 cm

Technical University of Denmark DT

i

Emil Lysgaard Hansen, s082714
Sgren Fuhr, s082724

A Framework for Hosting
Context-Aware Web Services

An Analysis of Available Solution Models

Bachelor's Thesis, June 2011

IMM-B.Sc.-2011-18

I DTU Informatics

Emil Lysgaard Hansen, s082714
Sgren Fuhr, s082724

A Framework for Hosting
Context-Aware Web Services

An Analysis of Available Solution Models

Bachelor's Thesis, June 2011

IMM-B.Sc.-2011-18

A Framework for Hosting Context-Aware Web Services, An Analysis of Available Solution
Models

This report was prepared by
Emil Lysgaard Hansen, s082714
Sgren Fuhr, s082724

Supervisors
Jakob Eg Larsen
Sune Lehmann Jgrgensen

Release date: June 27th, 2011

Category: 1 (public)
Edition: First
Comments: This report is part of the requirements to achieve the Bachelor

of Science in Engineering (B.Sc.Eng.) at the Technical Univer-
sity of Denmark. This report represents 15 ECTS points.

Rights: ©Technical University of Denmark, 2011

Department of Informatics and Mathematical Modelling
Mobile Informatics Lab (Milab)

Technical University of Denmark

building 321

DK-2800 Kgs. Lyngby

Denmark

www.milab.imm.dtu.dk/

Tel: +45 45 25 33 51
Fax: +45 45 88 26 73
E-mail: milab@imm.dtu.dk

Abstract

The industry of communication technology has shown great advancement in the last
decade and has resulted in devices capable of performing complex computational
tasks along with collecting context specific data about the users. This development,
coupled with the growth of social networks, give way for a novel interest in advanced
analysis of social groups.

The purpose of this thesis is to study the requirements needed to construct a system
for the Mobile Interactions Lab’s Context-Awareness research programme, a part
of the Technical University of Denmark, that enables easy and flexible develop-
ment of scalable context aware mobile applications and services for a campus-wide
deployment.

We carried out a feasibility analysis of available technical solution models, based
on a set of high level requirements, in order devise a proper system design. This
design consists of a three-tier Web service system architecture hosted on Amazon
Elastic Compute Cloud. Additionally, a proof-of-concept prototype was created
to test the utilization of selected component functionality in regards to the initial
requirements.

The results of this test indicated a clear potential of the suggested system design for
rapid development of diverse Web services. However, it was found that the research
outcome may not be directly applicable for a full scale deployment. Therefore,
further research on the product specification is necessary.

Resumé

Der har inden for det seneste arti vaeret stor fremgang inden for kommunikation-
steknologien, hvilket har resulteret i apparater, som kan udfgre komplekse beregn-
ingsmaessige opgaver, samt indsamle af kontekst bestemte data om brugerne. Denne
udvikling, kombineret med veeksten af sociale netveerk, giver fornyet interesse i
avanceret analyse af sociale grupper.

Formalet med denne afhandling er at undersgge de krav, der er ngdvendige for at
kunne konstruere et system for Mobile Interactions Labs Context-Awareness forskn-
ingsprogram, en del af Danmarks Tekniske Universitet (DTU), som muligggrer nem
og fleksibel udvikling af skalérbare kontekst-bestemte mobil applikationer og tjen-
ester for udrulning pa hele DTUs campusomrade.

Vi har gennemfgrt en forunderspgelse af tilgeengelige tekniske lgsningsmodeller,
baseret pa et szt af hgj-niveau krav med henblik pa, at udarbejde et tilfredsstillende
lpsningsdesign. Dette design bestar af en tredelt Web service systemarkitektur,
udbudt p4 Amazons Elastic Compute Cloud. Endvidere blev en proof-of-concept
prototype skabt for, at undersgge funktionaliteten af de foreslaet komponenter i
forhold til de oprindeligt opstillede krav.

Resultaterne af denne test angiver, at der findes et klart potentiale af det foreslaede
system design, til hurtig udvikling af forskelligartede Web tjenester. Dog fandt vi ud
af, at dette resultat ikke er direkte anvendeligt for en fuldsteendig implementation.
Derfor er yderligere studier af produkt specifikationen ngdvendig.

Preface

This thesis was prepared at Department of Informatics and Mathematical Mod-
elling, Technical University of Denmark in partial fulfillment of the requirements
for acquiring the B.Sc. degree in I'T and Communication Technology.

The work on this thesis was done from March 1st, 2011 to June 27th, 2011. The
workload corresponds to 15 ECTS points. The thesis supervisors are Jakob Eg
Larsen and Sune Lehmann Jgrgensen, Department of Informatics and Mathematical
Modelling, Technical University of Denmark.

We would to thank Jakob Eg Larsen and Sune Lehmann Jgrgensen for giving us
the oppurtinity to work on this project and for their supervision. In particular, we
would thank Toke Jansen Hansen for sharing his extensive knowledge and experier-
ence on this topic, and for helping us with technical support during the project
work.

Furthermore, we would thank Wanlika Kaewkamchand for her support on optimiz-
ing the graphic illustrations presented in the thesis, and Hanne Lysgaard Hansen
for helping us with the editoral process. Lastly, we would like to thank our family
and friends for showing us great support and interests, during the entire project
period.

Kongens Lyngby, June 2011
FEmil Lysgaard Hansen and Sgren Fuhr

Vi

Contents

Abstract i
Resumé iii
Preface v
Contents vii
List of Figures xi
List of Tables xiii
1 Introduction 1
1.1 Motivation e 1
1.2 Related Work e 2
1.3 Thesis Objective 4
1.4 Thesis Outline 4

2 Analysis 5
2.1 Definitions 5
2.1.1 Cloud Computing, 5

2.1.2 Client-Server Model 6

2.1.3 Infrastructure-as-a-Service 6

2.1.4 Platform-as-a-Service 6

2.1.5 Software-as-a-Serviceo 6

2.2 Requirements 7
2.3 Realization of Requirements 7

vii

6

viii

2.3.1 System Model
2.3.2 Cloud Computing and Dedicated Servers
2.3.3 Amazon Web Services L.
2.3.4 Google App Engine
2.3.5 Microsoft Windows Azure
24 SUMMATY o oo e
Design
3.1 System Architecture
3.2 Web Service
3.2.1 Web Services Architecture,
3.2.2 An Overview of XML Technologies
3.2.3 SOAP Messages oo
3.2.4 Web Service Description
3.25 Discoveryo
3.2.6 Web Service Inspection
3.2.7 Universal Description, Discovery and Integration
3.2.8 Summary
3.3 Back-end Design o
3.3.1 Apache Tomcat,
332 Apache Axis2
3.3.3 DataStorage
3.4 Front-end Design Lo
Implementation

4.1 Service

4.2 Client

Evaluation

5.1 Testing

5.2 Discuss
5.3 Future
Conclusion

1O . . v v e

Work . . .

17
17
19
19
19
20
22
22
24
24
25
26
26
26
29
29

31
31
34

37
37
39
41

43

Bibliography

Appendix

A Client Source Code

B Server Source Code

C Digital Thesis Contents

45

49

49

55

59

List

of Figures

2.1
2.2
2.3

3.1
3.2
3.3
3.4
3.5
3.6
3.7
3.8
3.9
3.10

4.1
4.2
4.3
4.4

5.1
5.2
5.3
5.4

The two-tier client-server architecture. 8
The three-tier client-server architecture. 9

Implementation of a simple Hello World! Python Web Application. . 13

An illustration of the system design 17
Relationship between SOA actors. 20
SOAP message embedded in a HTTP request (26) 21
The structure of a WSDL definition (26) 23
An example of a XML WS-Inspection document (26) 24
An illustration of UDDIs core data types (27) 25
A SOA Web Service with Web Service Technology (26) 26
Axis2 architecture (16) 27
Axis2 core modules (21) Lo 27
The Axis2 code generator (16) 28
insertText service Lo 32
showColumns service oo 33
insertText invocation method, 34
showColumns invocation method 35
AWS Management Console showing running EC2 Instances 38
Upscaling from a micro instance to a larger machine 38
User interface of prototype application 39
NAS Parallel Benchmark V3.3 - EP.B Test Class 40

xi

List of Tables

2.1 Comparing features of Cloud Providers (2) 15

xiii

CHAPTER 1

Introduction

1.1 Motivation

The industry of communication technology has shown great advancement in the last
decade. The development of faster network infrastructures, with higher capacities
and wider dispersal of use, coupled with the tremendous growth in functionality
and distribution of advanced mobile devices has opened a world of opportunities
and changed the way people communicate with one another.

The technical development has resulted in devices capable of performing complex
computational tasks along with collecting context specific data about the users such
as GPS location, Bluetooth connections and nearby network access points. This
progress has made the mobile device the power central of many people, merging
together almost every aspect of their life from personal relations management, ap-
plications, entertainment, and in the near future, personal financing through Near
Field Communication (NFC)!, all together on one single mobile unit.

We think it is interesting to look into how empirical data from mobile devices can be
used to study social behavior among individuals and groups; specifically, the ability
to couple the enormous quantity of contextual data generated in the network by
the devices with the personal information and social identity of the users provided
by social network services such as Facebook?, Twitter® and LinkedIn?.

The core functionalities of these services are used to establish, maintain, and inter-
act with personal and professional networks. Furthermore, a growing trend among
these social services is to provide context-aware applications for both web- and mo-
bile clients, consisting of distinctive user input, technical data, and sensor readings
from affiliated devices that are stored and analysed on large online server clusters,
or Clouds, such as Amazon Elastic Compute Cloud (EC2)°.

http://en.wikipedia.org/wiki/Near_field_communication
2http://wuw.facebook.com

Shttp://www.twitter.com

“http://www.linkedin.com

Shttp://aws.amazon.com/ec2

http://en.wikipedia.org/wiki/Near_field_communication
http://www.facebook.com
http://www.twitter.com
http://www.linkedin.com
http://aws.amazon.com/ec2

1.2. Related Work

Recognizing this relatively new paradigm created by context-aware mobile systems
and advancement in social networking, also known as Mobile Social Networks, we
are interested in investigating the possibilities of utilizing evaluations of behavioral
patterns and social relations of users in order to provide even more intelligent social
service products.

In particular, we want to construct a system for the Milab DTUs Context- Awareness
research programme, that acts as a foundation for advanced social group analysis;
from the task of identifying already established social groups to being able to fa-
cilitate dynamic creation of “ad-hoc” groups, based on the available contextual
information provided by existing technologies and services.

However, in order to create and deploy such system, we must first acquire a thorough
understanding of the problem at hand and look at what is needed to realize such
objective.

1.2 Related Work

In the last decade, interest in the research field of context-awareness has increased
alongside the growth in availability of mobile devices in the general public. A
number of people have been working on the creation of frameworks and platforms
for context-aware applications. The articles presented in the following serve as a
basis and inspiration for the analytical work presented in this thesis.

Larsen and Jensen (25) illustrate the possibilities of rapid prototype development
of mobile applications, based on their framework “Mobile Context Toolbox” for S60
mobile phones. The framework utilizes device sensors, such as GPS, accelerometers,
and proximity sensors along application data to derive user context. Two prototype
applications were developed for initial experimentation with real life usage of the
platform.

Daniel and Matera (13) propose a new way of building context-aware web applica-
tions. They discuss current approach to context-awareness and describe MixUp, a
component based framework model for easy-to-use integration, or “mash-ups”, of
web services in application development. The work of Daniel and Matera is an ex-
tension to a prior article by Ceri, Daniel et al. (30), in which conceptual modelling
of new concept-aware frameworks based on WebModeling Language (webML) is
discussed. With origins in the studies of context-awareness, several people have
worked on the establishment of new and integration of current social networks on
mobile devices with context-aware functionality.

In Context-Aware Middleware for Anytime, Anywhere Social Networks, Bottazzi et
al. (8) investigate the creation of ad-hoc Mobile Social Networks (MoSoNet)” and
discuss the differences between Internet-based- and mobile-based social networking.
A location-centric framework, SAMOA, is proposed and makes use of semantic
modelling, allowing users to create proximity based roaming social networks. In
addition, a concept prototype of a viral-marketing social network for a shopping
centre, implementing SAMOA, is presented.

Shttp://wuw.webml .org
"http://en.wikipedia.org/wiki/Mobile_social_network

http://www.webml.org
http://en.wikipedia.org/wiki/Mobile_social_network

1.2. Related Work

Similarly, Beach et al. (3) created WhozThat?, a system combining social network
services with mobile phones to form a MoSoNet, that can notify users about the
identity of nearby individuals and provide rich social content based on context
awareness. In particular, a context-aware music player, that automatically picks
out songs based on client preferences, for use in restaurants and bars, is shown.
The system is based on an infrastructure that draws on wireless technologies e.g.
Bluetooth and Wifi along with sharing social network IDs through a customized
protocol. Moreover, security and privacy issues in MoSoNets are also discussed.

Eagle et al. (11) compares the reliabilty using of observational sensor data from
mobile devices versus self-reported user data for social network analysis. According
to experimental results, they demonstrate that it is possible to deduce 95% of
friendships among test subjects using only observational data for statistical analysis.

Adding to this, in 2010 Beach, Gatrell et al. (1) published Fusing Mobile, Sen-
sor, and Social Data To Fully Enable Context-Aware Computing in which they
present SocialFusion, a framework that seeks to combine context data from mobile
phones, network data, and social network data from users. They discuss the major
challenges and possibilities of creating context-aware MoSoNets, including how to
organize and store big sets of diverse data streams alongside extraction and analysis
of this data. Several examples of use are described involving prediction of social
groups and advanced data mining of context allowing for tailored user recommen-
dations. In addition, security and privacy issues are considered and a new approach
to k-anonymity algorithm design is presented.

