
Attack Generation From System
Models

Sameer K.C.

Kongens Lyngby 2011
IMM-MSC-2011-44



Technical University of Denmark
Informatics and Mathematical Modelling
Building 321, DK-2800 Kongens Lyngby, Denmark
Phone +45 45253351, Fax +45 45882673
reception@imm.dtu.dk
www.imm.dtu.dk



Summary

In a real world system such as organizational buildings, it is often hard to find the
culprit who breaches the security at a particular location in the system. Formal
methods are of little help because analyses and formalizations are available for
software systems but not for real world systems. There are some approaches
available such as threat modelling that try to provide the formalisation of the
real-world domain, but still are far from the rigid techniques available in security
research.

The situation gets even worse in case of insider threats. Insiders have better
access, trust and intimate knowledge of surveillance and access control mecha-
nisms of the system. Therefore, an insider can do much more harm to a system
and its assets, and, even worse, an insider attack can be very difficult to trace.

With the help of static analysis techniques we can analyse an abstracted system
model that allows for easy modelling of real-world systems. This abstraction
makes the real world system an analysable model with an underlying semantics
that will help us to carry out different analysis on the system. We can in turn
define a modelling language that can be the basis for detecting attack threats
at various locations in a system.

This thesis work focuses on generating potential attacks in a real world system
by applying static analysis techniques to a system model, i.e., identifying which
actions may be performed by whom, at which locations, accessing which data.
In this work we developed a tool, written in Java, which is used to generate
attacks at specified point in the system, i.e., what kind of attacks can happen
at what locations and by what actors.
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Chapter 1

Introduction

In today’s world information plays vital role. The information is core to any
business as well as the society. The world is seamlessly connected to offer in-
formation or access data resources physically and virtually at any location on
the globe. Day to day operations from surfing the internet to big economical
transactions, all of these tasks depend in some way on the confidentiality, in-
tegrity and availability of the information. Any compromise in the information
may lead to disastrous consequences.

Information has become so vital in today’s world that it has led to information
theft. A wide range of attacks happen everyday in the software world to gain
unauthorized access in order to get the information. Therefore, a wide range of
access control mechanisms have been developed in years as a mean to restrict the
access of data. These access control do well most of the time when the intruder
is mostly outsider. But problems arise when the intruder is insider. Insider
threat is one of the toughest challenge for security people because the insider
has knowledge and some access rights within the organization. General idea is
to secure the information by making the access control tight. But sometimes
these measure do not serve their purpose, that is in case of such a insider attack,
investigators often have to fall back on log file analysis to find out the possible
attackers.



2 Introduction

1.1 Insider Threat

Of all the attacks an organization security policies can handle insider attack
is the most dangerous one. The insider problem has garnered the interest of
many researches and agencies (Anderson and Brackney [2004]). Insiders have
already the advantage of knowing the system well and can thus take advantage
of the loop holes in the security. In this way an insider attack can pose a
bigger threat than outside attacks and can result in catastrophic damages. Until
recently, there has been relatively little focused research into developing models,
automated tools, and techniques for analysing and solving the insider problem.
We still depend on log file audits to deal with such a serious threat (Anderson
and Brackney [2004]).

1.2 Real World

The biggest problem of insider threat lies in the real world such as organization
buildings and infrastructures such as human actors, folder, keys, printouts etc.
There are many analyses and formalization approaches that deals with software
systems while there is little work done for the real system. This may be because
software systems often are rigorous whereas same is not true in the real world
scenario. Work such as ”Threat Modelling” (Swiderski and Snyder [2004]) have
been used to formalize the real world systems but lack the rigid techniques and
formalization available in formal methods.

Probst, Hansen, and Nielson [2007] have proposed a solution to counteract in-
sider problem in a real world system model. At first a formal model of systems
is developed that represents real-world scenarios. These high-level models are
then mapped to acKlaim, a process algebra with support for access control, that
is used to study and analyse properties of the modelled systems. The analysis
of processes identifies which actions may be performed by whom, at which loca-
tions, accessing which data. This allows to compute a superset of audit results
before an incident occurs.

1.3 Thesis Work

The thesis focuses on developing a tool that is incorporates Probst and Hansen
[2008] solution and tries to provide a tool base to carry out such analyses. The
tool based on ”EXASYM” (short hand for Extensible Analysable System Model
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discussed in Probst and Hansen [2008]) will be used to calculate a superset of
attacks that can be caused by an attacker at a given location in the specified
system. Thus the tool can be viewed as mechanism to generate possible sets of
attacks at a particular location or data in the given system specification.

1.4 Related Work

The design and implementation of our tool is influenced by a number of research
works. In this section we will briefly look upon those influences.

KLAIM, Nicola et al. [1998], abbreviated for Kernel Language for Agents In-
teraction and Mobility) is a process calculus that describes mobile agents and
interaction. Some of the several other dialects of the KLAIM family are µKlaim
by Gorla and Pugliese [2003], OpenKlaim by Bettini et al. [2002] and acKlaim
by Probst et al. [2007]. Our tool is based on the concept of acKlaim. acKlaim
is an extension to µKlaim calculus with addition of access control mechanisms
and a reference monitor semantics (inspired from Hansen et al. [2006]) to en-
sure the compliance with the access policies in the system. Like other KLAIMs,
acKlaim also consists of three layers: nets, processes, and actions. The addition
in acKlaim to other Klaim is that processes are annotated with a name, in order
to model actors moving in a system, and a set of keys to model the capabilities
they have.

Portunes by Dimkov et al. [2011] is another language that deals with insider
problem. Portunes is also based on the KLAIM family. Porturnes uses the
containment relation as describe by Dragovic and Crowcroft [2005]. Portunes
describes the system as layer of containments whereas our method breaks the
system infrastructure into components such as locations, actors, data and key.
In Portunes, there are three layers: spatial, object and digital. The spatial
layer describes structure of organization like rooms, halls and elevators. The
object layer includes objects in the organization, such as people, computers and
keys. The digital layer presents the data of interest. The idea behind creating
these layers is to allow actions that happens only in one single layer (for e.g.
copying, reading is only done for data) or between the specific layers (a person
can move data, but data cannot move a person). Our approach doesn’t have any
containment relation however we have defined set of actions such as move action
is for locations not for data, read action is for data not for location etc. As in
our approach, Portunes also provides semantics to the system by presenting
system specification as a graph based and providing annotations or meanings to
the edges and nodes in the graph. Also, Portunes like our method uses access
control policies to describe security mechanisms.
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1.5 RoadMap

The thesis is structured as below:

Chapter 2 gives the background theory on which the development of our tool
is based. In this chapter we will see theory about abstract system, system
components, modelling language grammar and modelling analyses.

Chapter 3 covers the details of analysis and design pattern of our tool. In this
chapter we will see the steps and considerations taken for the implementation
of the tool. We will discuss the principles on which we base our tool and also
present different analyses that our tool can do. Similarly, we will exhibit how
our tool is designed to incorporate future extensions and enhancements of the
tool.

Chapter 4 provides a detail on the implementation of the theory so far dis-
cussed in earlier chapters. In this chapter we will discuss the tool we devel-
oped which can be used to generate attacks in the system model. The chapter
includes the detailed functionalities of the tool and explain different external
libraries used in our tool.

In Chpater 5 we will evaluate the functionalities of our tool. We will set some
basic tasks to be performed by the tool, evaluate the outcome and check whether
the tool outputs as expected.

Finally, Chapter 6 provides conclusion of our work. Also, functionalities that
we have thought of but haven’t implemented yet due to time limitations are
briefly described here.



Chapter 2

Background Theory

In this chapter we will cover the background theory on our research work.

2.1 Insider Problem

The IT industry has revolutionized our world. The use of IT infrastructures in
day to day businesses like banking, communication, transportation, healthcare
etc. shows our increasing dependency on computer systems. With all these
increasing dependencies, the computer network world is being filled with massive
loads of data every day. Some data may be public or worthless, but some data
are of high importance, clandestine and worth a lot. The safety of these data
is the concern of anyone who owns the data as there are growing number of
cyber attacks to steal the data. This has resulted in launch of a variety of
security tools such as IDS(Intrusion Detection System), anti virus software,
firewalls etc., which helps to detect the threat and counter measure it wherever
possible. Many studies have been done to know the origins of these attacks.
The CSI 2009 survey [Com, 2009] states that 30% of the respondents found
that malicious activities (such as pornography, pirated software, etc.) is caused
by insiders and 25% of the respondents felt that over 60 percent of their financial
losses were due to non-malicious actions by insiders. The intention of an insider
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may not be necessarily malicious but may cause a loss. So, if the same insider
has a malicious intent then losses can be hazardous.

With the feel of need to address the problem of Insiders there are lots of studies
going on in research communities. In Bishop [2005], Matt Bishop defines insider
as:

Definition 2.1 An insider with respect to rules R is a user who may take an
action that would violate some set of rules R in the security policy, were the user
not trusted. The insider is trusted to take the action only. when appropriate,
as determined by the insider’s discretion.

The definition is relative to the set of rules. An example would clarify the
definition. Three users A,B and C can read, read/write and read/write/edit an
article. So, in this way we have

Rule 1(R1 ) : { read }
Rule 2(R2 ) : { read , wr i t e }
Rule 3(R3 ) : { read , write , e d i t }

Any person who does not satisfy rule R1 is less insider than any one who
satisfies R2 or R3. Similarly, a person who satisfies rule R3 is classified as
more insider than the one who can only satisfy R2. So the one who meets rule
R3 automatically meets R2 and R1 and so on, forming a linear hierarchy. So,
the insider term is more relative and it will be more suitable to call an entity an
insider with respect to the set of rules R or if the restriction rules are inclusive
then one entity is insider relative to another entity.

Bishop further completes the definition of the insider as:

Definition 2.2 The insider threat is the threat that an insider may abuse his
discretion by taking actions that would violate the security policy when such
actions are not warranted. The insider problem is the problem of dealing with
the insider threat.

Traditional methods of policy-based enforcements will not work effectively to
deal with insider problems as these policy-based enforcements are based on
granting access on trust basis which insiders by definition violate. The notion of
insider and insider problem in this work is based on the definition that Bishop
proposed.
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2.2 Modelling Systems

In this section we will see how we define a system model that represents the real
world system and holds its properties. This system model will be analysable
and later on we will see how we apply analyses techniques on this system model.
This sections is based on Probst and Hansen [2008]

2.2.1 General System Model

A real world system that we are talking about such as buildings has some basic
properties. Every building has locations for example server room, reception and
then these locations are connected. Then there are actors or the people who
can move around these locations. These actors have certain access grants to
perform legitimate actions inside the organizational space. These actions can
include moving from one location to another as well as data operations such as
read and write.

Figure 2.1 from Probst et al. serves as an example to illustrate a higher level
overview of a real building. Throughout this thesis we will be consulting this
example. As can be seen from the figure, a real world building has physical
locations (entrance, hallway, server room with printer, user office and janitor
workshop), data network connection between computers at user office and server
room and a printer is connected to the computer in server room. Entrance access
policy is face recognition system while in other rooms there is cipher lock access
policy whereas a physical key is needed to access the janitor’s room. The people
in the system are a user and a janitor.

