Inconsistency Handling in
Multi-Agent Systems

John Bruntse Larsen

Kongens Lyngby 2011
IMM-BSc-2011-9

Technical University of Denmark

Informatics and Mathematical Modelling

Building 321, DK-2800 Kongens Lyngby, Denmark
Phone +45 45253351, Fax +45 45882673
reception@imm.dtu.dk

www.imm.dtu.dk

IMM-PHD: ISSN 0909-3192

Summary

At the time of writing, agent programming languages are still a new technology
and general purpose agent systems are difficult to use. These systems are based
on agents that reason and act according to a belief base. A typical bug in such
agents are inconsistency in the belief base, which can make them act unexpect-
edly. In this project I work with revisioning of beliefs, to handle inconsistency
automatically in Jason, a practical multi-agent system. I also experiment with
paraconsistency in Jason and with possible applications of it.

Resumé

Pa dette tidspunkt er agent programmeringssprog stadig en ny teknologi, og
generelle agent systemer er sveaere at anvende praktisk. Disse systemer er baseret
pa agenter, der teenker og handler ud fra en vidensbase. Et typisk problem i
disse agenter er inkonsistens i deres vidensbaser, der kan fa dem til at opfore
sig uforudsigeligt. I dette projekt anvender jeg revidering af vidensbasen til
at handtere inkonsistens automatisk i Jason, der er et praktisk anvendeligt
multi-agent system. Jeg eksperimenterer ogsa med parakonsistens i Jason og
eventuelle praktiske anvendelser.

Preface

This thesis is written as a 20 ECTS bachelor thesis for DTU Informatics and is
required for obtaining a bachelor degree in computer science. The thesis started
31/1/2011 and ended 27,/6/2011.

My background for this project is from the courses at DTU which are 02180 -
Introduction to Artificial Intelligence, 02285 - Artificial Intelligence and Multi-
Agent Systems and 02122 - Software Technology Project. This gives me a back-
ground in predicate logic and practical use of it so I was able to understand
most of the material I found.

My supervisor Jgrgen Villadsen has been a great help with providing and dis-
cussing material about paraconsistency, contacting the authors of Jason with
my questions and being a general support. The PhD students and the other
professors at DTU Informatics have also been very inspiring about this topic
though I will not present what I discussed with them in this thesis.

Lyngby, June 2011

John Bruntse Larsen

Contents

Summary

Resumé

Preface

1 Introduction
1.1 Incomsistency
1.2 Inconsistency in Practice
1.3 Project Content
1.4 Terms L

2 Analysis
2.1 Belief Revision o
2.2 Paraconsistent Logic
2.3 Jason Language oo
2.4 Jason Architecture L
2.5 Background of Belief Revision
2.6 Multi-Valued Logic oL,
2.7 Problem Specifications L 0oL

3 Design of the Belief Revision

3.1
3.2
3.3
3.4
3.5
3.6

Justifications
BRAgent
Auxillery Definitions Lo o
Contraction
Belief Revision
Belief Update o

iii

N N

© o o ot G

viii CONTENTS

4 Design of the Paraconsistent Agent
4.1 Representing Multi-Value Logic
4.2 Use of Multi-Value Logic.
4.3 Inconsistent Belief Base

5 Testing
5.1 Belief Revision
5.2 Multi-Value Logic
5.3 Doctor Example o

6 Discussion
6.1 Belief Revision
6.2 Paraconsistency L Lo

7 Conclusion
A Code of Justification
B Code of BRAgent

Bibliography

31
31
32
32

33
33
38
39

41
41
42

45

47

49

61

CHAPTER 1

Introduction

In agent oriented programming a program is made of agents which act according
to intentions and a model of their world. In AT it can be a more intuitive way
to make programs. The model is often based on logic and if the model is
inconsistent, it can lead to problems.

Although inconsistency is well defined there is no definite way to handle it
and often solving inconsistencies must be done by the programmer rather than
automatically. In this section I present inconsistency with an informal example
and show how it occurs in different kinds of knowledge based systems. I am
focusing on predicate logic and at times I refer to it as simply logic unless other
is specified.

1.1 Inconsistency

In traditional predicate logic inconsistency refers to the conjunction A A A
where A is an aribitary expression in predicate logic. The consequence of incon-
sistency depends on where it occurs though. In a knowledge base, the classic
logical consequence = can be used to derive new literals that are entailed by
the knowledge base, however if the knowledge base contains an inconsistence,

2 Introduction

then everything can be derived from it.
{A,-A} = B where A and B are arbitary expressions

In a logic where logical consequence has the above property, |= is defined in [5]
to be explosive.

Humans also have a tendency to become inconsistent, especially when they try
to make up a lie as in this example. Suppose you were defence attorney and
heard this story from a witness.

On the night of the murder, the power was off in the neighbourhood so I did
not notice anything in the other apartment. I was simply watching television
from my bed not knowing the horrible things that happened at the time.

This story should immediately make you scream ”Hold it!” as there is a clear
contradiction between the power being off and watching television (though the
witness may defend this statement somehow). This seems simple to a human
but it is not trivial how to make an automated system handle this.

1.2 Inconsistency in Practice

Inconsistency is not a problem for humans but in Al it can cause many problems.
The following shows a few examples that are relevant to this project.

In inference engines KB is a knowledge base represented as a list of clauses. By
using logical cosequence an inference engine can, provided a KB and a logical
formula A tell if KB | A.

An example would be an exploring robot in a dark cave where KB initially
contains a (finite) set of axioms and rules that models the world. A rule for this
robot could be that if it hears a human voice from a position, some human is at
this position (who is possibly trapped in this cave and is calling for help). The
rule can be expressed formally in predicate logic.

Vp(voiceAt(p) = humanAt(p))

If the robot perceives voiceAt(p) for some position p, then it can derive hu-
manAt(p) by logical consequence and it can be added to KB.

An inconsistency could occur if the robot also had the rule (maybe by a pro-
gramming mistake).

Vp(silenceAt(p) = —humanAt(p))

1.2 Inconsistency in Practice 3

If the robot perceived silenceAt(p) because it did not hear a human here, it
would then derive —humanAt(p) and add it to KB. If the human later decided
to call out for help at p and the robot perceived this, then the robot would
also add humanAt(p) to KB and it would now be inconsistent. The inference
procedure based on logical consequence would no longer be useful as it could
derive everything and the robot might start acting very strange.

1.2.1 Jason

Jason is a practical interpreter of the agent-oriented programming language
AgentSpeak and it is the technology in focus of this project. It operates by us-
ing a belief base and goals for applying relevant plans made by the programmer.
The belief base is essentially a list of logical predicates referred to as beliefs.
Jason assumes an open world meaning that if the belief base contains p it does
not assume —p as well. However Jason allows both negated and non-negated
beliefs to occur in the belief base, so it easily becomes inconsistent by a pro-
gramming error like in the previously described KB of the inference engine.
When the belief base becomes inconsistent Jason will just use the oldest belief
and as a result the behaviour becomes unpredictable.

It is also difficult to identify the problem without manually inspecting the belief
base, which can be quite large.

1.2.2 PDDL and STRIPS

PDDL and STRIPS are both agent languages that are used for agents with auto-
mated planning. This is different from Jason where agents have pre-programmed
plans. STRIPS is the original language and PDDL is an extension of it however
there is no commonly used interpreter of the language. Details of the language
can be found in [0].

They model the world state as a set of predicates, however generally they as-
sume a closed world meaning that —p is assumed if p does not occur in the
model. In this way the model only contains positive predicates and querying —p
succeeds if the model does not contain p (like the NAF operator in Prolog).
Because they assume a closed world, they cannot become inconsistent in the
classical way of having both p and —p. It might still contain contradictionary
predicates such as agent At(P1) and agent At(P2) at the same time, which states
that the agent is at multiple positions. I do not analyze this problem in PDDL
in this project.

4 Introduction

1.3 Project Content

The goal of this project is to focus on the Jason technology and the problems
of logical consequence with an inconsistent agent. My goal of the project is

To implement a particular method for handling inconsistency based on
revisioning the belief base and experiment with practical use of paraconsistency.
Belief revision is the major focus and I research potential uses of both in future

Jason programming.

In chapter 2 I analyse the problems in this project and present the background
for my implementation. This chapter is quite long as much of my work has been
about this analysis.

In chapter 3 I present the design of the implemented belief revision in Jason and
in chapter 4 I present the work I did with a paraconsistent logic. In chapter 5
I show the test cases I used and the results I got. In chapter 6 I reflect upon
these results and reflect upon the project in general.

Finally I conclude on my stated goal.

1.4 Terms

I use a few terms and ways of writing that would be nice to be familiar with.
AGM refers to Alchourron, Gardenfors and Makinson who proposed the postu-
lates of belief revision.

