
Securing Information Flow in
Loosely-Coupled Systems

Linas Žvirblis

Kongens Lyngby 2011

IMM-M.Sc.-2011-41

Technical University of Denmark

Informatics and Mathematical Modelling

Building 321, DK-2800 Kongens Lyngby, Denmark

Phone +45 45253351, Fax +45 45882673

reception@imm.dtu.dk

www.imm.dtu.dk

IMM-M.Sc.-2011-41

Summary

Information-flow control is an important element in computer system security,
and there has been significant work done in the field by Denning, Volpano, and
others. However, most of the work deals with information-flow control inside
a single monolithic application. Wide adoption of the Web service architecture
and related technologies effectively solved the problem of universal standard of
interconnection of independent systems into larger scale system, but largely ig-
nored the problem of information-flow control. This thesis suggests an approach,
which allows for information-flow control techniques of the decentralised label
model to be applied to distributed loosely-coupled systems based on Web ser-
vices. The resulting system design is compatible with existing Web service-based
systems, and allows for integration of components that do not natively support
information-flow control.

ii

Contents

Summary i

1 Introduction 1

2 Challenge 3

2.1 Information-flow control . 3
2.2 Enforcing information-flow control policy 5

3 Background 7

3.1 Information-flow control model 7
3.1.1 Decentralised label model 8
3.1.2 Static analysis . 8
3.1.3 Jif security-type language 9

3.2 Loosely-coupled systems . 11
3.2.1 Definition of a loosely-coupled system 11
3.2.2 Web services . 13
3.2.3 Business Process Execution Language 13

3.3 Related work . 15
3.3.1 SIF framework . 15
3.3.2 Swift framework . 16

4 Case study 17

4.1 Online shop system . 18
4.2 Web service-based implementation 20
4.3 Jif-based implementation . 21
4.4 Data types . 22

4.4.1 Data types used by Company Service 23
4.4.2 Data types used by Postal Service 23
4.4.3 Data types used by client 24

iv CONTENTS

4.4.4 Data types used by Shop Service 24
4.5 Results . 25

5 Design and implementation 27

5.1 Decentralised label model in loosely-coupled systems 27
5.2 Adding information-flow control meta-data 28

5.2.1 Adding meta-data at run-time 28
5.2.2 Adding meta-data at compile-time 32
5.2.3 Adding meta-data in implementation-independent way . . 34

5.3 Information-flow control inside a BPEL process 36
5.4 Mapping between Jif and XML-based languages 39

5.4.1 Mapping between Jif and BPEL 39
5.4.2 Mapping between Jif and XSD 41

5.5 Policy validator . 45
5.6 Implementing the system . 47

6 Evaluation and discussion 49

6.1 Hooking directly into the internal Jif API 49
6.2 Run-time policy validation . 50
6.3 Client-side policy enforcement . 51
6.4 Propagation of the meta-data . 52

7 Conclusions 55

A XML code 57

A.1 Business process . 57
A.1.1 BPEL definition . 57
A.1.2 BPEL extension definition 62

A.2 Definitions of Shop Service . 63
A.2.1 WSDL definitions of Shop Service 63
A.2.2 XSD definitions of Shop Service 64

B Jif code 69

B.1 Business process . 69
B.2 Main class . 72
B.3 Bean object . 74

C Experimental code 77

C.1 Annotation processor . 77

Chapter 1

Introduction

Information-flow control is an important element in computer system security,
and there has been significant work done in the field by Denning [11], Vol-
pano [34], and others. Most of the work deals with information-flow control
inside a single monolithic application. However, nowadays a concept of a single
independent application is fading away in favour of distributed loosely-coupled
systems. In such systems separate components have little to no knowledge about
each other. Such components can be created using different technologies by dif-
ferent vendors, and be under control of separate independent entities. In fact,
this is often the case because systems using services, provided by entities such
as Amazon [36], Facebook [23], Google [24], and others, as an integral part of
the system functionality, are in no way a rarity. This makes the definition of a
system component by itself rather fuzzy.

Wide adoption of the Web service architecture [5] and related technologies
effectively solved the problem of universal standard of interconnection of in-
dependent systems into larger scale systems, but largely ignored the prob-
lem of information-flow control. In real-world old-school monolithic systems
information-flow control is often overlooked and is not really considered a ne-
cessity. Which is true up to a point, because in monolithic systems information
never leaves the boundaries of the system, and is controlled by the same entity.
Proper use of object-oriented programming paradigm also tends to cover most
of information-flow control use-cases by employing encapsulation. Software de-

2 Introduction

velopers are usually not even aware that they are dealing with information-flow
control when they declare fields in classes as being public, private, protected, etc.
And in special cases, specialized information-flow control technologies, such as
Jif (Java and information-flow) [32] can be employed. The problem is that this
does not translate to the Web service architecture.

Technologies such as Java API for XMLWeb Services (JAX-WS) [6] allow for al-
most completely transparent development and integration of Web service-based
systems by providing a bridge between standard programming language con-
structs and Web services. While this makes development of such systems con-
siderably easier, it does mask certain implications of doing so. It is important
to realize that data leaving the system through a Web service does not retain
expected information-flow properties. Even if the receiving part is willing to
maintain these properties, it is by no means a straightforward task, because the
Web service architecture provides no standard means to transfer information-
flow control rules to a client.

This thesis suggests an approach which allows information-flow control tech-
niques to be used in distributed loosely-coupled systems, composed of semi-
independent components. Information-flow control meta-data is exported via
standard Web service interfaces. A secure information-flow control-aware dis-
tributed system built onWeb service architecture is demonstrated, and problems
involved in development are identified. Web services are used as a basis for the
implementation because of clear definition of interfaces for interaction between
system components. It is achieved by integrating secure information-flow con-
trol model in a Web service orchestration language in order to be able to perform
static analysis on information flow.

Claim is made that such an approach is sufficient to ensure secure data flow
inside a Web service-based system without requiring invasive changes to the
Web service architecture, and that this would allow for a fairly transparent
implementation that would allow for interconnection of existing web services,
and provide required security properties with minimal overhead.

Chapter 2

Challenge

2.1 Information-flow control

We will use a very simplified model of an online shop as an example. The Shop
sells products manufactured by the Company and delivers them to customers to
the address of their residence. The system is composed of a Shop Service that
provides an interface for the customer to order desired products, a Company
Service that keeps a database of all customers and their related data, and a
Postal Service that keeps a database of all people, and their addresses.

To produce useful results, the three entities have to cooperate and exchange
data. The client only interacts with the Shop Service, and as far as the client
is aware, that is the only entity in the system it will be exchanging data with.
But that point of view is misleading, because once the data reaches the Shop
Service, it is being exchanged with two more entities, namely the Company
Service and the Postal Service, without the client being aware of this. As the
transaction between the Shop Service and the client may involve sensitive data,
such as credit card data or social security number, it may be undesirable for the
client that this data is exchanged with other entities without its consent. The
question is, how can this information be controlled, and data leaks prevented?

The standard answer would be to employ information-flow control technologies.

4 Challenge

Figure 2.1: World awareness and information flow in the system

The problem is that information-flow can only be enforced in a monolithic sys-
tem where all system components are under control of the same entity. This
does not hold in loosely-coupled systems that may be composed of diverse com-
ponents under control of independent entities. There are several challenges
involved here.

Let us assume that the entities are willing to cooperate in enforcing information-
flow control. Here we run into a problem that separate entities may implement
their system components in different technologies, such as Java and .NET just
to name two of the most popular ones. Some, or even all, of the technologies in
use may not even have any support for information-flow control.

Now let us relax our assumptions, and say that all components run on systems
that do support information-flow control, and actively employ it. Even then we
run into a problem of how to exchange information between system components
under control of different entities? It is very likely that the entities in question
are exchanging information by some means of remote procedure calls or remote
method invocation. It is also very likely that the technology in question does
not provide means to exchange the information-flow meta-data associated with
the data exchanged. This could possibly be hand-coded and exchanged as data,
but may also require invasive changes to the system, which is generally not
desirable.

It quickly becomes evident that such a solution may require too extensive
changes to existing system components to be acceptable. It must also not
be platform-dependant, because that would defeat the purpose of having dis-
tributed loosely-coupled systems. This is only possible if the solution can be
constructed in such a way that would allow for interconnection of information-
flow control-aware and unaware systems in a fairly generic way. Another im-

2.2 Enforcing information-flow control policy 5

portant issue arising from the previous statement is that if the system can be
composed of components not supporting information-flow control, where is an
information-flow policy being enforced?

Here we demonstrate an approach that can be applied to existing system com-
ponents without the need to modify them, or even be aware of information-flow
control being in place. It also supports heterogeneous classification levels within
messages exchanged, allowing for fine-grained classification policies.

2.2 Enforcing information-flow control policy

A key problem in implementing such a system is identifying the point of policy
enforcement, assuming that at least some system components are not aware of
information-flow control. Taking a closer look at the information flow in our ex-
ample system reveals that only the Shop Service is a component communicating,
and aware of all other components in the system. As this is a central component,
through which all information is flowing, it makes for a good starting point for
investigating information-flow control enforcement.

This property gives us two possibilities. First, we assume that the Shop Service
is the only component aware of the information-flow control in the system,
and it is solely up to it to enforce the policy. Second, we assume that system
components are running their own information-flow control implementations and
we want to bridge the implementations by allowing information-flow meta-data
exchange. In this section both approaches are discussed.

If the assumption is that there is only one component in the system that is
aware of information-flow control, it is clear that information-flow meta-data
cannot originate from other components, and must be self-contained within the
enforcing component. The fact that the information-flow meta-data cannot be
coming from outside means that all meta-data must be present beforehand for
validation. Since system components do not implement any information-flow
control, it is not possible to perform information-flow control at run-time inside
them. It would still be possible to perform run-time checks inside the enforcing
component, but because the information-flow meta-data can be considered to
be static, it is much more efficient to perform the checks at compile-time. This
suggests static validation as means to enforce the policy.

Another case is if we assume that the system components are in fact running
their own implementations of information-flow control. In order for them to be
able to exchange the information-flow control meta-data, a format of the meta-

6 Challenge

data and a protocol of meta-data exchange need to be defined. This also implies
that the system components should be running their own implementations of
the same information-flow control model. This is necessary because all system
components have to be able to parse the meta-data in order to perform useful
work.

In theory it is possible that the system components may be using incompatible
information-flow control models, and employing conversion mechanism to ex-
port the meta-data in an appropriate format. This is a very platform-specific
approach, and would likely to be too cumbersome to implement, but it is not
explicitly forbidden. We just assume that any component exporting the meta-
data in a required format is allowed to be part of the system, regardless of how
this meta-data is generated.

An obvious question to ask is how the separate components within a loosely-
coupled system can be trusted to enforce their own information-flow control
policy? And a short answer is that they cannot. It is therefore crucial to prevent
the components from obtaining sensitive information in the first place, or if this
is not possible, just assume that the information can be leaked, and design
the system accordingly. Assuring mutual trust between system components is a
problem of an approach known as design by contract or programming by contract
[15], but here the concept of mutual distrust is employed instead.

This thesis describes a hybrid solution that allows for both information-flow
control-aware and unaware components to be integrated into a loosely-coupled
system. It is based on the decentralised label model [32] and the concept of
mutual distrust, rather than mutual trust.

Chapter 3

Background

In this chapter we discuss existing technologies and means, and how they can be
used to achieve our goals. Namely, we look into what an information-flow control
model is, how it works, and how can it be used. Also we discuss the concept
of a loosely-coupled system, and look at specific implementations. We also
familiarize ourselves with related work in the field of information-flow control-
aware systems.

3.1 Information-flow control model

An information-flow control model is a mathematical model that allows for
tracking and verifying the flow of information within a system. It is similar in
concept to traditional access control models. There are several information-flow
control models available, but many are too limited or too restrictive to be used
in practice [29]. The decentralised label model addresses these limitations, and
aims to be usable in actual implementations [32].

8 Background

3.1.1 Decentralised label model

The decentralized label model, is a label model for control of information flow
in systems with mutual distrust and decentralized authority. The model allows
users to declassify information in a decentralized way, and provides support for
fine-grained data sharing. It supports static program analysis of information
flow, so that programs can be certified to permit only acceptable information
flows, while largely avoiding the overhead of run-time checking [32].

The model is based on a notion of labels that allow individual owners of in-
formation to express their own policies. A reader policy allows the owner of
the policy to specify which principals the owner permits to read a given piece
of information. A reader policy is written o → r, where the principal o is the
owner of the policy, and the principal r is the specified reader [8]. A reader pol-
icy expresses privacy requirements. A writer policy written o ← w allows the
owner to specify which principals may have influenced (“written”) the value of a
given piece of information [8]. A writer policy expresses integrity requirements.
Owners themselves are also principals: identifiers representing users and other
authority entities such as groups or roles [31].

The model allows principals to control the flow of their information, and de-
classify their own data without requiring a mutually-trusted entity to perform
declassification. However, a principal is only allowed to weaken the policies that
it has itself provided, and thus may not endanger the data that it does not
own [32].

These properties allow for the model to be implemented in distributed systems,
where security policies cannot be decided by any central authority. Instead,
individual participants in the system must be able to define and control their
own security policies. The system will then enforce behaviour that is in accor-
dance with all of the security policies that have been defined [32], resulting in a
behaviour that resembles collaboration much more than traditional mandatory
access control models [3].

3.1.2 Static analysis

Static program analysis offers static compile-time techniques for predicting safe
and computable approximations to the set of values or behaviours arising dy-
namically at run-time when executing a program on a computer [33]. Tradi-
tionally, the main application of these techniques is in optimizing compilers in
order to avoid redundant computations, and check validity of the code. More

3.1 Information-flow control model 9

recent applications are validation of software for absence of malicious behaviour,
and information-flow control. There is no single technique that is the program
analysis technique, but rather it is a wide range of different techniques that take
similar approach to solve these problems.

Static analysis is a sister approach to model checking, because they both are
used to achieve the same goals. The difference is that model checking requires
running code, while static analysis just requires to compile it. Model checking
also requires a working model of the environment, and environments are often
messy and hard to specify [12]. Whereas static analysis operates directly on
the code, making it somewhat more versatile approach. However, it is not
uncommon to combine both approaches.

The biggest strength of static analysis is that it does not require any changes
to the checked code (that being either source code, bytecode, or even binaries),
and can be used to validate programs, written in “unsafe” languages such as C
or assembly, for desired properties without imposing any limitation on run-time
environments, thus eliminating run-time check overhead.

The previous property can be employed in order to add transparent information-
flow control to systems that do not provide any information-flow control support.
Minimizing the amount of required modifications to existing systems is a big
advantage in deploying new technologies in the real world.

3.1.3 Jif security-type language

Jif [32] is an implementation of a security-typed language know as JFlow [30]. It
is an extension of Java programming language to support information-flow con-
trol by adding the decentralised label model as an integral part of the language.
It adds static analysis of information flow for improved security assurance. The
primary goal is to prevent confidential and/or untrusted information from being
used improperly [8].

An important difference between Jif and other work on static checking of in-
formation flow is the focus on a usable programming model. Despite a long
history, static information flow analysis has not been widely accepted as a secu-
rity technique. One major reason is that previous models of static flow analysis
were too limited or too restrictive to be used in practice [29].

Jif aims to overcome these limitations allowing real-world applications to be
written to incorporate information-flow control. It extends Java by adding labels
that express restrictions on how information may be used [8] by putting the

10 Background

definition of statically-checked properties of the program inside the program
itself. This may appear to contradict the definition of static analysis by requiring
support inside the language itself, but it is important to realize that information-
flow control policy is something that matters to people, not computers, and thus
cannot be inferred automatically. There is no “correct” policy if the goals are
not defined.

Labels are specified in a similar way to scope and type parameters of a variable,
and resemble Java annotations, which should be reasonably familiar to Java
programmers.

1 private int {Al i ce → Bob} x ;

Listing 3.1: Example of a label in Jif

Method declarations are also labelled in a familiar fashion. In the following
example we can see that method dummyMethod returns a boolean value labelled
Alice ← ⊤, takes two parameters labelled Alice ← ⊤, and begin label is also
Alice← ⊤. This means that principal Alice is the sole owner of the data, as the
writer set consists of a single top principal. There is no reason why the labels
cannot be heterogeneous, and may in fact differ depending on the actual goals
of a global information-flow control policy within the system.

