = i) (2.3b)

P (Tmin
s )(t) =

2
∑

i=0

P (O = i, t) P (Tmin
s |O = i) (2.3c)

P (k)(t) =

2
∑

i=0

P (O = i, t) P (k|O = i) (2.3d)
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2.3 Outcome of the experiment

The experiment demonstrated that it is possible to reduce peak-load demand with
a simple market-based control. The reduced peak-load is shifted mainly to night

hours. The mean consumptions across one day of the RTP and the comparative

CTRL group are depicted in Figure 2.7, where the average is taken over the winter
period (see Table 2.1). During that period, an average of 5.0% of consumption

was shifted to off-peak periods. However, in the process of shifting, consumption

was increased by 3.1 pp (percentage points).
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Figure 2.7: The mean daily pattern of each group shows a successful shift of consumption in
order to constrain the feeder. The data used covers 42 days of winter (period 3
in Table 2.1).

A table summarizing all variables available from this experiment is provided in

Appendix A.



CHAPTER 3

Simulating price-responsive
consumption

Setting up an experiment is costly requires time and is limited in capabilities.

How does the experiment scale with the number of participants? What is the
optimal metering resolution needed? How does a „smart” appliance react in a

price-sensitive environment?

We lack the tools to answer those questions. Therefore, a simulation framework
is needed. The aim is not to come up with state-of-the-art appliance and building

models: a reasonable and realistic behaviour of the Danish household consump-

tion is sought, as appliance manufacturers and specialized researchers are the
best placed to contribute with their knowledge.
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3.1 Simulation framework

3.1.1 A modular design

The core of this framework is a Runge-Kutta based Ordinary Differential Equa-

tion (ODE) solver, where each building and appliance is described through a set
of differential equations. It was designed with modularity in mind, such that

each appliance or building model can be tested individually and then easily inte-

grated into the framework. A module consists of a set of states, their associated
dynamics (the system of differential equations), events (criteria interrupting the

simulation), decisions (state changes when a simulation has been interrupted)

and a human behaviour part. For every module, several files are then necessary:

• <modulename>_Init.m: contains the initial conditions

• <modulename>.m: contains the dynamics

• <modulename_Event>.m: evaluates if an event occurred

• <modulename_HandleEvent>.m: changes the state of this module according
to an event

• <modulename_GenPtrn>.m: generates a usage pattern

• <modulename_EvalConsumption>.m: based on the state of the module be-
tween two samples, computes the mean and integrated consumption be-

tween those two samples

In the following discussions, we will distinguish between samples, which are

times at which the system is measured, and steps, which are times at which the

system is evaluated or simulated. Sampling times are typically ranging from
5 minutes to 1 hour (we will mostly use 5 minutes), whereas steps are much

smaller, typically from couple of seconds to fractions of minutes, in order to pre-
cisely account for the system’s dynamics. A debug mode is also implemented,

recording the different variables for each step, and not only for each sample.

Initial conditions

The initialization files contain module parameters and initial states (initial con-

ditions). Both can be sampled from a given distribution in order to vary the
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Figure 3.1: Computation of one sample within the simulation framework. One sample is the
result of an iteration over multiple steps of variable length through MATLAB’s
ode45 solver.

population of appliances/buildings.

Numerical integration of the dynamics

Let us denote the vector of states of the i’th module xi, and its associated dynam-
ics d

dt
xi = f i(xi, t). By concatenating all the states of all N modules, the set of

differential equations describing the whole system can be represented as

d

dt







x1

...
xN






=







f1(x1, t)
...

fN (xN , t)






(3.1a)

d

dt
X = F (X, t) (3.1b)

with corresponding initial conditions X(t0) = X0 =
(

x1
0, . . . ,x

N
0

)T
. It should be

noted that the resulting dynamical system is non-autonomous, meaning that it
also depends on time itself, as external conditions influence the evolution of the

system. In order to get the evolution of each state throughout time, a numerical
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solver is used. One could use the simple Euler explicit method to express the

vector of states at the next step as a linear predictor

Xn+1 = Xn + hF(Xn, tn), (3.2)

where h is the stepsize. For small h, the error per step is of order h2 [6]. How-
ever, it is often seen that h is chosen to be the sampling interval. This might

lead to quite big errors if the states do not evolve linearly in that interval. Fur-

thermore, the stepsize is kept constant. It sounds natural to chose a variable
stepsize such that big steps are taken in periods of slow dynamics, since those

can reasonably be linearly approximated during a longer time. Considering fast
dynamics, a small step size is needed because fast state changes means that the

linearization is valid during a shorter time. The ode45 function in MATLAB, based

on a fourth order Runge-Kutta method (also called classical Runge-Kutta), im-
plements a variable step version of the solver, with an error per step of order h5.

This Runge-Kutta method is expressed as

Xn+1 = Xn +
1

6
(k1 + 2k2 + 2k3 + k4), (3.3)

and tn+1 = h + tn. The k values are estimates of the slope at the beginning,
midpoint, and end of the interval, such that

k1 = hF(Xn, tn) (3.4a)

k2 = hF(Xn +
1

2
k1, tn +

1

2
h) (3.4b)

k3 = hF(Xn +
1

2
k2, tn +

1

2
h) (3.4c)

k4 = hF(Xn + k3, tn + h). (3.4d)

Although requiring four function evaluations, the reduction of error is signifi-

cant. The dynamics of each module i are then described by a function f i(xi, tn)
implemented in <modulename>_.m.

Events

Between two steps, events can trigger a change of the system: water can be

withdrawn from a tank by the user or a heatpump can be turned on or off. The
detection of such events is done by having a function <modulename>_Events.m

returning a true/false boolean value whether or not an event has been triggered.
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If an event is triggered, the <modulename>_HandleEvents.m function is called,

altering the state of the module triggering the event. For example, if the tem-
perature in a house is so low that it requires turning on heating, an event is

triggered, and the state element controlling whether or not heating is supplied is

changed.

Usage pattern

At each sample, a usage pattern is generated for the next sample. This usage

pattern can for example be the amount of hot water used in a household during
one sample or a change in heating setpoints triggered by a new occupancy mode.

The function <modulename>_GenPtrn.m is called at each sample, generating this

pattern and altering the state of this module accordingly.
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3.1.2 Description of modules

The dynamics of the whole system can be broken down into two parts: the heat-
ing dynamics of the building, and the dynamics of each appliance inside that

building. Those dynamics have coupled variables (e. g. indoor air temperature)

and depend on both external variables (e. g. external air temperature) and on a
certain customer behaviour model (e. g. hot water usage), as seen in Figure 3.2.

It therefore makes sense to create a parent/child relation between appliances and

buildings because each appliance can belong to one building only. We will also
restrict ourselves to the case where no more than one type of heating appliance

is present for each parent building.

Price
Aggregated

Consumption

Heat Pump/Radiator

Outdoor temperature and solar irrandiance

Water boiler

Refrigerator/Freezer

Building Thermal Model

Indoor Temperature

- Heat capacities of elements

- Thermal conductivities of elements

- Coe!cient Of Performance (COP)

- Price sensitivity & comfort bounds

- Heat capacities of elements

- Thermal conductivities of elements

- Coe!cient Of Performance (COP)

- Price sensitivity & comfort bounds

- Heat capacities of elements

- Thermal conductivities of elements

- Tank size

- Heat capacities of elements

- Thermal conductivities of elements

- E"ective window area for solar irrandiance

- Building Area

Consumer behaviour

- Occupancy mode of household

- Hot water consumption patterns

Figure 3.2: Modular design of the simulation environment
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Short heat transfer theory

As a form of energy, heat has the unit joule (J) in the International System of
Units (SI). The standard unit for the rate of heat transferred is the Watt (W),

defined as joules per second.

For incompressible substances, heat can be defined as the amount of energy
needed to change the temperature of that substance from T0 to Tf .

Q =

∫ Tf

T0

C dT = C(Tf − T0) = C∆T, (3.5)

where C is the heat capacity (assumed independent of temperature), expressed

in joules per degree Celsius (or equivalently in joules per Kelvin). It represents

the amount of heat needed to heat up the substance with one degree. It can be
convenient to define the heat capacity per unit of mass, per unit of volume, or

per unit of area (in the case of a section). Considering heat capacity per unit of

mass, the term specific heat capacity is employed, represented by the lowercase
letter c

Q = mc∆T. (3.6)

Considering an infinitesimal change in temperature dT where the mass m is con-

stant, the change of heat can be defined as

dQ = mcdT ⇔ dQ

dt
= mc

dT

dt
., (3.7)

Let us now consider two elements, where the heat conduction within those is
much faster than the heat conduction across the boundary of the elements. This

means that a lumped capacitance approximation can be used, by reducing one as-
pect of the transient conduction system (the one within the object) to an equiv-

alent steady state system. In other terms, only the heat conduction between

those elements remains, as the heat conduction inside them is approximated by a
steady state system, resulting in a temperature within the object being completely

uniform, although its value may be changing with time.

The law of heat conduction, also known as Fourier’s law, describes the time evo-
lution of the amount of heat exchanged between two elements at temperatures

T1 and T2 with contact surface area A

dQ

dt
= −λA (T1 − T2) = U (T2 − T1) (3.8)
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where λ is the heat conductivity, expressed in joules per seconds, per degree

Celsius (or Kelvin) and per contact surface area between the two elements. For
simplicity, we will denote U = λA as the heat conductivity between element 1

and 2. Note that the heat flow dQ/dt is directed positively from T2 to T1.

Taking element 1 as reference, its change of heat from equation (3.7) is equal
to the sum of all heat flows applied on it. Having only one heat flow (the one

between element 1 and 2), the time evolution of its temperature can be described

by combining Equation (3.7) and Equation (3.8):

dQ1

dt
= m1c1

dT1

dt
= U (T2 − T1) (3.9)

In a system consisting of n elements i with masses mi, specific heat capacities
ci and all exchanging heat between each others with conductivities Uij , we can

write up the time derivative of the temperature of element i as the sum of all
heat flows applied to it.

mici
dTi

dt
=

n
∑

j=1

dQij

dt
(3.10)

If all heat transfers follow Fourier’s law, and by using the heat capacity Ci = mici,

Ci

dTi

dt
=

n
∑

j=1

Uij (Tj − Ti) . (3.11)

Thermal model of a building

Based on [17], [20] and [2], the thermal dynamics of a building can be modelled

as two individual thermal masses: one corresponding to the inside air and furni-

ture, and the other corresponding to the structure of the building (Figure 3.3).
The building structure is subject to heat exchanges with outside air. The inside

air is also subject to heat exchanges with outside air (due to natural ventilation of
the house) but is also affected by outside solar irrandiance through the windows.

This yields the following system of differential equations governing the evolution

of the temperatures of the building Tb and of the inside air Ta:

Ca

dTa

dt
= Uao (To − Ta) + Uas (Tb − Ta) +AwS + P (3.12a)

Cb

dTb

dt
= Uso (To − Tb) + Uas (Ta − Tb) (3.12b)
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Light mass

(Air and furniture)

Heavy mass

(building structure)

Heat supply

Outdoor temperature

Solar irrandiance

Ta, Ca Tb, Cb

To

Uas

Uao Uso

S

P

Φs

Figure 3.3: Thermal model of a building

For a square building of area A and height h, assuming a 20% window surface
gives a solar irrandiance surface of Aw = 0.2 · h

√
A. If only one of the four walls

is exposed to the sun, the heat flow originating from the irrandiance of the sun is
Φs = 0.05 · hI

√
A, which is in accordance with the FlexHouse modelled in [2].
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Figure 3.4: The inside air temperature Ta and building temperature Tb are here exposed to
a fluctuating outside temperature To and sun irradiance S. No space heating is
applied. The transfer function of the building can be characterized as a lowpass
filter with a corresponding phase shift (delay).

Regarding the living area parameter A, its distribution is based on Danish statis-
tics [25]. A continuous density function was obtained by smoothing a histogram

of the probabilities associated with groups of area size. A Gaussian kernel was
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used, with a manually selected bandwidth (Figure 3.5).
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Figure 3.5: Probability density function of Danish house areas taken from [25].

Sampling areas from this arbitrary distribution can be done using the inverse
transform sampling [11]. This derives from the probability integral transform,
stating that if a stochastic variable X is transformed by its cumulative distribu-

tion function FX , then the resulting stochastic variable Y = FX(X) is uniformly

distributed on [0, 1]. By generating uniformly distributed numbers y on [0, 1],
and by taking x as the value for which FX(x) = y, then one is sampling from

FX = F−1
X (Y ).