The academic focus on context-awareness and MoSoNets also sparked interest in
studying the use of Cloud Computing for scientific research and for commercial use
in Web services and business IT infrastructures.

Armbrust el al. (2) from Berkely look into the development of cloud computing and
give a detailed overview of the various cloud services available today, along with
pros and cons of each solution. Furthermore, obstacles and opportunities of cloud
computing are discussed and compared to traditional server solutions, in terms of
both cost and performance with particular focus on Amazon EC2.

Kossmann et al. (23) published a paper on Cloud computing architures and did a
detailed comparison on performance and cost of the three major Cloud providers;
Amazon, Google, and Microsoft.

Additionally, a number of related studies on cost and performance benchmarking of
Amazon EC2 for scientific applications have been conducted, including the work of
Berriman et al. (6), Akioka and Muraoka (1), and Juve et al. (22), all presenting
the potentials of utilizing cloud computing for scientific use.

1.3. Thesis Objective

1.3 Thesis Objective

Considering our motivation for partaking in the Milab DTU Context-Awareness
research programme and the related work presented in Section 1.2, we have come
up with a set of learning- and research objectives in respect to our long-term target
of providing context-aware analysis software of social groups.

Taking into account the scope and time frame of this Bachelor’s project, we will
address the following issues in the thesis:

e Outline the required capabilities of a system to support context-aware appli-
cations and features.

e Describe currently available software- and network technologies for developing
web compliant systems.

e Conduct a feasibility analysis of the given solutions in order to present a
viable realization of the system requirements.

e Design a high level system model in adherence to the analytic results.

e Show a proof-of-concept prototype implementing a custom API for interaction
with the designed software system.

e Review our findings and discuss future work in order to achieve our long-term
targets.

1.4 Thesis Outline

We use two types of references throughout this thesis. Footnotes are used as ref-
erences to websites and non-academic documents. Citations are used to reference
books, official documentation of standards, and academic articles.

Chapter 2 Introduces technical concepts used in thesis, describes the requirements
for our system implementation, and looks at how to realize the devised requirements
by presenting a feasiblity analysis of available solutions.

Chapter 3 Gives a detailed description of the design of our system infrastructure
and provides an in-depth presentation of the Web service paradigm.

Chapter 4 Discusses the implementation specific details of the developed software
components of our proof-of-concept Web service.

Chapter 5 Reviews the software solution presented in Chapter 3 and outlines
considerations of future work.

Chapter 6 Summarizes and concludes on the work presented in this thesis.

CHAPTER 2

Analysis

In this chapter we will conduct a thorough analysis of system models and back-end
infrastructures available today, in order to find the most fitting solution model for
the purpose of this project. However, in order to conclude on any specific solution,
we must first come up with a set of requirements necessary in order for our system
to fulfill the goals of the project.

2.1 Definitions

This section defines and describes some of the main terminologies and concepts
used in the analysis.

2.1.1 Cloud Computing

Many interpretations of the term Cloud Computing exist and it is a topic of continu-
ous discussion. However, we will use the following definition, inspired by Armbrust
et al. (2):

“Cloud Computing refers to both the applications delivered as services over the
Internet and the hardware and systems software in the datacenters that provide
those services. The services themselves have long been referred to as Software as
a Service (SaaS) ... The datacenter hardware and software is what we will call a

Cloud.”

Generally, we talk about two main types of Clouds, based on availability, although
other variations exist. A Private Cloud refer to an internal datacenter of a corpo-
ration or other organization running various SaaS functions, which is not available
to the outside world. However, if a Cloud is made generally available for rent or
usage via a pay-per-use scheme, it is referred to as a Public Cloud. We will not be
covering Private Clouds in this thesis.

2.1. Definitions Analysis

2.1.2 Client-Server Model

A Client-Server architecture is a structure that distributes and divides computa-
tional tasks between two or more processes on either a single- or, most often, several
machines. As detailed further in Database Programming with JDBC and Java (28):

“Any database application is a client/server application if it handles data storage
and retrieval in the database process and data manipulation and presentation some-
where else. The server is the database engine that stores the data, and the client
is the process that gets or creates the data. The idea behind the client/server ar-
chitecture in a database application is to provide multiple users with access to the
same data.”

Several client-server architecture variations exist, as will be discussed in Section 2.3.1.
A great example of a Client-server architecture is the Web browser/Web server and
email/mail server paradigm.

2.1.3 Infrastructure-as-a-Service

Infrastructure as a Service (IaaS) is a provision model, a part of the Cloud Com-
puting business notion, in which an organization outsources the equipment used
to support operations, including storage, hardware, servers and networking com-
ponents. The service provider owns the equipment and is responsible for housing,
running and maintaining it, and in return the client typically pays on a per-use
basis for usage of said equipment®.

2.1.4 Platform-as-a-Service

Platform as a Service (PaaS) is a way to rent hardware, operating systems, stor-
age and network capacity over the Internet, most typically as a Cloud Computing
implementation”. It differs from IaaS, primarily, by allowing the customer to lease
pre-configured computing platforms and solutions stacks, providing all of the fa-
cilities required to support the complete life cycle of building and delivering web
applications and services entirely available from the Internet!?.

2.1.5 Software-as-a-Service

Software as a Service (SaaS) is a software distribution model in which applications
and their related data are hosted centrally, e.g. Clouds, by the service provider
and are accessed by users, most often, through the Internet via thin clients such
as web browsers. An example integration of the SaaS model is “Salesforce.com”!!
that provides business software, such as CRM'2, online via Cloud hosting'?.

8http://searchcloudcomputing.techtarget.com/definition/Infrastructure-as-a-Service-IaaS
“http://searchcloudcomputing.techtarget.com/definition/Platform-as—a-Service—Paa$S
Onttp://http://en.wikipedia.org/wiki/Platform_as_a_service/

Yhttp://www.salesforce.com/

12Customer Relationship Management

Bhttp://en.wikipedia.org/wiki/Software_as_a_service

http://searchcloudcomputing.techtarget.com/definition/Infrastructure-as-a-Service-IaaS
http://searchcloudcomputing.techtarget.com/definition/Platform-as-a-Service-PaaS
http://http://en.wikipedia.org/wiki/Platform_as_a_service/
http://www.salesforce.com/
http://en.wikipedia.org/wiki/Software_as_a_service

2.2. Requirements

2.2 Requirements

Based on the goal of this project and several meetings with the other groups in-
volved in the context-awareness research programme at Milab, we have devised a
set of preliminary requirements for the back-end system. It is worth noting that
all requirements are on a high level of abstraction, due to the complexity and un-
certainty of future development needs. Effectively, these requirements along with
our finished server design will act as a basic infrastructure framework, that can
be extended with more functionality later on if required. The requirements are
summarized as follows:

1. Scalability and Performance The system must be able to allocate resources
dynamically, such that performance will not be a limiting factor, nor will it
be unexploited.

2. Extendability The system must be susceptible to changes in which features
are deployed, making it easy to increase the functionality of the system ap-
plications.

3. Platform independency The system must be able to interoperate with sev-
eral types of client platforms, such as iPhone iOS, Android OS, and Symbian.

4. Multi-language support The system must be compatible with a wide range
of programmatic languages and frameworks, e.g. mathematical tools such as
Matlab, or a languages such as Python in order to ease the process and lower
the transaction times for new prototyping- and proof-of-concept projects for
students participating in the research programme.

5. Cost Deployment- and operational costs must be kept at a minimum and should
flexible in accordance with the usage and scalability of the system. This is to
ensure a lower risk level during the start-up of the research programme.

We acknowledge the importance of security when choosing a back-end infrastruc-
ture. Since the system will be handling personal and sensitive information, steps
must be taken to ensure this data is out of reach for unauthorized parties. Fur-
thermore, the system must also have some physical security, such as data back-ups,
as well as network security making the infrastructure resistant against cracking
attempts such as DDoS and Man-in-the-Middle attacks.

However, due to this preliminary status of the research programme and parallel
projects, the topic is currently out of scope of this thesis, but will be discussed in
brief in Section 2.3.1.2 and Section 5.3.

2.3 Realization of Requirements

In order to come up with a satisfying solution to our target goal, we must first take
a closer look at the available technologies, which can fulfill the before-mentioned
requirements for our system. This section covers the large scale decisions regarding
our choice of system architecture and hosting platforms. A detailed look at the
incorporated system design is available in Chapter 3.

2.3. Realization of Requirements

2.3.1 System Model

Today, two generic types of system architecture for client-server applications exists;
the two-tier architecture and the three-tier architecture, along with variations of
these models depending on specific implementations and needs of the developer.
Both architectures have their advantages and disadvantages, as we will explore in
this section. Please note that we are omitting details on the single-tier architecture,
since it has no use in development of client-server applications.

2.3.1.1 Two-tier Architecture

First of all, we have the two-tier architecture, which is the simplest structural form
of a client-server architecture. It is built of two components, the presentation layer
and the data layer. The presentation layer, most often illustrated as clients, which
connects directly to the data layer containing all system viable data stored in a
database (28). This relationship is illustrated in Figure 2.1.

Client
]
Datastorage
Server
Client

Figure 2.1: The two-tier client-server architecture.

The two-tier architecture is mainly used for small scale database systems and simple
websites, since there is no need for an interleaving application layer. All actions
made by the users are directly updated in the database. The model works very well
with simple applications and non-scaling systems.

However, this system model has several limitations. As soon as one needs to im-
plement more complex data processing, the two-tier architecture will fall short in
the long run (28), because the client is directly tied to the data layer. Very often,
what happens is that one will end up with what is called a Fat Client, in which all
the processing is done on the client side, possibly implementing a lot of overhead
features and functionalities unrelated to the task of the current user. Therefore,
two-tier systems and fat clients are known to scale very badly, as data volumes and
the userbase grow. For this reason, this system model will not be a feasible solution
for this project.

2.3. Realization of Requirements

2.3.1.2 Multi-tier Architecture

The multi-tier architecture, also called n-tier architecture, is built on the same
principles as the two-tier system model but it has one core difference, isolation of
dataprocessing. It is the preferred software architecture for modern Web applica-
tions (31). In its most basic form, known as the three-tier architecture, the direct
connection between the presentation- and data layer has been replaced by a so-
called application layer, as shown in Figure 2.2. The three-tier architecture can be
expanded to a n-tier model by extending the number of servers and business logics
on the various tiers. However, this requires a more complex implementation due to
the need of load balancing and advanced data management.

Presentation Layer

Client Client

Application Layer

Application Server

Data Layer

Datastorage
Server

Figure 2.2: The three-tier client-server architecture.

The multi-tier design has several advantages. First, a system utilizing a multi-tier
architecture is essentially built by smaller modules that can be upgraded or changed
relatively easy, due to the system flexibility caused by separating the presentation-
and data layer (31). In a multi-tier modelled system, the presentation layer, or
client, can only communicate with the application server hosting the business logic.
It has no way of communicating directly with the data layer, hence it does not care
how the database is implemented, where it is located or if the database is distributed
among a cluster of servers. Furthermore, this separation ensures a higher level of
security and safety, since it is easier to control client access to the data layer, which
may store sensitive information.

2.3. Realization of Requirements

Secondly, the modularity ensures fairly straightforward scalability of the system on
all tiers. For example, if a developer wants to extend his web application to a specific
new operation system, he will only have to write a new piece of software for the
presentation layer on the given platform, which supports the API of the application
layer (28). Likewise, one can with reasonably low efforts extend the number of
application servers to deal with increased data traffic by users and have a load
balancer distribute the processing requests throughout the available servers. This
enhanced management of one’s system infrastructure is one of the key advantages of
using a Cloud Computing service, such Amazon Web Services, for hosting multi-tier
software systems, as discussed in Section 2.3.2.

Nevertheless, the flexibility of the multi-tier architecture comes with a disadvantage.
It takes more work to plan and set up a system based on a multi-tier architecture.
In addition, the increased complexity of integration and communication between
the given components can make it more difficult and time-consuming to maintain.

2.3.2 Cloud Computing and Dedicated Servers

When deciding on a host solution for our system we have two options. First, one
can buy, or rent, a dedicated server. This has the advantage of the developer being
the sole user of the server, which allows for full control of hardware- and bandwidth
resources and software configurations. This makes the system fully customizable
and often very stable. Additionally, using a dedicated server makes the developer
less reliant on third-party interventions, such as maintenance and data handling.

While being the sole owner of a dedicated server has clear benefits, there are several
considerations to be made. First, one is faced with high upfront deployment costs
when buying, or renting, a dedicated server. In extension of this, there is a relatively
high level of fixed monthly expenses'®, such as electricity and maintenance, even if
the server resources are not being utilized to its full extent. Secondly, owning only
one dedicated server, makes it rather difficult to implement a scalable three-tier
software architecture as we intend to do, due to the prominent cost of upgrading
and extending the number of disposable servers.

The second option is to host the system in the emerging market of Cloud Comput-
ing. Analogous to the advantages of owning a dedicated server, Cloud Computing
provides several strong points, though typically not equivalent to those of dedicated
server hosting. While dedicated servers introduce a high level of overall control,
Cloud Computing takes a different approach by offering pay-on-demand usage of
computational resources. For example, a processing task taking 1000 hours on a
single server can be done for the same cost in 1 hour on 1000 servers hosted in
the Cloud, assumming that the programs can scale (2). There are no long-term
commitments and very low deployment costs involved, which makes this hosting
solution flexible in accordance with developer needs.

Furthermore, Cloud Computing offers several features such as automatic scaling of
hardware resources, as data traffic increases or decreases, including scalable data
storage and load balancing functionality.

