
Secure Session Management

Fariha Nazmul

Kongens Lyngby 2011
IMM-M.Sc.-2011-45

Technical University of Denmark
Informatics and Mathematical Modelling
Building 321, DK-2800 Kongens Lyngby, Denmark
Phone +45 45253351, Fax +45 45882673
reception@imm.dtu.dk
www.imm.dtu.dk

IMM-M.Sc.-2011-45

Preface

The stateless behavior of HTTP requires web application developers to use sepa-
rate stateful or stateless mechanisms with HTTP for maintaining state and user
specific session information. The task of maintaining user based state informa-
tion in a logical connection between the server and the user device is known as
session. Web session management is a method that allows the web server to
exchange state information to recognize and track every user connection.

A critical issue in web security is the ability to bind user authentication and
access control to unique sessions. Vulnerabilities in the session management pro-
cess can cause serious damage since the sessions generally maintain important
and sensitive data of the web based systems.

The aim of this Master thesis is to concentrate on the security of session man-
agement in a single server environment. The thesis focuses on analyzing the
important aspects of a secure session management mechanism that are the abil-
ity to bind an incoming request to the session it belongs to, to determine where
and how the session state can be stored and to find out measures to protect
the session handling mechanisms from security attacks. In addition, this the-
sis shows the basic steps of implementing a session with PHP and discusses
the implications of manipulating some of the session management configuration
options on the security level of the application. Furthermore, the focus of this
thesis is to study the best practices available for secure session management and
to put forward a standard way of maintaining a secure session in single server
system.

ii

Acknowledgements

I would like to express my gratitude to my supervisors, Professor Tuomas Aura
of School of Science at Aalto University and Professor Christian W. Probst at
the Technical University of Denmark, for their continuous supervision, valuable
suggestions and collaboration during the thesis process.

I also owe my gratitude to my instructor, Sanna Suoranta, for her constant help
and guidance and for the time dedicated to read through my drafts every week
and providing feedback on it.

I would also like to thank all the professors, lecturers and friends whom I have
met in Aalto and DTU during my two years of study.

Finally, my acknowledgement to Almighty for His blessings and gratitude and
love to my parents and my beloved husband, Wali for their support and inspi-
ration in every aspect of my life.

Espoo, June 2011

Fariha Nazmul

iv

Abbreviations and Acronyms

HTML HyperText Markup Language
PHP PHP:Hypertext Preprocessor
HTTP Hyper-Text Transfer Protocol
HTTPS Hyper-Text Transfer Protocol Secure
SSL Secure Sockets Layer
TLS Transport Layer Security
TCP Transmission Control Protocol
ID Identifier
SID Session Identifier
MD5 Message Digest 5
RFC Request For Comments
URL Uniform Resource Locator
XSS Cross-Site Scripting
IETF Internet Engineering Task Force
PKI Public Key Infrastructure
SHA Secure Hash Algorithm
SSO Single Sign-On
MAC Message Authentication Code
HMAC Hash-based Message Authentication Code
PNG Portable Network Graphics

vi

Contents

Preface i

Acknowledgements iii

1 Introduction 1
1.1 Problem Statement . 2
1.2 Organization of the Thesis . 3

2 Session Management 5
2.1 Session Tracking Solutions . 7
2.2 Session Functionalities . 13
2.3 Secure Sessions . 17

3 Handling Session Data 21
3.1 Session Identifier (SID) . 22
3.2 Server-side Sessions . 23
3.3 Client-side Sessions . 25

4 Session Vulnerabilities 29
4.1 Session Hijacking . 30
4.2 Session Fixation . 36
4.3 Other Attack Possibilities . 41

5 Session Management in PHP 43
5.1 Handling Session . 44
5.2 Creating Session . 45
5.3 Session ID . 49
5.4 Session Cookie . 49
5.5 Storing Session Data . 51

viii CONTENTS

5.6 Destroying Session . 52
5.7 Controlling Session Lifetime . 53
5.8 Session Storage Security . 53

6 Best Practices 55
6.1 Authentication . 56
6.2 Token Handling . 57
6.3 Session Data . 59
6.4 Session Lifetime . 60

7 Conclusion 63
7.1 Future Work . 65

Chapter 1

Introduction

All over the world Internet users are using web based systems that follows the
client server paradigm. The web browser acts as the client for a web server
that provides the service. These web based systems rely on the HTTP protocol
for communication, but it is a stateless protocol. Therefore, the application
developers have to use alternative methods to identify and authenticate the user
and maintain the user’s state. Both stateless and stateful mechanisms can be
used with HTTP for session tracking and remembering user specific information.
Sessions save the user specific variables and state through consecutive page
requests. Sessions are commonly used to enforce security restrictions and to
encapsulate run-time state information.A critical issue in web security is the
ability to bind user authentication and access control to unique sessions.

Session management allows web based systems to create sessions and maintain
user specific session data so that the user does not need to authenticate repeat-
edly while performing actions. An authentication process is carried out at the
first stage to check if the user has the privilege to access the resource. Once au-
thenticated, the user is granted a unique session ID. Thus session management
is achieved by maintaining the unique session ID on the client and server side
and the browser needs to submit the session ID with every new request.

Unfortunately, existing session management methods are designed originally for
a trustworthy environment that the Internet is no longer and thus they cannot

2 Introduction

provide flawless security. There are two main categories of attacks that can
compromise the security. Session hijacking is a general term used to represent
any kind of attack that tries to gain access to an existing session. Some common
forms of session hijacking are session prediction, session sniffing, session exposure
and cross-site scripting. Another kind of attack is known as session fixation. In
session fixation, the user is made to use an explicit session which has been
provided by the attacker. Session poisoning is an attack that can be connected
to session exposure, when it is done by modifying or deleting the session data.
It can also be the creation of new session and thus relating to session fixation.

Session management is critical to the security of web based system. Additional
measures are needed in the existing session management mechanism to ensure
a reliable and sufficient level of session security. One measure is to use strong
encryption on all transmissions and to control the session lifetime in a more
efficient way. Special care has to be taken also about generating the session ID
to make it unique, unpredictable and hard to regenerate. Handling session data
storage and session cookies is another area that needs to be modified to provide
better security.

1.1 Problem Statement

Secure session management can be considered as a hurdle between the web
based resources and the general users. Even developing a secure web based
system is economically reasonable than dealing with the fallout later. But in
real life, most applications often have weak session management. It is difficult to
implement a secure session management mechanism because there is no common
guideline for it and there exists many little-known flaws. Moreover, there is no
single solution that suits best all and there is no perfect solution. Furthermore,
all the session-management solutions have significant drawbacks in one way or
another. Even then some common techniques can be applied to provide a secure
and reliable session in a general way that can also defend against session-based
attacks. Existing attacks can be mitigated with good web application design
practices.

This thesis concentrates on the security of session management in a single server
environment. The thesis emphasizes on studying how sessions can be handled
in many different ways for web applications, and on analyzing existing open
source PHP applications to find out the security measures taken to provide a
strong and secure session management. Furthermore, the focus of this thesis is
then to study the best practices available for secured session management and
to put forward a standard and abstract way of maintaining a secured session in

1.2 Organization of the Thesis 3

a single server system.

1.2 Organization of the Thesis

The thesis is organized in such a way that it helps the reader follow the thesis in
a graceful manner. This chapter introduces the research scope and goal of the
thesis. After the introduction, Chapter 2 gives an overview of session manage-
ment and explains different methods of session tracking with their advantages
and disadvantages. Chapter 3 continues the session management but from the
data perspective and takes a closer look at session data handling mechanisms
and discusses the different aspects of session state management. Chapter 4 gives
an overall picture of the typical attacks against sessions and their countermea-
sures. The session management implementations in a popular web application
framework, PHP is discussed in Chapter 5. Chapter 6 offers a list of best prac-
tice recommendations for implementing safe and secure session management
mechanisms. The thesis concludes with a brief summary of the current state of
secured session management and a suggestion of possible future work in Chapter
7.

4 Introduction

Chapter 2

Session Management

A session means a logical connection between a user device and a server. Ses-
sions are commonly used in a client-server architecture. Services that need to
keep some track of their users maintain sessions with their user’s client program.
The session is established in the beginning of a connection, usually involving the
exchange of a series of requests and responses between the client and the server.
Typically, some state information is associated with each session. Mostly ses-
sions are used to identify a user, to manage user preferences, to impose security
restrictions or to encapsulate other state information.

Hypertext Transfer Protocol (HTTP) is used for web page and service access
and it is not session aware. HTTP uses TCP as its transport protocol. Initially,
HTTP 1.0 [4] was designed to use a new TCP connection for each request.
Therefore, each request was independent of any previous or upcoming requests
even though they belonged to the same user. When there was a series of requests
and responses, there was no way of identifying which requests belonged to which
client. Usually web pages have embedded images and each image is retrieved
through a separate HTTP request. The use of a new TCP connection for each
image retrieval created network congestion and increased load on HTTP servers.

To resolve the problem of network congestion, HTTP 1.1 [16] allows to make
persistent connections by default. In a persistent (also known as keep-alive)
connection, the clients, servers and proxies assume that a TCP connection will

6 Session Management

remain open after the transmission of a request and its response. Multiple re-
quests can be transmitted over a single TCP connection until client or the server
sends the Connection:close message to close the connection. The server or
the client browser can also set a timeout value for the persistent connections.[23]
Even though the HTTP requests in a persistent network connection are not in-
dependent, there is no built-in support for maintaining contextual information
and thereby it is not possible to maintain a stateful session with all the HTTP
requests and responses transmitted between the server and a specific client.
HTTP servers respond to each client request without relating that request to
previous or subsequent requests. The web session of a user refers to a logi-
cal stateful connection created from the HTTP requests and responses passed
between that user and the server.[24]

Web session management is a method that allows the web server to exchange
state information to recognize and track every user connection. It is basically
user authentication and preference management e.g. storing a history of pre-
viously visited contents and status information.[15] Most common examples of
session-oriented systems are the web based applications that need to maintain
user specific information. The basic pattern of a web based session management
is to authenticate a user to the web server with his login credentials once, and
to formally set up a session. In this way, the user does not need to send the
username and password to the web server with every request.

Figure 2.1: Typical Session

Figure 2.1 shows the steps involved in setting up a normal session between a
client and a web server. At first, the user passes the credentials to the web server
using a form. After processing the credentials, the web server uses some kind
of session tracking mechanism to maintain the status of the authenticated user

2.1 Session Tracking Solutions 7

in the session. The state of the session is then used to control the user access
to the web application. When the user quits the application, the authenticated
status of the user is destroyed and the session of the user is closed.

In general, a session control mechanism is dependent on a client-side token
known as the session token or session identifier and a server side session storage.
A session token is normally composed of a string of variable width. After a
successful authentication of the user, the web server issues a session token that
is associated with a level of access and transmits the token to the client. The
level of access and other user specific data associated to a session token are
stored on a server side session storage, typically implemented as a hash table.
The session token is used to locate the user specific session data on the server side
and thereby, identify the user to the web server for the rest of the session. Thus,
once a client has successfully authenticated to the web server, the session token is
used to track the client throughout the web session and also to uniquely identify
the authentication status. The session token or identifier can be transmitted
between the server and the client in different ways, like embedded into the
URL, in the elements of a web form or in the header of the HTTP message as
a cookie.

2.1 Session Tracking Solutions

Session tracking is the process of maintaining information about the users of a
web based system across multiple request. There exists a number of different
ways to simulate a stateful session on top of a standard, stateless web requests.
Some of the most common methods are HTTP basic and digest authentication,
URL encoding, web forms with hidden fields ,and cookies. Each of these meth-
ods have the same purpose, enabling the web client to pass some user specific
information to the web server with each request. In case of HTTP basic and
digest authentication, the user client transmits the user credentials, and in other
cases, the client uses a session ID. The server is able to track and associate user
actions with the help of this additional information.

2.1.1 HTTP Basic and Digest Authentication

First attempt to provide user authentication with HTTP is HTTP basic au-
thentication allows a client application to send its credentials i.e. username and
password in plaintext to the web server as a part of an HTTP request. Any web
client or server can support basic authentication. When a user requests to ac-

8 Session Management

cess a web based system that uses basic authentication, the server responds with
a WWW-Authenticate header. This header includes the authentication scheme
’Basic’ and the domain for which the credentials are required. After receiving
this header, the client browser prompts the user for his username and password
for the domain. Once entered, these credentials will be automatically included
in the Authorization header of the successive HTTP requests from the user to
the same server. The server will respond by sending the requested content if the
credentials are valid. The client can continue to send the same credentials with
other requests to the specified domain of the server.[18] These message sequence
of the basic authentication mechanism is shown in Figure 2.2.

Figure 2.2: Messeage Sequence of Basic Authenticaton

However, the basic authentication is vulnerable to packet sniffing as the user-
name and password is transmitted in base64-encoded plaintext. It is trivial for
an attacker to intercept the credentials when transmitted over non-encrypted
connections. Moreover, web servers and proxy servers configured to log informa-

2.1 Session Tracking Solutions 9

tion provided as part of the HTTP headers may store the user credentials in a
log file. As a result, the user credentials are at potential risk to be revealed.[18]

In HTTP digest authentication, the password is not transmitted in plaintext.
This authentication mechanism uses the same headers that are used in the
basic authentication but with a scheme of ’Digest’. Instead of sending plain
password, a challenge-response mechanism is followed and a cryptographic hash
of the username, password, client and server generated nonces, HTTP method
of the request and the requested URI is sent to the server. This mechanism
ensures that a network eavesdropper cannot extract the password and also the
cryptographic hash is valid for a single resource and method. Therefore, the
credentials transmitted with the request for a resource do not provide access to
other resources.[23]

Nevertheless, this authentication scheme does not guarantee enough support on
all client browsers.[15] To handle authentication on the server side, the HTTP
stack must have access to a username-password database. One major problem
with both these methods is that they can only provide authentication but they
do not provide any mechanism to customize or integrate other session infor-
mation. Moreover, there is no option for explicit session expiration in these
methods.[18]

2.1.2 URL Encoding

URL encoding refers to a session tracking mechanism where the session token
is embedded into the URL and transmitted to the web server through HTTP
GET requests. The benefit of using this mechanism is that this does not depend
on the browser setting or security restrictions of the client.[15] For example, in
a scenario where cookies are not allowed, this method can act as a fallback
method. If a user wants to propagate the right of accessing the information
resource to other users, he can send a copy of the embedded URL to them.
Moreover, in the systems where the HTTP Referer field includes the URL, it
can be used to check if a client has followed a particular path within the system.