2.2.2 Analysable System Model

In the previous section we have seen a real building scenario. Now in this section
we will see the abstract model of the general model. Abstraction is done in order
to figure out the components that the system is comprised of.

Components can be location components such as the server room and the user
office, data components such as keys and real data, mobile components such as
processes and actors. Data is located at a location. Keys are either assigned to
actors or stored at a location. Locations are connected with edges to provide
movement for the actors.
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Figure 2.1: Example system connected with different locations (rooms) and
virtually connected with data networks. Icons on doors specify access control
mechanisms e.g. the entrance with face recognition and janitor room with tra-
dition key-lock.

Now we will briefly explain the components that the system consists of:

2.2.2.1 Infrastructure

The infrastructure consists of a set of locations and connections. Locations can
be modelled as a node in the graph. Also the locks at the doors can be seen as
locations since one need to pass these locks to reach to the room. In general,
where data can be located and where access can be restricted is modelled as a
node.

There can be multiple connection paths between two locations. Also the con-
nection can be directed or undirected as in case of real system. For instance in
Figure 2.2 the connection between HALL and SRV is Hall → CLSRV → SRV
since to go to sever one need to pass the authentication at CLSRV node which
represents the lock of the server room. But there is a direct way SRV → HALL
because one does not need any authentication to get out of the room if one is
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Figure 2.2: Abstraction for the example system from Figure 2.1 The different
kinds of arrows indicate how connections can be accessed. The solid lines,
e.g., are accessible by actors modelling persons, the dashed lines by processes
executing on the network. The dotted lines are special in that they express
possible actions of actors.

already inside it. Also the connection can be virtual as in case of data net-
work. The dashed line between PC1 and PC2 in the figure, for example, depicts
the virtual connection between two PCs. The connection flow is based on the
connection model existing in the real system.

The node labelled ”Outside” is outside the interest of our example model. What-
ever lies in the Outside does not concern the modelling of the building system
in the example. These nodes such as Outside nodes are collapsed nodes. Col-
lapsed nodes allow to focus on specific area of system to be modelled. Later on
one can replace the collapsed nodes with an extended system model to include
previously ignored areas of the system.

Domains are used to group the locations. All the physical locations, for example,
can be under domain ”Locations” while all the data nodes such as PC1, PC2
and printer can be under domain ”Data”. The idea of grouping locations under
a domain is to separate the interaction knowledge between different groups of
locations, i.e., we may not want to have any connection between two domains



10 Background Theory

in the system.

2.2.2.2 Actors

Actors are defined as the entities that can move from one location to another
in the infrastructure. Actors can be people like users or janitors or can be
processes such as data operations between two computers. Since locations have
restriction policies, to access a location actor need some access rights. We call
this actor’s capabilities. An actor’s capabilities can be itself (in case of face/print
recognition) or it can be cipher keys/physical keys.

2.2.2.3 Data

Data are the objects actors work with. Data can be any set of information
located at any location or possessed by any actor. For instance any information
stored in computers PC1 and PC2 can be regarded as data. We can also asso-
ciate certain knowledge gained by any actor as data. For instance, if an actor
A knows the cipher key of one location then we can regard that knowledge as
data and associate it with that actor.

2.2.2.4 Actions

Actors are supplied with a set of actions. Actions can be in/out, i.e., destructive
read and output of data; move, i.e., migrate from one location to another; eval,
i.e., spawn a process and read, i.e., non destructive read. These actions model
the behaviour of the system.

So the system model can be defined as (Probst and Hansen [2009]):

Definition 2.3 A system model consists of all the components just introduced.
Using locations, actors, data, and actions, it allows to capture the most impor-
tant aspects of systems and insider threats who the user is, what the user does
and knows, and where the user does it. While very simple in nature, this model
is both powerful enough to model real-world scenarios, and at the same time
flexible enough to be easily extendable.
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2.2.3 System Extensions

Access control, encryption/decryption and logging are the extensions that we
can add to the system model. These extensions are briefly mentioned below.

2.2.3.1 Access Control

To model the access control mechanism, a location has a set of access policies.
These access policies guarantee that no unauthentic access will be possible for
the given location. We call it restrictions of the location. Similarly, an actor is
provided with a set of access grants which we call capabilities. For instance, a
cipher key can be the capability of actor.

To get access to a location, restrictions on the location should match the capa-
bilities of the actor. For instance, the boxes in Figure 2.3 represents the access
control of that location. To go to the user room or the server room the restric-
tion is C U:m. Here C U is the key and m is the move action. J:m and U:m at
the entrance means actors J and U are needed themselves, in this case for face
recognition system at the entrance.

2.2.3.2 Encryption/Decryption

The data encryption and decryption is done via keys. For e.g. in Figure 2.3
C U:m in the box says key C U is needed to access the location. We can think
the cipher lock as a kind of data and the key can encrypt (lock) and decrypt
(unlock) it.

In the similar manner to access control we can bind data with some key and
only the matching key can decrypt the data. This encryption can be symmetric
or asymmetric. Also a data can be encrypted with a set of keys. An empty set
represents unencrypted data.

2.2.3.3 Logging

As can be seen from the boxes in Figure 2.3, some actions are over-barred,
such as m or m̄. The difference between these two is that the m represents an
unlogged action whereas the later represents a logged action.
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Figure 2.3: The abstracted example system from Figure 2.2, extended with
policy annotations. There are two actors, janitor J and user U, who, e.g., have
different access rights to the user office and the server room. Note the difference
between accessing the user office or the server room with a cipher lock (logged)
as opposed to the janitor workshop with a key (not logged).

The idea of logging is to provide log files for future edits. When an action is
marked as logged then the logging component of the system will mark the reason
and place of logging, i.e., who performed the action with what credentials (keys,
biometrics, etc.) and where.

2.3 Modelling Language

In the previous section we define an analysable system model that represents the
real world system. In doing so, we presented a description of system components
like actors, data, actions as well as extensions like access control, logging and
encryption/decryption. In this section we will present a modelling language that
will be used to implement the desired analysis on the abstracted system model.
The language is syntactically close to the abstract model specification.

In the following sections we will see how we specify our system components in
the language.
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2.3.1 Language Grammar

We are now going to define the grammar for our language. The grammar will
define the syntax for our modelling language. The following subsections will
focus on each part of our language grammar.

2.3.1.1 Spec

As we discussed earlier in section 2.2.2, a system or infrastructure is comprised
mainly of 4 things: locations, connections, actors and data. Listing 2.1 shows
our specification being defined as spec containing set of locations, connections,
actors and data. These sets should be mentioned in the order defined by the
spec.

spec :
’ l o c a t i o n s ’ ’ { ’ ( ( domain | l o ca t ed | l o c a t i o n ) ’ ; ’ )∗ ’ } ’
’ connec t i ons ’ ’ { ’ connect ion ∗ ’ } ’
’ a c t o r s ’ ’ { ’ a c to r ∗ ’ } ’
’ data ’ ’ { ’ data∗ ’ } ’
;

Listing 2.1: Syntax for the system specification

2.3.1.2 Location and Policies

Location is one of the components of the system specification. A location is
always under a domain name. A domain holds a set of locations and should
have a unique name. Listing 2.2 shows that a location is given a name and a
set of attributes and policies.

• LOCID is the name of the loation.

• Attributes can be optional. An attribute can be a domain name or a
location name.

• A policy consists of a property and a corresponding set of actions. Prop-
erty can be NAMEID, i.e., actor’s name; LOCID, i.e., location name;
KEYID, i.e., key name; and a wild card character ”*”. This wild card
character signifies that any property is allowed. Actions can be either
logged or unlogged. Available actions are move(m), eval(e), in(i), read(r),
out(o) and the wild card (any action is allowed) character *.
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l o c a t i o n : LOCID [ l o c a t t r i b u t e s ∗ ]{ po l i c y ∗} ;

l o c a t t r i b u t e s : domain | l o ca t ed ;

domain : ’ domain ’ ’= ’ DOMID;

l o ca t ed : ’ l o c a t i o n ’ ’= ’ LOCID;

l o c a t i o nP o l i c i e s : p o l i c y ∗ ; // l i s t o f p o l i c i e s

po l i c y : property ’ : ’ a c t i on s ’ ; ’

property : NAMEID | LOCID | KEYID | ’ ∗ ’ ;

a c t i on s : unloggedAction | loggedAct ion ;

unloggedAction : ’ i ’ | ’ o ’ | ’m’ | ’ r ’ | ’ e ’ | ’ ∗ ’ ;

loggedAct ion : ’ l o g ’ unloggedAction ;

Listing 2.2: Syntax for the location and policies

2.3.1.3 Connection, Actors and Data

A connection is represented as location name (source edge): set of other lo-
cations(destination edges). The location names mentioned in the connection
should be mentioned or defined in the locations component explained before.

Actors are expressed as actor name followed by the keys they possess. A known
key is any key that actor has knowledge/remembrance of such as key codes and
cipher codes. Owned key is the key that actor owns, for instance, physical key
or biometric features.

Data are given a name, a set of policies just like the location policies defined
above and an optional location name. A policy with wild cards, i.e., *:* means
that data has no restriction policies and anyone can access it. Where as a policy
like key u:r tells that key u is needed to read the data. Location name states
the location where data can be found.

All domain, location, data, actor and key names should be unique in order for
system specification to be well formed. For this we define these id’s with the
appropriate prefixes. A key name, for example, will always start with KEY
and a data name will always start with DAT . This can be seen in Listing 2.3.
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connect ion : LOCID ’ : ’ LOCID ( ’ , ’ LOCID )∗ ;

a c to r : NAMEID {( known keys )∗ ( owned keys )∗ ;

data : DATAID { po l i c y ∗} [ l o c a t i o n ? ] ;

NAMEID: ’ACT ’ ID ;

LOCID : ’LOC ’ ID ;

KEYID : ’KEY ’ ID ;

DOMID : ’DOM ’ ID ;

DATAID: ’DAT ’ ID ;

Listing 2.3: Syntax for the Connection Actors and Data

2.3.2 Language Example

In the previous section, we defined the syntax for the system specification. This
section will present an example using the grammar mentioned above. Listing 2.4
will serve as the base example that we will consulting from here on. It represents
the system shown in Figure 2.3

l o c a t i o n s
{

// l o c a t i on s in the b u i l d i n g A

domain = DOM LOC BuildA ; // domain name

LOC outside { ∗ : ∗ ; } ;
LOC reception {∗ : ∗ ; } ;
LOC fhallway { ACT U: log m ; ACT J : log m ; } ;
LOC hallway { ∗ : ∗ ; } ;
LOC csrv { KEY u : m; } ;
LOC srv { ∗ : ∗ ; } ;
LOC cusr { KEY u : m; } ;
LOC usr { KEY u : m; } ;
LOC ljan { KEY j : log m ; } ;
LOC jan { ∗ : ∗ ; } ;

