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Summary

Today, when every computer has gone multicore, the requirement of taking ad-
vantage of these computing powers becomes critical. However, multicore paral-
lelism is complex and error-prone due to extensive use of synchronization tech-
niques. In this thesis, we explore the functional paradigm in the context of
F# programming language and parallelism support in .NET framework. This
paradigm prefers the declarative way of thinking and no side effect which lead
to the ease of parallelizing algorithms. The purpose is to investigate decision
algorithms for quantified linear arithmetic of integers (also called Presburger
Arithmetic) aiming at efficient parallel implementations. The context of the
project is; however, to support model checking for the real-time logic Duration
Calculus, and the goal is to decide a subset of Presburger formulas, which is rel-
evant to this model-checking problem and for which efficient tool support can be
provided. We present a simplification process for this subset of Presburger for-
mulas which gives some hope for creating small corresponding formulas. Later
two parallel decision procedures for Presburger Arithmetic along with their ex-
perimental results are discussed.
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Preface

The thesis is a part of the double-degree Erasmus Mundus Mater in Security and
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This thesis was done at the department of Informatics and Mathematical Mod-
elling (IMM) at DTU, under the main supervision of Associate Professor Michael
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The thesis deals with various problems of Presburger Arithmetic ranging from
simplification to decision procedures. The reader is expected to be familiar
with F#, .NET framework and parallel programming. No prior knowledge of
functional programming is needed, although it helps to understand the idea of
multicore parallelism in connection with the functional paradigm.
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Chapter 1

Introduction

1.1 Background

In 1965, Gordon Moore proposed Moore’s Law predicting the number of tran-
sistors on an integrated circuit would double every 18-24 months resulting in a
corresponding increase of processing power in the same time period [32]. Soft-
ware used to get free extra speed whenever hardware manufacturers released
newer and faster mainstream systems. However, when clock frequency of a sin-
gle processor reached their peak a few years ago, the free lunch was almost over.
Due to power consumption problem, instead of making more powerful and faster
processors, CPU makers tried to integrate many cores into a single processor.
In theory, CPU power still grows according to Moore’s Law, but single-threaded
applications cannot benefit from extra CPU resources anymore. Multicore trend
helps chip designers to avoid serious problems such as heat losses and leakage
current but still achieve good processing power at an economical price. How-
ever, multicore computing brings in a new challenge for software architects and
developers, they need to reconsider the way which systems are built to be able
to have good utilization of CPU resources.

Although parallel computing is a hinder for software development because of
requiring so much time and effort for development, it brings significant oppor-
tunities for organizations being able to exploit parallelism. Organizations will
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have new experiences of fast service delivery and efficient products leading to
potential business opportunities. Some areas obviously requiring parallel com-
puting are product design simulation where manufacturers are able to quickly
prototype virtual products and financial modeling thanks to which financial
companies can offer customers powerful modeling tools with rich analysis of fi-
nancial scenarios. Also parallel programming is expected to brings benefits to
numerical software products where heavy computation of numerical and sym-
bolic algorithms requires efficient use of computing power.

Procedural and object-oriented programs are difficult to parallelize due to the
problem of shared states and imperative data structures. This problem does
not occur in functional programming, in this thesis we shall investigate how to
exploit functional paradigm in the context of parallel programming. Functional
programming has its clear advantages of supporting parallel computing. First,
functional programming relies on data immutability which guarantees code ex-
ecution without side effects; therefore, different parts of algorithms could be
parallelized without introducing any synchronization construct. Second, the
declarative way of programming enables developers to describe what problems
are rather than how to solve them and consequently make them easier to break
up and parallelize. Third, functional constructs such as high-order functions and
lambda expressions provide convenient tools for clearly structuring the code,
which eases the pain of prototyping parallel programs. F# is chosen as the
functional programming language for development. Beside other advantages of a
functional programming language, its well-supported .NET framework provides
rich libraries for developing applications and efficient constructs for parallelism.

Later we review the idiom of functional paradigm and parallel execution along
with decision procedures for Presburger Arithmetic (PA). These algorithms are
difficult case studies of tool support; Presburger formulas are known to be de-
cidable but their decision procedures are doubly exponential lower bound and
triply exponential upper bound [23]. However, instances of PA keep appearing
in compiler optimization and model checking problems, which raises the need
for practically fast implementation of PA decision procedure. Some Presburger
fragments are being used in connection with a model checker for Duration Calcu-
lus (DC) [10]. For example, power usage of nodes on a Wireless Sensor Network
(WSN) is expressed in DC and later converted into a Presburger fragment. To
be able to deduce conclusions about power usage, the Presburger formula which
may appear to have rather big size has to be decided. Therefore, we perform
experiments with parallelism and PA decision procedures using F# and .NET
framework. Hopefully, these experiments can help us to get closer to the goal
of efficient tool support for PA.
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1.2 Presburger Arithmetic and problems of par-
allel decision procedures

Decision procedures for PA exist but they are quite expensive for practical
usage [28]. There are various attempts to optimize those decision procedures
in many aspects. However, those efforts only help to reduce memory usage and
provide fast response for a certain type of formulas; no attempt on employing
extra CPU power for PA algorithms is found in the academia. Although lack
of reference for related work on the problem brings us a new challenge, we
enlarge the investigation to parallel execution of decision procedures in general;
hopefully understanding of their approaches might be helpful. As it turns out,
parallelization of SAT solvers is a rather unexplored topic. Two main approaches
are mainly used for parallel SAT solving. The first one is Search Space Splitting
where search space is broken into independent parts and subproblems are solved
in parallel. Typically in this approach, if one thread completes its work early,
it will be assigned other tasks by a dynamic work-stealing mechanism. One
example of this approach is the multithreaded ySAT by Feldman et al. [7].
The second approach is Algorithm Portfolio where the same instance is solved
in parallel by different SAT solvers with different parameter settings. Learning
process is important for achieving good efficiency in this method. ManySAT by
Hamadi et al. [13] is known as a good example in this category.

Beside the problem of few related literature, parallel execution of PA is thought
to be difficult due to many reasons:

• Algorithms designed in the sequential way of thinking need careful reviews,
parallel execution of sequential algorithms will not bring benefits.

• Some algorithms are inherently difficult to parallelize. The degree of par-
allelism depends on how much work is run sequentially, if sequential part
of the program dominates, parallelism does not help much.

• Achieving parallelism is much dependent on support of the programming
language; moreover, parallelization is subtle and requires thorough profil-
ing and testing process.

This thesis relies on investigation of decision procedures and parallel patterns.
From this investigation, we are going to sketch some ideas for parallelism in PA
decision procedures in connection with DC model checker.
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1.3 Purpose of the thesis

In this work, we expect to achieve following objectives:

• Investigate combination between functional programming and parallel pro-
gramming in the context of F# and .NET platform.

• Apply learned principles into problems inspired by studying decision pro-
cedures for PA.

• Investigate efficient algorithms for deciding Presburger fragments, partic-
ularly focus on Presburger formulas useful for Duration Calculus’s Model
Checker.

• Design and implement these decision procedures with concentration on
parallel execution.



Chapter 2

Multicore parallelism on F#
and .NET framework

The chapter starts with a brief overview of multicore parallelism. Although
multicore parallelism is a special case of parallel processing which performs on
the multicore architecture, the architecture actually has a huge influence on
how multicore parallelism is done and what we can achieve. Later we introduce
parallelism constructs by a series of familiar examples, we shall see that the
functional paradigm is suitable and easily used to write correct parallel imple-
mentations.

2.1 Multicore parallelism: a brief overview

The section describes some useful concepts which will be used throughout the
report. Although these concepts are terms of parallel processing, they should be
understood in the specific context of multicore parallelism. We also present the
architecture of multicore computers because it is essential and has its influence
on what we can achieve in multicore parallelism.
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2.1.1 Platform

Parallel computing is usually classified by platforms where they are executed.
A platform could be a cluster of nodes where coordination is done by message
passing or a single machine with multiple cores coordinating in parallel using
shared memory. In this work, parallel processing is done on a multicore plat-
form, so shared-memory parallel programming is used by default here. One
thing needed to clarify is we focus on parallelism rather than concurrency. By
parallelism, we mean to exploit all system resources to speedup computation
as much as possible, so performance is the most important goal. This is differ-
ent from concurrency where different jobs may be executed at the same time
and may not block each other. Moreover, multicore is rather new compared to
other parallel platforms so results on those platform require careful justifica-
tion. The structure of multicore computers which brings some advantages and
disadvantages to parallel computing is going to be discussed in the next section.

2.1.2 Architecture of multicore computers

Figure 2.1 illustrates a simplified structure of multicore machines. There are
multiple cores with independent ALUs and instruction streams which enable
computation to be done in parallel. While each core has their own L1 cache,
L2 cache and main memory are shared between all cores. If data fit into L1
cache, all cores would operate in parallel. However, in practice some cores have
to read memory blocks from L2 cache to L1 cache, or from main memory to L2
cache. Therefore, sequential access to L2 cache and main memory is a significant
bottleneck in parallel execution. In general, memory access pattern and cache
behaviour are important factors which affect performance of multicore parallel
programs.

2.1.3 Parallel programming frameworks

One problem of parallel computing is the divergence of programming frameworks
which makes developers confused and it is hard to choose a correct environment
for their purpose. However, two most popular parallel programming frameworks
are MPI for message passing and OpenMP for shared memory [21]. MPI consists
of a set of library functions for process creation, message passing and commu-
nication operations. Its model assumes distributed memory so that MPI only
fits distributed applications which work on a cluster of machines. OpenMP con-
tains a set of compiler directives to add parallelism to existing code. Its model
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Figure 2.1: A common architecture of multicore hardware [29].

assumes the architecture of symmetric multiprocessors, thus working well on
shared memory machines. Although OpenMP is easier to adapt to the architec-
ture of multicore hardwares than MPI, it was not designed specifically for the
multicore platform. Other new parallel frameworks including Parallel Exten-
sions (PFX) of .NET framework are expected to exploit multicore computing
powers better.

2.1.4 Programming Models

Categorized by programming models, parallel processing falls into two groups:
explicit parallelism and implicit parallelism [12]. In explicit parallelism,
concurrency is expressed by means of special-purpose directives or function calls.
These primitives are related to synchronization, communication and task cre-
ation which result in parallel overheads. Explicit parallelism is criticized for
being too complicated and hiding meanings of parallel algorithms; however, it
provides programmers with full control over parallel execution, which leads to
optimal performance. MPI framework and Java’s parallelism constructs are
well-known examples of explicit parallelism.

Implicit parallelism is based on compiler support to exploit parallelism without
using additional constructs. Normally, implicit parallel languages do not require
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special directives or routines to enable parallel execution. Some examples of
implicit parallel languages could be HPF and NESL [12]; these languages hide
complexity of task management and communication, so developers can focus
on designing parallel programs. However, implicit parallelism does not give
programmers much space for tweaking programs leading to suboptimal parallel
efficiency.

In this work, we use F# on .NET framework for parallel processing. F#’s par-
allelism constructs are clearly explicit parallelism; in Section 2.2 we are showing
that these constructs are very close to implicit parallelism but they still allow
users to control the degree of parallelism.

2.1.5 Important Concepts

Speedup

Speedup is defined as follows [21]:

SN =
T1

TN

where:

• N is the number of processors.

• T1 is the execution time of a sequential algorithm.

• TN is the execution time of a parallel algorithm using N processors.

In an ideal case when SN = N, a linear speedup is obtained. However, super lin-
ear speedup higher than N with N processors might happen. One reason might
be cache effect, a larger cache size can make data fit into caches; therefore, mem-
ory access is faster and extra speedup is obtained not from actual computation.
Another reason might be cooperation between tasks in a parallel backtracking
algorithm. When performing backtracking in parallel, some branches of a search
tree are pruned much earlier by some tasks, which results in a smaller search
space for each task.
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Parallel Efficiency

Parallel efficiency is defined by the following equation [21]:

EN =
SN

N

It is a performance metric, typically between zero and one, indicating CPU
utilization of solving problems in parallel.

Amdahl’s Law

Suppose that P is the portion of a program which can be parallelized and 1−P
is the portion which still remains sequential, the maximum speedup of using N
processors is [16]:

SN =
1

(1− P) + P
N

The optimal speedup tends to be 1/(1− P) no matter how many processors are
added. For example, if P = 90% performance could be speded up until a factor
of 10. Amdahl’s Law is criticized for being pessimistic in the assumption that
the problem size is fixed. In some applications where data is highly independent
from each other, when the problem size increases, the optimal speedup factor
becomes rather big.

Gustafson’s Law

Addressing the pitfall of Amdahl’s Law with fixed problem sizes, Gustafson’s
Law states that the maximum speedup factor is [11]:

SN = N− α.(N− 1)

where:

• N is the number of processors.

• α is the non-parallelizable portion of a program.

Gustafson’s Law is more optimistic than Amdahl’s; it implies that size of prob-
lems solved in a fixed time increases when computing power grows. Also it
spots the need of minimizing the sequential portion of a program, even if this
minimization increases total amount of computations.
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Synchronization

Parallel processing allows two or more processes running simultaneously. In
various cases, the order of events does not matter. In other cases, to ensure
correctness of a program, we have to ensure that events occur in a specific
order. Synchronization constructs are introduced to enforce constraints in these
cases.

Race condition

This is a typical kind of error happening to parallel programs. It occurs when
a program runs in the same system with the same data but produces totally
different results. One cause of race condition is synchronization. Read and write
commands to shared variables have to be done in a correct order; otherwise,
results are unpredictably wrong.

Deadlocks

Deadlocks usually occur with parallel programs when complex coordination be-
tween tasks is employed. When a cycle of tasks are blocked and waiting for
each other, a deadlock occurs. In general, deadlocks are not difficult to de-
tect statically and some constructs are made for resolving deadlocks when they
happen.

Parallel slowdown

When a task is divided into more and more subtasks, these subtasks spend more
and more time communicating with each other; eventually, overheads of com-
munication dominate running time, and further parallelization increases rather
than decreases total running time. Therefore, good parallel efficiency requires
careful management of task creation and task partitioning.

2.2 Multicore parallelism on .NET framework

In this section, we shall introduce parallelism constructs of .NET platform. To
make the introduction more interesting, we demonstrate some specific examples



2.2 Multicore parallelism on .NET framework 11

which directly use those parallelism constructs. All benchmarks here are done
on an 8-core 2.40GHz Intel Xeon workstation with 8GB shared physical memory.

2.2.1 Overview

Parallel programming has been supported by .NET framework for quite some
time, and it becomes really mature with Parallel Extension (PFX) in .NET
4.0. An overall picture of parallel constructs is illustrated in Figure 2.2. In
general, a parallel program is written in an imperative way or in a functional
way and compiled into any language in .NET platform. Here we are particularly
interested in F# and how to use parallel constructs in F#. Some programs
may employ PLINQ execution engine to run LINQ queries in parallel; however,
behind the scene, PLINQ is based on Task Parallel Library (TPL) to enable
parallelism. An important primitive in TPL which represents an execution unit
is Task; a parallel program is divided into many Tasks which are able to execute
in parallel. TPL runs tasks in parallel by the following procedure: it spawns a
number of worker threads; tasks are put into a Work Queue which is accessible
by all threads; each thread consumes a number of tasks and returns results.
This Work Queue supports a work-stealing mechanism in which each thread
can steal tasks of other threads when it finishes its work, and the number of
worker threads is determined by TPL according to how heavy the tasks are. As
we can see, TPL hides complexity of creating and managing threads which easily
go wrong; therefore, users can focus on designing parallel algorithms rather than
worry about low-level primitives. Anyway, users still have their capabilities of
controlling execution of Tasks and the number of worker threads, which will be
presented in next sections.

2.2.2 Data parallelism

Data parallelism is used when we have a collection of data and a single oper-
ation to apply on each item. Data parallelism clearly benefits us if items are
independent of each other and cost of gathering data is not so big. The example
demonstrated here is estimating the value of π. This value could be calculated
by an integral as follows:

π =

∫ 1

0

4

1+ x2
dx

For purpose of demonstration, we divide the range from 0 to 1 into 100000000
steps and estimate the area (which is corresponding to π) by a trapezoid inte-
gration rule. The first version is using LINQ, a data query component in .NET
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Figure 2.2: Parallel programming in .NET framework [29].

platform. LINQ allows users to write queries in a very declarative style which
does not expose any side effect and shows nature of problems very clearly:

let NUM_STEPS = 100000000
let steps = 1.0 / (float NUM_STEPS)
let sqr x = x ∗ x

let linqCompute1() =
(Enumerable
.Range(0, NUM_STEPS)
.Select(fun i −> 4.0 / (1.0 + sqr((float i + 0.5) ∗ steps)))
.Sum()
) ∗ steps

Computation is done in three steps. First, the range of 100,000,000 elements
are constructed as an instance of Enumerable class, and this type is a central
element for accommodating LINQ queries. Second, the Select method calcu-
lates intermediate values for all indices. Finally, the Sum function aggregates all
immediate results. Due to the advantage of side effect free, LINQ queries are
easy to parallelize. In reality, .NET platform has supported LINQ queries in a
parallel manner by PLINQ constructs. The calculation π is turned into paral-
lel execution by just changing Enumerable to ParallelEnumerable to indicate
usage of PLINQ:

let plinqCompute2() =
(ParallelEnumerable
.Range(0, NUM_STEPS)
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.Select(fun i −> 4.0 / (1.0 + sqr((float i + 0.5) ∗ steps)))

.Sum()
) ∗ steps

PLINQ provides users a cheap way to do parallelization in .NET framework;
our PLINQ version is 3-4× faster than the LINQ companion. One question
raised is: why not provide PLINQ as a default option for data querying in
.NET. The reason is that PLINQ is not always faster than its corresponding
LINQ companion. To be worth using PLINQ, a task should be big and contain
rather independent subtasks. Certainly, parallel processing by using PLINQ has
drawbacks of little control over degree of parallelism and the way tasks are split
and distributed over processing units.