1 public boolean{Alice← ⊤} va l i da t e {Alice← ⊤}(Str ing {Alice← ⊤} par1 ,
int{Alice← ⊤} par2) {

2 return true ;
3 }

Listing 3.2: Example of a method annotated with labels in Jif

If a Jif program type-checks, the compiler translates it into Java code that can
be compiled with a standard Java compiler. The program can then be executed
with a standard Java virtual machine. Although enforcement is mostly done at
compile-time, Jif does also allow for some enforcement to take place at run-time.
Therefore, Jif programs in general require the Jif runtime library [8].

Jif supports various kinds of polymorphism to make it possible to write reusable
code that is not tied to any specific security policy [8]. For example, polymorphic
labels for method parameters are supported. It also treats labels and principals
as first-class objects, allowing for use of dynamic run-time labels and principals.

Jif does not support the Java thread model for concurrent programming in order
to avoid leaking data trough timing channels [8]. Unfortunately this means that
it only supports single-threaded applications. Jif also does not deal with covert
channels, because detecting those is a difficult problem that is yet to be solved.

3.2 Loosely-coupled systems 11

Figure 3.1: Jif compiler [30]

Despite several limitations imposed over traditional Java programming model,
Jif provides a large subset of features found in Java, and is definitely suit-
able for implementing many real-world applications while taking advantage of
information-flow control features of the decentralised label model.

3.2 Loosely-coupled systems

A system is defined as “a whole compounded of several parts or members” [28].
Traditionally many computer software systems were monolithic systems, as in
composed of components that can only produce useful work when composed
together. Such systems are called tightly-coupled systems. However, nowadays
many systems are being designed based on completely different concepts, and
resemble a collection of independent systems more than a single unit. They are
called distributed loosely-coupled systems.

3.2.1 Definition of a loosely-coupled system

An important remark that needs to be made here is that terms loosely-coupled
system and distributed system are synonymous, but do not mean exactly the
same. According to the Web services glossary [21], coupling is the dependency
between interacting systems. This dependency can be decomposed into real a
dependency and an artificial dependency:

1. A real dependency is the set of features or services that a system consumes
from other systems. The real dependency always exists and cannot be
reduced.

12 Background

Tightly-coupled Loosely-coupled
Interaction Synchronous Asynchronous

Messaging style RPC Document
Message paths Hard coded Routed
Technology mix Homogeneous Heterogeneous

Data types Dependent Independent
Syntactic definition By convention Published schema

Bindings Fixed and early Delayed
Semantic adaptation By re-coding Via transformation
Software objective Reuse, efficiency Broad applicability

Consequences Anticipated Unexpected

Table 3.1: Tight versus loose coupling [27]

2. An artificial dependency is the set of factors that a system has to com-
ply with in order to consume the features or services provided by other
systems. Typical artificial dependency factors are language dependency,
platform dependency, API dependency, etc. Artificial dependency always
exists, but it or its cost can be reduced.

Loose coupling describes the configuration in which artificial dependency has
been reduced to the minimum [21]. Whereas Sun Microsystems defines the term
distributed computing (remote object invocation, etc.) to refer to programs that
make calls to other address spaces, possibly on another machine [37] without
discussing the coupling. In his book on Web services and loose-coupling Doug
Kaye [27] provides a brief summary of properties of tightly and loosely coupled
systems. As can be seen in the table 3.1, tightly-coupled and loosely-coupled
systems differ in both technologies and goals.

Here we will say that all loosely-coupled systems are distributed, but distributed
systems can be both loosely-coupled and tightly-coupled. For example, systems
based on Java RMI [40] are distributed tightly-coupled systems, and systems
based on Web services [5] are distributed loosely-coupled systems. This dis-
tinction is very important when talking about information-flow control in dis-
tributed systems, because tight coupling implies much more centralised system
design model, which is much closer to monolithic system design than that of
loosely-coupled systems. It has been proven that information-flow control is pos-
sible in distributed tightly-coupled systems by f.ex. implementing information-
flow control-aware distributed poker game [2], while information-flow control in
loosely-coupled systems remains an ongoing problem.

3.2 Loosely-coupled systems 13

3.2.2 Web services

Web services provide standard means of interoperating between different soft-
ware applications, running on a variety of platforms and/or frameworks [5].
Unlike other RPC or remote-invocation architectures, Web services provide a
universal, platform independent way of exchanging data between loosely-coupled
system components. The official definition of a Web service according to W3C
is as follows:

A Web service is a software system designed to support interopera-
ble machine-to-machine interaction over a network. It has an inter-
face described in a machine-processable format (specifically WSDL).
Other systems interact with the Web service in a manner prescribed
by its description using SOAP messages, typically conveyed using
HTTP with an XML serialization in conjunction with other Web-
related standards [5].

Web service architecture was the first truly implementation-agnostic architec-
ture for message exchange over the network. Because of vendor-agnostic na-
ture, it gained popularity among major IT software infrastructure vendors, and
quickly gained lead in competition with other remote-invocation technologies
that were tied either to a vendor, platform, operating system, or were sim-
ply too complex to implement. Nowadays Web services undoubtedly have the
leading position among similar technologies.

While Web service architecture essentially solved the problem of interconnection
of distributed system components, it does not have any built-in support for
information-flow control. However, extensible nature of underlying XML-based
technologies make it possible to adapt the architecture to accommodate the new
goals without breaking compatibility with existing implementations.

3.2.3 Business Process Execution Language

Business Process Execution Language (BPEL), short for Web Services Business
Process Execution Language (WS-BPEL) is an OASIS standard language for
specifying business process behaviour based on Web services [26]. BPEL is an
orchestration language, not a choreography language. It means that it does not
define a protocol for peer-to-peer interaction, but rather only specifies message
exchange sequence between system components.

14 Background

The basic concepts of BPEL can be applied in one of two ways, abstract or
executable. A BPEL Abstract Process is a partially specified process that is
not intended to be executed and that must be explicitly declared as “abstract”.
Whereas Executable Processes are fully specified and thus can be executed [26].
The difference is that an Abstract Process may hide some of the specific details
of operations, removing information required for execution, but essentially re-
mains human-readable, and can be used as a template for implementation, or
to describe observable behaviour of Executable Processes [26].

BPEL is XML-based language, and while it does not by itself specify any graph-
ical representation of the process, there exists a mapping between BPEL and
Business Process Model and Notation (BPMN), which is a graphical represen-
tation for specifying business processes [39]. BPMN has become the de facto
standard in graphically representing BPEL processes, and is widely used by
many BPEL designer tools and implementation such as OpenESB [13] and their
NetBeans-based BPEL designer, or BPEL Designer for Eclipse [18], and many
others. This provides a way to present BPEL process in human-readable form,
and aids in integration of large and complex systems. It is therefore BPEL is
often used as a glue technology in integration of loosely-coupled systems based
on Web services.

BPEL supports extensibility by allowing namespace-qualified attributes to ap-
pear on any BPEL element and by allowing elements from other namespaces
to appear within BPEL defined elements. This is allowed in the XML Schema
specifications for BPEL [26]. This means that it can be extended to include ad-
ditional features not present in the standard. Extensions are either mandatory
or optional. In the case of mandatory extensions not being supported by a BPEL
implementation, the process definition must be rejected. Optional extensions
not supported by a BPEL implementation must be ignored [26].

This gives us two possibilities in extending BPEL to provide support for information-
flow control. First is to make extension mandatory and to make them an integral
part of the business process. However, this requires modification to the imple-
menting runtime environment, and may be undesirable, as the BPEL document
becomes implementation-specific. Another option is to make extensions optional
and to add information-flow control meta-data transparently. This allows it to
be parsed by supporting tools, but does not interfere with normal execution of
the process on unmodified runtime.

3.3 Related work 15

3.3 Related work

Despite a relative unpopularity of information-flow control-aware systems in
real-world deployments, there exist several frameworks for Web application de-
velopment that support the decentralised label model.

3.3.1 SIF framework

SIF (Servlet Information Flow) is a software framework for building web appli-
cations, using language-based information-flow control to enforce security [9].
SIF is built using the Java Servlet framework, much like Apache Struts [17] or
Spring by SpringSource (a division of VMware) [1]. But SIF applications are
written in Jif language, and the user interface of a web application is presented
as HTML with forms as a way for a user to provide input [9]. SIF provides a
way to include cascading style sheets (CSS), and static JavaScript code in the
output HTML, allowing for rich user interfaces with only small limitations on
how this can be achieved.

SIF is based on the assumption that web applications are insecure, and possibly
buggy, so the information-flow control is enforced on server-side [9]. SIF does
not deal with network attacks such as man-in-the-middle, eavesdropping, and
does not involve cryptography. It also does not provide any security against
denial-of-service attacks.

All principles of programming in Jif also apply in SIF, but it is presented in
a web application-oriented fashion. SIF requires each input field on a page to
have an associated security label to be enforced on the input when submitted [9].
However, SIF does not protect against the user copying sensitive information
from the output web page, and pasting into a non-sensitive input field, which is
not possible in general, so the user should be prevented from seeing information
they are not trusted to see [9].

SIF is a promising technology that has real potential to bring information-flow
control to web applications. However, it aims to solve a different problem, that
does not involve distributed loosely-coupled systems. It is still important as a
proof that Java servet API can be extended to support information-flow control,
because Java Web service implementation is also based on servlets. Therefore
it can be claimed that Web services can also be implemented in an information-
flow control-aware technology.

16 Background

3.3.2 Swift framework

Swift is also a framework for development of web applications based on Jif,
much like SIF, but takes a different approach, which is referred to as secure
by construction by the authors [7]. However, it is a more high-level framework
somewhat comparable to Ruby on Rails [22].

One of the major problems in designing web applications is deciding how much
code, and what functionality is to be implemented on client-side, and what
on server-side. Usually this is an offset between responsiveness and security.
Running more code on the client-side increases responsiveness of the application,
and reduces the load on a server, but may also have security implications if a
client is trusted with too much functionality. On the other hand, verifying every
possible step on the server-side will most likely lead to the application appearing
to be highly unresponsive, or slow as perceived by the user.

Swift abstracts many details that a programmer usually has to deal with in
traditional web application frameworks. It aims to automatically partition ap-
plication code to client-side code and server-side code while providing assurance
that the resulting placement is secure and efficient [7]. It also hides the com-
plexity of underlying HTTP message exchanges from an application developer,
allowing for more focus on the functionality of the application, and more rapid
application development.

Swift applications are written in Jif. Jif code is then compiled to client-side
Java code, and server-side Java code through and intermediate representation
known as WebIL [7]. Google Web Toolkit (GWT) is then used to compile the
client-side Java code to JavaScript that can be run in a browser on the client.

It is slightly incorrect to say that Swift is a web application framework, because
it offers more functionality than that usually associated with web application
frameworks. It offers a complete platform for developing applications where
client-side code and client-side GUI code are treated as integral part of a single
application. It is not really designed to interoperate with other systems, and
thus not designed to be used in loosely-coupled systems. However, making it
self-sustaining and independent on external components does make it attractive
when implementing tightly-coupled applications that do run on the web.

Chapter 4

Case study

The goal of this case study is to investigate if and how existing technologies
can be utilised to create a new type of system. In other words, we want to see
if desired properties of existing information-flow control-aware systems can be
applied to Web service-based systems. Here we take an evolutionary approach
where the same system is re-implemented in different technologies while trying to
to keep them as consistent and close in functionality as possible. It is important
that the implementations do not diverge too much, because otherwise it may not
be possible to conclude that information-flow control can actually be applied to
existing systems without changing their behaviour. If this is in fact the case, it
would seriously limit applicability of the solution, and would make deployment
of such systems difficult in loosely-coupled environments when it is not always

Figure 4.1: Evolutionary approach to the final implementation

18 Case study

possible to modify behaviour of all system components, most likely because not
all of them are under control of the same entity.

The first implementation is done in plain Java with no information-flow control
in place. It is used as a reference when checking consistency of the behaviour
and the results produced by different implementations. Later, the Java imple-
mentation is transformed into two other implementations. It is converted to Jif
code to add information-flow control capabilities, and Web service-based im-
plementation to produce a loosely-coupled system with separated components.
The final goal is to merge these two implementations in order to produce an
information-flow control-aware loosely-coupled system.

4.1 Online shop system

Let us return to the online shop example discussed earlier. It is a pretty trivial
system that only involves several entities, but at the same time it represents
many real-world systems rather well. We will make an assumption that if a
concept can be applied to our small example system, it can also be applied to
a real-world solution. Of course it is true that this assumption cannot always
hold, so any possible limitations are discussed separately.

To summarize the design of the system we say that the Shop sells products
manufactured by the Company and delivers them to customers to the address
of their residence, which is verified with the Post. The system is composed of
a Shop Service that provides an interface for a client to order desired products
in the Shop, a Company Service that keeps a database of all customers of the
Company and their related data, and a Postal Service that allows access to a
database of the Post which contains addresses of all people.

As can be seen in figure 4.2, a client initiates the process by placing an order
for a desired product in the Shop via the Shop Service. We trust the client
to provide his identity as part of the request made. The Shop Service relays
personal information of the client to the Company via the Company Service in
order to verify if the client is actually a customer in the Company. The Shop
Service also relays this information to the Postal Service in order to verify if
the address supplied by the client is valid. If both succeed, and actual order is
placed via the Company Service and a receipt is delivered to the client.

In order to simulate a real-world system, we make an assumption that the
components (or the services) of the system may not have been designed as
integral part of the final system, so they are not using homogeneous data types.

4.1 Online shop system 19

Figure 4.2: Business process of the online shop system

20 Case study

Figure 4.3: Information flow inside the system

However, we make sure that the data types are compatible, so that we could
avoid data conversions in the system. Data conversions can be seen as data
exchange with yet another system component, and does not add any additional
value to the example system.

Actual information flow in the system is described in figure 4.3. The borders
around the services are not “transparent”, meaning that the client is only aware
of the Shop Service, but not of the Company Service or the Postal Service. Data
objects within the borders signify that they “belong” to the system component.
In reality such separation is a bit artificial, because the Shop Service basically
has to be aware of all the data objects, because it communicates with every entity
in the system. Therefore the “origin” of a data object is somewhat irrelevant
concept, it is the origin of the data that matters here.

4.2 Web service-based implementation

Web service-based implementation is a very straightforward port of the plain
Java implementation, because in Java creating a Web service is just a matter of

4.3 Jif-based implementation 21

annotating appropriate class as a Web service, and its methods as Web service
methods. It then auto-generates all of the boilerplate code needed to export the
methods through Web service interfaces, and generates WSDL definitions and
related XSD type definitions.

We do this for several reasons. First of all, auto-generation provides the closest
possible mapping between the Java code and WSDL and XSD definitions. Keep-
ing implementations consistent is important for reasons stated earlier. Secondly,
we convert a tightly-coupled monolithic system into a loosely-coupled system,
which is otherwise identical in its functionality and in the results it produces.

It has been shown that information-flow control can be added to existing mono-
lithic tightly-coupled systems, so having an equivalent implementation of a
loosely-coupled system is important, because results produced by both systems
have to be comparable in order to make any conclusions about the success or
failure to add information-flow control to an existing loosely-coupled system.

4.3 Jif-based implementation

Because Jif is basically a superset of Java language, any Java application should
be possible to port to Jif. This is not a completely true statement, because Jif
does have some limitations, such as being single-threaded, and does not have
nearly as rich of a class library as Java. We ignore such limitations for now,
and claim that it does not affect our example implementation, because Jif is the
closest thing Java code can be mapped to. In fact, we demonstrate that addition
of information-flow control labels is the largest change to Java code required to
convert it to proper Jif code, and that it can be done in a quite straightforward
way.

