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ABSTRACT

Learning latent structure in complex networks has become an im-
portant problem fueled by many types of networked data origi-
nating from practically all fields of science. In this paper, we
propose a new non-parametric Bayesian multiple-membership la-
tent feature model for networks. Contrary to existing multiple-
membership models that scale quadratically in the number of ver-
tices the proposed model scales linearly in the number of links
admitting multiple-membership analysis in large scale networks.
We demonstrate a connection between the single membership rela-
tional model and multiple membership models and show on “real”
size benchmark network data that accounting for multiple mem-
berships improves the learning of latent structure as measured by
link prediction while explicitly accounting for multiple member-
ship result in a more compact representation of the latent structure
of networks.

1. INTRODUCTION

The analysis of complex networks has become an important chal-
lenge spurred by the many types of networked data arising in prac-
tically all fields of science. These networks are very different in
nature ranging from biology networks such as protein interaction
[1, 2] and the connectome of neuronal connectivity [3] to the anal-
ysis of interaction between large groups of agents in social and
technology networks [4, 3, 5, 6]. Many of the networks exhibit a
strong degree of structure; thus, learning this structure facilitates
both the understanding of network dynamics, the identification of
link density heterogeneities, as well as the prediction of “missing”
links.

We will represent a network as a graph G = (V,Y) where
V = {v1, . . . , vN} is the set of vertices and Y is the set of ob-
served links and non-links. Let Y ∈ {0, 1, ?}N×N denote a link
(adjacency) matrix where the element yij = 1 if there is a link
between vertex vi and vj , yij = 0 if there is not a link, and yij =?
if the existence of a link is unobserved. Furthermore, let Y1, Y0,
and Y? denote the set of links, non-links, and unobserved links in
the graph respectively.

Over the years, a multitude of methods for identifying latent
structure in graphs have been proposed, most of which are based
on grouping the vertices for the identification of homogeneous re-
gions. Traditionally, this has been based on various community
detection approaches where a community is defined as a densely
connected subset of vertices that is sparsely linked to the remaining
network [7, 8]. These structures have for instance been identified
by splitting the graph using spectral approaches, analyzing flows,
and through the analysis of the Hamiltonian. Modularity optimiza-
tion [7] is a special case that measures the deviation of the fraction
of links within communities from the expected fraction of such
links based on their degree distribution [7, 8]. A drawback, how-

ever, for these types of analyses is that they are based on heuristics
and do not correspond to an underlying generative process.

1.1. Probabilistic generative models:

Recently, generative models for complex networks have been pro-
posed where links are drawn according to conditionally indepen-
dent Bernoulli densities, such that the probability of observing a
link yij is given by πij ,

p(Y |Π) =
∏

(i,j)∈Y

π
yij
ij (1− πij)

1−yij . (1.1)

In the classical Erdős-Rényi random graph model, each link is in-
cluded independently with equal probability πij = π0; however,
more expressive models are needed in order to model complex la-
tent structure of graphs. In the following, we focus on two related
methods: latent class and latent feature models.

1.1.1. Latent class models:

In latent class models, such as the stochastic block model [9], also
denoted the relational model (RM), each vertex vi belongs to a
class ci, and the probability, πij , of a link between vi and vj is
determined by the class assignments ci and cj as πij = ρcicj .
Here, ρk� ∈ [0, 1] denotes the probability of generating a link
between a vertex in class k and a vertex in class �. Inference in
latent class models involves determining the class assignments as
well as the class link probabilities. Based on this, communities can
be found as (groups of) classes with high internal and low external
link probability.

In the model proposed by [10] (HW) the class link probability,
ρk�, is specified by a within-class probability ρc and a between-
class probability ρ0. Another intuitive representation, which we
refer to as DB, is to have a shared between-class probability but
allow for individual within-class probabilities,

ρ
HW=

⎡
⎣

ρc ρ0 · · · ρ0
ρ0 ρc

. . . .
.
.

.

.

.
. . .

. . . ρ0
ρ0 · · · ρ0 ρc

⎤
⎦, ρDB=

⎡
⎣

ρ1 ρ0 · · · ρ0
ρ0 ρ2

. . . .
.
.

.

.

.
. . .

. . . ρ0
ρ0 · · · ρ0 ρK

⎤
⎦. (1.2)

Both of these representations are consistent with the notion of
communities with high internal and low external link density, and
restricting the number of interaction parameters can facilitate model
interpretation compared to the general RM.