Our third version is a simple for loop running 100,000,000 times and gradually
gathering results implemented by means of recursion in F#:

let compute3() =
let rec computeUtil(i, acc) =

if i = 0 then acc ∗ steps

else
let x = (float i + 0.5) ∗ steps

computeUtil (i−1, acc + 4.0 / (1.0 + x ∗ x))
computeUtil(NUM_STEPS, 0.0)

Its parallel equivalent is written using Parallel.For construct:

let parallelCompute4() =
let sum = ref 0.0
let monitor = new Object()
Parallel.For(

0, NUM_STEPS, new ParallelOptions(),
(fun () −> 0.0),
(fun i loopState (local:float) −>

let x = (float i + 0.5) ∗ steps

local + 4.0 / (1.0 + x ∗ x)
),

(fun local −> lock (monitor) (fun () −> sum := !sum + local))) |>
ignore

!sum ∗ steps

This variant of Parallel.For loop consists of 6 parameters: the first two pa-
rameters are the first and the last array index; the third one specifies some
advanced options to control parallelism; the fourth argument is to initialize lo-
cal variables of worker threads; the fifth one is a computing function at each
index and the last argument is the aggregated function to sum up all interme-
diate results to the final one. This version is 3-4× faster than the sequential
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companion; however, we can improve more here. As we can see, the Select
phase is fully parallel, but the Sum phase is partly sequential. Here we use
lock to avoid concurrent writes to sum variable; acquiring lock is expensive so
their use should be minimized as much as possible. We come out with a new
parallel implementation as follows:

let parallelCompute5() =
let rangeSize = NUM_STEPS / (Environment.ProcessorCount ∗ 10)
let partitions = Partitioner.Create(0, NUM_STEPS, if rangeSize >= 1 then

rangeSize else 1)
let sum = ref 0.0
let monitor = new Object()
Parallel.ForEach(

partitions, new ParallelOptions(),
(fun () −> 0.0),
(fun (min, max) loopState l −>

let local = ref 0.0
for i in min .. max − 1 do

let x = (float i + 0.5) ∗ steps

local := !local + 4.0 / (1.0 + x ∗ x)
l + !local),

(fun local −> lock (monitor) (fun () −> sum := !sum + local))) |>
ignore

!sum ∗ steps

Our benchmark shows that this version is 7-8× faster than the sequential coun-
terpart. Here we use a Partitioner to divide the work into many fixed-size
chunks. The size of these chunks should be considerably large to be worth spawn-
ing new tasks; as the number of locks is equal to the number of chunks, this num-
ber should be small enough. The parallel construct here is Parallel.ForEach,
the companion of Parallel.For, which is employed for non-indices collections.
As can be seen from the example, Parallel.ForEach and Partitioner are
really helpful because they provide a very fine-grained control over how paral-
lelization is done. However, Parallel.For(Each) is designed for .NET itself.
In order to use them conveniently in a functional programming language, one
should wrap them in functional constructs and provide parameters for tweaking
parallelism.

Comparison of execution time is presented in Table 2.1, and detailed source
code can be found in Appendix A.1.

Besides those primitives which have been illustrated in the above examples, TPL
also has some mechanisms to provide fine-grained parallel execution:
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LINQ PLINQ Sequential Parallel.For Parallel.ForEach
Speedup 1x 3-4x 2x 6-8x 14-16x

Table 2.1: Speedup factors of π calculation compared to the slowest version.

• Degree of Parallelism
In PLINQ, controlling degree of parallelism is specified by WithDegreeOf

Parallelism(Of TSource) operator, this operator determines the maxi-
mum number of processors used for the query. In Parallel.For(Each),
we can set the maximum number of threads for executing a parallel loop
by ParallelOptions and MaxDegreeOfParallelism constructs. These
primitives are introduced to avoid spawning too many threads for compu-
tation, which leads to too many overheads and slows down computation.

• Ending Parallel.For(Each) loop early
With Parallel.For(Each), if iterating through the whole loop is not
needed, we can use Stop() and Break() functions of ParallelLoopState
to jump out of the loop earlier. While Stop() terminates all indices which
are running, Break() only terminates other lower indices so the loop will
be stopped more slowly than the former case. This early loop-breaking
mechanism is sometimes helpful to design parallel-exist or parallel-find
functions which are difficult to do with PLINQ.

To conclude, PLINQ and Parallel.For(Each) provide convenient ways to per-
form data parallelism in .NET platform. While PLINQ is declarative and nat-
ural to use, we only have little control to how parallelization is done there. With
Parallel.For(Each), we have more control over partitioning and distributing
workloads on processing units, however their paradigm is somehow imperative.
One thing to keep in mind is that parallelism constructs are expensive, so data
parallelism is worth performing only when workloads are large and the number
of items is big enough.

2.2.3 Task parallelism

While data parallelism focuses on data and the way to distribute them over pro-
cessing units, task parallelism focuses on how to split tasks into small subtasks
which can be executed in parallel. With this point of view, task parallelism
is very much related to divide-and-conquer techniques where a big problem is
divided into subproblems, and solving subproblems leads to a solution for the
original problem. We demonstrate this by the MergeSort algorithm in order
to show that task parallelism is relevant and helpful to derive parallel variants
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using divide-and-conquer techniques. A simple variant of MergeSort is written
below:

let rec msort ls =
if Array.length ls <= 1 then ls

else
let ls1, ls2 = split ls

let ls1’, ls2’ = msort ls1, msort ls2

merge (ls1’, ls2’)

The algorithm consists of three steps: the first step involves in splitting the
array into two equal-size chunks, the second one is running MergeSort on two
halves of the array (which could be done in parallel) and the last step is merging
two sorted halves. One interesting thing about parallelizing this algorithm is
the important role of merge function. If the merge function is implemented
by comparing first elements of two arrays and gradually putting the smaller
element to a new array, the cost of the whole algorithm is dominated by the
cost of the merge function which is inherently sequential. Some attempts to
parallelize MergeSort in this context did not lead to any good results. If the
merge function is designed using divide-and-conquer techniques, the possibility
of parallelism is much bigger as it can be seen in the following code fragment:

let rec merge (l1: _ [], l2) =
if l1 = [||] then l2

elif l2 = [||] then l1

elif Array.length l1 < Array.length l2 then merge (l2, l1)
elif Array.length l1 = 1 then

if l1.[0] <= l2.[0] then Array.append l1 l2

else Array.append l2 l1

else
let h1, t1 = split l1

let v1 = h1.[Array.length h1 − 1]
let idx = binarySearch (l2, v1, 0, l2.Length)
let m1, m2 = merge (h1, l2.[..idx−1]), merge (t1, l2.[idx..])
Array.append m1 m2

Divide-and-conquer techniques are employed here as follows:

• Divide the longer array into two halves, and these two halves separated
by the value of x which is the last element in the first half.

• Split the other array by the value of x using a binary search algorithm.
Two first halves of two arrays whose elements are smaller than or equal to
x could be safely merged, similarly with two second halves whose elements
bigger than x.
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• These two merged arrays are concatenated to get the final result.

In parallelism’s point of view, two calls of the merge function here are indepen-
dent and easy to parallelize. One rough version of parallel MergeSort is sketched
as follows:

let rec pmsort ls =
if Array.length ls <= 1 then ls

else
let ls1, ls2 = split ls

let ls1’ = Task.Factory.StartNew(fun () −> pmsort ls1)
let ls2’ = pmsort ls2

pmerge (ls1’.Result, ls2’)

where pmerge is a parallel variant of merge with similar way of parallelization.
The idiom used here is the Future pattern, and ls1’ is a future value which will be
executed if its Result property is invoked later on. In our example, ls1’.Result
is always executed; therefore, two tasks are always created and executed in
parallel. To explicitly wait for all tasks to complete, we use Task.WaitAll

from System.Threading.Tasks module. Here Task.Factory.StartNew creates
a task for running computation by wrapping around a function closure. For
example, we have a similar code fragment as the Future pattern:

let ls1’ = Task.Factory.StartNew(fun () −> pmsort ls1)
let ls2’ = Task.Factory.StartNew(fun () −> pmsort ls2)
Task.WaitAll(ls1’, ls2’)
pmerge (ls1’.Result, ls2’.Result)

Our rough parallel version shows that the CPU usage is better but overall exe-
cution time is not improved compared to the sequential variant. The reason is
that tasks creation is always done regardless of the size of input arrays, which
leads to spawning too many tasks for just doing trivial jobs. Thus, we introduce
one way to control degree of parallelism:

let rec pmsortUtil (ls, depth) =
if Array.length ls <= 1 then ls

elif depth = 0 then msort ls

else
let ls1, ls2 = split ls

let ls1’ = Task.Factory.StartNew(fun () −> pmsortUtil (ls1, depth−1))
let ls2’ = pmsortUtil (ls2, depth−1)
pmergeUtil (ls1’.Result, ls2’, depth)

let DEPTH = 4
let rec pmsort1 ls =

pmsortUtil(ls, DEPTH)
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Figure 2.3: Speedup factors of MergeSort algorithm.

Parallelism is only done until a certain depth. When the size of the array is
rather small, we fall back to the sequential version. Benchmarking done with
different combinations of depth and array size gives us results described in Figure
2.3. Detailed source code can be found in Appendix A.2.

In the Experiment with randomly generated arrays, speedup factors recorded
for the size of the array increased from 29 to 218 by a factor of 2 and for the
depth increased from 1 to 10. The results show that the overall best speedup
is recorded for depth equal to 4. And with this configuration, speedup factors
are 3-6.5x if array size is greater than or equal 211. The figure also illustrates
that speedup factors could be smaller than 1, it happens when the array size is
considerably small compared to overheads of spawned tasks.

Some other points related to Tasks are also worth mentioning:

• Waiting for any task to complete
In case of speculative computation or searching, only the first completed
task is needed. Therefore, Task.WaitAny is used to specify the return.

• Cancelling running tasks
Users can control task cancellation easily with CancellationTokenSource

class. When a task is cancelled, it throws an AggregateException to
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indicate its successful termination.

• Task Graph Pattern
When many tasks are created with sophisticated relations between each
other, PFX provides a means of specifying graphs of tasks and optimizing
them for parallel execution. For example, a task which needs to wait for
results from another task is indicated by Task.ContinueWith construct. If
one task depends on a number of tasks, Task.Factory.ContinueWhenAll
is utilized.

To sum up, System.Threading.Tasks module consists of many helpful con-
structs for task parallelism. Task parallelism inherently suits to divide-and-
conquer algorithms. Using Task is rather simple; however, to achieve good
efficiency, tasks should be created only when computation is heavier than over-
heads of creating and coordinating tasks.

2.2.4 Asynchronous computation as parallelization

F# has very good support of asynchronous computation by the notion of Asyn-
chronous Workflow. This component is built for F# only and has convenient
use by the syntax of async{...}. Certainly, Asynchronous Workflow best fits
IO-bound computation where tasks are executed and are not blocked to wait for
the final result. Using asynchronous computation, operations are going to run
asynchronously, and resources will not be wasted. In some cases, asynchronous
computation could bring benefits to CPU-bound tasks as the following example
of computing first 46 Fibonacci numbers:

let rec fib x = if x < 2 then 1 else fib (x − 1) + fib (x − 2)

let sfibs = Array.map (fun i −> fib(i)) [|0..45|];;

let pfibs =
Async.Parallel [| for i in 0..45 −> async { return fib(i) } |]
|> Async.RunSynchronously;;

In this example, functions are turned to be asynchronous by using async key-
word. While these functions are marked for parallel execution by Async.Parallel
and Async.RunSynchronously, .NET framework will do the job of distributing
them to available cores and running them effectively. Our benchmark shows
that the asynchronous variant is 2.5× faster than the sequential one. A bet-
ter speedup can be achieved by using Task instead of Asynchronous Workflow,
however, it is a good idea to use Asynchronous Workflow if the computation
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consists of both CPU-bound tasks and IO-bound tasks where using Task only
could be bad due to the blocking property of IO operations. With the presence
of Asynchronous Workflow, we show that F# has very rich support of parallel
constructs. There are many primitives to employ for each algorithm, choosing
constructs really depends on the nature of problem and operations required.

2.2.5 Other parallel constructs

The Array.Parallel and PSeq Module

The Array.Parallel module is a thin wrapper around Parallel.For(Each)

constructs, the purpose is providing a convenient interface for parallel operations
on Array. Array.Parallel is easy to use because its signature is exactly the
same as Array correspondent. Employing this module, we can clearly see the
benefit of wrapping imperative parallel constructs by high order functions to
hide side effects.

Similar to above module, the PSeq module based on PLINQ constructs to pro-
vide high order functions for parallel processing on sequences. Input for this
module’s functions could be sequences such as Array, List and Sequence. At
first they are converted to ParallelEnumerable and all operations are done on
this internal representation. If results in representation of sequences are needed,
we need to convert from ParallelEnumerable. Therefore, if operations are in
a form of aggregation, it is ideal to use PSeq as we can avoid the cost of con-
verting to normal sequences. While Array.Parallel is available from F# core
libraries, PSeq is developed as a part of F# PowerPack, an advanced extension
from F# team for many mathematics and parallel operations.

Concurrent Data Structures

Task is the primitive to work with parallel processing in .NET platform. In-
ternally, the PFX is spawning threads to work with Task, so using shared data
structures between threads is unsafe. One way to avoid data races is acquiring
locks to access shared data structures. This approach is expensive and hard
to guarantee both correctness and performance. To resolve this, the PFX pro-
vides several collections in System.Collections.Concurrent which are safe
to be used between threads. These collections have locking mechanisms in-
side to ensure data consistency, also they ensure good performance by using
lock-free algorithms whenever possible. Collections available from the PFX
consist of ConcurrentQueue, a FIFO queue which can be safely used between
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threads; ConcurrentDictionary which behaves like a normal dictionary and
ConcurrentBag which is similar to Set but allows adding duplicated items.

2.3 Summary

In this chapter, we have presented important concepts of multicore parallelism.
We have also learned multicore parallelism by working on a series of familiar ex-
amples in F#. The results show that F# is suitable for fast prototyping parallel
algorithms; however, further tuning is essential to achieve high scalability.
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Chapter 3

Functional paradigm and
multicore parallelism

In this chapter, we study parallel algorithms in the context of a functional pro-
gramming language. The purpose is finding a cost model of parallel functional
algorithms which well represents them in the notion of time complexity and
parallelism factor. Other than that, we investigate some hindrances one has
to overcome while working with functional parallelism. The key idea is under-
standing trade-offs between complexity and scalability and finding solutions for
the scalability problem that may happen.

3.1 Parallel functional algorithms

In this section, we investigate parallel functional algorithms and understand
their efficiency, expressiveness and pitfalls. There are many attempts to re-
search parallel functional algorithms, and NESL, an implicit parallel functional
language was proposed for studying those algorithms [3]. We do not focus on
presenting detailed features of the language but we employ its computation
model for analyzing parallel functional algorithms.

NESL has shown some interesting points about functional parallelism:
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• The language relies on a small set of features which are necessary for
parallelism, so the core language is more compact and easier to learn.

• NESL has been used to teach parallel programming for undergraduates
and the language has been proved to be expressive and elegant due to its
functional style.

• The language has been employed to express various parallel algorithms,
and recorded speedup factors and execution time have been shown to be
competitive with other languages.

Following NESL, many other functional programming languages have been ex-
tended to support parallelism. Concurrent ML, an extension of SML/NJ, fo-
cuses on supporting various communication primitives. It demonstrates notice-
able speedups and good scalability in some examples [12]. Other than that,
the Haskell community has progressed quite a lot in research of parallelism and
concurrency. The Glasgow Haskell Compiler itself has been parallelized, and
some Haskell examples show good speedups on a small number of cores[20].

NESL has demonstrated that the functional paradigm is elegant and helps de-
velopers easy to catch up with parallel programming, but one of the biggest con-
tribution of the language is stressing the requirement of a language-based cost
model in the context of parallel programming [3]. Traditionally, PRAM (Paral-
lel Random Access Machine) is used as the cost model of parallel programming.
PRAM extends the RAM model with the assumption that all processors can ac-
cess memory locations in a constant time. When we come to the multicore era,
the assumption is obviously not true because the cost of accessing local memory
locations and remote memory locations are so different. PRAM model is viewed
as a virtual machine which is abstracted from real ones, and the model is easy
to program but results are somehow difficult to predict for a particular machine.
NESL’s author, Belloch emphasizes the requirement of using a language-based
cost model which is independent from machines but reliable to predict results
[3]. The cost model was named the DAG model of multithreading due to its
illustration by a graph describing computations happening at computation ele-
ments. The DAG model consists of two basic elements: Work, the total amount
of computations which have to be done and Span, the longest path of sequential
computations in the algorithm. The expressiveness of NESL helps to reason
about performance of parallel programs on the DAG model, and the model is
simple and intuitive but reliable in performance analysis of parallel programs.
Similar to other parallel cost models, it does not account communication costs
of parallel programming. Certainly, it is difficult to analyze communication
costs but the DAG model is precise enough to predict maximal parallelism of
algorithms.
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Figure 3.1: Total computations of MergeSort algorithm [29].