T also use a particular way of showing datatypes inspired by functional program-
ming types.

dataType : memberType; x memberType, * ... x memberType,,

Where dataType is the name of the datatype and memberType; is the type of
member i. In this way the constructor of a datatype can be represented as a
tuple

dataType(membery, members, ..., member;,)
Where each member; has the type memberType;.
A similar model is used for functions

functor : arg; * argy * ... * arg,, — resType

Where functor is the name of the function, arg; is the type of argument ¢ and
resType is the type of the result. Function calls are shown like this

functor(arg,, arg,, ..., arg,,)

CHAPTER 2

Analysis

In this chapter I present the general principles of belief revision and paracon-
sistency as well as Jason which is the agent technology I will be working with.
This means that I also explain Jason and how it is used before I go into details
with how it works. I only deal with the parts relevant to this project.

Then I present the belief revision algorithm my implementation is based on and
the paraconsistent logic I experiment with. Finally I summerize the problems I
work with, found in this analysis.

2.1 Belief Revision

Informally this is about avoiding inconsistency completely by revisioning the
belief base when an inconsistency occurs, so that this inconsistency is no longer
present and can not be derived. One way to do this is to contract one of the
beliefs that caused the inconsistency from the belief base. The contraction of a
literal b from belief base B can be defined as such

BEb= (B-b)KEb

AGM proposed postulates for belief revision and contraction that should be
satisfied by a contraction algorithm, however according to [3] they are generally

6 Analysis

thought not to suit practical agents well.

The AGM style of belief revision is by coherence meaning that contraction of a
belief b from a belief base B modifies B minimally so that B does not entail b.
This means that beliefs derived from b are not necessarily removed.

Another kind of belief revision and contraction is by reason-maintenance where
beliefs derived with the help of b are removed as well, unless they are justified
in other ways. The idea is that beliefs with no justifying arguments should be
removed, but it may remove beliefs that are not necessarily inconsistent with
the belief base.

2.2 Paraconsistent Logic

A paraconsistent logic is a logic where logical consequence is not explosive.
There are several such logics but there is no single logic that is found useful for
all purposes and not all are designed to be useful in automated reasoning.
Paraconsistent logic in general is open to discussion and practical use of it is
definitely interesting to research. More about paraconsistent logic can be found
in [5].

2.3 Jason Language

I have already introduced Jason as a Java based interpreter of the agent oriented
language AgentSpeak based on the BDI-model. I will not go into details of the
BDI-model. In AgentSpeak plans are hard-coded in the agent program which
makes planning in AgentSpeak very imperative and fast, but it also extends
AgentSpeak with other features such as communication of plans and beliefs
between agents.

A complete manual for Jason can be found in [1] but in this section I summarize
the parts relevant to this project.

2.3.1 Belief

Beliefs are logical predicates which may or may not be negated (by using ~).
In Jason a negated belief is said to be strongly negated which is different than
weak negation, which in some systems are also called negation-as-failure. The
difference can be illustrated like this.

2.3 Jason Language 7

Strong negation: It is mot raining “raining
Weak negation: I do not believe it is raining not raining

In the first case I know for sure that it is not raining. In the second case I
can only tell that I currently do not believe it is raining but I do not reject the
possibility. Agents that use strong negation assume an open world, while those
that do not, assume a closed world. In Jason all beliefs are kept in a belief base,
where they can be interpreted to be in conjunction. Querying a belief succeeds
if it can be unified with a belief in the belief base (or if it can not be unified in
the case of weak negation).

2.3.2 Rule

Rules in Jason are very similar to Prolog clauses both in their form and how
they are used. They can (sort of) be interpreted as definite clauses in first order
logic. This is an example of a Jason rule.

c:—aé&b

Where the head/positive literal is ¢ and the body/negative literals is a & b.
However it is also possible to make a rule with strong negation of any of the
literals.

So that the analogy of rules as clauses is a bit more difficult (if ~a and b is true
then ~c is true). Also the body can be any logical formula using a set of logical
operators.

Rules are often used when checking plan contexts or with test goals to compute
a particular unification like in Prolog. Because of this, rules are also a part
of the belief base, however they can not be added or removed dynamically like
beliefs.

Querying a rule succeeds if querying the body succeeds. Querying the body
succeeds depending on the logical formula of the body.

8 Analysis

2.3.3 Goals

Goals represents the intentions of the agents and the agent applies plans that
matches the current goals. Jason distinguish between test and achievement goals
but it is not relevant to this project to understand the difference. Goals are not
part of the belief base and as such they can not make the agent inconsistent.

2.3.4 Plans

Plans are very important in this project as they describe which actions to use and
how added beliefs depend on each other. Unlike automated planning languages
like PDDL, AgentSpeak (and Jason) agents use a database of pre-compiled plans
for the planning. It plans by reacting to events caused by adding/removing be-
liefs and goals.

A plan in Jason has an optional label, a trigger event, a context and a plan
body. The parts in brackets are optional.

[6<label>] <trigger event> : <context> <- <body>

The label is a predicate which can be used to either just name the plan or
annotate the plan for actual appliances.

The trigger event can be a belief or goal that is added or deleted.

The context is a logical formula that succeeds if and only if the plan is applicable.
Jason uses the plan body of the first found applicable plan. The logical formula
may contain beliefs, rules or even internal actions that can succeed or not.
The plan body is a series of actions that the agent will use to carry out the
plan. Actions could be adding/removing goals or beliefs. A plan succeeds if
each action succeed in the plan. Plans are often used in a recursive way such
that the agent is reactive.

Although plans and rules look similar, they should be distinguished as they are
used in very different ways. First and foremost rules are part of the belief base
and plans are not. Rules can not cause actions either.

2.3.5 Annotations

Many language constructs in Jason can be annotated with a list of terms. This
can be used for flagging beliefs, plans and goals with extra information. As

2.4 Jason Architecture 9

default all beliefs are annotated with the source which tells where the agent
got the belief from. Percieved beliefs are annotated with source(percept),
beliefs added by the agent itself (called mental notes in [1]) are annotated with
source (self) and beliefs from other agents are annotated with source (<agent>)
where <agent> is the name of the agent who sent it.

2.3.6 Communication

The final relevant feature is communication between agents. Agents can use an
internal action to communicate in many ways but it is mostly the ability to tell
other agents new beliefs through messages that is interesting in this project.
While this can be useful it is also a potential source of inconsistency that needs
to be handled.

2.4 Jason Architecture

Jason will be the development platform of this study, which is why it is impor-
tant to understand the code behind it. I will only try to explain the classes that
are relevant to this project and implementation. These are shown in figure 2.1
and I will explain some of these parts in detail. The explanations and the figure
are based on both the Jason documentation and reading the source code.

2.4.1 Agent

This class represents the Jason agent that runs the code. Figure 2.1 shows
that it is in a way central in the architecture, by using classes from every Java
package. The Agent defines two methods of interest with regard to this project.
The first method is buf the Belief Update Function which is only used for
updating percepts. It takes as argument the list of current percepts which are
added to the belief base and removes the old percepts not in this list. The
percepts are received from the environment.

The second method is brf, the Belief Revision Function which is used for every
other modification of the belief base. It takes as arguments the belief to add,
the belief to remove and the intention behind this belief revision. In the default
agent the belief base consistency is not checked at all, so the belief base can be
inconsistent when this method has finished.

10 Analysis

Package:bb
DefaultBeliefBase > BeliefBase
Package: ASSyntax Package: ASSemantics
» Term _

set A

DefaultTerm . Logi(alFormula » PlanBody

A Agent -—> TransitionSystem
> Literal context ¢
A Circumstance
Rule body S .
Atom ST
A . .
Option Intention
thcrdlImpl P
Structure) ¢
A Unifier stack

* label

P d & Plan
IntendedMeans
|

lm

Planleraly

event

Trigger

Figure 2.1: The relevant classes of Jason organized in Java packages. A filled ar-
row between two classes means that one class has the pointed class as a member.
A dotted arrow between two classes means that one class extends or implement
the class or interface pointed at.

It is very easy to make Jason use a customized version of this class, by extending
it with a new agent in Java.

2.4.2 Term

The internal structure of beliefs and plans are defined in the ASSyntax package
as seen in figure 2.1. The figure shows some interesting relations between the
classes. It also shows how beliefs should be created internally an elegant and
efficent way.

Beliefs and the body of plans are only related at the top level as a Term where
it branches out with the interface LogicFormula for arbitary logical formulas
(both beliefs and rules) and the interface PlanBody used for representing the
body of a plan in Jason.

2.4 Jason Architecture 11

Beliefs and Rules

The DefaultTerm is the top abstract class of beliefs and rules and it branches out
into special classes such as the NumberTerm for real numbers and ObjectTerm
for Java classes, as well as the pure logical belief starting with the abstract
Literal class. The branch of Literals are shown in table 2.1. The class ASSyntax
defines methods for creating new literals that should be used rather than the
constructors directly.

Although rules and beliefs are both instances of a Literal internally, they should
be interpreted differently in Jason. When inspecting the belief base of an Agent
you will not see which beliefs that the belief base entails according to the rules.
This means that an agent may belive more than what the set of beliefs shows.