// l o c a t i on s in the network
domain = DOM NET BuildA ;
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LOC PCrec [ l o c a t i o n = LOC reception ] { ∗ : ∗ ; } ;
LOC PCusr [ l o c a t i o n = LOC usr ] { ∗ : ∗ ; } ;
LOC PCsrv [ l o c a t i o n = LOC srv ] { ∗ : ∗ ; } ;

}
connec t i ons
{

LOC outside : LOC reception , LOC fhallway ;
LOC reception : LOC outside , LOC fhallway ;
LOC fhallway : LOC hallway , LOC reception , LOC A ;
LOC hallway : LOC csrv , LOC cusr , LOC ljan , LOC fhallway ;
LOC csrv : LOC srv ;
LOC cusr : LOC usr ;
LOC ljan : LOC jan ;
LOC srv : LOC hallway , LOC PCsrv ;
LOC usr : LOC hallway , LOC PCusr ;
LOC jan : LOC hallway ;

// connect ion fo r dom network
LOC PCrec : LOC PCusr , LOC PCsrv ;
LOC PCusr : LOC PCrec , LOC PCsrv ;
LOC PCsrv : LOC PCrec , LOC PCusr ;

}
ac t o r s
{

ACT U
{

known keys = {KEY u} ;
} ;
ACT J
{

owned keys = {KEY j } ;
} ;

}
data
{

DAT rec{KEY u : r ; KEY j : r ; } [ LOC PCrec ] ;
DAT srv{KEY u : r ; } [ LOC PCsrv ] ;
DAT usr{KEY u : r ; } [ LOC PCusr ] ;

}

key{
KEY u [ LOC jan ] ;
KEY j ;

}

Listing 2.4: Modelling Language Example exhibiting the implementation of
grammar

locations is a set of locations. Each set of locations are under a domain name.
In the example provided there are two domains: DOM LOC BuildA (contains
the physical locations) and DOM NET BuildA(contains the data locations).
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Locations are provided with policies. For instance: LOC fhallway { ACT U:
log m; ACT J: log m; } will read as location named LOC fhallway has the
restriction policy where ACT U and ACT J are allowed to move(m) and the
action move is logged.

connections is a set of connections. Left hand side of ”:” is the source lo-
cations and right hand of ”:” is the set of destination locations. For exam-
ple, LOC srv : LOC hallway, LOC PCsrv; specifies that there is a path from
LOC srv to LOC hallway and LOC PCsrv. Note that this connection is di-
rected, i.e., LOC A: LOC B does not mean that there is a connection from
LOC B to LOC A.

Actors are defined with their actor name and set of keys they possess. In the
example, actor U (actor user) has a known key KEY u whereas actor J (actor
janitor) has an owned key KEY j.

These keys are then defined to specify whether they are stored in any location
or not. For example KEY u[LOC jan] states that KEY u can be found at the
location LOC jan.

Data are given with their data ids, set of policies and location where the data is
located. Example DAT rec{KEY u: r; KEY j: r;}[LOC PCrec] reads as data
with data id DAT rec can be found at location LOC PCrec and can be read by
KEY u and KEY j.

2.4 Analysing Models

Previously we defined a language that provides the syntax for the specification
of our system model. By now we have build an organized way to define our
system and its components. In this section, we will focus on the analysis aspect
of our system that is to say how we can simulate real world behaviours in our
system model.

2.4.1 Static Analysis

One of the general approaches of counteracting system attacks is to keep the
analysis of previous attacks. If an action is taken then it is searched in the
previous attacks collection and if matched it is recognized as attack. This seems
helpful when the attacks pattern does not change too often.
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On the other hand, Static Analysis (Nielson et al. [1999]) can deal with such
dynamic behaviours as it tries to identify the system properties that holds for
every single configuration. All possible states can be calculated from an initial
system configuration. With the help of static analysis we can simulate the
desired behaviour of the system before its actual implementation. This gives
the benefit of identifying vulnerable points in the system and take necessary
security measures to solve the issue even before the system is implemented.
Existing approaches of security measures can benefit when paired with static
analysis techniques (Probst and Hansen [2008]).

2.4.1.1 Log Equivalent Actions

There is a need to address the locations and actions that are indistinguishable
from the viewpoint of an observer or analysis in our case. This means that if an
analysis shows that an actor can be in a location l then he might just as well be
in any equivalent location or might have performed any actions in between. The
idea to use log equivalent is to speed up the reachability analysis as an actor can
be in any equivalent locations so it becomes easier to compute the transitive,
reflexive hull of the current location with an assumption that actor can be in
any of these locations or might have performed any actions in between them.
Also, it is helpful in performing LTRA (as will be discussed in section 2.4.1.3).
In LTRA, two actions or locations are equivalent if moving from one location to
another or performing the action actor does not cause any log entry. It helps to
find out what might have happened between the two logged events. Algorithm 1
shows the pseudo code for determining log-equivalent. For each actor all the
locations are checked where actor can be located and then it is checked whether
the actor can perform any action on locations. In case of LTRA, only actions
that does not cause log entry are considered. The algorithm stops when no
further changes occur.

2.4.1.2 Reachability Analysis

The question that first arises while trying to model the behaviour of the system
would be : can actor A go from location X to location Y?. The reachability
of one destination location from another source location in our system depends
on the matching of restrictions of location nodes in path between X to Y and
capabilities of actor. Simply to say if A has required credentials needed at all the
nodes in the route of X to Y then A can go from X to Y, else not. Algorithm 2
shows the pseudo code to find whether an actor A can move from location X to
Y
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Algorithm 1 Algrorithm to simulate log equivalent actions

1: equivalent()
2: changed = true
3: while changed do
4: for all actors n do
5: for all locations l that n might be located at do
6: for all locations l′ reachable from l in one step do
7: simulate all actions that n can perform on l′ (without causing a

log entry in case of LTRA)
8: for each action set changed if n at location l learns a new data

item
9: end for

10: end for
11: end for
12: end while

Algorithm 2 Algrorithm to find if actor A can go from Location X to Y

1: for all available sets of routes R∗ from location X to Y do
2: for all location node L in a single route R do
3: find restrictions on L
4: find capabilities of actor A
5: if A capabilities bypasses restrictions on L then
6: proceed to next location node in R
7: else
8: cannot go any further in this route R
9: end if

10: end for
11: end for
12: return success status

Algorithm 2 returns a boolean status stating the success or failure of move
action of actor A from location X to Y. Algorithm 3, which is our modification
of Algorithm 2, is used to find the reason that does not allow actor to perform
action on one particular location node. We then try to resolve the reason so
that actor can perform its desired action on that particular node. For example,
at node N actor A needs key K then algorithm tries to find how to get key k
so that A can pass N.

In Algorithm 3 from line 12-25, it is shown that how an insider attacker would
look for gaining unauthorized access. In line 12 a reason can be actor (in case
of biometrics such as face recognition) so the attacker needs to social engineer
that particular actor. Line 13 states a reason can be key also. So the attacker
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Algorithm 3 Algrorithm to generate attacks when actor A traverses from Lo-
cation X to Y
1: for all available sets of routes R∗ from location X to Y do
2: for all location node L in a single route R do
3: find restrictions on L
4: find capabilities of actor A
5: if A capabilities bypasses restrictions on L then
6: proceed to next location node in R
7: if the reason is logged then
8: log the reason,actor,location in log sequence
9: end if

10: else
11: cannot go any further in this route R
12: if reason is ACTOR then
13: social engineer the ACTOR
14: else if reason is KEY then
15: if KEY associated with Location then
16: find the location at which KEY is located
17: repeat the process from line 1 but now X will be current node L

and Y will be location node of key
18: if return is success then
19: actor got the key
20: else
21: actor could not get the key
22: end if
23: else if KEY associated with ACTOR then
24: social engineer ACTOR to get the key
25: end if
26: end if
27: end if
28: end for
29: end for
30: return success status
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needs to find if the key is located somewhere or is in possession of some other
actor. If the key is with any actor then attacker needs to social engineer the
actor again. But if the key is in any location then attacker tries to traverse that
key’s location from the current node in order to obtain the key. The algorithm
is in the worst case scenario since we presume an attacker has all the knowledge
of keys location, actors and their keys. This may lead to over approximation of
number of attacks but it will always contain the subset of actual attacks.

2.4.1.3 Log Trace Reachability Analysis (LTRA)

As we have discussed earlier one of the common and frequently used methods
in cyber crime investigation is tracing log files to find who caused the event.
There are times when what happened between two logged events becomes more
important question than the logged events itself. LTRA tries to answer this
question. It takes a system model specification described in 2.4 and a log file as
input. LTRA then tries to simulate all the actions for the actors present in the
system such that the logged events can be generated. The result of interest are
all the set of actors, actions and possible paths that caused the logged events.

Algorithm 4 describes the LTRA. It takes a log as input. At first initialization is
done i.e. all actors are placed at their initial location (outside the system in our
case), set with initial key sets (may be empty) and all locations are initialized
with potentially empty initial data set. Each log entry from the log sequence
is taken one by one. In each iteration, the algorithm first calls log equivalent
method from the current location. Then it checks whether there is exactly one
actor that can cause the entry and update the data structure accordingly. The
algorithm repeats until all log equivalent actions are simulated.

2.5 Summary

In this chapter, we discussed about the insider problem in the real world system
and the way to deal with it. For this we reviewed the theory of conversion
of real world system into an abstracted system. We looked into the details of
abstracted system components i.e. locations, actors, data, keys. Similarly, we
also looked into modelling grammar language and how to use it to represent the
abstracted system components. We also reviewed the analysis algorithms like
reachability analysis and LTRA to show how these analyses helps in counter
measuring the insider problem.
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Algorithm 4 Algrorithm for LTRA

Require: system specification and log sequence
1: /* initialization */
2: place all actors at their initial location
3: initialize all actors and locations with initial key set
4: /* iterate over log sequence */
5: while log sequence not empty do
6: {/}* perform log equivalent actions */
7: equivalent()
8: /* take next logged action */
9: next(reason, from, to, action) from log

10: if reason is an actor then
11: from is the exact location of the actor reason
12: remove that actor from all other locations
13: the only possible actor is reason
14: else if reason is a key then
15: possible actors are all actors who might be at from and know the key

reason
16: if only one actor at from knows the key reason then
17: remove that actor from all other locations
18: end if
19: else if reason is a location then
20: potential actors are all actors who might be at from
21: if only one actor is located at from then
22: remove that actor from all other locations
23: end if
24: end if
25: for all potential actors n do
26: simulate effect of n performing action action
27: end for
28: end while
29: /* perform log equivalent actions */
30: equivalent()



Chapter 3

Analysis and Design

In this chapter, we will cover analysis and design patterns to deal with the insider
problem discussed in previous chapter. The aim of this chapter is to provide
analysis and design of a framework that we based on the EXASYM(Extensible
Analysable System Model) theory by Probst and Hansen [2008]. The tool is
designed to generate attacks at specified points or locations in the system so
that one can find out the vulnerabilities in the system before hand.