An example of an URL embedded with the session id is shown here.

http://www.example.com/start.php?page=1;sessionid=AB20394726

However, there are some critical security issues in this mechanism. The ses-
sion information contained in the URL is clearly visible. The URL along with
the session data can be sent in the HTTP Referer field to other web servers.
Sometimes, this URL of the referring location is also stored in the log files of

10 Session Management

web servers and proxy servers. As a result, the session identifier embedded in
the URL will be included in the log files of the servers. Furthermore, users
frequently bookmark or send URLs of web pages to others. If the user sends
the URL containing the session ID and the ID has not been updated, any one
using that link gets full access to the user’s account. So this mechanism has the
high risk of disclosing the session data to any unauthorized third party.

2.1.3 Web Forms with Hidden Fields

The session data can be included in the hidden fields of a web form and then the
client application sends the form to the web server with the help of the HTTP
POST command. When each page visited by a user contains the hidden fields
with the session information, the web server can track the user and access the
user’s session information across multiple requests. For example, the HTML
code for a web form with three hidden fields namely customerno, productno,

orderno will look like following:

<FORM METHOD=POST ACTION="/cgi-bin/order">

<INPUT TYPE ="hidden" NAME="customerno" VALUE="1234">

<INPUT TYPE ="hidden" NAME="productno" VALUE="2345">

<INPUT TYPE ="hidden" NAME="orderno" VALUE="3456">

</FORM>

A server side script can be used to dynamically generate the HTML code con-
taining these fields and also to read and compare the field values with the user
specific information residing on the server. One of the main advantages of this
method is that it is not dependent on client security restrictions.[15] This method
can be used even if the client web browser has disabled the use of cookies. It
also enables a user to safely store the URL of the web page without keeping
their session information.

However, this form-based method does not provide any predefined security. The
hidden fields are not secret and the client can view the value of the hidden fields
by looking at the HTML source of the document. This way, a client is able
to know the session data and the session identifier.[29] To use this mechanism
of session tracking, every page of the web application needs to be dynamically
generated by a form submission. The repeated transmissions of HTTP forms
using the POST command also create a performance overhead. In addition, this
mechanism does not work for HTTP GET requests whereas all the embedded
objects such as, images, frames referenced in HTML documents are always re-
trieved using HTTP GET request. As a result, hidden form fields transmitted
through POST method are only suitable for applications that do not need any

2.1 Session Tracking Solutions 11

session information while performing the requests for embedded objects. [14]

2.1.4 HTTP Cookies

Another easy and flexible way of handling session tracking is the use of HTTP
cookies. A cookie is a little piece of information that is transmitted from the
server to the browser upon session creation. Each time a web client accesses
the contents from a particular domain, the client browser will transmit the
relevant cookie information along with the HTTP request. In this way, cookies
can also be used to store user specific information that can offer the user a
personalized experience over multiple requests, even multiple sessions. Cookies,
containing the expiry information to specify when the browser shall delete it,
may last beyond a single session. This type of cookies are stored on the client
disk and are called ’persistent’ cookies. When a cookie is created without any
expiry information, it is only stored in the memory of the client browser and is
erased when the browser is closed. This kind of cookies are known as ’session’
cookies.[24]

A stateful HTTP transaction contains two headers for cookies: the Set- Cookie

response header and the Cookie request header. When a client sends a request,
the web server includes a Set-Cookie header in the response. This header
requests the client browser to include the cookie with all upcoming requests to
this web server. If cookies are enabled in the client browser, the browser will
add the cookie to all subsequent requests using the header Cookie as long as
the cookie is valid. This Cookie header provides information to the server to
identify the web client.

Figure 2.3: Cookie Exchange

12 Session Management

A typical cookie-exchange scenario is shown in Figure 2.3. At first, the web
client sends an HTTP request to the web server and the server sends an HTTP
response including the Set-Cookie header. After receiving this response, the
client includes the Cookie header in the next HTTP request and the server
sends back an HTTP response with the requested resource.

A cookie can be set with a name-value pair and some additional attributes.[24]
The name of the cookie is used to identify a cookie for a user and the value is
the information, typically the session ID that the web server desires to store in
the cookie. Additional cookie attributes are:

• Domain: The domain attribute specifies the domain of the web server
that created the cookie. This is the same domain for which the cookie is
valid.

• Path: This attribute is used to refer to the URL of the page on the origin
web server.

• Max-Age: To specify the lifetime of the cookie, the Max-Age attribute is
used by the web server. If this attribute has a value, then the user agent
will store the cookie. When the cookie time is expired, the user agent will
discard it. Otherwise, the cookie will be deleted once the user closes the
user agent.

• Secure: This attribute is used to instruct the user agent that the cookie
can be sent to the origin server only over a secured connection.

• Port: This attribute mentions the port through which the cookie can be
returned. Basically, the port tells if the cookie is an HTTP cookie or not.

Session cookies are suitable for storing the session identifiers because the SIDs
will be removed from the client when the browser is closed. This type of cookies
remain safe even when the user does not log out explicitly and the server is
unable to unset the cookie. An advantage of using HTTP cookies over other
session tracking solutions is that the server does not need to perform any action
to add the SIDs to all the links or forms. The web server generates and transmits
a cookie containing the SID to the client and the client browser automatically
sends the cookie to the server with each request. In addition, when a server
regenerates the SID, the new SID is available to the client browser immediately
and there exists no problem with the back or reload buttons. Cookies are also
safe to use when the web server is configured not to log the HTTP headers,
leaving no traces.[14]

2.2 Session Functionalities 13

Typically, a cookie is stored on the client browser in a file and the information
in the cookie is easily readable and accessible by the clients, if not properly en-
crypted or hashed. Encrypting the cookie value prevents a malicious user from
accessing the information. However, it may also create vulnerability by giving
the attacker an option to find out the encryption key. If an attacker can figure
out the encryption key, he can perform extreme damage to the system.[9] A
major disadvantage of cookie mechanism is that a malicious attacker can make
the client perform some application actions on behalf of him. A malicious site
can include a reference to the target web application in a fake resource and the
reference may contain a request to perform some harmful action. An authen-
ticated, already logged-in user of the target web application will automatically
send the cookie with the reference of the trap resource while visiting the mali-
cious site and perform the specified action. Furthermore, an attacker can craft
a URL impersonating the original web site and make the client send the cookies
to the attacker. This type is attack is known as cookie-harvesting.[38]

The cookie is also vulnerable to cross site scripting attack where the attacker can
access the cookie via malicious script. However, an additional cookie attribute
HttpOnly is introduced to prevent this attack. When this attribute is present in
a cookie, it is not accessible via Javascript.[14] When the cookie is transmitted
over unsecure channel, it can be captured by a malicious user. Cookies with the
Secure flag turned on will never be transmitted over an insecure connection.
Another major problem of using cookies is they can be disabled through browser
setting. A web application will not be able to track user sessions for users who
have disabled cookies.

2.2 Session Functionalities

Web session management is a combination of many functionalities. First of
all, a session is established between a user and a web server after successful
authentication. Then the session is maintained by following one of the session
tracking solutions. At some point, the session is terminated either by the client
or the server. The following sections present the different functionalities that
are associated with session management.

2.2.1 Session Initialization

A session has to be negotiated between the client and the web server before they
start communicating. The basic concept of a web based session is to recognize

14 Session Management

a user and maintain the authenticated state of the user. In order to maintain
user specific information, web based applications need to provide mechanisms
to identify and authenticate each user to the web server and associate a unique
session identifier to each user after successful authentication. The authenti-
cation mechanism is the entry point to the application and provides control
access. There exists many different methods to authenticate users on the web
based systems. One way to provide authentication is to use HTTP basic and
digest authentication mechanisms, which were discussed in section 2.1.1. The
most common way of authentication in web based systems is form based au-
thentication where the user credentials are transmitted to the server using an
HTML form and the server validates the credentials against a database. Single
sign-on (SSO) is another method that allow users to log into one server and
get automatically authenticated for multiple other servers under the same SSO
system.[32]

After the successful authentication of the user, the server issues a session iden-
tifier for the user and transmits the SID to the client. The session identifier is
used as an index to the location where the user specific session data is stored on
the server. The session identifier can be transmitted between the server and the
client in many ways, depending on the session tracking mechanism being used
by the server. By storing the user session data on the server and associating a
SID to the user to identify his status, the server formally sets up a session with
the user.

2.2.2 Session Termination

Session termination is an important aspect of secure session management. Ses-
sions that are left open over time consume server resources and present a po-
tential risk of session attacks. Unterminated sessions are vulnerable to session
capture attacks and potential impersonation of the session user. Special care
needs to be taken to shorten the exposure period of a session. A session can be
terminated under many different situations. A good practice is to provide the
users with a feature to logout of the system reliably. When a user chooses to
logout of the system, he assumes that no one can access this session in future.
Basically, by selecting the logout option, the user requests a logout script to be
executed by the server that explicitly ends the session. From security point of
view, it is important to remove the user session data from the server on per-
forming the logout function, rather than relying on the client browser to remove
the cookie or session ID. In addition, any occurrence of security error in the
system needs to result in termination of the session.

Most often web applications allow users to create multiple sessions. Typically, a

2.2 Session Functionalities 15

session is bound to the client device by saving the session identifier on the device.
When a user chooses to logout of the system, only the session tied to that device
is destroyed. Often the applications do not provide an option to invalidate all
the sessions related to a particular user. One way to implement this global
logout option is to maintain a random number, known as salt, for each user on
the server side and use this salt while generating the user’s session identifier.[47]
If a user selects to logout of the system locally, only the SID bound to that
device can be invalidated. On the other hand, if the user chooses to logout
globally, then the server can simply change the user’s salt to a fresh one. In this
way, the server will not recognize any SID of that user which was created using
the previous salt and all the previous sessions of that user will be invalidated
automatically. Moreover, the server can maintain a general salt and use it in
the creation of all session identifiers. Changing the general salt will result in the
termination of all the sessions of all users the server was maintaining.

2.2.3 Session Timeout

A session can be terminated by the user when he selects to logout of the system.
However, a server can never be sure that a user will always logout of the system
after finishing the use of the application. For this reason, the server needs to
remove the sessions that have not been used for a period of time. This type
of session termination, also known as relative timeout, can be accomplished by
placing a certain time limit on session inactivity. Any session that has not been
active over a reasonable time is removed from the session storage. Relative
timeout is a useful way of cleaning up the stale sessions. It also prevents session
exposure attacks where an attacker might get hold of a session whose user has
not logged out explicitly.[14] To implement the inactive timeout, an application
can keep track of the last request being received from a user and calculate the
elapsed time at regular intervals. When the elapsed time reaches the time for
relative timeout, the application will redirect the user to a page which destroys
the session. The user’s last request time is reset whenever there is an activity
on the web browser.

Moreover, despite of being an active session, there is no way for the server to
determine whether the session is being used by a legitimate user or it has been
stolen by an attacker. Therefore, an application needs to implement an abso-
lute timeout that restricts the overall duration of a session. Absolute timeout
is fruitful in a case where an attacker, who has stolen the session ID, tries to
keep it valid by making periodic requests. The time limit of relative and abso-
lute timeouts can vary depending on the applications environment and security
requirements. Typically, 15 to 30 minutes of session inactivity is reasonable
enough to terminate the session. For absolute timeout, the time limit can vary

16 Session Management

from 6 to 12 hours, depending on the required security level of the system.

It is recommended to use both kinds of timeout in a system for better security.
Furthermore, a two-level timeout mechanism can be used for better usability.[14]
In the first level, the application can temporarily lock the user session after a
certain period of time and prompt the user for his credentials. The application
will wait for the user credentials for another period of time. If the client fails to
provide credentials in time, the application will permanently delete the session
information from the server. In this way, the user session is locked after a
period of time to prevent it from being used by an attacker but still provides an
opportunity for the user to continue his session by presenting his credentials.

2.2.4 Context Binding

Often some context binding mechanisms are followed. They are intended to
provide additional security measures against session hijacking. The idea is to
complicate the task of session hijacking where the attacker has gained knowledge
of the session identifier only. One common mechanism is to bind the session to
the IP address of the client.[14] This can be effective only in the cases where the
attacker is not in the same network as the victim and the IP address of the client
is always same. In the cases where the attacker and the victim is in different
networks, the attacker will not be able to establish a TCP connection with a
forged IP address whereas, when he is in the same network, he can spoof the
IP address of the victim. Moreover, the assumption that all requests from the
same client will always have the same IP address is not true anymore in today’s
network environment. The user can be behind load-balancing proxies or the
client may be allocated addresses dynamically. Therefore, this mechanism will
also reject valid requests more often.