Class Description Datatype Example
Literal Abstract class of all | N/A N/A
literals
Atom Positive literal in | String p.
propositional logic
Structure Predicate in first | Term list shape (earth,round) .

order logic possibly
with variables

Pred Adds annotations Term list shape (earth,round)
[source(self)].
Literallmpl | Adds strong nega- | boolean “shape (earth,flat)
tion [source(self)].
Rule Rules LogicalFormula | “hasEdge (X) : -

shape (X, round) .

Table 2.1: The table is ordered by the derived classes (Structure is derived from
Atom etc.). It may seem weird that a rule is a literal but it means that the head
is a literal.

Plans

Figure 2.1 shows that Plan extends Structure and so it is also a Literal. It
consists of an optional label which is a Pred, the Trigger which also extends
the Structure, the context which is a LogicalFormula and the body which is a
PlanBody.

Plan : Predx Trigger * LogicalFormula x PlanBody

12 Analysis

The PlanBody represents both the current step in the plan and the tail of the
plan to form a linked list. The current step has a type corresponding to the type
of plan step (such as !, 7, + or =) . All types are defined as an enum BodyType.

BodyType = {none, action, internalAction, beliefAddition,...}

The PlanBody interface is implemented in the class PlanBodylmpl which ex-
tends Structure. The Term is the current step of the plan and the PlanBody is
the tail of the plan.

PlanBodylImpl : Term % PlanBody * Body Type

2.4.3 TransitionSystem

The agent updates and uses a belief base to reason and plan for an intention.
This behaviour is defined in the TransitionSystem. The relevant part is where
it revises the belief base according to the current intention.

Figure 2.1 shows that each agent is assigned a TransitionSystem and each Tran-
sitionSystem is assigned a Circumstance which defines the currently selected
Intention and Option. The Intention also tells what unifer was used to apply
the plan.

2.4.4 Logical Consequence

In Jason logical consequence is defined by the method logicalConsequence in the
interface LogicalFormula implemented by the Literal class. It takes as arguments
the agent with a belief base and the initial unifier. The resulting sequence of
unifiers is a potentially infinite sequence evaluated lazily.

logicalConsequence : Agent x Unifier — Unifier sequence

The method uses a backtracking algorithm to decide if b0 F [. The resulting
unifiers 6 can be characterized by a somewhat complex predicate logic expression
I made, where subs(l, 0) is a function that substitutes the free variables of [with
the corresponding substitution in 6.

b1 =

(30(subs(l,0) € bb))Vv
(30, rule(rule € bb A subs(head(rule),0) =1 Abb - subs(body(rule), 8))

2.5 Background of Belief Revision 13

The point is that bb only proves [if a unifier can be found such that [occurs in
bb either as a belief or as the head of a rule, where the body can be proved under
this unifier. It can not prove something that does not occur in bb somehow, even
if bb is inconsistent. In this way logical consequence in Jason is not explosive
and thus it is paraconsistent.

2.5 Background of Belief Revision

The implementation is based on the work in [1] and [3] where the authors present
a polynomial time algorithm for solving inconsistencies in AgentSpeak based on
logical contraction as defined by AGM. They present an algorithm for contrac-
tion and suggestions for implementing belief revision in Jason. They state that
it was not implemented.

2.5.1 Coherence and reason-maintenance

On page 69 in [3] they claim that the algorithm they use for contraction of
beliefs can support both coherence and reason-maintenance without increasing
the complexity.

Depending on the circumstances both styles can be useful. For example if b was
a percept that was no longer perceived then a belief b’ derived from b could still
be true. The idea can be illustrated with this example.

Just because I cover my eyes the world could still exist.

However if T used b as the only argument for b’ and b was later found to be
incorrect, I can no longer claim ¥’, as seen in this example.

I believed that I could reach the end of the world because it was flat. However
when I found out the world was round, I could see that this could never happen
and I dropped this belief.

2.5.2 Revision Algorithm

My belief revision is based on the algorithm shown in [4] which uses the term
”apply rules to quiescence”. This is related to the idea of closing under logical

14 Analysis

consequence and it means that you apply rules until no more beliefs can be
added. The algorithm is shown in algorithm 1. I found that the principle of

Algorithm 1 revision by belief A in belief base K:

add A to K
apply rules to quiescence
while K contains a pair (B,—B) do
contract by the least preferred member of the pair
end while

closing under logical consequence does not translate well to Jason neither as
rules or plans. This algorithm requires contraction of beliefs and in [1] they
present an algorithm for this and show it has polynomial complexity.

2.5.3 Contraction Algorithm

In [4] they show that five of the AGM postulates of contraction are satisfied
by their algorithm. It is not in the scope of my work to investigate these
postulates further. The algorithm is shown in algorithm 2. The contraction
uses a justification (I, s) which consists of a belief [and a support list of beliefs
s, which is used by the contraction algorithm. Here [is the justified belief and s
is the support list, the conjuncture of beliefs that was used to derive this belief.
If one of the beliefs in the support list is false, the justification no longer justifies
the belief. If a justification of a belief has an empty support list, then the belief
is independent.

They define a directed graph where beliefs and justifications are nodes. Each
belief has an outgoing edge the justifications where it occurs in the support list
and an incoming edge from the justifications that justifies the belief. I have
tried to illustrate it in figure 2.2.

Each support list s has a least preferred member w(s) which is the belief that
is the first to give up when contracting the belief that the justification justifies.
They present a method to compute w(s) however it is only a supplementing
suggestion and w(s) is supposed to be customizable by the programmer.

They show that this algorithm has complexity O(rk +n) where r is the number
of plans, k is the longest support list and n is the number of beliefs in the belief
base. Reason-maintenance (removal of beliefs with no justifications) does not
increase complexity of this either.

2.5 Background of Belief Revision 15

Algorithm 2 contract(l):

for all outgoing edges of [to a justification j do
remove j
end for
for all incoming edges of [from a justification (I, s) do
if s is empty then
remove (I, s)
else
contract (w(s))
end if
end for
remove 1

2.5.4 Declarative-Rule Plans

In [3] they remark that this method limits the format of plans to te : 4 A...Al,, <
bd, where te is a triggering event, I1 A ... A l, is the context and bd is the plan
body with a belief addition. Rather than limiting all plans in this way they
instead define a declarative-rule plan that is a plan in this format especially
used for belief revision.

2.5.5 Implementing in Jason

In [3] they define the outgoing and incoming edges as two lists, such that justifies
is the list of outgoing justifications and dependencies is the list of incoming
justifications. If the plan of the intention is a declarative-rule plan te : I3 A ... A
I, < bd with +bl as the head of bd, the justification will be (bl,s) where the
support list s will be

)1,y Iy, literal(te)] if te is a belief addition
s 1) otherwise

They suggest that lists of literals are stored by using annotations such as
dep([...1),just([...]1). T have tried to illustrate the graph of the belief
base when using justifications in figure 2.2 where the beliefs and justifications
are shown as nodes. It would also be possible to only keep the belief nodes but
then there has to be multible copies of a belief; one for each justification in the
dependencies list.

Finally they define the belief update function of the agent to update the justi-
fications such that those with a deleted percept in them becomes independent.

16 Analysis

) As graph
Belief | justifies dependencies
A | [(C,[AB])] [(A D]
B | [(C[A.B])] [(B,[])]
D [[(C,[A,B])]
C [[(C,[A, B]) (D,)]

(b) By using lists

Figure 2.2: The same belief base represented as a graph and by lists

2.5.6 Example and Limitations

The paper also presents a motivating example, where automated belief revision-
ing simplifies the process of solving an inconsistency for the programmer. In the
example they note that while reason-maintenance is a nice property there, it is
sometimes better to leave beliefs with no justifications in the belief base.

They also recognize that the solution has limitations. A particular interesting
limitation, at least in my opinion, is the limited format of plans that can be
used by the belief revision.

2.6 Multi-Valued Logic

The paraconsistent logic I consider is presented in [8] as a many-valued logic.
Truth values are then not only true and false but can have as many values as
necessary. This is similar to fuzzy logic where a truth value is a real number
between 0 and 1 that denotes "how” true the truth value is, however this logic
has concrete definitions of the logical operators and their truth tables.

2.6 Multi-Valued Logic 17

2.6.1 Practical Example

In [8] use of the logic is demonstrated in a medical setting where the belief base is
a combination of symptoms of two patients John and Mary and the combined
knowledge of two doctors about two mutually exclusive diseases. However if
classical predicate logical consequence is used to make a diagnosis, then John
suffers from both diseases and because of this inconsistency, Mary, who both
doctors agree on, also has both diseases. By using the multi-valued logic only
John has this problem and Mary gets a consistent diagnose.

2.6.2 Logical Operators

In [8] several logical operators are defined but here I will focus on negation, con-
junction, disjunction, biimplication and implication which are very commonly
used in classical logic.

false ifp = true
-p =« true ifp = false

P otherwise

p ifp=gq

q ifp = true
PAg= .