The rest of the parameters are distributed according to [17] and [20].
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Symbol Description Value

A Floor area Sampled from Danish statistics

As Surface area 2 ·A+ 4h
√
A m2

Aw Window area 0.05 · h
√
A m2

Ca Air and furniture heat capacity 13 ·A kJ/◦C

Cs Building structure heat capacity N (360, 70) ·A J/◦C

Uao Heat transfer coefficient between inside and outside air 0.42 ·A J/s/◦C

Uso Heat transfer coefficient between building structure and outside air
7.69 ·As (1.07 · A+ 69.0)

7.69 ·As − 1.07 ·A− 69.0
J/s/◦C

Uas Heat transfer coefficient between inside air and building structure 7.69 ·As J/s/◦C

Table 3.1: Thermal model parameters for the building
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Generating user behaviour in buildings

Heating setpoints are assigned for each occupancy mode, the latter being trig-
gered during the day following a certain pattern (Figure 2.5). We seek to build

a model reproducing this behaviour to represent the varying heating needs dur-

ing the day. First of all, it is assumed that the assignment of heating setpoints
according to each occupancy mode is randomly distributed following

P (Ts|O = i) =
1

σi

√
2π

e
− 1

2

(

x−µi
σi

)2

(3.13)

where the parameters µi ans σi are estimated from the Olympic Peninsula data
set. The activation of the occupancy modes is slightly more difficult. At all times

t of the day (represented by the minute of the day), there is a probability xt,i of
being in a mode i. The transition from a set of probabilities xt = (xt,1, xt,2, xt,3)

T

to the next sample xt+1 can be written as a Markov Chain with a finite state

space:
xT
t+1|t = xT

t At (3.14)

with the two conditions
3
∑

i=1

rowi(At) = 1 (3.15)

∀i = 1, . . . , 3, j = 1, . . . , 3, 0 ≤ at,ij ≤ 1 (3.16)

Note that the transition matrix At is a 3 × 3 time dependent matrix. Equa-

tion (3.15) describes 3 linear relationship between the 3 variables, meaning that

the number of variables to be estimated reduces from 9 to 6. Defining the vector
of unknown as θt = (θt,1, . . . , θt,6)

T , the linear dependency can be written as

At =





θt,1 θt,2 1− θt,1 − θt,2
θt,3 θt,4 1− θt,3 − θt,4
θt,5 θt,6 1− θt,5 − θt,6



 (3.17)

By defining

Mt =





xt,1 0 xt,2 0 xt,3 0
0 xt,1 0 xt,2 0 xt,3

−xt,1 −xt,1 −xt,2 −xt,2 −xt,3 −xt,3





and

bt =





0
0

xt,1 + xt,2 + xt,3



 ,
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Equation (3.14) can then be rewritten as

xt+1 = Mtθt + bt, (3.18)

keeping only the constraint stating that every parameter in θ should be between 0
and 1. Stacking all the measurements at time t and t+1 vertically in xt+1, Mt and

bt, the parameters θ can be estimated by using linear least-squares [15]. Note

that two sets of matrices Mt have to be estimated: one for weekends, and one
for weekdays, as they show different occupancy patterns (Figure 2.5). Finally,

the parameters θ can be used to reconstruct the matrix At.

For the purpose of generating occupancy modes during the day, an initial value
at time t is sampled from the distribution of occupancy modes at time t, obtained

by averaging over all measurements at the minute of the day t. The initial mode
is then converted to a boolean row vector where a 1 is put into the column

corresponding to the activated occupancy mode. Activating occupancy mode 3

yields for example the vector xt = (0, 0, 1). Given that we are in occupancy mode
i, we can calculate the probability distribution of transitioning to mode j by

P (Ot+1 = j|Ot = i) = at,ij (3.19)

meaning that the next occupancy mode can be obtained by sampling from a

distribution being the i’th row of At (because the current occupancy mode is i).
Sampling from a specific probability density function can be done by the inverse

transform sampling method, described in the building heating model. Note that
instead of estimating individually the transitions for one minute of the day to the

other, one could describe the matrix At with a model directly depending on the

minute of the day, using for example a finite number of Fourier components.

Air to air heat pump model

An air to air heatpump is assumed to deliver an amount P of power directly to
the air. One should note that this is a quite heavy approximation, because in

real life, power is not delivered uniformly and instantly to the air. The heatpump
power is dependent on the difference between outside and inside temperature,

and that dependency is linearly approximated [17] [20] for the Bosch EHP AA

used here (Figure 3.6a).

The temperature inside the room is then controlled so that is does not deviate

more than the the hysterisis, Thys, from a certain setpoint Ts. The heatpump is
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Heatpump and thermostat control

(b) The indoor air temperature is controlled by
turning on and off the heatpump so that
the temperature does not deviate more than
Thys from the setpoint Ts

Figure 3.6

therefore activated when the indoor air temperature drops below Ts − Thys, and
stopped when the indoor air temperature increases over Ts + Thys, as seen in

Figure 3.6b. Note that the heatpump control system is here modelled as a simple
on/off switch. More advanced methods could of course be considered.

Symbol Description Value

Ts Temperature setpoint dependent on occupancy mode

Tmax
s Maximum temperature setpoint dependent on occupancy mode

Tmin
s Minimum temperature setpoint dependent on occupancy mode

Thys Temperature setpoint hysteresis 1 ◦C

P (To − Ta) Supplied power linear relation, as in Figure 3.6a

Con HP’s consuption linear relation, as in Figure 3.6a

Table 3.2: Parameters for the heat pump
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Fridge model

One possibility to model a fridge is to consider it as a system consisting of three
parts with different thermal masses [20]: a very light mass (the cooling circuit),

a light mass (the fridge content and interior air) and a heavy mass (the fridge

itself with its insulating structure).

Very light mass

(Cooling circuit)

Light mass

(air and interior)

Heavy mass

(contents)

Heat supply

Indoor air

T1, C1 T2, C2 T3, C3

U12
U23

U2a

Ta

P

Figure 3.7: Thermal model of a fridge

The set of equations describing the dynamics of such a system is as following

C1
dT1

dt
= U12 (T2 − T1) + P (3.20)

C2
dT2

dt
= U12 (T1 − T2) + U23 (T3 − T2) + U2a (Ta − T2) (3.21)

C3
dT3

dt
= U23 (T2 − T3) (3.22)

(3.23)

The supplied heat flow P is defined as −COP · Con where COP is the coeffi-

cient of performance, and Con is the consumption of the fridge when turned on.

The coefficient of performance is defined as the ratio between electrical power
consumed and amount of energy provided by the fridge compressor.

Several parameters are distributed to represent different fridge sizes, loadings

and efficiencies (Table 3.3).
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Figure 3.8: The inside air temperature of the fridge is controlled by turning on and off the
compressor so that the temperature does not deviate more than Thys from the
setpoint Ts.

Symbol Description Value

Ts Temperature setpoint 4.5 ◦C

Thys Temperature setpoint hysteresis 0.5 ◦C

C1 Heat capacity of cooling circuit 1 kJ/◦C

C2 Heat capacity of fridge air N (13, 1) kJ/◦C

C3 Heat capacity of fridge contents N (251, 1750) kJ/◦C

U2a Heat transfer coefficient between fridge air and indoor air N (5, 0.25) J/s/◦C

U12 Heat transfer coefficient between 1 and 2 N (12, 1) J/s/◦C

U23 Heat transfer coefficient between 2 and 3 30 J/s/◦C

COP Coefficient of performance N (2.8, 0.04)

Con Consumption when turned on N (200, 2500) W

Table 3.3: Parameters for the fridge
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Combined fridge/freezer model

The same approach can be used to model a combined fridge and freezer. Using
the model proposed in [23], a Hotpoint Iced Diamond RSB20 120L (10L freezer)

unit is modelled. The temperature of the freezer is left uncontrolled: only the

fridge temperature is monitored and controlled.

Fridge air Fridge contents

Freezer box Freezer contents

Heat supply

Indoor air

Tfga, Cfga Tfgc, Cfgc

Tfzb, Cfzb Tfzc, Cfzc

Ufga−fgc

Ufzb−fzc

Ufga−fzb

Ta

P

Ufga−a

Figure 3.9: Thermal model of a combined fridge/freezer.

According to Figure 3.9 we can set up the following system of equations

Cfga
dTfga

dt
= Ufga−a (Ta − Tfga) + Ufga−fgc (Tfgc − Tfga) + Ufga−fzb (Tfzb − Tfga)(3.24)

Cfgc
dTfgc

dt
= Ufga−fgc (Tfga − Tfgc) (3.25)

Cfzb
dTfzb

dt
= Ufga−fzb (Tfga − Tfzb) + Ufzb−fzc (Tfzc − Tfzb) + P (3.26)

Cfzc
dTfzc

dt
= Ufzb−fzc (Tfzb − Tfzc) (3.27)

where Tfga denotes the fridge’s inside air temperature, Tfgc the fridge’s content
temperature, Tfzb the freezer’s box temperature and Tfzc the freezer’s content

temperature.
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The controlled variable is the fridge air temperature Tfga, which should lie within

Ts±Thys. The supplied power P is defined as −COP·Con where COP is the coeffi-
cient of performance, and Con is the consumption of the combined fridge/freezer

when turned on.
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Combined fridge/freezer thermostat control

Figure 3.10: The inside air temperature of the fridge is controlled by turning on and off the
compressor so that the temperature does not deviate more than Thys from the
setpoint Ts.

Several parameters are distributed to represent different combined fridge/freezer

sizes, loadings and efficiencies (Table 3.4).



3.1 Simulation framework 47

Symbol Description Value

Ts Temperature setpoint 4.5 ◦C

Thys Temperature setpoint hysteresis 0.5 ◦C

Cfga Heat capacity of fridge air N (0.5, 0.0025) kJ/◦C

Cfgc Heat capacity of fridge contents N (4, 0.01) kJ/◦C

Cfzb Heat capacity of freezer box N (1.350, 0.04) kJ/◦C

Cfzc Heat capacity of freezer contents N (6, 1) kJ/◦C

Ufga−a Heat transfer coefficient between fridge air and indoor air N (1.2, 0.0001) J/s/◦C

Ufga−fgc Heat transfer coefficient between fridge air and fridge contents N (4.375, 0.01) J/s/◦C

Ufga−fzb Heat transfer coefficient between fridge air and freezer box N (1.35, 0.0025) J/s/◦C

Ufzb−fzc Heat transfer coefficient between freezer box and freezer contents N (1.8750, 0.0025) J/s/◦C

COP Coefficient of performance N (2.8, 0.2)

Con Consumption when turned on N (100, 20) W

Table 3.4: Parameters for the combined fridge/freezer
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Electric water boiler model

Based on [10], an electric water heater with a single heating element can be

modeled as shown in Figure 3.11.

Water tank 

 

Heat supply

Indoor Air 

Heat loss

cold water

inlet

hot water

out

Tam, T

UP

mu, Tinmu, T

Figure 3.11: Thermal model of a water heater.

The water in the tank of mass m and temperature T , is assumed to be heated
up by an electrical boiler with power P . Additionally, the tank is subject to heat

exchanges with the ambient air temperature, characterized by the insulation of

the heater having heat conductivity U .

Assuming no water being withdrawn from the tank, the differential equation

describing the evolution of the water temperature T follows

mcw
dT

dt
= U (Ta − T ) + P (3.28)

where cw is the specific heat capacity of water1.

It is assumed that when a mass mu of hot water is used, it is immediately replaced

by an equal quantity of cold water. Let us define the mixing temperature Tm as
as the average of the hot and cold temperatures, weighted by their associated

masses. The amount of heat removed from the inside water can be seen as the

1Specific heat capacity of water: 4180 J/kg/C assuming a specific density of water of 0.990 kg/L
at 20 ◦C.
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amount of heat removed by cooling down from T to the mixing temperature Tm.

Q =

∫ Tm

T

mcw dT (3.29)

= mcw (Tm − T ) (3.30)

= mcw

(

(m−mu)T +muTin

m
− T

)

(3.31)

= cw (m−mu)T +mucwTin −mcwT (3.32)

= mucw (Tin − T ) (3.33)

Knowing the relation Q = mcw∆T , if the amount of heat Q is transferred during

an infinitesimal amount of time dt (e. g. the mixing process is instantaneous),
then the infinitesimal amount of heat dQ transferred is proportional to the in-

finitesimal amount of water mass dmu replaced, such that

dQ = dmucw (Tin − T ) (3.34)

dQ

dt
=

dmu

dt
cw (Tin − T ) . (3.35)

The overall heat flow of the system is a sum of the heat flow through the tank

insulation, the heating power from the boiler, and the heat flow through wa-
ter being withdrawn. Adding those heat flows together, we obtain the equation

governing the dynamics of this system:

mcw
dT

dt
= U (Ta − T ) + P +

dmu

dt
cw (Tin − T ) . (3.36)

We will here assume that the tank size in each house depends on the number of

persons living in the household. The joint distribution of number of persons in a
household and living area can be obtained at Danmark’s Statistik [25]. In order

to generate a representative set of the number of persons per house, we sample

from this joint distribution, shown in Figure 3.13. This is done by using the
inverse transform sampling, previously described in the building heating model.

Knowing the number of persons npers per house enables a rough approximation
of the storage capacity which should be chosen in order to cover rush hours of

hot water usage. The tank size is calculated as the amount of hot water needed

in peak demand. It is assumed that the peak demand is reached when all house
members take a shower after each other (laundry or dishwasher assumed to be

off during that period). It has been found that an average shower takes eight
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Waterboiler thermostat control

Water consumption

Electricity consumption

Figure 3.12: The inside water temperature of the boiler is controlled by turning on and off
the heating element so that the temperature does not deviate more than Thys

from the setpoint Ts.

minutes and that the average flow rate is 9.5 L/min 2, so the approximate tank
size is found to be

Volmax = npers × 8 min×9.5 L/min . (3.37)

According to this tank volume, the electricity consumption of the heating ele-

ment can be set. Different models of water heaters have been investigated, yield-

ing consumptions from 3800 to 6000 Watts, depending on the storage capacity.
A COP value of approximately one3 is used, because energy is completely con-

verted to heat. The heat transfer coefficient between the tank and ambient air is

obtained from [10].