Yhttp://www.serverschool . com/dedicated-servers/how-much-does-a-dedicated-server-cost/

10

http://www.serverschool.com/dedicated-servers/how-much-does-a-dedicated-server-cost/

2.3. Realization of Requirements

This functionality makes it straightforward to implement multi-tier system archi-
tectures on Cloud Computing host platforms, due to the design of these platforms
themselves (23).

However, this flexible business model might be considered an achilles heel of Cloud
Computing, as it can be difficult to predict the total long-term costs of using the
pay-as-you-go scheme, due to interrelating service fees and the complexity of the
Cloud Computing infrastructure. Moreover, one depends on the Cloud provider to
ensure stable server uptime and reliable maintenance of physical hardware systems.
Lastly, some Cloud Computing hosting services require the developer to implement
proprietary APIs, which can cause data lock-in.

Recent studies of Cloud Computing, as put forward by e.g. Armbrust et al. (2),
Berriman et al. (22), and Kossmann et al. (23) focus on Cloud Computing as
an alternative solution to current system implementations. A general consensus
regarding research results in the mentioned articles, is that Cloud Computing has
several benefits over traditional server solutions. However, the benefits may vary,
depending on the actual workload requirements of the developer and the current
configuration. For example, if a business has large amounts of data stored in a data
center, it might not be prudent and economically feasable to migrate to a Cloud
hosting solution (2). We refer to the above mentioned articles for an in-depth
cost-benefit analysis of the Cloud Computing paradigm.

On the other hand, we are developing a novel server system, hence we are not
concerned with compatibility, costs of transferring large quantities of data from
existing storage solutions, and other migration related issues.

Furthermore, due to the nature of this project and current academic interest in
the Cloud Computing field, we believe it will be rewarding to pursue this solution
model, considering the low entry-barriers of financial burdens and deployment.

2.3.3 Amazon Web Services

Amazon Web Services, or AWS, was released in 2003 as the first public Cloud
Computing host service and it is therefore the most mature product on the market
today. Amazon Web Services, in its core form, provides a range of Infrastructure
as a Service (laaS) solutions with an adaptable pay-as-you-go price model'>. Ama-
zon’s main product is Elastic Compute Cloud (EC2), which is a virtual computing
environment that allows developers to launch a number of Virtual Machines, known
as Instances, using either template images or custom configurations to fit require-
ments of the developer. This service is elastic, meaning that one can increase or
decrease system capacity within minutes to comply with varying data traffic, and
that this management of resources can be controlled automatically by the Cloud
itself using features such as Auto Scaling and Elastic Load Balancer.

In conjunction to the elastic Virtual Machines, two types of database services are
available. A traditional database solution, Amazon Relational Database Service
(Amazon RDS) is offered. It is a Web service providing easy setup and deployment
of Cloud based relational databases, currently supporting MySQL and Oracle.

Yhttp://aws.amazon. com

11

http://aws.amazon.com

2.3. Realization of Requirements

Alternatively, one can make use of Amazon Simple DB, which is a flexible and scal-
able non-relational database, optimized for high availability. In addition to database
services, AWS offers scalable data storage solutions such as Amazon Simple Storage
Service (83) and Amazon Elastic Block Store (EBS), which are off-instance storage
volumes. These storage block volumes, equivalent to physical harddrives, can be
mounted directly on EC2 instances where they can be used for storing server images
and back-up of databases among other things.

As described, AWS provides a scalable, easy to deploy, IaaS product giving the de-
veloper full control over every aspect of his server system. Adding to this, AWS has
a very flexible pay-as-you-go business model with a wide range of prices, depending
on developer requirements. Currently, AWS also offers a one year free-usage tier to

new customers'©.

Nevertheless, AWS has its drawbacks. First off, being a highly flexible IaaS prod-
uct, means that all system maintenance- and operational responsibilites, such as
software updates and problem solving, are now in the hands of the developer, ne-
glecting the hardware maintenance done by Amazon. Second, the developer is
solely in charge of integrating AWS services to comply with one’s needs, whereas
other Cloud Providers such as Google App Engine take care of that aspect for the
clients. Lastly, the pricing model of AWS, despite being versatile, can make it hard
to predict long-term operational costs as argumented for in Section 2.3.2.

However, to address this issue, Amazon provides an Excel spreadsheet for calcu-
lation the annual costs of running an EC2 instance cluster on their platform. A
similar pricing calculator exists for Amazon RDS.

2.3.4 Google App Engine

Google App Engine (GAE), initially released in 2008, is a development and hosting
platform provided by Google, and it is targeted exclusively for development and
deployment of web applications. GAE is considered a Platform as a Service (PaaS)
opposed to Amazon AWS, being IaaS, as mentioned in Section 2.3.3, giving devel-
opers access to a specialized SDK and development tools. Like AWS, GAE comes
with a free-tier usage plan as well as an expanded pay-per-use pricing scheme. Fur-
thermore, a budgeting tool is provided, making it easy to control and limit the costs

of running one’s Web Application'”.

Once an application is built, Google takes care of deploying the service on one
of their cloud instances. Furthermore, GAE automatically scales the available re-
sources for a given application, depending on the workload. Effectively, this means
that Google takes care of all underlying levels of the system infrastructure and
administration of these.

This abstraction makes it easy for developers to quickly build and test web ap-
plications at a low cost, due to the simple SDK interfacing between the developer
and the server system. In addition, the GAE SDK offers several out-of-the-box ser-
vices, such as Mail, XMPP and Images'® available through APIs. Currently, only

http://aws . amazon. com/free/
Yhttp://code.google.com/intl/da/appengine/docs/billing.html
Bnttp://code.google.com/intl/da/appengine/docs/java/apis.html

12

http://aws.amazon.com/free/
http://code.google.com/intl/da/appengine/docs/billing.html
http://code.google.com/intl/da/appengine/docs/java/apis.html

© 0 N O Ok W N

[R i e
N O Uk W N H O

2.3. Realization of Requirements

Python, Java, and to some extend JVM based languages are supported on GAE,
though this might change in the future. Nevertheless, this choice of programming
languages for the platform makes it relatively quick to write and reuse code. An
example of a Python application'® on GAE is shown in Figure 2.3.

#Script code for HelloWorld.py

print ’Content-Type: text/plain’
print °°
print ’Hello, world!’

#Deployment Commands

application: helloworld
version: 1

runtime: python
api_version: 1

handlers:
— url: /.x
script: helloworld.py

Figure 2.3: Implementation of a simple Hello World! Python Web Application.

In terms of storing data, Google makes use of its own, non-relational, scalable
storage database called option Datastore, similar to Amazon SimpleDB. It utilizes
a custom simplified SQL dialect called GQL and supports both High Replication
Datastore and Master/Slave Replication?.

However, the ease of use comes with a cost. Unlike Amazon AWS, Google App
Engine is restricted in numerous ways. First of all, you are effectively locked to
Google’s proprietary platform, APIs, and storage facilities, making it difficult and
time consuming to migrate to other services later, if needed. Recently, several
third-party APIs have surfaced, trying to ease the platform mobility of GAE, such
as TyphoonAE?!.

Secondly, GAE has several constraints to ensure performance and scalabilty of its
platform. One of the main considerations is that applications must be request-
response based. If the request handler exceeds the maximum time restriction while
generating a response, usually 30 seconds, it will be terminated. This precaution
is implemented to ensure low CPU times and seamless autoscaling on the GAE

platform??.

¥http://onlamp. com/pub/a/onlamp/2008/05/20/getting-started-with-the-google-apps-engine.

html
Onttp://code.google.com/intl/da/appengine/docs/python/datastore/overview.html
2nttp://code.google. com/p/typhoonae/
nttp://code.google.com/intl/da/appengine/docs/python/runtime . html

13

http://onlamp.com/pub/a/onlamp/2008/05/20/getting-started-with-the-google-apps-engine.html
http://onlamp.com/pub/a/onlamp/2008/05/20/getting-started-with-the-google-apps-engine.html
http://code.google.com/intl/da/appengine/docs/python/datastore/overview.html
http://code.google.com/p/typhoonae/
http://code.google.com/intl/da/appengine/docs/python/runtime.html

2.4. Summary

2.3.5 Microsoft Windows Azure

The Windows Azure Platform, publicly available in 2010, is Microsoft’s take on a
Cloud Computing platform for creating and hosting Web Applications®3. Therefore
Windows Azure is categorized as PaaS, like Google App Engine. When compar-
ing the three platforms, Windows Azure is considered in-between AWS and GAE,
meaning that it incorporates some of the flexibility of AWS while still separating
the developer from the low-level architecture, e.g. hardware configuration and Op-
erating System, of the platform. Like GAE, it is worth noting the constraints of
using this platform, especially regarding being locked to Microsoft’s proprietary
SDK.

Development of applications on Windows Azure is done using the .NET libraries
and are compiled to the Common Language Runtime?*, which offers flexibility in
terms of programming language utilization, making it possible to write applications
in Visual Studio languages, Java, PHP and Ruby. The Windows Azure platform
also provides a collection of SaaS functionality for easy access to existing Microsoft
products along with direct integration in Visual Studio, including a GUI and tools
for easy management and deployment of applications, unlike Amazon that relies
on command-line interfacing. Furthermore, Windows Azure offers two types of
datastorage; SQL Azure, which is Microsoft’s own implementation of SQL server
and the non-relational Azure Storage Service, homologous to Google DataStore and
Amazon SimpleDB (2).

Microsoft Windows Azure offers two types of business models for clients. One can
either use the Pay-as-you-go formula or sign up for a montly subscription plan with
a minimum duration of six months. The Subscription plan has the advantage of
offering, potentially big, discounts on usage, and customized subscription plans can
be tailored through a provided pricing calculator?®.

2.4 Summary

This section summarizes the results of our analysis and proposes a solution model for
the system design of the infrastructure for the Context-Aware research programme
at Milab DTU.

In order to ensure extendability we choose to make use of a multi-tier software archi-
tecture, because this model facilitates flexible changes to the system by separating
the presentation layer, business logic, and data layer. This allows us to quickly add
new features on request, without affecting the already established functionality on
the server side. Adding to this design philosophy, the Web service paradigm, de-
scribed in Chapter 3, is an obvious candidate for a practical implementation of this
software architecture type.

We have opted for Cloud Computing as hosting solution due to the proficiency in
scalability and perfomance utilization of this technology. The Cloud Computing

Zhttp://www.microsoft.com/windowsazure/
Znttp://msdn.microsoft.com/en-us/library/ddk909ch (v=vs.71) .aspx
Bhttp://www.microsoft.com/windowsazure/offers/

14

http://www.microsoft.com/windowsazure/
http://msdn.microsoft.com/en-us/library/ddk909ch(v=vs.71).aspx
http://www.microsoft.com/windowsazure/offers/

2.4. Summary

Amazon Web Services

MS Windows Azure

Google App Engine

Architecture | e TaaS e PaaS e PaaS
Computation | e x86 Instruction Set Ar- | ¢ Microsoft Common | e Predefined application
model (VM) | chitecture (ISA) via Xen | Language Runtime | structure and framework;
VM (CLR) VM; common | programmer-provided
intermediate form ex- | “handlers” written in
ecuted in managed | Python, all persistent
environment state stored in Mega-
Store (outside Python
code)
e Computation elasticity | ¢ Machines are pro- | ¢ Automatic scaling up
allows scalability, but de- | visioned based on | and down of computation
veloper must build the | declarative descriptions | and storage; network and
machinery, or third party | (e.g. which “roles” can | server failover; all consis-
VAR such as RightScale | be replicated); automatic | tent with three-tier Web
must provide it load balancing app structure
storage e Range of models from | ¢ SQL Data Services | @ DataStore(BigTable)
model block store (EBS) to aug- | (re- stricted view of SQL
mented key/blob store | Server)
(SimpleDB)
e Automatic scaling | e Azure storage service
varies from no scaling or
sharing (EBS) to fully
automatic (SimpleDB,
S3), depending on which
model used
e Consistency guarantees
vary widely depending on
which model used
e APIs vary from stan-
dardized (EBS) to pro-
prietary
Networking e Declarative specifica- | @ Automatic based on | ¢ Fixed topology to
model tion of IP-level topol- | programmer’s declara- | accommodate three-tier

ogy; internal placement
details concealed

e Security Groups enable
restricting which nodes
may communicate

e Availability zones pro-
vide abstraction of inde-
pendent network failure
e Elastic IP addresses
provide persistently
routable network name

tive descriptions of app
components (roles)

Web app structure

e Scaling up and
down is automatic and
programmer- invisible

Table 2.1: Comparing features of Cloud Providers (2)

15

2.4. Summary

providers mentioned offers several automated, low cost, components for effortless
management of system asssets, such as automatic scaling of Virtual Machines, de-
pending on the computational resources needed. Also, as described in Section 2.3.2,
it is possible to delegate the role of distributing incoming data traffic among server
instances to an automated agent, such as the Load Balancer feature in AWS. In
comparison, dedicated servers do not offer any of such features out-of-the-box.
Therefore, achieving such functionality requires much greater efforts.

In extension, using Cloud Computing hosting presents us with a versatile cost
layout. This will enable us to minimize costs while having optimal utilization of
system resources, since the servers will automatically scale on request. For instance,
if high peakloads are experienced in a two hour time-frame between 8AM and
10AM, the system can upgrade to a high-performance server instance, for an extra
cost. When the data traffic returns to normal behavior, the system will detect
the change and react accordingly. Consequently, we will only be charged for the
two-hour usage of the high-performance server instance. This is not possible with
a dedicated server, since you will pay for the resources, whether they are used or
not and it takes a prolonged time to extend the hardware capabilities.

Furthermore, the initial deployment costs of using Cloud Computing are non-
existing, because one is not responsible for buying and setting up the hardware
needed, whereas with a dedicated server, one will have to pay an extensive sum of
money up-front. That being said, we acknowledge, as put forward by Armbrust et
al. (2), that Cloud Computing may not be the cheapest long-term solution. How-
ever, we believe that the features and potential of Cloud Computing, described in
the analysis, outweight this realization.