Another mechanism is to bind the session to some HTTP header value. For
example, the session can be bound to the user agent string or content type
accept header. This headers will always remain same when the requests will
come from the same browser. However, the value of these headers are not unique
as many users can use the same browser. They are also easy to be forged by an
attacker. Therefore, using these context binding mechanisms make the system
complex but they do not provide enough security.[14]

2.3 Secure Sessions 17

2.2.5 Session Mobility

An opposite aspect of context binding is known as mobility. Different types
of mobility are defined by Bolla et al.[6] Mobility can be of people, services,
session state and terminals. Service mobility gives users access to their personal
configuration settings and services across the many devices they use. The situa-
tions where the mobile device maintains connection to the service even after the
device switches from one network to another is referred to as terminal mobility.
Personal mobility allows a user to use any device and switch devices during a
task. In order to provide personal mobility and service mobility, session mobility
is essential. Session mobility provides the option to move the user session with
the service when the user changes devices. [51, 45]

Often web services establish sessions with the user device. To provide session
mobility, the sessions need to be bound to the user, not the user device. Nowa-
days, most often the users need to be allowed to switch devices depending on
their needs. Session mobility provides usability as the user does not have to start
the session from beginning after changing the device. However, implementing
session mobility is not problem-free. Session information needs to be captured
and forwarded to the device the client is switching to. The target device can be
different from the actual device and thereby the session information needs to be
modified to fit the target device. [45]

2.3 Secure Sessions

The primary condition of securing the session is to secure all its components.
The most basic rule is to secure the user credentials and the transmission of
any other information that is sufficient for accessing the session. Following the
authentication process, a session is initiated. This session is associated with the
user through a session ID. The session identifier acts as a temporary password
as long as the session is valid. Therefore, the session ID needs to be crypto-
graphically strong, secure and protected against hijacking or tampering. The
security of the network connection between the user and the server is another
critical issue. From the security point of view, it is also important to ensure
that the session state information is sufficiently protected against unauthorized
access on the client and server sides. To ensure the protection of the network
connection between the client and the server, the authentication information
and session data can be transmitted over a secure connection. Transport Layer
Security can provide such a secure, authenticated and encrypted connection.

18 Session Management

2.3.1 TLS Sessions

Transport Layer Security (TLS) [12] is a standard security protocol that is used
to create a secure transport layer connection between devices. In this protocol,
cryptographic techniques are used to encrypt the network connections above
the transport layer to provide a secure communication channel over an insecure
network which is shown in Figure 2.4. TLS is the protocol that is usually used
for securing the transmission of sensitive user credentials and session tokens. It
is based on the previous secure sockets layer (SSL) protocol proprietary protocol
developed by Netscape.

Figure 2.4: Connection between TLS and the Network Layer in the Client and
Server

TLS uses both asymmetric and symmetric cryptography for security. TLS can
use a collection of cryptographic signing and encryption algorithms, called cipher
suites, for the transactions. In the beginning of a connection, TLS negotiates
which suite will be used. When a user connects to a TLS enabled server, the
server responds with its digital certificate. Digital certificate is a message stating
the identity and the public key of an entity signed by a trusted authority. The
public keys for official trusted authorities are usually embedded in the client
browsers to check the authenticity of the digital certificates of web servers. The
client browser validates the digital certificate sent by the server by checking if
it is signed by a trusted authority and verifies the server’s identity. The client
browser then performs an encrypted exchange with the server to generate the
shared key. The asymmetric public key cryptography basically protects the
exchange of the shared secret, which is used for the symmetric cryptography.
The shared secret is used to encrypt the data transfer between the client and
the server. After the exchange of the shared secret, the session between the
client and server continues encrypted.

TLS provides the feature of session resumption.[40] Through session resumption,
devices can resume previously created TLS session by storing the session state

2.3 Secure Sessions 19

such as, cipher suite and master secret in a ticket in the client side. The ticket
is encrypted by a key known only to the server. The client stores this ticket
and the master secret. When the client wants to resume the session, it includes
the ticket in the request to the server. An attacker with a stolen ticket cannot
resume a connection as the ticket is encrypted and he does not know the secret
key. The TLS session resumption can only resume the TLS connection but it
cannot resume the transaction the TLS connection was protecting. It is handy
because creating TLS connections can be heavy for light weight clients.

Another feature of TLS is the ability to provide client certificates. The client can
prove his identity by presenting his certificate and responding to an encrypted
message. In this way, the client can prove his identity without even revealing his
secret key i.e. the private key. Use of a client certificate can mitigate the problem
of credentials being captured by an attacker. However, the private key is a long
series of random binary data which is not possible to remember. The private key
needs to be stored somewhere, typically on the user computer. This restricts the
client’s mobility while using the certificate as an authentication credential.[14]
Moreover, handling of millions of clients in the certificate authorities is not easy.

TLS provides secure data transmission by using an encrypted communication
channel. It also authenticate the servers and optionally, the clients and allow
the opportunity to prove the identities of the participating parties in a secure
communication. TLS also provides the integrity of the transmitted data by
using an integrity check. In addition to data protection, TLS can protect against
man-in-the-middle or replay attacks.

20 Session Management

Chapter 3

Handling Session Data

Authenticating a user enables a web application to determine the sequence of
requests coming from the same user and a session is initiated. Typically when a
user session is initiated and authenticated, the user session is assigned a unique
session identifier. This session identifier is used to identify the user session in the
subsequent requests and it is propagated between the client and the server using
one of the session tracking solutions, explained in Chapter 2. Once a user ses-
sion is authenticated, some services need to maintain state information for each
user between requests. All data that is required by the web application across
different requests within the same session is called session state information.

Maintaining user state information can be challenging depending on the amount
of information to be stored. In general, the user session data is supposed to
include any data that is not highly sensitive. Any data related to user authenti-
cation i.e. username or session identifier, user profile information for personal-
ization, information about group membership, statistical information and other
preferences can be stored as session data. However, it is not a good idea to
include any information regarding site navigation. The navigation related infor-
mation needs to be transferred through the URL. Otherwise it will disable the
’Back’ button of the browser.

After each request is complete, the user session data needs to be stored some-
where in the system or in an external system from where the application can

22 Handling Session Data

access it in the next request. Depending on which part of the service architec-
ture stores most of the session information, the session management techniques
are categorized into two types.[42] In a server side session, the session states are
mostly stored on the server and the client only stores an identifier of the session
whereas in a client-side session the client maintains the entire user session infor-
mation. These cases are elaborated in sections 3.2 and 3.3, but first we discuss
the session identifier.

3.1 Session Identifier (SID)

Session identifiers are composed at application-level. It is a kind of unique
identifier that is assigned to each user to differentiate them from each other. In
session-oriented web based systems requiring users to authenticate themselves,
the session IDs effectively become an alternative of the user credentials for the
lifetime of the session. An important aspect of session management mechanism
is the security and strength of the session ID in the system.

The session ID needs to fulfill certain requirements for any session tracking solu-
tion in order to prevent prediction or brute force attack. First of all, a session ID
needs to be unique in order to differentiate between multiple sessions. The two
most important characteristics of the session ID are its length and randomness
and these properties are helpful to prevent against prediction of the session ID
by an attacker.[35] For secure session management, a cryptographically strong
algorithm is used to generate a unique random session ID for an authenticated
user. It is also important that the session IDs should have a sufficient length to
mitigate the brute force attacks. It is recommended to use a session ID whose
length is at least 128 bits.

The most common vulnerability with session ID is predictability. The causes are
lack of randomness or length or both. Some web applications also use sequential
numbers as session IDs. This types of session IDs are extremely weak and prone
to session prediction. Moreover, an attacker can hijack the session of a legitimate
user by capturing the session ID.

In order to mitigate the effects of an attack where the attacker has stolen the
session ID, the server can maintain a timeout mechanism and regenerate the
session ID after the maximum lifetime of a session ID is reached. The session
ID can be transmitted over a secured connection to avoid being sniffed by an
eavesdropper. If session IDs are re-created whenever there is a change of privi-
lege, the application can prevent session fixation attacks where a user logs into
a session fixed by an attacker.

3.2 Server-side Sessions 23

3.2 Server-side Sessions

Server-side sessions store most of the session state information on the server
side and require only a small amount of content transmission between client
and server. By storing the session data in the web server, an application is
protected from situations where a user can perform any accidental or incidental
changes to the session information. Typically a server-side session management
system initiates a user session by assigning a session ID to it and then passes
the SID to the client through a session tracking mechanism. All the session
state data are stored on the server end in a file system or in a database. The
SID transmitted through a client request is used by the server to identify the
corresponding session states in the session storage.

Figure 3.1: Server-side Session Handling

Figure 3.1 shows the overall structure of an application with server-based ses-
sions. Here, the client sends a request to the server along with his credentials.
The server validates the user credentials and initiates a session after successful
authentication. To initiate a session, the server generates a unique session ID
for the user and stores the session state information in a database. The session
information stored on the server database is indexed by the user session ID.
After initiating a session, the server transmits the session ID to the client. The
client stores the session ID and passes it to the server with every subsequent
request. When a server receives a request from a user including a session ID,
it uses the ID to locate the session information of the user in the database and
retrieves the session state. Once the user session information is retrieved, the
server sends the response to the client.

Server-side session management is capable of storing large amounts of state
information that is easily accessible to the application. Moreover, server-side
sessions are easily expandable to include additional session information. In-

24 Handling Session Data

stead of storing all the session information, this mechanism stores only a session
identifier on the client and thus solves the problem of increased request size.
However, storing session information in a database makes it hard to distribute
over multiple servers and often the database becomes the resource bottleneck
in the system. Since sessions consume resources on the server, the server re-
quires mechanisms to remove the inactive sessions from the database at regular
intervals.

Ye et al.[55] have proposed a scheme for the web servers to efficiently store
session information on the server and verify the cookie state information received
from client. In this scheme, the web server is also able to record the expiration
state information of the cookies and thus prevent the application from cookie
replay attacks. The server maintains an access control entry for each user in a
cookie state database. A secret key is used by the server to generate and verify
the cookies. Two different scenarios have been presented for this scheme: the
simple scheme and M/K scheme.

In the simple scheme, the most recent time when a user has requested a log out
is stored on the access control entry. Initially, it is set to 0. When a user logs
into the application, the server generates an authentication cookie. First of all,
the server creates a Msg that contains the username, the IP address of the user
device, and the current time. Then a keyed MAC of Msg is computed using the
secret key of the server and the cookie is generated by concatenating the MAC
code and the Msg. The server then sends this cookie to the client and the client
is able to access the server resources using the cookie in the subsequent requests.
When the server receives a request from the client including a cookie, the server
first validates the cookie using the MAC code and then compares the timestamp
of the cookie with the recent logout time stored in the access control entry. If
the timestamp is more recent than the recorded time, the client is given access
to the resource. When a user selects to log out of the system, the server again
compares the cookie timestamp with the recorded time in the access control
entry and, if the cookie timestamp is more recent, the server updates the access
control entry with the cookie timestamp.

In an application where a user can have multiple parallel sessions, the simple
scheme needs to be modified, Ye et al. [55] propose the second scheme for this
and it is known as M/K scheme. This scheme allows a server to keep track of
a maximum of m authentication cookies within k days. The structure of the
access control entry and the cookie in this scheme are shown in Figure 3.2. The
(ctime) is entry creation timestamp, (mtime) is entry update timestamp. The
current cookie id represents the id to be used next, the session counter counts
the number of cookies generated on each day over a k-day period and the cookie
states vector (cstates) maintains the state of each cookie. When a user logs
into the application, the server sets the ctime, mtime to current time, sets the

3.3 Client-side Sessions 25

Figure 3.2: Access Control Entry and Cookie in M/K Scheme[55]

first bit of cstates to 1, and adds 1 to the first cell of sessions. The server
then generates the cookie and sends it to the client in the same way as in the
simple scheme. When the user signs in at another time, the server accepts the
request only if the sum of the k entries in the cookie session counters has not
exceeded the maximum cookies limit(m) and updates the access control entry
for the new log in. When a client requests a resource, the server first validates
the cookie and then compares the timestamp of the cookie with current time.
If the cookie is generated in the last k days and the cookie state bit of this
cookie is set to 1, then the client request will be accepted. The cookie session
counter ensures that a maximum of m fresh sessions can be initiated within k
days and these parameters m and k can be adjusted according to the security
requirement.

In both schemes, the integrity of the cookie is protected through the MAC and
the confidentiality of the cookie is maintained by using a server secret key. These
schemes also have the ability to revoke the sessions of a client and it can prevent
replay attacks.

3.3 Client-side Sessions

In client-side sessions, all or most of the user session information is maintained
at the client side. For this reason, the session state data are transmitted between
the client and the server on each request. If the amount of data being passed
from client to server is large, then a client-side session mechanism may become
heavyweight. This type of session management is good enough when the con-

26 Handling Session Data

tent being transferred is small. Moreover, any kind of back-end support is not
necessary in client-side session. As a result, client-side sessions are suitable for
distributed systems. A typical client-side session management process is shown
in Figure 3.3.

Figure 3.3: Client-side Session Handling

Cookies are most suitable for storing session information in client-side sessions.
They are an attractive method for transmitting small amounts of session data.
One of the most distinctive features of client-side sessions is that this technique
has a low back-end overhead. All the session data are passed through the client
requests. Therefore, the client-side sessions are scalable and easy to distribute
over many servers. Moreover, this technique can scale to a large number of
clients. The task of storing the session information is solely managed by the
clients and there is no chance of creating a resource bottleneck at the session
storage.[42]

Most web applications do not want their users to be able to modify their own
session data and, in fact, the user’s ability to modify session data can lead
to security vulnerabilities. Therefore, the client-side sessions need to provide
confidentiality and integrity of the session data and this is ensured when no
party except the server is able to interpret or manipulate the session data. To
accomplish this, an application can encrypt the user session data before passing
it to the client. Alternatively, the server can sign the transmitted session data
in order to prevent any tampering on the client side and verify the session data
when received from the client within requests.

Typically, the cookies in a client-side session are vulnerable. It is recommended
to avoid the use of persistent cookies. Session cookies are destroyed when the

3.3 Client-side Sessions 27

client exits the user agent software, whereas persistent cookies are usually stored
on the system for a longer time. In addition, it is a good idea to have some
session revocation option on the server side, so that the server can invalidate
the sessions that are already expired.[19]

A stateless session cookie bases session management mechanism is presented by
Murdoch in Hardened Stateless Session Cookies.[31] In this session management
mechanism, only a salted iterated hash of the user password is stored in the
database and its pre-image is kept in a session cookie for each user. The session
management uses the following the recursive definition:

a0(salt, password) = H(salt||password)
ax(salt, passowrd) = H(ax−1(salt, password)||password)

Where the salt is a long cryptographically secure pseudorandom number main-
tained for each user and password is the user password. H(.) is a cryptograph-
ically secure hash function. When a user logs into the application for the first
time, he passes his credentials to the server and the server generates the random
salt and calculates the authenticator, known as v = H(an(salt, password)), and
stores both of them in the server database. The value n is the count for hash
iteration and it is a public value. When a user presents his credentials to the
server to log in, the server calculates c = an(salt, password) using the received
password and stored salt in the database. The server rejects the user request if
H(c) 6= v and accepts otherwise. If the user request is accepted, then the server
generates a cookie as following:

exp = t&data = s&auth = c&digest = MACk(exp = t&data = s&auth = c)

Here, t is the expiry time for the cookie, s is the state the web application
needs to maintain, and the digest is a message authentication code under a key
known only to the server. After receiving a cookie, the client can request other
resources by using this cookie.