To get an initial system running in Jif, we simply label everything with the
same label. In other words, we only have one principal, and that principal is
owner of all the data in the system. Of course, this is equivalent to not having
any information-flow control at all, and serves simply as a way to familiarize
oneself with the specialities of Jif. For example, Jif handles exceptions slightly
differently than Java. In Jif, run-time exceptions such as NullPointerException
and IndexOutOfBoundsException must be caught and handled [29], because
run-time exceptions can possibly leak information and can be used as covert
channels. Other than the addition of labels, and other minor differences, Jif
code is basically Java, as can be seen in the code example 4.1.

The biggest challenge is actually getting the information-flow control policy

22 Case study

1 public class CompanyService {
2 public boolean val idateCustomer (Customer customer) {
3 return true ;
4 }
5 }
6
7 public class CompanyService {
8 public boolean{Company<−∗} val idateCustomer {Company<−∗}(

Customer {Company<−∗} customer) {
9 return true ;

10 }
11 }

Listing 4.1: Plain Java code (1-5) and equivalent Jif code (7-11) with labels

right. This is because there is no “right” policy for the system, as it highly
depends on the set goal. As discussed earlier, the simplest form of policy is
labelling all data as owned by a single principal, which by itself is a perfectly
valid policy, but achieves absolutely nothing.

In our example we want to protect personal data of a client by defining a policy
that only allows data, that is absolutely necessary to perform useful work, to
be disclosed to particular services. We achieve this by defining two principals
in the system: Post and Company, each used for labelling data originating
from the Postal Service and the Company Service respectively. There is no
principal for either the Shop Service or the client, because data flowing trough
the Shop Service and reaching the client has to have integrity of both Post and
Company. In other words, the process needs to be started with permissions of
both Post and Company principals. It is not possible to define principals that
have permissions of other principals, therefore the concept of Shop or Client
principals is redundant, even though it may seem not obvious at the first look.

The information that needs to be exposed to both the Company Service and the
Postal Service, it assigned a label of {Company ← ⊤⊓Post← ⊤}. The informa-
tion that is only to be exposed to one of them, is labelled either {Company ← ⊤}
or {Post ← ⊤}. Data types and labels are discussed in detail in the following
section.

4.4 Data types

This section lists definitions of the data types in the system, and their labels
according to the decentralised label model. The definitions are purely fictional

4.4 Data types 23

and may not reflect real world very closely. They are used only for demonstration
purposes.

The data formats are not homogeneous, as in every entity uses its own classes,
but the contained information is intentionally compatible, so it can be mapped
between classes without running into a format conversion overhead. Definitions
are provided in a syntax that resembles that of Jif.

4.4.1 Data types used by Company Service

Customer data type is used by the Company to store the data of its customers.
It consists of a unique personal ID, a first name, and a last name.

• String {Company ← ⊤} personal ID;

• String {Company ← ⊤} first name;

• String {Company ← ⊤} last name;

Product data type is used by the Company to store the data of the products it
sells. It consists of a product name and a price.

• String {Company ← ⊤} name;

• Integer {Company ← ⊤} price;

4.4.2 Data types used by Postal Service

Person is a data type used to uniquely identify any particular person. It consists
of a unique personal ID, a first name, and a last name.

• String {Post← ⊤} personal ID;

• String {Post← ⊤} first name;

• String {Post← ⊤} last name;

Address is a data type defining a postal address. It consists of a city of residence,
a street name, and a number.

24 Case study

• String {Post← ⊤} city;

• String {Post← ⊤} street;

• Integer {Post← ⊤} street number;

4.4.3 Data types used by client

Client contains data identifying a particular client in the system. It is how the
client identifies himself in the system. In a real system, this may contain some
sort of proof of identity like a cryptographic key, but for the sake of simplicity,
it just contains a unique personal ID, a first name, a last name, a city, a street,
and a street number.

• String {Company ← ⊤⊓ Post← ⊤} personal ID;

• String {Company ← ⊤⊓ Post← ⊤} first name;

• String {Company ← ⊤⊓ Post← ⊤} last name;

• String {Post← ⊤} city;

• String {Post← ⊤} street;

• Integer {Post← ⊤} street number;

Order is how the client places an order in the Shop. It consists of a product
name, and a price, that the client is willing to pay.

• String {Company ← ⊤} product;

• Integer {Company ← ⊤} price;

4.4.4 Data types used by Shop Service

Receipt defines an object returned to the client upon successful completion of
an order. It consists of a unique personal ID, a first name, a last name, a city
of residence, a street name, a number, a product name, and a price. In other
words, it is an aggregations of all previously described types. It does not matter
if the data is labelled as owned by Company or Post, because the client runs
with the integrity of both, and can thus access it.

4.5 Results 25

• String {Company ← ⊤} personal ID;

• String {Company ← ⊤} first name;

• String {Company ← ⊤} last name;

• String {Post← ⊤} city;

• String {Post← ⊤} street;

• Integer {Post← ⊤} street number;

• String {Company ← ⊤} product;

• Integer {Company ← ⊤} price;

4.5 Results

During this case study an example online shop system was designed and imple-
mented in three different technologies: plain Java without any information-flow
control, Jif with information-flow control, and Java-based Web services without
information flow control. It was shown that information-flow control can be ap-
plied to existing solutions, and that monolithic tightly-coupled systems can be
converted to distributed loosely-coupled systems in a straightforward manner,
while retaining identical functionality.

It is important to have a reference implementation when designing a new type of
system to be able to verify the correctness of a new design and implementation in
a similar fashion as it is done with unit testing. It is a well known fact that unit
testing is not a definite answer for verifying correctness of an implementation,
but it is a time-tested well understood approach that proves to be “good enough”
in most real-world applications. So we claim that taking a unit testing-like
approach to designing a new type of system is as reliable as unit testing itself.

In the next chapter we discuss the design and implementation of the hybrid
solution of a distributed loosely-coupled information-flow control-aware system,
and how reference implementation can be used to check validity of the design
and implementation.

26 Case study

Chapter 5

Design and implementation

In this chapter we discuss the design and implementation of an information-
flow control-aware distributed loosely-coupled system. We discuss how the de-
centralised label model can be applied to Web service-based systems, and the
challenges involved.

5.1 Decentralised label model in loosely-coupled

systems

Jif is an extension of Java language to support the decentralised label model.
But unlike many theoretical proposals, it actually provides a usable implemen-
tation of a complete software development kit, consisting of the language itself,
a compiler, and a runtime environment. This means that real-world applica-
tions can be written in Jif to take advantage of information-flow control based
on the decentralised label model. Moreover, due to similarity to Java, existing
programs often can be ported to Jif, as it was demonstrated in the case study.

In this section information-flow control meta-data usually means Jif labels, but
the more general, although longer, term is preferred, because it is not always

28 Design and implementation

the case. In a more general sense, it may also include additional data structures,
and language constructs such as declassification or endorsement operations.

We treat the Jif language and the example system implemented in Jif as ref-
erences for all proposals and solutions discussed in this chapter. This is often
expressed as direct mapping between Jif and the implementing technology and
language, and the other way round. Because an implementation of the decen-
tralised label model in loosely-coupled systems does not yet exist, being able to
perform such a mapping between Jif and other technologies is important when
verifying the solution and comparing it to Jif itself.

5.2 Adding information-flow control meta-data

To be able to perform information-flow control in a system, the data has to carry
information-flow control meta-data. This section discusses different approaches
considered for adding meta-data to the data, their advantages, disadvantages,
and the final solution.

5.2.1 Adding meta-data at run-time

Web services do not provide a standard way to exchange meta-data associated
with messages, but there is no limitation as to what kind of data can be ex-
changed. This means that bean classes can be extended to include whatever
required meta-data within the exchanged information itself. Doing this by hand
is a laborious task because it would require redesigning and reimplementing
the way program handles data. However, the impact of the changes may be
marginalised by employing automatic code generation. While this is may not
significantly reduce the amount of work by absolute value, it does shift the focus
to one specific entity – the code generator – rather than scattering the changes
all over the code. This allows for a fairly generic solution that would allow to
extend and modify the application at a later point without spending a consid-
erable amount of time implementing meta-data exchange in new components to
be consistent with the rest of the application. This section describes how this
could be achieved in a Java-based implementation. The meta-data is assumed
to be in Jif label format.

Since Java version 1.5, it provides support for annotations. Annotation types are
specialized interfaces used to annotate declarations such as packages, variables,
methods, classes, etc. Such annotations are not permitted to affect the semantics

5.2 Adding information-flow control meta-data 29

of programs in the Java programming language in any way. However, they
provide useful input to various tools [20], and can be seen as code pre-processor
directives.

One of the most commonly used annotation in Java is the @Override annotation.
It informs the compiler that the method in question is meant to override a
method declared in a superclass, or in an interface that the class is implementing.
The annotation is generally not required, but it helps preventing errors when
an overriding method fails to correctly override a method in a superclass.

1 @Override
2 public boolean overr id ingMethod () {
3 return true ;
4 }

Listing 5.1: Example of an anotation in Java

A more interesting example is the @WebService annotation, which is used to
expose a plain Java class as a Web service, and the @WebMethod annotation to
expose a particular method as a method of the Web service. As can be seen in
the example, there is nothing unusual about the code except for the annotations.
While in fact all of the boilerplate code required to expose it as a Web service
is auto-generated.

1 @WebService ()
2 public class HelloWorld {
3
4 @WebMethod ()
5 public Str ing hel loWor ld () {
6 return ”Hel lo , World ! ” ;
7 }
8 }

Listing 5.2: Example of a Web service in Java

The annotations are processed by the Annotation Processing Tool, which is
available as a command-line tool since Java 1.5 and as part of standard Java
distribution since 1.6. It provides hooks for plugging into the processing process
and also allows implementing custom annotations. We employ this property to
customize the way Web services are generated in Java to add information-flow
meta-data.

The goal can be achieved using a relatively simple trick. To be able to customize
the code before it is processed by the standard Java Web service annotation
processor, we create clones of @WebService and @WebMethod annotations and
add additional parameters, in this case – information-flow control labels.

30 Design and implementation

Figure 5.1: Plugging into Java Web service annotation processing

1 @Retention (value = Retent i onPo l i cy .RUNTIME)
2 @Target (value = {ElementType .TYPE})
3 public @inter f ace Label ledWebService {
4 // Or ig ina l f i e l d s from @WebService annotat ion .
5 . . .
6 // Addi t i ona l f i e l d f o r informat ion−f l ow con t ro l l a b e l .
7 public Str ing label () default ”{}” ;
8 }
9

10 @Retention (value = Retent i onPo l i cy .RUNTIME)
11 @Target (value = {ElementType .METHOD})
12 public @inter f ace LabelledWebMethod {
13 // Or ig ina l f i e l d s from @WebMethod annotat ion .
14 . . .
15 // Addi t i ona l f i e l d f o r informat ion−f l ow con t ro l l a b e l .
16 public Str ing label () default ”{}” ;
17 }

Listing 5.3: Defining custom annotations in Java

This allows for a simple substitution of standard annotations with custom ones,
like in the following example. Please note that the example is just a proof of
concept and is not supposed to follow any information-control model in partic-
ular.

In this way, the class will not be picked up by the standard processor, but rather
our own custom processor that will in turn generate modified code with proper
Web service annotations, that in turn will be processed into a Web service.

The idea is that an additional parameter is added to the Web service methods,
which is used to pass the information-flow control meta-data. The original code
is not overwritten, but is reused. The generated code acts as a wrapper of the
original code, which checks the labels, and if the checks succeed, it call the
original method.

This is a fairly powerful approach that allows for flexible solutions with minimal
changes to the Java classes themselves. In fact, the initial conversion of the

5.2 Adding information-flow control meta-data 31

1 @LabelledWebService (label = ”{Hel l o <− ∗}”)
2 public class HelloWorld {
3
4 @LabelledWebMethod(label = ”{Hel l o <− ∗}”)
5 public Str ing hel loWor ld () {
6 return ”Hel lo , World ! ” ;
7 }
8 }

Listing 5.4: Replacing standard annotations with custom ones

1 @WebService ()
2 public class Label l edHel loWor ld {
3
4 @WebMethod ()
5 public Str ing l abe l l edHe l l oWor ld (Acces sCredent i a l s ac) {
6
7 // Check i f l a b e l s s a t i s f y the p o l i c y .
8 i f (ac . compatibleWith (”{Hel l o <− ∗}”)) {
9 // I f yes , c a l l t he o r i g i n a l method .

10 return HelloWorld . hel loWor ld () ;
11 } else {
12 // I f not , throw except ion .
13 throw new Labe l l i ngExcept i on () ;
14 }
15 }
16 }

Listing 5.5: Generated code with standard annotations

code is just a search-and-replace operation followed by manually adding the
labels. The latter cannot be automated anyway, because it depends on particular
policy that we want to enforce. Moreover, the code generator can be updated
without modifying the rest of the static (non-generated) code. Unfortunately
this approach also has strong disadvantages.

First of all, it changes the signatures (and possibly names) of classes and meth-
ods. This breaks the client, and may require extensive re-writes for system to
continue functioning. It essentially puts the burden of implementation on the
client. This is bad because there is likely to be more than one client, and each
one of them has to implement a compatible information-flow control system.
This is a laborious task and involves a lot of duplicated effort on each client.

Secondly, it relies on run-time checks. It means that it involves run-time over-
head, which is likely not be a big problem taking in mind the computing power
available nowadays. However it also means that the checks are being performed
during information exchange, so failure in policy checks may lead to information

32 Design and implementation

leaks. The leaks can be hard to debug and fix, because the code that performs
label validation is auto-generated, and the code generator may propagate bugs
to entire system.

5.2.2 Adding meta-data at compile-time

The original goal is to allow the interconnection of system components that
support information-flow control and the ones that do not. We also want to do
it in a platform-agnostic way to take advantage of interoperability offered by
the Web service architecture. Previously described approach goes against these
principles, and therefore it is of limited use in this case.

Since programmatic run-time check-based approach proves to be inadequate,
the question is if the meta-data can be added statically, and preferably avoiding
changes to the code? And the answer is yes, it can be included in WSDL defini-
tion, or more specifically the XML schema inside WSDL. W3C recommendation
for XML schema [14] [35] [4] specifies a way to add a documentation element
to elements defined in XSD, which consists of human-readable and machine-
readable sections. The appinfo element can be used to provide information for
tools, style-sheets and other applications [14]. We use this to add information-
flow meta-data to type and method definitions.

But before adding labels, we need to investigate how Web-service interfaces are
exported via WSDL and XSD definitions. Web service architecture is platform-
independent, so every programming technology, that supports Web services,
must provide means to map program code to WSDL and XSD constructs. Let
us take a look at how it is done in Java.

As can be seen in table 5.1, the mapping is not straightforward. For example,
not all Java classes and constructs have mappings to WSDL and some Java
classes and constructs have multiple mappings to WSDL [25]. However, all
Java types are mapped to XSD elements in one way or another. Moreover,
methods aremessages, which are also elements defined in XSD. This means that
both methods and types can be labelled inside XSD definitions in a consistent
manner.

The only requirement for the appinfo element is that its contents are valid
XML [35]. Unfortunately Jif labels can contain characters that may interfere
with XML validation. Therefore we define a simple mapping between Jif labels
and their XML equivalents as shown in table 5.2.