Table 2.1 shows a comparison of the features provided by Amazon Web Services,
Microsoft Windows Azure, and Google App Engine, as have been described earlier
in Chapter 2.

Based on our study of Cloud Computing providers, we have concluded that neither
Google App Engine or Microsoft Windows Azure is appropriate as a host solu-
tion for our system, even though both share adequate levels of performance and
scalability.

Google App Engine, being PaaS, is exclusively aimed for web application devel-
opment, do not provide a platform that is fully able to realize our requirements
in terms of customization and functionality, due to its separation between the
developer and the infrastructure itself. Also, GAE is limited by its selection of
programming languages and its proprietary SDK. Similarly, Microsoft Windows
Azure, still being a relatively new platform with unexplored potential, shares the
same characteristics of GAE. It is considered PaaS and does not provide us with
the opportunity to fully control every level of the system infrastructure and locks
the development to Microsoft compliant programming languages only.

We have decided to use Amazon Web Services, mainly because of its high level
of flexibility and scalability, which allows us to fully customize our system to our
needs and requirements, both in terms of server resources, software architecture,
and language- and platform support. Furthermore, its economic price model ensures
a low-entry barrier in terms of both deployment- and operational costs, which is
suitable for experimental project like this one.

16

CHAPTER 3

Design

3.1 System Architecture

This chapter will focus on the design of our back-end system, based on the results
of our analysis in Section 2.4. Our design is a three-tier architecture Web service
hosted on an Apache Tomcat Server deploying Apache Axis2. The service will
be running on a cluster of Amazon EC2 instances controlled by an AWS Load
Balancer, as seen in Figure 3.1.

Devices Web-Access
:8080 :80

Y
Amazon EC2 [Load Balancer]

\4

Application Layer

Servlet x* Servlet x* Servlet x*
[Tomcat][Apache HTTP] [Tomcat][Apache H7TP] [Tomcat][Apache H7TP]

[Instance Engine 0] [Instance Engine 1] [Instance Engine n]

Data Layer

Database

Figure 3.1: An illustration of the system design

17

3.1. System Architecture Design

An outline description of the depicted components is given in the list below:

e Load Balancer The Load Balancer is a feature of AWS. It distributes incoming
traffic among a number of EC2 instances running our services, ensuring that
traffic is only forwarded to instances with capacity to handle the incoming
requests.

e Service A Web service is a software system designed to support interoperable
machine-to-machine interaction over a network. By using Web services we
can distribute the logic to the back-end system while creating light-weight
clients, capable of invoking these services.

e Axis2 The Apache Axis2 project is a Java-based implementation of both the
client and server sides of the Web services paradigm described in Section 3.2.

e Servlet A servlet is a Java programming language class used to extend the
capabilities of servers that host applications accessed via a request-response
programming model, such as a Web service. We can run a number of servlets
simultaneously, all providing specialized functionality.

e Tomcat Tomecat is a popular and well-used open source servlet container, that
implements the Java Servlet and JavaServer Pages (JSP) specifications. It is
used to host our services including the Axis2 Web service.

e Apache HTTP If needed, we can quickly add support for a Apache HTTP Web
Server. For example if a designated Web browser application is desired.

e Instance In this context, an instance refers to an instantiated Virtual Machine
on EC2 running our implementation.

e Database The datastorage layer for the system, which can be implemented in
several different ways e.g. AWS SQL, AWS RDS and so forth.

By using this architecture, our system is able to support a range of server-side
applications, as Apache Tomcat is capable of hosting servlets executing code in
languages such as Python and Matlab. This enables us to provide an API with ex-
tensive functionality to the mobile clients using the system, which can continuously
be updated if necessary. Additionally, referring to Section 2.2, this design decision
helps us realize the requirements of multi-language support.

The following sections will explain the Web service paradigm, on which our system
is based to achieve compliance with the requirement of platform independency, as
put forward in Section 2.2. We will also briefly explain the role and functionality
of Apache Tomcat and Apache Awis2, along with a consideration of datastorage
options and front-end design.

18

3.2. Web Service

3.2 Web Service

The World Wide Web Consortium (W3C) defines a Web Service as:

“A Web service is a software system designed to support interoperable machine-to-
machine interaction over a network. It has an interface described in a machine-
processable format (specifically WSDL). Other systems interact with the Web service
in a manner prescribed by its description using SOAP messages, typically conveyed
using HTTP with an XML serialization in conjunction with other Web-related stan-
dards.” (7)

3.2.1 Web Services Architecture

Web services follows the concept of Service-Oriented Architecture (SOA). SOA mod-
els applications are compositions of services provided by components that can be
discovered and invoked dynamically. The SOA model defines three actors:

e The Service Provider The Service Provider acts as an interface for a system
that manages a specific set of tasks.

e The Service Requester The Service Requester is an entity that can discover
and invoke services.

e The Service Registry The Service Registry acts as a repository for the service
interfaces published by the service providers.

The relationship between the three actors are shown in Figure 3.2. The concept of
Web services following the SOA is that the service provider implements the service
and describes the service interface. The provider then publishes the service to
the service registry. The service requester then discovers the service, obtains its
description and finally invokes the service.

The technologies used to achieve this architecture are, typically, HT'TP for trans-
port, XML for data description, SOAP for service invocation, and WSDL for service
description. For service discovery, UDDI is used (29). In the following sections these
technologies will be explained.

3.2.2 An Overview of XML Technologies

The Web service architecture uses the eXtensible Markup Language (XML) as a
standardized way to represent data, in a structured, machine-readable way. From
a Web service aspect, the most relevant parts of the XML are the XML 1.0 speci-
fication (10), namespaces in XML (9) and the XML schema (15).

The XML 1.0 specifications define the core XML as a set of rules for designing text
formats for structured data. An XML document consists of markup, which is used
to describe the structure, and elements, in which the actual data is contained. An
XML document is text based and human readable, however the structure and the
rules of the language ensure that a computer can generate and read the data.

19

3.2. Web Service

The language however does not define any elements; the elements and their meaning
are defined by the application. Namespaces in XML is a method for qualifying
elements and attribute names to avoid collisions, and attach a specific semantic
to them. The use of namespaces in XML makes it possible to define markup
vocabularies which can by re-used in different documents.

Service Description
{ Service Registry }

Service Requestor < > Service Provider
Bind

Web Service

Figure 3.2: Relationship between SOA actors.

The XML scheme is used to describe and constrain the contents of XML documents.
Informally put, a schema defines a class of documents. A document that suits the
schema is an instance of that schema. Furthermore, the specification provides a
standard set of data types which can be used in the schema.

3.2.3 SOAP Messages

The concept of SOAP is a stateless, one-way message exchange paradigm 26. It
is possible to create more complex interactions by combining several features pro-
vided by the underlying protocols. One of the key features of SOAP is that it is
transport independent, unlike its predecessor, the XML-RPC (18) (26). The XML-
RPC was originally created in order to create a light-weight system to serve as the
message protocol. As more functionalities were introduced, XML-RPC evolved into
SOAP 27. The SOAP protocol consists of three parts:

2onttp://www.ibm. com/developerworks/xml/library/x-soapbx1/index.html
http://www.xml . com/pub/a/ws/2001/04/04/soap . html

20

http://www.ibm.com/developerworks/xml/library/x-soapbx1/index.html
http://www.xml.com/pub/a/ws/2001/04/04/soap.html

3.2. Web Service

e An envolope, which defines what is in the message and how it should be
processed.

¢ Rules for encoding; expressing application-defined data types.

e A RPC representation for representing remote procedure calls and responses.

An example of a SOAP request over HT'TP can be seen in Figure 3.3. As it is
quite clear in the example, the SOAP envelope is located in the actual body of
the HT'TP request, which has its own header and body. The SOAP header blocks
usually contain information usable by both the “middle-man” as well as information
on the destination of the message. The body then contains information of the actual
content of the message.

POST /StockQuote HTTP/1.1

Host: www.stockquoteserver.com
Content-Type: text/xml; charset= ¢‘utf-87’°
Content-Length: nnnn

SOAPAction: ‘‘/StockQuote’’

<SOAP-ENV:Envelope
xmlns:SOAP-ENV= ‘http://schemas.xmlsoap.org/soap/envelope/’
SOAP-ENV:encodingStyle= ‘‘http://schemas.xmlsoap.org/soap/encoding/’’
<SOAP-ENV:Header>
<t:transactionID xmlns:t= ‘‘http//www.stockquoteserver.com/headers’’
SOAP-ENV:mustUnderstand= ‘‘1’’>
124345 </t:transactionID>
</SOAP-ENV:Header>
<SOAP-ENV:Body>
<m:GetLastTradePrice xmlns:m= ‘‘http://www.stockquoteserver.com/methods’’>
<symbol>DIS</symbol>
</m:GetLastTradePrice>
</SOAP-ENV:Body>
</SOAP-ENV:Envelope>

Figure 3.3: SOAP message embedded in a HTTP request (26)

An interesting entry in the given example is the “encodingStyle” attribute. This is
used to specify the serialization rules used in the message. This example uses the
standard SOAP encoding style, which supports primitive numeric, data and string
types, arrays and vectors (18). It is possible to use user-defined encoding styles.

In the SOAP RPC mechanism, a method call is a compound data element or struct
named after the method to be invoked. In the above example, the “GetLastTrade-
Price” is the method to be invoked. In this example, the method also contains a
“symbol” element as a parameter. A Universal Resource Identifier (URI) is used in
order to identify the End-Point Reference (EPR). SOAP has no way of conveying
the URI, however it relies on the transport protocol to do so. When using HTTP
binding, the RPC maps to a HTTP request and respond with SOAP payloads,
while the URI is used as the communication EPR.

The use of XML and HTTP for transport makes SOAP available on any platform
that is able to handle and process these technologies, which makes it a perfect
candidate for the Web Service paradigm.

21

3.2. Web Service

3.2.4 'Web Service Description

SOAP defines a wire protocol for messaging, however, it does not define a way to
describe what kind of messages are to be transmitted and where to. In order to
address this problem, Web Service Description Language (WSDL) is used. WSDL
provides a structured way of describing the communication scheme and it can be
seen as an interface definition language for Web services. WSDL is an XML gram-
mar for describing network services as a collection of communication endpoints,
which are capable of exchanging information. According to the W3C, Web Services
are defined by six major elements (11):

e types which provides data type definitions used to describe the messages ex-
changed.

e message which represents an abstract definition of the data being transmitted.
A message consists of logical parts, each of which is associated with a defini-
tion within some type system.

e portType which is a set of abstract operations. Each operation refers to an
input message and output messages.

e binding which specifies concrete protocol and data format specifications for the
operations and messages defined by a particular portType.

e port which specifies an address for a binding, thus defining a single communica-
tion endpoint.

e service which is used to aggregate a set of related ports.

All listed types are described by the WSDL. An illustration of how WSDL structures
these elements is shown in Figure 3.4.

3.2.5 Discovery

In the previous section, we discussed WSDL and its ability to describe a service.
When looking back at the Web service architecture, the SOA, we still need to de-
fine a way to find, or discover, a service. From a Web service perspective, discovery
means the process of locating the service provider as well as obtaining the informa-
tion necessary for the service to be invoked. There are many ways of obtaining this
information, some of the simplest being requesting the description documentation
from a known location via HT'TP or FTP.

However, there is another solution which is much more flexible, and it is very domi-
nantly used (17). This approach is called Web Services Inspection (WS-Inspection),
as described in Section 3.2.6. It utilizes a list of references to several service descrip-
tions by using a standard format. This makes it possible to store categorized data
about the provided services and the necessary information needed to access said
services, and to make queries for the information. Such functionality is provided by
Universal Description, Discovery and Integration (UDDI), which will be discussed
in Section 3.2.7.

22

3.2. Web Service

Interface definition) type '

message

part*

portType

operation*

output

input

fault

binding '»

Implementation

service

port*

location

Figure 3.4: The structure of a WSDL definition (26)

23

3.2. Web Service

3.2.6 'Web Service Inspection

Web Service Inspection, also known as WS-Inspection provides an XML document
for listing references to service descriptions 2®. A WS-Inspection document will
contain one or more service and link elements. A service element will contain one
or more references to different types of service descriptions for the same service. A
link element may contain references to one type of service description. Figure 3.5
shows an example of a Web Service Inspection document.

<?7xml version=°‘‘1.07’7>
<inspection xmlns=‘‘http://schemas.xmlsoap.org/ws/2001/10/inspection/’’>
<service>
<abstract>
An example service
</abstract>
<name>BroadcastService</name>
<description referencedNamespace=‘‘http://schemas.xmlsoap.org/wsdl/’’
location=‘‘http://example.com/service.wsdl’’ />
</service>
<link
referencedNamespace=* ‘http://schemas.xmlsoap.org/ws/2001/10/inspection/’’
location=°‘http://example.com/additionalservices.wsil’’/>
</inspection>

Figure 3.5: An example of a XML WS-Inspection document (26)

The example contains a service element and a link element. The service element
contains some basic information, such as the name and a short description of the
service, and then it contains a reference to a service description, the reference to the
WSDL document. The link element refers to another WS-Inspection document.

3.2.7 Universal Description, Discovery and Integration

UDDI is a set of specifications for defining a standard method for publishing and
discovering the network based software components of a SOA (27). UDDI makes
it possible to publish information about services and service providers to a central
repository, and obtaining said information. IBM and Microsoft used to have public
UDDI registries, however, they were discontinued 2°. UDDI defines several core
types of information, forming the necessary information needed to use a particular
Web service. The core information types are illustrated in Figure 3.6.