In this stateless session cookie based system, an attacker with read access to the
server is not able to spoof an authenticated session. Even if the attacker gains
knowledge about the MAC key of the server, the attacker needs to know the
user password to create a valid cookie. Since the user password is not stored on
the server, the attacker cannot generate any valid session cookie.

28 Handling Session Data

Chapter 4

Session Vulnerabilities

In a system, a vulnerability is a weakness that allows an attacker to cause
damage to the service and its owner and users. An attacker uses methods,
known as attacks to manipulate the vulnerabilities in the service.[36] In web
based services, the system is divided between a client and a server that creates
and maintains a session for the client. Most website attacks are carried out
on sessions. Session handling is a critical part of web based services. Users
assume that web based systems are designed securely but in reality most website
developers do not think thoroughly about how they are setting up the site
security. As a result these systems can only provide medium to low level of
security and it is easier to exploit vulnerabilities with the session data in these
systems.

Capturing or identifying the session identifier is the main target in a majority
of attempted security breaches. To the web system, anyone presenting a valid
SID is a genuine user. There is no way for a web service to determine whether
it is presented by a valid user or by an attacker. Therefore, by retrieving a
valid session ID, the attacker can impersonate the user effectively and obtain
the permissions of the legitimate user. Session attacks can be categorized into
two major types: session hijacking and session fixation. The following sections
in this chapter discuss different types of session attacks and the methods to
protect against these attacks for secure web services.

30 Session Vulnerabilities

4.1 Session Hijacking

Session hijacking attack refers to any kind of attack where the sensitive session
token or ID is leaked or compromised. The attacker obtains a valid session ID
after it is associated with a legitimate user session. Using the stolen session
token, the attacker can gain the permissions of the user and access to the web
service. The session token can be compromised in many different ways. [36]
Depending on the exploitation method, session hijacking can be named differ-
ently. Some common methods of session hijacking are session prediction, session
sniffing, cross site scripting and session capture.

Figure 4.1: Session Hijacking

Figure 4.1 presents a general scenario of session hijacking attack. At first, a le-
gitimate client passes his credentials to the web server and the server responses
with a confirmation after validating the credentials. Once the client is authenti-
cated, a session is established between them and they start communicating. An
attacker can capture the session between the client and the server using one of
the methods described later in this section and start impersonating as the client
with his session information. By following these steps, an attacker can gain the
access permission of the client.

4.1 Session Hijacking 31

In general, there are many ways to protect against session hijacking. One way is
to transmit the session identifier for secure contents through a secured connec-
tion. Hence session hijacking can be prevented with the use of different session
identifiers when shifting between secure and unsecure contents i.e. authenticated
and unauthenticated sessions or unsecure http and secure https connections.[15]
Another precaution for session hijacking is to re-authenticate the user prior to
any sensitive actions. In this way, any attacker impersonating a valid user can-
not proceed further and cannot perform restrictive actions. In addition, each
session can have a maximum lifetime. After being active for a specific duration,
the user can be asked to re-authenticate. Hence an attacker cannot keep on us-
ing a hijacked session for a very long period. For systems using the GET method
of session propagation, the SID should be regenerated frequently to avoid the
exposure of the SID for a longer time.

It is rather impossible to correctly detect a session hijack as very few attributes
are passed from the client. Even then, some precautions can be adopted to
make the session hijacking more difficult. Some of the client information that
can be used to detect a session hijacking attempt are client user agent and the
IP address. User agent is an HTTP response header sent from the browser, and
it includes the name of the browser and its version and the operating system.
Typically the user agent does not change at short intervals. However, user
agent is easily predictable and the value may not be constant in a system with
a number of proxy servers. In this kind of system, change of user agent may
generate a false alarm. The other used information, the IP address of the client
can change often nowadays and thus it is not wise to check the exact IP address.
A better solution is to check only the subnet part of the IP address. Even though
checking the IP address is not reliable, it can make the job of an attacker a bit
harder. Any user who has failed this check should be automatically logged out
of the session with the existing SID to prevent any session hijacking attempt.[33]

4.1.1 Session Prediction

In session prediction, an attacker predicts a session ID. There are several meth-
ods for this. Typically session prediction happens when an attacker can detect
a pattern in the SIDs given by the service. This is possible when the web ap-
plication has poor predictable session identifiers. For example, when the SID
is assigned sequentially, by knowing any one session ID the attacker acquires
the knowledge of the previous and next SID. Furthermore, if the services have
weakly encrypted or too short SIDs, it is easier for the attacker to guess a valid
session ID.[49]

Before predicting a session identifier, an attacker needs to gather a good number

32 Session Vulnerabilities

of valid SIDs of legitimate users of the system. After having a collection of SIDs,
the attacker is able to perform analysis. He may gain knowledge about the
information that is used to create a SID and figure out the structure of SIDs.
Furthermore, the session generation process might also include encryption or
hashing. Once the attacker gets an idea of the pattern in SIDs, he may predict
a valid SID to gain access to the system.[36]

For example, a security bulletin of Netcraft.com [53] has given a scenario where a
session identifier of a system may include a session counter which increases with
each new session, the current timestamp when the session id is being created,
the IP address of the server generating the SID and a few bytes of random salt.
The identifier generated from the mentioned information may also be weakly
encrypted. Here the session counter and timestamp always increments, the IP
address of the server will remain constant for a single server system and typically
the random salt is either zero or only refreshed with server reboot. A malicious
user may create many sessions with the target system and analyze the collection.
He might gather the collection of SIDs by other means also. Once the attacker
is able to decrypt the SIDs and know the information used in generating them,
he can try generating many new SIDs following the same structure and become
successful eventually.

However, the predictability level of SIDs of different types depends on their
patterns. Some session tokens are harder to predict than others. Hashed or en-
crypted session IDs are less prone to prediction. Even session IDs containing the
information of random salt can be considered more secure. When session IDs
are generated, it should have sufficient entropy to prevent prediction. It is rec-
ommended that application generated session identifiers must have at least 128
bits of entropy. Strong large random numbers retrieved from a seeded random
number generator can be used as session IDs to prevent session prediction.[33]
Strong encryption on all transmission can also prevent an attacker to gather a
collection of SIDs to perform analysis.[13]

4.1.2 Session Sniffing

Session sniffing is a kind of interception. Interception is possible when an at-
tacker is able to gather data from which he can figure out the SID. The im-
plementation of session interception is more difficult than session prediction.
Session sniffing can be thought of as a man-in-the-middle attack where the at-
tacker can capture the sensitive session token transmitted between the user and
the server through sniffing the transmission traffic between them. After captur-
ing the session token, the attacker can act like a legitimate user to the server and
can have unauthorized access. Session sniffing is possible when the communica-

4.1 Session Hijacking 33

tion channel between the user and the web server is insecure. In other words,
when the web service is not configured to use HTTPS connection, all data trans-
mitted between the client and the server is in plaintext. Without encryption
the transmission can be sniffed by any computer on a network through which
the packet flows. For example, POST form elements of a login page contain
the username and password and this data can be seen while sniffing plaintext
transmission. After that, the HTTP response from the server might contain the
Set-Cookie header including the SID.

Strong cryptographic functions seeded with strong, random key can be used for
generating SIDs. A session identifier whose length is more than 128 bits can
be considered as a safe one. Moreover, encrypting the session identifier can
make the web based system secured to some extent. If the data transmitted
between the server and the client is encrypted, the data captured from the
transmission becomes unreadable. Consequently any kind of interception is not
fruitful. However, any kind of encryption is not able to prevent session sniffing
attacks. Only the use of strong cryptographic algorithm is effective.[33] Use of
TLS communication for encrypted transmission can prevent this kind of attack.
Error messages and stack traces presented by a web system on the occurrence
of unexpected events also must be properly sanitized so that they do not reveal
any information or SIDs. Oftentimes the malicious users are able to gather
important data about the system by triggering errors. [33]

4.1.3 Cross Site Scripting

Web services always provide some methods for the security check in order to
protect against information leakage. Cross site scripting (XSS) permits an at-
tacker to bypass these security checks. In this method, an attacker can read or
modify the session ID. This is achieved by uploading malicious code on a tar-
geted website, and this piece of code makes the website to transmit data across
sites or modify it. An attacker’s ability to perform cross site scripting does not
depend on the used session tracking solution i.e. whether the SID is stored in
GET or POST data or cookies.

At first, the attackers target a website to be compromised. Then, they place
malicious code on it with the help of search input, comment box, forums or any
other places where the website accepts user input. A website is vulnerable to
cross site scripting only when it fails to properly sanitize user inputs. A malicious
user can utilize this cross site scripting vulnerability and make the server read
or modify the GET or POST form elements or cookies. This is possible because
the malicious code resides on the target site that has the permission to read or
modify session data. Hence the code on the target site can direct the client to

34 Session Vulnerabilities

perform an unauthorized task.[36]

In most cases, HTTP requests include the HTTP Referer field. HTTP Referer
attribute keeps record of the page that redirected to the current page. Typically
the Referer field contains the entire URL of the last page including the GET
variables passed across pages. If session identifiers are passed as a GET variable,
the HTTP Referer attribute will expose the SID to the next site that is visited
after leaving the current page.To perform cross site scripting attack on sessions
with GET form data, the malicious code may contain a link that refers to an
external site. Once the client is redirected to this external site, this site is able
to retrieve the SID from the HTTP Referer filed.[33]

For sessions handled with POST data, a code can be placed to add forms includ-
ing a hidden element and this hidden form element contains the SID. Then the
malicious code transmits the form with the hidden field to an external site. Fur-
thermore, XSS attacks can also bypass the security policies of a browser related
to cookie access. A web browser allows a domain to read or modify a cookie
only if it is the one that set the cookie. In XSS the request to read or modify
a cookie is being generated by the malicious code, placed in the actual domain,
and therefore the browser is unable to detect any unauthorized access.[33] In
addition, JavaScript is able to perform extensive attacks. With JavaScript, it is
possible to set the onsubmit property and thereby change the page that accepts
the form data upon submission.

Preventing the clients to input raw HTML code will mitigate the XSS attack
possibilities. Any type of user input needs to be sanitized and escaped prop-
erly. When the user input is escaped, it will be displayed on the web page as
literal code. Any form of link, HTML form or scripts posted by a user will
become inactive after being filtered. Often it is recommended to use built-in
filtering functions instead of implementing a new one. Parsing HTML is very
complex and implementing a filtering function of one’s own might result in some
unnoticed parsing flaws.[33]

The level of security can be increased by setting the secure attribute of the
cookie as true on a cookie based session. When the secure attribute is set to true
for a cookie, the cookie will be transmitted only over a secured communication
channel i.e. HTTPS connection. As a result, the unsecured webpages will not
be able to access the cookies of the secured pages which will restrict the chance
of XSS attack being successful.

To avoid exposing the SID from the HTTP Referer field in sessions using GET
data, an additional level of redirection can be added before the client is led to
the target page. The webpage containing the SID as a GET variable will be
forwarded to an intermediate page and from there the client will be redirected

4.1 Session Hijacking 35

Figure 4.2: HTTP Referer Filtering [33]

to the actual destination page. In this way, the extra redirection will reset the
HTTP Referer field of the destination page to the URL of the intermediate page.
Therefore, the SID of the current page will not be passed to the destination page.
The HTTP Location or Refresh header is useful for performing this action.
This method is known as HTTP Referer filtering. [33]

Figure 4.2 presents an example of HTTP Referer filtering. First, the general
scenario is shown when there is no filtering applied. It is visible that the HTTP
Referer field in the external site contains the URL of the Restricted page along
with the session identifier. When a filtering is applied between the Restricted

page and the External page, the URL containing the session identifier is no
more visible to the external site.

4.1.4 Session Exposure

Session exposure attack is related to the capture of the session token by browsing
session storage in a shared host system. A web based server system needs to
store the session data somewhere. In some cases, the server may store the session
data or SIDs in a publicly-accessible location. Generally, PHP stores its session
variables data in a particular directory that is the same for all the shared hosts.

36 Session Vulnerabilities

In this public session store, the session tokens are saved in files. In some cases,
the session data is stored as plain text in the files. This leads to a situation
where any sharing host can browse the public session storage and the session
data are exposed.[49]

Additionally, cookie-cache is a critical issue for shared host client systems. An
attacker who is able to access the cookie cache can easily be able to read per-
sistent cookies. If the system is publicly accessible then there exists a potential
risk that consequent users will be able to browse the cookie cache of the previous
users.[33]

To mitigate the damage caused by a session exposure attack, a web based system
should be designed in such a way that only a session identifier is stored on the
client machine and the server maintains the other session data including the user
credentials. To prevent the exposure of the session identifiers from a cookie-
cache, persistent sessions should be avoided. In this way, the session cookie will
not be stored on the client cache. Another method to limit the chance of session
exposure is to automatically expire a session after a short period of inactivity.
This will reduce the lifetime of a session and therefore, reduce the probability
of it being hijacked. Storing the session identifiers in a secure location of the
server with access control is also a good practice.

4.2 Session Fixation

Besides session hijacking, another major session attack is known as session fix-
ation. Session fixation arises in systems where the attacker is able to specify
the session identifier for the session of a legitimate user. In this attack, the at-
tacker at first sets the application user’s session ID to an explicit value. Server
generated session ID may sometimes be forged due to a weak cryptographic
algorithm or easily guessable session ID. The victim then authenticates himself
to the application server using the session ID fixed by the attacker. Once the
user is authenticated, the attacker can use the predefined session ID to access
the application server and impersonate the victim user.