P ifg = true

false otherwise
pVag=-(-pA—q)

true ifp=gq

q ifp = true
P ifqg = true
P q= .
—q ifp = false

-p ifqg= false

false otherwise

P—=q=pspAg

One advantage of these definitions is that they are very simple to express in a
functional or logic programming language. Jason has some logical programming
through the use of rules and it would be interesting to see how it can handle
this paraconsistent logic.

18 Analysis

2.7 Problem Specifications

I have now shown the background of my implementation which focuses on the
belief revision. My task is then to

e Extend Jason with an agent that can perform belief revision as described
in the paper, however the agent should also implement it in a generalized
way that a domain specific agent can override.

e The implementation should have some kind of debugging interface that
shows how the belief revision occurs. This is important for practical use
of belief revision.

e Address the restriction that belief revision can only be performed with
declarative-rule plans as defined in the paper.

e Make the agent able to do belief revision with both coherence style and
reason-maintenance.

e Give examples that shows uses of belief revision.

I will work with the multi-valued logic where I plan to explore potential uses in
programming by

e Defining the semantics in Jason.

e Exploring how Jason can understand the multi-valued logic.

As shown earlier, logic consequence in Jason is already paraconsistent and I will
experiment with possible uses of this.

CHAPTER 3

Design of the Belief Revision

The implemented design is based on what was proposed in [3]. I present my
design of the belief revision that adresses the problems presented in the analysis.
An overview of the implemented classes can be found in figure 3.1.

BRAgent
Map(Literal, List{ Justification)) justifies
Map(Literal, List(Justification)) dependencies

boolean revisionStyle Justification
independent(Literal, Unifier) Literal 1
unreliable(Literal, Unifier) List(Literal) s

w(List(Literal))
brf(Literal,Literal Intention)
buf(Literal,Literal,Intention)

Figure 3.1: Overview of BRAgent and Justification with the most relevant fields
and methods.

20 Design of the Belief Revision

3.1 Justifications

The justifications of belief are a core part of the contraction algorithm and using
the internal Jason classes they can be defined as the class Justification which
corresponds to (I,s) as seen in the analysis. One advantage of using internal
classes rather than annotations of beliefs to represent this structure is that the
relevant beliefs can be accessed faster than by querying the belief base. Instead
the justifications are stored in the extended agent. Note that using the Literal
class as a member means that every derived class (including rules and plans)
potentially can have a justification.

3.2 BRAgent

The default Agent is extended with a class BRAgent that stores the justifications
and defines all functions of the belief revision so that it is an extension of Jason
that does not require altering the existing classes. This agent is also intended
to be overrided with a more domain-specific agent but it does provide belief
revision based on the one presented in [3].

Both BRAgent and Justification are put in the Jason library jason.jar in the
package jason.consistent such that they are always available to extending agents
but they could have been kept outside.

3.2.1 Associating Literals with Justifications

BRAgent maps every Literal to the lists justifies and dependencies of Justifica-
tions. By using the existing hashing function, the lists for a specific Literal can
be found with low complexity and I avoid altering the existing Jason classes.
Because I use a mapping from Literal the result depends on the annotations
of the Literal but when a justification is made, the beliefs are found in the
belief base including all annotations. This is to avoid that a time annotation
introduced later will cause problems with finding the correct justification of a
Literal. For the same reason beliefs, to delete are first found in the belief base.
A consequence of this is that annotations cannot be deleted from beliefs without
removing the entire belief.

3.3 Auxillery Definitions 21

3.2.2 Coherence and Reason Maintenance

By default belief revision is done with reason maintenance but plans with a label
annotated with coh performs belief revision with coherence.

Using coherence makes literals independent if they lose all dependencies during
the belief revision. This is useful if an inconsistency of one belief does not require
beliefs derived from it to be removed.

The style is stored in the revisionStyle boolean.

3.3 Auxillery Definitions

The belief revision based on contraction uses a few important auxillery defini-
tions that are defined in the BRAgent class.

3.3.1 Independency

In the paper they present independent beliefs as beliefs with a single justifica-
tion with an empty support list. Such could be percepts that does not depend
on any other beliefs to be derived but there is no definition of which beliefs are
independent. A particular agent using belief revision may want to make other
kinds of beliefs independent.

To control this behaviour I define an independency-function that defines whether
or not a Literal should get an independent justification. Again this is not in-
troduced in the original paper but I will refer to Literals that fall within this
definition as independent Literals and those that does not as dependent Liter-
als.

I have implemented it as a function that tests if the Literal [is independent
when added with Intention i. In the default BRAgent all Literals not added
with a declarative-rule plan are independent.

independent(l,1) : Literal Intention — boolean

The way this function is used is shown in figure 3.2 although setup does not
exist as an actual method in the code.

22 Design of the Belief Revision

setup (add, 1)

Make
add inde-
pendent.

independent
(add,i)?

addJustif(add, support(i)) —>

Figure 3.2: Adding a justification will update the justifies and dependencies lists
of the literals in the justification using the internal mappings. Making a literal
independent removes any previous justifications.

3.3.2 Reliability

The programmer of a domain specific agent might want to customize what
should start the belief revision. To control this the BRAgent defines a reliability-
function such that a belief revision occurs after adding an unreliable Literal.
This is not introduced in the original paper but it adds further control of the
belief revision.

I have implemented it as a function that tests if the Literal [is unreliable when
added with intention 4. In the default BRAgent all dependent Literals and all
communicated Literals are unreliable.

unreliable(l,) : Literal * Intention — boolean

This function is not related to the worth of a literal presented in the paper
or the trust-function which the agent uses to decide whether or not to ignore
tell-messages from other agents. More about the trust-function can be found in

[2]-

3.3 Auxillery Definitions 23

@start[drp] +!start : a & b <- +c.

an| s

| l

X, e

an| [®h| [CAB)]

(a) before (b) after

Figure 3.3: An example of a declarative-rule plan and the results.

3.3.3 Declarative-Rule Plans

As pointed out in the paper, declarative-rule plans used in belief revision must
have a certain format such that the context is a conjunction of positive liter-
als. In my implementation a declarative-rule plan that should use belief revi-
sion when adding or deleting a Literal must have a label annotated with drp.
The added/deleted Literal is dependent and unreliable and an added Literal
gets justifications according to the plan context and trigger event. The con-
text is grounded with the unification applied by Jason. The result of using a
declarative-rule plan is illustrated in figure 3.3.

Every belief is annotated with the time it was added. This annotation is updated
if the belief is added later again.

3.3.4 Debugging

Plans with a label debug annotation showBRF prints the Literals in the belief
base and their justifications before and after any belief revision in the plan. This
printout represents the belief nodes and their justifications such as those in the
graph of figure 2.2 in the analysis. It can be used to check the belief revision at
run-time. An example of the debug output is shown in figure 3.4.

Any plan can be annotated with this label no matter if it is a declarative-rule

24 Design of the Belief Revision

@start [drp,showBRF] +!start : a & b <- +c.

Belief base of agent before revision +c/{}
[agent] a[BBTime(1),source(self)], ([[1]1, [1)
b[BBTime(2) ,source(self)], ([[11, [1)

Belief base of agent after revision +c/{} using reason-maintenan
[agent] a[BBTime(1),source(self)], ([[1], [cl)
b[BBTime(2),source(self)], ([[1]1, [cl)
c[BBTime(3) ,source(self)], ([[a,bll, [1)

Figure 3.4: The result of applying this plan with debugging. It is assumed the
agent is called agent. Before the revision a and b are independent beliefs and
has a single justification with an empty support list while the list of justified
literals is empty. After the revision, ¢ occurs in both of their lists of justified
literals while ¢ has a single dependency with the support list [a, b]

plan or not.

It is also possible to annotate a belief with showBRF to show the results of that
particular belief revision.

There is also an internal action that prints out this info but it can not show the
belief base just before the revision with the new literal added.

3.3.5 Belief Preference w(s)

This function finds the least preferred Literal, in the list of literals s. It is used in
the contraction algorithm to select a Literal to contract. The default definition
selects the one with lowest rank.

1. Percepts have the highest rank

2. Mental notes have a higher rank than Literals with other sources except
percepts

3. If the source of two Literals have the same rank, newer literals have a
higher ranking than old literals.

3.4 Contraction 25

The implementation of this ranking is trivial, although it uses the existing Jason
functions and constants a lot. This function is designed to be overwritten by a
domain specific agent.

3.4 Contraction

Figure 3.5 describes the contraction used in the solution and it is very similar
to the one presented in [3]. Contracting a literal updates the justifications
that refers to it. The details of the implementation are explained in the figure
caption. I also define a method shown in figure 3.6 that contract Literals from
the belief base so that it becomes consistent.

3.5 Belief Revision

The brf method derived from Agent is extended to implement the belief re-
vision. This method is shown in figure 3.7. It sets up the added Literal with
justifications as shown earlier and perform the belief revision.

Each belief revision has a cause Intention ¢ which is usually either a specific
plan or communication with another agent. It is also called with a a Literal to
add or remove.

The method uses the independency-function and reliability-function to control
the belief revision such that only these should be overwritten by a domain spe-
cific agent. To manage the size of figure it is split in more functions althogh not
all of them exist as actual methods. The function that performs the revision is
shown in figure 3.8.