Furthermore, UDDI versions 2 and 3 each added an additional data type to facilitate
registry affiliation (5). These data types are defined as:

¢ publisherAssertion which defines relationships among entities in the registry.

e subscription which defines requests to track changes to a list of entities.

Znttp://www.ibm. com/developerworks/Webservices/library/ws-wsilover/
Pnttp://uddi.microsoft.com/about/FAQshutdown.htm

24

http://www.ibm.com/developerworks/Webservices/library/ws-wsilover/
http://uddi.microsoft.com/about/FAQshutdown.htm

3.2. Web Service

To elaborate on Figure 3.6, it shows that UDDI contains information about service
providers; the businessEntity, what services are provided?, the businessService,
where are the services located?, the bindingTemplate, and references to informa-
tion on how they can be invoked, the tModel.

businessEntity: Information about the
party who publishes information about a
service

tModel: Descriptions of specifications
for services or taxonomies. Basis for

= technical fingerprints
!oa
| s
.I I.
businessService: Descriptive K
information about a particular /4’ / bindingTemplate data contains
.) . /
L1 family of technical services ;o refe-rences to t_ModeIs. Thesg_ references
R designate the interface specifications for
o a service.

binding Template: Technical
information about a service entry
point and construction
specifications

Figure 3.6: An illustration of UDDIs core data types (27)

An UDDI registry can be used to store references to several types of service descrip-
tions, including WSDL descriptions. SOAP is need to access such a registry (9).
In order to refer to a WSDL description, the WSDL document is divided into an
interface definition and the implementation, as illustrated in Figure 3.4. A tModel
data type is then instantiated to reference the interface definition, and the refer-
ence to the tModel, as well as the actual service location, which is stored in a
bindingTemplate (12).

3.2.8 Summary

Figure 3.7 illustrates how the Web service architecture relates to the technologies
discussed above.

The figure shows the service provider implementing the service, and uses a WSDL
document to describe its interface. The service provider then publishes the service
to the UDDI registry, shown in step 1, which represents the service registry in
the SOA. After the service has been published, the service requester can find the
service, by querying the UDDI registry, shown in step 2.

The information retrieved from the UDDI registry contains the description of the
service, as well as the location of the WSDL interface document. The service re-
quester is then able to retrieve the WSDL document, shown in step 3, and establish
the required functionality for accessing and utilizing the service. When these steps
have taken place, the service requester is then able to invoke the service, as shown
in step 4.

25

3.3. Back-end Design

. . SOAP Request
Service Provider

1. Register Service dc\)lt\:lusnl?le_nt
3. Retrieve WSDL definition

Web Service

4. Invoke the service

publish

v
(S

UDDI Registry 2. Look up a web service

bind

ervice Requestor

Figure 3.7: A SOA Web Service with Web Service Technology (26)

3.3 Back-end Design

This section gives a brief description of the main components of the design, namely
Apache Tomcat and Apache Axis2. Also, we briefly touch on the matter of data
storage.

3.3.1 Apache Tomcat

Apache Tomcat is a popular and well-used open source servlet container, that im-
plements the Java Servlet and JavaServer Pages (JSP) specifications (24). Servlets
are Java classes used in order to introduce dynamic content to a Web server. JSP
allows developers to “mix” HT'ML and Java code, enabling the creation of dynami-
cally generated Web sites. Due to the fact that Tomcat will purely be used to host
the Axis2 servlet, these technologies will not be described in detail, however, we
will describe Axis2 in Section 3.3.2.

3.3.2 Apache Axis2

Axis2 is a core engine for Web services. It is built on a modular architecture which
consists of core and non-core modules as seen in Figure 3.8.

The core engine of Axis2 is a pure SOAP engine (21). Axis2 can handle both
SOAP message as well as non-SOAP messages. However, because of the nature of

the Axis2 core engine at transport level every message has to be converted into a
SOAP message®’.

3%http://www.developer.com/java/ent/article.php/3606466

26

http://www.developer.com/java/ent/article.php/3606466

3.3. Back-end Design

Additionally, Axis2 uses the AXIOM document model for XML message handling.
For further information on A XIOM, we refer to IBM’s documentation on the topic3.

User
Application

Client
API

)
Web
SOAP| Service
g Business
Logic
Handlers Handlers
(Intercepters) (Intercepters)MesSage
Transport Transport Receiver
Sender Listener

Figure 3.8: Axis2 architecture (16)

Axis2 was originally designed following three key rules??:

e Seperation of logic and state to provide a stateless processing mechanism.
This is done because Web services are stateless, as discussed in Section 3.2.

o A single information model in which the system is able to suspend and resume

runtime.

e Ability to support newer Web service specifications with minimal changes
made to the core architecture.

Figure 3.9 illustrates the key core and non-core components in the Axis2 architec-
ture. We will now elaborate on the modules and functionalities of Axis2, which are
relevant for our thesis. For further information on Axis2, we refer to the official
Apache Axis2 documentation (10).

Code Generation Data Binding
Model Model
Core Modules
Information XML

Processing Mode

Processing Mode

SOAP Deployment
Processing Mode Model
Transport Client API
Model Model

Figure 3.9: Axis2 core modules (21)

3http://www.ibm.com/developerworks/Webservices/library/ws-java3
32http://onjava.com/pub/a/onjava/2005/07/27/axis2. html

27

http://www.ibm.com/developerworks/Webservices/library/ws-java3
http://onjava.com/pub/a/onjava/2005/07/27/axis2.html

3.3. Back-end Design

The SOAP processing model can be identified as two basic actions; sending and
receiving SOAP messages. The Axis2 architecture provides two “pipes” to perform
these basic actions, which are named inPipe and outPipe. The complex Message
Ezxchange Patterns, or MEPs, are created by combining these two pipes. The SOAP
processing model is provided through handlers. When a SOAP message is being
processed, only the handlers registered will be executed; the handlers can either be
registered in global, service, or operational scope. The handlers act as interceptors
of the SOAP messages. They usually work on the SOAP headers, however, they are
also able to access and change the SOAP body as well. The ultimate handler-chain
is calculated combining the handlers from all the scopes. This feature is key in
Axis2’s scalability.

When a SOAP message is sent through the client API, an outPipe activates. This
pipe activates the corresponding handlers and ends with a Transport Sender, as
sketched in Figure 3.8. The SOAP message is then intercepted by a Transport
Receiver which reads the SOAP message and thus activates an inPipe and the cor-
responding handlers. Finally the Message Receiver consumes the SOAP message??.

For more information on the SOAP processing model of Axis2, we again refer to
the official documentation by The Apache Software Foundation (16).

Configurations

Code
Generation

Engine

WDSL

> K || o

Templates

Figure 3.10: The Axis2 code generator (16)

The deployment model in Axis2 in designed to ease the process of deploying services
to the system. First of all, Axis2 features a system where the developer can bundle
all the library files, class files, resource files and so forth together as an archive file
and deploy it by simply dropping it in a specified location. Additionally, Axis2
introduces the features “hot deployment” and “hot update”, which its predecessor
did not support3*.

33nttp://www.developer.com/java/ent/article.php/
34http://www.developer.com/services/article.php/3557741/Understanding-Axis2-Deployment-Architecture.

28

http://www.developer.com/java/ent/article.php/
http://www.developer.com/services/article.php/3557741/Understanding-Axis2-Deployment-Architecture.

3.4. Front-end Design

These features are not a new technical paradigm for the Web service platform, but
as mentioned it is new for the Axis platform. Hot deployment simply means that
the developer is able to deploy services to the system without having to restart
the runtime itself. Intuitively, hot update refers to the ability to make changes to
existing Web services without having to restart the runtime. This feature is essential
for developers and eases the process of uploading code in a testing environment.

Lastly, the code generation module of Axis2 uses XSL templates, which enables
the code generator the flexibility to generate code in multiple languages. The code
generator of Axis2 works by generating an XML file and parsing it with a template
to generate the code. Figure 3.10 illustrates how the code generation process works.

First an AxisService (16) is populated from a WSDL document. The code gener-
ation engine is then able to extract relevant information from the AxisService, in
order to create a language independent XML document. By using a XSL template,
it is then possible to generate code in the language specified in the provided tem-
plate. This method allows for code generation in any language, as long as a XSL
template can be provided.

We have chosen Axis2 for a number of reasons. It is a Web service engine, which
provides us with a better SOAP processing model, with remarkable increases in
performance, when compared to Axis 1.x as well as other existing Web service
engines. It also provides us with the code generation module, which eases the
process of creating a client application, capable of invoking services. Furthermore,
it offers the possibility of generating code in other languages, making it much easier
to develop client applications for a variety of platforms.

3.3.3 Data Storage

Since this is a preliminary study, we have not currently decided on a final solution
for an implementation of the data layer. This choice is highly dependent on require-
ments of projects running parallel development to this thesis project. Nonetheless,
we have several data storage technologies available, of which AWS RDS running
MySQL and AWS EBS block storage are likely to suit our needs, due to Amazon’s
scalable integration of these services alongside EC2.

However, in order to fully solve this problem, further research and development is
needed.

3.4 Front-end Design

The emphasis of this thesis is on the overall infrastructure design of system capa-
ble of supporting various MoSoNet- and Context-aware applications. Therefore,
the actual design of the presentation layer is out of our scope. However, due to
the implemented three-tier system architecture, we are able to provide easy inte-
gration between numerous client types and the application layer as long as each
application implements our Web service API, for which the basis components can
be automatically generated by Axis2 via WSDL as described in Section 3.2.4 and
Section 3.3.2.

29

3.4. Front-end Design

30

CHAPTER 4

Implementation

In this chapter we will describe the implementation of a proof-of-concept web ser-
vice, deployed on the system described Chapter 3, along with an accompanying
client application.

4.1 Service

We have used a MySQL database for our proof-of-concept prototype. The service
code uses the JDBC Connector/J drivers provided by the MySQL foundation®’.
In order for the reader to fully understand our implementation, it is important
to understand what SQL statements are. This will briefly be explained in the
following.

SQL stands for Structured Query Language. By using SQL, one can display, add,
edit and remove records from a table in a database. The SQL queries for these are,
respectfully:

SELECT, INSERT, UPDATE, DELETE

The first example we will show is the insertText method, seen in Figure 4.1. JDBC
requires a database connection string represented by an URL in order to establish
connection to the database. As this implementation will serve as a proof-of-concept
prototype, and due to time limitations, we have chosen to implement the MySQL
database on-drive on our EC2 instance. Thus, the database URL used is:

String url = ¢‘jdbc:mysql://localhost:3306/JavaDB’’

However, before actually connecting to the database, the JDBC drivers needs to
be properly loaded, which is done in line 4 of Figure 4.1. Now, JDBC should
be ready to establish the connection with the database, which is done in line 5,
by using java.sql. DriverManager’s getConnection method. The parameters used in

3http://www.mysql.com/products/connector/

31

http://www.mysql.com/products/connector/

[SLE VI V)

©

10

4.1. Service Implementation

this method are the url mentioned above and a username and password, which in
this case are root and dontscrewup respectively.

The parameters of this insertText method are the name of a table, the name of a
column and some text to put in the database. These parameters are needed for

the SQL query used in line 7. The query we use against the database to insert
something in the database is defined as:

INSERT INTO <table>(<column>) VALUES (’<input>’)

For example, if the service was requested to insert s082714 into column studentID
in the table students, the query would look like this:

INSERT INTO students (studentID) VALUES(’s0827147)

In order to execute the query, we first use the createStatement() method, which
returns an empty JDBC statement object. Then we use the ezecute Update() method
on this statement, which executes the query. The ezecute Update() method is used
for the SQL statements listed above. To use the SELECT statement, however, one
would need to use the ezecuteQuery() method instead. After the query has been
made, it is necessary to close the connection, which is done in line 8 of Figure 4.1
using the Connection object’s .close() method.

public void insertText(String table, String column, ..
String text){

try{
Statement stmt;
Class . forName("com.mysql. jdbc.Driver");
Connection con = DriverManager.getConnection (url,"root","...
dontscrewup");
stmt = con.createStatement () ;

stmt . executeUpdate ("INSERT INTO " + table + "(" + column +..
") VALUES(’" + text + "’)");

con.close();

tcatch (Exception e) {e.printStackTrace();}

}

Figure 4.1: insertText service

Another example we feel is relevant to present is the showColumns service. The code
for this service can be seen in Figure 4.2. This service follows the same principles
as the insertText service and uses the JDBC drivers. However, two new objects
are introduced here; the ResultSet object and DatabaseMetaData object. To fully
understand how the showColumns service works, it is important to understand the
properties of these objects, as will be described next.

A ResultSet object is a table of data representing a database result set3S. The
ResultSet object maintains a cursor pointing to its current row of data. Initially
the cursor is positioned before the first row. By using the next() method on the

36nttp://download.oracle.com/javase/1.4.2/docs/api/java/sql/ResultSet. html

32

http://download.oracle.com/javase/1.4.2/docs/api/java/sql/ResultSet.html

gk W N

© o N O

11

12

14
15

17
18

Implementation 4.1. Service

object, the cursor is moved to the next row. When the cursor is at the end of the
data table, calling the next() method will return a false.