In figure 4.3 an overall idea of session fixation is shown. First, the attacker
creates a crafted link to connect to the web server www.example.com by setting
the session ID to a fixed value of 1234. The attacker then presents the link to
the client by posting it on a public place or using some other vulnerability. At
some point, the client clicks on the link and connects to www.example.com with
the fixed value of 1234 for the session ID by presenting his credentials. When a
session is established between the client and the server, the attacker can access

4.2 Session Fixation 37

Figure 4.3: Session Fixation

the client’s session with the known session ID.

Basically, session fixation is a three step attack. The steps of a session fixation
attack is shown in Figure 4.4. To make a session fixation attack, the attacker
generates a link of the target website along with a chosen session identifier. This
is the first step of a session fixation attack. Sometimes, an attacker needs to
initiate a session with the server before authentication and pass on the URL
of that session to the user to authenticate. It those cases, the attacker needs
to maintain the trap session at a regular interval. In the second step, the
attacker needs to present the session trap to the victim user and fix the session.
Typically the attacker posts the link on a public location. To be on a safer side,
the attacker may use the XSS vulnerability of the target website, if possible,
and place the link on the target site. Apparently a victim user may click on
the specific link and try to log into the system. This is the last step of the
fixation attack where the victim accesses the fixed session. Since the crafted
link is encoded with a SID, the web server will not try to overwrite it with its
own. Consequently the user will be able to log into the system with the attacker
specified SID. Now the session becomes accessible to the attacker even without
authentication. [22]

38 Session Vulnerabilities

Figure 4.4: Session Fixation Steps

4.2.1 Setting a Session

Session fixation attack is potentially effective in permissive web applications. A
permissive web application will accept the session identifier presented by the
client and create a new session with the given SID if the session does not exist.
That is, the web server will not try to assign a server generated SID. On the
other hand, a strict web application will only accept session identifiers generated
by the server and override any given session identifier with its own one.[33, 22]
Permissive web applications are vulnerable to pre-assigned session identifiers
while strict ones are not.

In a session fixation attack on a permissive application, the attacker can fix a
session ID of his own choice and the web application will adopt this SID when
the victim presents it. However, in a strict system, the attacker has to create a
session with the web server and then make a trap session with the SID generated
by the server. If the server has implemented idle time out for an inactive session,
then the attacker might need to refresh the trap session at regular intervals.

4.2.2 Fixing a Session

Session fixation attack does not depend on the session tracking solution. Session
data propagated through GET or POST form data are mostly vulnerable to this

4.2 Session Fixation 39

kind of attack. However, cookie based sessions are also at potential risk. Some
client browsers do not follow properly the standards of creating and reading
cookies according to the RFC 2965.[24] Therefore, these browsers contain flaws
that make them vulnerable to session fixation attacks. The session identifier of
a session fixation attack can be fixed in many ways.

HTTP Response Splitting

Using the user input vulnerabilities the web server of an application can be made
to modify the HTTP response and perform some malicious task. Murphey[33]
presents a scenario, where a web page redirects to another page whose URL
is embedded with a variable named productno and the value of this variable
is taken as input from the client. The HTTP response of that web page will
contain the following line, when the value of the productno is AB1234 :

Location: http://www.example.com/index.html?productno=AB1234

Now lets assume that the input for the variable productno is provided as fol-
lowing:

AB1234%0d%0aSet.Cookie:%20sessionID%3d4567

Here the value given as argument to the variable productno is encoded with hex-
adecimal data where %0d%0a decodes to CR-LF (end of line), %20 to space

and %3d to an equal sign(=). Once the variable is decoded and embedded to
a redirect URL, it looks like this:

Location: http://www.example.com/index.html?productno=AB1234

Set.Cookie: sessionID=4567

The given input has added an additional header to the HTTP response of the
server and this header will cause the receiving client browser to set a cookie with
the specified SID. This type of attack is known as HTTP response splitting. The
malicious user can also set an expiration date for the cookie and consequently
the cookie will be stored on disk of the client machine. As a result, the session
ID will be persistent for a longer period. This kind of HTTP splitting attack
can include many lines to the HTTP response.

This kind of attack cannot be successful for the servers that escape or replace the

40 Session Vulnerabilities

CR-carriage return, \r, LF-line feed or end of line characters. These
characters allows a malicious user to control the rest of the headers and body
of the response as well as appending additional responses. Any application
that does not allow these characters as input are free from the HTTP splitting
attack.[33] Furthermore, a preventive measure can be taken into consideration
while encoding a user input into the URL for HTTP headers. The URLs can
be encoded before appending them into the critical HTTP headers such as
Location or Set-Cookie.

Client-side Attacks

Cross site scripting attack is a kind of client side attack. In XSS the attacker
can set the session token and also post malicious code to the target webpage.
This attack becomes possible in the web systems that fail to perform proper
sanitation and filter of the user input. Moreover, sometimes the vulnerability
is caused by a filtering process that fails to filter out some input types. Even
though the output of the filtering process is not a correctly formatted HTML
file, some browsers are made to handle them. Thus sometimes XSS attacks are
successful in some specific browsers.

For example, in a cookie based session XSS can be used to bypass the security
checks of a browser. The browser allows a site to read or modify a cookie if
it has been set by a site within the same domain. Using cross site scripting
an attacker can upload a customized link with malicious code on the targeted
website, and when the victim clicks on the link provided by the attacker, the
malicious program runs on the client-side. Since the code is uploaded on the
site which has set the cookie, the browser will allow the malicious code to access
the cookie and modify it. The attacker can use programs to set the value of the
cookie value of his own choice.[33] For session propagated with POST data, an
attacker can create a form with hidden elements containing a specific SID and
post the code on a public location. For systems using the GET data as session
tracking, a XSS attack can be launched by creating a specially crafted link that
encodes the attacker’s chosen session ID.

4.2.3 Accessing a Session

After the victim user has performed authentication for the trap session, the
system will consider the SID as a valid one. Since the user session is associated
with a SID known by the attacker, he can present the chosen SID to the system
which is considered to be a valid one and acquire the access permissions of the

4.3 Other Attack Possibilities 41

victim. This attack can become extremely harmful when the user does not log
out of the system and the attacker can use the victim’s identity for a longer
time.[22]

4.2.4 Countermeasures

The core of the session fixation attack being successful is the server’s nature
to adopt any pre-defined session identifier. The permissive nature of the web
applications allows a system to behave like this. For this reason, the web ap-
plications can only provide preventive measures to protect against the session
fixation attack.[22] The web applications should only accept session identifiers
generated by the web server i.e. behave like strict web applications. The web
server should always ignore any session identifier provided by the client.

The best way to prevent session fixation is to inactivate the session that is active
during authentication and create a new session with a fresh session ID after a
successful login. In this way the attacker cannot authenticate a session with a
predefined session ID. The attacker can gain knowledge about a valid session
identifier only when he is a legitimate user of the system. Therefore, he will not
be able to create a session trap with a valid SID. Even if the attacker can fix a
session with a specific SID, the SID will be overridden after the authentication
and the attacker will not be able to access the new session. Checking the
stability of the user agent header and the network portion of the IP address
can also restrict the session fixation attempt.[33] Another effective method for
highly sensitive applications is to check the SSL client certificate. Using this
SSL client certificate, a server can check if the session was originally initiated
with the same client using the same certificate.[33, 22]

4.3 Other Attack Possibilities

In addition to session hijacking and session fixation, there exists some other
attack possibilities. Some of them are presented here briefly.

4.3.1 Brute Force Attack

Brute force attack is simple in method. It appears when an attacker repeatedly
tries all possible session identifiers until a valid one is found. This is potentially

42 Session Vulnerabilities

an effective way of acquiring SIDs. If the systems are not designed carefully to
avoid the brute force attack, this can become significant. Strong pseudo random
numbers with enough entropy size can be used to prevent the brute force attack.
Care has to be taken to while calculating the effective entropy size. The entropy
size should be calculated based on the domain of possible identifiers instead of
the size of the buffer containing the ID.[33]

4.3.2 Unlimited Session Expiration

Unlimited or too long session timeout may cause an unauthorized session access
attack. Long session expiration gives an attacker time to predict or exploit a
valid session ID and gain unauthorized access to that session eventually. More-
over, sometimes SIDs are logged and cached in proxy servers. If an attacker can
capture the sessions that have not expired yet, he can use those sessions too.
To prevent this kind of attack, session ids should have smaller timeout window.

Chapter 5

Session Management in PHP

PHP is a recursive acronym and it stands for PHP: Hypertext Preprocessor. It
is a widely-used general-purpose scripting language that is mostly intended for
creating dynamic web content. PHP can be deployed on most web servers and
operating systems. It is an open source tool for server-side scripting, command
line scripting and for creating desktop applications. One of the most significant
features of PHP is its ability to support a wide range of databases. This gives the
opportunity to write database-enabled web pages in PHP.[27] Moreover, each
request in PHP is handled independently and the objects used and resources
opened do not live longer than a single request. Therefore, it is easy to distribute
PHP application across server clusters. The current version of PHP is PHP5.

In server side scripting, PHP scripts are embedded inside HTML documents.
PHP codes are enclosed in starting and ending processing instructions <?php

and ?>. This allows to move into and out of PHP mode. When an HTML file
is parsed in the web server, any PHP script embedded in it is processed by the
PHP engine installed on the web server. After that each PHP script is replaced
by the corresponding script output and the generated HTML is sent back to
client. The client can only see the results of the script but not the actual script.
The overall architecture of a PHP web application is presented in Figure 5.1.

44 Session Management in PHP

Figure 5.1: Architecture of PHP Web Applications

5.1 Handling Session

The best way to maintain session in PHP is to use the built-in session handling
mechanism. Sessions in PHP allow to preserve session data on the web server
across subsequent requests. A typical HTML website cannot pass data from
one page to another one. Any information used in a page is forgotten upon a
new page. In PHP, a session is maintained for each user by creating a unique
session ID (SID) and storing different session variables based on this SID. PHP
uses cookies or URL encoding as session tracking mechanism. A unique SID for
each user helps to differentiate between two different user’s data. Storing data
across pages in PHP is useful in a way that all the interaction are hidden from
the user. Moreover, these session data are temporary and, in most cases, they
are destroyed once the user has left the website and the session.

Figure 5.2 shows the message passing sequence of default PHP session manage-
ment module and how the session ID is used as an index to the session variables
stored on the server. The session variables are the state information related to a
user and stored on the web server. The state information of a user on the server
can be located using the session ID. For example, simple session information in
PHP can be thought of as setting the value of a variable on a web page and then
recalling the variable on the next page. PHP uses the global array $_SESSION

to hold all the session variables. A simple session variable can be in the form
$_SESSION[’var’]. The associative array $_SESSION is able to store any kind
of information e.g. arrays, objects, strings and values.

5.2 Creating Session 45

Figure 5.2: Session ID and Session Variables

Figure 5.3 shows how a typical session based web application works with PHP
session management module. At first, the login page is used to prompt the user
for credentials. The user passes the credentials to the server with an HTML form
using the POST method and this information is gathered by the setup script.
Once authenticated, the setup script sets up a session of the user with the
help of the session management module. After initiating the session, the server
generates a welcome page and redirects the user to that page. The welcome page
and other application pages can retrieve the session variables from the global
array $_SESSION. The session is maintained between the user and the server
as long as the user is requesting any of the application pages. When the user
decides to log out of the system, the server calls a logout script to destroy the
user session and redirects the user to a receipt page which does not use session.
In the following sections, we will give examples of different functionalities of
PHP session management.

5.2 Creating Session

A PHP session needs to be initiated before any user specific information can be
stored in it. It is done at the beginning of the script, before any HTML or text

46 Session Management in PHP

Figure 5.3: A Typical Session based Application in PHP [25]

is sent. The function session_start() first checks if the client request includes
a session identifier, in this case known as PHPSESSID. If the client already has a
SID, the associated session data can be retrieved and accessed via $_SESSION.

If the request does not include any SID, then PHP will create the user session in
the session storage of the web server and associate a SID for that session. This
will allow the server to start saving user specific information. After this, PHP
sets caching headers and the Set-Cookie header. The control flow of session
creation and maintenance is presented in Figure 5.4.

Listing 5.1: Creating Session start.php

1 <?php
2 // s t a r t i n g a PHP se s s i on
3 session start () ;
4 // s e t t i n g a s e s s i on v a r i a b l e
5 $ SESSION [’status’] = ’beginning’ ;
6 // showing a s t a t u s message
7 echo ’Starting a session.’ ;
8 ?>

In Listing 5.1, first we create a session for the user by calling the function

5.2 Creating Session 47

Figure 5.4: Overview of Session Creation and Session Handling [44]

session_start() and then set the value of a session variable named status.
When the user continues to the next page access.php, it will reload the value
of the variable status set in the page start.php.

In Listing 5.2, we can see that the function session_start() is used in the
beginning. By calling this function, the stored session data is loaded into
$_SESSION for use. If a session is not active already, a new session will be-
gin when a variable is added to the global array $_SESSION. Every page that
uses the session needs to place the function session_start() at the beginning
of the HTML page code. Nothing can be sent to the client browser before call-
ing this. Otherwise, the program will cause error. The reason is that headers
can be sent to the browser only once. Calling the function session_start()

or sending text also sends headers to user browser. An alternative approach is
to buffer the output in an internal buffer. The output buffer is activated by
calling ob_start() and no output will be sent from the script until the buffer
is flushed using ob_end_flush().[27]

48 Session Management in PHP

Listing 5.2: Accessing Session Variable access.php

1 <?php
2 // beg in ing a s e s s i on
3 session start () ;
4 // r e c a l l i n g the s e s s i on v a r i a b l e
5 echo ’Current status is ’ . $ SESSION [’status’] ;
6 ?>

Changing the value of a session variable is easy. Assigning a new value to the
associative array $_SESSION using the session variable as key will update the
session variable. A variable is created and stored in the session with a view to
use it in the future. Before using the session variable it is necessary to check if
it already exists. The PHP function isset() takes any variable as argument
and checks if it has been already assigned a value. With the help of a single
session variable and this function we can generate a simple visit counter on a
webpage, as given in Listing 5.3.