3.1 Framework

The task we are interested in is to be able to present a real world system into an
abstracted analysable model on which analyses algorithms can be run. When
we get a real world system, like in Figure 2.1, we want to be able to convert
this real world scenario in some abstracted form. For this purpose we defined
infrastructure and components like actors, data, connections in Chapter 2. This
abstracted system can then be fed to insider analyses to get the threats result.

Figure 3.1 shows our basic understanding of building such a framework. First
of all a real world system is mapped to an abstracted system. This abstracted
system is analysable. The mapping from a real world system to an abstracted
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system is done with the help of modelling language we described earlier in section
2.3. Once we get the abstracted and the analysable system then we can run the
analyses algorithms on the abstracted system. The result we receive will be the
list of possible attacks.

Figure 3.1: Steps showing basic steps to create our attack generation tool

The tool will be described in more detailed in the next chapter. This chapter
will however establish an example case and will discuss what we are trying to
achieve from the tool and how. Figure 2.1 will serve as the base example for
the explanation here.

3.2 Real World System to Abstract System

The abstract system is the analysable system discussed in section 2.2.2. The
abstract system can be viewed as a decomposed view of the real world system
where every decomposed part is unique and tagged with its appropriate role. To
suffice that, we define our system and while doing so we present the details of
all the components of the system in the specification. This specification is the
language mentioned in section 2.3. Our whole system of interest is specified
in this modelling language which in turn is represented in EBNF (Extended
Backus Naur Form). This language is then parsed to create a parse tree where
our system components are defined by the nodes of parse tree.

Figure 3.2 shows a portion of the parse tree. In the figure, we can see how a
location is broken down to its basic components , i.e., property and actions.
When the specification of a system is given then the whole system is converted
into parse tree like shown in the diagram 3.2. In section 2.3.1, we presented
EBNF notation for the specification language. By the rule of grammar men-
tioned there, we define our system components and the parse tree will then give
the syntactic structure of our specification model where each node is represent-
ing a system component. In other words, we can see the nodes as collapsible.
For instance, the location node is collapsed and so we only know that the men-
tioned thing is location. Now if we expand the location then we can see there
is name of location and location policies where the location policies node is
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Figure 3.2: A portion of parse tree showing how a location is decomposed into
its basic components.

again collapsible. This helps to visualize or interpret the system starting from
a broader view to the more narrowed scene.

For another instance, Figure 3.3 and Figure 3.4 show the portions of parse tree
where connections and actors are mentioned respectively.

Figure 3.3: A portion of parse tree showing how connection is broken down to
its basic components.

Figure 3.4: A portion of parse tree showing how each actor is divided into its
basic components.
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3.3 System Model as Graph

Once we get the system components as nodes of the parse tree after the mapping,
we want to do something meaningful with these nodes. That is to say if we see a
location node then we want to store those locations and similar kind of actions
for other components.

As said earlier in section 2.2.2.1, we can view the locations and locks on the
locations as nodes of a graph. As in a graph one node is connected to a set of
nodes (directed or undirected edge), a location in the real world system such
as Figure 2.1 is also connected to a set of other locations. Movement of an
actor from one location to another in the system model can be simply viewed
as traversing the graph from one node to another node.

Therefore it seems natural to model the system with the help of graph. Once
the system is modelled as a graph then the sets of nodes (locations in our case)
and sets of connections between nodes are always available for us to perform
required analysis which simplifies computations. Figure 3.5 shows the graph
representation of the system specified in the language example from section 2.4
. This graph based representation of the abstracted system model is easier to
comprehend within a certain range, however, with the complexity of system
increasing the graph tends to increase also.

Figure 3.5: Graph representation of the example system model discussed in
section 2.4
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Hence we propose to convert the system in a graph and henceforth the analysis
we perform will be graph based.

3.4 Attack Trees

Attacks trees were first described by (Schneier [1999]). These trees are used to
identify and investigate attacks in a systematic and organized way. Basically, it
represents an attack in a tree structure. The root node of the tree is the main
goal of the attacker and the children of the nodes are the ways or attacks to
achieve the goal mentioned by their parent node. In a complex system, there
may be more than one root node. The branches can be either an AND-branch or
an OR-branch. And AND-branch tells that all the branches must be followed
to reach the root whereas in an OR-branch one of the branch is sufficient to
reach the root. The idea is to decompose the main goal into possible detailed
basic subtasks so that it covers insights of all the grounds that can lead to the
fulfilment of the main goal. Figure 3.6 shows a basic example of attack tree
taken from Schneier [1999]. Here for example, to open the safe, the attacker can
do any one of the four tasks: pick lock; learn combo (safe code); cut the safe
open; or install the safe improperly. To eavesdrop successfully, attacker has to
perform both of the tasks.

Figure 3.6: Basic example of attack tree. All the nodes except the one marked
with AND are OR nodes.
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Attack trees can be modified to have various annotations attached to each nodes.
For example a node can have annotations such as probability of being completed
or costs to complete the attack mentioned in the node. Annotations help to
describe the node and its attributes which in turn helps us to categorize and rank
the attacks. For example, later on one can filter the set of attacks which costs
within some range or the set of attacks whose probability of being successful is
higher than some percentage.

We can present the attacks generated in the system in the form of an attack
tree. Algorithm 5 shows the creation of attack tree.

Algorithm 5 Algrorithm to generate attack trees when actor A traverses from
Location X to Y
1: for all available sets of routes R∗ from location X to Y do
2: for all all nodes N∗ in R do
3: N becomes node in attack tree T
4: if N is restricted then
5: find reason R and append it to node N
6: if finding R means traversing another location set then
7: Repeat the process from above the new attack tree will be sub

attack tree of N
8: end if
9: end if

10: end for
11: end for

Lets elaborate the algorithm with an example. Actor U is traversing from X
to Y. A, B and C are the nodes in between. So, the main attack tree, say,
T has nodes X, A, B, C and Y. But at location B, actor U does not have
privilege to access. The reason for this is, say, key K which is located at some
other location Z in the system. This means to get the key K, U will travel from
current position to Z. Since it was not allowed at B, the previous position would
be A. Traversal from A to Z is successful to assume with A → E → Z. So now
the new tree, say, T’ with nodes A, E and Z is the sub tree of node B. Lets
assume another reason, why U could not pass B, was actor J. So, it means you
must social engineer the actor. The reason is added as another tree to B where
there is only one node explaining to social engineer the actor. Notice that node
B is an OR node since achieving any of the two reasons i.e. finding Key U or
social engineering the actor J will let actor U pass the node B. This can be seen
from the Figure 3.7
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Figure 3.7: Example showing the use of Attack Tree.

3.5 Analyses

Once we have transformed a real world system into an abstract model, this
model is now ready to be analysed. Also in the mean time, we converted our
abstracted model to a graph based model where each node is a location and
each edge is connection. Now the system needs analysis algorithms to perform
some analysis on it. What we want to answer mainly is:

• Can an actor or set of actor move from one location to another location ,
and

• Can an actor or set of actor extract data from a location ?

3.5.1 Extract Credentials

Both of the tasks mentioned above need checking of credentials of the actor
at each location point in the path between specified start and end locations.
Algorithm 6 shows the extracting mechanism of the credentials. At all the
nodes in a route R, the access control list of the node is read. Access control is
specified as {property:actions}. While traversing from one location to another
the action is move. Therefore, we check if the actions available in access control
of location L is move. In this case, the property, which can be an actor or key,
is added as credentials needed at L.



30 Analysis and Design

Algorithm 6 Algrorithm to extract credentials at all location nodes in different
routes between two location end points

1: for all available sets of routes R∗ from location X to Y do
2: for all location node L in a single route R do
3: credentials L = φ
4: retrieve access list ACL at L
5: for all {property,actions} in ACL do
6: for all actions a in actions do
7: if a is move then
8: if property is an actor or key then
9: credentials L = credentials L ∪ {property}

10: end if
11: end if
12: end for
13: end for
14: return credentials L
15: end for
16: end for

3.5.2 Capability-Restriction Test

When there is no actor present while finding paths between two locations then
extract credentials is just as same as stating the policies of location directly,
i.e., no capability-restriction match. This is just to show the user what kind of
credentials are needed at each location node.

If an actor or set of actors is present then a set of capability is formed which
comprises of capabilities of all the actors in the set combined. So, while travers-
ing from one location node to another the algorithm checks if the intersection
of reason(restriction reason) at a node and the capability set of actor or actor
set is φ or not.

For instance to go to node N restriction reason R is KEY u and KEY j and
capability of actor is KEY j. Since, {KEY u, KEY j} ∩ {KEY j} = {KEY j}
the actor has passed the capability restriction test. However, lets say actor
has KEY m. But, {KEY u, KEY j} ∩ {KEY m} = φ so the actor could not
get to pass the capability-restriction match. Algorithm 7 shows the capability-
restriction test mechanism.
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Algorithm 7 Algrorithm for capability-restriction match

1: for all available sets of routes R∗ from location X to Y do
2: for all location node L in a single route R do
3: Access all the policies P∗ of the location L
4: credentials L = φ
5: for all policies P∗ do
6: extract reason/property R of policy P
7: extract capabilities C of actor or actor set
8: if R ∩ C 6= φ then
9: credentials L = credentials L ∪ {property}

10: else
11: credentials L = φ
12: end if
13: end for
14: return credentials L
15: if credentials L 6= φ then
16: restriction-capability test = pass
17: else
18: restriction-capability test = fail
19: end if
20: end for
21: end for

3.6 Generation of Sub-Attacks

A sub-attack, in our scenario, takes place when the capabilities-restriction is
not matched. In such a case, a further analyses is performed in order to show
what could have been done in order to pass that very unmatched capabilities-
restriction test.

For instance, if U needs KEY j to go to the janitor room. When travelling
from one location to another U has to pass the janitor room but he cannot. So
now, another level of attack list is being generated which describes U how and
where to seek the KEY j to open the janitor room. If an attack reason is a key
then the sub-attack generation will try to locate the key or if its an actor then
it will suggest to social engineer the actor. The reason for finding of sub-attack
is to present a detailed level of attack generation in the system. With the stack
of restriction-capability test going unmatched, the size and level of these sub-
attacks can increase. So, the sub-attack trees with large and complex system
can grow into many level of nesting.

In algorithm 3, the goal of line 10-15 is to generate sub-attack levels for the
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missing credentials. The generation of sub-attacks may go to deeper nested
levels. Also, there may occur a loop. For instance, to go to location X one
needs to get KEY k which is located at Y. While finding KEY k one needs
KEY j in another location. And while trying to find KEY j one again needs to
find KEY k. The avoidance of this cycle is necessary in order to obtain stable
attack trees. To avoid any cycle every keys and actors that have been analysed
are noticed and stored in data structure so that when they appear next as the
reason for sub-attack they are simply discarded. That is to say if a key or actor
is analysed before as the reason for the sub attack then when they appear again
as the reason we just mention that they have been previously explored.

3.7 Design Principals

This section will reveal the design principles. The tool is being developed with
the goal of future development. We want to design the tool in such a way that
the tool is robust, visually appealing, great user interaction and supports future
extensions.