A DatabaseMetaData object contains comprehensive information about the database
as a whole®”. Certain DatabaseMetaData methods will return a ResultSet object,
which is the case in this example. Also, DatabaseMetaData contains methods that
can search through its information about the database. The parameters of such
methods are String patterns, and they act as search criteria. If a search pattern
criterion parameter is set to null, said criterion will be excluded from the search.

public String showColumns(String table){
s = |l|l;

try {
Class . forName("com.mysql. jdbc.Driver");
Connection con = DriverManager.getConnection(url,"root","...

dontscrewup");
ResultSet rs;
int i = 1;
DatabaseMetaData dbmd = con.getMetaData () ;
rs = dbmd.getColumns (null , null, table, null);
while (rs.next()){

s = s + "Column #" + i + ":\n\tName: "+ rs.getString("...
COLUMN_NAME") + "\n\tType: " + rs.getString("...
TYPE_NAME") 4 "\n\tMaximum entry length: " + rs.getInt(..
"COLUMN_SIZE");

i+

}

rs.close ();

con.close();

tcatch (Exception e) {e.printStackTrace();}
return s;

}

Figure 4.2: showColumns service

As mentioned, the showColumns service follows the same principles as the insert-
Text service. However, instead of using a SQL statement to obtain the requested
information, a ResultSet object and a DatabaseMetaData object is used. The infor-
mation is retrieved by using the DatabaseMetaData object’s getColumns method.
This method takes four String parameters as search criteria. as listed below:

getColumns (String catalog, String schemaPattern, ...
String tableNamePattern, String columnNamePattern)

The method then performs a search in the entire database based on these parame-
ters. In Figure 4.2 we only use the tableNamePattern parameter as a search criteria,
as the rest are set to null.

The getColumns method returns a ResultSet object containing the results of the
performed search. As mentioned earlier, when the cursor is at the end of the data
table, calling the next() method will return a false. In order to retrieve all data

3Thttp://download.oracle.com/javase/1.4.2/docs/api/java/sql/DatabaseMetaData.html

33

http://download.oracle.com/javase/1.4.2/docs/api/java/sql/DatabaseMetaData.html

0w N D Ot

©

10

4.2. Client

from the ResultSet object, we exploit this property by using a while loop to run
through the entire ResultSet oject. The data extraction itself is done by using getter
methods on the ResultSet object, passing the name of the columns in the data table
as parameters for these methods. Finally the data is formatted into a String s.

We have now shown how the database can be accessed and manipulated by a service.
However, we still need a client in order to invoke the service, which will be explained
in Section 4.2.

4.2 Client

In the previous section, we showed how the Web service is implemented in Java,
but we still need a client in order to be able to invoke operations of the service.
Lets again look at the insertText() functionality of the Web service, as described
in Section 4.1. However, this time we will take a look from the client’s perspective.
The implementation of the insertText() invocation operation is shown in Figure 4.3.

public static void insertText(String table, String column,...
String text){
try{
DatabaseServiceStub.InsertText var = new ...
DatabaseServiceStub . InsertText () ;
var.setTable(table);
var .setColumn (column) ;
var.setText (text);
stub.insertText (var);
System.out.println("’" + text +"’ inserted in column " + ..
column + " in table " + table);
}catch(Exception e){e.printStackTrace();}

}

Figure 4.3: insertText invocation method

We have used Axis2s code generation functionality to generate parts of the client
code. For information on the process of code generation, we refer to Section 3.3.2.
We have used Axis2 Databinding Framework (ADB) for code generation. While
we acknowledge that ADB is not the most optimal method in terms of power
or flexibility, it is the easiest to setup and it sufficiently serves our purpose of
developing a proof-of-concept model35.

However, it should not be perceived as if Axis2 provides an auto generated client,
fully ready for invoking services. Instead it generates linkage code from WSDL
documents, in order to relieve applications from working directly with AXIOM.
The generated linkage code is in the form of a stub class, which defines access
methods for the application to use, when invoking the services. To make use of this
generated stub class, we first create an instance of the stub by using a constructor
that takes an endpoint reference pointing to our service, in the form of an URI, as
shown below:

38nttp://axis.apache.org/axis2/java/core/docs/userguide-creatingclients.html

34

http://axis.apache.org/axis2/java/core/docs/userguide-creatingclients.html

w

IS

o N9 O«

4.2. Client

stub = new DatabaseServiceStub ...

("http://ec2-184-73-93-22.compute-1.amazonaws.com:8080/axis2/services/DatabaseService");

Once the instance of the stub has been created, we can call the service-specific
access methods to actually invoke the operations. When one of the service methods
is called, the stub converts the request data objects to XML, as well as converts
returned XML to response data objects for the client.

If we take a closer look at Figure 4.3, line 3 shows how an instance of the generated
InsertText class is created. In line 4 through 6, we interact with this class, setting
the variables to some user input. Finally in line 7, we use the InsertText instance
as a parameter for the insertText() method call.

Figure 4.4 shows the client code for invoking the showColumns operation discussed
in Section 4.1. The code follows the same principles as the implementation of invo-
cation method for the insertText operation. However, the showColumns operation
returns a set of information to the user.

public static void showColumns(String table){

try {
DatabaseServiceStub .ShowColumns var = new ...

DatabaseServiceStub . ShowColumns () ;
var.setTable(table);
ShowColumnsResponse res = stub.showColumns(var);
System.out.println (res.get_return());
}catch(Exception e){e.printStackTrace();}

}

Figure 4.4: showColumns invocation method

As mentioned earlier in this section, the stub converts the returned XML into a
response data object. Inspecting the code in Figure 4.4, we see in line 4 how an
instance of a response object is created. Further, line 5 shows how we retrieve the
information from said object.

We refer to Appendix A and B for the entire client- and server java source code.
As seen in the examples described above, the process of creating a client code
capable of invoking one’s Web service becomes relatively trivial, by using the Axis2
generated linkage code.

Furthermore, as described in Section 3.3.2, our decision to useAxis2 makes it pos-
sible to generate client code, not only for Java, but for any programming language,
as long as a corresponding WSDL-to-code generation tool can be provided.

35

4.2. Client

36

CHAPTER 5

Evaluation

5.1 Testing

In this section we will show a small test of our proof-of-concept Web service and its
accompanying client, as described in Chapter 4. We will also demonstrate how the
AWS Management Console works and how to access its underlying features. The
purpose of the test is to validate the postulated claims of rapid development and
easy deployment of Web services using the proposed solution.

For testing purposes we have utilized the free-usage tier offered by AWS, mentioned
in Section 2.3.3. This free-usage tier provides us with a micro instance. This type of
instance provides a small and steady amount of CPU resources capable of bursting
CPU capacity if supplementary computational power is needed. Even though the
processing power of a micro instance is equivalent to that of a Nokia N900%°, the
setup is sufficient for our testing purposes. For more information on the EC2
instance types available on AWS, we refer to the AWS website’. The Management
Console interface for AWS is shown in Figure 5.1.

From the management console, it is possible to access all the features of AWS. The
interface makes it very easy to create, change or remove instances, or make use
of any of the other features that AWS provides. Figure 5.2 shows how one can
change the type of an instance to another, through a few simple clicks. This makes
it possible to change the type of an instance, for example, from a micro instance,
with relatively low computational power, to a GPU cluster instance, capable of very
high performance within a short period of time.

Figure 5.3 shows the start-up screen of our prototype client. As previously dis-
cussed in Chapter 4, our service and client are a very simple implementations, only
capable of performing basic database manipulation, without any real functionality.
To present this implementation, we have constructed a straightforward interface,
making it possible to interact with our deployed services.

39http ://www.phoronix.com/scan.php?page=article&item=amazon_ec2_micro&num=1
4Onttp://aws.amazon.com/ec2/instance-types/

37

http://www.phoronix.com/scan.php?page=article&item=amazon_ec2_micro&num=1
http://aws.amazon.com/ec2/instance-types/

5.1. Testing Evaluation

We refer to Appendix C for instructions in order to gain hands-on access to the
client.

Elastic Beanstalk | 53 EC2 | VWPC | CloudWatch Elastic MapReduce CloudFront | CloudFormation RDS | SNS | IAM
Region: 3:5 Launch Instance Instance Actions |+
= US East Virginia) » Viewing: | All Instances ¥ #]' All Instance Types ! #]
» EC2 Dashboard Name * Instance AMI ID Root Device Type Status
INSTANCES ¥ Test Instance @ i-375dccb® ami-Belfece? ebs t1.micro) running
» Instances O Ubuntu @ i-3f118a51 ami-f0de2799 ebs cl.xlarge () stopped
» Spot Requests
» Reserved Instances 1 EC2 Instance selected
IMAGES §@ EC2 Instance: i-375dcc59
> AMIs

Description | Monitoring | Tags
» Bundle Tasks

Graphs are for 1 instance with basic monitoring enabled. Times are displayed in UTC.
ELASTIC BLOCK STORE

* Volumes Enable detailed monitering for your Amazen EC2 instance to get these metrics at 1-min
> Snapshots
NETWORKING & SECURITY —|° Avg CPU Utilization (Percent) Avg Disk Reads (Bytes) Avg Disk Writes (
» Security Groups 100 1.0 1.0
» Elastic IPs 0.5 0.5
> Placement Groups 50 0.0 =——— 0.0
» Load Balancers -0.5 -0.5
» Key Pairs O — -1.0 -1.0
6/23 6/23 6/23 6/23 6/23
12:00 12:30 12:00 12:30 12:00

Figure 5.1: AWS Management Console showing running EC2 Instances

Even though the implemented Web service and client application is relatively sim-
plistic and bare-boned, it serves as a noteworthy result for backing up our asses-
ments outlined throughout the thesis. Development of the service and application
itself was straightforward. However, we did experience a series of initial issues re-
garding the setup and configuration of the system infrastructure. For example, it
proved to be challenging to configure our EC2 instance along with Tomcat and
Axis2, as all interaction with the instance had to be done through command-line
interfaces and SSH.

Change Instance Type Ccancel [x

Instance ID: i-375dcc59

Instance Type:

Are you sure you want to change your instance type from
tl.micro to cl.xlarge?

Ves, Granee

Figure 5.2: Upscaling from a micro instance to a larger machine

However, we acknowledge that the troubles we encountered with this may be a
result of lacking experience with the tools. The initial configuration of Axis2, in
order to make it operate within our requirements, also proved to be troublesome at
first. For example, we had some challenges enabling the Hot Update functionality,
as described in Section 3.3.2.

Nevertheless, once we had overcome these issues it was fairly easy to replicate the
setup for later use. Additionally, it is possible to save the entire system setup as a

38

5.2. Discussion

so-called Amazon Machine Image (AMI)*', which is a preconfigured machine image
for fast deployment of EC2 instances.

NGNS Terminal — java — 75x20

Figure 5.3: User interface of prototype application

Once the system was running, the actual development of services was only a matter
of writing code for the wanted features and upload the service. Even services with
complex functionalities, once developed, are relativelse trouble-free to deploy using
the Axis2 tools and client invocation of said services can be created a minimum of
efforts.

5.2 Discussion

Based on our test results and experiences learned throughout the project, we found
the system to succesfully live up to our expectations and needs for fast and easy
distribution of diverse Web services. We believe to have shown that our solution
and current implementation forms a strong corner stone for future development of
a framework for context-aware applications and advanced social group analysis, as
visioned in Chapter 1.

Despite the positive outcome of our work, we acknowledge that the implications
of our research results may not be applicable for a direct implementation of a full
scale system, based on the design presented in Chapter 3.

First of all, it has not been possible to gather in-depth requirements from other par-
ticipating groups in the Milab DTU research programme as intended, since their
projects have been undertaken parallel to our work, resulting in a diffused inter-

http://aws.amazon.com/amis/

39

http://aws.amazon.com/amis/

5.2. Discussion

pretation of specifications in terms of computational requirements, data workload,
and network traffic loads. For this reason, our preliminary study of hardware needs
has proved to be inclusive due to the lack of key parameters as mentioned above.

Therefore, instead of postulating claims based on abstract speculations, we have
based our design and implementation decisions on results put forward in recent
studies of similar issues, such as the work of Berriman et al. (22), Iosup et al. (19),
and Akioka and Muraoka (1). Generally, these studies show a significant potential
of utilizing Cloud Computing for high-performance computing, based on perfor-
mance benchmarking of Amazon EC2 for a set particular scientific applications.
However, we recognize that usage of Amazon EC2 may not be the best solution in
all cases, as depicted by Jackson et al. (20).

It is our impression, that we do not currently hold the knowledge required to make
a sufficiently tailored benchmark of the EC2 instances, in order to comprehend
which hardware configuration would best accomodate the needs of a campus-wide
deployment of the proposed system. Once we acquire this understanding, it will
be possible to set up a suitable performance benchmark analysis using available
software, such as Phoroniz Test Suite*?>. An example of a benchmark of the available
EC2 instance types, using Phonorix test tools is displayed in Figure 5.4.

NAS Parallel Benchmarks v3.3

Test / Class: EP.B

> Total Mopis, e etter PHORONLL.COM

Amazon ml.large
SE +/-0.13

Amazon ml.xlarge
SE +/-0.21

Amazon m2.xlarge
SE +/-0.07

Amazon m2.2xlarge
SE +/-0.06

Amazon m2.4xlarge
SE +/-D.BO

Amazon cl.xlarge
SE +/-1.22

Powered By Phoronix Test Suite 3.0.0a5

Figure 5.4: NAS Parallel Benchmark V3.3 - EP.B Test Class

This specific CPU benchmark, provided in a test package developed by NASA*3,
analyses the multi-threading capabilities of Amazon EC2 instances, by generating
independant gaussian random variates, measured in Million operations per second
(Mop/s). For further details on the shown CPU performance test and related
benchmarks, we refer to the full article, published on the Phoronix website*?.

Secondly, as we wanted to come up with a cost-effective solution for this system,
a detailed cost analysis is needed order to gain a thorough understanding of the
economic consequences of putting our system into existence. Regardless, as a cost

“Zhttp://www.phoronix.com/
“http://www.nas.nasa.gov/Resources/Software/npb.html
44http: //www.phoronix.com/scan.php?page=article&item=amazon_ec2_exhaustive

40

http://www.phoronix.com/
http://www.nas.nasa.gov/Resources/Software/npb.html
http://www.phoronix.com/scan.php?page=article&item=amazon_ec2_exhaustive

5.3. Future Work

analysis of utilized resources requires clear overview of involved hardware compo-
nents, which is not currently available. Therefore, as we cannot ourselves provide
an accurate estimate of the annual operational costs of hosting our framework on
Amazon Web Services, we have to some extent ommitted this perspective in our
decision making.