Now we shall study performance analysis of some parallel algorithms by adopting
this cost model. In the graph representing an algorithm, Work is the sum of all
computations and Span is the critical path length or the unavoidable sequential
bottleneck in the algorithm. Take MergeSort algorithm as an example, Work
and Span are illustrated in Figure 3.1 and 3.2.

Let W, S and TP denote Work, Span and running time of the algorithm with
P processors. The asymptotic running time of the sequential algorithm is
W = O(n log n). In the merge phase, the algorithm uses a sequential merge
process that means each element of each half is gradually put into an accumu-
lated buffer, so the operation is linear to the size of the biggest half. It is easy
to infer that S = O(n) where n is the size of the input array.

According to Amdahl’s Law, the below condition is established:

W

TP
≤ P

Because total running time is bounded by sequential computation, we have
TP ≥ S which leads to:

W

TP
≤ W

S

The condition shows that speedup factor is limited by the ratio of Work and
Span, namely parallelism factor. For a given Span, the parallel algorithm should
do as much Work as possible. On the contrary, when Work is unchanged
we should shorten the critical path length in the graph of computation. In
general, the ratio W / S provides an easy and effective way to predict perfor-
mance of parallel algorithms. In the case of above MergeSort algorithm, the
maximal parallelism is O(log n). This parallel algorithm is inefficient because
roughly speaking, given 1024 elements of computation we only get maximum
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Figure 3.2: Critical path length of MergeSort algorithm [29].

10× speedup regardless of the number of used processors. Usually, analysis of
parallel algorithm is a good indication of its performance in practice. Certainly,
parallelism factor of MergeSort algorithm should be improved before implemen-
tation. A consideration could be replacement of sequential merging by parallel
merging as it has been described in Section 2.2.3. The divide-and-conquer na-
ture of parallel merging helps to reduce Span to O(log2 n), so the parallelism
factor is O(n /log n) which is much better than that of the original algorithm.
This parallelism factor also confirms our experience of using parallel merging
effectively (see Figure 2.3).

Take a look at our example of calculating π, time complexity of the sequential
algorithm is O(n), the Select phase results in the critical path length of O(1)
and the Sum phase has the critical path length of O(log n). Therefore we have
a Span of O(log n) and a parallelism factor of O(n /log n). We can see that the
parallel algorithm is efficient; therefore, a good speedup is feasible in practice.

3.2 Some pitfalls of functional parallelism on the
multicore architecture

As discussed in Chapter 2, F# and functional programming languages in general
are suitable for fast prototyping parallel algorithms. The default immutability
helps developers to ensure the correctness of implementation at first, and par-
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allel implementation is obtained with a little effort when making use of elegant
parallel constructs. However, the efficiency of these implementations is still an
open question. This section discusses some issues of functional parallelism on
the multicore architecture and possible workarounds in the context of F#.

Memory Allocation and Garbage Collection

High-level programming languages often make use of a garbage collector to dis-
card unused objects when necessary. In these languages, users have little control
over memory allocation and garbage collection; in the middle of execution of
some threads if the garbage collector needs to do its work, it is going to badly
affect performance. The advice for avoiding garbage collection is allocating
less which leads to garbage collecting less by the runtime system. However, for
some memory-bound applications it is difficult to reduce the amount of allocated
memory. The problem of memory allocation is more severe in the context of
functional programming. Function programming promotes usage of short-lived
objects to ensure immutability, and those short-lived objects are created and de-
stroyed frequently, which leads to more work for garbage collectors. Also some
garbage collectors are inherently sequential and preventing threads to run in par-
allel, Matthew et al. stated that sequential garbage collection is a bottleneck to
parallel programming in Poly/ML [20]. F# inherits the garbage collector (GC)
from .NET runtime, which runs in a separate thread along with applications.
Whenever GC needs to collect unused data, it suspends all others’ threads and
resumes them when its job is done. .NET GC is running quite efficiently in that
concurrent manner; however, if garbage collection occurs often, using the Server
GC might be a good choice. The Server GC creates a GC thread for each core so
scalability of garbage collection is better [19]. Come back to two examples which
have been introduced in Chapter 2, one of the reasons for a linear speedup of π
calculation (see Table 2.1) is no further significant memory allocation except the
input array. However, a sublinear speedup of MergeSort algorithm (see Figure
2.3) could be explained by many rounds of garbage collection occurring when
immediate arrays are discarded.

False Cache-line Sharing

When a CPU loads a memory location into cache, it also loads nearby memory
locations into the same cache line. The reason is to make the access to this
memory cell and nearby cells faster. In the context of multithreading, different
threads writing to the same cache line may result in invalidation of all CPUs’
caches and significantly damage performance. In the functional-programming
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setting, false cache-line sharing is less critical because each value is often written
only once when it is initialized. But the fact that consecutive memory allocations
make independent data fall into the same cache line also causes problem. Some
workarounds are padding data which are concurrently accessed or allocating
memory locally in threads.

We illustrate the problem by a small experiment as follows: an array which has
a size equal to the number of cores and each array element is updated 10000000

times [25]. Because the size of the array is small, its all elements tend to fall
into the same cache line and many concurrent updates to the same array will
invalidate the cache line many times and badly influence the performance. The
below code fragment shows concurrent updates on the same cache line:

let par1() =
let cores = System.Environment.ProcessorCount
let counts = Array.zeroCreate cores

Parallel.For(0, cores, fun i −>

for j = 1 to 10000000 do
counts.[i] <− counts.[i] + 1)|> ignore

The measurement of sequential and parallel versions on the 8-core machine is
shown as follows:

> Real: 00:00:00.647, CPU: 00:00:00.670, GC gen0: 0, gen1: 0, gen2: 0 // sequential
> Real: 00:00:00.769, CPU: 00:00:11.310, GC gen0: 0, gen1: 0, gen2: 0 // parallel

The parallel variant is even slower than the sequential one. We can fix the
problem by padding the array by garbage data, this approach is 17× faster
than the naive sequential one:

let par1Fix1() =
let cores = System.Environment.ProcessorCount
let padding = 128 / sizeof<int>

let counts = Array.zeroCreate ((1+cores)∗padding)
Parallel.For(0, cores, fun i −>

let paddedI = (1 + i) ∗ padding

for j = 1 to 10000000 do
counts.[paddedI] <− counts.[paddedI] + 1
)|> ignore

> Real: 00:00:00.038, CPU: 00:00:00.530, GC gen0: 0, gen1: 0, gen2: 0

Another fix could be allocating data locally in the thread, so false cache-line
sharing cannot happen. This version is also 14× faster than the sequential
counterpart:
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let par1Fix2() =
let cores = System.Environment.ProcessorCount
let counts = Array.zeroCreate cores

Parallel.For(0, cores, fun i −>

counts.[i] <− Array.zeroCreate 1
for j = 1 to 10000000 do

counts.[i].[0] <− counts.[i].[0] + 1)|> ignore

> Real: 00:00:00.044, CPU: 00:00:00.608, GC gen0: 0, gen1: 0, gen2: 0

Locality Issues

Changing a program to run in parallel can affect locality of references. For
example, when data allocated in the global scope are distributed to different
threads on different cores, some threads have to access remote caches to be
able to fetch data which negatively influences the performance. Also when the
garbage collector finishes its job, memory layout may have been changed and
cache locality is destroyed. It is usually difficult to ensure good cache locality in
a high-level language because memory allocation and deallocation is implicit to
users and compilers are responsible for representing data in memory in an opti-
mal way. In the functional-programming setting, the situation will be remedied
a little by using mutation (e.g. by employing Array-based representation) but
the solution is complex and unscalable if one has to deal with recursive data
structures.

Some algorithms which have bad memory access patterns demonstrate poor
cache locality regardless of their data representation. There is a lot of research on
cache complexity of algorithms on the multicore architecture, especially a class
of algorithms which is important in the multicore era, namely cache-oblivious
algorithms. The cache-oblivious model was proposed by Prokop [26]. Before
Prokop’s work, algorithms and data structures were designed in a cache-aware
(cache-conscious) way to reduce the ratio of cache misses, for example, B-tree
is a well-known example of cache-aware data structures in which the parameter
B is tuned by using the CPU cache size. Cache-oblivious algorithms recursively
divide a problem into smaller parts and do computation on each part. Eventually
subproblems fit into cache and significant amount of computations are done
without causing any cache miss. We demonstrate cache-oblivious algorithms by
an example of matrix multiplication; the ordinary algorithm follows the following
formula:

cij =

n
∑

k=1

aikbkj

which can be represented by the pseudocode:
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Naive−Mult(A, B, C, n)
for i = 1 to n do
for j = 1 to n do

do cij = 0
for k = 1 to n do
cij = cij + aikbkj

The Naive-Mult algorithm incurs Ω(n3) cache misses if matrices are stored in
the row-major order. Strassen’s matrix multiplication algorithm works in a
recursive manner on their four submatrices:

P1 = (A11 +A22)× (B11 +B22)

P2 = (A21 +A22)×B11

P3 = A11 × (B12 −B22)

P4 = A22 × (B21 −B11)

P5 = (A11 +A12)×B22

P6 = (A21 −A11)× (B11 +B12)

P7 = (A12 −A22)× (B21 +B22)

C11 = P1 + P4 − P5 + P7

C12 = P3 + P5

C21 = P2 + P4

C22 = P1 − P2 + P3 + P6

Prokop proved that Strassen’s algorithm is cache-oblivious and it incurs an
amount of cache misses which is an order of Ω(

√
Z) less than that of the naive

algorithm (where Z is the size of matrix which fits in cache).

We have benchmarked sequential and parallel variants of the two algorithms on
the same machine with different sizes of matrices. Speedup factors of parallel
versions compared to sequential ones and those between Strassen’s sequential
version and a naive sequential version are recorded in Figure 3.3.

There are some conclusions deduced from the benchmark results. First, Strassen’s
algorithms exhibit close-to-linear speedups which are better than naive ones.
Given the fact that matrix multiplication is an embarrassing-parallel problem,
non-optimal speedup of naive algorithms may blame the significant amount of
incurred cache misses which are really expensive in the context of multicore par-
allelism. Moreover, the sequential version of Strassen also surpasses the naive
sequential one in terms of performance, and the magnitude of speedup increases
when the size of matrices increases. The results illustrate that cache-oblivious
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Figure 3.3: Speedup factors of matrix multiplication algorithms.

algorithms are not only good in parallel execution, but also their sequential
variants perform well on the multicore architecture.

Cache-oblivious algorithms are independent of CPU cache sizes, working well
on any memory hierarchy and proved to be optimal in cache complexity. On
the rise of multicore parallelism, cache-oblivious algorithms may play an im-
portant role in deriving efficient parallel programs. The superior performance
of cache-oblivious algorithms raises the need of proposing such algorithms for
the multicore architecture. However, not so many cache-oblivious algorithms
are found, and some of cache-oblivious variants are too complex which makes
them less efficient to be used in practice. Blelloch et al. also shows that divide-
and-conquer nature and cache-oblivious model are working well on flat data
structures (array, matrix), but results on recursive data structures are still to
be established [4].

3.3 Summary

In this chapter, we have chosen the DAG model of multithreading as the cost
model of multicore parallelism. This model is going to be used for analyzing par-
allel algorithms from now on. The pitfalls we have presented are common for par-
allel algorithms in functional programming languages, and understanding them
helps us explain behaviours of parallel implementations and find workarounds
which can remedy the situation. In next chapters, we focus on describing the
problem of our interest and discussing its parallel algorithms.
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Chapter 4

Theory of Presburger
Arithmetic

In this chapter, we discuss Presburger Arithmetic and its properties. A lot of
research has been conducted to decide Presburger fragments. We present two
decision procedures including Cooper’s algorithm and the Omega Test, and they
play important roles in processing Presburger fragments of our interest later on.

4.1 Overview

Presburger Arithmetic introduced by Mojzaesz Presburger in 1929 is a first-
order theory of integers which accepts + as its only operation. An expression
is considered to be a Presburger formula if it contains elements in the following
forms:
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• s = t, s 6= t, s < t, s > t, s ≤ t, s ≥ t Comparison constraints

• d | t Divisibility constraints

• ⊤ (true), ⊥ (false) Propositional constants

• F ∨ G, F ∧ G, ¬F Propositional connectives

• ∃ x. F , ∀ x. F First-order fragments

where s and t are terms, d is an integer and x is a variable. Terms consist
of integer constants and variables, they accept addition (+), subtraction (-)
and multiplication by constants. One adopted convention is abbreviation of
Q x1.Q x2...Q xn. F as Q x1x2...xn. F.

For example, a classic example of representing some amount of money by 3-cent
coins and 5-cent coins appears in PA as follows:

∀z.∃x ∃y. 3x+ 5y = z

∀z. z ≥ 8⇒ ∃x ∃y. 3x+ 5y = z

Or the clause shows existence of even numbers could be formulated:

∃x. 2 | x

Presburger had proved Presburger Arithmetic to be consistent, complete and
decidable [31]. The consistency means there is no Presburger formula so that
both that formula and its negation can be deduced. The completeness shows
that it is possible to deduce any true Presburger formula. The decidable prop-
erty states that there exists an algorithm which decides whether a given Pres-
burger statement is true or false; that algorithm is called a decision procedure
for PA. An extension of Presburger with multiplication of variables is however
undecidable, Presburger showed a counterexample of deciding the statement
∃ x y z. x2 + y2 = z2, which is a special case of Fermat’s last theorem [31].

After Presburger’s work, PA attracts a lot of attention due to its application
in different areas. In 1972, Cooper proposed a complete algorithm for deciding
PA formulas which named after him, he found application of PA in automatic
theorem proving [6]. Some works by Bledsoe and Shostak introduced a new
algorithm for Presburger fragments resulted from program validation [2, 30].
In 1992, the Omega Test, another complete algorithm for PA, was invented
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by Pugh who used his algorithm in dependence analysis in the context of pro-
duction compilers [27]. There is an automata-based approach which represents
Presburger formulas by means of automata and transforms these automata for
quantifier elimination [8], but we do not consider this approach in our report.
Another work recognized the appearance of PA in the model checking problem
which also raised the requirement of efficient decision procedures for PA [10].
However, the complexity of those decision procedures appears to be very chal-
lenging. Let n be the length of the input PA formula; the worst-case running
time of any decision procedure is at least 22

cn

for some constant c > 0 [9]. Also

Oppen proved a triply exponential bound 22
2
cn

for a decision procedure for PA,
namely Cooper’s procedure [24]. PA is an interesting case where its decision
procedures require more than exponential time complexity, how to handle these
formulas efficiently is still an open question.

4.2 Decision Procedures for Presburger Arith-
metic

In this section, we introduce two decision algorithms for PA: Cooper’s procedure
and the Omega Test. These procedures are chosen due to both their effectiveness
in solving PA formulas and their completeness in dealing with the full class
of PA. Such decision algorithms for a small subset of PA exist, for example,
Bledsoe proposed the SUP-INF algorithm for proving PA formulas with only
universal quantifiers in Prenex Normal Form (PNF) [2]. The algorithm then
was improved by Shostak to support both deciding validity and invalidity of
this subset of formulas [30]. The SUP-INF method is believed to have 2n worst-
case time complexity and helpful for PA fragments generated from program
validation [30].

4.2.1 Cooper’s algorithm

The algorithm was invented by Cooper in 1972 [6], a detailed discussion of the
algorithm is presented below. Given a total ordering ≺ on variables, every term
can be normalized to the following equivalent form:

c1 · x1 + ...+ cn · xn + k

where ci 6= 0 and x1 ≺ x2 ≺ ... ≺ xn. The above form is called a canonical form
in which a term has a unique representation. Consider a formula ∃x.F (x) where
F (x) is quantifier free. Cooper’s procedure for quantifier elimination can be
described as follows [5]:
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Step 1. Preprocess the formula

Put the formula into negation normal form (NNF) where negation only occurs
in literals by using De Morgan’s laws:

¬(F ∧ G) ≡ ¬F ∨ ¬G

¬(F ∨ G) ≡ ¬F ∧ ¬G
All literals are ensured in the forms:

0 = t, 0 6= t, 0 < t, i | t, ¬(i | t)

Notice that negation only happens in divisibility constraints. Transformation of
comparison constraints can be done by applying following rules:

0 ≤ t ≡ 0 < t− 1

0 ≥ t ≡ 0 < −t− 1

0 > t ≡ 0 < −t
¬(0 < t) ≡ 0 < −t− 1

Step 2. Normalize the coefficients

Let δ denote the least common multiple (lcm) of all coefficients of x, normalize
all constraints so that coefficients of x are equal to δ. The resulting formula is
G(δx), and we have the normalized formula in which every coefficient of x is 1:

F′(x′) = G(x′) ∧ δ | x′

Step 3. Construct an equivalent quantifier-free formula

There are two quantifier-free formulas which correspond to F ′(x), either in left
infinite projection or in right infinite projection:

F′′(x) =

δ
∨

j=1

(F′−∞(j) ∨
∨

b∈B

F′(b+ j))

F′′(x) =

δ
∨

j=1

(F′+∞(j) ∨
∨

a∈A

F′(a− j))
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α α−∞ α+∞

0 = x+ t′ ⊥ ⊥
0 6= x+ t′ ⊤ ⊤
0 < x+ t′ ⊥ ⊤
0 < −x+ t′ ⊤ ⊥

α α α

Table 4.1: Construction of infinite formulas.