Listing 5.3: Page Visit Counter visit.php

1 <?php
2 // beg in ing a s e s s i on
3 session start () ;
4 // check ing the s e s s i on v a r i a b l e ’ v i s i t n o ’
5 i f (! i s set ($ SESSION [’visit_no’]))
6 $ SESSION [’visit_no’] = 1 ;
7 else
8 $ SESSION [’visit_no’]++;
9

10 echo ’Page visited: ’ . $ SESSION [’visit_no’] ;
11 ?>

When the script in Listing 5.3 is run for the first time, it will check if a session
variable named visit_no is created before or not. Since the script is running
for the first time, no session variable is stored yet. Therefore, a new session
variable will be created with the value 1. When the page is visited later, it
will find that a variable with the name visit_no already exists and then it will
increment its value by one.

5.3 Session ID 49

5.3 Session ID

The PHP session module creates a cryptographic session identifier when the
function session_start() is called for the first time. By default, the session
ID is passed to the client in a cookie. If cookies are not enabled on the client
machine, the session ID is propagated by embedding into the URL. Additionally,
IDs can be propagated by GET or POST requests. Moreover, PHP allows access
to the current session identifier with the help of the global constant SID.

The PHP produces the session ID by using a hash function, MD5 by default.
The MD5 hash function produces 128 bit long hashes. PHP uses hexadecimal
representation for the hash output. As a result, the PHP session ID created
using MD5 hash function is a 32 bytes long hexadecimal. The hash function
used to create the SID in PHP can also be configured to use other hash functions.
The session.hash_function property of PHP in the configuration file php.ini
controls the hash function being used to create the SIDs. If the SHA-1 hash
function is used, then the SIDs will be 160 bits long.

The function session_id() is useful for retrieving the current session ID. It
can be also used for generating a new ID. When the function is called without
any argument, it will return the session ID of the currently initiated session. If
the server needs to create a specified session ID, this function can be called with
the value of the new ID as parameter. Using the function session_start() to
create the session ID when a session is initialized is not enough. The session ID
needs to be regenerated whenever there is a change of privilege. PHP provides
the session_regenerate_id() function to re-create the ID of a current session.
Even though a new session ID is created, the session data of the current session
is always maintained. This function is useful for avoiding possible session ID
interceptions or fixation by malicious users.

5.4 Session Cookie

Cookies are used to store small amount of data on the client browser. They allow
to track or identify users across multiple requests and multiple sessions. Cookies
are part of the HTTP header. They can be set in PHP using the setcookie()

function that must be called before any output is sent to the client browser.

The function setcookie() can be called with many arguments:
setcookie(name, value, expire, path, domain, secure, httponly).
All the arguments except the name are optional. The name contains the name

50 Session Management in PHP

of the cookie and it is used as the identifier of the cookie. The value contains
the cookie value that needs to be stored and expire contains the date when the
cookie will expire. When an expiration date is not set, it is treated as session
cookie that can be removed once the browser is closed.

Listing 5.4: Setting a Cookie setCookie.php

1 <?php
2 // check ing i f the cook ie e x i s t s
3 i f (i s set ($ COOKIE [’ViewTime’]))
4 echo ’Recently Visited on: ’ .
5 $ COOKIE [’ViewTime’] ;
6 else
7 echo ’Have not visited recently.’ ;
8

9 //now s e t t i n g the cook ie f o r curren t v i s i t
10 //one month in seconds
11 $month = 24∗60∗60∗30 + time () ;
12 // s e t t i n g the cook ie
13 setcookie (’ViewTime’ ,date ("d/m/y G:i") , $month) ;
14 ?>

Listing 5.4 gives an example where a cookie is set to the value of the current
time and it expires within one month. The idea is to track the recent visit time
of the client and store it in the cookie. Any user re-visiting the page within
a month can see the last time he has visited the site. A cookie sent to the
web server from the client is automatically loaded into the global array named
$_COOKIE. The name of the cookie is used as a key to the associative array to
retrieve the value of the cookie. In Listing 5.4, we use the isset() function to
check if the cookie still exists. If the cookie exists, then the date and time of
the recent visit is shown.

Listing 5.5: Destroying Cookie

1 <?php
2 // prev ious day in seconds
3 $yesterday = time () − 24∗60∗60;
4 // s e t t i n g the cook ie
5 setcookie (’ViewTime’ , date ("d/m/y G:i") , $yesterday) ;
6 ?>

A cookie can be destroyed by setting the same cookie again with the expiration
date fixed as an early date. This way, whenever the cookie is checked next time,
it will be expired and is not considered as a valid one. Web applications destroy

5.5 Storing Session Data 51

the cookie using this method when a user explicitly logs out of the server. The
following example in Listing 5.5 shows how we can destroy the cookie we set in
Listing 5.4.

5.5 Storing Session Data

Most PHP sessions are cookie based. Generally, when a session is initiated, a
cookie is sent to the client browser along with a unique session ID (SID). In order
to keep personalized user data on the server, the user specific information needs
to be stored somewhere. Depending upon the number of users and size of user
specific data, the data can be stored into a file or a database server. By default,
the session variables are stored in a local file on the web server corresponding
to the unique SID. The session file contains the session information in an array.
Whenever a session variable is required, the server retrieves the variables from
the file named with the client SID.

Listing 5.6: Viewing All Session Variable showAll.php

1 <?php
2 // beg in ing a s e s s i on
3 session start () ;
4 // r e c a l l i n g a l l the s e s s i on v a r i a b l e
5 foreach ($ SESSION as $key => $value){
6 echo ’The value of $_SESSION[\’’ .
7 $key . ’\’] is \’’ . $value . ’\’
’ ;
8 }
9 ?>

Changing the value of a session variable is easy. Assigning a new value updates
the session variable. PHP allows to store any kind of variable as session data i.e.
a simple variable, array, object, etc. The content of the session data is serialized
and stored somewhere externally as a binary string after every request. The
string is retrieved from the storage and unserialized when the session data is
used in the next request. The session data in PHP is not capable of storing
any resources e.g.connection handles. In PHP, the session storage for a user is
exclusively locked when a script calls the function session_start() and the
session data is exclusively held by that process until the script closes the session
by calling session_close() or session_write_close(), when the request is
finished. When concurrent requests are made for the same session, they are
handled sequentially while accessing the session data.[2]

52 Session Management in PHP

By default PHP stores the session data in the file system. This default file
storage for the session data can be changed by altering session.save_handler

in the php.ini configuration file. If the option is set as mm, then the session data
will be storeds in the memory. Storing the session data in memory increases
the performance. Sessions can be stored in a database also. Database storage
provides greater scalability and better managebility of sessions. A distributed
database can be used to synchronize session data between distributed servers.
Another option is to store the session data in a PHP native database named
SQLite.[27]

5.6 Destroying Session

Often the session is destroyed when a user quits the application. Although
the session data is temporary and it does not always need to be cleared ex-
plicitly, in some cases it is necessary to remove the session data. The function
session_destroy() is used to destroy all the session data that are associated
to the current session on the server. However, this function does not unset any
global variables tied to the session or the corresponding cookie in the client. In
order to clear all the registered session variables, the function session_unset()

is used. A typical script that can destroy the current session along with all the
session variables is listed below:

Listing 5.7: Destroying a Session endSession.php

1 <?php
2 // beg in ing a s e s s i on
3 session start () ;
4 // f r e e a l l s e s s i on v a r i a b l e
5 session unset () ;
6 // de s t r oy ing the s e s s i on
7 session destroy () ;
8 ?>

In Listing 5.7 session_unset() will free all the session variables that are tied
to the current session and a call to session_destroy() will reset the entire
session.

From security point of view, it is recommended to invalidate the session on the
server side as well as on the client side when the user is logged out of the system.
In order to do this, the session data entry of the user is deleted from the server
session storage and the cookie, residing on the client, is also invalidated.

5.7 Controlling Session Lifetime 53

5.7 Controlling Session Lifetime

Even though the session data are removed from the server by using the func-
tion session_destroy() when a user logs out, a server can never be sure that
the user will always log out. Therefore, it is required to use the PHP built-in
garbage collection mechanism that cleans up the unterminated, unused ses-
sion files from the server. This feature helps to remove the redundant ses-
sion files from the server and reduces the risk of session exposure. The PHP
garbage collection mechanism has two parameters: session.gc_maxlifetime

and session.gc_probability. Both of these parameters can be defined in the
configuration file php.ini.

The gc_maxlifetime parameter defines the period of inactivity in seconds. The
PHP engine runs the garbage collection process when a session is initialized
and investigates each session. The sessions that have not been accessed for
a specified amount of time are removed from the session storage. In a file
based session management mechanism, the update time of the session file is
used as an indicator of last access. Therefore, PHP needs to modify the update
time of the session file when session variables are written or read as well. The
other parameter gc_probability defines the percentage probability that the
garbage collection process will be activated. Since the garbage collection process
can increase the processing load on the server with a high numbers of users, a
balanced percentage value is set for this property depending on the requirements
of the application.

Moreover, the default PHP setting will keep a session cookie active indefinitely
until the client browser is closed. This behavior can be changed by altering
the value of session.cookie_lifetime in the php.ini file. The value of this
option defines the lifetime of the cookie sent to client. [27]

5.8 Session Storage Security

PHP’s native session handling functions can only provide a framework. It is al-
ways the responsibility of the application developers to use the provided frame-
work functions properly and to implement a secure and reliable session man-
agement. The security of the session data lies on the security of the session ID.
By default, PHP creates a file for each session in the temporary directory. But
the location of the session storage is configurable. In order to provide security,
the used directory and the session files need to be protected with authorized
access. It is also possible to create a customized session store for maintaining

54 Session Management in PHP

the session data.

The PHP interpreter allows the application developer to configure some of the
options that control the key aspects of the built-in session management module
behavior. The configuration options are presented in brief in following[27] :

• session.save_handler specifies the method used by PHP store and re-
trieve session variables. The default value is files that use session files.
A useful value for this options is user that uses user defined handlers for
storing and retrieving session data.

• session.use:cookies specifies if the session handling module will use
cookies to transmit the SID and add cookies as a possible session tracking
mechanism.

• session.use_only_cookies specifies cookies as only available session track-
ing mechanism in the session management framework. When this option
is enabled, the session handling mechanism using embedded URLs gets
disabled.

• session.cookie_lifetime can be used to specify the maximum lifetime
of the session cookies that are generated by the server.

• session.cookie_path specifies the path to which the cookies are re-
stricted. By default, session cookies are available to all server paths.

• session.cookie_domain is used to set the domain of the cookie. By
default, the domain is restricted to the host name of the server generating
the cookie.

• session.cookie_secure makes it possible to add the secure option of
the cookie to all generated cookies.

• session.cookie_httponly specifies the HttpOnly option of the cookie
for all newly created cookies.

• session.use_trans_sid is used to turn on or off the option of transparent
rewriting of URLs while using URL-based session IDs.

• session.hash_fucntion selects a hash algorithm that is used for creating
the session identifiers.

• session.referrer_check restricts the creation of sessions to requests
that have the HTTP Referer header field set.

The security of the PHP session handling framework depends on the consistent
and secure setting of all the above parameters in the PHP interpreter engine.

Chapter 6

Best Practices

While web based session management is important for tracking users, the most
critical issue is the ability to bind user authentication and access control to
unique sessions and to develop a secure session management mechanism to avoid
possible session vulnerabilities. The basic rule of a secure session management
is to secure all of its components. The starting point is the security of the
authentication methods and user credentials, so that an intruder cannot access
any resource using the user credentials. Following a successful authentication, an
application formally sets up a session. Generally a session is associated with the
user through a session ID that needs to be cryptographically strong and secure to
protect against session attacks. The confidentiality and integrity of the session
data needs to be provided both on the server and client side. By protecting
the user sensitive information against security attacks, it is ensured that no
unauthorized entity can read or write a user’s data without the permission of
the user. Even if the session token or state information is compromised, the
application must be able to handle it gracefully i.e. minimize the effects of the
attack.

The security of the network connection between the user and the server is an-
other critical issue, and to protect this connection, the authentication informa-
tion and session data can be transmitted over a secured connection. Moreover,
care has to be taken so that an attacker cannot take control of the server and
cause the service to be unavailable to its user. It is not a good idea to compose

56 Best Practices

different security schemes into a new scheme to provide security because more
often the composed scheme includes some unnoticed security vulnerabilities due
to lack of expertise. The security of the system also should not be dependent
on the secrecy of the protocol but only the secrecy of the keys.

It is difficult to implement a secure session management mechanism because
there exists no common guideline for it and there is no single solution that suits
best in all situations. A system needs to provide the right amount of security
according to need because security can be cumbersome for the user and costly
for the service provider. Despite several security risks associated with session
management, there are some basic simple but effective recommendations to
follow that can greatly enhance the security of the session handling method.
The following sections discuss the existing best practice recommendations in
different areas of the session management mechanism.

6.1 Authentication

Most web applications maintain user specific session data and provide controlled
access to sensitive resources. For this reason, the applications require their
user to identify and authenticate while accessing the restricted parts of the
application. A secure authentication method is the entry point of a secure
session management in the application. A secure authentication system along
with a mechanism to protect the user credentials can prevent the session from
invasion. In a way, a secure authentication can also enhance the security of
the session. Web applications can use a TLS connection while transmitting
the user credentials from the client to the server. Since the connection will be
encrypted in TLS, the credentials will be safe from being tampered or sniffed
by an attacker.

When a user is authenticated, the server typically creates a session token or
session identifier to track the user and maintain his authenticated status. This
session token then acts as a temporary password for the user session. When
a web application uses a TLS connection for sensitive resources with authenti-
cation, the web application must be designed properly to handle the security
tokens. While moving back and forth between secured and unsecured areas of
the application, it is important to handle the session in a way which ensures
that no security token is transferred over unencrypted HTTP connections.

Another possible way to handle the secured and unsecured area of a web appli-
cation is to consider the secured and unsecured area as two different services and
to maintain two different sessions for them. As a result, when a user switches

6.2 Token Handling 57

from a secured area to a unsecured area, a new session token will be generated.
It enables user tracking but does not allow the user to access the sensitive re-
sources. Furthermore, when the user wants to access the secured area, there
is a change of privilege and the user can be prompted for his credentials and,
thereby, a new session will be created after successful authentication that gives
access permission to the restricted resources.