The following table summarizes the parameters being distributed within the sim-

ulations:

2International Association of Plumbing and Mechanical Officials (IAPMO), Uniform Plumbing Code,
2011, http://en.wikipedia.org/wiki/Uniform_Plumbing_Code.pdf

3Reliant Energy 2005, http://www.reliant.com/en_US/Platts/PDF/P_PA_26.pdf

http://en.wikipedia.org/wiki/Uniform_Plumbing_Code.pdf
http://www.reliant.com/en_US/Platts/PDF/P_PA_26.pdf
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Figure 3.13: Joint probability density function of house areas A and number of persons npers

in the household, based on Danish statistics [25].

Symbol Description Value

Volmax Tank volume dependent on house area A

Ts Temperature setpoint N (45, 2.5) ◦C

Thys Temperature setpoint hysteresis 2.778 ◦C

Tc Temperature of inlet water N (10, 2.25) ◦C

COP Coefficient of performance 1

Con Consumption when turned onmax) dependent on tank volume V olmax

U Heat transfer coefficient between tank and ambient air N (1.1, 0.03) J/s/◦C

Table 3.5: Parameters for the water heater simulation.
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Hot water usage patterns

In order to approximate residential hot water usage profiles we used data from
four Danish households, which were recorded over a period of one year [5]. The

water consumption data consists of average values over intervals of 10 minutes.

Note that these hot water usage profiles were found by separating hot water
usage from the overall district heating consumption (including hot water used to

heat) using statistical methods in [5].

An average of the four houses’ profiles is taken, after being normalized by the
number of persons in the household. The mean profile is smoothed out using a

Gaussian kernel in order to obtain a distribution which we can sample from. The
computation is carried out for weekdays and weekends separately (Figure 3.14a).

The resulting profile strongly resembles observations from [21].

For each simulation sample, each person is assumed to use hot water according to
a time varying Gaussian distribution, characterized by a time–varying mean and

its associated time–varying standard deviation. This distribution is expressed in

fractions of daily consumption per inhabitant, the latter found to be approxi-
mately 50 litres4 (but this could very well be extended to include dependencies

on the age of the inhabitant for example). The resulting distribution for weekday

water consumption is depicted in Figure 3.14b.
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Figure 3.14

4http://www.umweltbewusst-heizen.de

http://www.umweltbewusst-heizen.de
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3.2 Preparing and validating a dataset

Preparing a dataset requires having access to realistic weather conditions. Fur-
thermore, it requires a realistic description of the population of consumers. Those

requirements, and how we obtained the relevant information, are listed below:

Initial configuration of setpoints Taken from the Olympic Peninsula data set.
Depends on the occupancy mode.

Price sensitivities Kept constant at −2 ◦C by unit of relative price change (e. g.

a doubling of the price yields a 2 ◦C decrease).

Comfort bounds Maximum and minimum deviations allowed from the setpoint

are set to ±2 ◦C.

Weather conditions Outside temperature and sun irrandiance at an hourly reso-
lution was supplied by DMI5. The geographical region considered is Copen-

hagen, and the data set consists of forecasted values, initially computed

every 6 hours for a horizon of 24 hours.

Price interpretation Every appliance is assumed to interpret the received price
in the same way, meaning that they all use the same smoothing constant τ
in the computation of the standardized price ρ.

Sampling rate We have assumed that the aggregated consumption can be mea-

sured every 5 minutes.

Appliances A first approach is taken by only simulating heating appliances.

Prices Various steps of price of random magnitudes and random durations are

generated as inputs.

A dataset consisting of two month of data, starting 1st of January 2009 is then

simulated, containing 2 × 60 × 24 × 30/5 = 17280 data points. No matter what
the initial states are, the system converges after a couple of days (Figure 3.15).

The framework is optimized to minimize computing time and to ensure scala-

bility in the number of houses/appliances. Running times are satisfactory (Fig-
ure 3.16a) as it seems to run in polynomial time.

5Danish Meteorological Institute
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Figure 3.15: The system seems to be memoryless, meaning that is it independent of initial
conditions after a certain time. This is seen as the variations of the indoor air
temperatures across the population of houses rapidly decreases. After a couple
of days, all indoor temperatures seem to establish a characteristic pattern.
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Figure 3.16: Computation time and effect of aggregation

In order to validate the data generated by the simulation framework, a real data

set of Danish consumption (obtained from elværksstatistikken) is used for com-
parison. It comprises a total of have 3234 meterings across 2009. Having access

to the part of the consumption coming from households, two time series from

January 2009 are compared (Figure 3.17).
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Figure 3.17: Normalized consumption of 20 simulated houses, smoothed with a Gaussian
kernel, against real consumption (also normalized) of Danish households for
January 2009. Even though user behaviour was taken from the Olympic Penin-
sula data set, and that only heating is simulated, the patterns seem to corre-
spond.





CHAPTER 4

Identifying consumption
structure and price

responsiveness

Equipped with a strong data foundation, understanding its structure is essential
to model the reaction of consumption to a varying electricity price. That re-

sponse, being the cornerstone of the whole project, is based on several variables.
But which are the most important? To which extent can the consumption be ex-

plained without knowledge of the individual households? How big is the price

responsive part? How does this response scale or depend on specific parameters?



58 Identifying consumption structure and price responsiveness

4.1 Identifying variables

An important element setting the foundation for the modelling of the aggregated

consumption is the right selection of variables that will serve as model inputs.

The procedure of identifying the most relevant variables is called variable selec-
tion (also known in some fields as feature selection). It is used in many pattern

recognition and data mining problems, in order to overcome the fact that mod-

els become more and more complex when increasing the number of explanatory
variables. It is therefore highly important to select the variables that will yield

the best modelling performances.

In order to identify the variables best explaining the electricity consumption, we

make use of variable selection methods, which can be subdivided into wrapper
and filter methods. Wrapper methods use a flexible model structure to select
the best set of input variables minimizing a certain model error. Filter methods

on the other hand are independent of an underlying model, but uses a measure

of the amount of information in each variable. Wrappers have the drawback of
being specifically characterized by a certain type of model and usually have a

heavier computational cost. However, their performance is better compared to
filter methods that are usually less computationally intensive [26]. Examples

of wrapper methods include linear regression models or neural networks; filter

methods include the correlation measure, and mutual information.

4.1.1 The forward feature selection procedure

Given a set X = (X1, . . . , XD) of D potential variables explaining Y , the objective

is to order this set by decreasing variable relevance. Two procedures are possible:

the forward selection, which starts with an empty set and iteratively adds the
most relevant variable until all variable are selected, and the backward selection,

starting with the full set and iteratively removing the less relevant variable. Both
procedures are independent of the method used (wrapper or filter), and yield

an optimal ordering of the variables. As the ordering of the variables requires a

significant amount of computation, it becomes advantageous to use the forward
selection method as it provides valuable results even though it has not finished

ordering the full set.
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4.1.2 Using the conditional mean as measure of information

Given a probability space (Ω,F , P ) with sample space Ω, σ-algebra F and prob-

ability measure P , let

L2 =
{

X : E
{

X2
}

< ∞
}

(4.1)

be the set of square integrable random variables (consequently having definite
second moments). Furthermore, let 〈X,Y 〉 be the bi-linear form defined by

〈X,Y 〉 = E {XY } for X,Y ∈ L2. Then 〈·〉 is an inner product on L2 with the

associated norm ‖X‖ =
√

〈X,X〉. Under this inner product, the L2 space is a
Hilbert space. One important characteristic of a Hilbert space is that it induces

geometry, enabling us to measure the angle between two random variables.

The inner product of two random variables X and Y can be written as

〈X,Y 〉 = ‖X‖‖Y ‖ cos(X,Y )

cos(X,Y ) =
〈X,Y 〉
‖X‖‖Y ‖

=
E {XY }

√

E
{

X2
}

E
{

Y 2
}

=
E {XY }
σXσY

One can observe that the cosine of two random variables is the correlation of
those variables if they have been centred with zero mean. If the angle between

two random variables is small, then the correlation is high, and vice-versa. The

correlation coefficient can also be viewed as the cosine of the angle between the
two vectors of samples drawn from the two random variables X and Y . This also

means that the correlation is minimum when those two vectors are orthogonal,
and that the correlation is maximum when the two vectors X and Y are co-

linear, meaning that there exists a real k such that Y = kX . This implies that the

correlation measure is maximized when the relation is linear, leaving non-linear
relationships troublesome to detect.

An alternative idea is to investigate the amount of information gained by observ-

ing X when trying to explain or predict Y . In the task of predicting Y without ob-

serving X , one should minimize the mean-square prediction error E
{

(Y − Ŷ )2
}

,

simply yielding E {Y } as optimal predictor. However, when an observation of X
is available, then the predictor Ŷ depends on X . Such a predictor can be written
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as Ŷ = g(X). It can be shown [12] that a unique optimal predictor minimizing

E
{

(Y − g(X))
2
}

exists in the nature of the conditional expectation E {Y |X}.

The amount of information gained by observing X can then be defined as the
reduction in the mean square prediction error

J(X,Y ) =
E
{

(Y − E {Y })2
}

− E
{

(Y − E {Y |X})2
}

E
{

(Y − E {Y })2
} =

Var {Y } −Var {Y |X}
Var {Y }

(4.2)

If X and Y are independent, then E {Y |X} = E {Y } implying J(X,Y ) = 0 (no

new information). On the other hand, if X contains all the information from Y ,
then E {Y |X} = Y implying J(X,Y ) = 1. One should note that this measure J
is the same as the coefficient of determination R2, commonly used in statistics.

This motivates the need for methods approximating the conditional expectation
function which is a probability density function.

Kernel smoothing

When a probability density function is to be approximated, the simplest method

is to use the histogram approximation, where the sample space of the conditioned
variable is discretized in k bins. The density is then approximated by the fraction

of measurements falling into each bin. As the number of bins increases, the ap-
proximation gets better. The drawback of this approach relies on its discreteness,

often yielding bigger approximation errors at the boundary of the bins.

An other solution is to use a Parzen-Rosenblatt window method, also called ker-
nel density estimator [14]. Given a set of N observations xi drawn from a certain

distribution X , the kernel density estimator of the conditional density is defined

as

f̂(x) =
1

N

N
∑

i=1

K(x− xi) =
1

Nh

N
∑

i=1

K

(

x− xi

h

)

(4.3)

where K(·) is the called the kernel – a symmetric function that sums to one – and

h is the smoothing parameter called the bandwidth. A frequently used kernel is
the so-called Gaussian kernel, being the standard normal distribution.

K(x) =
1

2π
e−

1
2x

2

(4.4)
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Intuitively, one would chose the bandwidth h to be as small as possible, however,

there is a trade-off between the bias of the estimator and its variance. Several
strategies therefore exist to select the smoothing bandwidth h: number of nearest

neighbours, cross-validation, minimizing the L2 risk function... This generalizes

to estimators of joint probabilities of dimensions D by using so-called product
kernels, where the multidimensional kernel is simply computed as the product of

the kernels in each dimension:

f̂(x) =
1

Nhd

N
∑

i=1

D
∏

d=1

K

(

x · ed − xi · ed
h

)

(4.5)

where x · ed is the d-th component of x (by projection on the basis vector ed).

For the set of N observations (xi, yi) drawn from X and Y , our goal is to compute
the conditional expectation

E {Y |X} =

∫

yf(y|x) dy =

∫

y
f(y, x)

f(x)
dy (4.6)

One can use the kernel density estimator to approximate f(y, x) and f(x) in
the previous expression, yielding the Nadaraya-Watson estimator m̂(x) of the

conditional expectation density E {Y |X}

m̂(x) =

∑N

i=1 yiK
(

x−xi

h

)

∑N

i=1 K
(

x−xi

h

)
(4.7)

Conditioning on a multivariate random variable X of dimension D is the same
as conditioning on every component of that multivariate variable

E {Y |X} = E {Y |X1, X2, . . . , XD} =

∫

yf(y|x1, x2, . . . , xD) dy

=

∫

y
f(y, x1, x2, . . . , xD)

f(x1, x2, . . . , xD)
dy (4.8)

Using the kernel density estimators, the Nadaraya-Watson estimator in D dimen-
sions is

m̂(x) = m̂(x1, x2, . . . , xD) =

∑N

i=1 yi
∏D

d=1 K
(

xd−x1,i

h

)

∑N

i=1 K
(

xd−xd,i

h

) =

∑N

i=1 yiK
(

x−xi

h

)

∑N

i=1 K
(

x−xi

h

)

(4.9)

Note that a generalization to different bandwidths h = {h1, h2, . . . , hD} for each

dimension can easily be made, yielding the final estimator for the conditional
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Figure 4.1: Estimation of the relationship between the variables minute of day and consump-
tion in the Olympic Peninsula dataset by estimating the conditional mean with
a variable bandwidth selected upon the k =

√
N = 20th nearest neighbour,

yielding the measure J(X,Y ) = 64.3%.

expectation density

m̂(x) =

∑N

i=1 yiKh (x− xi)
∑N

i=1 Kh (x− xi)
(4.10)

where

Kh(x) =

D
∏

d=1

K

(

x · ed
h · ed

)

(4.11)

The amount of information in a set X = {X1, X2, . . . , XD} of random variables

that can be used to explain a target variable Y can then be assessed by J(X, Y )
in equation 4.2, requiring equation 4.10 to estimate the conditional expectation
density.