3.6 Belief Update

Finally the belief update function buf is overwritten with a method that anno-
tates all percepts with the added time and makes them independent before they
are added to belief base in the usual manner. The method is shown in figure
3.9 and occurs as suggested in [3]. It is necessary to override this method as brf
is not used at all for receiving percepts.

26 Design of the Belief Revision

[justifies \{rue

r: Remove j

false

contract Remove i
. Vi
w(s(j)) /

[depends \rue
on j?

false

Remove

| from
belief base

Figure 3.5: Flow chart of the contraction implementation. The function s(j)
denotes the support list of the justification j. Removing a justification updates
the justifications of the referenced Literals. Literals with no dependencies left
are either contracted as well or become independent Literals whether reason
maintenance or coherence is used.

3.6 Belief Update 27

contractConflicts |

Does -l
occur in contract

the belief w([l,)
base?

Figure 3.6: Assuming the belief base was consistent before the revision it will
be consistent after since at most one Literal [is added during the revision and
either [or = will be removed after the revision.

28 Design of the Belief Revision

brf (add,del,)

setup(add, 1)

Use the Agent
brf(add, del, i)

¥

A ——

unreliable(add, 7)
or
unreliable(del,)?

Debugging Print
enabled? debug info

Print Debugging
debug info enabled?

revisebb(add, del) |[«————

Figure 3.7: Belief revision where add is the literal to add, del is the literal to
delete and i is the intention that caused this belief revision. Besides the belief
revision itself there is also a control of the debugging printouts.

3.6 Belief Update 29

revisebb (add, del)

contract Is a belief
del true_deleted?

contractConflicts
add

Figure 3.8: Revising the belief base and contracting any conflicts caused by
removing or adding Literals. It does not actually exist as a java method.

Make each

percept A
. gent
buf percepts)———| independent buf(percepts)

and annotate
with time

Figure 3.9: Each percept is made independent and is annotated with the current
time before the usual belief update occurs.

30

Design of the Belief Revision

CHAPTER 4

Design of the Paraconsistent
Agent

I show how the multi-value logic presented in [3] can be implemented in Jason
and explain how the existing paraconsistent logic conclusion analysed earlier
can be used. The next section shows concrete examples.

4.1 Representing Multi-Value Logic

The implementation is based on logic programming such as in Prolog. Each
definition in [8] can be expressed with one or several rules and beliefs and each
agent using this logic must have these definitions in the belief base. Unlike
Prolog there is no cut predicate so rules must exclude each other with more
complex definitions. They are stil fairly short though. The relevant Jason
language was shown in the analysis.

negate(t,f). negate(f,t).
negate(X,X) :- not X=t & not X=f.
opr(con,X,X,X).

opr(con,t,X,X) :- not X=t.

32

Design of the Paraconsistent Agent

opr(con,X,t,X)
opr(con,A,B,f)

opr(eqv,X,X,t).

opr(eqv,t,X,X)
opr (eqv,X,t,X)
opr (eqv,f,X,R)
opr(eqv,X,f,R)
opr (eqv,A,B,f)
opr(dis,A,B,R)
opr (imp,A,B,R)

not X=t.
not A=B & not A=t & not B=t.

not X=t.

not X=t.

not X=t & not X=f & negate(X,R).

not X=t & not X=f & negate(X,R).

not A=B & not A=t & not A=f & not B=t & not B=f.

negate(A,NA) & negate(B,NB) & opr(con,NA,NB,NR) & negate(NR,R).
opr(con,A,B,AB) & opr(eqv,A,AB,R).

4.2 Use of Multi-Value Logic

Any agent with these definitions is able to calculate a truth value using the
multi-value logic. In a plan context or rule it can check whether truth values
are as expected. The following examples shows how but they are not using the
belief base and the plans would always succeed.

+pl : negate(x,x) <- .print(""x is x").
+p2 : negate(f,X) & opr(con,X,x,x) <- .print(""f & x is x").

4.3 Inconsistent Belief Base

Recall that plans are applicable if and only if the context succeeds. By design-
ing the plan contexts carefully it is possible to make the agent act with some
rationality despite having an inconsistent belief base. I have not done a lot of
work on such agents but there is a concrete example in the next section based
on the case study in [8]. I translate each of the clauses in the knowledge base
of the case study to beliefs and rules in Jason. This example shows how. The
O means that the truth-value is either true or false (no uncertainties about the

symptoms).

S1z A Ssx — Dz becomes D1(X) :- S1(X) & S2(X).

[1S:J becomes S1(J) .

CHAPTER 5

Testing

In this section I will comment on the tests I made with both belief revision and
paraconsistency. I explain the behaviour of the cases I found interesting, but
the system (especially the belief revision) has been tested thoroughly.

5.1 Belief Revision

The test cases of belief revision has been divided into seven categories and in
each category there are several cases. Every case except those in category 7 is
implemented as a single agent and the beliefs of the tests have no real meaning.

5.1.1 Category 1, Propositional Logic

In these cases I only use beliefs in propositional logic and I test only with reason-
maintenance style revision by adding beliefs. They are summerized in table 5.1
and all behave as expected.

34 Testing

Case | Purpose Result

la w(s) should return the oldest be- | The old belief is removed.
lief which will be removed.

1b Test of reason-maintenance with | The independent belief and the
independent belief. belief justified by it are removed.

1c Test reason-maintenance with | The dependent belief and one of
dependent belief with no justified | the dependencies are removed.
beliefs.

1d Test reason-maintenance with | The dependent belief, one of the
dependent belief with a justified | dependencies and the justified
belief. beliefs are removed.

Table 5.1: Tests and results in category 1.

a(x).

b(x).

!start.

@start [drp,showBRF] +!start : a(X) & b(Y) <- +7a(Y).

Figure 5.1: Case 2a. The derived belief has both beliefs as dependencies. As
result both a(x) and “a(x) are removed due to reason-maintenance.

5.1.2 Category 2, Predicate Logic

In these cases I have beliefs in predicate logic and I test only with reason-
maintenance style revision due to adding beliefs. There are two cases.

In case 2a the belief base only contains grounded predicates such that the de-
pendencies of a belief does not contain variables. The input and result of case
2a is shown in figure 5.1.

Case 2b is almost the same except that the context is replaced by a rule. One
would expect that “a(x) is justified by the rule, which in turn is justified by
the beliefs a(x) and b(x). Reason-maintenance is not applied though as ~a(x)
remains after the revision. The input and result of case 2b is shown in figure
5.2.

5.1 Belief Revision 35

a(x).

b(x).

“c(X,Y) :- a(X) & b(Y).

Istart.

@start [drp,showBRF] +!start : “c(X,Y) <- +7a(Y).

Figure 5.2: Case 2b. Reason-maintenance is not applied and the belief ~“a(x)
gets null as a dependency.

a[source(self)].

a[source(other)].

Istart.

@start [drp,showBRF] +!start <- -al[source(other)].

Figure 5.3: Case 3a. Belief a is removed entirely unlike in the default agent.

5.1.3 Category 3, Annotated Beliefs

Case 3a shows that removing an annotated belief removes the belief entirely.
Input and result is shown in figure 5.3.

In case 3b an inconsistency occurs with an annotated belief which is not used for
deriving anything, yet contracting it causes other beliefs to be removed. Case
3b is shown in figure 5.4.

5.1.4 Category 4, Coherence

In all previous tests I have used reason-maintenance as it is the default. By
annotating beliefs with coh coherence style should be used instead. The cases
are shown in table 5.2.

However in case 4b both the new and old belief in the inconsistency appears to
have same time and other beliefs than expected are removed. The case is shown
in figure 5.5.

36 Testing

alannot1].

alannot2] .

b.

I'start.

@start[drp] +!start : alannotl] & b <- +c.
@c [drp,showBRF] +c <- +"a[annot2].

Figure 5.4: Case 3b. Inconsistency with annotated belief causes a, ¢ and ~a to
be removed. One would expect only a[annot2]to be removed.

Case | Purpose Result

4a Coherence with inconsistent in- | Only the contracted independent
dependent belief. belief is removed.

4b Coherence with inconsistent de- | Other beliefs than the expected
pendent belief. are removed, see figure 5.5 .

Table 5.2: Cases of cateory 4. Case 4a goes as you would expect.

a.
b.

Istart.

@start[drp] +!start : a & b <- +c.
@next [drp] +c <- +“c[coh,showBRF] .

Figure 5.5: Case 4b. c and “c get the same time annotation and the revision
only bremains.

5.1 Belief Revision 37

Case | Purpose Result

Ha, With reason-maintenance. Be- | Reason-maintenance is applied
liefs with no justifications should | as expected.
be removed as well.

5b With coherence. Beliefs with no | The belief dependent on the con-
justifications should become in- | tracted belief becomes indepen-
dependent. dent.

Table 5.3: Cases of cateory 5. All results are as expected.
Case | Purpose Result

6a Same belief added twice. There is only one time annota-
tion but it is updated.
There is only one time annota-

tion but it is updated.