Construction of infinite formulas F′−∞(j) and F′+∞(j) is based on substitution
of every literal α by α−∞ and α+∞ respectively:

The inner big disjunct of formulas is constructed by accumulating all literals
which are A-Terms or B-Terms:

Literals B A
0 = x+ t′ −t′ − 1 −t′ + 1
0 6= x+ t′ −t′ −t′
0 < x+ t′ −t′ −
0 < −x+ t′ − t′

α − −

Table 4.2: Construction of A-Terms and B-Terms [6].

There are some bottlenecks of Cooper’s algorithm which need to be carefully
addressed. First, coefficients of big disjuncts become quite huge after some
quantifier alternation. One way to avoid this problem is keeping big disjuncts
symbolically and only expanding them when necessary. Actually, symbolic rep-
resentation of big disjuncts is easy to implement and quite efficient because inner
formulas demonstrate all properties of big disjuncts. Another optimization pro-
posed by Reddy et al. is only introducing a new divisibility constraint after
selecting a literal for substitution. This modification avoids calculating lcm of
all coefficients of a variable which is often a huge value so that each substitu-
tion results in a new coefficient smaller than lcm [28]. The authors argued that
if quantifier alternation is done for a series of existential quantifiers only, het-
erogeneous coefficients of different divisibility constraints are not multiplied to-
gether; therefore, coefficients are not exploded. Another bottleneck of Cooper’s
algorithm is a large number of A-Terms and B-Terms occurring while doing
quantifier alternation. Due to symmetric projections, we can always choose an
infinite projection with the least number of literals. This heuristic minimizes the
number of disjuncts inside the bounded formula. However, when quantifiers are
eliminated, increase of the number of literals is unavoidable. Another technique
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to minimize the number of literals inside quantifier alternation is eliminating
blocks of quantifiers [5]. Based on the following rule:

∃x1...xn−1.

δ
∨

j=1

(F′−∞(x1...xn−1, j) ∨
∨

b∈B

F′(x1...xn−1, b+ j))

≡
δ
∨

j=1

(∃x1...xn−1.F
′
−∞(x1, ..., xn−1, j) ∨

∨

b∈B

∃x1...xn−1.F
′(x1...xn−1, b+ j))

we can see that after each quantifier alternation, only 1+ |B| formulas need to
be examined in the next iteration. Therefore, removing a series of quantifiers
does not increase sizes of quantifying formulas.

Due to the huge time complexity of PA, many heuristics are incorporated to deal
with subsets of PA. For example, for PA fragments with universal quantifiers
only, a heuristic is invalidating ∀x.F(x) with a particular false instance F(c) [17];
some ground values of the formula have been instantiated to quickly decide the
formula. A variant of Cooper’s procedure with this simple technique is tested
in 10000 randomly generated formulas and shown to outperform some other
decision procedures. Another heuristic is solving a set of divisibility constraints
[5]. When eliminating quantifiers, formulas could be represented symbolically,
but they have to be expanded for evaluation. And this expansion is expensive
on even a small problem; the idea of solving divisibility constraints is instead
of expanding big disjuncts by all possible assignments, only assignments which
satisfy divisibility constraints are instantiated. This heuristic is relevant be-
cause each quantifier alternation generates a new divisibility constraint in big
disjuncts.

4.2.2 The Omega Test

The Omega Test proposed by Pugh [27] is an extension of Fourier-Motzkin
variable elimination to check dependence analysis in a production compiler.
It consists of a procedure for eliminating equalities and elements for deciding
satisfiability of a conjunction of weak inequalities. Three elements of the Omega
Test are the Real Shadow, the Dark Shadow and the Gray Shadow which are
summarized in Figure 4.1.
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Check

real shadow

Check

Check

dark shadow

gray shadow

No integer solution

Integer solution

Integer solution

No integer solution

No integer solution in DARK shadow

Possible integer solution

UNSAT

SAT

UNSAT

SAT

Figure 4.1: Overview of the Omega Test [18].

Real Shadow

The Real shadow is an overapproximating projection of the problem, and it is
used for checking unsatisfiability [18]:

∃x. β ≤ bz ∧ cz ≤ γ =⇒ cβ ≤ bγ

If the Real shadow i.e. the equation cβ ≤ bγ does not hold, there is no real
solution, hence there is no integer solution for the problem.

Dark Shadow

The Dark shadow is an underapproximating projection; therefore, it is used to
check satisfiability of the problem [18]:

bγ − cβ ≥ (c− 1)(b− 1) =⇒ ∃x. β ≤ bz ∧ cz ≤ γ

Notice that the Dark shadow i.e. the equation bγ − cβ ≥ (c− 1)(b− 1) guaran-
tees the existence of an integer between b/β and c/γ. If the Dark shadow holds,
an integer solution for the problem exists. One nice thing is that if c = 0 or
b = 0, the Real shadow and the Dark shadow are the same. They are then called
the Exact shadow, and we have the Fourier-Motzkin elimination for integers:

∃x. β ≤ bz ∧ cz ≤ γ ⇐⇒ cβ ≤ bγ (4.1)



40 Theory of Presburger Arithmetic

The Exact shadow is an easy and convenient way to eliminate quantifiers in a
subset of problems. Pugh argues that the Exact shadow happens quite often in
the domain of dependence analysis which makes the Omega Test become a very
efficient technique for quantifier alternation [27].

Gray Shadow

The Gray shadow is tested when the Real shadow is true and the Dark shadow
is false [18]:

cβ ≤ cbz ≤ bγ ∧ bγ − cβ > (c− 1)(b− 1)

After simplification, the above condition can be used to reduce quantifier elimi-
nation to check a finite number of candidates of bz: bz = β + i for 0 ≤ i ≤ cb−c−b

b

In general, every quantifier can be eliminated from a Presburger formula in
PNF:

Q1x1.Q2x2....Qnxn.
∨

i

∧

j

Lij

where Qk ∈ {∃, ∀} and Lij are literals in a form of weak inequalities.

Quantifiers are removed in a bottom-up manner. The formula
∨

i

∧

j
Lij is in

disjunctive normal form (DNF). If Qn = ∃ we have the following equivalence:

∃xn.
∨

i

∧

j

Lij ≡
∨

i

∃xn.
∧

j

Lij

Now we can use elements of the Omega Test on the conjunction of literals. On
the other hand, any universal quantifier is removed by using the dual relation
∀x.φ(x) ≡ ¬∃x.¬φ(x) and converting ¬φ(x) into DNF.

The procedure is done recursively until no quantifier is left.

The Omega Test has some advantages and disadvantages compared to Cooper’s
algorithm:

• Elements of the Omega Test cannot deal with divisibility constraints. To
be able to use the Omega Test for an arbitrary formula, one has to elimi-
nate divisibility constraints first, which is quite costly if they occur often
in the formula. Divisibility constraint elimination is beyond the scope of
this paper.
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• The Omega Test requires the inner formula to be in DNF which can cause
the formula to grow very fast compared to NNF of Cooper’s algorithm.
Moreover, once the Gray shadow has to be checked, it generates a dis-
junction of constraints and the resulting formula is not in DNF anymore.
Therefore, even in a block of quantifiers, each quantifier elimination re-
quires to translate the input formula into DNF, which is prohibitively
expensive. In contrast, Cooper’s algorithm handles blocks of quantifiers
quite well, and a formula is normalized into NNF once for each block.

• The Omega Test does not have the problem of huge coefficients as Cooper’s
algorithm because each shadow only involves in pairs of inequalities.

Cooper’s algorithm and the Omega Test have good characteristics to make them
competitive with each other. Both algorithms have been implemented in HOL
theorem-proving system [22]. The results show that while the Omega Test
is a little faster, there are problems where Cooper’s algorithm outperforms its
competitor. It is also easy to construct formulas more favorable for either one of
these procedures. Thus, using both the Omega Test and Cooper’s algorithm in a
complete procedure might be a good idea. One possible solution is executing two
algorithms in a parallel manner [22], and another solution is combining elements
of the Omega Test and Cooper’s procedure in a clever way. For example, the
Omega Test is employed for resolving inequalities so coefficients of inequalities
do not contribute to lcm and resulting small disjuncts are resolved by Cooper’s
algorithm. This combination is incorporated into the SMT-solver Z3, and Z3
has capability to solve PA formulas quite efficiently [1].

4.3 Summary

Presburger Arithmetic is a theory of integer with addition, and it has been
proved to be consistent, complete and decidable. However, decision procedures
for PA have a huge time complexity with doubly-exponential lower bound and
triply-exponential upper bound, we might think that parallel decision proce-
dures can remedy the situation. In the next chapter, we present our Presburger
fragments with some specific properties, and parallel execution of decision pro-
cedures will be discussed later.
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Chapter 5

Duration Calculus and
Presburger fragments

In this chapter, we briefly discuss Duration Calculus and the model-checking
problem. The idea is understanding how it leads to the generation of side-
condition Presburger formulas. Patterns of these Presburger fragments are ex-
amined to derive a good simplification process and efficient decision procedures.
Also we present a simplification algorithm which is based on understanding
formulas’ patterns and well-formed logic rules.

5.1 Duration Calculus and side-condition Pres-
burger formulas

Interval Temporal Logic (ITL) proposed by Moszkowski [14] considers a formula
φ as a function from time intervals to truth values. Formulas are generated by
the following rules:

φ ::= θ1 = θ2 | ¬φ | φ ∨ ψ | φ⌢ψ | (∃x)φ | ...

where Chop (⌢) is the only modality of ITL, and its satisfiability is expressed by
satisfiability of inner formulas in subintervals. Duration Calculus extends ITL
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Figure 5.1: Observation intervals [10].

by the notion of durations
∫ e

b
S(t)dt, this extension leads to succinct formation

for problems without involving any interval endpoint [14].

For example, in Figure 5.1 we have the observation that (
∫

x ≥ 3) ∧ (
∫

y < 3)
and

∫

y − 2
∫

(x ∧ ¬y) = 0 hold on [1, 4] and [4, 7] respectively. Therefore,
((
∫

x ≥ 3) ∧ (
∫

y < 3))⌢(
∫

y − 2
∫

(x ∧ ¬y) = 0) holds on [1, 7].

DC is tailored to reason about embedded real-time systems in a highly abstract
way. We consider discrete-time DC fragments whose syntax is defined as follows:

S ::= 0 | 1 | P | ¬S | S1 ∨ S2

φ ::= ⊤ | Σi∈Ωci

∫

Si ⊲ ⊳k | ¬φ | φ ∧ ψ | φ⌢ψ

where P is in the set of state variable names, k, ci ∈ Z and ⊲⊳ ∈ {<, ≤, =, ≥
, >}.

The above fragments of DC are undecidable already; if the duration is limited
in the form

∫

S ⊲ ⊳k, the discrete-time satisfiability problem is decidable [10].
With the decidable fragments of DC, the model-checking problem is described
in the following manner: models are expressed by means of automata (normally,
a labelled automata like Kripke structures) and durations are calculated basing
on traces of execution. Here the notion of traces is abstracted to the notion of
visiting frequencies of nodes. Therefore, given a DC formula φ and a Kripke
structure K, K is a model of φ when every trace of K satisfies φ, written K |= φ.
We consider an example of Kripke structures described in Figure 5.2 and check
it against the property

∫

P < 2. Certainly the answer is false because there
exist some traces which visit P at least twice.
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Figure 5.2: A simple Kripke structure [15].

When abstracting from traces, some frequencies are not corresponding to any
real trace, so a counting semantic in a multisetm is introduced [10]. The multiset
guarantees the consistency between visiting frequencies and traces. The model-
checking algorithm does a bottom-up marking and generates side-condition in
a form of Presburger formulas. The consistency condition C(K, i0, j0,m, e)
is expressed by linear constraints of inflow and outflow equations, and there
are some additional constraints introduced to deal with loop structures [10].
C(K, i0, j0,m, e) has the size of O(|V | + |E|) when every loop has a unique
entry point and its satisfiability is the sufficient condition for existence of a con-
sistent trace from i0 to j0. The simplified marking algorithm is given in [10] as
follows:

simt(⊤, i, j,m, e) = true
simf (⊤, i, j,m, e) = false

simt(Σi∈Ωci
∫

Si < k, i, j,m, e) = Σi∈ΩciΣv∈V,v|=Si
m[v] < k

simf (Σi∈Ωci
∫

Si < k, i, j,m, e) = Σi∈ΩciΣv∈V,v|=Si
m[v] ≥ k

simt(¬φ, i, j,m, e) = simf (φ, i, j,m, e)
simf (¬φ, i, j,m, e) = simt(φ, i, j,m, e)

simt(φ1 ∧ φ2, i, j,m, e) = simt(φ1, i, j,m, e) ∧ simt(φ2, i, j,m, e)
simf (φ1 ∧ φ2, i, j,m, e) = simf (φ1, i, j,m, e) ∨ simf (φ2, i, j,m, e)

and:
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simt(φ
⌢
1 φ2, i, j,m, e) =

∨

k∈V





∃ m1,m2, e1, e2 : µ
∧
∀ m1,m2, e1, e2 : µ⇒ simt(φ1, i, k,m1, e1) ∧ simt(φ2, k, j,m2, e2)





simf (φ
⌢
1 φ2, i, j,m, e) =

∧

k∈V

(µ⇒ simf (φ1, i, k,m1, e1) ∨ simf (φ2, k, j,m2, e2))

where:

µ =
∧

v,w∈dom m





m[v] = m1[v] +m2[v]
∧ e[v, w] = e1[v, w] + e2[v, w]
∧ C(K, i, k,m1, e1) ∧ C(K, k, j,m2, e2)





The model-checking problem now turns to checking satisfiability of the formula
C(K, i, j,m, e)∧¬(sim(φ, i, j,m, e)). Generated formulas are of size exponential
in the chop-depth [10]. In case of negative polarity in φ, those formulas can be
seen as quantifier-free fragments and checked by LinSAT decision algorithm
which renders a doubly exponential algorithm. Otherwise, Presburger formulas
are generated and decided by a triply exponential algorithm which leads to
4-fold exponential worst-case running time [10].

Regards to our model-checking example, the consistency condition for every
trace between A and D (CAD(m, e)) is shown as follows:

∃ eAB , eAC , eBC , eBD, eCB , eCD.
1 = mA = eAB + eAC

eAB + eCB = mB = eBC + eBD

eAC + eBC = mC = eCB + eCD

eBD + eCB = mD = 1
mB > 0 ⇒ eAB > 0
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The DC formula is transformed to mB < 2, so the model-checking problem for
vertex A and vertex D is translated to:

∀m. (CAD(m, e)⇒ mB < 2)

5.2 Simplification of Presburger formulas

Given a Kripke structure, the overall size of generated Presburger formulas is
O(u(|V | + |E|)|V |c) [10]. Even for rather small model-checking problem, these
formulas might become very large. And for the ease of model-checking algo-
rithms, PA formulas contain a lot of redundant parts which could be removed
before supplying for Cooper’s algorithm or the Omega test. In this section,
we analyze given PA formulas and derive a simplification process. The objec-
tive is compacting those PA formulas to be decided by other procedures later.
Specifically, we target inputs for Cooper’s algorithm, so specific aims of the
simplification process are described below:

• Reduce the number of quantifiers. Cooper’s procedure does quantifier
alternation inside out; if quantifiers could be removed in a cheap way, it
is really helpful for the algorithm later on.

• Reduce coefficients of constraints. We derive corresponding con-
straints with smaller coefficients to limit the chance of huge coefficients.

• Reduce the number of A-Terms and B-Terms. It is not obvious
that removing inequalities will reduce the number of terms in the later
recursive call. However, this is not the case with equations. As mentioned
in Section 4.2, each equation hides an A-Term and a B-Term inside; there-
fore, eliminating equations is going to reduce the number of terms quite a
lot.