Based on the Dirichlet process, [5, 6] propose a non-parametric
generalization of the stochastic block model with a potentially in-
finite number of classes denoted the infinite relational model (IRM)
and infinite hidden relational model respectively. The latter gen-
eralizing the stochastic block model to simultaneously model po-
tential vertex attributes. Inference in IRM jointly determines the
number of latent classes as well as class assignments and class link
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Fig. 1. Left: Example of a simple graph where each of the ver-
tices have multiple memberships indicated by colors. Right: The
corresponding assignment matrix.

probabilities. This approach readily generalizes to the HW and DB
parameterizations of ρ.

1.1.2. Latent feature models:

In latent feature models, the assumption that each vertex belongs
to a single class is relaxed. Instead it is assumed that each vertex
vi has an associated feature zi, and that probabilities of links are
determined based on interactions between features. This general-
izes the latent class models, which are the special case where the
features are binary vectors with exactly one non-zero element.

Many latent feature models support the notion of discrete classes,
but allow for mixed or multiple memberships (see Figure 1 for an
illustration of a network with multiple class memberships). In the
mixed membership stochastic block model (MMSB) [2] the ver-
tices are allowed to have fractional class memberships. In bi-
nary matrix factorization [11] multiple memberships are explicitly
modeled such that each vertex can be assigned to multiple clus-
ters by an infinite latent feature model based on the Indian buf-
fet process (IBP) [12]. [13] study this approach, for the specific
case of a Bernoulli likelihood, Eq. (1.1), and extend the method
to include additional side information as covariates in modeling
the link probabilities. In their model, the probability of a link πij

is specified by πij = fσ
(∑

k�
zikzj�wk� + sij

)
, where fσ(·)

is a function with range [0, 1] such as a sigmoid, and wk� are
weights that affects the probability of generating a link between
vertices in cluster k and �. The term sij accounts for bias as
well as additional side-information. For example, if covariates φi

are available for each vertex vi, [13] suggest including the term
sij = βd(φi,φj) + β�

i φi + β�
j φj , where β, βi, and βj are

regression parameters, and d(·, ·) is some possibly nonlinear func-
tion.

In general, the computational cost of the single membership
clustering methods mentioned above scales linearly in the number
of links in the graph. Unfortunately, existing multiple member-
ship models [2, 11, 13] scale quadratically in the number of ver-
tices, because they require explicit computations for all links and
non-links. This renders existing multiple membership modeling
approaches infeasible for large networks. Furthermore, determin-
ing the multiple membership assignments is a combinatorial chal-
lenge as the number of potential states grow as 2KN rather than
KN in single membership models. In particular, standard Gibbs
sampling approaches tend to get stuck in local suboptimal config-
urations where single assignment changes are not adequate for the
identification of probable alternative configurations [11]. Conse-
quently, there is both a need for computationally efficient models
that scale linearly in the number of links as well as reliable infer-
ence schemes for modeling multiple memberships.

In this paper, we propose a new non-parametric Bayesian la-
tent feature graph model, denoted the infinite multiple relational
model (IMRM), that addresses the challenges mentioned above.
Specifically, the contributions in this paper are the following: i)We
propose the IMRM in which inference scales linearly in the number
of links. ii) We propose a non-conjugate split-merge sampling pro-
cedure for parameter inference. iii) We demonstrate how the sin-
gle membership IRM model implicitly accounts for multiple mem-
berships. iv) We compare existing non-parametric single mem-
bership models with our proposed multiple membership counter-
parts in learning latent structure of a variety of benchmark ”real”
size networks and demonstrate that explicitly modeling multiple-
membership results in more compact representations of latent struc-
ture.

2. INFINITE MULTIPLE-MEMBERSHIP RELATIONAL
MODEL

Given a graph, assume that each vertex vi has an associated K-
dimensional binary latent feature vector, zi, with Ki = |zi|1 as-
signments. Consider vertex vi and vj : For allKiKj combinations
of classes there is an associated probability, ρk�, of generating a
link. We assume that each of these combinations of classes act
independently to generate a link between vi and vj , such that the
total probability, πij , of generating a link between vi and vj is
given by

πij = 1− (1− σij)
∏
k�

(1− ρk�)
zikzj� , (2.1)

where σij is an optional term that can be used to account for noise
or to include further side-information as discussed previously. Un-
der this model, the features act as independent causes of links,
and thus if a vertex gets an additional feature it will result in an
increased probability of linking to other vertices. In contrast to
the model proposed by [13], where negative weights leads to fea-
tures that inhibit links, our model is more restricted. Although this
might result in less power to explain data, we expect that it will
be easier to interpret the features in our model because links are
directly generated by individual features and not through complex
interactions between features. This is analogous to non-negative
matrix factorization that is known to form parts-based representa-
tion because it does not allow component cancellations [14]. If the
latent features zi have only a single active element and σij = 0,
Eq. (2.1) reduces to πij = ρcicj , i.e., the proposed model directly
generalizes the IRM model; hence, we denote our model the infi-
nite multiple-membership relational model (IMRM).