6b Same belief added twice but with
different annotations.

Table 5.4: Cases of cateory 6. All results are as expected.

5.1.5 Category 5, Removal of Beliefs

In the cases of category 3 there were a test with removal of annotated beliefs.
In these cases I test that deleting beliefs updates their related justifications
correctly. T test it in both reason-maintenance and coherence style. The cases
are shown in table 5.3.

5.1.6 Category 6, Time Annotations

Here I test that the time annotation is updated when beliefs are added multiple
times. I test it both when the exact same belief is added multiple times and
when the belief is added a second time but with different annotations. The cases
and results are show in 5.4

5.1.7 Category 7, External Belief Additions

All of the previous tests are carried out by making a single agent modify its
own belief base by using plans however inconsistency is also very likely to occur
in multi-agent systems where the agents communicate and it is worth testing
belief revision in such an environment. Results are shown in table 5.5.

In case 7b an agent uses a communicated belief as a dependency of mental

38 Testing

Case | Purpose Result
Ta Test w(s) regarding communi- | The mental note was kept over
cated beliefs. the communicated belief.
b Communicated belief as depen- | The old belief is removed.
dency of a higher rank mental
note.
Tc Dependencies across agents. Dependencies does not carry be-
tween agents.
7d Inconsistent by reliable source Belief revision is not triggered
and the agent remains inconsis-
tent.

Table 5.5: Cases of cateory 7. Case 7a and 7d goes as you would expect.

note added with a declarative-rule plan. The mental note makes the agent
inconsistent and while one might think the new mental note should be contracted
because it depends on a source of low rank, the old mental note is contracted.
In case 7c the agent is made inconsistent by a belief told by another agent,
however the reason it got that was because it told the agent about its own
beliefs. The belief it told the other agent remains after the revision.

In case 7d is made inconsistent by a percept, but since percepts are a reliable
source it is expected to remain inconsistent.

5.2 Multi-Value Logic

A truth table is shown by an agent with the definitions of the multi-valued
logic, a goal and plan for each implemented operator and a helper test goal for
calculating the truth values. The goals and plans for negation and conjunction
are shown in figure 5.6. The other operators are tested in the same way.

5.3 Doctor Example 39

'neg. !con.

+!neg <- 7negate(t,R1);?negate(f,R2);7negate(x,R3);
.print("neg: (t,",R1,"), (£,",R2,"), (x,",R3,")").
+7?bi(0,R1,R2,R3,R4,R5,R6,R7,R8,R9) <-
?0opr(0,t,t,R1);70pr(0,t,f,R2) ;70pr(0,t,x,R3);
?opr(0,f,t,R4);7opr(0,f,f,R5);70pr(0,f,x,R6);
?opr(0,x,t,R7);7opr(0,x,f,R8);7opr(0,x,x,R9).

+!con <- ?bi(con,R1,R2,R3,R4,R5,R6,R7,R8,R9);
?print(con,R1,R2,R3,R4,R5,R6,R7,R8,R9).

Figure 5.6: Multi-valued logic agent. Note that the print-plan simply print outs
the given variables together with the corresponding truth values.

5.3 Doctor Example
This is the test case from [8] implemented as an agent in Jason.

s1(3). "s2(j). s3(j). s4(j).

“si(m). “s2(m). s3(m). "s4(m).

~d2(X):-d1(X). ~di1(X):-d2(X).

d1(X):-s1(X)&s2(X). d2(X):-s1(X)&s3(X).

d1(X) :-s1(X)&s4(X). d2(X):-"s1(X)&s3(X).

!diagnoseJ. !diagnoseM.

+!diagnoseJ: di1(j) & d2(j) & ~d1(j) & ~d2(j) <-
.print("j success").

+!diagnoseM: “di(m) & d2(m) & not di(m) & not “d2(m) <-
.print("m success").

The plans show which beliefs that are/are not entailed by the belief base. It
derives the same beliefs as with the multi-value logic in the paper.

bb - d1(j),bb F d2(5),bb - —d1(j),bb - —d2(j)

bb ¥ d1(m),bb = d2(m),bb + —d1(m),bb ¥ —d2(m)

40

Testing

CHAPTER 6

Discussion

The project has shown me a lot about practical use of both belief revision and
paraconsistence. In this section I will discuss these things.

6.1 Belief Revision

Overall I have shown that the belief revision presented in [3] can be implemented
in Jason without modifying the internal classes of Jason, however it required me
to know the internal Jason architecture quite well to implement it in an efficient
way, such that I used the existing code as much as I could. While the available
documentation explained some parts it was often necessary to investigate the
code in details to understand how to use the exisiting Jason architecture. 1 have
presented the relevant parts in the analysis.

Putting the entire implementation in a single new class has the advantage of
being compatible with older Jason agents and I tried to make the implementa-
tion customizable for domain specific agents. The default implementation gives
the functionality they desired in [3].

42 Discussion

6.1.1 Limitations

I have not added much functionality besides a few control mechanisms for
coherence/reason-maintenance and debugging that was not present in [3]. This
also means that the implementation has all limitations they acknowledged.
Programming an agent to use belief revision fully is difficult as it requires the
agent to use declarative-rule plans. It remains a challenge to implement belief
revision with an arbitary valid plan context.

The tests of category 7 with communicated beliefs and percepts shows that it is
difficult for the agent to understand the dependencies of beliefs across agents.
The plans that are used for communicating beliefs are implemented internally
but according to the Jason manual [1], an agent can overwrite these plans. This
could potentially be used to solve the problem but I have not investigated it
much.

Annotations are generally problematic in the implementation. This is seen in
the tests of category 3. If I instead did not use the belief in the belief base with
all annotations, it would require the programmer to specify all annotations of
every belief. This is not practical at all especially because the time annotation
would have to be accurate to delete a belief. A solution might be to use a filter-
ing function such that only some annotations are found in the belief base and
the rest must be specified.

Test case 3b acts unexpectedly because the time annotation is not accurate
enough. I currently use the internal system time in miliseconds and could easily
use nanoseconds instead. It would then be less likely to occur again.

In Jason it is possible to use rules, arithmetic expressions, not-operations and
internal actions in plan contexts which are not supported by the belief revision.
Working with these could be an interesting and useful expansion.

Finally I did not get the time to set up a practical example showing the uses of
belief revision as I wanted. I spend more time on cleaning up the implementa-
tion and generalize it for customization which I am also happy about. At least
some of limitations I mentioned before could be solved by just extending the
BRAgent with a new agent such that the original functionality is kept.

6.2 Paraconsistency

The tests showed that paraconsistent Jason agents have some practical uses
without defining a new agent because logical conclusion is not explosive. This
can be combined with the belief revision such that the agent can be inconsistent
regarding some beliefs but still be consistent regarding others. It seems quite
difficult to design an agent using this effectively though.

6.2 Paraconsistency 43

The multi-value logic can be expressed quite easily in Jason and could be the
foundation for a knowledge base that defines logical consequence with this logic.
As it is now it is only capable of evaluating truth values.

6.2.1 Limitations

Like seen in the doctor example a human is required to inspect that the agent
has a problem of inconsistency towards one of the patients, and it is not able
to solve the inconsistency by itself. The belief revision may be able to handle
this to some extend by contracting beliefs but in this case it seems more likely
that one of the rules should be removed rather than the beliefs, as the beliefs
are more like percepts.

Although truth values of the multi-valued logic can be computed, the agent is
unable to reason with these values. Doing this would require a new knowledge
base that defined logical consequence with the multi-valued logic. In [7] it is
shown how to make such a knowledge base in Prolog which might be possible
to do in Jason as well using rules. Such an extension would be an interesting
exercise.

44

Discussion

CHAPTER 7

Conclusion

I have shown that automatic belief revision can be implemented in the multi-
agent system Jason and that it can solve quite a few inconsistency problems.
It does not act quite as expected but the design allows for some customized
behaviour that future agents could use to improve the belief revision.

I have also shown how inconsistency can be handled by using paraconsistent
agents in Jason and how Jason is able to interpret a paraconsistent multi-valued
logic. This is illustrated with examples. The agent does not use the beliefs for
reasoning with the mult logic. To do this one could make a belief base on top
of Jason that defines logical consequence with the paraconsistent logic.

46

Conclusion

10
11

12

13

14

15

16

17

APPENDIX A

Code of Justification

package jason.consistent;

import jason.asSyntax.Literal;

import java.util.List;

public class Justification

{

public Literal 1;
public List<Literal> s;

public Justification(Literal 1, List<Literal> s){ this.l«+

=1;

this.s =

s; }

public String toString(){

return

}

n (ll+1+ll

,"+s.toString O +")";

48

Code of Justification

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

APPENDIX B

Code of BRAgent

package jason.consistent;

import
import
import
import

import
import
import
import
import
import
import
import
import
import
import
import
import
import
import
import
import

java.
java.
java.
java.

jason.
jason.
jason.
jason.
jason.
jason.
jason.
jason.
jason.
jason.
jason.
jason.
jason.
jason.
jason.
jason.
jason.

util .HashMap;
util.LinkedList;

util.List;

util.Map;

JasonException;
RevisionFailedException;
asSemantics.Agent;
asSemantics.Intention;
asSyntax.
asSyntax.
asSyntax.
asSyntax.
asSyntax.
asSyntax.
asSyntax.
asSyntax.
asSyntax.
asSyntax.
asSyntax.
asSyntax.
asSyntax.