Hooking into generation of WSDL and XSD definitions has several strong advan-

5.2 Adding information-flow control meta-data 33

Java construct WSDL and XML construct
Service Endpoint Interface wsdl:portType
Method wsdl:operation
Parameters wsdl:input, wsdl:message, wsdl:part
Return wsdl:output, wsdl:message, wsdl:part
Throws wsdl:fault, wsdl:message, wsdl:part
Primitive types xsd and soapenc simple types
Java beans xsd:complexType
Java bean properties Nested xsd:elements of xsd:complexType
Arrays JAX-RPC defined array xsd:complexType
User defined exceptions xsd:complexType

Table 5.1: Mapping from Java to WSDL and XML constructs [25]

Symbol Jif syntax XML equivalent
⊤ * top
⊥ bottom
p, q p,q p,q
o→ r o:r or o->r o reader r
o← w o<-r o writer w
o→ r ⊔ o1 → r1 o->r;o1->r1 o reader r join o1 reader r1
o← w ⊔ o1 ← w1 o<-w;o1<-w1 o writer w join o1 writer w1
o→ r ⊓ o1 → r1 o->r meet o1->r1 o reader r meet o1 reader r1
o← w ⊓ o1 ← w1 o<-w meet o1<-w1 o writer w meet o1 writer w1
{c;d} {c;d} <label>c;d</label>

authority (c,d) <authority>c;d</authority>

Table 5.2: Mapping Jif labels [8] to XML equivalents

34 Design and implementation

1 <xs : e l ement name=”elementName” type=”tns:typeName ”>
2 <xs : annotat i on>
3 <x s : app i n f o>
4 < l a b e l> . . .</ l a b e l>
5 </ x s : app i n f o>
6 </ xs : annotat i on>
7 </ xs : e l ement>

Listing 5.6: Any element can be annotated with appinfo

tages. It allows for a fairly transparent implementation that would not require
changes to the client in order to continue functioning. It also exports all the
information-flow control meta-data at compile-time, so it does not introduce
run-time overhead, and also makes all the meta-data available for static check-
ing before any information exchange is actually performed.

One shortcoming is that while Java runtime does provide hooks for plugging
into WSDL generation, it does not cover all aspects of it. For example, it is
not possible to hook into generation of XSD. Meaning that it is not possible to
add meta-data to type definitions. Working around this may require changes
to internal classes of Java runtime, which would make the solution completely
not portable, and would likely break existing applications. It may also rely
on obscure solutions like parsing SOAP message at run-time in order to add
the required meta-data, which may introduce significant run-time bottle-necks.
Both of these hacks are obscure enough for them to be unacceptable in many
real-world applications.

5.2.3 Adding meta-data in implementation-independent

way

So far we have discussed ways of adding the information-flow control meta-
data to Java-based systems, but the original goal is to enable this functionality
independently of the platform of the implementation. We also want to be able
to integrate components that do not support information-flow control. This
is not possible if the solution relies on platform-specific features, such as code
generation in Java.

This does not contradict the approach, based on adding the meta-data to WSDL
and XSD definitions, discussed earlier, but it has to be extended to cover both
cases: when a system component supports information-flow control and want
to export the meta-data via Web services, and when it does not provide such
support.

5.2 Adding information-flow control meta-data 35

The first case is covered by the compile-time, and partially run-time code gen-
eration, approach discussed earlier. It may prove challenging in that it is likely
to require some work-arounds, but assuming that the component already imple-
ments information-flow control, exporting this information in a specific format
is definitely a reasonably doable task.

The second case is more problematic because if the component in question does
not support information-flow control, it cannot supply the required meta-data.
Implementing such support in the component itself is likely to require major
rewrites or even reimplementation in a different technology to be possible. This
is not desirable in absolute majority of cases.

However, the fact that the meta-data can be added to standard WSDL and XSD
definitions, lets us exploit one interesting feature of the Web service architecture:
the WSDL and XSD definitions used by the consuming entity do not have to be
the same definitions that are exported by a service. Rather, they just have to be
compatible, meaning that they map to the same methods and data types. This
property is actually utilised in pretty much every Web service-based system,
where WSDL definitions are cached on the consuming side, instead of reading
them from the service every time a remote method call is performed.

What this means to us, is that the information-flow control meta-data can be
added on the consuming side, because annotating the type definitions with the
appinfo element cannot invalidate the WSDL or XSD definitions [35]. As can be
seen in figure 5.2, adding the meta-data on the consuming component or using
the meta-data exported by the web service itself produces equivalent results. In
both cases the meta data is made available for checking and is cached locally at
the consuming component.

This Web service-consuming component could be the client itself, but it is rarely
the case that a client would communicate directly with all the components in the
system. It is more often that the client communicates with a single intermediate
component that in turn executes a complex business process to deliver a result.
We assume that all information is in fact performed though such an intermediate
component, and designate it as the policy-enforcing component.

This intermediate component in our example is the Shop Service, and we know
that the previous assumption does hold in the example system. In that case,
the Shop Service has to be the only component in the system that does support
information-flow control. This is because it can enforce the policy without
requiring cooperation from the other system components.

Let us look at a simple example. In our example system the Company Service
is not intended to receive the city of residence of the customer. However, this

36 Design and implementation

Figure 5.2: Adding meta-data to WSDL and XSD definitions

information could be passed on in a field meant for the name of the customer,
because both are string data, and in traditional systems that would succeed.
However, in an information-flow control-aware system, this would conflict with
the policy and would fail. Since the assignment is performed at the policy-
enforcing component, and can be verified statically before the actual exchange
takes place, the data leak would be detected and the process would not be
allowed to run. The receiver of the data (the Company Service) would not
be aware of any of this, because it would never receive any data that is not
policy-compliant.

5.3 Information-flow control inside a BPEL pro-

cess

Web Service Business Process Execution Language (WS-BPEL or BPEL) is an
XML-based Web service orchestration language. XML-based languages are not
widely widespread among application developers as their main implementation
language, but BPEL does not even try to be one. It has a very specific goal,
which is to allow defining business processes in Web service-based systems, and
does it well. Therefore is often used as a technology for integrating Web service-
based components into a system.

Being an XML-based language is an advantage is our case, because this allows
for direct use of the information-flow control meta-data exported via WSDL
interfaces, and for a consistent representation of the meta-data across BPEL,
WSDL, and XSD definitions. It also means that a policy validator can extract
all the required meta-data just by parsing the linked XML files.

5.3 Information-flow control inside a BPEL process 37

BPEL does not natively support any sort of information-flow control, so the
required constructs are also missing in the language, but because BPEL is an
extensible language the missing constructs can be added [26]. Any element that
can be defined in XSD can be used as an extension element in BPEL.

The extension elements can be defined to be treated by the BPEL parser in
two ways: either require support in the BPEL runtime, or simply ignore them.
Requiring run-time support is needed when extension elements are an integral
part of the process, and make the process non-executable on standard runtime.
If they are merely used as meta-data for an external tool, then requiring run-
time support is not necessary.

BPEL also provides a way to extend some of the standard constructs with
additional elements. For example the assign operation defines an extensionAs-
signOperation element that can contain any custom-defined extension element.
We use this to allow for declassification and endorsement of the labels during
assign operations. See the example on how a custom element can be defined in
an external XSD file, and used inside an assign operation. Elements for endorse
and declassify are equivalent in definition, but differ in meaning.

1 <xsd:complexType name=” endorse ”>
2 <xsd : s equence>
3 <xsd : e l ement name=” fromLabel” type=” x s d : s t r i n g ”></ xsd : e l ement>
4 <xsd : e l ement name=” toLabel ” type=” t n s : s t r i n g ”></ xsd : e l ement>
5 </ xsd : s equence>
6 </xsd:complexType>
7
8 <xsd : e l ement name=” endorse ” type=” tn s : endo r s e ”></ xsd : e l ement>

Listing 5.7: Defining a custom endorse element

1 <a s s i gn name=”AssingWithEndorse ”>
2 <copy>
3 <from var i ab l e=”var1”/>
4 <to va r i ab l e=”var2”/>
5 </copy>
6 <extens i onAss i gnOperat ion>
7 <b4 j : endo r s e>
8 <b4j : f r omLabe l>C wr i t e r top</ b4 j : f r omLabe l>
9 <b4 j : t oLabe l>C wr i t e r top meet P wr i t e r top</ b4 j : t oLabe l>

10 </ b4 j : endo r s e>
11 </ extens i onAss i gnOperat ion>
12 </ a s s i gn>

Listing 5.8: Endorsement as part of assignment

A limitation of this approach is that in BPEL a single assign operation can
have multiple copy operations. This cannot be done here, because it would

38 Design and implementation

require a way to track which copy element corresponds to which endorse or
declassify element. This would considerably complicate the task, and would
not be consistent with Jif. Instead, we say that if an assign operation involves
endorsement or declassification, it can only operate on a single pair of variables.
If this is not the case, the policy validator has to treat this situation as an
error. In practise this should not be a problem, because assign operations with
multiple copy elements can be split into separate assign operations, without any
difference in functionality, except that such assignments can only be performed
in sequence, not in parallel. If the system has to perform a large enough amount
of declassifications or endorsements, for it to be a problem, it may indicate a
larger problem in the design of a system or the information-flow control policy.

Another more missing piece is assigning labels to variables. There is no explicitly
defined way to extend a variable definition, but a variable element can contain
any XML data, most commonly used for the documentation element. Because
documentation is a rarely used in variable definitions, we replace it with our
label extension element.

1 <xsd : e l ement name=” l ab e l ” type=” x s d : s t r i n g ”></ xsd : e l ement>

Listing 5.9: Defining a label extension element

1 <va r i ab l e name=”var1” xmlns : tns=” . . . ” messageType=” tns :varType”>
2 <b 4 j : l a b e l>Company wr i t e r top</ b 4 j : l a b e l>
3 </ va r i ab l e>

Listing 5.10: Assigning a label to a variable in BPEL

The described approach has one strong advantage – it does not interfere with
the execution of the process, and does not change its meaning. It can still be
executed on standard a runtime, and produces the same results. The alternative
of replacing elements, rather then extending them, would give a stronger control
over the process and would allow for simpler syntax validation, but it would
inevitably break the process on a standard runtime. Requiring a custom runtime
is not a portable approach, and would likely impair the adoption of the solution
quite a bit.

BPEL exports the client-facing interfaces via WSDL definitions as Web services,
so the same approach of assigning information-flow control labels to WSDL and
XSD definitions, as discussed earlier, can also be used here, thus completing the
tool-kit with labelled methods and data types.

5.4 Mapping between Jif and XML-based languages 39

5.4 Mapping between Jif and XML-based lan-

guages

It is important to have a reference when designing a new type of a system, but
it only makes sense if they are comparable. To be able to compare XML-based
and Jif-based implementations we need to define how equivalent functionality
is mapped between them.

5.4.1 Mapping between Jif and BPEL

Mapping between different programming languages is a fairly difficult task that
is best illustrated by an example of a compiler. A compiler translates high-level
program code to assembly commands. A good compiler does not change the
meaning of the program, but it is a fact that different compilers, or even the same
compiler with different options, produce different set of assembly commands
given the same input.

Mapping between two high-level programming languages is a very similar, but
possibly even more challenging task. It deals with the same problems of map-
ping between different ways to express the same thing, but must also take into
account that not all high-level programming languages support the same subset
of expressions. This means that what is a single statement in one programming
language may have to be mapped to a sequence of statements in another. The
opposite is even more difficult, because a converter has to locate these possible
sequences among all possible combinations of statements.

However, we need to be able to map between Jif and BPEL, because that is
how the information-flow control concepts of Jif can be applied to BPEL. As
can be seen in table 5.3, not all BPEL constructs can be mapped directly to Jif,
and not all Jif constructs can be mapped to BPEL. We solve the problem of
mapping information-flow control-specific constructs by adding custom exten-
sion elements to BPEL, but that does not affect the problem in any significant
way.

One of the biggest limitations of Jif is that it is single-threaded, whereas BPEL
is heavily multi-threaded. Therefore it is not possible to map the parallel-
acting BPEL constructs directly. One possible solution is to perform the actions
sequentially in Jif, but that is likely to be very complex, especially when dealing
with timeouts, and message listeners.

40 Design and implementation

BPEL contruct Jif construct

Actions
Empty Empty statement
Invoke Call method
Receive Method being called
Reply Return statement
Assign Assignments to variables
Validate N/A

Control
If If statement
Pick If statement or case statement
While While statement
For Each For statement
Repeat Until Do while statement
Wait N/A or Thread sleep in Java
Sequence N/A
Scope N/A or Declassification
Flow N/A or Threads in Java

Faults
Exit System exit
Throw Throw statement
Rethrow Throw statement
Compensate N/A or Complex exception handling

Information-flow control
N/A or Extension Declassify
N/A or Extension Endorse
N/A or Extension Labels

Table 5.3: Mapping BPEL to Jif

5.4 Mapping between Jif and XML-based languages 41

Another problem is that types are handled differently in BPEL (and Web ser-
vices in general) than they are in Jif and Java. For example what is defined
as two separate types in Jif or Java, can be mapped to a single message type
definition in WSDL. This is a general problem encountered by all platforms that
provide support for Web service architecture. In fact, there are solutions such as
Java Architecture for XML Binding (JAXB) that do exactly that. It is largely
a solved problem, and adding Jif support to existing XML binding frameworks
is definitely a doable task. Unfortunately, these XML binding frameworks do
nothing about mapping between different programming languages.

As a rule, each implementation of BPEL runtime provides their own BPEL
parser and compiler. For example, Apache ODE (Orchestration Director En-
gine) [16] project provides BOM (BPEL Object Model) parser and compiler;
Petals Link provides EasiestDemo [38] – an open source BPEL to Java genera-
tor; Eclipse hosts B2J (BPEL to Java) [19] sub-project in very early stages of
development; and probably many others. However, all these project deal with
an inherently different problem. Their goal is to allow execution of BPEL pro-
cesses, either by compiling them to executables directly, or producing executable
Java code, which is far from just being a map of language constructs. Adapting
any of these solution is no easier than writing one form scratch, which would
involve a tremendous amounts of effort.

The problem is further complicated by the fact that BPEL allows for writing
expressions not only in XPath, but basically any scripting language including,
but not limited to JavaScript. Mapping these expression requires parsing or
interpreting them, which can be particularly problematic if they return data
based on runtime criteria.

We claim that this problem is far too complex to be solved in a generic way.
Instead, we limit the constructs we want to map to a very specific subset that
is enough to demonstrate the concept. We discard any constructs that cannot
be mapped, and also the ones that are not used in the example system. This
leaves invoke, receive, reply, assign, if, declassify, endorse, and labels. BPEL
construct sequence is present in every BPEL process, but because we omit all
parallel-acting constructs, the sequence element has no meaning beyond being
a generic container for other elements.

5.4.2 Mapping between Jif and XSD

Earlier we discussed how Jif labels can be represented in XML-based language,
and how these labels can be included in XSD. This section explains how exactly
the labels are mapped. Let us take a look at a simple Web service class as it

42 Design and implementation

would be defined in Java. We have a single method that takes a parameter, and
returns a boolean value. All these components are assigned an information-flow
control label.

1 public class CompanyService {
2 public boolean{ r e turnLabe l} val idateCustomer {beginLabel }(Customer

{parameterLabel } customer) : { endLabel} {
3 return true ;
4 }
5 }

Listing 5.11: A simple Web service class with Jif labels

What we refer to as returnLabel is a label that will be assigned to an object
returned by the method. The beginLabel is an upper bound on the program-
counter label of the caller, which is associated with very statement in the code,
and a lower bound on the side effects of the method [8]. The endLabel specifies
the program-counter label at the point of termination of the method, and is an
upper bound on the information that may be learned by observing whether the
method terminates normally [8]. And parameterLabel is a label assigned to the
method parameter. Most commonly all of these labels are the same, but that
is not a requirement. The requirement is that they are consistent in a way that
they do not make the information flow impossible.

1 public class Customer {
2
3 private Str ing {dataLabel } per sona l Id ;
4
5 public Str ing {dataLabel } getPer sona l Id () {
6 return per sona l Id ;
7 }
8
9 public void s e tPe r s ona l Id{dataLabel }(Str ing {dataLabel } per sona l Id

) {
10 this . per sona l Id = per sona l Id ;
11 }
12 }

Listing 5.12: A simple bean class with Jif labels

The same applies to bean classes that will be used in information exchanges.
We assign the same dataLabel to fields, getters, and setters, because they are
just syntactic sugar. In theory it is possible to have different labels, because
getters and setters are just regular methods that may perform some additional
operations. These, however, would not map to Web services, because Web ser-
vices do not have a notion of a getter or setter, so any additional code contained
within them would be lost.

5.4 Mapping between Jif and XML-based languages 43

Now let us take a look at how the code maps to WSDL and XSD definitions.
WSDL definition is the same as it would appear in Java-based systems, because
all information-flow control meta-data is contained within the imported XSD
type definitions. It is possible to have the meta-data inside XSD, because in
Web services everything is a message and every message has a type definition.
For example validateCustomer is a method name and does not have a type by
itself, whereas in Web services it is a message, just like everything else. We
use this property to consistently assign labels to everything within XSD. The
equivalent labels are marked the same, so it is pretty self-explanatory. Please
refer to listing 5.14 for an example.