One effective way to provide security is to check the TLS client certificate. The
client can acquire a TLS certificate to prove his identity. By presenting the client
certificate and responding to an encrypted message, the client is able to prove
his identity without even revealing his secret key. This type of authentication is
able to mitigate the problem of user credentials being captured by an attacker.
However, the private key is a long series of random binary data which is not
possible to remember and thus restricts the client’s mobility to the devices where
the key is stored.

6.2 Token Handling

Generally a secure session management system includes two different types of
tokens. Authentication token is maintained to allow authorized users to ac-
cess protected data of the web application. However, session tokens are used
to maintain the state of the authorized users across multiple HTTP requests.
Most often the web applications use a single session token to maintain both the
authenticated status and state information of the user. Securing the session
token prevents the attacker from gaining the access to sensitive resources and
personal state information.

However, it is recommended that a system should not rely only on session tokens
for accessing the protected data. When both an authentication token and a ses-
sion token is used in a system, an attacker cannot access the sensitive resources
by stealing the session token only. An attacker has to capture the authentication
token to get the permissions of the valid user. In this type of systems, if the
authentication token is secured against being hijacked, the secured area of the
system will be safe. When an attacker tries to access protected data using only
the session token, he will be redirected to the authentication page and prompted
to provide the credentials.

Since session tokens are used to maintain the authentication status and the
user specific information, they can be thought of as a kind of temporary pass-
words. Therefore, a session token needs to fulfill certain properties to maintain
the security level of the application. The key factors of a session token or ses-

58 Best Practices

sion identifier is its randomness and length. A session identifier needs to be
a unique, strong, long, unpredictable, random number. It is better to use a
cryptographically strong algorithm seeded with a strong random key to gener-
ate the strong long random session ID. When session IDs are generated, they
must have sufficient entropy to prevent prediction. It is recommended that ap-
plication generated session identifiers must have at least 128 bits of entropy. A
session identifier whose length is more than 128 bits can be considered safe from
being predicted.

When a web based application accepts session IDs that are generated by the
client, the application becomes prone to session fixation attack where the at-
tacker can fix a session for a valid user with a chosen session ID. Therefore, it
is a good practice to generate the session ID on the server side. The session
ID generation technique can be designed in such a way that only the server is
able to create a valid session ID. In this way, the application can ensure that
no session ID will be accepted as valid if it is generated by some party other
than the server. The session tokens presented by the client always need to be
validated to ensure that the session token is generated by the server and it is
valid at the time of client request. Another requirement of a session token is
that the user credentials are not encoded within the session token or identifier.
If it is done, then this makes it equivalent to the basic identification scheme.

Since the session token resides on the client end, the user’s ability to modify the
session data can lead to security vulnerabilities. Therefore, web applications
do not want their users to be able to modify their own session data. The
confidentiality and integrity of the session data residing on the client side means
that no party except the server is able to interpret or manipulate the session
data. To accomplish this, an application can digitally sign and encrypt the
user session data before passing it to the client with a strong cryptographic
algorithm. Alternatively, the server can sign the transmitted session data in
order to prevent any tampering on the client side and verify the session data
when from the client within requests. Encrypting the session identifier can make
the web based system secure to some extent.

When a cookie is used as a session tracking solution, the domain of the cookie
needs to be set carefully. It is a good practice not to set the domain of the cookie
to the top level but make it as specific and narrow as possible. When a server
receives a cookie with a session ID, the server needs to verify the domain before
accepting it. Care has to be taken while setting the path of the cookie also. In
order to be able to transfer the cookie over a strong encrypted connection, the
secure attribute of the cookie needs to be set. If this attribute is not set, the
cookie will be transmitted over an unsecured channel.

6.3 Session Data 59

6.3 Session Data

Often session data contains sensitive information of the user. For this reason,
securing the session data is a critical issue in both client side state management
system and server side state management system.

It is a good practice to avoid storing any protected and sensitive data using client
side state management methods. In client side state management methods, the
session token resides on the client end, and therefore, the protected data is more
prone to tampering or hijacking. It is a better practice to adapt proven strong
cryptographic techniques to encrypt and sign the session tokens. Invented new
cryptographic techniques may always end up being broken. Even when the
session token is encrypted, it gives a malicious user the opportunity for trying
to find out the encryption key. If a malicious user is able to figure out the
encryption key, then he is able to cause serious damage to the compromised
system. Data that is used for unsecured user specific decisions are safer to
be stored in the client side. A web application also needs to avoid client side
caching of pages with sensitive data.

When server-based sessions are used and most of the session data is stored on
the server database or file system, special care has to be taken to protect the
data on the server. The session information on the server can be stored in such
a way that the attacker cannot acquire enough knowledge to access the session
even when the session storage is being compromised. For example, passwords
should not be stored as plaintext or even encrypted text in the server storage. It
is better to use one-way password hashes with salt. When the hash of the user
credentials are saved on the server database, an attacker who has compromised
the server database cannot get the information to create a user session.

From the security point view, it is safe for a web application not to rely on
the client side e.g. web browser to invalidate the session data or cookies. It
is always better to handle this functionality on the server side. Therefore, the
server should have a mechanism to destroy the session data and invalidate the
user session, when a user chooses to leave the system or the user is inactive for
a reasonable amount of time.

In order to avoid any unauthorized use of the session, a web server needs to
validate and filter user input coming from all sources. A proper sanity check on
all user input can mitigate the probability of any cross site scripting attacks. It
is better to avoid performing any validation on the client side.

When the session data is stored in a file system on the server, it is not wise to
store the files in a publicly accessible place. The session files needs to be stored

60 Best Practices

in a restricted place where only the server can access them. With controlled
access and restricted storage place, the session data remains safe from being
captured by an attacker. A better approach is to store the session data in
private temporary file areas in the server for each client of the application.

6.4 Session Lifetime

Session lifetime is an important aspect of secured session management. A session
token is generated when a user visits a website for the first time. Then the
session is maintained by following one of the session tracking solutions. At some
point, the session is terminated either by the client or the server. Unterminated
sessions are vulnerable to session attacks. It is always safer to provide a log out
option to allow a user to destroy his current session deliberately. Therefore, a
server has to destroy the existing session data and session token (both in server
side and client side) when the user logs out of the system. Sometimes it is also
necessary to revoke a session at the server side under some situations e.g. in
case of a compromised session. Therefore, the application needs to provide some
mechanism that enables the server to revoke a specified session. Maintaining a
table for user specific sessions can be a way to handle this. Another effective way
to terminate the sessions of a particular user is to maintain a random salt for
each user. By changing the salt of the user whose session has been compromised,
the server can invalidate all the active sessions of that user.

It is always recommended to avoid any long term secrets in a secure session
management. Session lifetime should always be short to minimize the period of
exposure of any compromised session. For this same reason, it not recommended
to use persistent cookies for storing any security sensitive session information.
Often persistent cookies are stored on the disk that is easier to access for a user
than the temporary session cookies residing in the browser memory. It is safe to
automatically expire the existing session tokens and to recreate them from time
to time. Prevention measures are also necessary to prevent any unauthorized
cookie lifetime extension.

Since the server cannot be sure that a user will always log out the system, the
server needs to check for inactive sessions at regular intervals. After a maximum
period of inactivity, the server can expire the current session and ask the user to
re-authenticate. Inactive timeout is a useful way of cleaning up the stale sessions
and preventing session exposure attacks. Moreover, despite of a session being
active, the server cannot determine whether the session is still being used by a
legitimate user. Therefore, an application can implement an absolute timeout
that restricts the overall duration of a session and requires user credentials to

6.4 Session Lifetime 61

regenerate a new session after timeout.

Furthermore, a user should always be re-authenticated before performing any
critical and sensitive operation. Whenever an authentication is performed, the
server will invalidate the previous active sessions and will create a fresh session
ID for a new session. Regenerating the session token after each change in user
privileges helps the application to protect against any session fixation attack.

62 Best Practices

Chapter 7

Conclusion

The most important aspects of a secure session management mechanism are the
ability to bind an incoming request to the session it belongs to, to determine
where and how the session state can be stored, and to find out measures to pro-
tect the mechanisms from attacks. This thesis focuses on analyzing these key
aspects of a secure session management in a single server environment. First of
all, we have examined the basics of HTTP session management and outlined the
various existing options for maintaining application state and handling session
data with HTTP session. Then we have covered the possible session attacks and
discussed the countermeasures that can be adopted to prevent against session
vulnerabilities. In addition, this thesis shows the general steps of implementing
a session with PHP and discusses the implications of manipulating some of the
session management configuration options on the security level of the applica-
tion. In the end, we have studied the available best practices for maintaining a
secure session.

The stateless behavior of HTTP requires web application developers to use ad-
ditional methods for maintaining state and user specific session information.
Both stateful and stateless mechanisms can be used with HTTP to manage ses-
sions. Most often web applications use sessions to impose security restrictions
and encapsulate other state information. Thereby, the security of the session
management module of web applications is a critical issue. By accessing the
session of a legitimate user, an attacker can obtain the access permissions of

64 Conclusion

the user and perform any kind of valid operations. For this reason, the ten-
dency of launching attacks on the session management process is increasing day
by day. Often the session handling processes of web applications are weak in
implementation. Vulnerabilities in the session management process can cause
serious damage since they generally maintain important and sensitive data of
the web based systems. Additional care and preventive measures are required
in existing mechanisms to ensure sufficient level of session security.

Even though there exists many different ways of implementing a session man-
agement mechanism, each implementation method of session tracking has its
specific benefits and limitations. This thesis analyzes the advantages and disad-
vantages of each method from a security point of view. Furthermore, handling
the sessions securely can be delicate with many session vulnerabilities and little
known flaws. A lack of knowledge of the existing session attack possibilities
can easily leave the web application exposed to a security compromise. For this
reason, we have given a detailed description of the possible session exploitations
and some techniques that can be used to prevent invasions and minimize the
impact of attacks. Additionally, the use of session handling framework is an
important design issue in the complex web applications. PHP developers have
access to a powerful and robust session management module through the proper
use of PHP’s built-in session handling mechanism. We have covered the features
of PHP session management that can help to create a reliable and secure web
application and to provide a better experience for the application users. Fi-
nally, developing a secured session management is not a difficult task if some
simple best practices are followed in every aspect of state maintenance. In this
thesis we have presented the available best practice recommendations that web
applications can implement to ensure that their session handling is secure and
their client data is protected. A web application developer in a single server
environment should pay attention to creating and storing of session identifiers,
transmitting the information between the server and the client, and deleting the
session when it is no longer needed either due to user logout or too long idle
time.

There is no perfect solution available for secure session management. The level
of security required by a web application depends on its intended usage. More-
over, every session tracking solution has its advantages and disadvantages and it
is important for a web application developer to understand the various existing
solutions of session management as well as their restrictions. Despite of sev-
eral security risks associated with session management, there exist some simple
but effective best practice recommendations that can greatly enhance the secu-
rity of session management. We hope that this thesis can be considered as an
overall guideline for maintaining a secure session in single server environments.
However, a strong session management is only one element of a secure web ap-
plication. To mitigate the various possible session attacks, good web application

7.1 Future Work 65

design practices are also essential. Several defense-in-depth measures are neces-
sary for securing web applications against session attacks and violations of the
system.

7.1 Future Work

In this thesis, the security analysis performed on the different aspects of session
management has been totally theoretical, depending on studying the research
papers, RFCs and books and examining existing open source PHP applications.
As a future work, it would be better if the session attacks, described in chapter
4, can be launched in a live environment in order to investigate which vulnera-
bilities cause these attacks. Moreover, the stated countermeasures for protecting
against session vulnerabilities can also be the subject of further study to ver-
ify if they are effective in preventing the session attacks and, thereby, help in
improving the security of the session management mechanism.

The discussion of implementing a secured session management process in this
thesis is focused on the PHP framework only. It would be better to analyze
the security provided by other implementation frameworks as a future work. A
comparison between different session management modules can also be useful.

Furthermore, all the best practice recommendations accumulated in this thesis
can be used to design a new session management library that will combine all
the the security measures stated to prevent against the security vulnerabilities
and to avoid security pitfalls in every step of session management. Thereby, a
web based system can be developed using this session management module to
provide secure session handling.

66 Conclusion

Bibliography

[1] Ben Adida. Sessionlock: securing web sessions against eavesdropping.
In Proceeding of the 17th international conference on World Wide Web,
WWW ’08, pages 517–524, New York, NY, USA, 2008. ACM.

[2] Gaylord Aulke. PHP is not Java: session management whitepaper.
Zend Technologies, November 2007. http://static.zend.com/topics/

0200-T-WP-1107-R1-EN-PHP-is-not-Java-Seesions-in-PHP.pdf [re-
ferred 25.05.2011].

[3] J.R. Basto Diniz, C.A.G. Ferraz, and H. Melo. An architecture of ser-
vices for session management and contents adaptation in ubiquitous medi-
cal environments. In Proceedings of the 2008 ACM symposium on Applied
computing, pages 1353–1357. ACM, 2008.

[4] T. Berners-lee, R. Fielding, and H. Nielsen. RFC 1945: Hypertext transfer
protocol-HTTP/1.0. Request for comments, IETF, 1996. http://www.

ietf.org/rfc/rfc1945.txt.

[5] Karthikeyan Bhargavan, Ricardo Corin, Cédric Fournet, and Andrew D.
Gordon. Secure sessions for web services. ACM Trans. Inf. Syst. Secur.,
10, May 2007.

[6] Raffaele Bolla, Riccardo Rapuzzi, and Matteo Repetto. Handling mobility
over the network. In Proceedings of the 4th International Conference on
Future Internet Technologies, CFI ’09, pages 16–19. ACM, 2009.