ASSyntax;
ListTerm;
Literal;
LiteralImpl;
LogExpr;
LogicalFormula;
NumberTerm;
Plan;

RelExpr;
Structure;
Term;

Trigger .TEOperator;
Trigger .TEType;

25

26

27

28

29

30

31

32

33

34

35

37

38

39

40

41

42

43

44

57

58

50

Code of BRAgent

import jason.bb.BeliefBase;

public class BRAgent extends Agent

{

public static final boolean REASON_MAINT=true;
public static final boolean COHERENCE=false;

private static final Term drp = ASSyntax.createAtom("drp¢
");

private static final Term coh = ASSyntax.createAtom("coh¢«
")

private static final Term debug = ASSyntax.createAtom ("«
showBRF") ;

private boolean revisionStyle=REASON_MAINT;
private final long startTime = System.currentTimeMillis<>

O

// The Literal class has an effective hash function

/%% The list of literals in the support list*/

private Map<Literal, List<Justification>> dependencies =<
new HashMap<Literal, List<Justification>>();

/%% The literals where this literal occur in their <
support list*/

private Map<Literal, List<Justification>> justifies = <«
new HashMap<Literal, List<Justification>>();

/** the agent preference function. Returns the least <
preferred literal. */

public Literal w(List<Literal> s) throws <
RevisionFailedException

{
Literal res = s.get(0);
for (Literal 1 : s)
if (isLowerQ(l,res)) res = 1;
return res;
}
/% *

* Standard method for determining literal quality based<
on source and age. Communicated literals
* are lower qualtity than self derived literals. Self <«
derived literals are lower quality than perceived <
literals.
* Older literals are lower quality than new literals.

59

60

61

62

63

64

65

66

67

68

69

70

71

72

73

74

76

77

78

79

80

81

82

83

84

86

87

88

89

90

91

92

93

94

95

96

51

* Q@throws JasonExzception If a literal %s mnot annotated <
with BBTime (n)
*/
private boolean isLowerQ(Literal p, Literal q)
{
ListTerm qTimelist = q.getAnnots ("BBTime");
ListTerm pTimelist = p.getAnnots ("BBTime");

double gAge = ((NumberTerm) ((Structure) qTimeList.get<
(0)).getTerm(0)) .solve();

double pAge = ((NumberTerm) ((Structure) pTimeList.get+
(0)) .getTerm(0)) .solve();

if (isLowerRank(p, q)) return true;
else if (isSameRank(p, q) && pAge < gAge) return true<

return false;

}

private boolean isLowerRank(Literal p, Literal q)
{
// lower rank tf q has a percept source and p does <
not
if (q.hasSource(BeliefBase.APercept)){
if (p.hasSource(BeliefBase.APercept)) return false+
}
// lower rank tf q has a self source and p does not <
have etther self or percept source
else if (qg.hasSource(BeliefBase.ASelf)){
if (p.hasSource(BeliefBase.APercept) || p.¢
hasSource (BeliefBase.ASelf)) return false;
}
// p can not be lower rank if g is mot a percept or &
self obtained
else return false;

return true;

}

private boolean isSameRank(Literal p, Literal q)
{
// same rank if both contain a source of same rank
if (q.hasSource(BeliefBase.APercept))
return p.hasSource(BeliefBase.APercept);
else if (p.hasSource(BeliefBase.APercept))

108

109
110

111

132

134

52

Code of BRAgent

return q.hasSource(BeliefBase.APercept);
else if (qg.hasSource(BeliefBase.ASelf))

return p.hasSource(BeliefBase.ASelf);
else if (p.hasSource(BeliefBase.ASelf))

return q.hasSource(BeliefBase.ASelf);

// all other sources have the same rank
return true;

/*% contract the belief base with respect to literal 1

*/

private List<Literal> contract(Literal 1) throws ¢

{

RevisionFailedException

// 1 is removed
List<Literal> res = new LinkedList<Literal>();
res.add (1) ;

// Temove the justifications this literal justifies, <
this list will be modified in each loop

while (!justifies(l).isEmpty ()){
Justification x = justifies(l).get (0);
remove (x) ;

// 4if using reason maintenance, contract literals <«
with no other justifications

if (revisionStyle==REASON_MAINT && dependencies (x.<
1) .isEmpty ())
res.addAll (contract(x.1));

//otherwise make the literal independent

else if (revisionStyle==COHERENCE && dependencies (+
x.1) .isEmpty ())
setupIndependentJust (x.1);

}

// make the literal underivable from the belief base,<
this list will be modified imn each loop
while (!dependencies(l).isEmpty ()){
Justification x = dependencies(l).get (0);
if (!x.s.isEmpty())
res.addAll (contract(w(x.s))); // contracting w(+
z.s) will remove = from l.dependencies
else remove(x); // justifications+
with no support lists should just be removed

136

137

138

141

167

168

169

53

bb.remove (1) ;

return res;

}

/**% Remove a justification correctly (it loses all
references) */

private void remove(Justification j) throws <
RevisionFailedException

{
// remove the justification from the dependencies of

the justified literal

dependencies(j.1l) .remove(j);

// remove the justification from the justifies list <
of every literal in the support list

for (Literal x : j.s)
justifies (x).remove(j);

}

/**% Add a justification according to support list and
literal */
private void add(Justification j){
dependencies (j.1).add(j);
for (Literal x : j.s)
justifies(x).add(j);
}

/% *
* Find the instance of a literal in the belief base if
1t exists.
* Returns null otherwise.
*/
private Literal getBelief(Literal 1){ return bb.contains<¢

(1) }

/%% resolve eventual conflicting literals by contractions
*/
private List<Literal> contractConflicts(List<Literal> <
res, Literal add) throws RevisionFailedException
{
// mnegate add as a new belief
// using this constructor will not cache the hash
value
Literal negated = //new LiterallImpl (add.negated(),add+
.getFunctor ());

171

189

190

192

193

194

195

196

198

199

200

202

203

204

206

54 Code of BRAgent
ASSyntax.createlLiteral (add.negated (), add.getFunctor¢
() ,add.getTermsArray ());
// add all terms, this will also reset the cached <+
hash wvalue
// negated.addTerms (add.getTerms ());
// neg will be the belief in bb (with annotations and<
instantiated wvariables)
Literal neg = getBelief (negated);
// if a conflict was found, solve by contraction of ¢
least preferred literal
if (neg '= null){
List<Literal> conflict = new LinkedList<Literal>()+«
conflict.add(add);
conflict.add(neg);
res.addAll (contract (w(conflict)));
}
return res;
}

private List<Literal> groundLiterals(LogicalFormula fml)<>

{

throws RevisionFailedException
List<Literal> res = new LinkedList<Literal>();

if (fml instanceof RelExpr)

{

//NOTE: consider possibilities, if declarative <
rule-plans exists this plan was tncorrect and <
the system can fail

throw new RevisionFailedException("Theycontext
containedayrelative expression");

}

else if (fml instanceof LogExpr){
LogExpr 1Fml = (LogExpr) fml;

if (1Fml.getOp() != LogExpr.LogicalOp.and)
throw new RevisionFailedException("Plan,was_ not<
uaudrP"> H

// assumes the logical operator ts "&"
LogicalFormula g = ((LogExpr) fml).getLHSQ);
LogicalFormula h ((LogExpr) fml).getRHS();

res.addAll (groundLiterals(g));

208

209

210

212

213

215

216

217

220

221

222

223

224

230

232

233

234

235

55

res.addAll (groundLiterals(h));

}
else if (fml instanceof Literallmpl)
{
// apply the current unifier and add the <
corresponding literal
// with all annotations of the literal from BB
fml.apply(ts.getC() .getSelectedIntention () .peek() .+
getUnif ());
res.add(getBelief ((LiteralImpl) fml));
}

return res;

}

/%% Returns the support list of the justification of 1l <
according to < */

public List<Literal> supportlList(Literal 1, Intention i)+
throws RevisionFailedException{

List<Literal> supportList;
Plan p = i.peek().getPlan();

supportList = groundLiterals(p.getContext ());

// add the trigger event in the case of a belief ¢
addition
if (p.getTrigger () .getOperator () == TEOperator.add &&«
p-getTrigger () .getType() == TEType.belief)
supportList.add(getBelief (p.getTrigger ().«
getLiteral ()));

return supportlList;

}

/**% Annotate a literal 1 with the current time. If it is¢
already annotated
* it will be updated.*/
private void annotateTime(Literal 1){

Literal g = getBelief (1);

if (g!=null){
List<Term> time = g.getAnnots ("BBTime");
g.delAnnots (time) ;

1.addAnnot (ASSyntax.createStructure("BBTime",

264

265

267

268

269

271

272

274

275

276

279

280

282

56

Code of BRAgent

ASSyntax.createNumber (System.currentTimeMillis<
() - startTime)));

/*% Make the literal independent by giving it a single <
justification */

private void setupIndependentJust(Literal 1){
dependencies (1) .clear();
add(new Justification(l,new LinkedList<Literal>()));

/** Return true if 1 4s unreliable when added with
intention I.