Visualization: The tool should be visually appealing and yet simple to use.
The representation of graph should be easily comprehensible. We should keep
in mind that the tool should represent the graph in simple and elegant manner
and let user have choices to perform analysis. Since our tool displays graph,
we should have some frame to display this graph. The graph should be easy
to zoom and transform so that user can view the graph properly. Also, we
have different system components like actors, data and locations. We will give a
setting pane where user can set these values according to their choices. Similarly,
the representation of attacks should be tree based. We can use some tree data
structure to represent these threats in attack tree form.

User Interaction: As much as tool should be visually appealing, it should give
the user freedom to operate on it. The tool should be assisting the user to max-
imize her experience with the tool. For this, we have thought of implementing
visual assists to the user. For example, if a user wants to know the policy of
any node in graph then she just have to hover over the node and the policy will
be displayed as tool tip. Similarly, we can use various colors to represent paths
in route, paths an actor can or cannot travel, node an actor can or cannot pass,
node an actor picks etc.

Room for future extensions: There is room for further development of every
tool and ours is in early stage of development. This makes us to structure the
program in such a way that in the future our tool can be easily extended with
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new extensions and enhancements. For this reason, we have decided to divide the
program structure into its basic components. Each components are designated
with its own set of tasks. For example, lets say Visualization is a module in
the tool that will deal specifically only with the design concerns of the tool.
This way, the tool can easily be extended in the future without much trouble.

3.8 Extraction of Data

We would also like to see if a user can access some data or not. Data is gen-
erally located at some location. So acquiring a data means traversing from
initial location to the location where data is located. The traversing analyses
algorithms are presented before. But the successful traversal to data location
does not mean that actor can access the data. As we know, data has its own
policy. So in this case, when the actor has reached to the location where data
is located then the capability-restriction test is done once again but this time
the restriction is of the data and capability is same of the actor. If this test is
successful then we can assume user gained access to data.

3.9 Summary

In this chapter, we presented discussions on how to proceed to develop a tool to
generate attacks from system model. While doing so, we discussed briefly about
our framework that we developed to deal with the insider problem. We provided
with the details of the steps taken to perform analysis on a real world system.
We also visited the theory of presenting our system model as graph for its
convenience and flexibility. Attack trees were presented and the way to represent
our set of attacks in the attack tree form was shown. We also discussed the
basic design principals of the tool such as visualization and presented analysis
algorithms.
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Implementation

This chapter covers the implementation details of the project. The developed
tool is based on the theory EXASYM abbreviated for Extensible Analysable
System Model by Probst and Hansen [2008]. The tool is used for generating
attacks at specified locations in the system model graph. The tool can analyse
who can access what and where in the system.

The tool is developed in the Java programming language. The choice of the
language was based on the free availability of tools written in Java such as
ANTLR (Another Tool For Language Recognition) and JUNG(Java Universal
Network Graph) as well as familiarity with the Java language itself. We use
ANTLR for the creation of grammar shown in section 2.3.1 and JUNG for
the generation of graph as shown in Figure 3.5.

4.1 Overall Implementation Design

In this section we will describe the overall design of the tool. Figure 4.1 shows
the work-flow of our implementation.

The work flow shows the steps of our implementation. A language grammar that
specifies the system model (listing 2.4) is prepared and fed to the tool as input.
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ANTLR parses the grammar and prepares an appropriate abstract syntax tree
of the specification. Also, meantime the tool is integrated with JUNG where
we prepare the graph from the specification. The graph, for example we receive
for listing 2.4, can be seen in Figure 3.5. Until this stage, we were preparing our
system model to be ready for the analysis. Since now the system is ready for
performing analysis on it, the users of the tool are provided with some analysis
actions. The two actions available are finding path between two locations and
extraction of the data.

Figure 4.1: Implementation Design of the tool

4.1.1 Finding Path

One of the tasks that the user can perform on the abstracted graph is to find the
path between two locations. The task of finding a path can be in the presence of
an actor or a set of actors or not in the presence of any. This means that if a user
does not specify any actor then the analysis will report all the reasons required
at all the nodes in the path. The analysis, in this case, does not perform any
restriction-capabilities test. Moreover, the user can choose to find all the paths
that exist between two location end points or the existing shortest path between
them. To find the shortest path, we have used Dijkstra shortest path algorithm
from JUNG library. In JUNG there is no available function for calculating all
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paths between two nodes at the moment. Algortihm 8 shows the pseudo code
that we implemented to find all the available paths between two location points.
The pseudo code takes a start and an end location as input. Similarly, we pass
an empty set to track visited nodes in graph and a linked list to supervise the
current path being examined. The function is recursive and will terminate if
there are no more outgoing edges in graph that leads to the specified end node.
Graph is the final output which contains all the routes between start location
START and end location END.

If the user mentions any presence of an actor or a set of actors then access
control check is performed at every nodes in the path between two endpoints. If
the access control is denied then the user is provide with information about how
to access that particular node as mentioned in algorithm 3. If a set of actors is
chosen instead of a single actor then the capabilities are checked from both the
actors and if any one of them can bypass the restriction at location node then
it is noted as success.

4.1.2 Extracting Data

Another task is to extract data. A user can try to simulate whether the data is
accessible from a starting location by an actor (set of actors). In this case desti-
nation location would be the location where the data is stored. Then operation
finding path mentioned before is called to find the routes between two location.
And at last the restriction-capability match is performed where restriction is of
the data and capability is of the actor.

4.2 External Libraries

In this section, we will give a short overview of the two external libraries that
we are integrating with our project.

4.2.1 ANTLR

ANother Tool for Language Recognition (ANTLR) is a parser generator that uses
LL(*) parsing. ANTLR takes a grammar, that defines the language (example,
the one shown in Listin 2.4), as input and outputs a recognizer for the language.
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Algorithm 8 Pseudo code to find all paths between two end locations in the
graph

/* At 1st iteration Graph is empty graph with just start and end location set
to START and END */

Input: START , END, V isitedLocation Set = φ, Graph,
CurrentPath LinkedList = φ

Output: GRAPH
if V isitedLocation Set has START then

return
end if
add START in V isitedLocation Set
add START as last element in CurrentPath LinkedList
if START is END then
predecessor = null
first = true;
for all locations l in CurrentPath LinkedList do

if first then
add l in Graph
first = false

end if
if predecessor = null then

add predecessor in Graph
make connection from predecessor to l

end if
set predecessor = l

end for
remove last element from CurrentPath LinkedList
remove START from V isitedLocationSet
return

end if
for all outgoing nodes N from START do

callback with START = N and other parameters END,
V isitedLocation Set, Graph, CurrentPath LinkedList as it is

end for
remove START from V isitedLocation Set
remove last element from CurrentPath LinkedList
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A language is specified using Context Free Grammar and Extended Backus Naur
Form. To do something meaningful with the language, actions can be specified in
the grammar. Actions are written in the same language in which the recognizer
is being generated in our case Java.

The role of a parser such as ANTLR is to parse where parsing refers to the
process of converting a well defined input into an internal representation that
can be represented by an Abstract Syntax Tree (AST) using the grammar rules.
An AST represents abstract syntactic view of the input program. Every node
of the AST represent the construct occurring in the input program i.e listing 2.4
in our case. We perform parsing in two steps (shown in Figure 4.2) -

• Step 1 refers to Lexical Analysis where the input program is parsed into the
internal representation by breaking the program into a sequence of tokens.
It is carried out in the lexer unit of the parser. We call it tokenizing the
program.

• Step 2 refers to Syntactic Analysis where the internal representation is
constructed based on the grammar rules of the parser. A parser takes a
stream of tokens generated by the lexer as input and tries to map them
to a set of rules where the end result maps the token streams to the AST.

Figure 4.2: Parsing a Grammar into meaning

4.2.2 JUNG

As mentioned in 3.3, we have to model our system specification in a graph sys-
tem where each nodes in the graph represents location and each edge represents
connection between the nodes. In order to achieve the graph representation of
the system, we have used an existing graph framework, namely JUNG (Java
Universal Network Graph). JUNG is a free, open source graph modelling and
visualization framework written in Java. Jung provides common and extendible
language for the analysis and visualization of data that can be represented as
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graphFisher et al. [2005]. The idea behind using JUNG stems from the following
features it possesses:

• Open source,

• Implemented in Java,

• A number of built in visualization layouts,

• Can create your own custom layouts,

• Supports various forms of graphs e.g. directed-undirected graph, multi
modal graph, graph with parallel edges, hypergraphs,

• Annotation feature for nodes, edges, entities and relation with meta data,

• Algorithms from graph theory, data mining, and social network analysis
such as clustering, decomposition, optimization, network flows and dis-
tance calculation, statistical analysis and measures(PageRank, HITS etc.),
and

• Filtering mechanisms to allow user to focus on specific portion of graph.

4.3 User Interface

The user interface of the developed tool consists of two frames. One frame is
dedicated for the visualization of the graph. Second frame is a tabbed pane
consists of three tabs namely Settings, Sets, and Attacks. Figure 4.3 shows the
user interface of the tool.

The Settings tab contains general settings. Mouse mode is the mode to operate
on graph. The start and end location are specified in this tab. If mouse mode is
in transforming mode then we can zoom, rotate, skew the graph and in picking
mode we can pick the nodes and connections in the graph. We can define
whether we want to see all the paths between two endpoints or the shortest.

Figure 4.4 shows two graph views one for all paths and one for the shortest
path.

The Sets tab contains two combo boxes that allows users to select the desired
actor, data, or combination of both. When no option is chosen then the paths
are calculated between two location endpoints without any access control check.
This operation lists all the reasons required at all the nodes in the path. If the
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Figure 4.3: User Interface of the tool

Figure 4.4: All paths and shortest path between LOC outside and LOC PCsrv

user selects one or multiple actors then access control check is done in the path
where capabilities are those of the selected actor/s. Data box is used if user
wants to check the attack on data or whether data can be extracted or not.
When a data item is selected from the data combo box, the destination box in
Settings tab is set to the location where data is located. While using the data
set if no actors are selected then again no access control checks are done and all
reasons at the nodes in the path are listed. Figure 4.5 shows the Sets tab.

The Attack tab is used to list all the attacks for the configuration made in
Settings and Sets tabs. Depending on the values inserted in the fields present
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Figure 4.5: Sets Tab provides users with option to select actors and data on
which they want to perform analysis

in the other two tabs, the attack tree in attack tabs are generated. If some
value in the Settings or Sets tabs are changed then the attack tree is refreshed
and updated. Figure 4.6 shows the attack tree generated. The left frame in
the figure lists the attack tree and its child nodes (location names). When a
node is selected, the reason at that node is displayed in the message box of
the right frame. As can be seen from figure, the attack tree can be nested in
case the restriction-capabilities test is failed (see Algorithm 3). For instance,
the message for selected node LOC cusr in Figure 4.6 shows that KEY u was
needed to access the location which actor does not possess. Then the nested
tree is another attack tree which explains how user can obtain that key from its
current location.