Because the choice of bandwidth impacts the amount of smoothing used in the
estimator, it has to be carefully chosen. As it is highly unlikely that the vari-

able conditioned on has a constant density function, the bandwidth must be set

to vary upon the density of measurements to cope with areas with a low num-
ber of observations. For example, regions of very high prices occur at very few

times, motivating the use of a variable bandwidth. A simple approach is to have
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the bandwidth be proportional to the distance to the k-th nearest neighbour. Be-

cause the kernel is symmetric, the bandwidth is then defined as half this distance.
Generalizing in dimensions D, the bandwidth h = {h1, h2, . . . , hD} to be used at

each point xi is defined as

∀d = 1, . . . , D, hd = |xi,k · ed − xi · ed| (4.12)

where xi,k is xi’s k-th nearest neighbour.

4.1.3 Using a neural network to assess variable dependencies

The target variable Y is now represented through a functional relation between

the output Y and the D input variables X = (X1, . . . , XD). This functional
relation can be obtained by training of a feed–forward two–layer network for

example, with M number of hidden units (Figure 4.2).

x0

x1

xD

...
...

w
(1)
10

w
(1)
MD

z0

z1

zM

w
(2)
0

w
(2)
M

y

Figure 4.2: Structure of a feed–forward two–layer neural network with one output, showing
the structural relation between an output observation y, and a D-dimensional
observation x1, . . . , xD. Note that x0 is the bias of the first layer and z0 is the
bias of the second layer.

Each input sample x, and a bias term x0 (of the first layer), are fed through a

first layer of weights, w
(1)
ji to form new inputs aj fed to the hidden units, which

transform the inputs using a non–linear activation function, h(aj), where j =
1, . . . ,M . Subsequently, the resulting outputs zj plus a second bias, z0, are fed

through the second layer of weights, w
(2)
j to form the output y. Putting this

structure for a regression model in mathematical terms and using the hyperbolic
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tangent as activation function h yields the non–linear input–output relation

y(x,w) =

M
∑

j=0

w
(2)
j tanh

(

D
∑

i=0

w
(1)
ji xi

)

(4.13)

where the bias terms of the first and second layer were absorbed by setting the
variables x0 = 1 and z0 = 1, respectively.

The network parameters are determined using the backpropagation learning rule

in order to minimize the sum–of–squares error function with respect to the pa-
rameters w over a training set {xi, yi}Ni=1

E(w) =
1

2

N
∑

i=1

||y(xi,w)− yi||2 (4.14)

Considering identical, independent and Gaussian distributed errors, the optimal

parameters w can be estimated by minimizing the squared error function through
a non-linear solver [3]. Note, that equation (4.14) is equivalent to maximizing

the maximum–likelihood function of observing the data set {xi; yi}Ni=1.

The optimum balance between over- and under-fitting of the network to the avail-
able data set, i. e. finding its best generalization abilities, can further be improved

by putting a quadratic regularization term to (4.14),

Ẽ(w) = E(w) +
1

2
λ||w||2. (4.15)

The number of hidden units M from Equation (4.13) and the optimal values for
λ in (4.15) are determined using K–fold cross validation of the data points en-

suring the best possible net. The technique of K–fold cross validation involves

taking the available data and partitioning it into K groups, e. g. of equal size.
Then K − 1 of the groups are used to train a particular network that is sub-

sequently evaluated by means of the remaining group, i. e. its test error. This

procedure is then repeated for all K possible choices for the left-out group and
the performances from the runs (test errors) are then averaged. The best per-

forming network among all cross-validation procedures is selected and assumed
to provide good generalization.

Having found the optimal set of parameters, the estimated output ŷ is obtained

by simply feeding inputs x through the trained network.

The network training can now be embedded into the forward selection method,

and variable dependency can be assessed by using as measure J(X, y) the reduc-
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tion in variance previously used in Equation (4.2). Its discrete estimator can be

written as

J(X, Y ) =

∑

i(yi − ȳ)2 −∑i(yi − ŷ)2
∑

i(yi − ȳ)2
(4.16)

where ȳ denotes the mean of the target variable.

4.1.4 Min–Redundancy Max–Relevance (mRMR) with mutual
information

Selecting variables of interest means maximizing a certain dependency measure.
This is called the max–dependency criterion. However, a combination of vari-

ables individually very good at describing the target variable is not necessary

better as those variables could be redundant. Therefore, variables should be
selected with the criterion of having minimum redundancy among all other se-

lected variables, while still showing high relevance to the target. This is called
the Min–Redundancy Max–Relevance (mRMR) criterion which has found to be

more powerful than the single max–dependency [22]. This method still relies

on a measure of dependency, which could be based on a wrapper method as de-
scribed previously. However, let us investigate the Mutual Information measure.

As it does not base itself on a model, it is a filter method (like the correlation

measure for example). The Mutual Information between a random variable X
and a target variable Y is expressed as

I(X,Y ) =

∫ ∫

p(X,Y ) log
p(X,Y )

p(X)p(Y )
dxdy (4.17)

where the marginal and joint probability density functions are denoted by p(·).
The concept of mutual information descends from information theory and is
based on the entropy of a random variable. Shannon expressed the entropy of

a random variable as the expected value of its information content [3]. The in-

formation content only depends on the probability of the random variable: the
smaller its probability, the larger the information content associated with receiv-

ing the information that the event indeed occurred. By the fact that, by definition,

the measure of information is positive and additive, the information content of
a random variable X is expressed as the negative logarithm of the probability

distribution function p(X). The entropy H(X) of that random variable is then
the expected value of the information content, such that

H(X) = −
∫

log(p(X)) (4.18)
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Mutual Information measures the entropy shared by the two variables (also

called joint entropy), such that I(X,Y ) = H(X,Y )−H(X |Y )−H(Y |X), yielding
Equation (4.17). This measure can then be used as an alternative to the reduc-

tion of variance measure J(X, Y ) from Equation (4.2). However, an improved

criterion from the max–dependency (that would just maximize this measure) is
the mRMR. It has been shown in [22] that if the the max–dependency criterion

is used together with the min–redundancy (mRMR), then using pairwise mutual

information to select the most important variables is equivalent to using the mul-
tivariate equivalent. The mRMR score for a variable Xi that is not picked yet is

then computed as

mRMRXi∈R = I(Xi, Y )− 1

s

∑

j∈S

I(Xi, Xj), (4.19)

where S and R denote sets of s already selected and r remaining variables, re-
spectively. Finally, that variable among the r scores is chosen to be included

yielding the maximum mRMR score.

A crucial part in computing the mRMR scores is a proper bivariate probabil-
ity density estimation in Equation. (4.17). This is carried out using a two–

dimensional kernel density estimator with automatic bandwidth selection1.

1Implementation taken from Zdravko Botev (2009). Available under
http://www.maths.uq.edu.au/~botev

http://www.maths.uq.edu.au/~botev
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4.1.5 Results of the variable selection

The three variable selection methods are now applied to the two datasets pro-
duced in Sections 2.2 and 3.2 in order to assess the importance of each variable.

Another dimension is added as each variable is delayed (lagged), up to one day,

enabling us to identify within-a-day dynamics. The selection methods are run on
two sets of variables: The external set of observables, and the set of external and
internal variables:

External variables Internal variables

Price Standardized price
Minute of day (not lagged) Inside air temperature

Weekday (not lagged) Heating setpoint

Weekend boolean (not lagged) Heating setpoint adjustment
Outside temperature

Sun global irradiance

Sun diffuse irradiance (Olympic Peninsula only)
Sun direct irradiance (Olympic Peninsula only)

Outside humidity (Olympic Peninsula only)
Outside dewpoint (Olympic Peninsula only)

Outside wind speed (Olympic Peninsula only)

Outside wind direction (Olympic Peninsula only)
Barometer (Olympic Peninsula only)

A summary of the results is presented here. Detailed scores are listed in Ap-

pendix B.

Olympic Peninsula

The strongest dependency is on the time of the day, as all methods pick either

the MinuteOfDay or the heating setpoint as their first variable (note that the

heating setpoint is a representation of the time of the day since it is triggered by
occupancy modes). The second most important variable is the outside dewpoint,

which surpasses the outside temperature by far. The lagged heating setpoint
are selected throughout the procedures, indicating a importance of its dynamics.

However, the dependency on weekday and weekend variables is less systematic,

as only some of the methods select them, in very different orders. The sun ir-
randiance is even more problematic, as it is only selected by the neural network,

and ranked #5. Price responsivity is only identified by the kernel as the 12th
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variable. When the internal standardized price is included, is is ranked #4 by

the kernel and #8 by the neural network (the mRMR does not detect any price
responsivity).

Simulated data

From the outside, the simulated system is very price responsive: most of the vari-

ables selected are lagged versions of the price. Furthermore, the kernel selects

8 lagged prices and the mRMR selects 14 (out of 15). All three methods show
the strongest variable to be the non-lagged price, closely followed by the time of

the day, the outside temperature and the sun irradiance. Performances are quite

limited when using only external variables. However, adding internal variables
drastically increases performances. Scores go as high as 80% after a couple of

variables, and maximum scores are >90% with 10 variables. Throughout the
three methods, the first variable selected is the indoor temperature, explaining

45% of variance. The kernel and the mRMR select as second variable the indoor

temperature again, but delayed with 5 minutes (one sample). This clearly rep-
resents the first order differential equation driving the building dynamics. The

standardized price is then quickly selected, with numerous lagged versions of the

indoor temperature, stating the strong dependence on its dynamics.

4.2 Heating consumption structure

The variable selection used in the previous section revealed a strong dependency

of the consumption on the heating setpoint. We will therefore focus on under-

standing the structure of the part of the consumption that is related to heating.
By building the simulation framework close to the Olympic Peninsula experi-

ment, we identified relationships between variables, structured in Figure 4.3.

This structure is valid for both datasets, and all subsequent analysis will there-
fore be treated on both datasets simultaneously.

For each house, the heating consumption is determined by the deviation of the
inside air temperature Ta to a certain reference (being the heating setpoint). If

the inside air temperature is under the reference such that heating is required,

then an according consumption is observed. This triggers a feedback of heat Q
from the heating system to the building, which will in return affect the inside

air temperature, the latter also being affected by outside weather conditions.
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Given a heating setpoint, the heating consumption is then a result of an interplay

between the quantity of heating applied Q and the inside air temperature Ta, the
latter also being affected by weather conditions (upper part of Figure 4.3).

Building thermal

dynamics

Heating setpoint

controller

Price responsive

setpoint adjustment

Weather conditions

Inside air temperature Ta

Setpoint Ts

Final setpoint

Setpoint adjustement  ΔTs

Supplied heat Q

Occupancy mode O

Price P

Space

Heating

Heating consumption

Figure 4.3: Block diagram of the heating consumption. External variables are entering from
the left, transformed into internal (hidden) variables, before being transferred
into the output consumption.

The temperature setpoint on the other hand can be decomposed in two parts:

a price responsive adjustment dTs and a non-price sensitive part Ts. The non-

price sensitive part of the setpoint is determined by the occupancy modes: Each
mode triggered a specific setpoint. On the other hand, the price responsive ad-

justment originates from the standardized price p̂, the price sensitivity k and the
associated bounds of comfort (maximum and minimum acceptable temperature

setpoints). The price responsive adjustment therefore depends on the occupancy

modes (through the comfort settings), and on the received price (through the
standardized price).

The overall structure is generalizable to other systems than heating. As an ex-

ample, the consumption of price-responsive fridges and freezers, as implemented
in Chapter 3, follows the same structure as it is based on the same principles of

lowering/increasing the setpoint depending on a price signal.

4.2.1 Aggregation

The model structure for an individual consumer’s heating system has been de-

scribed. However, how can a population of different households be described?
In other terms, what does the aggregated system look like?

The heating consumption of one house does not affect the consumption of others.



70 Identifying consumption structure and price responsiveness

Even though different households depend on the same external variables (they

all react to the same prices and to some extent to the same weather conditions),
their dynamics are independent of each other. It seems therefore reasonable to

investigate to which extent the mean behaviour of households is representative

of the population, given that we consider enough households, e. g. that the law
of big numbers prevail.

For the Olympic Peninsula data there is no other choice as to assume this fact

since only aggregated time series of consumption, comfort and external condi-
tions were given. But since the mean of each variable’s time evolution follows a

clear pattern and the deviations from it are in a passable range, it is reasonable
to assume a similar behaviour for the mean. For the simulated data this assump-

tion holds likewise, as investigated in Section 3.2 when preparing a simulated

data set. It is also important to mention that the heating consumption in the
Olympic Peninsula was blurred by other devices’ consumption since they could

not be separated from the aggregated consumption data.