5.2.1 Guarded Normal Form

Aiming towards a normal form which is convenient for cheap equation-based
simplification, the Guarded Normal Form (GNF) is proposed [15]. An impli-
cation guard and a conjunction guard are proposition logic fragments in the
following forms respectively:

∧

i

Li ⇒
∨

j

Pj
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∧

i

Li ∧
∧

j

Pj

We consider GNF in the Presburger setting where literals are comparison and
divisibility constraints and guards consist of propositional connectives of quan-
tified and quantifier-free formulas. First, GNF supports an easy way to express
NNF [15]:

P ∧ Q ≡
∧

i∈φ

∧P ∧ Q

P ∨ Q ≡
∧

i∈φ

⇒ P ∨ Q

¬(
∧

i

Li ⇒
∨

j

Pj) ≡
∧

i

Li ∧
∧

j

¬Pj

¬(
∧

i

Li ∧
∧

j

Pj) ≡
∧

i

Li ⇒
∨

j

¬Pj

As we can see from above equations, the implication guard and the conjunction
guard are dual of each other. Transformation into NNF is done by simply
pushing negation inside inner guarded formulas only. A formula is said to be in
GNF if conjunction guards only occur in implication guards and vice versa. A
guarded formula is put into GNF by applying equivalences:

∧

i

Li ⇒ (
∧

k

L′
k ⇒

∨

l

P ′
l ) ∨

∨

j

Pj ≡
∧

i

Li ∧
∧

k

L′
k ⇒

∨

j

Pj ∨
∨

l

P ′
l (5.1)

∧

i

Li ∧ (
∧

k

L′
k ∧

∧

l

P ′
l ) ∧

∧

j

Pj ≡
∧

i

Li ∧
∧

k

L′
k ∧

∧

j

Pj ∨
∧

l

P ′
l (5.2)

Application of above rules helps to reduce the nesting of guarded formulas ; in
the next section, we study how to use GNF in connection with PA and simplify
formulas as much as possible.

5.2.2 Equation-based simplification

Given a Presburger formula in the GNF, we sketch a simple algorithm to do
cheap simplification on the formula. The first set of rules is for simplifying
quantifier guards with equations inside:

∃x.(nx = t ∧
∧

i

Li ⇒
∨

j

Pj) ≡ ⊤ (5.3)
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∀x.(nx = t ∧
∧

i

Li ∧
∧

j

Pj) ≡ ⊥ (5.4)

∃x.(nx = t ∧
∧

i

Li ∧
∧

j

Pj) ≡ n|t ∧
∧

i

Li[t/nx] ∧
∧

j

Pj [t/nx] (5.5)

∀x.(nx = t ∧
∧

i

Li ⇒
∨

j

Pj) ≡ n|t ∧
∧

i

Li[t/nx]⇒
∨

j

Pj [t/nx] (5.6)

Rules 5.3 and 5.4 are preferable due to its strength of reducing a big formula
to an obvious truth value. These truth values are possible to be propagated
further to reduce even bigger formulas. Otherwise, rules 5.5 and 5.6 are also very
helpful, because they are able to remove all equations in guards and eliminate
corresponding quantifiers at the same time. A newly introduced divisibility
constraint is an interesting point. If n is equal to 1, it is safely to remove;
otherwise, that constraint is used to check the consistency of the term. Let b
denote the constant and a denote the greatest common divisor of all coefficients
of the term, we have the following condition:

n | at′ + b =⇒ gcd(n, a) | b

If the term does not satisfy the condition, the whole formula is reduced to
a truth value again. One might think that equation-based reduction is helpful
even without quantifiers involved. Certainly equations can be used to substitute
variables so that substituted variables only occur in literals; however, coefficients
may increase and the chance of introducing inconsistency in those formulas is
not clear. Therefore, equation-based substitution without quantifiers is not
considered here.

The second set of rules is for propagating independent literals to outer scopes.
With a quantifier Q ∈ {∃, ∀}, we have following relations:

Qx.(
∧

i1

Li1 ∧
∧

i2

Li2 ⇒
∨

j

Pj) ≡
∧

i1

Li2 ⇒ Qx.(
∧

i2

Li2 ⇒
∨

j

Pj) (5.7)

Qx.(
∧

i1

Li1 ∧
∧

i2

Li2 ∧
∧

j

Pj) ≡
∧

i1

Li1 ∧Qx.(
∧

i2

Li2 ∧
∧

j

Pj) (5.8)

where x /∈ ∧

i1 Li1 and x ∈ ∧

i2 Li2.
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The advantage of applying these rules is two-fold. One is that quantified for-
mulas become smaller and easier to be handled by decision procedures, another
advantage is that independent literals come to outer scopes and hopefully are
candidates for equation reduction rules (5.3-5.6).

Now our concern is how to use 5.3-5.8 effectively. The algorithm could reduce
formulas outside in; however, if equations are not collected in the guards, we end
up having many unexploited equations. Here we derive a recursive algorithm
which executes in an inside-out order. We start from the deepest quantified
formulas and propagate equations if they still occur as follows:

• Normalize the formula into GNF. Notice that the formula could be even
reduce to a smaller one by evaluating it by the current guard, but we would
think that is unnecessary. Because the smaller formula makes sure that
variables occur in equation do not happen anywhere in the formula, sim-
plification is done even before we know it is helpful or not. Therefore, the
aim of this step is collecting equations into literals and keeping the struc-
ture small for doing traversal. One important point is that all constraints
will be kept in the compact form so their coefficients are smallest.

• Apply 5.3-5.6 to reduce quantifiers and eliminate all equations in the cur-
rent guard. This step may generate some independent constraints which
are candidates for the next step.

• Partition literals by whether they consist of quantifiers or not. Take in-
dependent literals out of current quantifiers, which causes the formula
not in GNF anymore. The bigger formula will be normalized into GNF
recursively in the next iteration.

One decision has to be made is whether we should push quantifiers as down as
possible. The process is based on the following rules:

∃x.(
∧

i

Li ⇒
∨

j

Pj) ≡
∧

i

∀x.Li ⇒
∨

j

∃x.Pj (5.9)

∀x.(
∧

i

Li ∧
∧

j

Pj) ≡
∧

i

∀x.Li ∧
∧

j

∀x.Pj (5.10)

These rules result in quantified formulas in the smallest size. If decision proce-
dures are able to recognize these patterns, it is unnecessary to do so. We are
going to come back to this simplification process later in the report.



5.3 Summary 51

5.3 Summary

We have presented side-condition Presburger formulas and how they are gen-
erated from the model checker. Due to high complexity of these formulas, we
derive a simplification algorithm to reduce them as much as possible. Reduc-
tion is based on understanding structures of these formulas and establishing
logic rules. Hopefully, simplified formulas are small enough to be solved by
decision procedures in a reasonable amount of time.
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Chapter 6

Experiments on Presburger
Arithmetic

This chapter is organized as a series of experiments on different aspects of Pres-
burger Arithmetic. The chapter starts with discussion of generating various
Presburger fragments. These formulas are used as inputs for testing different
algorithms later on. The next part deals with simplification of Presburger for-
mulas; it pops up from the fact that side-condition Presburger fragments are
complex and able to be reduced by some cheap quantifier elimination. After
that, we discuss design and implementation of Cooper’s algorithm in a sequen-
tial manner. Some design choices are made which have influence on both se-
quential and parallel versions, and we attempt to do a benchmark to decide
which option is good for the procedure.

6.1 Generation of Presburger fragments

Our main source of Presburger formulas is from the model checker of Duration
Calculus. However, as discussed in Chapter 5, generated Presburger fragments
are in a huge size even for a very small model-checking problem, and testing and
optimizing decision procedures on those formulas are pretty difficult. Also there
is no common benchmark suite for Presburger formulas; therefore, we attempt
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to generate test formulas which are controllable in terms of size and complexity
and postpone working on the real-world formulas until a later phase. Our test
formulas are from two sources:

• Hand-annotated Presburger formulas : in most of the cases, these formulas
are able to be quickly solved by hand. They serve the purpose of en-
suring the correctness of decision procedures and testing some facets of
Presburger formulas which are easier to be constructed by hand.

• Automatically-generated Presburger formulas : we generate these formulas
by formulation of Pigeon Hole Principle, and the detailed procedure is pre-
sented later in this section. We use this formulation to generate formulas
whose sizes are controllable and satisfiability is predetermined. These for-
mulas allow us to test with controllably big inputs which are particularly
helpful in context of parallel execution.

Here we describe our formulation of Pigeon Hole Principle: given N pigeons
and K holes, if N ≤ K there exists a way to assign the pigeons to the holes
where no hole has more than one pigeon; otherwise, no such assignment exists.
Certainly, there are many ways to formulate Pigeon Hole Principle in logic, here
we employ a very simple interpretation.

Let xik be the predicate where pigeon i is in hole k. The predicate F shows
that if pigeon i is in the hole k, there is no other pigeon in that hole:

F(i, k) = xik ⇒
∧

1≤ j≤ N
j 6=i

¬xjk

The predicate G shows that each pigeon is assigned one hole:

G(i) =
∨

1≤ k≤ K

xik

The predicate H shows that each pigeon is in only one hole:

H(i, k) = xik ⇒
∧

1≤ l≤ K
l 6=k

¬xil

The principle is formulated as follows:

Pigeon(N, K) =
∧

1≤ i≤ N
1≤ k≤ K

F(i, k) ∧
∧

1≤ i≤ N

G(i) ∧
∧

1≤ i≤ N
1≤ k≤ K

H(i, k)
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Figure 6.1: A N-sequence Kripke structure [15].

According to the principle, satisfiability of Pigeon(i, k) is easy determined by
values of N and K. And size of these predicates can easily scaled by the big
values of arguments which are really helpful for testing and optimizing parallel
algorithms. Up till now we examine the Pigeon Hole Principle in a propositional
setting, to inject linear constraints and quantifiers we consider the following en-
codings:

xik ← ⊤ xik ≥ 0 xik = 0 2 | xik
xik ← ⊥ xik < 0 xik 6= 0 ¬(2 | xik)

and define quantified formulas in the form of ∃x11, ..., xNK. Pigeon(N, K). We
call these formulas Pigeon-Hole Presburger formulas to attribute their origins.
So these formulas contain N ∗ K variables and N ∗ K quantifiers; we can omit
some quantifiers to adjust the number of quantifiers by our needs. Different
encodings give us different preferences of constraints which in turn demonstrate
some interesting aspects in decision procedures. This procedure of generating
Presburger formulas is easy to extend by using other encodings and there are
many other ways to formulate the principle in logic, resulting in various subsets
of Presburger formulas. We are open for extending the procedure for new subsets
of Presburger fragments in the future. Detailed source code of the formulation
can be found in Appendix B.4.

For Presburger fragments arise from the model checker, we consider Kripke
structures by concatenating N identical automata which is illustrated in Fig-
ure 6.1. The DC formula is 2(l < 5 ⇒

∫

p < 3) where 2φ is defined by
¬(true⌢(¬φ)⌢true). Resulting Presburger fragments are quite big and they
are used as the input for the simplification process which is discussed in the
next section.
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6.2 Simplification of Presburger formulas

In Section 5.2, we have discussed an algorithm to quickly simplify Presburger
fragments. This section presents experimental results of the algorithm and com-
pares them with previous approaches. Our experiment is conducted as follows:

• Four side-condition Presburger formulas are generated from 2-sequence,
3-sequence, 4-sequence and 5-sequence automata with the associated DC
formula(see 6.1 for details).

• Simplified formulas are recorded by running a simplification process by
Hansen et al. (HB’s) [15] and one by our algorithm (Ours).

• Simplified formulas are fed into the SMT-solver Z3 for quantifier elimina-
tion and evaluation.

Our experimental results are summarized in Table 6.1. These results show that
our simplification process at least reduces 4.5% of number of quantifiers more
than the other method, and the deepest nesting of quantifiers is also 10.5%
smaller. And it is also clear that less complex formulas are easier for Z3 to
solve. This brings the hope that recognizing patterns of some Presburger frag-
ments and quickly simplifying them is important to assist decision procedures.
By performing this experiment, we demonstrate that further simplification of
Presburger fragments is possible and meaningful to reduce stress on decision
procedures. We are going to incorporate more elements to simplify formulas as
much as possible before solving them.

No. of quantifiers Deepest nesting of quantifiers Solving time
(Original/HB’s/Ours) (Original/HB’s/Ours) (HB’s/Ours)

2-seq 3190/729/583 54/25/19 0.31/0.28 s
3-seq 10955/2823/2352 83/39/30 0.9/0.78 s
4-seq 26705/7638/5165 113/54/42 2.27/1.47 s
5-seq 53284/16830/14501 144/70/55 56.47/6.32 s

Table 6.1: Experimental results of two simplification algorithms.

6.3 Optimization of Cooper’s algorithm

Before going to implement a parallel variant of Cooper’s algorithm, we consider
some design choices for the algorithm itself. These design choices affect both
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Figure 6.2: Some optimizations on Cooper’s algorithm.

sequential and parallel versions, but to keep things simple we justify the selection
by a benchmark of the sequential algorithm only. There are some improvements
which have been done to contribute to a better implementation of Cooper’s
procedure:

• Reduce all literals as much as possible. By reducing, we mean all
constraints are evaluated to truth values whenever possible, and their co-
efficients are reduced to the smaller values. This process will lead to early
evaluation of some parts of a formula, and huge coefficients are avoided as
much as possible.

• Keep a formula in a uniform way. This improvement relies on our
experience of GNF, and uniform formulas not only have small depths of
recursion but also collect many formulas in their collection and introduce
more chances of concurrency, which is important for the purpose of parallel
execution later on.

The test set consists of ten hand-annotated Presburger formulas, each one has 3-
4 nested universal quantifiers and a disjunction of 3-4 equalities. The benchmark
is performed in the following manner: each test is run 100 times and execution
time is calculated by average execution time of 100 sessions. Moreover, some
sessions were executed before the benchmark, so every function is ensured in
the warm state in the time of benchmarking.

Here we consider two important optimizations which have been mentioned in
Section 4.2: eliminating blocks of quantifiers and using heterogeneous coeffi-
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cients of literals. The idea of eliminating blocks of quantifiers is clear, instead
of manipulating a huge formula, we split the work into many small pieces and
manipulate many small formulas. As illustrated in Figure 6.2, pushing blocks
of quantifiers into small formulas results in 10 − 20× performance gain com-
pared to the baseline version. The result is significant because smaller formulas
easily fit into caches, so manipulating them is much faster in practice. Using
heterogeneous coefficients adds up a slight performance gain as demonstrated in
the figure. Their advantage is two-fold; we save one traversal through the for-
mula to collect all coefficients so resulting coefficients are smaller and resulting
quantifier-free formulas are easier to evaluate in the later phase. Next section
discusses a new perspective of Cooper’s algorithm regarding parallel execution.

6.4 Summary

In this chapter, we have presented various experiments on Presburger Arith-
metic. Generation of different Presburger fragments is important for the testing
purpose, and simplification is helpful for reducing stress on decision procedures.
Optimization of Cooper’s algorithm is paving the way to derive better parallel
algorithms. We discuss various aspects of parallelism on decision procedures in
the next chapter.



Chapter 7

Parallel execution of decision
procedures

In this chapter, parallel versions of Cooper’s algorithm and the Omega Test are
discussed with many details regarding their concurrency, efficiency and scalabil-
ity. While Cooper’s algorithm is presented in a complete procedure, the Omega
Test is used as a partial process assisting simplification of complex Presburger
formulas. In each section, some test sets are selected for experimentation and
experimental results are interpreted. These test sets are carefully chosen from
sources of Presburger fragments in Section 6.1 and experiments if not explicitly
mentioned are performed on the 8-core 2.40GHz Intel Xeon workstation with
8GB shared physical memory. Each test is chosen so that its execution time is
smaller than 12 seconds. Measurement of execution time is done in the following
manner:

• Benchmark functions are executed in a low-load environment.

• Some sessions are performed several times so that every function is a warm
state before benchmarking.

• Each test is run 10 times and average execution time is recorded.
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7.1 A parallel version of Cooper’s algorithm

In this section, we discuss parallelism in Cooper’s algorithm and sketch some
ideas about how to exploit it. We come up with design and implementation for
the procedure and present experimental results.

7.1.1 Finding concurrency

As discussed in Section 6.3, eliminating blocks of quantifiers is good because
many small formulas are faster to manipulate. Other than that there is a chance
of concurrency in distributing blocks of quantifiers, where small formulas are
independent of each other and it is possible to eliminate quantifiers in parallel.
Our idea of parallel elimination is based on following rules where formulas are
in NNF:

∃ x1...xn.
∨

i

Fi ≡
∨

i

∃ x1...xn.Fi (7.1)

∀ x1...xn.
∧

i

Fi ≡
∧

i

∀ x1...xn.Fi (7.2)

However, for arbitrary NNF formulas, the degree of parallelism may be limited
because of small disjunctions (or conjunctions). One way to enhance concur-
rency is converting formulas into DNF. Normally a DNF formula is in a form
of a huge disjunction of many inner conjunctions and quantifier elimination can
be distributed to inner conjunctions immediately. Because conversion into DNF
causes the formula’s size to grow very fast, we only do DNF conversion once at
the outermost level of quantifiers.

Because there are still some cases where DNF formulas do not expose enough
concurrency, we seek concurrency inside the procedure. First, due to recursive
nature of Presburger formulas, these formulas are represented by tree data struc-
tures. Certainly we can manipulate these formulas by doing operations on tree
in a parallel manner, for example, doing parallel evaluation of tree branches.
Second, certain parts in quantifier elimination could be done in parallel. As can
be seen from Figure 7.1, Get Coefficients, Get A-Terms and Get B-Terms

have no order of execution. We are able to create three Tasks to run them con-
currently. Similarly Least Satisfying Assignment and Small Satisfying

Assignments could be calculated in parallel. The figure preserves relative ra-
tios between sizes of different tasks where Small Satisfying Assignments is
the largest task (it consists of |B| (or |A|) times substitution of a variable by a
term in the formula) and Eliminate Variable is a very lightweight task where
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we assemble different results. Assuming that the number of B-Terms are always
smaller than that of A-Terms, we have a rough estimation of parallelism based
on the DAG model of multithreading as follows:

• Assume that Eliminate Variable is an insignificant task and omit it.