The link probability model in Eq. (2.1) has a very attractive
computational property. In many real data sets, the number of non-
links far exceeds the number of links present in the network. To
analyze large scale networks where this holds it is a great advan-
tage to devise algorithms that scale computationally only with the
number of links present. As we show in the following, our model
has that property. Assuming σij = 0 for simplicity of presenta-
tion, we may write Eq. (2.1) more compactly as πij = 1−ez

�

iPzj ,
where the elements of the matrix P are pk� = log(1 − ρkl).

Inserting this in Eq. (1.1) we have

p(Y |Z,P ) =
∏

(i,j)∈Y

(
1− ez

�

iPzj

)yij
(
ez

�

iPzj

)1−yij

=
[∏

(i,j)∈Y1

(1− ez
�

iPzj )
]
exp

[∑
(i,j)∈Y0

z
�
iPzj

]
. (2.2)



The exponent of the second term, which entails a sum over the
possibly large set of non-links in the network, can be efficiently
computed as

∑
k�

pk�
( N∑

i=1

zik

N∑
j=1

zj� −
∑

(i,j)∈Y1∪Y?

zikzj�
)
, (2.3)

requiring only summation over links and “missing” links. Assum-
ing that the graph is not dominated by “missing” links, the com-
putation of Eq. (2.2) scales linearly in the number of graph links,
|Y1|. We presently consider latent binary features zi, but we note
that the model scales linearly for any parameterizations of the la-
tent feature vector zi, as long as πij = 1− ez

�

iPzj ∈ [0; 1] which
holds in general if zi is non-negative.

As in existing multiple membership models [11, 13] we will
assume an unbounded number of latent features. We learn the ef-
fective number of features through the Indian buffet process (IBP)
representation [12], which defines a distribution over unbounded
binary matrices,

Z ∼ IBP(α) ∝
αK

∏
h∈[0,1]N

Kh!

K∏
k=1

(N −mk)!(mk − 1)!

N !
(2.4)

where mk is the number of vertices belonging to class k and Kh

is the number of columns of Z equal to h.
As a prior over the class link probabilities we choose indepen-

dent Beta distributions,

ρk�|ak�, bk�∼Beta(ak�, bk�)∝ρak�−1
k� (1−ρk�)

bk�−1. (2.5)

This is a conjugate prior for the single membership models where
the parameters ak� and bk� correspond to pseudo counts of links
and non-links respectively between classes k and �.

2.1. Inference

In the following we present a method for inferring the parame-
ters of the model: the infinite binary feature matrix Z and the
link probabilities ρk�. In the latent class model when only a sin-
gle feature is active for each vertex, the likelihood in Eq. (2.2) is
conjugate to the Beta prior for ρk�. In that case, P can be in-
tegrated away and a collapsed Gibbs sampling procedure for Z
can be used [5]. This is not possible in the IMRM; instead, we pro-
pose to sampleP ∼ p(P |Z,Y ) using Hamiltonian Markov chain
Monte Carlo (HMC), and Z ∼ p(Z|P ,Y ) using Gibbs sampling
combined with split-merge moves.

2.1.1. HMC for class link probabilities:

Hamiltonian Markov chain Monte Carlo (HMC) [15] is an auxil-
iary variable sampling procedure that utilizes the gradient of the
log posterior to avoid the random walk behavior of other sampling
methods such as Metropolis-Hastings. In the following we do not
describe the details of the HMC algorithm, but only derive the re-
quired expressions for the gradient. To utilize HMC, the sampled
variables must be unconstrained, but since ρk� is a probability we
make the following change of variable from ρk� ∈ [0, 1] to rk� ∈
(−∞,∞), ρk� = 1

1+exp(−rk�)
, rk� = − log

(
ρ−1
k� − 1

)
. Using

the change of variables theorem, the prior for the class link prob-
abilities expressed in terms of rk� is given by p(rk�|ak�, bk�) ∝

eak�rk�(erk� + 1)−(ak�+bk�). With this, the relevant terms of the

negative log posterior is given by

−LP = log p(P |Z,Y ) = c+
∑

(i,j)∈Y1

log
(
1− ez

�

iPzj

)