We will therefore approximate the aggregated system by the „mean system” of
Figure 4.3 using the mean of all variables used as input and output (except the

consumption which will be the sum of all individual consumptions). The strategy
is to investigate and understand each subsystem in order to build an external

description of the overall system, as we don’t have access to the internal (hidden)

variables.

4.2.2 Space heating

The space heating system can generally be thought of a simple controller that
turns on or off the heating device according to whether the heat supply is needed

or not. One should note that this internal process of supplying heat to the build-

ing results in an internal feedback, which makes the overall system non-linear.

Inputs to this subsystem are the indoor temperature Ta, the temperature setpoint

Ts + dTs (consisting of both price-responsive and non price-responsive parts).
The consumption c is the output. In a single house, heating is turned on if Ta <
Ts + dTs − Thys. Figure 4.4 indicates a clear trend between the difference of the

inputs to the system and the resulting consumption for both the data sets. This
relation is static, and it is not expected that any dynamics are introduced here as

the decision to turn on heating depends on the present values of Ta and Ts+dTs.
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(a) Simulated data.
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(b) Olympic Peninsula.

Figure 4.4: Consumption as a function of the difference between heating needs and current
indoor air temperature, (Ts + dTs)− Ta.

4.2.3 Building thermal model

The indoor air temperature Ta used as input to the space heating is determined

by a system having as input external weather conditions (outside temperature
To, sun irrandiance S) and the amount of heat supplied Q as a feedback from the

space heating system. As explained in Section 3.1.2, if no heating is applied, the
transfer function of the thermal model for a building can be seen as a lowpass

filter with a corresponding phase shift, i. e. the fast fluctuations of the inputs are

attenuated and time delayed (see Figure 3.4).

4.2.4 Heating setpoint controller

The setpoint Ts is determined by a system having the occupancy modes as in-

put, triggering a preassigned temperature setpoint as output, reflecting the time
varying human comfort needs of the household.

The occupancy modes are found to be triggered according to the time of the
day and to have slightly different structures for weekends or weekdays (see Fig-

ure 2.5). It could be assumed that they also depend on holidays or other punc-

tual events. Therefore, the heating setpoint controller system could be assumed
to have as only input the time of the day, and an indicator function separating

weekdays and weekends.
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Figure 4.5: Heating set point as a function of time of the day.

The average setpoint is found to be representative of the population (Figure 4.5).
The time of the day seems to be a very good explanatory variable to describe this

mean setpoint.

Note that a simple heating system controller is assumed here, based on a simple
on/off switch.

4.2.5 Price responsive setpoint adjustment

In order to fully describe the final setpoint given as input to the space heating,
we look at the price responsive setpoint adjustment dTs, affected by the received

price and the triggered occupancy mode. The price is firstly standardized as

described in Section 1.2 and subsequently transformed into a set point offset ac-
cording to the price sensitiveness and comfort bounds, which are also triggered

by the occupancy modes. In both data sets, the price sensitivity and comfort
bounds were found to stay close to constant. Consequently, the price respon-

sive setpoint adjustments appears almost constant for a given price, as shown in

Figure 4.6.

As in the heating setpoint controller, the effect of the occupancy mode can be

quite well approximated by a dependency on the time of the day.
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Figure 4.6: Setpoint adjustment as a function of standardized price.

4.2.6 Conclusions

The interaction between the heating system and the building can be considered

as a hidden process since Ta and Q will most likely not be observable at an aggre-

gated level in a real-life implementation. The heating setpoint Ts, the standard-
ized price ρ together with the associated price reference p̄ are likewise hidden.

The challenge is therefore to conceive a model capable of describing accurately

enough the aggregated consumption, making use of only external variables.

4.3 Price responsivity of heating systems

Having as basis the structure of the consumption, we move on to the task of
extracting the price response and investigating its structure and dependencies.

For this purpose we firstly draw benefit of the simulation framework by measuring
the change in consumption after a change of price, by assuming that all other
variables vary so slowly that they can be assumed constant. Subsequently, we

take a closer look at statistical modelling in order to identify a mathematical
description in terms of an impulse response of consumption to price. Finally,

price responsiveness is considered relating to dependencies on other variables.

Note that although we focus on using only external variables, internal variables
are included here when necessary, in order to properly identify and extract the

price responsive structure.
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4.3.1 Simulating the price response

The real response of the system can be investigated by exciting the (simulated)
system with different prices and thereafter measuring its response. This is effec-

tively done by using as initial system two days with 20 houses. Two days are

used in order to ensure convergence from the initial conditions. The final state of
the system is then extracted, the price is modified, and one sample is simulated

with this modified state. As a reference case, no price change is performed. The

resulting consumption is measured, assuming that all internal variables have not
had the time to change significantly during one sample. Because the price during

the two first days was kept constant to 1, the change in price is actually the same
as the standardized price ρ.
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(b) Consumption change across the day for a fixed
change of price. The responsivity of the system
depends on the time of the day, and is maxi-
mized during peak hours.

Figure 4.7: Simulated one-step consumption response for various changes in price. Note that
the system was not exposed to any prices before.

A non-linear one-step price response is observed, with responsivity saturations for

price changes higher than 1 and lower than -1. The response also depends on the
time of the day as seen in Figure 4.7b. Maximum responsivity is achieved during

periods of high heating demands, corresponding to the morning and evenings
peaks.

This is only the one-step price response, independent of previous price changes

(as none was applied before). A more systematic approach needs to investigate
how the response evolves over time (how long does a price change affect the

system?) and how this price response depends on previous price changes (how
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much flexibility is left depending on previous price changes).

4.3.2 Modelling the price response with a linear model

The objective in now to identify a statistical model sufficiently precise to describe
the response of consumption to a change in price. The variable selection meth-

ods in Section 4.1 outlined four important variables: price, heating setpoint (or

time of the day), outside temperature and sun irradiance. Even though we aim
at modelling without knowledge of the internal variables, the heating setpoint is

preferred as a first step because introducing the minute of the day would imme-

diately cause a non-linearity (see Figure 4.1).

Modelling is carried out by simultaneously considering the simulated and real

data set where especially the outcome of the Olympic Peninsula project (cf Sec-
tion 2.3) is promising regarding price responsiveness.

It makes sense to start with linear models, simple by nature and well studied.

Given certain assumptions, this class of models provide closed-form solutions
that can therefore be computed quickly and precisely. The Auto–Regressive model

with eXogeneous inputs (ARX) enables a description of the target variable (the

consumption) to linearly depend on previous values of the target and on current
and previous values of external variables (price, weather...).

For a single external variable x, the ARX model describing the output yt can be
written as [15]

yt + φ1yt−1 + . . .+ φna
yt−na

= θ0 + θ1xt + . . .+ θnb+1xt−nb
+ εt, (4.20)

where εt is a zero mean Gaussian error. By denoting the finite range of past

outputs by yt−1 = (yt−1, . . . , yt−na
)T and the finite range of past inputs by xt =

(xt, . . . , xt−nb
)T , Equation (4.20) can be reformulated as

yt =
(

−yT
t−1 1 xT

t

)

(

φ

θ

)

+ εt. (4.21)

Note that multivariate inputs can be introduced by concatenating the additional

dimensions horizontally into Equation (4.21). The range of past output measure-

ments integrated into the model is controlled by the parameter na. nb equiva-
lently controls the amount of past external inputs used.

Vertically stacking all observation vectors into matrices, the ARX model can be
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formulated as the linear model

y = XT

(

φ

θ

)

+ ε = XTβ + ε. (4.22)

The unknown parameters βT = [φT θT ] are found by using the least squares
estimator [15]

β̂ =
(

XTX
)−1

XTy. (4.23)

Note, that extending the ARX structure in 4.21 to bivariate outputs y
(1)
t and y

(2)
t

can be done by expanding the matrix equations such that

(

y
(1)
t y

(2)
t

)

=
(

−y
(1)T
t−1 −y

(2)T
t−1

)

(

φy(1) φy(2)

ϕy(1) ϕy(2)

)

+ xT
t

(

θT
y(1) θT

y(2)

)

+ εt.(4.24)

A special case of the ARX model is the so-called Finite-Impulse-Response (FIR)

model, which only incorporates external inputs neglecting any dynamics in the
output (na = 0),

yt =
(

1 xT
t

)

θ + εt (4.25)

The parameter vector θ, without the first coefficient representing the intercept,

can therefore be seen as the impulse response of the system.

ARX and FIR models are widely studied models in statistics and are very often

used as a first start in system identification since they are simple to estimate and

evaluate. A basic assumption of these types of models is an underlying station-
ary process, i. e. the first and second order moments of the modelled processes,

mean and variance, do not change over time. Various techniques like detrending
or filtering exist in order to make non-stationary time series stationary, see [15].

However, for the system identification part, we used almost stationary periods of

data (only one or two months) in order to reduce those problems. Furthermore,
one should note that by exciting the system with different prices, the price refer-

ence p̄t (upon which the standardized price ρt is computed) changes over time.

Even though the response to the standardized price ρt is stationary, the response
to the external price pt isn’t, as the price reference p̄t changes. We have therefore

taken care to generate and model a data set which have prices yielding a fairly
constant price reference.

Determining the best number of lags for each input variable was done by eval-

uating each model performance for different lag values (Figure 4.8). On the
simulated data set, enough data points were available such that it was possible

to assess the model performance on a test set, after having been estimated on a
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training set. Note that one could exploit more advanced model assessment and

selection techniques as described in [15].
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Figure 4.8: Determination of best number of lags for FIR model in (4.25) by means of per-
centage of reduction in variance. Note that because the performance on the sim-
ulated data was evaluated on a test set, effects of overfitting appear for nb > 80.

First, we examined the performance of an FIR model on both data sets by as-

sessing the reduction of variance between this model and a constant model (the
mean of the output). nb = 80 lags (6.7 hours) were selected for the simulated

data and nb = 40 lags (10 hours) for the Olympic Peninsula, selected as the value

for which an increase in lags did not significantly increase the coefficient of de-
termination R2. A period of the time series for both estimations are shown in

Figure 4.9. It can be observed in both plots that the mean behaviour is better

captured than the high fluctuations of the consumption. Changing to an ARX
model, i. e. dynamics in the consumption are added, did not yield any significant

improvement.
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Figure 4.9: Exemplary true and estimated time series using the FIR model in (4.25) with 80
lags selected for the simulated and 40 lags for the real data set.
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The price responsive parts of the models can now be extracted. The response

of the consumption to a step of price is therefore investigated by convolving
the models’ impulse response of consumption to price with a step function of

one price unit. The resulting step responses for both data sets are depicted in

Figure 4.10.
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Figure 4.10: Aggregated consumption step response. A change of price influences the sim-
ulated consumption during approximately 5 hours. The counter-intuitive re-
sponse of the Olympic Peninsula shows a necessity of taking into account the
closed loop relation between price and consumption.

Considering the simulated data, an increment in price immediately reduces the
consumption. In the Olympic Peninsula however, the opposite is observed. This

comes from the fact that price and consumption are affecting each others, whereas
in the simulation framework, an increase in consumption did not affect the broad-

casted price. This mutual influence of price and consumption states describes a

closed loop system.

By making use of an ARX having as additional output the price (meaning price is

not anymore an external input), closed loop models can be described with an ARX

structure according to Equation (4.24). As we already found nb = 40 sufficient
for the external variables in the FIR, the number of lags na,p and na,c necessary

to describe the price and consumption dynamics, respectively, have to be chosen.
The number of lags reflecting the price dynamics, na,p, is chosen to be 40 (10

hours) enabling a proper representation of the impulse response of consumption

to price. On the other hand, na,c is selected using the same method as previously
described for the FIR model. na,c = 4 seems to be sufficient (Figure 4.11a) since

higher values do not significantly improve the model performance.
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(a) Determintation of best number of lags for the
consumption in the multi-output ARX model
in (4.24) by means of percentage of reduction
in variance.
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Olympic Peninsula experiment is due to an over-
all high level of prices.

Figure 4.11

The responses of consumption after a step of price (the feedforward) and of the
price after a step of consumption (the feedback) can then be extracted using the

same method as before (Figure 4.11b). A reasonable response of the consump-

tion to an increase in price can now be observed. Furthermore, it is also observed
that an increase in consumption has as consequence a rise in price.

Modelling with internal variables turned out to be more problematic than helpful.
Including the indoor temperature blurred out the effect of price, as the indoor

temperature already depends on the price. This problems could have been solved

by adding this internal variable as output in an ARX, but at a high cost of having
the number of parameters increase accordingly.

In that sense, the variables used here are judged adequate in order to explain the

price responsivity of the system.

4.3.3 Dependencies on other variables

When modelling the price step response for the data of the Olympic Peninsula

experiment, we found the response to vary with the different data periods that
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have been chosen for statistical modelling (see Table 2.1).
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Figure 4.12: Price step response when different seasons of the Olympic Peninsula project are
considered.

This observation motivates the investigation of how the step response changes
depending on various variables. For this purpose, the simulation framework en-

ables us to change several variables and investigate the changes in step response.
Several data sets of length of two months are generated and compared.
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Figure 4.13: Price response when different months are considered. The heating needs are
different throughout the year. May-September 2009 are found to be less price-
responsive than winter months.