* As standard, dependent literals or if they are <
neither a percept
* or self inferred are unreliable.*/
public boolean unreliable(Literal 1,Intention i){
return !independent(l, i) ||
1!=null && !(1l.hasSource(BeliefBase.APercept) || 1
.hasSource (BeliefBase.ASelf));

/*% Return true if 1 should be independent when added <
with tntention %

* As default, all literals not added with a drp are
independent */
public boolean independent (Literal 1, Intention i){
Plan p = i!=null ? i.peek().getPlan() : null;
return p==null || !p.getLabel().hasAnnot (drp);

/** returns true if any of the literals or the plan are <
annotated with "showBRF" */
private boolean showBRF(Literal add, Literal del, <
Intention i){
Plan p = i!=null ? i.peek().getPlan() : null;
return p != null && p.getLabel().hasAnnot (debug) ||
add!=null && add.hasAnnot (debug) ||
del!=null && del.hasAnnot (debug);

/** returns true if any of the literals are annotated <
with "coh" */
private boolean coherence(Literal add, Literal del){
return add!=null && add.hasAnnot (coh) ||
del!=null && del.hasAnnot (coh);

284

285

287

288

289

290

292

293

294

296

297

298

299

300

301

302

306

307

308

309

57

/%% simply annotate percepts with time and make them

independent */

@0verride
public void buf (List<Literal> percepts){

}

if (percepts!=null)
for (Literal 1 : percepts){
annotateTime (1) ;
setupIndependentJust (1);
}
super .buf (percepts) ;

/%% Belief revision based on the article in the report.

*

Uses the definition

of declarative rule plans, which are the only plans <
where the algorithm 1is

used. Such should have the annotation "drp" in the <
label.

All other plans use the simple belief addition/+
deletion.

Plans with labels annotated with "showBRF" or <
literals annotated with "showBRF"

will have the results of belief revision printed
.

Literals annotated with "coh" will use coherence/AGM <+
style of belief revision*/

@0verride
public List<Literal>[] brf(Literal beliefToAdd, Literal <

beliefToDel, Intention i) throws <«
RevisionFailedException

// this must be done before revising bb (it can
change the literal)

boolean independent = independent(beliefToAdd, 1i);

boolean show = showBRF(beliefToAdd, beliefToDel, 1i);

boolean unrely = unreliable(beliefToAdd,i) || «
unreliable(beliefToDel ,i);

//set revision style COHERENCE=false, REASON_MAINT=¢
true

revisionStyle=!coherence(beliefToAdd, beliefToDel);

// Every added belief will be annotated with time
if (beliefToAdd !'= null){
annotateTime (beliefToAdd) ;
// setup justifications
if (independent)
setupIndependentJust (beliefToAdd) ;

319

320

322

323

324

326

327

329

330

331

332

334

335

336

337

338

339

340

58

Code of BRAgent

else
add (new Justification(beliefToAdd, supportList («
beliefToAdd ,i)));
}
// disregard annotations when deleting beliefs (&
unlike the original jason agent)
// by removing the entry including all annotations
if (beliefToDel != null)
beliefToDel = getBelief (beliefToDel);

List<Literal>[] res = super.brf(beliefToAdd, <«
beliefToDel, i);

if (res == null)
return res;

// the list of beliefs deleted
res[1] = new LinkedList<Literal>(res[1]);

// only perform belief revision on unreliable beliefs
if (unrely){
if (show){
System.out.println("Belief base of "+ts.+
getUserAgArch () .getAgName () +
"Lbefore,"+intentToString (i));
getLogger () .info (justifsToString());

// Contract the belief when it %s removed, it will<s
no longer be entailed

if (beliefToDel != null)
res[1].addAll (contract (beliefToDel)) ;
if (beliefToAdd !'= null)

res[1] = contractConflicts(res[1], beliefToAdd)<«+

3

}

if (show){
System.out.println("Belief baseof "+ts.
getUserAgArch () . getAgName () +
"yafter "+intentToString(i)+
"yusing,"+(revisionStyle?"reason maintenance<
":"coherence"));
getLogger () .info(justifsToString());
System.out.println("------ ")
}

// reset the revision style

358

359

360

362

revisionStyle=REASON_MAINT;

return res;

public String intentToString(Intention i){
return (i!=null?"revision "+i.peek().getCurrentStep ()<«
:"init");

}

public String justifsToString(){
String res = "";
for (Literal 1 : bb)
res+=1+", ,(["+depsToString (1)+"], ["+justsToString<
(L)+"1)\n";
return res;

}

public String depsToString(Literal 1){
List<Justification> depends = dependencies.get(l);
String deps = "";
if (depends!=null && !depends.isEmpty()){

deps=depends.get (0) .s.toString();
for (int i=1;i<depends.size();i++)
deps+=","+depends.get(i).s;
}
return deps;

}

public String justsToString(Literal 1){
List<Justification> justifs = justifies.get(l);
String justs = "";
if (justifs!=null && !justifs.isEmpty ()){

justs=justifs.get (0).1l.toString();
for (int i=1;i<justifs.size();i++)
justs+=","+justifs.get (i) .1;
}
return justs;

}

/*% Return the reference to the dependencies list of <
thts literal.
* Modifying the returned list will also update the
entry. */
public List<Justification> dependencies(Literal 1){
List<Justification> res = dependencies.get(l);

401

402

403

405

406

407

408

410

60 Code of BRAgent
// If the entry does not exzist, make a new one
if (res==null){
res = new LinkedList<Justification>();
dependencies.put(l,res);
}
return res;
}
/*% Return the reference to the justifies list of this <
literal.
* Modifying the returned list will also update the <
entry. */
public List<Justification> justifies(Literal 1){
List<Justification> res = justifies.get(l);

// If the entry does not ezist, make a new one
if (res==null){
res = new LinkedList<Justification>();
justifies.put(l, res);

return res;

Bibliography

(1]

Rafael H. Bordini, Michael Wooldridge, and Jomi Fred Hiibner. Program-
ming Multi- Agent Systems in AgentSpeak using Jason (Wiley Series in Agent
Technology). John Wiley & Sons, 2007.

Renata Vieira Alvaro F. Moreira and Rafael H. Bordini. Extending the
Operational Semantics of a BDI Agent-Oriented Programming Language
for Introducing Speech-Act Based Communication. 2004.

Jomi F. Hiibner Mark Jago Natasha Alechina, Rafael H. Bordini and Brian
Logan. Automating Belief Revision for AgentSpeak. 2006.

Mark Jago Natasha Alechina and Brian Logan. Resource-Bounded Belief
Revision and Contraction. 2006.

Graham Priest and Koji Tanaka. Paraconsistent Logic. In Edward N. Zalta,
editor, The Stanford Encyclopedia of Philosophy. Summer 2009 edition, 2009.
http://plato.stanford.edu/entries/logic-paraconsistent/.

Stuart Russell and Peter Norvig. Artificial Intelligence A Modern Appproach.
Pearson, 2010.

Johannes S. Spurkeland. Using Paraconsistent Logics in Knowledge-Based
Systems. DTU Informatics, 2010. BSc Thesis.

Jorgen Villadsen. A paraconsistent higher order logic. In Paraconsistent
Computational Logic, pages 33-49, 2002. Available at http://arxiv.org/
abs/cs.L0/0207088.

http://plato.stanford.edu/entries/logic-paraconsistent/
http://arxiv.org/abs/cs.LO/0207088
http://arxiv.org/abs/cs.LO/0207088

	Summary
	Resumé
	Preface
	1 Introduction
	1.1 Inconsistency
	1.2 Inconsistency in Practice
	1.3 Project Content
	1.4 Terms

	2 Analysis
	2.1 Belief Revision
	2.2 Paraconsistent Logic
	2.3 Jason Language
	2.4 Jason Architecture
	2.5 Background of Belief Revision
	2.6 Multi-Valued Logic
	2.7 Problem Specifications

	3 Design of the Belief Revision
	3.1 Justifications
	3.2 BRAgent
	3.3 Auxillery Definitions
	3.4 Contraction
	3.5 Belief Revision
	3.6 Belief Update

	4 Design of the Paraconsistent Agent
	4.1 Representing Multi-Value Logic
	4.2 Use of Multi-Value Logic
	4.3 Inconsistent Belief Base

	5 Testing
	5.1 Belief Revision
	5.2 Multi-Value Logic
	5.3 Doctor Example

	6 Discussion
	6.1 Belief Revision
	6.2 Paraconsistency

	7 Conclusion
	A Code of Justification
	B Code of BRAgent
	Bibliography