Hence while generating attacks in our system model attack trees can be benefi-
cial to mark all the threats with all the description of detailed subtasks which
makes computation more precise and focused to one specific area.

4.3.1 Visual Assists in Graph

One of the features in our tool is to provide visual aids in graph representation
so that user can get some information while looking at the graph.

In the initial load, all the nodes and connections are of same color here grey.
Figure 4.7 shows the graph when the user has selected two end location points.
The start and end location nodes are changed to the blue color while all the
nodes in between them appear in the red. Also, all the routes in between these
two locations changed to blue except cusr → usr. This is because the path
color changes from blue to red if that is inaccessible. In this simulation, actor
was ACT j does not have access right at cusr and so it cannot go after cusr.
Paths, which do not fall in the route, did not change their appearance. For
example, the paths hallway → ljan is not in the route.
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Figure 4.6: Attack Tab lists all the attacks. Left frame lists all the attacks.
Right frame lists the attack reason for the selected node in left frame.

Figure 4.7: Shows the coloring of paths and nodes

Figure 4.8 shows the use of tool tip. When the user hovers mouse over a node
then the restriction policies of that particular node appears in the tool tip. As
seen in the figure, tool tip of fhallway says ACT u:!m and ACT j:!m where
!m is the logged action. Also, this picture shows when a node is picked the
color is change to yellow. Here, fhallway is picked and hence the color changed
from blue to red. This is useful when user is navigating the attack tree so that
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whenever user clicks one node in the attack tree the responding node in the
graph seems apparent.

Figure 4.8: Shows the tool tip behaviour when the mouse is hovered over node
ljan

4.4 Program Structure

This section will briefly describe how we have design the layout of the program.
We will give a high level overview of the program structure. Figure 4.9 gives a
basic representation of the structure of our program. As can be seen from the
figure, our program can be seen as parts of modules. We have divided different
tasks in these modules where each task fits the description of the module in
which it belongs. This is to modularize the program so each task or set of
related tasks can be viewed as each single entity. This helps in categorization
of work and also when someone in the future wants to extend the project by
adding extensions to these existing modules or creating new modules. The tool
is written in Java and so we view these modules as Java packages in our choice
of programming language.

Visualization : This module, as the name indicates, carries all the work neces-
sary for giving a visual layout to the program. It contains graphical codes and
interaction with JUNG to create the user interface of the program.

Parse: This module holds the information about system components described
in section 2.2.2. The specifications of the system maintained by language
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Figure 4.9: Figure shows the basic component design of the program. These
components are present at the time and can be extended for later development

grammar is parsed into tokens such as location, actor, connection, data and
keys tokens. These tokens are then stored in appropriated data structures.
This module contains these data structures and methods to access and operate
on the system components. In similar way, the access policies of locations are
also handled by this module.

Parse.ID : This module holds the ID information of the system components,
for example, location ID, data ID and key ID. This module is used to provide
a base for matching IDs with their related components. For example, ID is an
abstract class and all the other IDs like location ID, actor ID, key ID are derived
from that. So, when we know the ID we can find the matched object to that
ID from the PARSE module. Also this module implements a boolean function
that checks whether an ID is allowed to access the resource. This function is
shown in listing 4.1. The implementation of this function takes an ID, figures
out what kind of ID is this i.e. key, actor or data id and will then try to find
whether with the current ID what access grants are available at current location.

boolean a l l ows ( Actor currentActor , Locat ion currentLoc ,
Action currentAct ion ) ;

Listing 4.1: A function definition in module Parse.ID which returns the result
of restriction-capability match

Parse.Graph : This module is made to prepare graph for the system specifi-
cation. We have discussed earlier in section 3.3 that how we will take a graph
based approach for our solution. So in order to achieve that, all the neces-
sary graph works goes in this module. Locations which are vertices or nodes in
graph, connections which are edges in the graph are represented in this module
in graph based form. Calculation of paths is also carried out in this module.
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EXASYM Grammar: This component or module stores the grammar related
files. The system specification language is defined in this module. Any changes
regarding to the specification language is reflected in this module.

External Libraries: We are dependent on two external libraries for now
namely JUNG and ANTLR as discussed earlier. This external libraries module
is the collection of these libraries and can be extended with other libraries that
can provide any usefulness to the program.

4.5 Summary

In this chapter, we presented the implementation details of our tool. In doing so
we presented details on calculating paths and extracting data. We also provided
insight on the external libraries namely JUNG and ANTLR that we are using.
The details about various aspects of user interface were discussed. Similarly, we
presented the program structure detailing important components or modules of
the program.
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Evaluation

In the previous chapter, we provided implementation details about our devel-
oped tool. This chapter will focus on the evaluation of this tool. To do so, we
will set some basic tasks that will be performed by the tool and then we will
evaluate the outcomes from the tool. For each task we provide a different set of
configurations that are available in the Settings and Sets tabs. Each separate
task shows different utilization and working behaviour of the tool. Another goal
is to show the correctness of algorithms and implementation of the tool.

5.1 Task 1: Path Calculations

In this task we will see if the tool outputs the correct path for selected end
locations. We have not set any actor or data for this. For the task we will set
the source location to LOC outside and destination location to LOC PCsrv. At
first we want to verify that our tool outputs all the correct available roots for
2 end locations. Figure 5.1 shows the routes that are available between these
two paths. The available roots are marked in blue. Greyed edges in the pictures
are of no concern, i.e., not in routes. The available paths between these two
locations are:

Path 1: LOC outside → LOC reception → LOC fhallway → LOC hallway →
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LOC csrv → LOC srv → LOC PCsrv

Path 2: LOC outside → LOC reception → LOC fhallway → LOC hallway →
LOC cusr → LOC usr → LOC PCusr → LOC PCsrv

Path 3: LOC outside → LOC reception → LOC fhallway → LOC hallway →
LOC cusr → LOC usr → LOC PCusr → LOC PCrec → LOC PCsrv

Path 4: LOC outside→ LOC fhallway→ LOC hallway→ LOC csrv→ LOC srv
→ LOC PCsrv

Path 5: LOC outside→ LOC fhallway→ LOC hallway→ LOC cusr→ LOC usr
→ LOC PCusr → LOC PCrec → LOC PCsrv

Path 6: LOC outside→ LOC fhallway→ LOC hallway→ LOC cusr→ LOC usr
→ LOC PCusr → LOC PCsrv

Figure 5.1 calculates all the above 3 mentioned paths and display it correctly.
Similary, we now set the tool to calculate the shortest path from LOC outside

Figure 5.1: Figure shows that tool outputs all the availbale paths between start
location: LOC outside and end location: LOC PCsrv. The paths are marked
in blue color.



48 Evaluation

to LOC PCsrv. From the above calculated paths Path 4 was the shortest one.
Figure 5.2 shows the output by the tool while calculating the shortest path.
As can be seen from the diagram, the tool outputs Path 4 as the shortest
path and hence correctly determines the shortest path. If there are more than
one shortest path then one of them is picked in the current implementation of
Dijkstra shortest path algorithm in Jung.

Figure 5.2: Figure shows that tool outputs only the shortest path between start
location: LOC outside and end location: LOC PCsrv. The path is marked in
blue color.

5.2 Task 2: When actor is present

We will now set the actor in configuration of Task 1. The start locations and
end locations are LOC outside and LOC PCsrv, the path mode is shortest and
the actor is set to ACT U in the Sets tab. Figure 5.3 shows the resulting attack
tree. As can be seen from figure 5.3, whenever the user selects a node in
attack tree the node in the graph also gets highlighted providing interactivity.
So, to travel from LOC outside and LOC PCsrv ACT U has to go through
LOC outside → LOC fhallway → LOC hallway → LOC csrv → LOC srv →
LOC PCsrv. Listing 5.1 shows the output of the log for this action. From the
listing, we can see that ACT U can reach to the destination from the mentioned
source location as its capabilities matches the restriction of the nodes in the
path.
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Figure 5.3: Figure shows attack tree being generated for start location:
LOC outside; end location: LOC PCsrv; actor: ACT U

Attack1
LOC outside : Access i s a l lowed because any i s a l lowed
LOC fhallway : Access i s a l lowed because ACT U i s needed

and actor has/ i s the key
LOC hallway : Access i s a l lowed because any i s a l lowed
LOC csrv : Access i s a l lowed because KEY u i s needed

and actor has/ i s the key
LOC srv : Access i s a l lowed because any i s a l lowed
LOC PCsrv : Access i s a l lowed because any i s a l lowed

Listing 5.1: Log output for Figure 5.3

Figure 5.4 shows the attack tree for the configuration where we change the actor
to be ACT J and path mode to full to show the all sets of attacks generated.
We can see from the figure that when full path was chosen a set of attacks
has been generated for possible paths instead of a single attack. Also in the
snapshot, it is shown that a nested tree occurs if actor could not get pass that
node (in this case node LOC Cusr which is expanded with the nested tree).

Listing 5.2 shows the log sequence for attack number 1 for the above configura-
tions. In this listing, we can see at line 7-8 ACT J could not get authenticated
at the node LOC cusr because KEY u is needed there as specified by LOC cusr{
KEY u: m; }; 2.4. KEY u is located at LOC jan mentioned in the specification
as KEY u [LOC jan];. Thus, from line 9-24 ways to obtain KEY u from loca-
tion LOC jan is mentioned. To show the nested trees, we added few extra keys
in specification example mentioned in section 2.4. KEY jp and KEY r were
added and defined by KEY jp [LOC jan]; and KEY r [LOC fhallway];. Loca-
tion LOC ljan restrictions reads as LOC ljan{ KEY jp: log m; KEY r:log m;};.
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Figure 5.4: Figure shows attack tree being generated for start location:
LOC outside; end location: LOC PCsrv; actor: ACT J

We can see at line 15 and line 19 methods to extract those keys are mentioned.
Notice at line 21 LOC ljan is not expanded again because it has been explored
earlier at line 11 thus avoiding any cycle.

1 Attack1
2 LOC outside : Access i s a l lowed because any i s a l lowed
3 LOC reception : Access i s a l lowed because any i s a l lowed
4 LOC fhallway : Access i s a l lowed because ACT J i s needed
5 and actor has/ i s the key
6 LOC hallway : Access i s a l lowed because any i s a l lowed
7 LOC cusr : Access i s not a l lowed because KEY u i s needed
8 and actor does not have the key
9 Obtain KEY u

10 LOC hallway : Access i s a l lowed because any i s a l lowed
11 LOC ljan : Access i s not a l lowed because KEY r i s needed
12 and actor does not have the key
13 KEY jp i s needed and acto r does not have the key
14 Obtain KEY r
15 LOC hallway : Access i s a l lowed because
16 any i s a l lowed
17 LOC fhallway : Access i s a l lowed because ACT J i s
18 needed and acto r has/ i s the key
19 Obtain KEY jp
20 LOC hallway : Access i s a l lowed because
21 any i s a l lowed
22 LOC ljan : Access i s not a l lowed because KEY r i s
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23 needed and acto r does not have the key
24 KEY jp i s needed and acto r does not have the key
25 LOC jan : Access i s a l lowed because any i s a l lowed
26 LOC jan : Access i s a l lowed because any i s a l lowed
27 LOC usr : Access i s not a l lowed because KEY u i s needed
28 and actor does not have the key
29 LOC PCusr : Access i s a l lowed because any i s a l lowed
30 LOC PCrec : Access i s a l lowed because any i s a l lowed
31 LOC PCsrv : Access i s a l lowed because any i s a l lowed

Listing 5.2: Log output for Figure 5.4 showing Attack 1

However, Attack number 2 from the figure shows that ACT J can gain access
if it follows LOC outside → LOC fhallway → LOC hallway → LOC csrv →
LOC srv → LOC PCsrv. The listing 5.3 also verifies it and if we look into the
grammar then also we can see that ACT J has enough credentials to pass the
nodes lying in this path.