The time constant τ controls the range of past prices taken into account when

computing the reference price p̄. For τ = 0, no past price is used to compute the
reference price, which is then exactly equal to the received price signal. For τ be-

ing infinity, infinitely many old measurement are (theoretically) used to compute

the reference price, making it independent of the current price signal.

The smaller τ gets, the more similar the price reference and the received price,

lowering the price response. A saturation is observed for τ > 30 hours, where
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Figure 4.14: Price response when different time constants of the reference price are consid-
ered.

enough past measurements are taken into account in order to have a stable refer-
ence (Figure 4.14). When a constant reference is used (infinite τ), the smoothing

effect of the standardized price ρ is completely removed, resulting in a longer re-
sponse without changing the instantaneous response (Figure 4.15). In that sense,

the price response represents both the smoothing effect and the response of the

physical system.
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τ = 24 hours

τ = ∞

Figure 4.15: By setting τ = ∞ when computing the price reference, more flexibility is ob-
tained during time, at the cost of increasing the model order (nb = 320).
However, the appliances are unable to adapt to slow variations of the price.
The time constant should be chosen as big as possible, such that slow variations
of the price are taken into account without seriously reducing flexibility.

By setting τ = ∞, the effect of price stays approximately 20 hours in the system.

The full flexibility potential is therefore not used if the smoothing effect of the



82 Identifying consumption structure and price responsiveness

standardized price ρ is present. As the original purpose of this smoothing is to

remove low price variations, coming e. g. from monthly or yearly variations, the
time constant τ should be chosen as long as possible to maximize the impact of

a price change.
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(b) Instant response

Figure 4.16: Price response when different price sensitivities are considered. All coefficients
of the step response increase as price sensitivity is increased. A saturation is
observed for sensitivities having an absolute value bigger than 6◦C per doubling
of price
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(b) Instant response

Figure 4.17: Price response when different comfort boundaries are considered. It seems that
the comfort bounds affect mostly the immediate response.
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(b) Instant response

Figure 4.18: The price response linearly scaled with the number of households.
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(b) Instant response

Figure 4.19: Price response when different sampling times are considered. Sampling times
over 15 minutes miss approximatively 25% of the immediate response.





CHAPTER 5

Forecasting and controlling
the flexible consumption

The Olympic Peninsula project controlled the consumption by collecting bids of

appliances and matching those against production bids. This yielded a clearance
price, broadcasted back to appliances. Because this approach requires appliances

to broadcast bids to the market, it therefore needs a robust and secure commu-

nication infrastructure.

Our approach seeks at constructing a price generator with the objective of follow-

ing a certain consumption reference. This controller is actively using the patterns

emerging from the aggregated consumption in order to take better decisions. It is
completely based on external variables e. g. it assumes no knowledge of the inter-

nal variables of each household. But to which degree can we control the prices
being generated? How can the generator cope with time-varying consumption

patterns? How can we assess the performance of such a generator?
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5.1 Concept

The concept enabling the activation of flexible consumption by using a price

signal combines three elements: the real system representing an aggregate of

price responsive households, a system identification part estimating the price
responsivity of the system, and a controller generating the prices needed in order

to achieve a given consumption (Figure 5.1).

Controller System

System identi!cation

Consumption

references

Model parameters

Prices

Aggregated

consumption

Figure 5.1: The controller emitting a price signal is able to influence an aggregate of price-
responsive households (the system). On-line identification enables the controller
to adapt to changes in the system (self-tuning).

As the number of installed price responsive appliances might vary over time, and
as the population itself might change behaviour over time, the system is time-
varying. Dealing with a system exhibiting time-varying dynamics imposes the

use of adaptive control. An adaptive controller is formed by combining an on-line
system identification, which re-estimates the unknown model parameters at each

instant, with a control law based on those on-line estimates. A controller based
on a regularly updated model is often referred to as a self-tuning controller, since

the controller is capable of adjusting itself to changes in the system. Of course,

this ability is highly dependent on the robustness and convergence properties of
the processes involved, see [13].

External influences such as e. g. outside temperature have also to be taken into

account in the system identification, as the real system is affected by them. Cur-
rent and past values can be measured, but in order to derive a proper control

law, forecasts must be provided. Additional uncertainties are introduced in the
process of forecasting. Providing reliable forecasts is a discipline in itself. In that

light, we have assumed perfect knowledge of the external influences. One the

other hand, as internal variables are not accessible from the system identifica-
tion block, the model from Section 4.3.2 has to be adapted such that it estimates
internal variables, such as the heating temperature setpoint.
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5.2 Forecasting the consumption

5.2.1 Forecasting theory

In this Section we access the performance of the models obtained for both the

simulated and Olympic Peninsula data set in Section 4.3.2 in terms of their fore-
casting capabilities. Especially when used later in a controller, the prediction

ability of a model is a crucial factor regarding the overall control performance.
The task of forecasting the consumption is also sometimes referred to as predic-
tion.

Let us denote Xt as the matrix containing a finite range of lagged prices pt

and lagged external variables Ẑt up to time t, such that Xt =
(

Ẑt pt

)

. A

model f describing the consumption by means of own consumption dynamics

and external lagged inputs can be written in a very general form

ct = f (ct−1,Xt) + εt (5.1a)

= f (ct−1, . . . , ct−na
,xt, . . . ,xt−nb+1) + εt (5.1b)

Note that for na = 0, the model is independent of past consumption values.

By assuming that we want to predict by minimizing the squared error between

predictor and true value, the optimal one-step prediction is expressed as the
expectation of the consumption conditioned on past measurements up to time, t
[15].

ĉt+1|t ≡ E {ct+1 | ct,Xt} (5.2a)

= E {f (ct,Xt+1) + εt+1 | ct,Xt} (5.2b)

= f (ct,Xt+1) + E
{

εt+1|t

}

, (5.2c)

where E
{

εt+1|t

}

can be seen as a bias correction term of the predictor. Note that
this term vanishes under the assumption that the model error εt is i.i.d. Gaussian

with zero mean.

The conditional variance, on the other hand, describes the uncertainty associated
with the prediction:

Var {ct+1 | ct,Xt} = Var {f (ct,Xt+1) + εt+1 | ct,Xt} (5.3a)

= Var {εt+1 | ct,Xt} (5.3b)

= Var
{

εt+1|t

}

(5.3c)
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The k-step ahead predictions and their associated uncertainties are also found to

be the conditional mean and variance [15] (conditioned on the time t at which a
prediction is made):

ĉt+k|t ≡ E {ct+k | ct,Xt} (5.4a)

= E {f (ct+k−1,Xt+k) + εt+k | ct,Xt} (5.4b)

Var {ct+k | ct,Xt} = Var {f (ct+k−1,Xt+k) + εt+k | ct,Xt}. (5.4c)

The model f inside the conditional mean and variance now requires unknown
values: consumptions at time indices t + 1 up to t + k − 1. Those values can

be recursively approximated using the one-step predictor previously established,

but most often at the cost of having a growing uncertainty due to the recursive
approximation error.

However, we can prevent the accumulation of errors by selecting a model having
na = 0, i. e. that the one-step predictor is independent of past consumption val-

ues. This results in a predictor which only depends on external variables up to

the prediction horizon.

5.2.2 Forecasting the consumption using an FIR model

For the linear FIR model found in Section 4.3.2, described by the parameter

vector θ, the k-step prediction from Equation (5.2c) simplifies to [15]

ĉt+k|t =
(

1 XT
t+k

)

θ (5.5)

as no accumulation of errors is present since the consumption is modelled with-
out any dynamics.

The forecasting performance of the trained models should be evaluated on a

test set: a dataset on which the model has not be trained on. This mimics the
situation of unknown data being presented to the model. At each time point of

the training set, and for each prediction step k = 1, . . . ,K, the k-step prediction
is computed and compared to the real value, yielding a squared prediction error

(ĉt+k|t − ct+k)
2.

Additionally, it is interesting to compare this prediction against the simplest pre-
diction model available: the persistence. The latter assumes no knowledge of any

pattern or structure of the data, and is expressed simply as ĉt+k|t = ct. In other
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words, the persistence predicts that future values will be the same as the current

value.
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(a) Simulated data.
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(b) Olympic Peninsula.

Figure 5.2: Exemplary forecasts of consumption models and persistence. Note that the simu-
lated consumption is sometimes forecasted to be negative.

The squared predictions errors are then averaged for each horizon K, and the
results are depicted in Figure 5.3 both for the simulated (a) and the real data set

(b).
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(a) Simulated data
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Figure 5.3: Forecasting performance of models obtained from the simulated (a) and the
Olympic Peninsula data set (b). A constant error is observed in the simulated
data set, as the uncertainty only depends on external variables. On the Olympic
Peninsula data set however, a short accumulation of error is observed. The peri-
odicity of consumption itself yields periodicity in the persistence.
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On the simulated data set, it is found that the forecast error does not grow with

the horizon, as expected because there should be no accumulation of errors (the
forecast is only driven by the external variables). Compared to the persistence, it

seems natural that any knowledge of an underlying system improves the forecast-

ing abilities, as shown in Figure 5.3a where the error related to the persistence is
fairly large. A major limitation arises from the fact that the forecasted consump-

tion can drop below zero, as seen in Figure 5.2a. The problem lies in the linearity

of the model, which can not approximate well enough the strong non-linearity
occurring when the consumption reaches zero.

Regarding the Olympic Peninsula data set, consumption dynamics have to be
included as seen in Section 4.3.2. Using the ARX structure presented in Sec-

tion 4.3.2, the accumulation of prediction errors can not be avoided as seen in

Figure 5.3b.

The persistence prediction error is found to fluctuate, reproducing the two peaks

of the daily consumption pattern previously studied. This comes from the fact

that the morning and evening peaks are similar, yielding a similar prediction
error. The persistence prediction error is therefore autocorrelated with a period

of approximately 12 hours, the latter being the time between the morning and
evening consumption peaks.

An interesting fact about the real data is that the persistence performs slightly

better than the model for horizons K smaller that one hour. This leads to the
conclusion that the model predicts better the overall long-term mean instead of

individual point forecasts.

Nevertheless, one should always keep in mind that in order for the models to be
used in a one-way communication implementation, all variables must be mea-

surable from the outside on an aggregated level. The temperature setpoint Ts is

not measurable from the outside. Hence, the next section presents an extension
estimating this hidden variable.

5.2.3 Forecasting the heating setpoint

Computing the conditional mean of the heating setpoint Ts conditioned on the

minute of the day (using the method in Section 4.1) reveals a clear non-linear
dependency on the minute of the day (Figure 5.4).

One way to build a model describing the non-linear relation of Ts on the minute
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Figure 5.4: Estimation of the relationship between the minute of day and the heating set-
point in the Olympic Peninsula dataset by using a kernel smoother estimating
the conditional mean.

of the day u is to make use of a basis function b(u)T which will be linearly

combined to model the setpoint Ts.

Let us introduce the so-called Fourier basis for a given set of N frequencies

f1, f2, . . . , fN .

b(u)T =
(

1 sin (2πf1u) cos (2πf1u) . . . sin (2πfNu) cos (2πfNu)
)

(5.6)

The unknown parameter vector θ is introduced such that

Ts = b(u)Tθ + ε (5.7)

Stacking n observations vertically, we obtain






Ts1

...
Tsn






=







b(u1)
T

...
b(un)

T






θ +







ε1
...
εn






(5.8a)

Ts = BTθ + ε (5.8b)

The parameters θ can then be estimated by computing the least squares estima-
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tor [15]

θ̂ =
(

BTB
)−1

BTTs (5.9)
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(a) Fitting the heating setpoint by using a linear
model with a Fourier basis, see Equation (5.8).
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Figure 5.5

The temperature setpoint, due to its daily pattern, has a period of approximately
24 hours. Therefore, the smallest frequency f1 should correspond to a period of

one day. Multiples of this frequency, called harmonics, are then added as extra

frequencies. The number of harmonics is chosen by minimizing the root mean
square error (RMSE) of the fit (Figure 5.5b). In that sense, N = 4 harmonics are

found to be sufficient.

5.2.4 Forecasting without knowledge of the heating setpoint
with an NFIR

Even though a model for the temperature setpoint Ts has been established in
Section 5.2.3, this model has to be trained on data which can be hard to obtain.

A model based exclusively on external inputs is then sought by replacing the

linear dependency on Ts by a non-linear dependency g on the minute of the day
ut. We will refer to it as the Non-linear Finite-Impulse-Response model (NFIR)

Using the FIR model from Section 4.3.2, let us separate the linear inputs Xt and
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the non-linear input ut (minute of the day)

ct =
(

1 XT
t

)

θx +
(

g(ut) g(ut−1) . . . g(ut−nu−1)
)











θu,1
θu,2

...

θu,nu











=
(

1 XT
t

)

θx +GTθu, (5.10)

where the inputs Xt do not contain the temperature setpoint anymore.