1 <?xml version=” 1.0 ” encoding=”UTF−8”?>
2 <d e f i n i t i o n s name=”CompanyService ” . . .>
3 <types> . . .</ types>
4 <message name=”val idateCustomer ”>
5 <part name=”parameters ”
6 element=” tns :va l i dateCustomer ”/>
7 </message>
8 <message name=”val idateCustomerResponse”>
9 <part name=”parameters ”

10 element=” tns :val idateCustomerResponse ”/>
11 </message>
12 <portType name=”Company”>
13 <operat i on name=”val idateCustomer ”>
14 <input message=” tns :va l i dateCustomer ”/>
15 <output message=” tns :val idateCustomerResponse ”/>
16 </ operat i on>
17 </portType>
18 <binding name=”CompanyPortBinding” type=”tns:Company”>
19 <soap :b ind ing transpor t = . . . s t y l e=”document”/>
20 <operat i on name=”val idateCustomer ”> . . .</ operat i on>
21 </binding>
22 <s e r v i c e name=”CompanyService ”> . . .</ s e r v i c e>
23 </ d e f i n i t i o n s>

Listing 5.13: A simple Web service defined in WSDL

Element validateCustomerResponse has no equivalent in Jif or Java, because
it is not the same as the returned object. The returned object is referenced
by validateCustomerResponse type, and there we can see that it is actually a
simple boolean type. The end-label is assigned to the response element simply
as a convenience, because there is no other place where the end-label could be
assigned in a consistent manner, and there is also no other label that would
make sense to be assigned to the response element.

44 Design and implementation

1 <?xml version=” 1.0 ” encoding=”UTF−8”?>
2 <xs:schema . . .>
3 <xs : e l ement name=”val idateCustomer ”
4 type=” tns :va l i dateCustomer ”>
5 <xs : annotat i on>
6 <x s : app i n f o>
7 < l a b e l>beginLabel</ l a b e l>
8 </ x s : app i n f o>
9 </ xs : annotat i on>

10 </ xs : e l ement>
11 <xs : e l ement name=”val idateCustomerResponse”
12 type=” tns :val idateCustomerResponse ”>
13 <xs : annotat i on>
14 <x s : app i n f o>
15 < l a b e l>endLabel</ l a b e l>
16 </ x s : app i n f o>
17 </ xs : annotat i on>
18 </ xs : e l ement>
19 <xs:complexType name=”val idateCustomer ”>
20 <xs : s equence>
21 <xs : e l ement name=”customer” type=” tns : cus tomer ”>
22 <xs : annotat i on>
23 <x s : app i n f o>
24 < l a b e l>parameterLabel</ l a b e l>
25 </ x s : app i n f o>
26 </ xs : annotat i on>
27 </ xs : e l ement>
28 </ xs : s equence>
29 </xs:complexType>
30 <xs:complexType name=”val idateCustomerResponse”>
31 <xs : s equence>
32 <xs : e l ement name=” return ” type=” xs :boo l ean ”>
33 <xs : annotat i on>
34 <x s : app i n f o>
35 < l a b e l>r e turnLabe l</ l a b e l>
36 </ x s : app i n f o>
37 </ xs : annotat i on>
38 </ xs : e l ement>
39 </ xs : s equence>
40 </xs:complexType>
41 <xs:complexType name=”customer”>
42 <xs : s equence>
43 <xs : e l ement name=” per sona l Id ” type=” x s : s t r i n g ”>
44 <xs : annotat i on>
45 <x s : app i n f o>
46 < l a b e l>dataLabel</ l a b e l>
47 </ x s : app i n f o>
48 </ xs : annotat i on>
49 </ xs : e l ement>
50 </ xs : s equence>
51 </xs:complexType>
52 </xs:schema>

Listing 5.14: XSD type definitions with Jif labels

5.5 Policy validator 45

5.5 Policy validator

In the previous sections we discussed ways to add the information-flow con-
trol meta-data to WSDL and XSD definitions, how to integrate system com-
ponents by employing BPEL, how to add information-flow policy control-aware
constructs to BPEL language, and how to map between BPEL and Jif. The
only thing missing is the policy validator itself. This section describes how
information-flow control is actually performed, and architecture of the valida-
tor.

The basic idea is that the validator should be able to statically verify the
information-flow control policy before a system is deployed, effectively prevent-
ing information leaks by preventing systems with policy violations from running
at all. This approach also avoids requiring support in the runtime environment,
what greatly increases portability of the solution, and is likely to make it more
acceptable in real-world applications.

Implementing a validator for the decentralised label model is definitely a doable
task, proven by the fact that such an implementation already exists in Jif, but
it is hardly an easy task. Therefore it would be nice if it would be possible to
simply plug an existing policy-validating tool into the validator, and let it do
the job. And looking at the only implementation of the decentralised model is
a good starting point. The problem is that the validator for the decentralised
label model, as found in Jif compiler, expects Jif code as input. So to be able to
utilize it, we must first find a way to express the information-flow control-related
in Jif language. For this we need a Jif code generator.

The idea behind such a Jif code generator is that it should be able to extract
relevant information-flow control-related data from a BPEL process, and express
this data in Jif language. For reasons discussed earlier, it is not an easy task
to accurately map between different programming technologies, so a slightly
different approach has to be taken here. Instead we treat the generated code as
a model of the system, and the code generator as a modelling tool. And we also
need to accept the limitations of a modelling approach, because the accuracy of
the results is highly dependent on how well the model represents reality.

An obvious issue with this approach is that not all required code can be auto-
generated. The most obvious part being the client code – the initiator of the
process. However, the client-facing interfaces are exported via Web services
by the BPEL runtime, so a large portion of the client code can actually be
generated, as it is the case with many Web service-base systems. The missing
part – actual logic – needs to be treated as if it was a unit test. That is, calling
every method of the service with mock objects, instead of the actual data. This

46 Design and implementation

Figure 5.3: Architecture of information-flow policy validator

could be automated for primitive and simple types such as integer or string by
sending random values. In other cases null values could be sent. However, this
gets more complicated with more complicated data structures, so we just assume
the code is manually written, as it is the case with unit testing nowadays.

The same approach is used for modelling the called services, such as the Com-
pany Service and the Postal Service in our example. The difference is that the
server side code also needs to be generated in addition to client code. Yet again,
it can be modelled without actually knowing what manipulations are made on
the data inside the component. As long as pre-conditions (begin label) and
post-conditions (end label) are satisfied, mock objects can be used, because the
policy is content-agnostic.

Even though we are talking about generating Jif code, it does not imply that
the client does in fact support information-flow control. It could very well be
implemented in plain Java and contain no support for the decentralised label
model. The process would still run, because of the previously described approach
that allows connecting system components that do not natively support any
information-flow control. This also includes the client.

All client-related data types and method definitions of the service are labelled
in accordance to the scheme described earlier, and serve the same purpose as if
they were originating form the client itself. This approach does not allow the
client to set its own information-flow control policy, but since it is available to
the client before engaging in actual data exchange, it can be verified, and if it
does not meet the policy set by the client, avoid performing the data exchange.

During the validation stage, the model of the system, in a form of Jif code,

5.6 Implementing the system 47

is compiled by Jif compiler, which includes verification of the information flow
within the system. We claim that if the model of the system passes the vali-
dation, so should the system itself. This claim is extremely difficult to prove,
because only one counter-example is needed to disprove it. Any mismatch be-
tween the model and the actual system may result in information leaks, or other
policy violations. Probability of this happening can be reduced by improving
quality of the code generator, and reducing the need to perform manual modi-
fications to the generated code.

5.6 Implementing the system

In theory any Java applications could be converted to Jif application, but there
are some challenges. Understanding the way information flows trough the ap-
plication is an important first step that is hard to make. It introduces new
concepts to object-oriented programming that may seem counter-intuitive, and
makes one rethink his or her programming habits.

One such concept is the program-counter label – a label associated with every
statement of the code. It takes time to get accustomed with the effects of it,
because it is an “invisible” label – it is not assigned by a developer, but is always
there.

1 boolean{P<−∗} var1 = fa l se ;
2 boolean{Q<−∗} var2 = fa l se ;
3
4 i f (var1) {
5 var2 = true ;
6 }

Listing 5.15: This code is invalid in Jif

Let us take a look at an example. If we ignore the labels, it is a perfectly valid
Java code. But it is not valid in Jif, because of how the program-counter works.
When the execution reaches the if statement, the program-counter label for
the entire block becomes that of the var1 variable. This makes the assignment
to the var1 variable impossible, because the labels of var1 and var2 are not
compatible. This gets more complicated with more nested blocks.

Another difference is that input and output streams are also affected by the
program-counter. For example the equivalent of Java System.out output stream
cannot be referenced directly, but needs to be obtained form a Runtime class,
and is only writeable by a special caller principal, which corresponds to a current

48 Design and implementation

user running the application.

Luckily Jif provides means to explicitly declassify information via declassify
and endorse operations. However, a high number of declassifications within a
system may indicate that the system is not really compatible with the idea of
information-flow control. Porting such an application to Jif may require big
changes in its architecture, meaning that the more complex the system is, the
less likely it is to be ported to Jif because of exponentially increasing amount
of work required.

The Jif implementation of the example system was not a straightforward port
from Java, but rather a circular process. In the first design the main information
flow was from the leaf services towards the client. This version of the system
proved to be largely incompatible with Jif due to numerous declassifications
required to run the application, and was abandoned in favour of a simpler design,
which changed the direction of information flows within the system, making data
flow from the client towards the leaf services.

The new design greatly reduced the amount of declassifications up to a point that
conflicting operations had to be introduced intentionally just to demonstrate
the concept. A properly designed Jif application differs form an equivalent Java
application quite minimally, in a sense that explicitly setting the labels and
performing declassifications becomes redundant, and can be omitted in many
cases.

Applying information-flow control principles in Web service-based systems is
by any means not a straightforward task, and especially so if compatibility
with existing systems is to be maintained. The task consists of several related
problems: adding information-flow control meta-data, exchanging it among the
system components, and verifying the information-flow control policy. Several
different approaches were tried for adding the meta-data, and it was shown that
it can be done in a fairly universal way without relying on complex run-time
solutions, and retaining compatibility with existing Web service-based systems.

Verifying the information-flow is a more complicated problem. Systems support-
ing information-flow control, such as Jif, are often based on static analysis of the
code to verify that the actual flow matches the one defined by the policy. This
is not possible in loosely-coupled system, so an alternative approach needs to
be found. The proposed approach involves producing a model of a system, and
verifying the model, instead of the system itself. This is a viable approach, but
testing its effectiveness would require implementing a more complete tool-kit,
and performing extensive testing. Neither of the two are small tasks.

Chapter 6

Evaluation and discussion

In this chapter we discuss the process and the results of this thesis with focus
on challenges encountered, and limitations of the solution. We suggest several
alternative approaches, and set guidelines for future work.

6.1 Hooking directly into the internal Jif API

The current approach involves a code generation step. In reality it is more
useful for demonstrating the concept than anything else. The generated code
is human-readable, and is also a valid Jif application that can be compiled and
executed, allowing a developer to verify its correctness. However, it adds little
to no value to automatic information-flow validation.

The idea behind the code generator is that it converts the information-flow con-
trol meta-data to a format, that is accepted by our validator – the Jif compiler.
But the compiler also converts the code into its internal representation prior to
performing any useful work. By hooking up directly into Jif compiler API [8]
we could completely omit the code generation step, and call validator methods
directly.

By reducing the number of unnecessary intermediate representations we can

50 Evaluation and discussion

improve reliability, because generating a human-readable code is error-prone, as
there is no type-checking – all output is just text. Just putting a semicolon in a
wrong place, for example because some data that was assumed to be there was
actually null, would render the code invalid. This is much more reliable when
dealing with object representation of the code tokens, because it eliminates
simple mistakes such as putting textual data, where integer is required, and
similar. This would allow for detection of mistakes earlier.

Code generation also has a disadvantage that output of the generator needs to be
fed to the validator by means of pipes, sockets, or whatever other inter-process
communication technology, which unavoidably adds a layer of complexity and
another point of failure.

We must also remember that such inter-process communication is by itself prone
to information leaks, unless it is done with proper information-flow control-aware
technologies. It makes it hard to claim that the system is secure in regard to
information flow if the subsystem that performs the validation is itself not secure.
It is therefore excluding any error-prone unnecessary steps from the system is a
good idea.

6.2 Run-time policy validation

In our approach we do not require run-time support for information-flow control
in any of the system components. And this is a very optimistic approach,
because some policy violations can only be detected at run-time. For example
NullPointerException or IndexOutOfBoundsException occurring in the system
can leak information via covert channels. These have to be caught and handled
in Jif, so such leaks are prevented. But if the actual run-time does not perform
such checks, these leaks cannot be prevented.

The only way to avoid this problem is actually implementing information-flow
control in Web service-based systems. Here SIF, a web application framework
based on Jif, shows a lot of potential. Since the implementation of Web services
in Java and SIF are largely built on servlets, in theory it is possible to implement
a Web service framework in a similar manner to that of SIF.

Such framework would inevitably face a problem of interoperability with existing
implementations. Not being able to communicate with other Web service im-
plementations would greatly reduce the possibility of the solution being widely
adopted, and would make it only usable for very specific tasks.

6.3 Client-side policy enforcement 51

Moreover, this approach does not involve BPEL, so it does not allow taking
advantage of XML-based technologies to full potential. In reality it is not a
problem of functionality, because all that can be done in BPEL can also be
done in a traditional programming language such as Java. However, we do lose
the consistency of information-flow control meta-data definitions, and we lose
the ability to visualise complex systems, like it is possible with BPEL to BPMN
mapping. This is especially useful when dealing with information-flow control,
because a developer always has to have information flow in mind, and a visual
reference can greatly increase productivity, and reduce possibility of mistakes.

Another reason why BPEL is sometimes preferred as an integration technology
in large loosely-coupled systems is that doing system integration in a program-
ming language such as Java makes it tempting to add additional logic, such as
format conversion, to the integrating component which complicates the archi-
tecture of the solution, and makes it difficult to update the system. Whereas
with BPEL it may be just a matter of reconnecting the lines in an editor, if
talking very generally.

It is important to also be able to use BPEL in information-flow control-aware
loosely-coupled Web service-based system, because it is complex enterprise sys-
tems that would benefit the most from information-flow control, and it is the
same complex enterprise systems that are also very likely to be taking advantage
of BPEL. Unfortunately, adding this functionality to BPEL runtime may have
a disadvantage of reduced portability of BPEL code, and is not a small task.

6.3 Client-side policy enforcement

When talking about information-flow validation, we designated a specific com-
ponent for this purpose. In our example system it is the component that the
client communicates directly with. The client has to trust this component to
actually enforce the information-flow control policy.

There are different methods of establishing trust, such as digital signatures or
certificates. However, none of them can actually ensure that the implementation
is actually correct, so the client has absolutely no reason to trust this particular
component any more than another. In reality the client can only trust itself.

In ideal case it is the client itself that should be able to verify the information
flow. However, this is not a straightforward task, because the client would essen-
tially need to have the source code (or compiled code) of the system component
to be able to verify its functionality. This is most often not the case in Web

52 Evaluation and discussion

service-based systems.

Requiring the source code of all system components is definitely not an option.
From a functionality point of view it is a valid approach. Client would be able
to verify the components, and establish trust. But this is only going to work
where all applications are open-source. The reality is that many vendors would
find it unacceptable to distribute the source code of their applications because
of legal, political, and business considerations.

Requiring the compiled code is a bit more realistic, because it is difficult enough
to reverse-engineer a compiled binary that the vendors would be willing to pro-
vide it to the client. And compiled code does not really prevent the client from
verifying it by means of static analysis. However, this also only works in a
perfect world. It makes no sense to think of a system component as a single
compiled binary. In reality they are likely to be complex compilations of bina-
ries, configuration files, bytecode files, etc. Moreover, not all technologies even
have a concept of compiled code.