+
∑

(i,j)∈Y0

z
�
iPzj+

∑
k�

ak�rk� + (ak�+bk�) log(e
rk�+1), (2.6)

where c does not depend on P . From this, the required gradient
can be computed,

∂LP

∂rk�
= −

∑
(i,j)∈Y1

ez
�

iPzj

1− ez
�

i
Pzj

zikzj�ρk�

+
∑

(i,j)∈Y0

zikzj�ρk� + (ak� + bk�)ρk� − ak�.

Again, the possibly large sum over non-links in the second term
can be computed efficiently as in Eq. (2.3).

2.1.2. Gibbs sampler for binary features:

Following [12], a Gibbs sampler for the latent binary features Z
can be derived. Consider sampling the kth feature of vertex vi: If
one or more other vertices also possess the feature, i.e., m−ik =∑

j �=i zjk > 0, the posterior marginal is given by

p(zik = 1|Z−(ik),P ,Y ) ∝ p(Y |Z,P )
m−ik

N
. (2.7)

When evaluating the likelihood term, only the terms that depend
on zik need be computed and the Gibbs sampler can be imple-
mented efficiently by reusing computation and by up and down
dating variables.

In addition to sampling existing features,K(i)
1 = Poisson

(
α
N

)
new features should also be associated with vi. [12] suggest “. . .
computing probabilities for a range of values of K(i)

1 up to some
reasonable upper bound. . . ”; however, following [11] we take an-
other approach and sample the new features byMetropolis-Hastings
using the prior as proposal density. The values of ρkl correspond-
ing to the new features are proposed from the prior in Eq. (2.5).

2.1.3. Split-merge move for binary features:

A drawback of Gibbs sampling procedures is that only a single
variable is updated at a time, which makes the sampler prone to get
stuck in suboptimal configurations. As a remedy, bolder Metropo-
lis Hasting moves can be considered in which multiple changes of
assignments help exploring alternative high probability configura-
tions. How these alternative configurations are proposed is crucial
in order to attain reasonable acceptance rates. A popular approach
is to split or merge existing classes as proposed in [16] for the
Dirichlet process mixture model (DPMM). Split-merge sampling
in the IBP has previously been discussed briefly by [11] and [13].

Inspired by the non-conjugate sequential allocation split-merge
sampler for the DPMM [17], we propose the following procedure:
Draw two non-zero elements of Z, (k1, i1) and (k2, i2). If k1 =
k2 propose a split — otherwise propose to merge classes k1 and
k2 into a joint cluster k1. Accept the proposal with the Metropolis-
Hastings accept rate, a∗ = min

(
1, p(Z∗,P ∗|Y )q(Z|Z∗)q(P |P ∗)

p(Z,P |Y )q(Z∗|Z)q(P ∗|P )

)
.

In case of a merge, we remove k2 and assign all its vertices to
k1, and we remove the corresponding row and column of P (this
proposal is deterministic and has probability one). For a split, we



remove all vertices except i1 from cluster k1 = k2 = k and create
a new cluster k∗ and assign i2 to it. We then sample a new row
and column ρ∗k′�′ for the new cluster as described below. Next we
sequentially allocate [17] the remaining original members of k to
either k or k∗ or both in a restricted Gibbs sampling sweep, and re-
fine the allocation through t additional restricted Gibbs scans [16].

The proposal density for ρ∗k′�′ is based on a random walk,
ρ∗k′�′ ∼ Beta(āk′�′ , b̄k′�′), where

b̄k′�′ = max
(
1, (1− ρ̄k′�′)m

2
k − 1 + ρ̄k′�′

)
, (2.8)

āk′�′ = max
(
1,

ρ̄k′�′

1− ρ̄k′�′
b̄k′�′

)
, (2.9)

such that ρ∗k′�′ has mean ρ̄k′�′ and variance equal to the empirical
variance, ρ̄k′�′(1− ρ̄k′�′)/m

2
k. We choose the mean of the random

walk as

ρ̄k′�′ =

⎧⎪⎪⎨
⎪⎪⎩

ρkk �′ = k′ = k∗

1
K−1

∑
� �=k

ρk� k′ = k∗, �′ = k
1

K−1

∑
� �=k

ρ�k k′ = k, �′ = k∗

ρk� otherwise,

such that the new class has a similar within and between class link
probabilities as the original class, but such that the class link prob-
ability between the original and new cluster is similar to the re-
maining between class link probabilities. This choice is crucial,
since it favors splitting classes into two classes that are no more
related than the relation to the remaining classes.