The non-linear relation g(u) can then be approximated by a linear model with
a basis function g(u) ≈ b(u)Tθb. For example, using a second order polyno-

mial basis would yield b(u)T =
(

1, u, u2
)

with θb being the polynomial coeffi-
cients. Those vectors do not occur in the parameter estimation, and can there-

fore be computed beforehand. For the purpose of modelling the non-linear de-

pendency of the setpoint on the minute of the day, the Fourier basis function
of Equation (5.6) will be used, with the 4 corresponding frequencies found in

Section 5.2.3. Rewriting to isolate the basis coefficients θb yields

ct =
(

1 XT
t

)

θx +
(

b(ut)
Tθb b(ut−1)

Tθb . . . b(ut−nu−1)
Tθb

)











θu,1
θu,2

...

θu,nu











=
(

1 XT
t

)

θx

+
(

b(ut)
T b(ut−1)

T . . . b(ut−nu−1)
T
)











θb 0 . . . 0
0 θb . . . 0
...

...
. . . . . .

0 0 . . . θb





















θu,1
θu,2

...
θu,nu











=
(

1 XT
t

)

θx +BT
t











θb 0 . . . 0
0 θb . . . 0
...

...
. . . . . .

0 0 . . . θb





















θu,1
θu,2

...

θu,nu











(5.11)

By defining the Kronecker product between two matrices A and B, of sizes m-by-
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n and p-by-q respectively, as the following mp-by-nq matrix

A⊗B =







a11B . . . a1nB
...

. . .
...

am1B . . . amnB






, (5.12)

Equation (5.11) can then handily be rewritten as

ct =
(

1 XT
t

)

θx +BT
t (Inu

⊗ θb) θu, (5.13)

where Inu
is the nu-by-nu identity matrix. By using the relation (Ip⊗b)a = a⊗b

[4], this equation can furthermore by rewritten to the compact notation

ct =
(

1 XT
t

)

θx +BT
t (θu ⊗ θb) (5.14)

The product of the basis coefficients θb with the lag coefficients θu makes this

model non-linear in the parameters, with nx + nu + nb coefficients (nb being
the number of components in the basis vector). The uniqueness of the optimal

parameters vanishes as several combinations of θu and θb can provide the fitting
performances. One could estimate the parameter vector θ = θu ⊗ θb, which then

makes the model linear in θ. In this case, the number of parameters then grows

to nx + nu · nb. This is because we ignore the crucial condition that a common
θb is used for each input signal ut−k at each lag k, manifesting that the same

non-linear function g(ut−k) is used for all lags.
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(a) nb = 40 coefficients are found to be necessary,
yielding 168 parameters for this model (com-
pared to 321 for the FIR model of Section 4.3.2).
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(b) Forecasting performances are very similar to the
FIR model of Section 4.3.2.

In order to find the optimal set of parameters the sum of squared prediction

errors is minimised, where the prediction errors (residuals) are formulated as

rt(θx, θu, θb) = ct −
(

1 XT
t

)

θx −BT
t (θu ⊗ θb) . (5.15)
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Due to the non-linearity in (5.15), we have to solve a non-linear least squares

problem which is studied in detail in [16]. For this purpose we make use of the
Levenberg-Marquardt algorithm which is based on a combination of the Gauss-

Newton method and the gradient descend method1.

Solving performances are increased if the exact Jacobian of the residual function,

J(rt(θx, θu, θb)) =
(

∇θx
rt(θx, θu, θb) ∇θu

rt(θu, θu, θb) ∇θb
rt(θb, θu, θb)

)

(5.16)
is supplied instead of a first order difference approximation. The gradients with

respect to each parameter vector are then found to be

∇θx
rt(θx, θu, θb) = −

(

1 XT
t

)

(5.17a)

∇θu
rt(θx, θu, θb) = −BT

t (Inu
⊗ θb) (5.17b)

∇θb
rt(θx, θu, θb) = − (θu ⊗ Inb) (5.17c)

Based on the simulated data, the model order and performance assessment of

the NFIR is then done in the same manner as in Section 4.3.2. Compared to
the FIR model obtained in Section 4.3.2, the performance of the NFIR is fairly

satisfactory, as it only reduces the R2-value from 59.1% to 47.7%. Note however

that only half as many parameters are needed.

5.3 Recursive and adaptive estimation

In an online implementation of a forecasting system, one needs to take into ac-

count every new measurement available. The more measurements the model is
estimated on, the less uncertain the model parameters become. The simplest ap-

proach is to re-estimate the model on the whole available dataset every time a

new measurement is available. This is called offline estimation. However, a recur-
sive estimation enables to take into account the previous model estimation and

to only correct the latter by the innovation that the new measurement contains,
ending up in an online estimation.

1Implementation taken from DTU-IMM [18] as it yields faster computation times than MATLAB’s
version
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5.3.1 Linear recursive and adaptive estimation

Considering a linear model with gaussian distributed errors εt

yt = xT
t θ + εt,

the model parameters θ can be estimated as the solution of the minimization

problem

θ̂ = argmin
θ

{

t
∑

i=1

(yi − xT
i θ)

2

}

. (5.18)

By vertically stacking observations such that the matrix Xt and and the output

vector yt contains observations up to time t, the solution to Equation (5.18) is

found to be the least squares estimator [15]

θ̂ = (XT
t Xt)

−1XT
t yt. (5.19)

The offline solution in equation (5.19) can be rewritten to

θ̂t =

(

t
∑

i=1

xix
T
i

)−1( t
∑

i=1

xiyi

)

= R−1
t ht,

where it can be seen that the current parameter estimate θ̂t can be expressed in

terms of the old estimate and the new observation

θ̂t = R−1
t−1ht−1 +

(

xtx
T
t

)−1
xtyt = θ̂t−1 +

(

xtx
T
t

)−1
xtyt

Further rearranging (see [15]) leads to the final update equation for the recursive

least squares estimation

θ̂t = θ̂t−1 +R−1
t xt

(

yt − xT
t θ̂t−1

)

with (5.20a)

Rt = Rt−1 + xtx
T
t (5.20b)

Equations (5.20) above have a strong intuitive meaning. The current parameter
estimate θ̂t is obtained by adding a correction to the previous estimate θ̂t−1. The

correction is proportional to the one-step-ahead prediction error based on the
previous parameter estimate (yt − xT

t θ̂t−1).

So far, the offline solution has just been reformulated in a recursive form. How-

ever, by introducing a forgetting factor, one can weight down old observations
that might be obsolete. In a non stationary system, parameters evolve with time.

This is the case if suddenly new appliances are installed in a home, or if a new
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house is built. Furthermore, price variations introduce a change in the price

reference upon which the standardized price is computed. Because the mod-
els are build on the original (observable) price signal, the response parameters

changes if the price reference changes. Those temporal changes indicate the need

of having an adaptive model estimation by ’forgetting’ at a certain rate the past
observations, and by putting more emphasis on recent observations, more rep-

resentative of the current system’s behaviour. A forgetting factor α is therefore

introduced in the minimization problem, putting exponentially decaying weights
on past observations:

θ̂ = argmin
θ

{

t
∑

i=1

αt−i(yi − xT
i θ)

2

}

. (5.21)

Deriving the recursive formulation again leads to a modification of the update

formula of equation (5.20b) such that

Rt = αRt−1 + xtx
T
t , (5.22)

where 0 < α ≤ 1. Note, that for α = 1 we obtain the offline solution from
Equation (5.19), see Figure 5.6.
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Figure 5.6: Exponential weighting of past observations for different forgetting factors α and
a sample rate of one.

In order to get an idea of how many samples are considered for the estimation
(those that are not removed because they have become obsolete), we introduce

the effective number of samples N∗ which can be computed as

N∗ =
1

1− α
. (5.23)
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Note that if the inputs x are not normalized, the matrix Rt can become singular

and inverting it can become difficult. Care has therefore been taken by normal-
izing the different inputs in the recursive and adaptive implementations.

5.3.2 Non-linear recursive and adaptive estimation

In order to be able to use the NFIR model of Section 5.2.4, one must establish

recursive and adaptive estimators for the non-linear case.

The set of parameters θt at time t is found by minimizing the squared prediction

errors up to time t, weighted by a forgetting factor α

St(θt) =
t
∑

i=1

∥

∥αt−i (yi − f(xi, θt))
∥

∥

2
, (5.24)

where f is the non-linear prediction model. The optimal parameter vector θt at

time t is found by minimizing St(θt) by putting the Jacobian with respect to the

parameters to zero,

0 = ∇θSt(θt)

= −2

t
∑

i=1

αt−i∇θf(xi, θt) (yi − f(xi, θt))

= −2

t
∑

i=1

αt−iψi(θt)εi(θt), (5.25)

where ψi(θt) = ∇θf(xi, θt) and εi(θt) = yi − f(xi, θt).

Furthermore, the Hessian matrix is found as

Ht(θt) = 2

t
∑

i=1

αt−i
(

ψi(θt)ψ
T
i (θt)−∇θψi(θt)εi(θt)

)

. (5.26)

Note that in a region close to the true minimum θ∗t , the second term is close to
zero. Neglecting that term ensures a positive definite Hessian matrix. Given a

non-optimal solution θ0t in a region close to the true minimum, the linearized

approximation of ∇θSt(θ
∗
t ) around θ0t can be written as

∇θSt(θ
∗
t ) = ∇θSt(θ

0
t ) +Ht(θ

0
t )(θ

∗
t − θ0t ) (5.27)
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such that an approximation to the optimal parameter θ∗t is obtained by putting

∇θSt(θ
∗
t ) = 0

θ∗t = θ0t −
[

Ht(θ
0
t )
]−1 ∇θSt(θ

0
t ). (5.28)

By iteratively applying Equation (5.28), one finds the offline solution given an

initial parameter guess θ0t . This iterative method is called Newton’s method, or

the Newton-Raphson method. Note that if St(θt) is quadratic in θt such that
∇θSt(θt) is linear in θt, the optimal parameter θ∗t is obtained with one iteration.

Based on Equation (5.25), the Jacobian can be recursively expressed. Assuming
optimality of the previous parameter θ∗t−1 such that ∇θSt−1(θt−1) = 0,

∇θSt(θt) = ∇θSt−1(θt−1)− 2ψt(θt)εt(θt) = −2ψt(θt)εt(θt). (5.29)

Furthermore assuming that the previous parameter is close to the optimal solu-

tion at the next time index t, the Hessian matrix can be rewritten in the following
recursive manner

Ht(θt) = 2

t
∑

i=1

αt−iψi(θt)ψ
T
i (θt)

= αHt−1(θt−1) + 2ψt(θt)ψ
T
t (θt). (5.30)

Using the notation Rt =
1
2Ht, the recursive prediction error method [15] can be

established by combining Equations (5.28), (5.29) and (5.30):

Rt = αRt−1 +ψtψ
T
t (5.31a)

θt = θt−1 +R−1
t ψtεt (5.31b)

5.4 Controlling the consumption by price

5.4.1 Generalized Minimum Variance (GMV) controller

The aim of the controller is to generate a price for the next sample pt,1 by mini-

mizing the future expected deviations from a consumption reference and by pe-

nalizing the control signal (the price), as Equation (1.4) states it in the problem
formulation in Section 1.3. The hard constraints imposed on the price and con-

sumption will be ignored for now, and we will assume a one-step consumption
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penalty wt,1 = 1. As derived in the problem formulation, the loss function to be

minimized is

L(pt,1) = E

{

∥

∥ct,1 (pt,1,Ft)− c∗t,1
∥

∥

2
+ λt,1‖pt,1 − p∗t,1‖2

∣

∣

∣

∣

Ft

}

=
(

E {ct,1 (pt,1,Ft) |Ft} − c∗t,1

)2

+ Var {ct,k (pt,1,Ft) |Ft}
+ λt,1

(

pt,1 − p∗t,1
)2

(5.32)

where the conditional expectation E {ct,1 (pt,1,Ft) |Ft} is the optimal one-step

predictor of the consumption, and the conditional variance Var {ct,1 (pt,1,Ft) |Ft}
is the associated uncertainty.

Prediction using the FIR model found in Section 4.3.2 can be done according

to Section 5.2.1. By furthermore separating controllable (future) price pt,1 and

uncontrollable (past) prices pt,

E {ct,1 (pt,1,Ft) |Ft} =
(

1 XT
t+1

)

θ =
(

pt,1 1 pT
t ẐT

t+1

)









θp
θ0
θp
θẐ









= pt,1θp +YT
t θY , (5.33)

where the matrix Yt contains an intercept, prices up to time t and other external

variables up to time t + 1. It has also been assumed that the model errors are

i.i.d. Gaussian with zero mean.

Similarly, prediction and decoupling for the NFIR model found in Section 5.2.4

is achieved by

E {ct,1 (pt,1,Ft) |Ft} =
(

1 XT
t+1

)

θx +BT
t+1 (θu ⊗ θb)

=
(

pt,1 1 pT
t ẐT

t+1 BT
t+1

)













θx,p
θx,0
θx,p
θx,Ẑ
θu ⊗ θb













= pt,1θp +YT
t+1θY . (5.34)

Note that even though the NFIR is non-linear in its parameters, it is linear in the

control signal pt,1. Furthermore, in both the FIR and the NFIR, YT
t θY can easily
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be found by setting the future price to zero, forming the equality

E {ct,1 (0,Ft) |Ft} = YT
t+1θY . (5.35)

Finding the minimum of the loss function is done by setting the derivative to zero

and by checking that the second derivative is positive.