• Estimate each task by the number of traversals through the whole Pres-
burger formula.

• Work = 1+ 1+ 1+ 1+ 1+ |B| = |B|+ 5

• Span = 1+ 1+ 1 = 3

• Parallelism Factor = (|B|+ 5)/3

Roughly speaking, Parallelism Factor is bounded by (|B|+ 5)/3, so we can
hardly achieve a good speedup if the number of B-Terms (or A-Terms) is too
small. Actually the number of terms is quite small due to symbolic representa-
tion of big disjuncts and the choice of the smallest number of terms in projection
which leads to limited concurrency in each elimination step. One interesting
thing is after each elimination step, big disjuncts consists of 1+ |B| inner formu-
las which are subject to parallel elimination. Again good concurrency requires
a big number of terms.

7.1.2 Design and Implementation

The algorithm we use follows ideas of Cooper’s algorithm discussed in Section
4.2 and there are some differences related to eliminating blocks of quantifiers and
using heterogeneous coefficients as discussed in Section 6.3. Here we focus on
data representation which will be shown to have a big influence on performance
later on.

The type Term is employed to represent a linear term c + Σi aixi:

• It consists of a constant c and a collection of variables xi and corresponding
coefficients ai.

• Variables cannot be duplicated, and each variable has exactly one coeffi-
cient.

• Arithmetic operations such as addition, subtraction between Terms, unary
minus of Terms ; multiplication and division by a constant are also sup-
ported.
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Figure 7.1: Task graph of an elimination step in Cooper’s algorithm.

A natural representation of Term in F# is the following type:

type Term = struct
val Vars: Map<string, int>
val Const: int

end

We intend to use Term as a struct because it is a value type stored in stacks
and garbage collectors do not have to take care of them. However, in F# a Map

is implemented in a form of a balanced binary tree, each operation of adding
and removing elements results in inserting and deleting nodes in a binary tree.
Therefore, if arithmetic operations on Term are used often, a lot of nodes are
created and discarded so garbage collectors have to work quite often. We devise
another representation of Term as follows:

type Term = struct
val constant: int
val coeffs: int []
val vars: string []

end

We make use of arrays of primitive types instead of Map, certainly it is more
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difficult to ensure no duplication in arrays but we have a more compact repre-
sentation and avoid small object allocation and deallocation. One interesting
thing is the separation of coefficients and variables is more efficient when we
need to update coefficients, multiply or divide Term by a constant because we
only change coeffs array and share other unchanged fields. Here we use this
representation for our experiments.

The type Formula represents Presburger formulas with following properties:

• It is a recursive datatype to support the recursive nature of Presburger
formulas.

• It has elements to accommodate the symbolic interpretation of big dis-
juncts.

• Presburger formulas are in a compact form by flattening formulas and
employing collection-based interpretation.

We have Formula in F# as follows:

type Formula =
| TT
| FF
| C of Term ∗ CompType

| D of int ∗ Term

| Not of Formula
| And of Formula list

| Or of Formula list

| SAnd of Formula ∗ (string ∗ int) list
| SOr of Formula ∗ (string ∗ int) list
| E of string list ∗ Formula

| A of string list ∗ Formula

In this representation, the depth of formulas is easy to be reduced by flattening
formulas. Formula can be seen as a tree datatype with different numbers of
branches at each node. Some ideas of parallel execution on this tree can be
summarized as follows:

• Parallel execution is done until a certain depth.

• Size of formulas (number of literals) can be used to divide tasks running
in parallel.

• An operation is done sequentially if the size of a branch is too small for
parallelism.



64 Parallel execution of decision procedures

We have done an experiment with parallel execution on a binary tree and present
results in the next section.

7.1.3 Experimental Results

We have a version of binary tree and a parallel map function and we attempt to
measure speedups on different oWorkload functions:

type BinTree =
| Leaf of int
| Node of BinTree ∗ BinTree

let pmap depth oWorkload tree =
let rec pmapUtil t d =

match t with
| Leaf(n) −> if oWorkload(n) then Leaf(1) else Leaf(0)
| _ when d = 0 −> map oWorkload t

| Node(t1, t2) −>

let t1’ = Task.Factory.StartNew( fun() −> pmapUtil t1 (d−1))
let t2’ = Task.Factory.StartNew( fun() −> pmapUtil t2 (d−1))
Task.WaitAll(t1’, t2’)
Node(t1’.Result, t2’.Result)

pmapUtil oWorkload tree depth

Workload functions are simple for-loops running a specified number of times:

// Workload functions
val oConstant : int −> bool

val oLog : int −> bool

val oLinear : int −> bool

Figure 7.2 shows that speedup factors are really bad when workloads are not
heavy enough and a good speedup of 6× is obtained with a rather big workload.
Consider our scenario of manipulating Presburger formulas, trees are of big size
but tasks at each node are tiny, and at most we manipulate small Terms by
their arithmetic operations. Therefore, it hardly pays off if we try to parallelize
every operation on Formula.

The experiment with Cooper elimination is performed on 10 Pigeon-Hole Pres-
burger formulas (see Section 6.1 for their construction), and each of them con-
sists of 32 disjunctions which can be resolved in parallel. Their properties are
summarized in Table 7.1.



7.1 A parallel version of Cooper’s algorithm 65

Figure 7.2: Speedup factors with different workloads.

Test No. Pigeons Holes Variables Quantifiers Literals
1 21 1 21 3 483
2 22 1 22 3 528
3 23 1 23 3 575
4 24 1 24 3 624
5 25 1 25 3 675
6 26 1 26 3 728
7 27 1 27 3 783
8 28 1 28 3 840
9 29 1 29 3 899
10 30 1 30 3 960

Table 7.1: Test set for Cooper elimination.

Each formula contains 32 smaller formulas which can be resolved in parallel.
Experimental results are presented in Figure 7.3. As can be seen from the figure,
speedup factors are around 4− 5×; these suboptimal speedups can be explained
by a fast-growing number of cache misses when the problem size increases. Some
other reasons of suboptimal speedups could be found in Section 3.2.

Cooper evaluation is done with some Pigeon-Hole Presburger formulas. They
are chosen in a way that their truth values are false, so it ensures that the
algorithm has to iterate through the whole search space to search for an answer.
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Figure 7.3: Speedup factors in Cooper elimination only.

Some characteristics of tests formulas are presented in Table 7.2.

Test No. Pigeons Holes Variables Quantifiers Literals
1 4 2 8 8 56
2 8 1 8 8 80
3 9 1 9 9 99
4 5 2 10 10 80
5 10 1 10 10 120
6 11 1 11 11 143
7 4 3 12 12 96
8 6 2 12 12 108
9 12 1 12 12 168
10 13 1 13 13 195

Table 7.2: Test set for Cooper evaluation.

Experimental results are shown in Figure 7.4. Speedup factors are good, ranging
from 5x to 8x, because search spaces are huge and the algorithm has been
traversed through them to validate results. Detailed source code of Cooper
elimination and evaluation can be found in Appendix B.5.
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Figure 7.4: Speedup factors in Cooper evaluation.

7.2 A parallel version of the Omega Test

This section is about our concern of parallelism in the Omega Test. The section
starts with discussion about concurrency occurring in the algorithm and ideas
about how to exploit it. Thereafter we present our design, implementation and
experimental results.

7.2.1 Finding concurrency

As mentioned in Section 4.2.2, converting Presburger formulas into DNF is in-
evitable for the Omega Test. DNF is a significant bottleneck of the algorithm be-
cause formulas may grow exponentially. Take a formula

∧m

i=1
Li ∧

∧n

j=1
(L1j ∨ L2j)

as an example, its DNF version is a disjunction of 2n conjunctions of m+ n liter-
als. DNF is a challenge for employing the Omega Test, but there is a chance of
massive concurrency in this procedure. In the above example, 2n conjunctions
are totally independent and ready for being resolved in parallel. To do so we
rely on the following rule (which is similar to Equation 7.2):

∃ x1...xn.
∨

i

∧

j

Lij ≡
∨

i

∃ x1...xn.
∧

j

Lij (7.3)

Using DNF, we can easily divide a formula into many smaller ones and apply the
Omega Test independently. The parallel pattern used here is Data Parallelism,
when we have the same operation working on a big collection of data. As
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discussed in Section 2.2, F# provide very good constructs for data parallelism
such as Parallel.For(Each), Array.Parallel and PSeq module.

Looking into details of the Omega Test procedure, it is easy to recognize that
their three basic blocks could be executed in parallel because there is no re-
quirement for order of executions among Real Shadow, Dark Shadow and Gray
Shadow. We can easily spawn three independent Tasks, but there is a little
coordination which should be done between these tasks. First of all, if Real
Shadow ’s task completes first and returns false, the other tasks should be ter-
minated immediately. Similarly, if Dark Shadow ’s task returns true, the other
running tasks should be stopped right away. In the worst-case scenario, the re-
sult is returned from Gray Shadow ’s task. It is likely that this task is the longest
running one so total execution time is comparable to execution time of this task.
This idea of three parallel coordinated tasks can be easily implemented in F#
using Task and CancellationTokenSource constructs.

We have sketched our ideas of parallelizing Omega Test. These two ideas can
be incorporated into a full procedure with a sensible way of controlling the
degree of parallelism. We recognize that exponential growth of formulas’ size is
the biggest hindrance, especially Gray Shadow happens quite often and causes
formulas to be normalized into DNF again and again. Noticing that consistency
predicates (see Section 5.1) consist of literals with coefficients zero or one, we
might think that Exact Shadow is a good choice for quickly resolving formulas
of this form. The original form of Exact Shadow (see Equation 4.1) is adapted
in a form of strict comparisons:

∃x. β < bz ∧ cz < γ ⇐⇒ cβ + 1 < bγ (7.4)

Basically, our parallel procedure works with a lot of small conjunctions and
with each conjunction, it does Exact Shadow to cheaply eliminate quantifiers.
We know that this approach is incomplete because after some substitution co-
efficients of literals increase and the procedure has no way to go ahead. But
given the fact that the consistency predicates are heavily used in side-condition
Presburger fragments, even removing a fraction of quantifiers is really helpful.
We are going to introduce the detailed procedure in the next section.

7.2.2 Design and Implementation

We sketch the algorithm of using Omega Test in a general case, a specific parallel
algorithm can be derived by our discussion of Finding Concurrency above:

• The Presburger formula is converted into DNF.
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• For each conjunction of literals in the new formula, quantifiers are elimi-
nated recursively by the following procedure:

– Suppose a formula is in a form of ∃x. φ(x) and independent literals
which do not contain x are stored separately.

– If x is unbounded (literals having x only consist of less-than or greater-
than comparisons), the quantifier x is safely removed. The new con-
junction contains only independent literals.

– For bounded literals, they are categorized into two opposite groups of
β < bx and cx < γ. For each pair of opposite literals, if they satisfy
the condition of Exact Shadow (b=1 or c=1) we apply the shadow to
form a new literal; otherwise, the procedure stops immediately.

– The new conjunction consists of independent literals and newly-formed
literals, the quantifier x is safely removed. We eliminate the next
quantifier by running the same procedure on the new conjunction.

• The quantifier elimination procedure completes when no quantifier is left
or there are some quantifiers but coefficients of literals are different from
one.

We analyze the algorithm in a case of our specific input. We have a quantified
formula with k quantifiers and a conjunctions of m literals and n disjunctions of
two literals. As discussed above, the corresponding formula in DNF consists of
2n conjunctions of (m+ n) literals. Examining each conjunction separately, each
quantifier elimination step causes a product between two lists of size (m + n).
Therefore, we have a worst-case complexity of Θ((m+ n)2k). Certainly, this does
not happen often in practice, if one of these lists is empty we have size of new
conjunctions remaining linear of m+ n. The worst-case complexity of the whole
procedure is Work = Θ(2n(m+ n)2k). Analyzing the algorithm by the DAG model
of multithreading, Span = Θ((m+ n)2k), and we have Parallelism Factor of Θ(2n).
We can say this one is an instance of embarrassingly-parallel algorithms, and
its parallelism is only bounded by the number of used processors.

Regarding specific implementation details, we have written two different ver-
sions of the algorithm: one is List-based and one is Array-based. We want
to examine performance of List and Array in the context of parallel execu-
tion although it requires a little effort to translate from List-based version to
Array-based one. Certainly, with each version we implement a parallel variant
and a sequential one. They are running on the same codebase, there are only
some small differences regarding parallelism constructs. In the next section,
we present our experiment on a small test set and some conclusions about the
algorithm and its parallel execution.



70 Parallel execution of decision procedures

7.2.3 Experimental Results

We create a testset from consistency predicates of N-sequence automata in Fig-
ure 6.1. For each automaton in 3-sequence, 4-sequence and 5-sequence au-
tomata, we select five arbitrary consistency predicates. Therefore, we have a
testset of 15 Presburger formulas ordered by their number of quantifiers and
their size. We notice that each consistency predicates is a conjunction between
literals and disjunctions which in turn contain two literals, characteristics of the
testset are summarized in Table 7.3.

Automaton Quantifiers Literals Disjunctions
3-seq 3 8 5
4-seq 6 13 7
5-seq 10 19 9

Table 7.3: Test set for the Omega Test.

From the table we can see that at most the procedure resolves 25, 27 or 29 Omega
Tests in parallel. Because these numbers are usually bigger than the number
of hardware threads, using some work balancing mechanisms would benefit the
whole procedure. In the List-based version, work balancing is done by PLINQ
engine without users’ intervention. In our Array-based variant, we have more
control over distribution of work on different cores. Here we use a partitioning
technique which divides work into balanced chunks for the executing operation.

We have Figure 7.5 indicate speedups of different parallel versions. As we can
see, speedup factors seem to decrease when the input size increases. This trend
can be explained by the number of cache misses eventually grows when the input
becomes bigger. However, speedup factors are quite good for both versions, they
are around 5× in the worst cases. The Array-based approach is always more
scalable than List-based one and this happens not only because we have better
work balancing inArray-based variant but also because locality of references is
ensured by keeping data closely in the array-based representation. Our Array-
based approach performs quite well in the whole testset, speedup factors are
around 6× even for big inputs. The Array-based implementation is not only
more scalable but also surpasses its competitor in parallel execution. Figure 7.6
shows relative speedups between two parallel variants; their performance gap
seems to be bigger when the problem size increases.

The results of our experiment are summarized in Table 7.4. Our cheap quantifier
elimination based on Exact Shadow is very effective; it is able to eliminate all
quantifiers for consistency predicates from 3-sequence and 4-sequence automata.
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Figure 7.5: Parallel speedups of different approaches.

Figure 7.6: Relative speedups between Array-based approach and List-based
approach.
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In the case of 5-sequence automaton, the procedure stops with three quantifiers
left, we think that even this partial elimination could help to simplify Presburger
formulas. Detailed source code of the Omega Test can be found in Appendix
B.6 and B.7.

Automaton Quantifiers before Quantifiers after
3-seq 3 0
4-seq 6 0
5-seq 10 3

Table 7.4: Results of the Omega Test.

7.3 Summary

We have discussed parallelism aspects of Cooper’s algorithm and the Omega
Test. Each discussion follows with some experiments, reasonable speedups have
been obtained. It is easy to come up with a correct implementation of these
parallel algorithms; however, it is not free to achieve good efficiency. The method
we use for implementation has some interesting points:

• We employ a trial-and-error process. Each attempt is evaluated by profil-
ing applications with some specific inputs.

• Some low-level tools are used including CLR Profiler and ILSpy. The
former provides more information regarding memory and garbage collec-
tion and the latter helps to translate F# to other .NET languages for
understanding low-level implementation and optimizing F# code.

• We follow the idiom of little memory allocation and little garbage col-
lection; therefore, code is optimized so that their memory footprints are
small and unnecessary garbage collection is avoided.

F# has provided a very convenient environment for parallel programming. We
can start prototyping algorithms without worrying about sophisticated synchro-
nization constructs and F# interpreter has been a good indicator for parallelism,
so that we can decide when to start benchmarking. However, it is still difficult to
optimize algorithms for parallelism because memory footprints of F# programs
are quite large and garbage collection has a bad influence on performance in an
unpredictable way.



Chapter 8

Conclusions

In this work, we have studied multicore parallelism by working on some small ex-
amples in F#. The result is promising; the functional paradigm makes parallel
processing really easy to start with. We have also studied theory of Presburger
Arithmetic, especially their decision procedures. We have applied the functional
paradigm in a simplification algorithm for Presburger formulas and two impor-
tant decision procedures: Cooper’s algorithm and the Omega Test. Actually the
paradigm is helpful because formulation in a functional programming language
is really close to problems’ specification in logic and the like. The outcome is
clear; we can prototype these decision algorithms in a short time period and ex-
periment with various design choices of parallelism in a convenient way. Some
concrete results of this work are summarized as follows:

• Propose a new simplification algorithm which reduces 4.5% of numbers of
quantifiers and 10.5% of nesting levels of quantifiers compared to the old
method.

• Show that eliminating blocks of quantifiers and using heterogeneous coef-
ficients of literals are helpful, which contribute up to 20× performance
gain compared to the baseline implementation.