3. RESULTS

Based on the HW, DB, and RM parametrization of ρ, we compared
our proposed IMRM to the corresponding single-membership IRM
[5]. We evaluated the models on a range of synthetically generated
as well as real world networks. We assessed model performance
in terms of ability to predict held-out links and non-links. As per-
formance measure we used the area under curve (AUC) of the re-
ceiver operating characteristic (ROC). We also computed the pre-
dictive log likelihood (not shown here) which gave similar results.
For comparison, we included the performance of several standard
non-parametric link prediction approaches based on the following
scores, γComN

i,j = y�
i yj , γ

DegPr
i,j = kikj , γJacc

i,j =
y�

i yj

ki+kj−y�

i
yj

and γShP
i,j = 1

minp{(Y p)i,j>0}
, where ki =

∑
j yij is the degree

of vertex vi.
In all the analyses we removed 2.5% of the links and an equiv-

alent number of non-links for cross-validation. We analyzed a to-
tal of five random data splits and all of the analyses were based
on 2500 sampling iterations initialized randomly with K = 50
clusters. Each iteration was based on split-merge sampling us-
ing sequential allocation with t = 2 restricted Gibbs scans fol-
lowed by standard Gibbs sampling. Our implementation of the
IRM was based on collapsed Gibbs sampling (i.e. integrating out
ρ) as proposed in [5] but we also included a conjugate single-
membership split-merge step corresponding to the proposed non-
conjugate split-merge sampler. The priors were chosen as α =
log(N), akk = 5, ak� = 1∀k �= � and bkk = 1, bk� = 5∀k �= �
which renders the priors practically non-informative.

3.1. Synthetic networks

We analyzed a total of six synthetic networks generated accord-
ing to the HW, DB and RM models based on the vertices having

Table 1. Summary of the analyzed real networks: r denotes the
networks assortativity, c the clustering coefficient [3], L the aver-
age shortest path.

NETWORK N |Y1| r c L

Yeast 2,284 6,646 -0.10 0.13 4.4
Protein-protein interaction network [1]

USPower 4,941 6,594 0.00 0.08 19.9
Topology of power grid [3]

Erdos 5,534 8,472 -0.04 0.08 3.9
Erdös 02 collaboration network [18]

FreeAssoc 10,299 61,677 -0.07 0.12 3.9
Word relations in free association [19]

Reuters911 13,314 148,038 -0.11 0.37 3.1
Word co-occurrence [20]

either one or two memberships to the underlying classes. For the
single membership models we generated a total of K = 5 groups
each containing 100 vertices. For the HW generated network we
set ρc = 1 and ρ0 = 0 while for the DB generated network we
used a within community densities ρk ranging from 0.2 to 1 while
ρ0 = 0. The RM generated network had same within commu-
nity densities as the DB network but included varying degrees of
overlap between the communities. The multiple membership mod-
els denoted MHW, MDB and MRM were generated from the corre-
sponding single membership models as Y ∨RY R� (where ∨ de-
notes element-wise or andR is a random permutation matrix with
diagonal zero), such that each vertex belongs to two classes.

While the IMRM model explicitly accounts for multiple mem-
berships, the IRM model can also implicitly account for multiple
memberships through the between class interactions. To illustrate
this, we analyzed the generated HW and MHW data by the IRM
model as well as the proposed IMRM model (see Figure 2). When
there are only single memberships, the IMRM reduces to the IRM
model; however, when the network is generated such that the ver-
tices have multiple memberships the IMRM model correctly identi-
fies the (2·5 = 10) underlying classes. The IRMmodel on the other
hand extracts a larger number of classes corresponding to all pos-
sible (52 = 25) combinations of classes present in the data. The
estimated ρ indicates how these 25 classes combine to form the 10
underlying multiple membership groups in the network. As such,
the IRM model has the same expressive power as the proposed mul-
tiple membership models but interpreting the results can be diffi-
cult when multiple membership community structure is split into
several classes with complex patterns of interaction.

Figure 3 shows the link-prediction AUC scores from the anal-
ysis of the six generated networks. Results show that all mod-
els work well on data generated according to their own model or
models which they generalize. We also notice, that the IRM model
accounts well for multiple membership structure as discussed and
illustrated in Figure 2. The HW and DB models on the other hand
fail in modeling networks with multiple memberships.