What is needed here is a way to propagate all information-flow meta-data to
the client along with a proof that the received meta-data matches the actual
behaviour of the component. In our case propagating meta-data is just a matter
of allowing the client to download all labelled WSDL and XSD definitions from
all system components. But providing a proof of validity is a complex crypto-
graphic task that is likely to involve some sort of code signing technique and
may require development of a new cryptographic protocol.

6.4 Propagation of the meta-data

Previously discussed meta-data propagation problem is actually more important
than it may appear at the first glance. In our example system we have a chain of
client, validation/integration service, and leaf services. The central component
is able to enforce the information-flow control policy in the system because it
is in a crossroad between all information flows. But in reality the leaf services
may be not leaf at all. They may be exchanging information with any number
of entities, and those in turn can be doing the same.

In this case our designated validator component is no longer a central compo-
nent, and can only influence the data flowing through it. It is completely un-
aware of other components in the system, that it does not communicate with.
Here we run into the same problem as with meta-data propagation to the client,
but on larger scale. Therefore it can be claimed that solving one of them is

6.4 Propagation of the meta-data 53

Figure 6.1: Complex system with long chain of components

equivalent to solving both of them.

One possible approach here is to pass on the meta-data from leaf components
via intermediate ones while adding their meta-data to the set, repeating the
procedure as it travels through all the intermediate nodes. This would also
require adding verifiable identity information to the meta-data. Integrity of
such a solution would need to be verifiable by cryptographic means, which is
commonly addressed problem in internet protocols.

Another option is to aggregate all the meta-data directly at the validator compo-
nent. Meaning that the validator has to be aware of all the system components,
even those it does not communicate directly, and obtain the meta-data directly
from every one of them. Technologies such as UDDI (Universal Description Dis-
covery and Integration) [10] could be utilised in discovery of the components,
even though UDDI in particular has not been widely adopted and has since been
abandoned by it designers.

Either option is viable and may be preferred in certain situations. But it is clear
that the issue needs to be resolved for the approach to be considered complete,
and become acceptable in real-world applications. It is an important part of the
system design, and cannot be considered implementation detail. This is one of
the most important issues identified, as it may benefit not only our approach,
but in a more general sense could be applied to any similar system, where
integrity and trust are essential.

54 Evaluation and discussion

Chapter 7

Conclusions

This thesis aims to tackle a large problem of applying information-flow con-
trol techniques to distributed loosely-coupled Web service-based systems. The
problem is actually a complex combination of more or less closely related prob-
lems, that need to be addressed individually before the general problem can be
resolved. These can broken into the following:

• Adding information-flow control meta-data to Web service-based systems.
It was show that it can be done in a fairly universal manner while retaining
compatibility with existing implementations of Web services. Some plat-
forms may allow to do this easier than others, but it can be considered to
be implementation detail, and left to platform-specific implementation.

• Exchanging information-flow control meta-data. We have shown that mak-
ing the meta-data available to other system components is not a complex
task, and can be achieved with existing technologies. Verifying that the
meta-data actually corresponds to actual behaviour of the application is a
much more complex problem that involves cryptographic means, such as
digital signatures or similar. No universal solution was proposed.

• Validating information-flow control policy. This is a complex problem con-
sisting of identifying the point of policy enforcement, and actually enforc-
ing it. We have shown that the most sensible point of policy enforcement

56 Conclusions

is at the point where all information flows trough. Unfortunately it is
not always possible to identify such a point, because even though all sys-
tem components are known, they themselves may be composed of other
components, including external ones. It is also desirable that the policy
enforcement could be possible at the client-side, because it is usually the
client that is concerned about privacy and integrity of its data. We have
proposed an approach where a model of a system is verified instead of the
actual system. This is a viable approach, but testing its effectiveness would
require implementing a more complete tool-kit, and performing extensive
testing. Neither of the two are small tasks.

• Run-time policy validation. It became evident that static compile-time
policy validation approach is too limiting in some cases, and run-time val-
idation needs to be implemented to overcome these limitations. However,
this requires major changes to nearly all run-time components of such a
system, and may greatly reduce portability of the solution by making it
platform-specific. It is also a major task in sense of effort required to
implement it.

Even though the thesis did not resolve all of the problems, identifying them is
a first step towards an actual implementation of a distributed loosely-coupled
information-flow control-aware system. There are some principle problems, like
protocols for information-flow control meta-data exchange, that need to be re-
solved. But often it is more of a problem of providing a usable implementation
rather than defining what needs to be implemented.

In conclusion, information-flow control-aware systems such as Jif, SIF, and Swift
provide good confidence that an implementation of an information-flow control-
aware distributed loosely-coupled system is definitely doable, and provide a base
for more complex and usable systems, that hopefully will become the norm in
the future.

Appendix A

XML code

This appendix contains the source code of the example system as it is imple-
mented in BPEL.WSDL and XSD definitions are also included, because they are
integral part of a BPEL implementation. Files contained here are the versions
with information-flow control extensions.

WSDL and XSD definitions of only the Shop Service (and not Company service
and Postal Service), because they all are defined following the same principals,
and are equivalent in every way.

A.1 Business process

A.1.1 BPEL definition

This is the business process definition in BPEL with information-flow control
extensions. Variables are assigned empty labels for demonstration purposes
only. Endorsement is performed as part of assign operation.

1 <?xml version=” 1.0 ” encoding=”UTF−8”?>
2 <pr oc e s s
3 name=”ShopBpelModule”

58 XML code

4 targetNamespace=” ht tp : // en t e r p r i s e . netbeans . org / bpel /
ShopBpelModule/shopBpelModule ”

5 xmlns : tns=” ht tp : // en t e r p r i s e . netbeans . org / bpel /ShopBpelModule/
shopBpelModule ”

6 xmlns :xs=” ht tp : //www.w3 . org /2001/XMLSchema”
7 xmlns:xsd=” ht tp : //www.w3 . org /2001/XMLSchema”
8 xmlns :xs i=” ht tp : //www.w3 . org /2001/XMLSchema−i n s t ance ”
9 xmlns=” ht tp : // docs . oas i s−open . org /wsbpel /2.0/ p r oc e s s / executab l e

”
10 xmlns : sxt=” ht tp : //www. sun . com/wsbpel /2.0/ p r oc e s s / executab l e /

SUNExtension /Trace”
11 xmlns : sxed=” ht tp : //www. sun . com/wsbpel /2.0/ p r oc e s s / executab l e /

SUNExtension /Editor ”
12 xmlns : sxeh=” ht tp : //www. sun . com/wsbpel /2.0/ p r oc e s s / executab l e /

SUNExtension /ErrorHandl ing ”
13 xmlns : sxed2=” ht tp : //www. sun . com/wsbpel /2.0/ p r oc e s s / executab l e /

SUNExtension /Editor2 ”
14 xmlns :b4j=” ht tp : // b p e l 4 j i f . bpel . s094758 . dtu . dk/”
15 xs i : s chemaLocat i on=” ht tp : // b p e l 4 j i f . bpel . s094758 . dtu . dk/

BPEL4Jif . xsd”>
16 <ex t en s i on s>
17 <extens i on namespace=” ht tp : // b p e l 4 j i f . bpel . s094758 . dtu . dk/”

mustUnderstand=”no”/>
18 </ ex t en s i on s>
19 <import namespace=” ht tp : // shop s e r v i c e . shop . s094758 . dtu . dk/”

l o c a t i o n=”ShopService . wsdl ” importType=” ht tp : // schemas .
xmlsoap . org /wsdl /”/>

20 <import namespace=” ht tp : // p o s t a l s e r v i c e . po s ta l . s094758 . dtu . dk/”
l o c a t i o n=” Pos ta l S e r v i c e . wsdl ” importType=” ht tp : // schemas .

xmlsoap . org /wsdl /”/>
21 <import namespace=” ht tp : // companyservice . company . s094758 . dtu . dk

/” l o c a t i o n=”CompanyService . wsdl ” importType=” ht tp : //
schemas . xmlsoap . org /wsdl /”/>

22 <par tnerL inks>
23 <partnerLink name=”PostalPartnerLink ” xmlns : tns=” ht tp : //

p o s t a l s e r v i c e . po s ta l . s094758 . dtu . dk/” partnerLinkType=”
tn s : P o s t a l S e r v i c e ” partnerRole=”PostalRole ”/>

24 <partnerLink name=”CompanyPartnerLink” xmlns : tns=” ht tp : //
companyservice . company . s094758 . dtu . dk/” partnerLinkType
=” tns:CompanyService ” partnerRole=”CompanyRole”/>

25 <partnerLink name=”ShopPartnerLink” xmlns : tns=” ht tp : //
shop s e r v i c e . shop . s094758 . dtu . dk/” partnerLinkType=”
tns :ShopServ i c e ” myRole=”ShopRole ”/>

26 </ par tnerL inks>
27 <va r i a b l e s>
28 <va r i ab l e name=”didBuyProduct” xmlns : tns=” ht tp : //

companyservice . company . s094758 . dtu . dk/” messageType=”
tns:buyProductResponse ”>

29 <b 4 j : l a b e l></ b 4 j : l a b e l>
30 </ va r i ab l e>
31 <va r i ab l e name=”Product ” xmlns : tns=” ht tp : // companyservice .

company . s094758 . dtu . dk/” messageType=” tns :buyProduct”>
32 <b 4 j : l a b e l></ b 4 j : l a b e l>
33 </ va r i ab l e>

A.1 Business process 59

34 <va r i ab l e name=” i sVa l idAddres s ” xmlns : tns=” ht tp : //
p o s t a l s e r v i c e . po s ta l . s094758 . dtu . dk/” messageType=”
tns :va l i dateAddres sResponse ”>

35 <b 4 j : l a b e l></ b 4 j : l a b e l>
36 </ va r i ab l e>
37 <va r i ab l e name=”AddressAndPerson ” xmlns : tns=” ht tp : //

p o s t a l s e r v i c e . po s ta l . s094758 . dtu . dk/” messageType=”
tn s : va l i da t eAddr e s s ”>

38 <b 4 j : l a b e l></ b 4 j : l a b e l>
39 </ va r i ab l e>
40 <va r i ab l e name=” isVal idCustomer” xmlns : tns=” ht tp : //

companyservice . company . s094758 . dtu . dk/” messageType=”
tns :val idateCustomerResponse ”>

41 <b 4 j : l a b e l></ b 4 j : l a b e l>
42 </ va r i ab l e>
43 <va r i ab l e name=”Customer ” xmlns : tns=” ht tp : // companyservice .

company . s094758 . dtu . dk/” messageType=”
tns :va l i dateCustomer ”>

44 <b 4 j : l a b e l></ b 4 j : l a b e l>
45 </ va r i ab l e>
46 <va r i ab l e name=”Receipt ” xmlns : tns=” ht tp : // shop s e r v i c e . shop

. s094758 . dtu . dk/” messageType=” tns :orderProductResponse
”>

47 <b 4 j : l a b e l></ b 4 j : l a b e l>
48 </ va r i ab l e>
49 <va r i ab l e name=”ClientAndOrder ” xmlns : tns=” ht tp : //

shop s e r v i c e . shop . s094758 . dtu . dk/” messageType=”
tns : o rderProduct ”>

50 <b 4 j : l a b e l></ b 4 j : l a b e l>
51 </ va r i ab l e>
52 <va r i ab l e name=” isVal idCustomer2” xmlns : tns=” ht tp : //

en t e r p r i s e . netbeans . org / bpel /ShopBpelModule/
shopBpelModule ” type=” xsd :boo l ean ”>

53 <b 4 j : l a b e l></ b 4 j : l a b e l>
54 </ va r i ab l e>
55 <va r i ab l e name=” i sVa l idAddres s2” xmlns : tns=” ht tp : //

en t e r p r i s e . netbeans . org / bpel /ShopBpelModule/
shopBpelModule ” type=” xsd :boo l ean ”>

56 <b 4 j : l a b e l></ b 4 j : l a b e l>
57 </ va r i ab l e>
58 </ v a r i a b l e s>
59 <sequence>
60 <r e c e i v e name=”ReceiveProductOrder ” c r ea t e In s tance=”yes ”

partnerLink=”ShopPartnerLink” operat i on=” orderProduct”
xmlns : tns=” ht tp : // shop s e r v i c e . shop . s094758 . dtu . dk/”
portType=” tns :Shop ” va r i ab l e=”ClientAndOrder ”/>

61 <a s s i gn name=”AssignClientToCustomer”>
62 <copy>
63 <from>$ClientAndOrder . parameters / c l i e n t / f i r s tName</

from>

64 <to>$Customer . parameters / customer/ f i r s tName</ to>
65 </copy>
66 <copy>
67 <from>$ClientAndOrder . parameters / c l i e n t / lastName</

from>

60 XML code

68 <to>$Customer . parameters / customer/ lastName</ to>
69 </copy>
70 <copy>
71 <from>$ClientAndOrder . parameters / c l i e n t / per sona l Id<

/ from>

72 <to>$Customer . parameters / customer/ per sona l Id</ to>
73 </copy>
74 </ a s s i gn>
75 <invoke name=”ValidateCustomer ” partnerLink=”

CompanyPartnerLink” operat i on=” val idateCustomer ”
xmlns : tns=” ht tp : // companyservice . company . s094758 . dtu . dk
/” portType=”tns:Company” inputVar i ab l e=”Customer ”
outputVar iable=” isVal idCustomer”/>

76 <a s s i gn name=”AssignClientToAddressAndPerson”>
77 <copy>
78 <from>$ClientAndOrder . parameters / c l i e n t / f i r s tName</

from>

79 <to>$AddressAndPerson . parameters / person/ f i r s tName</
to>

80 </copy>
81 <copy>
82 <from>$ClientAndOrder . parameters / c l i e n t / lastName</

from>

83 <to>$AddressAndPerson . parameters / person/ lastName</
to>

84 </copy>
85 <copy>
86 <from>$ClientAndOrder . parameters / c l i e n t / per sona l Id<

/ from>

87 <to>$AddressAndPerson . parameters / person/ per sona l Id<
/ to>

88 </copy>
89 <copy>
90 <from>$ClientAndOrder . parameters / c l i e n t / s t r e e t</

from>

91 <to>$AddressAndPerson . parameters / addres s/ s t r e e t</ to
>

92 </copy>
93 <copy>
94 <from>$ClientAndOrder . parameters / c l i e n t /

streetNumber</ from>

95 <to>$AddressAndPerson . parameters / addres s/
streetNumber</ to>

96 </copy>
97 <copy>
98 <from>$ClientAndOrder . parameters / c l i e n t / c i t y</ from>

99 <to>$AddressAndPerson . parameters / addres s/ c i t y</ to>
100 </copy>
101 </ a s s i gn>
102 <invoke name=”Val idateAddress ” partnerLink=”

PostalPartnerLink ” operat i on=” va l idateAddres s ”
xmlns : tns=” ht tp : // p o s t a l s e r v i c e . po s ta l . s094758 . dtu . dk/”
portType=” tn s : P o s t a l ” inputVar i ab l e=”AddressAndPerson ”
outputVar iable=” i sVa l idAddres s”/>

103 <a s s i gn name=”AssignOrderToProduct ”>

A.1 Business process 61

104 <copy>
105 <from>$ClientAndOrder . parameters / order / p r i c e</ from>

106 <to>$Product . parameters / product / p r i c e</ to>
107 </copy>
108 <copy>
109 <from>$ClientAndOrder . parameters / order /product</

from>

110 <to>$Product . parameters / product /name</ to>
111 </copy>
112 </ a s s i gn>
113 <a s s i gn name=”EndorseIsVal idAddress ”>
114 <copy>
115 <from>$ i sVa l idAddres s . parameters / r eturn</ from>

116 <to va r i ab l e=” i sVa l idAddres s2”/>
117 </copy>
118 <extens i onAss i gnOperat ion>
119 <b4 j : endo r s e>
120 <b4j : f r omLabe l>Company wr i t e r top</

b4 j : f r omLabe l>
121 <b4 j : t oLabe l>Company wr i t e r top meet Post

wr i t e r top</ b4 j : t oLabe l>
122 </ b4 j : endo r s e>
123 </ extens i onAss i gnOperat i on>
124 </ a s s i gn>
125 <a s s i gn name=”EndorseIsVal idCustomer ”>
126 <copy>
127 <from>$ i sVal idCustomer . parameters / r eturn</ from>