However, we acknowledge recent academic studies on the topic, such as the work
of Kossmann et al. (23), in which a comphrensive overview of cost related to
using Cloud Computing services provided Amazon, Google, and Microsoft is given.
Additionally, we spent time familiarizing ourselves with the Amazon EC2 Pricing
tool, mentioned in Section 2.3.3, in order to get an approximate of costs of various
EC2 configurations.

For example, we calculated that the annual cost of running a large EC2 instance
with a peakload compensation of an extra high-performance machine to be between
$2031 and $3005, depending on the payment model used. We have attached a copy
of the pricing calculator tool, with our inputted values, as a part the digital contents
of this thesis, detailed in Appendix C.

5.3 Future Work

We have now taken the first steps towards establishing a framework for hosting
context-aware web services. However, as reviewed in Section 5.2, there are still
many issues to overcome in order to achieve the vision put forward in the opening
statement. Based on the discussion in Section 5.2, we have summarized a set of
tasks for future research below:

e Conduct a study in collaboration with essential project stakeholders from
DTU in order to clarify the actual scale of required hardware resources and
functionalities of our system, to facilitate a campus wide deployment such as
average data traffic and expected user behavior.

e Coordinate a detailed performance benchmark test of the back-end system,
tailored to comply with expected workloads and foreseen growth of users after
deployment.

e Provide an in-depth cost analysis of actual expenses in regards deployment
of the full scale system.

e Devise a common database- and data storage model to handle numerous dif-
ferent data sources and developer needs, while ensuring system scalability.
Furthermore, this database model must be able to handle personal informa-
tion and other sensitive data in a secure manner.

e Develop an API suitable for rapid development of context-aware mobile ap-
plications, providing easy access to data storage and tools for complex com-
putational processing. In addition, a protocol for API extensions must be
formulated.

41

5.3. Future Work

42

CHAPTER 6

Conclusion

This thesis has reviewed the requirements needed in order to construct a framework
for context-aware application development. We have studied recent research in
context-awareness, Mobile Social Networks, and Cloud Computing in order to gain
a perspective on the topic at hand.

Based on an initial literature study, we sat up a series high level requirements
for a back-end system capable of supporting context-aware mobile applications
and necessary data handling. Mainly, the system must be scalable, extendable,
platform independent and support multiple programming languages. Furthermore,
it should be cost efficient. In order to comply with the requirements specified,
we have conducted a feasibility analysis of currently available solutions in software
architecture and network technology.

The analytical results gave way to a system design consisting of a three-tier archi-
tecture Web service framework deployed on a Cloud Computing hosting platform,
offered by Amazon Web Services. The internal components are based on an Apache
Tomcat Server deploying Apache Axis2. The Web Service paradigm proved to be
the most suitable solution for the implementation of our system, in regards to the
preliminary requirements set up, but also due to its flexible design structure and
low deployment costs.

We have developed and implemented a proof-of-concept prototype application on
the proposed system that is capable of interacting with our deployed Web service
through a custom API, in order to verify the hypothesis that our solution ensures
rapid development times and easy service deployment.

Lastly, we reviewed our findings and proposed future work needed in order to suc-
cessfully deploy this system in its full extent for the Milab Context-aware research
programme. We found the system to succesfully live up to our expectations and re-
quirements. However, we acknowledge that the implications of our research results
may not be directly applicable for a full scale implementation of our solution.

In conclusion, we have successfully carried out the thesis objectives outlined in
Section 1.3.

43

Bibliography

1]

Sayaka Akioka and Yoichi Muraoka. HPC Benchmarks on Amazon EC2. 2010
IEEFE 2/th International Conference on Advanced Information Networking and
Applications Workshops, pages 1029-1034, 2010.

Michael Armbrust, A. Fox, R. Griffith, A.D. Joseph, R.H. Katz, A. Konwinski,
G. Lee, D.A. Patterson, A. Rabkin, I. Stoica, and Others. Above the clouds: A

berkeley view of cloud computing. EECS Department, University of California,
Berkeley, Tech. Rep. UCB/EECS-2009-28, 20009.

Aaron Beach, Mike Gartrell, Sirisha Akkala, Jack Elston, John Kelley, Keisuke
Nishimoto, Baishakhi Ray, Sergei Razgulin, Karthik Sundaresan, Bonnie
Surendar, and Michael Terada. WhozThat? Evolving an Ecosystem for
Context-Aware Mobile Social Networks. leee Network, (August):50-55, 2008.

Aaron Beach, Mike Gartrell, Xinyu Xing, Richard Han, Qin Lv, Shivakant
Mishra, and Karim Seada. Fusing Mobile, Sensor, And social Data To Fully
Enable Context-Aware Computing. In Proceedings of the Eleventh Workshop
on Mobile Computing Systems € Applications - HotMobile ’10, page 60, New
York, New York, USA, 2010. ACM Press.

Tom Bellwood, Steve Capell, Luc Clement, John Colgrave, Matthew J. Dovey,
Daniel Feygin, Andrew Hately, Rob Kochman, Paul Macias, Mirek Novotny,
Massimo Paolucci, Claus von Riegen, Tony Rogers, Katia Sycara, Pete Wenzel,
and Zhe Wu. UDDI Version 3.0.2. UDDI Spec Technical Committee Draft,
2004.

G.B. Berriman, Gideon Juve, Ewa Deelman, Moira Regelson, and Peter
Plavchan. The Application of Cloud Computing to Astronomy: A Study of
Cost and Performance. In 2010 Sizth IEEE International Conference on e 27
Science Workshops, pages 1-7. IEEE, December 2010.

David Booth, Hugo Haas, Francis McCab, Michael Champion, Chris Ferris,
and David Orchard. Web Services Architecture. W3C Working Group, 2004.

Dario Bottazzi, Rebecca Montanari, and Alessandra Toninelli. Middleware for

Anytime, Anywhere Social Networks. IEEFE Intelligent Systems, (October):23—
32, 2007.

45

Bibliography Bibliography

[9]

[10]

[11]

[12]

[13]

[14]

[18]

[19]

46

Tim Bray, Dave Hollander, Andrew Layman, Richard Tobin, and Henry S.
Thompson. Namespaces in XML 1.0 (Third Edition). W3C Recommendation,
2009.

Tim Bray, Jean Paoli, Eve Maler, and Francois Yergeau. Extensible Markup
Language (XML) 1.0 (Fifth Edition). W3C Recommendation, 2008.

Erik Christensen, Francisco Curbera, Greg Meredith, and Sanjiva Weer-
awarana. Web Services Description Language (WSDL) 1.1. W3C Note, 2001.

F Curbera and D Ehnebuske. Using WSDL in a UDDI Registry, Version 1.07,
UDDI Best Practice. 2002.

Florian Daniel and Maristella Matera. Mashing up context-aware Web applica-
tions: A component-based development approach. Web Information Systems
Engineering-WISE 2008, pages 250-263, 2008.

Nathan Eagle, Alex Sandy Pentland, and David Lazer. Inferring Friendship
Network Structure By Using Mobile Phone Data. Proceedings of the Na-
tional Academy of Sciences of the United States of America, 106(36):15274-8,
September 2009.

David C. Fallside and Priscilla Walmsley. XML Schema Part 0: Primer Second
Edition. W8C Recommendation, 2004.

The Apache Software Foundation. Apache Axis 2 / Java Version 1.6.0 Docu-
mentation, 2011.

John Garofalakis, Yannis Panagis, Evangelos Sakkopoulos, and A. Tsakalidis.
Web service discovery mechanisms: looking for a needle in a haystack? In
International Workshop on Web Engineering, volume 38. Citeseer, 2004.

Martin Gudgin, Marc Hadley, Noah Mendelsohn, Jean-Jacques Moreau, Hen-
rik Frystyk Nielsen, Anish Karmarka, and Yves Lafon. SOAP Version 1.2 Part
1: Messaging Framework (Second Edition). W3C Recommendation, 2007.

Alexandru losup, Simon Ostermann, N. Yigitbasi, Radu Prodan, Thomas
Fahringer, and D. Epema. Performance analysis of cloud computing services
for many-tasks scientific computing. IEEFE Transactions on Parallel and Dis-
tributed Systems, 22(6):931-945, 2011.

K.R. Jackson, Lavanya Ramakrishnan, Krishna Muriki, Shane Canon, Shreyas
Cholia, John Shalf, H.J. Wasserman, and N.J. Wright. Performance Analysis
of High Performance Computing Applications on the Amazon Web Services
Cloud. 2nd IEEE International Conference on Cloud Computing Technology
and Science, pages 159-168, November 2010.

Deepal Jayasinghe. Looking Into Axis2, chapter Chapter 2. Number 2. Birm-
ingham: Packt Publishing Ltd, 2008.

Gideon Juve, Ewa Deelman, Karan Vahi, Gaurang Mehta, Bruce Berriman,
Benjamin P. Berman, and Phil Maechling. Scientific workflow applications on
Amazon EC2. 2009 5th IEEE International Conference on E-Science Work-
shops, pages 59-66, December 2009.

Bibliography

[23]

[26]
[27]

[28]

Donald Kossmann, Tim Kraska, and Loesing Simon. An Evaluation of Alter-
native Architectures for Transaction Processing in the Cloud. In Proceedings
of the 2010 international conference on Management of data, pages 579-590,
New York City, New York, USA, 2010. ACM.

Budi Kurniawan and Paul Deck. How Tomcat Works. BrainySoftware.com,
2004.

Jakob Eg Larsen and Kristian Jensen. Mobile context toolbox: an extensible
context framework for s60 mobile phones. In Proceedings of the 4th Furopean
conference on Smart sensing and context, 2009.

Sonera Plaza Ltd and MediaLab. Web Services White Paper, 2002.

U. Oasis. Introduction to UDDI: Important features and functional concepts,
2004.

George Reese. Distributed Application Architecture, chapter 7, pages 126—-145.
O’Reilly & Associates, second edition, 2000.

Ian J. Taylor. From P2P to Web services and grids: peers in a client/server
world. Springer, first edition, 2004.

Thomas Springer Thomas Hamann, Gerald Hiibsch. A Model-Driven Approach
For Developing Adaptive Software Systems. In Distributed Applications and
Interoperable Systems, pages 196-209. Springer, 2008.

Bhuvan Urgaonkar, Giovanni Pacifici, Prashant Shenoy, Mike Spreitzer, and
Asser Tantawi. An analytical model for multi-tier internet services and its
applications. ACM SIGMETRICS Performance Evaluation Review, 33(1):291,
June 2005.

47

© 0 N O Ul R W N

[R
b I N BNV S =)

18
19
20

21
22

23

24

25

26

27

28

29
30

APPENDIX A

Client Source Code

package ws. client ;

import java.util.Scanner;
import ws. client.DatabaseServiceStub.ShowColumnsResponse;
import ws.client.DatabaseServiceStub.ShowTablesResponse;
public class DatabaseClient {

static DatabaseServiceStub stub;

static Scanner console = new Scanner(System.in);

static String inputData, clientTable;

public static void main(String [] args) {

try {

stub = new DatabaseServiceStub

("http://ec2-184-73-93-22. compute -1.amazonaws.com:8080/axis2/...

services/DatabaseService");

/x Interface start x/
System.out.println ("\n\n...

Ak ok ok ok ok ok ok K ok ok sk ok ok ok ok ok ok ok ok ok ok K ok ok ok ok ok ok Kk sk ok ok ok ok ok K K ok ok ok
s ok ok o ok ok ok sk ok ok ok ok sk ok ok ok ok K ok ok Kok sk ok kok R 1)

System.out.println ("|Welcome to the test client for Emil

Lysgaard Hansen’s and Soeren Fuhr’s |[|");
System.out.println ("|bachelor project. This client has been
constructed as a simple (")
System.out.println (" |proof-of-concept model, enabling us to
present our case in a hands-on (")

System.out.println ("|approach. This interface will present the...

user with a series of choices,|");

System.out.println ("|enabling the user to make queries against...

the connected database. I");
System.out.println("...

sk sk sk ok ok ok ok ok sk sk ok sk ok ok ok ok sk sk ok sk sk ok ok ok ok ok sk sk ok sk ok ok ok ok ok sk ok sk sk ok ok ok ok ok sk ok ok
HoR KRRk kKRR KRRk koo Rk Rk ok +\n\n") ;

System.out.println ("The tables currently present in the
database are:");

49

31
32
33

34
35

36
37
38
39
40
41

42
43
44

45

46
47

48
49
50
51
52

53

55

56

58
59
60
61
62
63
64
65
66

67
68

69
70
71

72
73
74
75

Client Source Code

50

showTables () ;
//The user inputs name of table and column.
System.out.println ("\nPlease input the name of the desired

table:");
clientTable = console.next ();
System.out.println ("\nThe columns present in table " + ..

clientTable + " are:");
showColumns (clientTable) ;

while (true) {

//Present the user with choices

System.out. println ("\n\n...
ok ok ok ok ok ok o ok ok ok ok ok ok ok K ok ok o ok K ok ok o ok Kk ok ok ok K ok ok ok ok Kk Kk K

s s ok sk s ok sk ok ok sk sk ok ok sk ok ok sk ok ok sk ok R ok sk ok sk ok 1)

System.out.println ("INFO:");

System.out.println ("The currently selected table is ’" + ..
clientTable +"*");

System.out.println ("The columns present in the selected
table are:");

showColumns (clientTable) ;

System.out.println("...
ok ok ok ok ok ok o ok ok ok ok ok ok o ok K ok ok ok ok ok ok ok K ok ok ok ok K ok K ok ok o ok Kk K ok ok ok

*okokkkokokkkkkkkkkkk*kkkkkkx*x*xkx+\n\nPlease select an option:");

System.out.println ("Press ’1’ to select another table.");

System.out.println ("Press ’2’ to create a new table.");

System.out.println ("Press ’3’ to view the columns in the
selected table.");

System.out.println ("Press ’4’ to view the content of a user
specified column in the selected table.");

System.out.println ("Press ’5’ to create a new column in the
selected table.");

System.out.println ("Press ’6’ to insert text in a user
specified column in the selected table.");

System.out.println ("Press ’7’ to delete a column in the
selected table.");

System.out.println ("Press ’8’ to delete a table.");

System.out.println ("Press ’0’ to terminate the program.");

//Read choice of user
inputData = console.next () ;

//Analyze input and act upon
if (inputData.equals("1")) {
System.out.println ("The tables currently present in the
database are:");
showTables () ;
System.out.println ("\nPlease select one of the presented
tables:");
clientTable = console.next ();
} else if (inputData.equals("2")){
System.out.println ("The tables currently present in the
database are:");
showTables () ;
System.out.println ("Please enter a name for the table:");
clientTable = console.next ();
System.out.println ("Please enter a name for the default
column:");

76
7
78
79

80
81
82

83
84
85
86
87
88
89

90
91
92

93
94
95
96
97

98
99

101
102

104
105
106

108
109
110
111

112
113
114
115
116
117
118
119
120
121
122
123
124
125

126

Client Source Code

String column = console.next();
createTable (clientTable , column);
} else if (inputData.equals("3")){

System.out.println ("The columns in " + clientTable + " are...