1 Attack2
2 LOC outside : Access i s a l lowed because any i s a l lowed
3 LOC fhallway : Access i s a l lowed because ACT J i s needed
4 and actor has/ i s the key
5 LOC hallway : Access i s a l lowed because any i s a l lowed
6 LOC csrv : Access i s a l lowed because KEY j i s needed
7 and actor has/ i s the key
8 LOC srv : Access i s a l lowed because any i s a l lowed
9 LOC PCsrv : Access i s a l lowed because any i s a l lowed

Listing 5.3: Log output for Figure 5.4 showing Attack2

5.3 Task 3: With ActorSet

ActorSet is the collection of actors. In this configuration, the start and end
locations are the same. But this time, we choose both ACT U and ACT J as
the set of actors. Since ACT U could access these locations, the result of this
actorset should result in successful access. This is because though ACT J did
not have permission previously, now the actor set includes ACT U and the access
capabilities of ACT U matches the restriction of the locations. In other words,
it can be viewed as the total knowledge of credentials was combined knowledge
of ACT U and ACT J. For instance, Listing A.1.3 shows output from the log
file with the settings mentioned there. From the log file we can see that no
attacks happened. In Attack 1 at line 8 we can see access is allowed for KEY u
because KEY u belongs to ACT U which is in our actor set. This verifies that
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our restriction-capability test is properly using union of credentials of the actors
in the actor set.

5.4 Task 4: With data

As we have mentioned before, data is located at a location. Accessing data
means first the actor has to access the location where data is located. Therefore,
when data is selected then the location where data is located is searched. This
location is then set as destination location in the settings tab. We choose our
data to be DAT srv located at LOC PCsrv as defined by DAT srv{KEY u:
r;}[LOC PCsrv];. Figure 5.5 shows that when user selects data DAT srv from
the data in sets tab then the first thing that is done internally is to find the
location of where the data is located. Here the data is located at LOC PCsrv.
The tool correctly lists destination as LOC PCsrv as shown in vertex to section
in the figure.

Figure 5.5: Figure shows when data is being selected as DAT srv then the
destination location is changed to LOC PCsrv where data is located as indicated
by the changed and greyed Vertex To

The Figure 5.6 shows the attack tree for this configuration. This figure is similar
to Figure 5.4 except that in this case there is data also. Finding path operation
is similar as described before. Once the data is reached, access control check is
done on the data. Since this data need KEY u for reading and current acting
actor is ACT J, the user has no access privilege for the data. This shows the cor-
rectness of the application as it correctly displays the path as being traversable
and only data as inaccessible which is true in case of the presented task.
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Figure 5.6: Figure shows attack tree being generated for start location:
LOC outside; data: DAT srv (so end location: LOC PCsrv); actor: ACT J

5.5 Summary

In this chapter, we saw the functioning and evaluation of our tool. It provides
expected results. The complexity of tool will increase with the complexities of
the modules extended to it. But for now, the tool seems to output expected
result for analysis of reachability from one location to another in (or not in) the
presence of actor and data.



Chapter 6

Conclusions And Further
Work

6.1 Conclusions

This thesis work provided an explanation of how to generate attacks in a system
model. We developed a parser to specify the real world system such as organiza-
tion buildings and its components. The tool developed here provides a platform
where we can perform insider problem analysis on the abstracted analysable
system model. The tool gives users options to simulate ”Attack Generation”
between two location endpoints with or without any set of actors or data. Users
are presented with a list of possible attacks that can happen for the specified
locations, actors or data.

The tool is developed with a mindset of providing ease, better visualization and
freedom in analysis choices. Since the tool is in its early development phase,
the components in the tool are well managed so that extensions can be well
integrated into the tool for future enhancements. We believe that the framework
developed here can be beneficial for the insider problem analysis.
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6.2 Further Work

As mentioned in previous section, the tool is in its early development phase.
There are number of extensions that can be added to the system to make it
more close to the real world system. Some of those extensions that we have
come up with but yet remained to be implemented are briefly mentioned below:

• Complex Tuple Structure We have used simple tuple structures in the
tool, for instance, representing data as simple string. The tool can be
extended to deal with complex tuple structures such as nested tuples and
so on.

• Probability We have mentioned before that we settled for the over ap-
proximation of attacks because we did not take probability much into
account. For instance, we did not calculate whether an actor is able to
social engineer another actor or an actor was able to get the key from
the location or not. The tool can use probability algorithms to simulate
more realistic situations. For instance, probability algorithms to calcu-
late things such as whether an actor can be social engineered or what
information an actor gives another actor.

• Multiple Key Encryption The encryption-decryption of key and data
presented in the thesis was single encryption-decryption. We can extend
the tool to encrypt or decrypt the key or data with multiple keys. For ex-
ample at present the encryption in the specification looks like {KEY u:m}
however we can model multiple key encryption as {KEY jKey u:m} or
in some other possible ways. Since the key encryption is single till now
in the implementation, our nodes in attack trees are OR nodes if the
node has any children. If multiple key encryption is implemented then
we can also model the AND nodes in the attack tree. For example,
LOC cusr:{KEY jKey u:m; ACT U:m} so in the attack tree we can repre-
sent that to visit location cusr one need ((KEY j and KEY u) or ACT U).
And visually we can represent these AND and OR nodes with color com-
binations in our attack trees. For instance, the branches for KEY j and
KEY u are of same color so we know that they are AND nodes and dif-
ferent color for ACT U which will suggest that this is OR. In this way,
with multiple key encryption we can have complex encryption techniques
available and we will build a more complete attack tree with both AND
and OR nodes.

• Risk Modelling The tool can be extended to provide insights on risk
management as mentioned in Amenaza [2003]. It would be a nice idea to
extend the tool to predict damages and costs done and incurred during
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the attack. For instance, in an attack what worth an organization looses
and what cost the attacker has to pay to achieve success in that attack.
In this task we can annotate all the location nodes with cost to pass the
location, skill needed to pass it and success percentage of passing the node.
Integrating with probability extension mentioned above risk modelling can
be valuable for making our tool more closely resemble to the real world.

• Ranking Attacks Our attack trees are not ranked now. We are working
on ranking algorithms for our tool. Once the ranking attacks extension is
prepared we can view the attack trees in order of their ease of completion.
The ranking is based on complexity of the path. For instance, to go from
A to B the user has two paths P1 and P2. In P1, user does not have
to search for another key or social engineer another actor but in P2 user
need to social engineer another actor. So, the attack tree will present P1
as the first choice because attacker is likely to follow P1 rather than P2
as there is no obstacle in P1.

• User Interface As of now, we feed a specification to the tool which
contains all the system specifications. With complex and bigger system
these specifications can get large and may be hard for the user to manually
code it in language. Also, the language specification being large the user
can get confuse and commit errors. For this purpose in future, we can
extend our tool in such a way that user can draw the system specification
as graph on some drawing canvas provided with the tool. The user should
be able to specify actors, keys, data and locations present in the system
on the canvas and also later edit/delete/add components directly from
the canvas. This way the user does not have to gain the knowledge of the
modelling language syntax and a novice user will also be able to use our
tool with some basic knowledge.

• Logs We have not implemented the LTRA yet in our tool. For now we
just keep the logs of the attacks in the text file. We are investigating
algorithms to simulate LTRA in best possible way in our defined system.
Furthermore, it would be good to integrate these log sequences in some
kind of databases so that freedom of operating these log values is leveraged.
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A.1 Test Output

A.1.1 Test file

1 l o c a t i o n s
2 {
3 // l o c a t i o n s in the b u i l d i n g
4 domain = DOM LOC BuildA ;
5

6 LOC outside [ area = 1−4,6 ] { ∗ : ∗ ; } ;
7 LOC reception [ area = 1−4,5 ] { ∗ : ∗ ; } ;
8 LOC fhallway { ACT U: log m ; ACT J : log m ; } ;
9 LOC hallway [ area = 1,1−4 ] { ∗ : ∗ ; } ;

10 LOC csrv { KEY u : m; KEY j : log m ; } ;
11 LOC srv [ area = 2−4,1 ] { ∗ : ∗ ; } ;
12 LOC cusr { KEY u : m; } ;
13 LOC usr [ area = 2−4,2 ] { ∗ : ∗ ; } ;
14 LOC ljan { KEY j : log m ; } ;
15 LOC jan [ area = 2−4,3 ] { ∗ : ∗ ; } ;
16

17 // l o c a t i o n s in the network
18 domain = DOM NET BuildA ;
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19

20 LOC PCrec [ l o c a t i o n = LOC reception ] { ∗ : ∗ ; } ;
21 LOC PCusr [ l o c a t i o n = LOC usr ] { ∗ : ∗ ; } ;
22 LOC PCsrv [ l o c a t i o n = LOC srv ] { ∗ : ∗ ; } ;
23 }
24

25 connec t i ons
26 {
27 LOC outside : LOC reception , LOC fhallway ;
28 LOC reception : LOC outside , LOC fhallway ;
29 LOC fhallway : LOC hallway , LOC reception ;
30 LOC hallway : LOC csrv , LOC cusr , LOC ljan , LOC fhallway ;
31 LOC csrv : LOC srv ;
32 LOC cusr : LOC usr ;
33 LOC ljan : LOC jan ;
34 LOC srv : LOC hallway , LOC PCsrv ;
35 LOC usr : LOC hallway , LOC PCusr ;
36 LOC jan : LOC hallway ;
37

38 // connect ion f o r dom network
39 LOC PCrec : LOC PCusr , LOC PCsrv ;
40 LOC PCusr : LOC PCrec , LOC PCsrv ;
41 LOC PCsrv : LOC PCrec , LOC PCusr ;
42

43 }
44

45 ac t o r s
46 {
47 ACT U{
48 known keys = {KEY u} ;
49 } ;
50 ACT J{
51 owned keys = {KEY j } ;
52 } ;
53 ACT V{
54 // a v i s i t o r
55 } ;
56 ACT R{
57 // r e c e p t i o n i s t
58 known keys = {KEY r} ;
59 } ;
60 }
61 data
62 {
63 DAT rec{KEY u : r ; KEY r : r ; } [ LOC PCrec ] ;
64 DAT srv{KEY u : r ; } [ LOC PCsrv ] ;
65 DAT usr{KEY u : r ; } [ LOC PCusr ] ;
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66 }
67