• Present parallelism concerns in Cooper’s algorithm. We have got 4− 5×
speedup in elimination of formulas consisting of 32 disjunctions. The
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evaluation phase is easier to parallelize, and we have achieved 5− 8×
speedup for the test set of Pigeon-Hole Presburger formulas.

• Explore the chance of parallelism in the Omega Test. We have imple-
mented a partial process using Exact Shadow, and have got 5− 7× speedup
for the test set of consistency predicates.

While doing the thesis, we have learned many interesting things related to func-
tional programming, parallelism and decision procedures:

• Functional programming and multicore parallelism is a good combination.
We can prototype and experiment on parallel algorithms with little effort
thanks to no side effect and a declarative way of thinking.

• The cache is playing an important role in multicore parallelism. To opti-
mize functional programs for parallel efficiency, reducing memory alloca-
tion and deriving good cache-locality algorithms are essential. For exam-
ple, our experience shows that using Array-based representation might be
a good idea to preserve cache locality, which then contributes to better
speedups.

• Cooper’s algorithm and the Omega Test are efficient algorithms for de-
ciding Presburger formulas, and we have discovered several ways of par-
allelizing these algorithms and achieved good speedups in some test sets.
However, memory seems to be an inherent problem of the algorithms and
parallelization is not the way to solve it.

We have done various experiments on Presburger Arithmetic from generating,
simplifying to deciding those formulas. However, we have not done them in a
whole process for our Presburger formulas of interest. We have the following
things for our future work:

• Simplify Presburger formulas further, and aim at space reduction partic-
ularly for formulas generated by the model checker.

• Combine Cooper’s algorithm and the Omega Test so that we can derive a
decision procedure with good characteristics of the two algorithms.

• Optimize Cooper’s algorithm and the Omega Test in terms of parallel
execution. Especially, consider optimizing data representation for better
cache locality and smaller memory footprints.

• Use solving of divisibility constraints in evaluation to reduce search spaces
which are quite huge, especially with big coefficients and a large number
of quantifier eliminations.
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Appendix A

Examples of multicore
parallelism in F#

A.1 Source code of π calculation

module PI

open System

open System.Linq
open System.Threading.Tasks
open System.Collections.Concurrent

let NUM_STEPS = 100000000
let steps = 1.0 / (float NUM_STEPS)

let compute1() =
let rec computeUtil(i, acc) =

if i = 0 then acc ∗ steps

else
let x = (float i + 0.5) ∗ steps

computeUtil (i−1, acc + 4.0 / (1.0 + x ∗ x))
computeUtil(NUM_STEPS, 0.0)

let compute2() =
let sum = ref 0.0
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for i in 1..NUM_STEPS do
let x = (float i + 0.5) ∗ steps

sum := !sum + 4.0 / (1.0 + x ∗ x)
!sum ∗ steps

module Parallel =
let compute1() =

let sum = ref 0.0
let monitor = new Object()
Parallel.For(

0, NUM_STEPS, new ParallelOptions(),
(fun () −> 0.0),
(fun i loopState (local:float) −>

let x = (float i + 0.5) ∗ steps

local + 4.0 / (1.0 + x ∗ x)
),

(fun local −> lock (monitor) (fun () −> sum := !sum + local))) |>
ignore

!sum ∗ steps

// Overall best function
let compute2() =

let rangeSize = NUM_STEPS / (Environment.ProcessorCount ∗ 10)
let partitions = Partitioner.Create(0, NUM_STEPS, if rangeSize >= 1

then rangeSize else 1)
let sum = ref 0.0
let monitor = new Object()
Parallel.ForEach(

partitions, new ParallelOptions(),
(fun () −> 0.0),
(fun (min, max) loopState l −>

let local = ref 0.0
for i in min .. max − 1 do

let x = (float i + 0.5) ∗ steps

local := !local + 4.0 / (1.0 + x ∗ x)
l + !local),

(fun local −> lock (monitor) (fun () −> sum := !sum + local))) |>
ignore

!sum ∗ steps

let sqr x = x ∗ x

module Linq =
// LINQ
let compute1() =

(Enumerable
.Range(0, NUM_STEPS)
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.Select(fun i −> 4.0 / (1.0 + sqr ((float i + 0.5) ∗ steps)))

.Sum()) ∗ steps

// PLINQ
let compute2() =

(ParallelEnumerable
.Range(0, NUM_STEPS)
.Select(fun i −> 4.0 / (1.0 + sqr ((float i + 0.5) ∗ steps)))
.Sum()) ∗ steps
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A.2 Source code of MergeSort

module MergeSort

open System

open System.IO
open System.Threading.Tasks
open Microsoft.FSharp.Collections

let split fs =
let len = Array.length fs

fs.[0..(len/2)−1], fs.[len/2..]

let rec binarySearch (ls: _ [], v, i, j) =
if i = j then j

else
let mid = (i+j)/2
if ls.[mid] < v then binarySearch(ls, v, mid+1, j)
else binarySearch(ls, v, i, mid)

let rec merge (l1: _ [], l2) =
if l1 = [||] then l2

elif l2 = [||] then l1

elif Array.length l1 < Array.length l2 then merge (l2, l1)
elif Array.length l1 = 1 then

if l1.[0] <= l2.[0] then Array.append l1 l2

else Array.append l2 l1

else
let head1, tail1 = split l1

let midVal1 = head1.[Array.length head1 − 1]
let idx = binarySearch (l2, midVal1, 0, l2.Length)
let m1, m2 = merge (head1, l2.[..idx−1]), merge (tail1, l2.[idx..])
Array.append m1 m2

let rec pmergeUtil (l1: _ [], l2, depth) =
if l1 = [||] then l2

elif l2 = [||] then l1

elif Array.length l1 < Array.length l2 then pmergeUtil (l2, l1, depth)
elif Array.length l1 = 1 then

if l1.[0] <= l2.[0] then Array.append l1 l2

else Array.append l2 l1

elif depth = 0 then merge (l1, l2)
else

let head1, tail1 = split l1

let midVal1 = head1.[Array.length head1 − 1]
let idx = binarySearch (l2, midVal1, 0, l2.Length)
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let m1 = Task.Factory.StartNew( fun () −> pmergeUtil (head1, l2.[..idx
−1], depth−1))

let m2 = pmergeUtil (tail1, l2.[idx..], depth−1)
Array.append m1.Result m2

let rec msort ls =
if Array.length ls <= 1 then ls

else
let ls1, ls2 = split ls

let ls1’, ls2’ = msort ls1, msort ls2

merge (ls1’, ls2’)

let rec pmsortUtil (ls, depth) =
if Array.length ls <= 1 then ls

elif depth = 0 then msort ls

else
let ls1, ls2 = split ls

let ls1’ = Task.Factory.StartNew(fun () −> pmsortUtil (ls1, depth−1))
let ls2’ = pmsortUtil (ls2, depth−1)
pmergeUtil (ls1’.Result, ls2’, depth)

let rec pmsort ls =
pmsortUtil(ls, 4)
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Source code of experiments

B.1 Utilities.fs

module Utilities

open System

open System.Threading.Tasks
open System.Collections.Concurrent

type System.Threading.Tasks.Task with
static member WaitAll(ts) =

Task.WaitAll [| for t in ts −> t :> Task |]

let ( %| ) a b = (b % a = 0)

let rec gcd(l1, l2) =
if l2 = 0 then l1 else gcd(l2, l1 % l2)

// Calculate gcd of a list of postive integer.
// Rewrite to use tail recursion.
let gcds ls =

let rec recGcds ls res =
match ls with
| [] −> res
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| l::ls’ −> recGcds ls’ (gcd(res, abs(l)))
match ls with
| [] −> 1
| [l]−> abs(l)
| l::ls’ −> recGcds ls’ l

let gcda ls =
Array.fold(fun acc l −> gcd(abs(l), acc)) 1 ls

let lcm(l1, l2) =
(l1 / gcd(l1, l2)) ∗ l2

// Calculate lcm of a list of positive integer.
// Rewrite to use tail recursion.
let lcms ls =

let rec recLcms ls res =
match ls with
| [] −> res

| l::ls’ −> recLcms ls’ (lcm(res, abs(l)))
recLcms ls 1

let lcma ls =
Array.fold(fun acc l −> lcm(abs(l), acc)) 1 ls
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B.2 Term.fs

module Term

open Microsoft.FSharp.Collections
open Utilities

type Term = struct
val constant: int
val coeffs: int [] // Order of fields matters
val vars: string []
new(c, vs, cs) = {constant = c; vars = vs; coeffs = cs}
override t.ToString() = ”(” + string t.constant + ”, [” + Array.fold2 (fun

acc v c −> acc + ”(” + string v + ”,” + string c + ”)” + ”, ” ) ”” t.
vars t.coeffs + ”])”

end

let newTerm (c, xs, cs) = Term(c, xs, cs)
let term(c, x) = Term(0, [|x|], [|c|])
let var x = term(1, x)

let constTerm i = Term(i, [||], [||])
let Zero = constTerm 0
let One = constTerm 1
let MinusOne = constTerm −1

let rec merge(n1, n2, l1, l2, t1: Term, t2: Term, acc1: ResizeArray<_>, acc2:
ResizeArray<_>) =
if n1 = 0 then

for i = l2−n2 to l2−1 do
acc1.Add(t2.vars.[i])
acc2.Add(t2.coeffs.[i])

elif n2 = 0 then
for i = l1−n1 to l1−1 do

acc1.Add(t1.vars.[i])
acc2.Add(t1.coeffs.[i])

else
let v1 = t1.vars.[l1−n1]
let c1 = t1.coeffs.[l1−n1]
let v2 = t2.vars.[l2−n2]
let c2 = t2.coeffs.[l2−n2]
if v1 = v2 then

if c1 + c2 <> 0 then
acc1.Add(v1)
acc2.Add(c1+c2)

merge(n1−1, n2−1, l1, l2, t1, t2, acc1, acc2)
elif v1 < v2 then
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if c1 <> 0 then
acc1.Add(v1)
acc2.Add(c1)

merge(n1−1, n2, l1, l2, t1, t2, acc1, acc2)
else

if c2 <> 0 then
acc1.Add(v2)
acc2.Add(c2)

merge(n1, n2−1, l1, l2, t1, t2, acc1, acc2)

let (++) (t1: Term) (t2:Term) =
let l1 = t1.vars.Length
let l2 = t2.vars.Length
let acc1 = new ResizeArray<_>(l1 + l2)
let acc2 = new ResizeArray<_>(l1 + l2)
merge(l1, l2, l1, l2, t1, t2, acc1, acc2)
Term(t1.constant + t2.constant, acc1.ToArray(), acc2.ToArray())

let (˜˜) (t: Term) =
Term(−t.constant, t.vars, Array.map (fun c −> −c) t.coeffs)

let (−−) t1 t2 = t1 ++ ( ˜˜ t2)

let ( ∗∗ ) a (t: Term) =
if a = 0 then Zero

elif a = 1 then t

else
Term(a∗t.constant, t.vars, Array.map (fun c −> a∗c) t.coeffs)

let ( ∗/∗ ) (t: Term) a =
if a = 0 then invalidArg ”Term” ”Division by zero”
elif a = 1 then t

else
Term(t.constant/a, t.vars, Array.map (fun c −> c/a) t.coeffs)

let rec findIndex f xs i =
if i >= Array.length xs then −1
elif f xs.[i] then i

else findIndex f xs (i+1)

// Find coefficient of variable x in term t
let findCoeff (t: Term, x) =

try
let i = Array.findIndex (fun v −> v = x) t.vars
t.coeffs.[i]

with
| :? System.Collections.Generic.KeyNotFoundException −> 0
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// Filter out variable x in term t
let filterOut (t: Term, x): Term =

Term(t.constant, t.vars, Array.map2(fun v c −> if v=x then 0 else c) t.vars t.
coeffs) // Not removing for better performance.

// Substitute variable c∗x in term t by a new term tx
let substitute (c, x, tx, t): Term =

let c0 = findCoeff (t, x)
if c0 = 0 then t

else
let lcm = lcm(abs(c0), abs(c))
let d = lcm/abs(c0)
let t’ = filterOut (d∗∗t, x)
t’ ++ (d∗c0/abs(c)) ∗∗ tx

let rec subst (t: Term, xts) =
match xts with
| [] −> t

| (x, tx)::xts’ −> subst (substitute (1, x, constTerm tx, t), xts’)

let getCoeffsWithoutConst (t: Term) =
List.ofArray t.coeffs

let getCoeffs (t: Term) =
t.constant::getCoeffsWithoutConst(t)

// Note: may change for optimization
let redCoeffs (t: Term) =

let vars = [| for i=0 to t.vars.Length−1 do
if t.coeffs.[i] <> 0 then yield t.vars.[i]

|]
let coeffs = Array.filter(fun c −> c <> 0) t.coeffs
let t’ = Term(t.constant, vars, coeffs)
let g = getCoeffs t’ |> gcds

if g = 0 || g = 1 then t’ else t’ ∗/∗ g

let isConstTerm (t: Term) =
Array.isEmpty t.vars || Array.forall (fun c −> c = 0) t.coeffs

let getConst (t: Term) = t.constant



90 Source code of experiments

B.3 Formula.fs

module Formula

open Microsoft.FSharp.Collections
open Utilities

open Term

type CompType =
| EQ
| UEQ
| GT

type Formula =
| TT
| FF
| C of Term ∗ CompType

| D of int ∗ Term

| Not of Formula
| And of Formula list

| Or of Formula list

| SAnd of Formula ∗ (string ∗ int) list
| SOr of Formula ∗ (string ∗ int) list (∗ Avoid expanding formula by

introducing variable and its range of value ∗)
| E of string list ∗ Formula

| A of string list ∗ Formula
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B.4 PAGenerator.fs (excerpt)

// Generate PA Fragments for testing Cooper algorithm
module PAGenerator

// Formulate pigeon hole principle in propositional logic (N pigeons and K holes)

let rec tab n f =
match n with
| x when x <= 0 −> []
| _ −> f n:: tab (n−1) f

// Pigeon i is in hole k
let X i k = A( L (”x(” + string i + ”,” + string k + ”)”), true)
let Y i k = A( C(Zero, var (”x” + string i + ” ” + string k + ””), LE), true)
let Z i k = A( C(Zero, var (”x” + string i + ” ” + string k + ””), EQ), true)
let T i k = A( D(2, var (”x” + string i + ” ” + string k + ””)), true)

// If pigeon i is in hole k so no one else is in hole k
let F pred (i, k) (N, K) = (pred i k) => (And (tab N (fun i’ −> if i = i’ then TT

else Not (pred i’ k))))

// Apply F for all i and k
let Fall pred (N, K) = And (tab N (fun i −> And (tab K (fun k −> F pred (i, k) (N,

K)))))

// Pigeon i has assigned a hole
let G pred i (N, K) = Or (tab K (fun k −> pred i k))

// All pigeons have been assigned holes
let Gall pred (N, K) = And (tab N (fun i −> G pred i (N, K)))

// A pigeon is only in one hole
let H pred (i, k) (N, K) = (pred i k) => (And (tab K (fun k’ −> if k = k’ then TT

else Not (pred i k’))))

// Every pigeon has exactly one hole
let Hall pred (N, K) = And (tab N (fun i −> And (tab K (fun k −> H pred (i, k) (N,

K)))))

let pigeon pred (N, K) = And [Fall pred (N, K) ; Gall pred (N, K) ; Hall pred (N, K)]

let pigeonY = pigeon Y

let pigeonZ = pigeon Z

let pigeonT = pigeon T

let generateFormula pigeonPred (N, K, Q) =
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let rec takeLast(ls, q) =
if List.length ls <= q then ls

else takeLast(List.tail ls, q)

let qfForm = (N, K) |> pigeonPred |> gnfToFormula

let quantifiers = List.fold (fun acc (i, k) −>

(”x” + string i + ” ” + string k)::acc )
[] (List.fold (fun acc i −>

acc @ (List.map (fun k −>

(i, k)) (tab K (fun k

−> k))))
[] (tab N (fun i −> i)))

if Q = 0 then qfForm

else
E(takeLast(quantifiers, Q), qfForm)

let generatePigeonYFormula = generateFormula pigeonY

let generatePigeonZFormula = generateFormula pigeonZ

let generatePigeonTFormula = generateFormula pigeonT
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B.5 Cooper.fs (excerpt)