∂

∂pt,1
L(pt,1) = 2θp

(

pt,1θp +YT
t+1θy − c∗t,1

)

+
∂

∂pt,1
Var {ct,k (pt,1,Ft) |Ft}

+ 2λt,1

(

pt,1 − p∗t,1
)

(5.36)

Supposing that the uncertainty on the predictor does not depend on pt,1, one can

isolate pt,1

0 = 2pt,1
(

θ2p + λt,1

)

+ 2θp
(

YT
t+1θy − c∗t,1

)

− 2λt,1p
∗
t,1

pt,1 =
θp
(

c∗t,1 −YT
t+1θy

)

+ λt,1p
∗
t,1

θ2p + λt,1
. (5.37)

By calculating the second derivative, we indeed verify that the solution is a min-

imum:
∂2

∂p2t,1
L(pt,1) = 2

(

θ2p + λt,1

)

≥ 0. (5.38)

One should note that by introducing the control law of Equation (5.37), the one-

step ahead price was found as the price yielding the reference c∗t,1 as optimal one-
step prediction if λt,1 = 0. The control error is then exactly the prediction error

against which the model is recursively trained. In an adaptive model estimation,

the parameters will be then chosen such that the control error is minimized: the
system is therefore self-tuning.

Without a price penalty, the price signal is unstable (Figure 5.7) due to an un-

reachable consumption reference. Situations of unreachable consumption refer-
ences occur e. g. during the night, where there is not enough heating needs to

increase the consumption to the desired level. Note that even if the consumption
reference is chosen close to the mean consumption as in Figure 5.7, the price

signal becomes unstable after a couple of days.

Price penalties up to λt,1 = 107 were tested, but none could ensure stability in
every situation. This could arise from the fact that the controller needs to be able

to look more than one step ahead.
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Figure 5.7: Without a price penalty (λ = 0), the price signal is unstable. Its divergence
speed and direction however depends on the consumption reference c∗, which is
here chosen proportional to the mean consumption c̄ of the training set. The
divergence of the price can be seen as a limitation of a linear controller, which is
going to push the prices to extremes in order to follow a (possibly unreachable)
consumption target.

5.4.2 Generalized Predictive Controller (GPC)

Referring to Equation (1.4) and (1.7) from the problem formulation of Sec-
tion 1.3, the K-step control problem is formulated as

L(pt,1, . . . , pt,K) = E

{

K
∑

k=1

wt,k

∥

∥ct,k (pt,1, . . . , pt,k,Ft)− c∗t,k
∥

∥

2

+ λt,k

∥

∥pt,k − p∗t,k
∥

∥

2
∣

∣

∣

∣

Ft

}

=
K
∑

k=1

(

wt,k

(

E {ct,k (pt,1, . . . , pt,k,Ft) |Ft} − c∗t,k

)2

+ wt,k

(

Var {ct,k (pt,1, . . . , pt,k,Ft) |Ft}
)

+ λt,k

(

pt,k − p∗t,k
)2

)

.
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If the uncertainty of the predictor is independent of the control signal, then the

variance term vanishes in the minimization procedure.

Let us group the future prices pt,k, the desired price levels p∗t,k and the desired

consumptions c∗t,k up to the horizon K into vectors pt, p
∗
t and c∗t . Let us fur-

thermore define the vector ĉt as the vector having as k-th element the k-step
consumption prediction, and the diagonal matrices Wt and λt respectively hav-

ing as k-th diagonal element the consumption weighting factor wt,k and the price

penalty λ∗
t,k. The optimization problem can then be rewritten into the quadratic

form

L(pt) = (ĉt − c∗t )
TWt(ĉt − c∗t ) + (pt − p∗

t )
Tλt(pt − p∗

t ). (5.39)

For the linear FIR and NFIR models found in Section 4.3.2 and 5.2.4, the k-step

prediction can be expressed as a sum of contributions from the control variable
pt and uncontrollable variables Yt+k (including forecasted external variables).

The contribution of the uncontrollable variables are found by taking the k-step
predictor and putting the future price values to zero, removing the influence of

future prices.

E {ct,k (pt,1, . . . , pt,k,Ft) |Ft} =
(

θ1 . . . θk
)







pt,k
...

pt,1






+ E {ct,k (0, . . . , 0,Ft) |Ft}

=
(

θk . . . θ1
)







pt,1
...

pt,k






+ θTY Yt+k. (5.40)

where θk is the k-th coefficients of the price impulse response. Note that the k-
step ahead price is multiplied by the first coefficient of the price impulse response.

Vertically concatenating the predictions for each step k, we obtain the prediction

vector ĉt at time t

ĉt =















θ1 0 . . . 0 0
θ2 θ1 . . . 0 0
...

...
. . .

...
...

θK−1 θK−2 . . . θ1 0
θK θK−1 . . . θ2 θ1

























pt,1
pt,2

...

pt,K











+







θTY Yt+1

...
θTY Yt+K






(5.41)

= Πpt + Zt (5.42)
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where Π is a K × K lower triangular Toeplitz matrix. The quadratic form can

then be written as

L(pt) = (Πpt +Zt − c∗t )
TWt(Πpt +Zt − c∗t ) + (pt − p∗

t )
Tλt(pt − p∗

t ). (5.43)

The minimum of this quadratic form is the found by setting the derivative with

respect to the parameter vector pt to zero.

1

2

∂L(pt)

∂pt

= (Πpt + Zt − c∗t )
T (WT

t Π) + (pt − p∗
t )

TλT
t (5.44a)

0 = (ΠTWt)(Πpt + Zt − c∗t ) + λt(pt − p∗
t ) (5.44b)

0 = (ΠTWtΠ+ λt)pt +ΠTWt(Zt − c∗t )− λtp
∗
t (5.44c)

pt =
[

ΠTWtΠ+ λt

]−1 (
λtp

∗
t +ΠTWt(c

∗
t − Zt)

)

(5.44d)

The GPC controller is tested by following a constant consumption target. Two

month of consumption data (November and December 2008) are then simulated

in order to train the prediction models sufficiently. Starting in January 2009,
two month of controlled consumption are simulated (Figure 5.9), and a non-

responsive reference group is additionally generated for comparative purposes.

The consumption target c∗ is chosen as the mean of the training data, the price

level p∗ is fixed as the mean of the training prices and the price penalties λt,k are

kept constant during the whole horizon. The choice of the prediction horizon K
used in the controller is set to the length of the step response nb = 40 (≈ 3.5

hours), as a control action does not have any influence beyond 3.5 hours.

The criterion used to assess the controller is the the mean squared control error,
defined as the squared difference between the measured and targeted consump-

tion. For several price penalties λ, the controller is now stable (Figure 5.8a). For
λ = 600, a reduction in peak consumption of nearly 5% is observed together with

a mean daily consumption shift of 11%. The price-responsive and unresponsive

groups are comparable because controlling by price only decreased the overall
consumption by 1%.
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Figure 5.8: The proof-of-concept is illustrated by trying to following a constant reference,
yielding a reduction in peak consumption of nearly 5%, a mean daily consump-
tion shift of 11%. The price-responsive and unresponsive groups are comparable
as controlling by price only decreased the overall consumption by 1%.
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Figure 5.9: Fast computation times of the simulation framework enabled a real-time compu-
tation and visualization of the controlled system.



CHAPTER 6

Discussion

Several assumptions have been made when designing and building the different

elements of this thesis. The objective of this chapter is to provide a short overview
of the limitations we have identified, and the possible improvements possible.
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6.1 Further developments

6.1.1 Simulation

• Simple building and appliance models were used. More complex models

could be used to better reflect the real dynamics of appliances and build-

ings.

• All household are affected by the same external variables, like e. g. the out-
side temperature. Random perturbations could be applied in a stochastic

simulation, e. g. reflecting short and local changes in temperature.

• In our simulations, external weather variables are forecasts, not real mea-

surements. Real data should be incorporated, on the same sampling time

as the simulation itself.

• Simulation of punctual events (vacation periods, Christmas, etc...) could
be included.

6.1.2 Modelling

• For simplicity, our approach only focussed on heating systems. Other de-
vices should be included.

• A more diverse population, possibly clustered, with time-varying price sen-
sitivities and comfort boundaries could be investigated.

• Non-linearities in the system such as e. g. the saturation of price responsiv-

ity can possibly better be captured by more advanced models.

• Moving average terms for model errors were not considered. Including

them might improve the prediction performance by accounting for correla-
tions of the residuals.

• Punctual events (vacation periods, Christmas time, etc...) could be included
into modelling.

• Forecasted values of outside temperature and sun irradiance for the hori-
zon of interest were assumed to be known. How the uncertainty of these

forecasted value affect the whole system should be investigated.

• Constraints on the consumption have not been incorporated. Performances

are expected to increase by forcing it to be positive.
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6.1.3 Control

• Investigate the effect of the time constant involved in the computation of

the reference price. It is expected that the stationarity of the price response
highly depends on it. As a consequence, it might be easier to achieve sta-

bility of the whole control system.

• Investigate the uncertainties of the predictions. By taking advantage of this

information, stochastic control can be applied, probably increasing perfor-
mances.

6.1.4 Concept of controlling by price

• Electricity price control requires a close to real time metering of the con-

sumption, which is not established yet. This is a strong limitation, and fur-

ther development could include methods to use such a system even though
measurements are not available on a small time scale.

• Price reference p̄ is not allowed to reach zero, causing an singularity. The

time constant involved in its calculation forces the control signal to be un-

stable if the consumption reference is unreachable.

• Criteria on the control signal must be clearly established due to its variabil-
ity and high fluctuations.

• Customer incentives need to be added, as this approach mostly look at

minimizing the costs of the Balance Responsible. A holistic approach would

consider customer costs and benefits into the cost function itself.
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6.2 Conclusion

Having the goal of identifying price-responsive heating systems, two data sets
were prepared. Understanding the Olympic Peninsula experiment while build-

ing a simulation framework provided valuable insights into the dynamics of such

a system. The price-responsive behaviour of those two data sets was extracted
and modelled, and its dependencies on several other variables were investigated.

In the light of a real-life implementation, a non-linear forecasting model was

developed based on variables observable on an aggregated level. This model
only requires an aggregate metering of household consumptions, together with

a price signal and weather forecasts. An adaptive estimation of the forecasting
model was then implemented, permitting the development of a price generator

in the form of a predictive controller. The proof-of-concept is illustrated by fol-

lowing a constant reference, yielding a reduction in peak consumption of nearly
5%, a mean daily consumption shift of 11%. The price-responsive and unrespon-

sive groups are comparable as controlling by price only decreased the overall

consumption by 1%.

Taking a customer perspective is however also necessary. Price signals must be

constrained such that customers are guaranteed not to increase their consump-

tion costs. The adoption of such a system will strongly depend on the value
created for its user. It can be in form of comfort, as intelligent appliances are

installed, or it can be in form of savings, as energy is used during the cheapest
hours. Implementing intelligence can also save costs. Taking a heat pump as

example, its lifespan is determined by its number of duty cycles. By taking this

into account when switching occupancy modes, the device’s lifespan could be
increased.

There is great potential in such an approach. In Germany, the energy service

provider E.ON conducted a study showing that customers can save up to 25%
with variable electricity rates1, concluding that „that electricity consumers change

their behaviour if prices are dynamic and their electricity costs and consumption
are transparent”. The approach is also easily generalizable, as it could work with

very different appliances as long as the aggregate population exhibits a price-

responsive pattern.

As the tools necessary to simulate and control a price-responsive population have

been developed, a natural step is to investigate how much fluctuating energy can

be absorbed by a control by price concept. We look forward to participating in
such an experiment.

1http://www.eon.com/en/media/news-detail.jsp?id=10432

http://www.eon.com/en/media/news-detail.jsp?id=10432
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Variablename Description

C(t) Total metered consumption at time t
µ mean

σ2 variance

min minimum value
max minimum value

N number of metered households

Ta(t) Indoor air temperature measured by the thermostats at time
t

µ mean

σ2 variance
min minimum value

max minimum value

Wi(t) Weather of the i’th region (for i = 1, 2, 3) at time t
Outside temperature
Humidity

Dewpoint
Wind velocity

Wind speed

Barometer

S(t) Solar irradiance at time t
Global horizontal irradiance

Direct normal irradiance
Diffuse horizontal irradiance

p(t) Price signal at time t
Ni(t) The number of devices among all households active in a

certain occupancy mode O = i at time t
Nall(t) The total number of measured devices among all house-

holds at time t
Ts(O = i, n) Initial heating/cooling setpoint of the n’th device given a

certain occupancy mode O = i
Tmax
s (O = i, n) Initial upper heating/cooling setpoint boundary of the n’th

device given a certain occupancy mode O = i
Tmin
s (O = i, n) Initial lower heating/cooling setpoint boundary of the n’th

device given a certain occupancy mode O = i
k(O = i, n) Initial price sensitivity factor of the n’th device given a cer-

tain occupancy mode O = i
Time Different time variables indicating

Project day {1, . . . , 365}
Season of the year {1, 2, 3}
Month {1, . . . , 12}
Weekday {1, . . . , 7}
Hour of day {0, 1, . . . , 23}
Minute of hour {0, . . . , 55}
Weekend/-day Boolean {0, 1}
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