128 <to va r i ab l e=” isVal idCustomer2”/>
129 </copy>
130 <extens i onAss i gnOperat ion>
131 <b4 j : endo r s e>
132 <b4j : f r omLabe l>Company wr i t e r top</

b4 j : f r omLabe l>
133 <b4 j : t oLabe l>Company wr i t e r top meet Post

wr i t e r top</ b4 j : t oLabe l>
134 </ b4 j : endo r s e>
135 </ extens i onAss i gnOperat i on>
136 </ a s s i gn>
137 < i f name=”IfVal idAddressAndCustomer”>
138 <cond i t i on>$ i sVal idCustomer2 and $ i sVa l idAddres s2</

cond i t i on>
139 <invoke name=”BuyProduct ” partnerLink=”

CompanyPartnerLink” operat i on=”buyProduct ”
xmlns : tns=” ht tp : // companyservice . company . s094758 .
dtu . dk/” portType=”tns:Company” inputVar i ab l e=”
Product ” outputVar iable=”didBuyProduct”/>

140 </ i f>
141 <a s s i gn name=”PopulateReceipt ”>
142 <copy>
143 <from>$Product . parameters / product /name</ from>

144 <to>$Receipt . parameters / r eturn /product</ to>
145 </copy>
146 <copy>
147 <from>$Product . parameters / product / p r i c e</ from>

148 <to>$Receipt . parameters / r eturn / p r i c e</ to>

62 XML code

149 </copy>
150 <copy>
151 <from>$Customer . parameters / customer/ f i r s tName</ from

>

152 <to>$Receipt . parameters / r eturn / f i r s tName</ to>
153 </copy>
154 <copy>
155 <from>$Customer . parameters / customer/ lastName</ from>

156 <to>$Receipt . parameters / r eturn / lastName</ to>
157 </copy>
158 <copy>
159 <from>$Customer . parameters / customer/ per sona l Id</

from>

160 <to>$Receipt . parameters / r eturn / per sona l Id</ to>
161 </copy>
162 <copy>
163 <from>$AddressAndPerson . parameters / addres s / c i t y</

from>

164 <to>$Receipt . parameters / r eturn / c i t y</ to>
165 </copy>
166 <copy>
167 <from>$AddressAndPerson . parameters / addres s / s t r e e t</

from>

168 <to>$Receipt . parameters / r eturn / s t r e e t</ to>
169 </copy>
170 <copy>
171 <from>$AddressAndPerson . parameters / addres s /

streetNumber</ from>

172 <to>$Receipt . parameters / r eturn / streetNumber</ to>
173 </copy>
174 </ a s s i gn>
175 <r ep ly name=”SendReceipt ” partnerLink=”ShopPartnerLink”

operat i on=” orderProduct” xmlns : tns=” ht tp : // shop s e r v i c e .
shop . s094758 . dtu . dk/” portType=” tns :Shop ” va r i ab l e=”
Receipt ”/>

176 </ sequence>
177 </ p r oc e s s>

Listing A.1: Business process in BPEL with information-flow control extensions

A.1.2 BPEL extension definition

This XSD file defines the extension elements used in the BPEL process. Any
element that can be defined in XSD can be used as an extension in BPEL.

1 <?xml version=” 1.0 ” encoding=”UTF−8”?>
2
3 <xsd:schema xmlns:xsd=” ht tp : //www.w3 . org /2001/XMLSchema”
4 targetNamespace=” ht tp : // b p e l 4 j i f . bpel . s094758 . dtu . dk/”
5 xmlns : tns=” ht tp : // b p e l 4 j i f . bpel . s094758 . dtu . dk/”
6 elementFormDefault=” q u a l i f i e d ”>

A.2 Definitions of Shop Service 63

7
8 <xsd:complexType name=” d e c l a s s i f y ”>
9 <xsd : s equence>

10 <xsd : e l ement name=” fromLabel” type=” x s d : s t r i n g ”></
xsd : e l ement>

11 <xsd : e l ement name=” toLabel ” type=” t n s : s t r i n g ”></
xsd : e l ement>

12 </ xsd : s equence>
13 </xsd:complexType>
14
15 <xsd:complexType name=” endorse ”>
16 <xsd : s equence>
17 <xsd : e l ement name=” fromLabel” type=” x s d : s t r i n g ”></

xsd : e l ement>
18 <xsd : e l ement name=” toLabel ” type=” t n s : s t r i n g ”></

xsd : e l ement>
19 </ xsd : s equence>
20 </xsd:complexType>
21
22 <xsd : e l ement name=” d e c l a s s i f y ” type=” t n s : d e c l a s s i f y ”></

xsd : e l ement>
23 <xsd : e l ement name=” endorse ” type=” tn s : endo r s e ”></ xsd : e l ement>
24 <xsd : e l ement name=” l ab e l ” type=” x s d : s t r i n g ”></ xsd : e l ement>
25 </xsd:schema>

Listing A.2: Definitions of BPEL extension elements

A.2 Definitions of Shop Service

A.2.1 WSDL definitions of Shop Service

This WSDL file is used to expose the Shop Service implemented in BPEL to
the client. It is a standard WSDL file, except for the addition of partner link
definitions needed for BPEL, because the information-flow control meta-data
resides in an imported XSD file.

1 <?xml version=” 1.0 ” encoding=”UTF−8”?>
2 <d e f i n i t i o n s
3 xmlns:wsu=” ht tp : // docs . oas i s−open . org /wss /2004/01/ oas i s −200401−

wss−wssecur i ty−u t i l i t y −1.0 . xsd”
4 xmlns : soap=” ht tp : // schemas . xmlsoap . org /wsdl / soap /”
5 xmlns : tns=” ht tp : // shop s e r v i c e . shop . s094758 . dtu . dk/”
6 xmlns:xsd=” ht tp : //www.w3 . org /2001/XMLSchema”
7 xmlns :plnk=” ht tp : // docs . oas i s−open . org /wsbpel /2.0/ plnktype”
8 xmlns=” ht tp : // schemas . xmlsoap . org /wsdl /”
9 targetNamespace=” ht tp : // shop s e r v i c e . shop . s094758 . dtu . dk/”

10 name=”ShopService ”>
11 <types>

64 XML code

12 <xsd:schema>
13 <xsd: import namespace=” ht tp : // shop s e r v i c e . shop . s094758 .

dtu . dk/” schemaLocation=”ShopService . xsd”/>
14 </xsd:schema>
15 </ types>
16 <message name=” orderProduct”>
17 <part name=”parameters ” element=” tns : o rderProduct ”/>
18 </message>
19 <message name=”orderProductResponse ”>
20 <part name=”parameters ” element=” tns :orderProductResponse ”/

>

21 </message>
22 <portType name=”Shop”>
23 <operat i on name=” orderProduct”>
24 <input message=” tns : o rderProduct ”/>
25 <output message=” tns :orderProductResponse ”/>
26 </ operat i on>
27 </portType>
28 <binding name=”ShopPortBinding ” type=” tns :Shop ”>
29 <soap :b ind ing transpor t=” ht tp : // schemas . xmlsoap . org / soap /

http ” s t y l e=”document”/>
30 <operat i on name=” orderProduct”>
31 <s oap : ope r a t i on soapAction=””/>
32 <input>
33 <soap:body use=” l i t e r a l ”/>
34 </ input>
35 <output>
36 <soap:body use=” l i t e r a l ”/>
37 </ output>
38 </ operat i on>
39 </ binding>
40 <s e r v i c e name=”ShopService ”>
41 <port name=”ShopPort ” binding=” tns :ShopPortBinding”>
42 <soap :addres s l o c a t i o n=” ht tp : // l o c a l h o s t : 8 2 8 2 /

ShopService / ShopService ”/>
43 </ port>
44 </ s e r v i c e>
45 <plnk:partnerLinkType name=”ShopService ”>
46 <p l n k : r o l e name=”ShopRole ” portType=” tns :Shop ”/>
47 </plnk:partnerLinkType>
48 </ d e f i n i t i o n s>

Listing A.3: WSDL definitions of the Shop Service

A.2.2 XSD definitions of Shop Service

This XSD defines types used in the Shop Service. This is where the information-
flow control meta-data resides. Elements that correspond to methods calls con-
tain a begin label of a method and response element contains an end label of a
method.

A.2 Definitions of Shop Service 65

Please note that the end label and the label of a returned element are not the
same. The orderProductResponse element contains the end label, and order-
ProductResponse type refers to a return element that contains the label of a
returned object.

1 <?xml version=” 1.0 ” encoding=”UTF−8”?>
2 <xs:schema
3 xmlns : tns=” ht tp : // shop s e r v i c e . shop . s094758 . dtu . dk/”
4 xmlns :xs=” ht tp : //www.w3 . org /2001/XMLSchema”
5 version=” 1.0 ”
6 targetNamespace=” ht tp : // shop s e r v i c e . shop . s094758 . dtu . dk/”>
7
8 <xs : e l ement name=”orderProduct” type=” tns : o rderProduct ”>
9 <xs : annotat i on>

10 <x s : app i n f o>
11 < l a b e l>Company wr i t e r top meet Post wr i t e r top</

l a b e l>
12 <author i ty>Company , Post</ author i ty>
13 </ x s : app i n f o>
14 </ xs : annotat i on>
15 </ xs : e l ement>
16
17 <xs : e l ement name=”orderProductResponse ” type=”

tns :orderProductResponse ”>
18 <xs : annotat i on>
19 <x s : app i n f o>
20 < l a b e l>Company wr i t e r top meet Post wr i t e r top</

l a b e l>
21 </ x s : app i n f o>
22 </ xs : annotat i on>
23 </ xs : e l ement>
24
25 <xs:complexType name=” orderProduct”>
26 <xs : s equence>
27 <xs : e l ement name=” c l i e n t ” type=” t n s : c l i e n t ” minOccurs=”

0”>
28 <xs : annotat i on>
29 <x s : app i n f o>
30 < l a b e l>Company wr i t e r top meet Post wr i t e r

top</ l a b e l>
31 </ x s : app i n f o>
32 </ xs : annotat i on>
33 </ xs : e l ement>
34 <xs : e l ement name=” order ” type=” tn s : o r d e r ” minOccurs=”0”

>

35 <xs : annotat i on>
36 <x s : app i n f o>
37 < l a b e l>Company wr i t e r top meet Post wr i t e r

top</ l a b e l>
38 </ x s : app i n f o>
39 </ xs : annotat i on>
40 </ xs : e l ement>
41 </ xs : s equence>
42 </xs:complexType>
43

66 XML code

44 <xs:complexType name=” c l i e n t ”>
45 <xs : s equence>
46 <xs : e l ement name=” c i t y ” type=” x s : s t r i n g ” minOccurs=”0”>
47 <xs : annotat i on>
48 <x s : app i n f o>
49 < l a b e l>Post wr i t e r top</ l a b e l>
50 </ x s : app i n f o>
51 </ xs : annotat i on>
52 </ xs : e l ement>
53 <xs : e l ement name=” f i r stName” type=” x s : s t r i n g ” minOccurs

=”0”>
54 <xs : annotat i on>
55 <x s : app i n f o>
56 < l a b e l>Company wr i t e r top meet Post wr i t e r

top</ l a b e l>
57 </ x s : app i n f o>
58 </ xs : annotat i on>
59 </ xs : e l ement>
60 <xs : e l ement name=”lastName” type=” x s : s t r i n g ” minOccurs=

”0”>
61 <xs : annotat i on>
62 <x s : app i n f o>
63 < l a b e l>Company wr i t e r top meet Post wr i t e r

top</ l a b e l>
64 </ x s : app i n f o>
65 </ xs : annotat i on>
66 </ xs : e l ement>
67 <xs : e l ement name=” per sona l Id ” type=” x s : s t r i n g ”

minOccurs=”0”>
68 <xs : annotat i on>
69 <x s : app i n f o>
70 < l a b e l>Company wr i t e r top meet Post wr i t e r

top</ l a b e l>
71 </ x s : app i n f o>
72 </ xs : annotat i on>
73 </ xs : e l ement>
74 <xs : e l ement name=” s t r e e t ” type=” x s : s t r i n g ” minOccurs=”0

”>
75 <xs : annotat i on>
76 <x s : app i n f o>
77 < l a b e l>Post wr i t e r top</ l a b e l>
78 </ x s : app i n f o>
79 </ xs : annotat i on>
80 </ xs : e l ement>
81 <xs : e l ement name=”streetNumber” type=” x s : i n t ”>
82 <xs : annotat i on>
83 <x s : app i n f o>
84 < l a b e l>Post wr i t e r top</ l a b e l>
85 </ x s : app i n f o>
86 </ xs : annotat i on>
87 </ xs : e l ement>
88 </ xs : s equence>
89 </xs:complexType>
90
91 <xs:complexType name=” order ”>

A.2 Definitions of Shop Service 67

92 <xs : s equence>
93 <xs : e l ement name=” pr i c e ” type=” x s : i n t ”>
94 <xs : annotat i on>
95 <x s : app i n f o>
96 < l a b e l>Company wr i t e r top</ l a b e l>
97 </ x s : app i n f o>
98 </ xs : annotat i on>
99 </ xs : e l ement>

100 <xs : e l ement name=”product ” type=” x s : s t r i n g ” minOccurs=”
0”>

101 <xs : annotat i on>
102 <x s : app i n f o>
103 < l a b e l>Company wr i t e r top</ l a b e l>
104 </ x s : app i n f o>
105 </ xs : annotat i on>
106 </ xs : e l ement>
107 </ xs : s equence>
108 </xs:complexType>
109
110 <xs:complexType name=” orderProductResponse ”>
111 <xs : s equence>
112 <xs : e l ement name=” return ” type=” t n s : r e c e i p t ” minOccurs=

”0”>
113 <xs : annotat i on>
114 <x s : app i n f o>
115 < l a b e l>Company wr i t e r top</ l a b e l>
116 </ x s : app i n f o>
117 </ xs : annotat i on>
118 </ xs : e l ement>
119 </ xs : s equence>
120 </xs:complexType>
121
122 <xs:complexType name=” r e c e i p t ”>
123 <xs : s equence>
124 <xs : e l ement name=” c i t y ” type=” x s : s t r i n g ” minOccurs=”0”>
125 <xs : annotat i on>
126 <x s : app i n f o>
127 < l a b e l>Post wr i t e r top</ l a b e l>
128 </ x s : app i n f o>
129 </ xs : annotat i on>
130 </ xs : e l ement>
131 <xs : e l ement name=” f i r stName” type=” x s : s t r i n g ” minOccurs

=”0”>
132 <xs : annotat i on>
133 <x s : app i n f o>
134 < l a b e l>Company wr i t e r top</ l a b e l>
135 </ x s : app i n f o>
136 </ xs : annotat i on>
137 </ xs : e l ement>
138 <xs : e l ement name=”lastName” type=” x s : s t r i n g ” minOccurs=

”0”>
139 <xs : annotat i on>
140 <x s : app i n f o>
141 < l a b e l>Company wr i t e r top</ l a b e l>
142 </ x s : app i n f o>

68 XML code

143 </ xs : annotat i on>
144 </ xs : e l ement>
145 <xs : e l ement name=” per sona l Id ” type=” x s : s t r i n g ”

minOccurs=”0”>
146 <xs : annotat i on>
147 <x s : app i n f o>
148 < l a b e l>Company wr i t e r top</ l a b e l>
149 </ x s : app i n f o>
150 </ xs : annotat i on>
151 </ xs : e l ement>
152 <xs : e l ement name=” pr i c e ” type=” x s : i n t ”>
153 <xs : annotat i on>
154 <x s : app i n f o>
155 < l a b e l>Company wr i t e r top</ l a b e l>
156 </ x s : app i n f o>
157 </ xs : annotat i on>
158 </ xs : e l ement>
159 <xs : e l ement name=”product ” type=” x s : s t r i n g ” minOccurs=”

0”>
160 <xs : annotat i on>
161 <x s : app i n f o>
162 < l a b e l>Company wr i t e r top</ l a b e l>
163 </ x s : app i n f o>
164 </ xs : annotat i on>
165 </ xs : e l ement>
166 <xs : e l ement name=” s t r e e t ” type=” x s : s t r i n g ” minOccurs=”0

”>
167 <xs : annotat i on>
168 <x s : app i n f o>
169 < l a b e l>Post wr i t e r top</ l a b e l>
170 </ x s : app i n f o>
171 </ xs : annotat i on>
172 </ xs : e l ement>
173 <xs : e l ement name=”streetNumber” type=” x s : i n t ”>
174 <xs : annotat i on>
175 <x s : app i n f o>
176 < l a b e l>Post wr i t e r top</ l a b e l>
177 </ x s : app i n f o>
178 </ xs : annotat i on>
179 </ xs : e l ement>
180 </ xs : s equence>
181 </xs:complexType>
182 </xs:schema>

Listing A.4: XSD type definitions of the Shop Service with labels

Appendix B

Jif code

This appendix contains Jif code of the example system. This implementation
is used as a reference. Please note that stripping any information-flow control-
related information from Jif code produces valid Java code.