// Quantifier elimination by means of Cooper algorithm
module Cooper

open System

open System.Collections
open System.Threading.Tasks
open System.Collections.Concurrent
open Microsoft.FSharp.Collections
open Utilities

open Term

open Formula

// Input: quantifier−free formulas
// Output: negation is pushed into literals.
let rec nnf formula =

match formula with
| C(_, _)
| D(_, _)
| TT
| FF −> formula

| And fs −> And (List.map nnf fs)
| Or fs −> Or (List.map nnf fs)
| SAnd(f, vr) −> SAnd (nnf f, vr)
| SOr(f, vr) −> SOr (nnf f, vr)
| Not f −> nnnf f

| _ −> invalidArg ”nnf” ”Unwellformed”

and nnnf formula =
match formula with
| TT −> FF

| FF −> TT

| C(t, ct) −> match ct with // Preserve wellformness of formulas
| EQ −> C(t, UEQ)
| UEQ −> C(t, EQ)
| GT −> C(One −− t, GT)
| _ −> invalidArg ”nnnf” ”Comparison”

| D(i, t) −> Not formula

| And fs −> Or (List.map nnnf fs)
| Or fs −> And (List.map nnnf fs)
| SAnd(f’, vr) −> SOr (nnnf f’, vr)
| SOr(f’, vr) −> SAnd (nnnf f’, vr)
| Not f’ −> nnf f’
| _ −> invalidArg ”nnnf” ”Unwellformed”
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let rec mapUntil(func, condVal: Formula, combFunc, fs: Formula list, acc: _ list)
=
match fs with
| [] −> combFunc acc

| f::fs’−> let f’ = func f

if f’ = condVal then condVal else mapUntil(func, condVal,
combFunc, fs’, f’::acc)

let rec genInfFormula (x, leftProjection, lcm) form =
match form with
| C(t, ct) −> match ct with

| EQ −> if findCoeff (t, x) <> 0 then FF

else
if lcm = 1 then C(filterOut(t, x), ct) else

form

| UEQ −> if findCoeff (t, x) <> 0 then TT

else
if lcm = 1 then C(filterOut(t, x), ct) else

form

| GT −> let c = findCoeff (t, x)
if c > 0 && leftProjection then FF

elif c < 0 && not leftProjection then FF

elif c <> 0 then TT

else
if lcm = 1 then C(filterOut(t, x), ct) else

form

| _ −> if lcm = 1 then C(filterOut(t, x), ct) else form

| D(i, t) −> if lcm = 1 then D(i, filterOut(t, x)) else form

| And fs −> mapUntil(genInfFormula (x, leftProjection, lcm), FF, And, fs, [])
| Or fs −> mapUntil(genInfFormula (x, leftProjection, lcm), TT, Or, fs, [])
| Not f −> match genInfFormula (x, leftProjection, lcm) f with

| TT −> FF

| FF −> TT

| f’ −> Not f’
| SAnd(f, vr) −> match genInfFormula (x, leftProjection, lcm) f with

| TT −> TT

| FF −> FF

| SAnd(f’, vr’) −> SAnd(f’, vr’@vr)
| f’ −> SAnd(f’, vr)

| SOr(f, vr) −> match genInfFormula (x, leftProjection, lcm) f with
| TT −> TT

| FF −> FF

| SOr(f’, vr’) −> SOr(f’, vr’@vr)
| f’ −> SOr(f’, vr)

| _ −> form

let rec substituteFormula (c, x, tx) formula =



Cooper.fs (excerpt) 95

match formula with
| C(t, ct) −> C(substitute (c, x, tx, t), ct)
| D(i, t) −> D(i, substitute (c, x, tx, t))
| And fs −> fs |> List.map (substituteFormula (c, x, tx)) |> And

| Or fs −> fs |> List.map (substituteFormula (c, x, tx)) |> Or

| SAnd(f, vr) −> (substituteFormula (c, x, tx) f, vr) |> SAnd

| SOr(f, vr) −> (substituteFormula (c, x, tx) f, vr) |> SOr

| Not f −> substituteFormula (c, x, tx) f |> Not

| _ −> formula

let rec genTermFormula (x, leftProjection, aLits, bLits, lcm, form) =
let newX = if lcm = 1 then One else var x

if leftProjection then
bLits |> List.map (fun (c, b) −> match substituteFormula (c, x, b ++

newX) form with
| And fs −> if c = 1 then And fs else

And ((D(c, b ++ newX))::fs)
| f −> if c = 1 then f else And [f; D(c,

b ++ newX)]
)

else
aLits |> List.map (fun (c, a) −> match substituteFormula (c, x, a −−

newX) form with
| And fs −> if c = 1 then And fs else

And ((D(c, a −− newX))::fs)
| f −> if c = 1 then f else And [f; D(c,

a −− newX)]
)

let elimVariable x formula =
// Choice of left projection or right projection depends on the number of literals

.
let divCoeffs, aLits, bLits = retrieveInfo (x, formula)

let leftProjection = aLits.Length >= bLits.Length
//let = if leftProjection then bLits.Length |> printfn ”Left projection:%i” else

aLits.Length |> printfn ”Right projection:%i”
let lcm = divCoeffs |> lcms

match formula with
| SOr(f’, vr) −> match genInfFormula (x, leftProjection, lcm) f’,

genTermFormula (x, leftProjection, aLits, bLits, lcm, f’) with
| TT, _ −> TT

| FF, []−> FF

| FF, fs−> if lcm = 1 then (fs |> Or, vr) |> SOr else (fs
|> Or, (x, lcm)::vr) |> SOr
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| f, [] −> if lcm = 1 then (f, vr) |> SOr else (f, (x, lcm)::vr
) |> SOr

| f, fs −> if lcm = 1 then (f::fs |> Or, vr) |> SOr else (f::
fs |> Or, (x, lcm)::vr) |> SOr

| _ −> match genInfFormula (x, leftProjection, lcm) formula,
genTermFormula (x, leftProjection, aLits, bLits, lcm, formula) with

| TT, _ −> TT

| FF, []−> FF

| FF, fs−> if lcm = 1 then fs |> Or else (fs |> Or, [(x, lcm
)]) |> SOr

| f, [] −> if lcm = 1 then f else (f, [(x, lcm)]) |> SOr

| f, fs −> if lcm = 1 then f::fs |> Or else (f::fs |> Or, [(x,
lcm)]) |> SOr

// The formula is quantifier−free.
let rec elimQuantifier x formula =

match formula with
| SAnd(f, vr) −> (f |> elimQuantifier x, vr) |> SAnd

| SOr(f, vr) −> (f |> elimQuantifier x, vr) |> SOr

| Or fs −> fs |> List.map (elimQuantifier x) |> Or

| _ −> formula |> reduce |> elimVariable x

// Eliminate all quantifiers, one by one.
let rec cooper formula =

match formula with
| Not f −> f |> cooper |> Not

| And fs −> fs |> List.map cooper |> And

| Or fs −> fs |> List.map cooper |> Or

| SAnd(f, vr) −> (f |> cooper, vr) |> SAnd

| SOr(f, vr) −> (f |> cooper, vr) |> SOr

| E(xs, SOr(f, vr))
−> SOr(cooper (E(xs, f)), vr)

| E(xs, Or fs) −> fs |> List.map (fun f −> cooper (E(xs, f))) |> Or

| E(xs, f) −> List.fold (fun acc x −> (elimQuantifier x acc)) (nnf (cooper
f)) xs

| A(xs, SAnd(f, vr))
−> SAnd(cooper (A(xs, f)), vr)

| A(xs, And fs) −> fs |> List.map (fun f −> cooper (A(xs, f))) |> And

| A(xs, f) −> Not (List.fold (fun acc x −> (elimQuantifier x acc)) (nnf (
cooper (Not f))) xs)

| _ −> formula

let parMap func fs =
let fs’ = List.map (fun f −> Task.Factory.StartNew(fun() −> func f)) fs
Task.WaitAll(fs’)
List.map (fun (t’: Task<_>) −> t’.Result) fs’
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let rec elimQuantifierParallel x formula =
//printfn ”var0=%s” x
match formula with
| SAnd(f, vr) −> (f |> elimQuantifierParallel x, vr) |> SAnd

| SOr(f, vr) −> (f |> elimQuantifierParallel x, vr) |> SOr

| Or fs −> //printfn ”elim.var=%s, fs=%i” x fs.Length
fs |> parMap (elimQuantifier x) |> Or

| _ −> formula |> reduce |> elimVariable x

// Eliminate all quantifiers, one by one.
let rec cooperParallel formula =

match formula with
| Not f −> f |> cooperParallel |> Not

| And fs −> fs |> List.map cooperParallel |> And

| Or fs −> fs |> List.map cooperParallel |> Or

| SAnd(f, vr) −> (f |> cooperParallel, vr) |> SAnd

| SOr(f, vr) −> (f |> cooperParallel, vr) |> SOr

| E(xs, SOr(f, vr))
−> SOr(cooperParallel (E(xs, f)), vr)

| E(xs, Or fs) −> //printfn ”EOr.xs=%i, fs=%i” xs.Length fs.Length
fs |> parMap (fun f −> cooperParallel (E(xs, f))) |> Or

| E(xs, f) −> List.fold (fun acc x −> (elimQuantifierParallel x acc)) (nnf
(cooperParallel f)) xs

| A(xs, SAnd(f, vr))
−> SAnd(cooperParallel (A(xs, f)), vr)

| A(xs, And fs) −> //printfn ”AAnd.xs=%i, fs=%i” xs.Length fs.Length
fs |> parMap (fun f −> cooperParallel (A(xs, f))) |> And

| A(xs, f) −> Not (List.fold (fun acc x −> (elimQuantifierParallel x acc))
(nnf (cooperParallel (Not f))) xs)

| _ −> formula

let elimQuantifiers = cooper >> reduce

let elimQuantifiersParallel = cooperParallel >> reduce

//
// Evaluation part
//
let cartesian lss =

let k l ls = [ for x in l do
for xs in ls −> x::xs ]

List.foldBack k lss [[]]

let genRangeArray vr =
vr |> List.map (fun (v, r) −> List.init r (fun i −> (v, i))) |> cartesian |>

List.toArray

// Substitute a list of variables and associated values to a formula
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// Suppose the formula is quantifier−free
let rec evalFormula xts formula =

match formula with
| C(t, ct) −> match subst (t, xts) with

| t’ −> if isConstTerm t’ then
let c = getConst t’
match ct, c with
| EQ, 0 −> TT

| UEQ, x when x <> 0 −> TT

| GT, x when x > 0 −> TT

| _, _ −> FF

else invalidArg ”evalFormula” (string xts)

| D(i, t) −> match subst (t, xts) with
| t’ −> if isConstTerm t’ then

let c = getConst t’
if i %| c then TT else FF

else invalidArg ”evalFormula” (string xts)

| And fs −> if List.exists (fun f −> evalFormula xts f = FF) fs then FF else
TT

| Or fs −> if List.exists (fun f −> evalFormula xts f = TT) fs then TT else
FF

| Not f −> match evalFormula xts f with
| TT −> FF

| FF −> TT

| f’ −> invalidArg ”evalFormula” (string xts)
| TT −> TT

| FF −> FF

| _ −> invalidArg ”evalFormula” (string xts)

/// Partition functions
let partitionEval groundVal rangeArray formula =

let len = Array.length rangeArray

let loopResult = Parallel.For(0, len, fun i (loopState: ParallelLoopState)
−>

if evalFormula rangeArray.[i] formula =
groundVal then

loopState.Stop()
else

()
)

not (loopResult.IsCompleted || loopResult.LowestBreakIteration.HasValue)

// Break the array to balance chunks
let partitionBalanceEval groundVal rangeArray formula =

let len = Array.length rangeArray
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let source = [|0..len−1|]
let partitions = Partitioner.Create(source, true)
let loopResult = Parallel.ForEach(partitions, fun i (loopState:

ParallelLoopState) −>

if evalFormula
rangeArray.[i]
formula =
groundVal then
loopState.Stop()

else
()

)
not (loopResult.IsCompleted || loopResult.LowestBreakIteration.HasValue)

// Sequential
let seqEval groundVal rangeArray formula = rangeArray |> Array.exists(fun r

−> evalFormula r formula = groundVal)

let evalSAnd vr formula =
if vr = [] then formula

else
if seqEval FF (genRangeArray vr) formula then FF else TT

let evalSOr vr formula =
if vr = [] then formula

elif seqEval TT (genRangeArray vr) formula then TT else FF

let eval formula =
let rec evalUtil vr0 formula =

match formula with
| Not f −> f |> evalUtil vr0 |> Not

| And fs −> fs |> List.map (evalUtil vr0) |> And

| Or fs −> fs |> List.map (evalUtil vr0) |> Or

| SAnd(f, vr) −> evalSAnd (vr@vr0) (evalUtil (vr@vr0) f)
| SOr(f, vr) −> evalSOr (vr@vr0) (evalUtil (vr@vr0) f)
| _ −> formula

evalUtil [] formula

// Parallel
let pevalSAnd vr formula =

if vr = [] then formula

elif partitionBalanceEval FF (genRangeArray vr) formula then FF else TT

let pevalSOr vr formula =
if vr = [] then formula

elif partitionBalanceEval TT (genRangeArray vr) formula then TT else FF
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let peval formula =
let rec pevalUtil vr0 formula =

match formula with
| Not f −> f |> pevalUtil vr0 |> Not

| And fs −> fs |> List.map (pevalUtil vr0) |> And

| Or fs −> fs |> List.map (pevalUtil vr0) |> Or

| SAnd(f, vr) −> pevalSAnd (vr@vr0) (pevalUtil (vr@vr0) f)
| SOr(f, vr) −> pevalSOr (vr@vr0) (pevalUtil (vr@vr0) f)
| _ −> formula

pevalUtil [] formula
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B.6 OmegaTest.fs

ı̈≫¿module OmegaTest

open Microsoft.FSharp.Collections
open Utilities

open Term

// Input: a list of conjunctions and a list of disjunction pairs.
// Output: do cartesian products on the input.
let cartesian (cons, diss) =

let rec cartesianUtil = function
| [] −> [cons]
| L::Ls −> cartesianUtil Ls |> List.collect (fun C −> L |> List.map (fun

x −> x::C))
cartesianUtil diss

exception OmegaTestFail

type CoeffTerm = struct
val coeff: int
val term: Term
new (c, t) = {coeff = c; term = t}

end

// Product all pairs of opposite literals
let merge(outs, lowers: CoeffTerm list, uppers: CoeffTerm list) =

let ins = [for l in lowers do
for u in uppers do

if l.coeff = 1 || u.coeff = 1 then
yield ((l.coeff ∗∗ u.term ++ u.coeff ∗∗ l.term) −−

One)
else raise OmegaTestFail]

ins@outs

let project(x, fs) =
let outs = List.filter (fun t −> findCoeff(t, x) = 0) fs

let lowers = [
for t in fs do
let c = findCoeff(t, x)
if c > 0 then yield CoeffTerm(c, t)
]

let uppers = [
for t in fs do
let c = findCoeff(t, x)
if c < 0 then yield CoeffTerm(−c, t)
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]

if lowers = [] || uppers = [] then outs

else
merge(outs, lowers, uppers)

let omegaTest(xs, fs) =
let rec omegaTestUtil(xs, fs) =

match xs with
| [] −> xs, fs
| x::xs’−> try

omegaTestUtil(xs’, project(x, fs))
with

OmegaTestFail −> xs, fs
omegaTestUtil(xs, fs)

let resolve(xs, tll) =
printfn ”Resolving %i Omega Tests” (List.length tll)
List.map (fun tl −> omegaTest(xs, tl)) tll

let resolveParallel(xs, tll) =
printfn ”Resolving %i Omega Tests” (List.length tll)
List.ofSeq (PSeq.map (fun tl −> omegaTest(xs, tl)) tll)
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B.7 OmegaTestArray.fs

ı̈≫¿module OmegaTestArray

open System.Threading.Tasks
open Utilities

open Term

// Input: a list of conjunctions and a list of disjunction pairs.
// Output: do cartesian products on the input.
let cartesian (cons, diss) =

let k l ls = [| for x in l do
for xs in ls −> Array.append [|x|] xs |]

Array.foldBack k diss [|cons|]

exception OmegaTestFail

type CoeffTerm = struct
val coeff: int
val term: Term
new (c, t) = {coeff = c; term = t}

end

let merge(outs, lowers: CoeffTerm [], uppers: CoeffTerm []) =
let ins = [|for l in lowers do

for u in uppers do
if l.coeff = 1 || u.coeff = 1 then

yield ((l.coeff ∗∗ u.term ++ u.coeff ∗∗ l.term) −−
One)

else raise OmegaTestFail|]
Array.append ins outs

let project(x, fs) =
let outs = [|

for t in fs do
let c = findCoeff(t, x)
if c = 0 then yield t

|]

let lowers = [|
for t in fs do
let c = findCoeff(t, x)
if c > 0 then yield CoeffTerm(c, t)
|]

let uppers = [|
for t in fs do
let c = findCoeff(t, x)
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if c < 0 then yield CoeffTerm(−c, t)
|]

if lowers = [||] || uppers = [||] then outs

else
merge(outs, lowers, uppers)

let omegaTest(xs, fs) =
let rec omegaTestUtil(xs, fs) =

match xs with
| [] −> xs, fs
| x::xs’−> try

omegaTestUtil(xs’, project(x, fs))
with

OmegaTestFail −> xs, fs
omegaTestUtil(xs, fs)

let n = 16

let resolvePadding(xs, tll: _ []) =
//printfn ”Resolving %i Omega Tests” (Array.length tll)
let arr = Array.init tll.Length (fun _ −> [], [||])
for i=0 to tll.Length/n−1 do

arr.[n∗i] <− omegaTest(xs, tll.[n∗i])
arr

let resolveParallelPadding(xs, tll: _ []) =
//printfn ”Resolving %i Omega Tests” (Array.length tll)
let arr = Array.init tll.Length (fun _ −> [], [||])
Parallel.For(0, tll.Length/n,

fun i −> arr.[n∗i] <− omegaTest(xs, tll.[n∗i]))|> ignore

arr
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