[7] M. Cao, T. Xing, and C. Wang. Implementation of web security & identity
scheme based on session & online table. In Computer Science & Education,

http://static.zend.com/topics/0200-T-WP-1107-R1-EN-PHP-is-not-Java-Seesions-in-PHP.pdf
http://static.zend.com/topics/0200-T-WP-1107-R1-EN-PHP-is-not-Java-Seesions-in-PHP.pdf
http://www.ietf.org/rfc/rfc1945.txt
http://www.ietf.org/rfc/rfc1945.txt

68 BIBLIOGRAPHY

2009. ICCSE’09. 4th International Conference on, pages 1278–1283. IEEE,
2009.

[8] CERT. CERT advisory CA-2000-02 malicious HTML tags embedded in
client web requests, February 2000. http://www.cert.org/advisories/

CA-2000-02.html [referred 25.05.2011].

[9] M.E. Chalandar, P. Darvish, and A.M. Rahmani. A centralized cookie-
based single sign-on in distributed systems. In ITI 5th International Confer-
ence on Information and Communications Technology, 2007 (ICICT 2007),
pages 163–165, Dec 2007.

[10] Nico L. De Peol. Automated security review of php web applications with
static code analysis. Master’s thesis, University of Groningen, May 2010.

[11] Pax Dickinson. Top 7 PHP security blunders, December 2005. http:

//articles.sitepoint.com/article/php-security-blunders [referred
25.05.2011].

[12] T. Dierks and E. Rescorla. RFC 5246: The transport layer security (TLS)
protocol version 1.2. Request for comments, IETF, August 2008. http:

//tools.ietf.org/html/rfc5246.

[13] D. Endler. Brute-force exploitation of web application session IDs.
iDEFENSE, 2001. Retrieved from http://www.cgisecurity.com/lib/

SessionIDs.pdf [referred 25.05.2011].

[14] EUROSEC. Web application session management, 2007.
http://www.secologic.org/downloads/web/070212_Secologic_

SessionManagementSecurity.pdf [referred 25.05.2011].

[15] EUROSEC, GmbH, Chiffriertechnik, and Sicherheit. Session management
in web applications, 2005. www.eurosec.com [referred 25.05.2011].

[16] R. Fielding, J. Gettys, J. Mogul, H. Frystyk, L. Masinter, P. Leach, and
T. Berners-Lee. RFC 2616: Hypertext transfer protocol-HTTP/1.1. Re-
quest for comments, IETF, 1999. http://www.ietf.org/rfc/rfc2616.

txt.

[17] Brad Fitzpatrick. Distributed caching with memcached. Linux Journal,
2004, August 2004.

[18] J. Franks, P. Hallam-Baker, J. Hostetler, S. Lawrence, P. Leach, A. Lu-
otonen, and L. Stewart. RFC 2617: HTTP authentication: Basic and
digest access authenication. Request for comments, IETF, 1999. http:

//www.ietf.org/rfc/rfc2617.txt.

http://www.cert.org/advisories/CA-2000-02.html
http://www.cert.org/advisories/CA-2000-02.html
http://articles.sitepoint.com/article/php-security-blunders
http://articles.sitepoint.com/article/php-security-blunders
http://tools.ietf.org/html/rfc5246
http://tools.ietf.org/html/rfc5246
http://www.cgisecurity.com/lib/SessionIDs.pdf
http://www.cgisecurity.com/lib/SessionIDs.pdf
http://www.secologic.org/downloads/web/070212_Secologic_SessionManagementSecurity.pdf
http://www.secologic.org/downloads/web/070212_Secologic_SessionManagementSecurity.pdf
 www.eurosec.com
http://www.ietf.org/rfc/rfc2616.txt
http://www.ietf.org/rfc/rfc2616.txt
http://www.ietf.org/rfc/rfc2617.txt
http://www.ietf.org/rfc/rfc2617.txt

BIBLIOGRAPHY 69

[19] K. Fu, E. Sit, K. Smith, and N. Feamster. Dos and don’ts of client au-
thentication on the web. In Proceedings of the 10th conference on USENIX
Security Symposium-Volume 10. USENIX Association, 2001.

[20] P. Brighten Godfrey, Scott Shenker, and Ion Stoica. Minimizing churn
in distributed systems. SIGCOMM Comput. Commun. Rev., 36:147–158,
August 2006.

[21] A. Goldberg, R. Buff, and A. Schmitt. Secure web server performance dra-
matically improved by caching SSL session keys. In Workshop on Internet
Server Performance, Wisconsin, USA, 1998.

[22] M. Koľsek. Session fixation vulnerability in web-based applications. Acros
Security, page 7, Dec 2002. http://www.acrossecurity.com/papers/

session_fixation.pdf [referred 25.05.2011].

[23] Balachander Krishnamurphy, Jeffrey C. Mogul, and David M. Kristol. Key
differences between HTTP/1.0 and HTTP/1.1. In Proceedings of the eighth
international conference on World Wide Web, WWW ’99, pages 1737–1751,
New York, NY, USA, 1999. Elsevier North-Holland, Inc.

[24] D.M. Kristol and L. Montulli. RFC 2965: HTTP state management mech-
anism. Request for comments, IETF, 2000. http://www.ietf.org/rfc/

rfc2965.txt.

[25] David Lane and Hugh E. Williams. Web Database Applications with PHP
and MySQL. O’Reilly & Associates, Inc. Sebastopol, CA, USA, 2004.

[26] A.X. Liu, J.M. Kovacs, C.T. Huang, and M.G. Gouda. A secure cookie
protocol. In Computer Communications and Networks, 2005. ICCCN 2005.
Proceedings. 14th International Conference on, pages 333–338. IEEE, 2005.

[27] Nuno Lopes, Mehdi Achour, Friedhelm Betz, Antony Dovgal, Hannes Mag-
nusson, Georg Richter, Damien Seguy, and Jakub VranaBakken. PHP
Manual. http://php.net/manual/en/index.php [referred 25.05.2011].

[28] Nuno Loureiro. Programming PHP with security in mind. Linux Journal,
2002, October 2002.

[29] Oliver Masutti. Distributed web session management. Master’s thesis,
University of Zurich, Oct 2000. http://www.ifi.uzh.ch/archive/

mastertheses/DA_Arbeiten_2000/Masutti_Oliver.pdf [referred
25.05.2011.

[30] Z. Miller, D. Bradley, T. Tannenbaum, and I. Sfiligoi. Flexible session
management in a distributed environment. In Journal of Physics: Con-
ference Series, volume 219, page 042017. IOP Publishing, 2010. http:

//iopscience.iop.org/1742-6596/219/4/042017/ [referred 25.05.2011].

http://www.acrossecurity.com/papers/session_fixation.pdf
http://www.acrossecurity.com/papers/session_fixation.pdf
http://www.ietf.org/rfc/rfc2965.txt
http://www.ietf.org/rfc/rfc2965.txt
http://php.net/manual/en/index.php
http://www.ifi.uzh.ch/archive/mastertheses/DA_Arbeiten_2000/Masutti_Oliver.pdf
http://www.ifi.uzh.ch/archive/mastertheses/DA_Arbeiten_2000/Masutti_Oliver.pdf
http://iopscience.iop.org/1742-6596/219/4/042017/
http://iopscience.iop.org/1742-6596/219/4/042017/

70 BIBLIOGRAPHY

[31] S.J. Murdoch. Hardened stateless session cookies. In Sixteenth Interna-
tional Workshop on Security Protocols, Cambridge, UK, 2008. http://

www.cl.cam.ac.uk/~sjm217/papers/protocols08cookies.pdf [referred
25.05.2011].

[32] L. Murphey. Secure web-based authentication. 2004. http:

//citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.103.

3893&rep=rep1&type=pdf [referred 25.05.2011].

[33] Luke Murphey. Secure session management: Prevent-
ing security voids in web applications, Jan 2005. http:

//www.sans.org/reading_room/whitepapers/webservers/

secure-session-management-preventing-security-voids-web-applications_

1594 [referred 25.05.2011].

[34] R. Nixon. Learning PHP, MySQL, and JavaScript, chapter 13. O’Reilly
Media, 2009.

[35] Gunter Ollmann. Web based session management - best practices in
managing HTTP-based client sessions. http://www.technicalinfo.net/
papers/WebBasedSessionManagement.html [referred 25.05.2011].

[36] OWASP. The open web application security project. https://www.owasp.
org/index.php/ [referred 25.05.2011].

[37] Chris Palmer. Secure session management with cookies for web
applications, Sep 2008. http://www.isecpartners.com/files/

web-session-management.pdf [referred 25.05.2011].

[38] J.S. Park and R. Sandhu. Secure cookies on the web. Internet Computing,
IEEE, 4(4):36–44, 2002.

[39] Guy Pujolle, Ahmed Serhrouchni, and Ines Ayadi. Secure session man-
agement with cookies. In Proceedings of the 7th international conference
on Information, communications and signal processing, ICICS’09, pages
689–694, Piscataway, NJ, USA, 2009. IEEE Press.

[40] J. Salowey, H. Zhou, and Tschofenig H. Eronen, P. RFC 5077: Trans-
port layer security (TLS) session resumption without server-side state. Re-
quest for comments, IETF, January 2008. http://tools.ietf.org/html/
rfc5077.

[41] V. Samar. Single sign-on using cookies for web applications. In Enabling
Technologies: Infrastructure for Collaborative Enterprises (WET ICE’99),
pages 158–163. IEEE, 2002.

[42] G. Schlossnagle. Advanced PHP programming, chapter 14. Sams Publishing,
Indianapolis, IN, USA, 2003.

http://www.cl.cam.ac.uk/~sjm217/papers/protocols08cookies.pdf
http://www.cl.cam.ac.uk/~sjm217/papers/protocols08cookies.pdf
http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.103.3893&rep=rep1&type=pdf
http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.103.3893&rep=rep1&type=pdf
http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.103.3893&rep=rep1&type=pdf
http://www.sans.org/reading_room/whitepapers/webservers/secure-session-management-preventing-security-voids-web-applications_1594
http://www.sans.org/reading_room/whitepapers/webservers/secure-session-management-preventing-security-voids-web-applications_1594
http://www.sans.org/reading_room/whitepapers/webservers/secure-session-management-preventing-security-voids-web-applications_1594
http://www.sans.org/reading_room/whitepapers/webservers/secure-session-management-preventing-security-voids-web-applications_1594
http://www.technicalinfo.net/papers/WebBasedSessionManagement.html
http://www.technicalinfo.net/papers/WebBasedSessionManagement.html
 https://www.owasp.org/index.php/
 https://www.owasp.org/index.php/
http://www.isecpartners.com/files/web-session-management.pdf
http://www.isecpartners.com/files/web-session-management.pdf
http://tools.ietf.org/html/rfc5077
http://tools.ietf.org/html/rfc5077

BIBLIOGRAPHY 71

[43] C. Shiflett. PHP security. ApacheCon. (Las Vegas, USA, 2004) http:

//shiflett.org/php-security.pdf [referred 25.05.2011].

[44] C. Shiflett. Essential PHP security. O’Reilly Media, Inc., 2005.

[45] Pekka Silvekoski. Client side migration of authentication session. Master’s
thesis, Aalto University, Jan 2010.

[46] D. Sklar and A. Trachtenberg. PHP Cookbook, chapter 11. O’Reilly Media,
2006.

[47] SMF. Simple machines forum. http://wiki.simplemachines.org/smf/

Main_Page [referred 25.05.2011].

[48] C. Snyder and M. Southwell. Pro PHP security. Apress, 2005.

[49] Przemek Sobstel. PHP session security, 2007. http://segfaultlabs.com/
files/pdf/php-session-security.pdf [referred 25.05.2011].

[50] H. Song, H. Chu, and S. Kurakake. Browser session preservation and mi-
gration. Poster Session of WWW, Hawai, USA, pages 7–11, 2002.

[51] Sanna Suoranta, Jani Heikkinen, and Pekka Silvekoski. Authentication
session migration. In NORDSEC 2010, The 15th Nordic Conference on
Secure IT Systems, Espoo, Finland, October 2010.

[52] Codex Documentation Team. Wordpress codex. http://codex.

wordpress.org/ [referred 25.05.2011].

[53] Martyn Tovey. Predictable session IDs. NetCraft, January 2003.
http://news.netcraft.com/archives/2003/01/01/security_

advisory_2001011_predictable_session_ids.html [referred
25.05.2011].

[54] L. Welling and L. Thomson. PHP and MySQL Web development, Fourth
Edition. Addison-Wesley, 2009.

[55] R. Ye, A. Chan, and F. Zhu. Efficient cookie revocation for web authenti-
cation. IJCSNS, 7(1):320, 2007.

[56] Chuan Yue, Mengjun Xie, and Haining Wang. An automatic HTTP cookie
management system. Comput. Netw., 54:2182–2198, September 2010.

http://shiflett.org/php-security.pdf
http://shiflett.org/php-security.pdf
http://wiki.simplemachines.org/smf/Main_Page
http://wiki.simplemachines.org/smf/Main_Page
http://segfaultlabs.com/files/pdf/php-session-security.pdf
http://segfaultlabs.com/files/pdf/php-session-security.pdf
http://codex.wordpress.org/
http://codex.wordpress.org/
http://news.netcraft.com/archives/2003/01/01/security_advisory_2001011_predictable_session_ids.html
http://news.netcraft.com/archives/2003/01/01/security_advisory_2001011_predictable_session_ids.html

	Preface
	Acknowledgements
	1 Introduction
	1.1 Problem Statement
	1.2 Organization of the Thesis

	2 Session Management
	2.1 Session Tracking Solutions
	2.2 Session Functionalities
	2.3 Secure Sessions

	3 Handling Session Data
	3.1 Session Identifier (SID)
	3.2 Server-side Sessions
	3.3 Client-side Sessions

	4 Session Vulnerabilities
	4.1 Session Hijacking
	4.2 Session Fixation
	4.3 Other Attack Possibilities

	5 Session Management in PHP
	5.1 Handling Session
	5.2 Creating Session
	5.3 Session ID
	5.4 Session Cookie
	5.5 Storing Session Data
	5.6 Destroying Session
	5.7 Controlling Session Lifetime
	5.8 Session Storage Security

	6 Best Practices
	6.1 Authentication
	6.2 Token Handling
	6.3 Session Data
	6.4 Session Lifetime

	7 Conclusion
	7.1 Future Work