68 key{
69 KEY u [ LOC jan ] ;
70 KEY j ;
71 KEY r [ LOC fhallway ] ;
72 KEYm ;
73 KEY jp [ LOC jan ] ;
74 KEY t [ LOC reception ] ;
75 }

Listing A.1: Test Grammar File of which test results are put below

A.1.2 Task 1

Source LOC outside Destination LOC PCsrv Path Shortest Actor Set φ
Data null

1 Attack1
2 LOC outside : Access i s a l lowed because any i s a l lowed
3 LOC fhallway : Access i s a l lowed because ACT J i s needed
4 and actor has/ i s the key
5 LOC hallway : Access i s a l lowed because any i s a l lowed
6 LOC csrv : Access i s a l lowed because KEY j i s needed
7 and actor has/ i s the key
8 LOC srv : Access i s a l lowed because any i s a l lowed
9 LOC PCsrv : Access i s a l lowed because any i s a l lowed

A.1.3 Task 2

Source LOC outside Destination LOC PCsrv Path Full Actor Set ACT U,
ACT J (Almost similar for ACT U as well as φ) Data null

1 Attack1
2 LOC outside : Access i s a l lowed because any i s a l lowed
3 LOC reception : Access i s a l lowed because any i s a l lowed
4 LOC fhallway : Access i s a l lowed because ACT J i s needed
5 and actor has/ i s the key Access i s a l lowed
6 because ACT U i s needed and actor has/ i s the key
7 LOC hallway : Access i s a l lowed because any i s a l lowed
8 LOC cusr : Access i s a l lowed because
9 KEY u i s needed and acto r has/ i s the key
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10 LOC usr : Access i s a l lowed because any i s a l lowed
11 LOC PCusr : Access i s a l lowed because any i s a l lowed
12 LOC PCrec : Access i s a l lowed because any i s a l lowed
13 LOC PCsrv : Access i s a l lowed because any i s a l lowed
14

15 Attack2
16 LOC outside : Access i s a l lowed because any i s a l lowed
17 LOC fhallway : Access i s a l lowed because ACT J i s needed
18 and actor has/ i s the key Access i s a l lowed
19 because ACT U i s needed and acto r has/ i s the key
20 LOC hallway : Access i s a l lowed because any i s a l lowed
21 LOC csrv : Access i s a l lowed because KEY j i s needed
22 and actor has/ i s the key Access i s a l lowed
23 because KEY u i s needed and actor has/ i s the key
24 LOC srv : Access i s a l lowed because any i s a l lowed
25 LOC PCsrv : Access i s a l lowed because any i s a l lowed
26

27 Attack3
28 LOC outside : Access i s a l lowed because any i s a l lowed
29 LOC reception : Access i s a l lowed because any i s a l lowed
30 LOC fhallway : Access i s a l lowed because ACT J i s needed
31 and actor has/ i s the key Access i s a l lowed
32 because ACT U i s needed and acto r has/ i s the key
33 LOC hallway : Access i s a l lowed because any i s a l lowed
34 LOC cusr : Access i s a l lowed because KEY u i s needed
35 and actor has/ i s the key
36 LOC usr : Access i s a l lowed because any i s a l lowed
37 LOC PCusr : Access i s a l lowed because any i s a l lowed
38 LOC PCsrv : Access i s a l lowed because any i s a l lowed
39

40 Attack4
41 LOC outside : Access i s a l lowed because any i s a l lowed
42 LOC fhallway : Access i s a l lowed because ACT J i s needed
43 and actor has/ i s the key Access i s a l lowed because
44 ACT U i s needed and actor has/ i s the key
45 LOC hallway : Access i s a l lowed because any i s a l lowed
46 LOC cusr : Access i s a l lowed because
47 KEY u i s needed and actor has/ i s the key
48 LOC usr : Access i s a l lowed because any i s a l lowed
49 LOC PCusr : Access i s a l lowed because any i s a l lowed
50 LOC PCsrv : Access i s a l lowed because any i s a l lowed
51

52 Attack5
53 LOC outside : Access i s a l lowed because any i s a l lowed
54 LOC reception : Access i s a l lowed because any i s a l lowed
55 LOC fhallway : Access i s a l lowed because ACT J i s needed
56 and actor has/ i s the key Access i s a l lowed
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57 because ACT U i s needed and acto r has/ i s the key
58 LOC hallway : Access i s a l lowed because any i s a l lowed
59 LOC csrv : Access i s a l lowed because KEY j i s needed
60 and actor has/ i s the key Access i s a l lowed
61 because KEY u i s needed and acto r has/ i s the key
62 LOC srv : Access i s a l lowed because any i s a l lowed
63 LOC PCsrv : Access i s a l lowed because any i s a l lowed
64

65 Attack6
66 LOC outside : Access i s a l lowed because any i s a l lowed
67 LOC fhallway : Access i s a l lowed because ACT J i s
68 needed and acto r has/ i s the key Access i s a l lowed
69 because ACT U i s needed and acto r has/ i s the key
70 LOC hallway : Access i s a l lowed because any i s a l lowed
71 LOC cusr : Access i s a l lowed because KEY u i s needed
72 and actor has/ i s the key
73 LOC usr : Access i s a l lowed because any i s a l lowed
74 LOC PCusr : Access i s a l lowed because any i s a l lowed
75 LOC PCrec : Access i s a l lowed because any i s a l lowed
76 LOC PCsrv : Access i s a l lowed because any i s a l lowed

A.1.4 Task 3

Source LOC outside Destination LOC PCsrv Path Full Actor Set ACT J
Data null

1

2 Attack1
3 LOC outside : Access i s a l lowed because any i s a l lowed
4 LOC reception : Access i s a l lowed because any i s a l lowed
5 LOC fhallway : Access i s a l lowed because ACT J i s needed
6 and actor has/ i s the key
7 LOC hallway : Access i s a l lowed because any i s a l lowed
8 LOC cusr : Access i s not a l lowed because
9 KEY u i s needed and acto r does not have the key

10 Obtain KEY u
11 LOC hallway : Access i s a l lowed because any i s a l lowed
12 LOC ljan : Access i s a l lowed because KEY j i s
13 needed and acto r has/ i s the key
14 LOC jan : Access i s a l lowed because any i s a l lowed
15 LOC usr : Access i s a l lowed because any i s a l lowed
16 LOC PCusr : Access i s a l lowed because any i s a l lowed
17 LOC PCrec : Access i s a l lowed because any i s a l lowed
18 LOC PCsrv : Access i s a l lowed because any i s a l lowed
19
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20 Attack2
21 LOC outside : Access i s a l lowed because any i s a l lowed
22 LOC fhallway : Access i s a l lowed because ACT J i s needed
23 and actor has/ i s the key
24 LOC hallway : Access i s a l lowed because any i s a l lowed
25 LOC csrv : Access i s a l lowed because KEY j i s needed
26 and actor has/ i s the key
27 LOC srv : Access i s a l lowed because any i s a l lowed
28 LOC PCsrv : Access i s a l lowed because any i s a l lowed
29

30 Attack3
31 LOC outside : Access i s a l lowed because any i s a l lowed
32 LOC reception : Access i s a l lowed because any i s a l lowed
33 LOC fhallway : Access i s a l lowed because ACT J i s needed
34 and actor has/ i s the key
35 LOC hallway : Access i s a l lowed because any i s a l lowed
36 LOC csrv : Access i s a l lowed because KEY j i s needed
37 and actor has/ i s the key
38 LOC srv : Access i s a l lowed because any i s a l lowed
39 LOC PCsrv : Access i s a l lowed because any i s a l lowed
40

41 Attack4
42 LOC outside : Access i s a l lowed because any i s a l lowed
43 LOC fhallway : Access i s a l lowed because ACT J i s needed
44 and actor has/ i s the key
45 LOC hallway : Access i s a l lowed because any i s a l lowed
46 LOC cusr : Access i s not a l lowed because
47 KEY u i s needed and acto r does not have the key
48 Obtain KEY u
49 LOC hallway : Access i s a l lowed because any i s a l lowed
50 LOC ljan : Access i s a l lowed because KEY j i s
51 needed and acto r has/ i s the key
52 LOC jan : Access i s a l lowed because any i s a l lowed
53 LOC usr : Access i s a l lowed because any i s a l lowed
54 LOC PCusr : Access i s a l lowed because any i s a l lowed
55 LOC PCrec : Access i s a l lowed because any i s a l lowed
56 LOC PCsrv : Access i s a l lowed because any i s a l lowed
57

58 Attack5
59 LOC outside : Access i s a l lowed because any i s a l lowed
60 LOC reception : Access i s a l lowed because any i s a l lowed
61 LOC fhallway : Access i s a l lowed because ACT J i s needed
62 and actor has/ i s the key
63 LOC hallway : Access i s a l lowed because any i s a l lowed
64 LOC cusr : Access i s not a l lowed because
65 KEY u i s needed and acto r does not have the key
66 Obtain KEY u



A.1 Test Output 63

67 LOC hallway : Access i s a l lowed because any i s a l lowed
68 LOC ljan : Access i s a l lowed because KEY j i s
69 needed and acto r has/ i s the key
70 LOC jan : Access i s a l lowed because any i s a l lowed
71 LOC usr : Access i s a l lowed because any i s a l lowed
72 LOC PCusr : Access i s a l lowed because any i s a l lowed
73 LOC PCsrv : Access i s a l lowed because any i s a l lowed
74

75 Attack6
76 LOC outside : Access i s a l lowed because any i s a l lowed
77 LOC fhallway : Access i s a l lowed because ACT J i s needed
78 and actor has/ i s the key
79 LOC hallway : Access i s a l lowed because any i s a l lowed
80 LOC cusr : Access i s not a l lowed because
81 KEY u i s needed and acto r does not have the key
82 Obtain KEY u
83 LOC hallway : Access i s a l lowed because any i s a l lowed
84 LOC ljan : Access i s a l lowed because KEY j i s
85 needed and acto r has/ i s the key
86 LOC jan : Access i s a l lowed because any i s a l lowed
87 LOC usr : Access i s a l lowed because any i s a l lowed
88 LOC PCusr : Access i s a l lowed because any i s a l lowed
89 LOC PCsrv : Access i s a l lowed because any i s a l lowed

A.1.5 Task 4

Source LOC outside Destination LOC PCsrv Path Full Actor Set ACT J
Data DAT srv

1 Attack1
2 LOC outside : Access i s a l lowed because any i s a l lowed
3 LOC fhallway : Access i s a l lowed because ACT J i s needed
4 and actor has/ i s the key
5 LOC hallway : Access i s a l lowed because any i s a l lowed
6 LOC csrv : Access i s a l lowed because KEY j i s needed
7 and actor has/ i s the key
8 LOC srv : Access i s a l lowed because any i s a l lowed
9 LOC PCsrv : Access i s a l lowed because any i s a l lowed

10 Locat ion i s acce s s ed but no
11 p r i v i l e g e to a c c e s s data
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