")
showColumns(clientTable) ;
} else if (inputData.equals("4")){
System.out.println ("Please select one of the following
columns:");
showColumns(clientTable) ;
String column = console.next();
printContentOfColumn (clientTable , column);
} else if (inputData.equals("5")){
System.out.println ("Please input a name for the column:");
String column = console.next () ;
System.out.println ("Please input the type to be contained
in the column:");
System.out.println ("(If in doubt just input ’varchar’)");
String type = console.next().toUpperCase();
System.out.println ("Please input the maximum length of
entries in the column:");
String length = console.next();
createColumn (clientTable , column, type, length);
System.out.println ("Column created!");
} else if (inputData.equals("6")){
System.out.println ("Please select one of the following
columns:");
showColumns(clientTable) ;
String column = console.next();
System.out.println ("Please input what to be stored in the
column:");
System.out. println (" (No spaces allowed!)");
String text = console.next();
insertText (clientTable , column, text);
System.out.println ("Text inserted!");
} else if (inputData.equals("7")){
System.out.println ("Please select one of the following
columns to delete:");
showColumns(clientTable) ;
String column = console.next();
deleteColumn (clientTable , column);
} else if (inputData.equals("8")){
System.out.println ("Please select one of the following
tables to delete:");
showTables () ;
String table = console.next();
deleteTable (table);
}
else if (inputData.equals("0")){
break;

}

}catch (Exception e){e.printStackTrace();}

public static void createTable(String table, String column){

CreateTable () ;

var .setTableName (table) ;

DatabaseServiceStub . CreateTable var = new DatabaseServiceStub....

51

127
128

130
131
132

134
135

136
137
138
139
140
141

142
143

144
145
146
147
148
149
150
151
152

154

155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170

171
172
173
174
175
176
177

178
179

Client Source Code

52

var .setColumnName (column) ;
stub.createTable (var);
}catch(Exception e){e.printStackTrace();}

}

public static void deleteTable(String table){
try {
DatabaseServiceStub.DeleteTable var = new DatabaseServiceStub....
DeleteTable () ;
var.setTable(table);
stub . deleteTable (var);
}catch (Exception e){e.printStackTrace();}

}

public static void createColumn(String table, String column, String..
type, String length){
try {
DatabaseServiceStub.CreateColumn var = new DatabaseServiceStub....
CreateColumn () ;
var.setTable(table);
var.setColumn (column) ;
var.setType(type);
var.setLength (length);
stub . createColumn (var);
}catch(Exception e){e.printStackTrace();}

}

public static void deleteColumn (String table, String column){

try {

DatabaseServiceStub . DeleteColumn var = new DatabaseServiceStub....
DeleteColumn () ;

var.setTable(table);
var.setColumn (column) ;
stub . deleteColumn (var);

}catch (Exception e){e.printStackTrace();}

}

public static void showTables () {
try {
ShowTablesResponse res = stub.showTables();
System.out.println (res.get_return());
}catch (Exception e){e.printStackTrace();}

}

public static void showColumns(String table){

try {
DatabaseServiceStub.ShowColumns var = new DatabaseServiceStub....
ShowColumns () ;
var.setTable(table);
ShowColumnsResponse res = stub.showColumns(var) ;

System.out.println (res.get_return());
}catch(Exception e){e.printStackTrace();}

public static void printContentOfColumn (String table, String column...

)
try {
DatabaseServiceStub . PrintContentsOfColumn var = new ...
DatabaseServiceStub . PrintContentsOfColumn () ;

Client Source Code

180
181

183

184
185
186
187

189

190
191
192
193
194

196
197 }

}

var.setTable(table);
var.setColumn (column) ;

DatabaseServiceStub.PrintContentsOfColumnResponse res = stub....

printContentsOfColumn (var) ;
System.out.println ("Contents of the column " + column + " in "
+ table + " are:\n" 4res.get_ return());
}catch(Exception e){e.printStackTrace();}

public static void insertText(String table, String column, String

}

text){
try{

DatabaseServiceStub.InsertText var = new DatabaseServiceStub....

InsertText () ;
var.setTable (table);
var.setColumn (column) ;
var.setText (text);
stub.insertText (var);

System.out.println("’" + text +"’ inserted in column " + column...

4+ " in table " 4+ table);
}catch (Exception e){e.printStackTrace();}

53

Client Source Code

54

APPENDIX B

Server Source Code

package ws. client ;

import java.sql.x;

static String url = "jdbc:mysql://localhost:3306/JavaDB";
static String s;

1
2
3
4
5 public class DatabaseService {
6
7
8
9

public void createTable(String tableName, String columnName){
try {

Class . forName("com.mysql. jdbc.Driver");

Connection con = DriverManager.getConnection (url ,"root" ,"...
dontscrewup");

Statement stmt;

stmt = con.createStatement () ;

stmt . executeUpdate ("CREATE TABLE " + tableName + " (" + ..
columnName + " char (15))");
con.close();

}catch (Exception e) {e.printStackTrace();}

public void deleteTable(String table){
try {

Class . forName("com.mysql. jdbc.Driver");

Connection con = DriverManager.getConnection (url ,"root" ,"...
dontscrewup");

Statement stmt;

stmt = con.createStatement () ;

stmt .executeUpdate ("DROP TABLE " 4+ table);

}catch (Exception e) {e.printStackTrace();}

public void createColumn(String table, String column, String type,

String length){

try{

Class . forName("com.mysql. jdbc.Driver");
Connection con = DriverManager.getConnection (url ,"root" ,"...

55

Server Source Code

dontscrewup");

36 Statement stmt;

37 stmt = con.createStatement () ;

38 stmt .executeUpdate ("ALTER TABLE " 4 table + " ADD COLUMN " + ..
column + " " + type + " (" + length + ")");

39 }catch (Exception e) {e.printStackTrace();}

20 }

41

42 public void deleteColumn (String table, String column){
43 try{

44 Class . forName("com.mysql. jdbc.Driver");

45 Connection con = DriverManager.getConnection (url,"root" "...
dontscrewup");

46 Statement stmt;

47 stmt = con.createStatement () ;

48 stmt .executeUpdate ("ALTER TABLE " 4+ table + " DROP COLUMN " + ..
column) ;

49 }catch (Exception e) {e.printStackTrace();}

50)

51

52 public void insertText(String table, String column, String text){

53 try{

54 Statement stmt;

55 Class . forName("com.mysql. jdbc.Driver");

56 Connection con = DriverManager.getConnection (url ,"root" ,"...
dontscrewup");

57 stmt = con.createStatement () ;

58 stmt . executeUpdate ("INSERT INTO " + table + "(" + column + ")
VALUES(’" + text + "?)");

59 con.close ();

60 }catch (Exception e) {e.printStackTrace();}

61}

62

63 public String showTables () {

64 s = "";

65 try{

66 Class .forName("com.mysql. jdbc.Driver");

67 Connection con = DriverManager.getConnection (url ,"root" ,"...
dontscrewup");

68 ResultSet rs;

69 int i = 1;

70 DatabaseMetaData dbmd = con.getMetaData () ;

71 rs = dbmd. getTables(null, null, null, new String[]{"TABLE"});

72 while (rs.next()){

73 s = s + "Table #" + i + ": " 4+ rs.getString ("TABLE_NAME");

74 i++;

75 }

76 rs.close ();

77 con.close();

78 } catch (Exception e) {e.printStackTrace();}

79 return s;

80}

81

82 public String showColumns(String table){

83 s = "";

84 try {

85 Class . forName("com.mysql. jdbc.Driver");

86 Connection con = DriverManager.getConnection (url ,"root","...
dontscrewup");

87 ResultSet rs;

56

Server Source Code

88
89
90
91
92

93
94
95
96
97
98
99
100
101
102
103
104

106
107
108

110
111

112
113
114
115
116
117
118
119
120
121
122 }

}

int i = 1;
DatabaseMetaData dbmd = con.getMetaData () ;
rs = dbmd. getColumns (null , null, table, null);
while (rs.next()){
s = s + "Column #" + i + ":\n\tName: "+ rs.getString("...

COLUMN_NAME") + "\n\tType: " + rs.getString ("TYPE_NAME") +...

"\n\tMaximum entry length: " 4 rs.getInt("COLUMN_SIZE");
i+
}
rs.close ();
con.close();
}catch (Exception e) {e.printStackTrace();}
return s;

public String printContentsOfColumn (String table, String column){

}

try {
Class . forName("com.mysql. jdbc.Driver");
Connection con = DriverManager.getConnection (url ,"root","...

dontscrewup");
Statement stmt ;
ResultSet rs;

s ="'

int i = 1;

String temp;

stmt = con.createStatement () ;

rs = stmt.executeQuery ("SELECT * from " + table 4+ " ORDER BY "
+ column) ;
while(rs.next ()){

temp = rs.getString (column);
S = S + n " _|_ n Row #ll + i + n . " + temp _|_ n \nll ;
i+

}

rs.close ();

con.close();
} catch (Exception e) {e.printStackTrace();}
return s;

57

Server Source Code

58

APPENDIX C

Digital Thesis Contents

The Digital Contents of this thesis, available at http://www.sorenfuhr.com/BSc2011.
zip, contains a both the print- and digital version of this thesis, The source code
and a runable instance of the client application. Furthermore, a copy of Amazons
pricing calculator is also attached. An overview of the included files is seen below:

/BScLysgaardFuhr__thesisPrint
A print version of the thesis.

/BScLysgaardFuhr__thesisNet
A digital version of the thesis.

/SourceCode/
The directory containing the source code of the implemented Web service and
client application.

/SourceCode/Client.jar
A runnable copy of the client application. To run the file, open a ter-
minal window, locate the directory containing the client.jar file and type
java -jar client.jar. The application should now be running and con-
nected to the Web service hosted on Amazon EC2. Make sure to have the
latest version of Java Runtime installed, before running the application.

/Amazon__EC2_ Cost__Comparison__Calculator
The Amazon pricing calculator for devising annual costs of using various EC2
instances, as discussed in Chapter 5.

59

http://www.sorenfuhr.com/BSc2011.zip
http://www.sorenfuhr.com/BSc2011.zip

www.milab.imm.dtu.dk

Department of Informatics and Mathematical Modelling
Mobile Informatics Lab (Milab)

Technical University of Denmark

building 321

DK-2800 Kgs. Lyngby

Denmark

Tel: +45 45 25 33 51

Fax: +45 45 88 26 73

E-mail: milab@imm.dtu.dk

	Abstract
	Resumé
	Preface
	Contents
	List of Figures
	List of Tables
	1 Introduction
	1.1 Motivation
	1.2 Related Work
	1.3 Thesis Objective
	1.4 Thesis Outline

	2 Analysis
	2.1 Definitions
	2.1.1 Cloud Computing
	2.1.2 Client-Server Model
	2.1.3 Infrastructure-as-a-Service
	2.1.4 Platform-as-a-Service
	2.1.5 Software-as-a-Service

	2.2 Requirements
	2.3 Realization of Requirements
	2.3.1 System Model
	2.3.2 Cloud Computing and Dedicated Servers
	2.3.3 Amazon Web Services
	2.3.4 Google App Engine
	2.3.5 Microsoft Windows Azure

	2.4 Summary

	3 Design
	3.1 System Architecture
	3.2 Web Service
	3.2.1 Web Services Architecture
	3.2.2 An Overview of XML Technologies
	3.2.3 SOAP Messages
	3.2.4 Web Service Description
	3.2.5 Discovery
	3.2.6 Web Service Inspection
	3.2.7 Universal Description, Discovery and Integration
	3.2.8 Summary

	3.3 Back-end Design
	3.3.1 Apache Tomcat
	3.3.2 Apache Axis2
	3.3.3 Data Storage

	3.4 Front-end Design

	4 Implementation
	4.1 Service
	4.2 Client

	5 Evaluation
	5.1 Testing
	5.2 Discussion
	5.3 Future Work

	6 Conclusion
	Bibliography
	Appendix
	A Client Source Code
	B Server Source Code
	C Digital Thesis Contents