3.2. Real Networks

We finally analyzed five benchmark complex networks summa-
rized in Table 1. The sizes of most of the networks makes it com-
putationally infeasible for us to analyze them using the existing
multiple-membership approaches proposed in [2, 11, 13]. For all
the networks, multiple memberships are conceivable: In protein
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Fig. 2. IRM (left) and IMRM (rigth) analysis of single (left) and multiple membership HW network (right). On the single membership data,
both models find the correct class assignments. On the multiple membership data, the IMRM finds the correct 10 classes, while IRM extracts
25 classes, which through ρ accounts for all combinations of classes present in the data.
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Fig. 3. AUC scores for the analysis of the six synthetically generated data sets.

interaction networks such as the Yeast network proteins can be part
of multiple functional groups, in social networks such as Erdos sci-
entist collaborate with different groups of people depending on the
research topic, and in word relation networks such as FreeAssoc
and Reuters911 words can have multiple meanings/contexts. For
all these networks explicitly modeling these multiple contexts can
potentially improve on the structure identification over the equiva-
lent single membership models.

In Figure 4 the AUC link prediction score is given for the five
networks analyzed. As can be seen from the results, modeling mul-
tiple memberships significantly improves on predicting links in the
network. In particular when considering the IHW and IDB models
and the corresponding proposed multiple membership models, the
learning of structure is improved substantially for all networks ex-
cept USPower. Furthermore, it can be seen that the IRM model
that can also implicitly account for multiple memberships in gen-
eral has a similar performance to the multiple membership models.
The poor identification of structure in the USPower network might
be due to the fact that the average path between vertices are very
high rendering it difficult to detect the underlying structure for any
but the most simple IHW model. While the IRM and IMRM per-
form equally well in terms of link prediction it can be seen at the
top of table 2 that the average number of extracted components for
the IMRM model is significantly smaller than the number of com-
ponents extracted by the IRM model for all networks except the
Reuters911 network where no significant difference is found. As a
result, the IMRM model is in general able to extract a more compact
representation of the latent structure of networks. At the bottom of
table 2 is given the total cpu-time for estimating the 2500 samples
for each of the network using the IRM and IMRM showing that the
order of magnitude for the computational cost of the two models
are the same.

4. DISCUSSION

While single membership models based on the IRM indirectly can
account for multiple memberships as we have shown, the bene-
fit of the proposed framework is that it allows for these multiple
memberships to be modeled explicitly rather than through com-
plex between-group interactions based on a multitude of single
membership components. On synthetic and real data we demon-
strated that explicitly modeling multiple-membership resulted in
a more compact representation of the inherent structure in net-
works. We further demonstrated that models that can capture mul-
tiple memberships (which includes the IRM model) significantly
improve on the link prediction relative to models that can only
account for single membership structure, i.e., the IHW and IDB
models. We presently considered undirected networks but we note
that the proposed approach readily generalizes to directed and bi-
partite graphs. Furthermore, the approach also extends to include
side information as proposed in [13] as well as simultaneous mod-
eling of vertex attributes [6]. We note however, that the inclusion
of side information requires a linearly scalable parameterization in
order for the overall model to remain computationally efficient. An
attractive property of the IRM model over the IMRM model is that
the IRM model admits the use of collapsed Gibbs sampling which
we have found to be more efficient relative to sampling the non-
conjugate multiple membership models where additional sampling
of the ρ parameter is required. In future research, we envision
combining the IRM and IMRM model, using the IRM as initializa-
tion for the IMRM or by forming hybrid models.
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Fig. 4. AUC scores for the analysis of the five real networks.

Table 2. The number of extracted components and cpu-time for 2500 iterations for the IRM and IMRM models. Bold denotes that the
number of components are significantly different between the two models (difference in mean at least two standard deviations apart.)

YEAST USPOWER ERDOS FREEASSOC REUTERS911

NUMBER OF COMPONENTS IRM 24.0± 0.8 8.6± 0.4 10.4± 0.3 58.6± 0.7 39.8 ± 2.1

IMRM 15.4± 0.9 6.8± 0.5 6.8± 0.6 15.6± 0.9 44.8 ± 1.0

CPU-TIME (HOURS) IRM 2.3± 0.1 4.0± 0.2 14.6± 5.9 30.1± 0.6 32.5 ± 5.4

IMRM 1.7± 0.1 8.9± 0.8 7.1± 0.5 28.1± 1.9 71.5 ± 3.2
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