B.1 Business process

This is a reference implementation of the business process written in Jif.

1 package dk . dtu . s094758 . shop ;
2
3 import dk . dtu . s094758 . company . CompanyService ;
4 import dk . dtu . s094758 . company . Customer ;
5 import dk . dtu . s094758 . company . Product ;
6 import dk . dtu . s094758 . po s ta l . Po s ta l S e r v i c e ;
7 import dk . dtu . s094758 . po s ta l . Address ;
8 import dk . dtu . s094758 . po s ta l . Person ;
9

10 public class ShopService author i ty (Company , Post) {
11
12 public Receipt {Company<−∗ meet Post<−∗} orderProduct{Company<−∗

meet Post<−∗}(C l i ent {Company<−∗ meet Post<−∗} c l i e n t ,
Order{Company<−∗ meet Post<−∗} order) where author i ty (
Company , Post) {

70 Jif code

13
14 CompanyService companyService = new CompanyService () ;
15
16 Customer customer = new Customer () ;
17
18 Str ing customerPersonal Id = null ;
19 Str ing customerFirstName = null ;
20 Str ing customerLastName = null ;
21
22 try {
23 customerPersonal Id = c l i e n t . getPer sona l Id () ;
24 customerFirstName = c l i e n t . getFirstName () ;
25 customerLastName = c l i e n t . getLastName () ;
26 } catch (Nul lPointerExcept ion ex) {
27 }
28
29 try {
30 customer . s e tPe r s ona l Id (customerPersonal Id) ;
31 customer . setFirstName (customerFirstName) ;
32 customer . setLastName(customerLastName) ;
33 } catch (Nul lPointerExcept ion ex) {
34 }
35
36 boolean i sVal idCustomer = companyService . val idateCustomer (

customer) ;
37
38 Pos ta l S e r v i c e p o s t a l S e r v i c e = new Pos ta l S e r v i c e () ;
39
40 Address addres s = new Address () ;
41
42 Str ing addres sC i ty = null ;
43 Str ing addr e s sS t r e e t = null ;
44 int addressStreetNumber = −1;
45
46 try {
47 addres sC i ty = c l i e n t . getCity () ;
48 add r e s sS t r e e t = c l i e n t . g e tS t r e e t () ;
49 addressStreetNumber = c l i e n t . getStreetNumber () ;
50 } catch (Nul lPointerExcept ion ex) {
51 }
52
53 try {
54 addres s . s e tC i ty (addres sC i ty) ;
55 addres s . s e t S t r e e t (add r e s sS t r e e t) ;
56 addres s . setStreetNumber (addressStreetNumber) ;
57 } catch (Nul lPointerExcept ion ex) {
58 }
59
60 Person person = new Person () ;
61
62 Str ing personFirstName = null ;
63 Str ing personLastName = null ;
64 Str ing per sonPer sona l Id = null ;
65
66 try {

B.1 Business process 71

67 personFirstName = c l i e n t . getFirstName () ;
68 personLastName = c l i e n t . getLastName () ;
69 per sonPer sona l Id = c l i e n t . getPer sona l Id () ;
70 } catch (Nul lPointerExcept ion ex) {
71 }
72
73 try {
74 person . setFirstName (personFirstName) ;
75 person . setLastName(personLastName) ;
76 person . s e tPe r s ona l Id (per sonPer sona l Id) ;
77 } catch (Nul lPointerExcept ion ex) {
78 }
79
80 boolean i sVa l idAddres s = po s t a l S e r v i c e . va l i dateAddres s (

address , person) ;
81
82 Product product = new Product () ;
83
84 Str ing productName = null ;
85 int pr i c e = −1;
86
87 try {
88 productName = order . getProduct () ;
89 p r i c e = order . g e tP r i c e () ;
90 } catch (Nul lPointerExcept ion ex) {
91 }
92
93 try {
94 product . setName (productName) ;
95 product . s e tP r i c e (p r i c e) ;
96 } catch (Nul lPointerExcept ion ex) {
97 }
98
99 boolean boughtProduct = fa l se ;

100
101 boolean i sVa l idAddres s2 = endorse (i sVal idAddress , {Company

<−∗ meet Post<−∗}) ;
102 boolean i sVal idCustomer2 = endorse (isVal idCustomer , {

Company<−∗ meet Post<−∗}) ;
103
104 i f (i sVa l idAddres s2 && isVal idCustomer2) {
105 boughtProduct = companyService . buyProduct (product) ;
106 }
107
108 Receipt r e c e i p t = new Receipt () ;
109
110 Str ing r e c e i p tPe r s ona l Id = null ;
111 Str ing rece iptFir stName = null ;
112 Str ing receiptLastName = null ;
113
114 Str ing r e c e i p tC i ty = null ;
115 Str ing r e c e i p t S t r e e t = null ;
116 int rece iptStreetNumber = −1;
117
118 Str ing r ece iptProduct = null ;

72 Jif code

119 int r e c e i p tP r i c e = −1;
120
121 try {
122 r e c e i p tPe r s ona l Id = customer . getPer sona l Id () ;
123 rece iptFir stName = customer . getFirstName () ;
124 receiptLastName = customer . getLastName () ;
125
126 r e c e i p tC i ty = addres s . getCity () ;
127 r e c e i p t S t r e e t = addres s . g e tS t r e e t () ;
128 rece iptStreetNumber = addres s . getStreetNumber () ;
129
130 r ece iptProduct = product . getName () ;
131 r e c e i p tP r i c e = product . g e tP r i c e () ;
132 } catch (Nul lPointerExcept ion ex) {
133 }
134
135 try {
136 r e c e i p t . s e tPe r s ona l Id (r e c e i p tPe r s ona l Id) ;
137 r e c e i p t . setFirstName (rece iptFir stName) ;
138 r e c e i p t . setLastName(receiptLastName) ;
139
140 r e c e i p t . s e tC i ty (r e c e i p tC i ty) ;
141 r e c e i p t . s e t S t r e e t (r e c e i p t S t r e e t) ;
142 r e c e i p t . setStreetNumber (rece iptStreetNumber) ;
143
144 r e c e i p t . setProduct (r ece iptProduct) ;
145 r e c e i p t . s e tP r i c e (r e c e i p tP r i c e) ;
146 } catch (Nul lPointerExcept ion ex) {
147 }
148
149 return r e c e i p t ;
150 }
151 }

Listing B.1: Business process as implemented in Jif

B.2 Main class

The role of a client in Jif-based implementation is performed by the main class,
which initiates the process. The process needs to be started with the authority
of both Company and Post principals.

There is also a caller principal p defined, which is the principal that corresponds
to the user that runs the application. It is a system principal, which is a default
owner of runtime-related objects such as output stream, so it needs to be taken
into account when, for example, outputting to the user interface.

1 package dk . dtu . s094758 ;
2

B.2 Main class 73

3 import java . i o . PrintStream ;
4 import j i f . runtime . Runtime ;
5 import dk . dtu . s094758 . shop . C l i ent ;
6 import dk . dtu . s094758 . shop . Order ;
7 import dk . dtu . s094758 . company . CompanyService ;
8 import dk . dtu . s094758 . company . Customer ;
9 import dk . dtu . s094758 . company . Product ;

10 import dk . dtu . s094758 . shop . ShopService ;
11 import dk . dtu . s094758 . shop . Receipt ;
12 import dk . dtu . s094758 . po s ta l . Po s ta l S e r v i c e ;
13 import dk . dtu . s094758 . po s ta l . Person ;
14 import dk . dtu . s094758 . po s ta l . Address ;
15
16 public class App author i ty (Company , Post) {
17
18 public stat ic f ina l void main{Company<−∗ meet Post<−∗ meet p

<−∗}(p r i n c i p a l {} p , Str ing [] a rgs) : {Company<−∗ meet Post
<−∗} throws (Secur i tyExcept ion , I l l egalArgumentExcept ion)
where author i ty (Company , Post) , c a l l e r (p) {

19
20 PrintStream [{ }] out = null ;
21
22 try {
23 Runtime [p] runtime = Runtime [p] . getRuntime () ;
24 out = runtime==null ?null : runtime . stdout (new label {}) ;
25 } catch (Secur i tyExcept i on ex) {
26 }
27
28 PrintStream [{ }] out1 = endorse (out , {p−>∗} to {p−>∗;Company

<−∗ meet Post<−∗ meet p<−∗}) ;
29 PrintStream [{ }] out2 = d e c l a s s i f y (out1 , {Company<−∗ meet

Post<−∗}) ;
30
31 ShopService shopServ i ce = new ShopService () ;
32
33 Cl i ent c l i e n t = new Cl i ent () ;
34
35 Str ing c l i e n tP e r s on a l I d = ” j ens123 ” ;
36 Str ing c l i e n tC i t y = ”Koebenhavn” ;
37 Str ing c l i e n t S t r e e t = ”Ter ras s erne ” ;
38 int c l i entStreetNumber = 8 ;
39 Str ing c l i entF i r s tName = ”Jens ” ;
40 Str ing cl ientLastName = ”Jensen ” ;
41
42 c l i e n t . s e tPe r s ona l Id (c l i e n tP e r s on a l I d) ;
43 c l i e n t . s e tC i ty (c l i e n tC i t y) ;
44 c l i e n t . s e t S t r e e t (c l i e n t S t r e e t) ;
45 c l i e n t . setStreetNumber (c l i entStreetNumber) ;
46 c l i e n t . setFirstName (c l i entF i r s tName) ;
47 c l i e n t . setLastName(cl ientLastName) ;
48
49 Order order = new Order () ;
50
51 order . setProduct (”ProductXXL”) ;
52 order . s e tP r i c e (1200) ;

74 Jif code

53
54 Receipt r e c e i p t = shopServ i ce . orderProduct (c l i e n t , order) ;
55
56 Str ing per sona l Id = null ;
57 Str ing f i r s tName = null ;
58 Str ing lastName = null ;
59 Str ing c i t y = null ;
60 Str ing s t r e e t = null ;
61 int streetNumber = −1;
62 Str ing name = null ;
63 int pr i c e = −1;
64
65 try {
66 per sona l Id = r e c e i p t . getPer sona l Id () ;
67 f i r s tName = r e c e i p t . getFirstName () ;
68 lastName = r e c e i p t . getLastName () ;
69 c i t y = r e c e i p t . getCity () ;
70 s t r e e t = r e c e i p t . g e tS t r e e t () ;
71 streetNumber = r e c e i p t . getStreetNumber () ;
72 name = r e c e i p t . getProduct () ;
73 p r i c e = r e c e i p t . g e tP r i c e () ;
74
75 } catch (Nul lPointerExcept ion ex) {
76 }
77
78 i f (out2 == null) throw new I l l egalArgumentExcept ion (”Nul l

output”) ;
79
80 out2 . p r i n t l n (per sona l Id) ;
81 out2 . p r i n t l n (f i r s tName) ;
82 out2 . p r i n t l n (lastName) ;
83 out2 . p r i n t l n (c i t y) ;
84 out2 . p r i n t l n (s t r e e t) ;
85 out2 . p r i n t l n (streetNumber) ;
86 out2 . p r i n t l n (name) ;
87 out2 . p r i n t l n (p r i c e) ;
88 }
89 }

Listing B.2: Main class

B.3 Bean object

This is a bean class that contains the data of a client. It illustrates how labels
are assigned to data types that are used in information exchanges. Please note
that some data is labelled as accessible only to the Post principal, and some to
both the Post and the Company principles. Any mix of labels is allowed as long
as it is usable in the context of an application.

1 package dk . dtu . s094758 . shop ;

B.3 Bean object 75

2
3 public class Cl i ent {
4
5 private Str ing {Company<−∗ meet Post<−∗} per sona l Id ;
6 private Str ing {Company<−∗ meet Post<−∗} f i r s tName ;
7 private Str ing {Company<−∗ meet Post<−∗} lastName ;
8 private Str ing {Post<−∗} c i t y ;
9 private Str ing {Post<−∗} s t r e e t ;

10 private int{Post<−∗} streetNumber ;
11
12 public Str ing {Post<−∗} getCity () {
13 return c i t y ;
14 }
15
16 public void s e tC i ty {Post<−∗}(Str ing {Post<−∗} c i t y) {
17 this . c i t y = c i t y ;
18 }
19
20 public Str ing {Company<−∗ meet Post<−∗} getFirstName () {
21 return f i r s tName ;
22 }
23
24 public void setFirstName {Company<−∗ meet Post<−∗}(Str ing {

Company<−∗ meet Post<−∗} f i r s tName) {
25 this . f i r s tName = f i r stName ;
26 }
27
28 public Str ing {Company<−∗ meet Post<−∗} getLastName () {
29 return lastName ;
30 }
31
32 public void setLastName{Company<−∗ meet Post<−∗}(Str ing {Company

<−∗ meet Post<−∗} lastName) {
33 this . lastName = lastName ;
34 }
35
36 public Str ing {Company<−∗ meet Post<−∗} getPer sona l Id () {
37 return per sona l Id ;
38 }
39
40 public void s e tPe r s ona l Id {Company<−∗ meet Post<−∗}(Str ing {

Company<−∗ meet Post<−∗} per sona l Id) {
41 this . per sona l Id = per sona l Id ;
42 }
43
44 public Str ing {Post<−∗} ge tS t r e e t () {
45 return s t r e e t ;
46 }
47
48 public void s e t S t r e e t {Post<−∗}(Str ing {Post<−∗} s t r e e t) {
49 this . s t r e e t = s t r e e t ;
50 }
51
52 public int{Post<−∗} getStreetNumber () {
53 return streetNumber ;

76 Jif code

54 }
55
56 public void setStreetNumber {Post<−∗}(int{Post<−∗} streetNumber)

{
57 this . streetNumber = streetNumber ;
58 }
59 }

Listing B.3: Labelled bean class

Appendix C

Experimental code

This appendix contains experimental code that was written as proof-of-concept,
but is not part of the final solution.

C.1 Annotation processor

This is a Java annotation processor that parses a custom-annotated Web service
class, and generated additional code according to annotations. It uses Java
reflection API to extract the information from original code; the source code is
never parsed.

It is a proof-of-concept of how meta-data could be exchanged via Web services
in a fairly transparent way form the point of view of a developer.

1 package dk . dtu . s094758 . l i b . p r o c e s s o r ;
2
3 import dk . dtu . s094758 . l i b . except i on . C l a s s i f i c a t i o nEx c ep t i o n ;
4 import dk . dtu . s094758 . l i b . c r e d e n t i a l s . C l a s s i f i c a t i o n L e v e l ;
5 import dk . dtu . s094758 . l i b . c r e d e n t i a l s . Acces sCredent i a l s ;
6 import dk . dtu . s094758 . l i b . annotat ion . Classi f iedWebMethod ;
7 import dk . dtu . s094758 . l i b . annotat ion . C las s i f i edWebServ i ce ;
8 import dk . dtu . s094758 . l i b . model . C l a s s i f i e dVa r i a b l e ;
9 import dk . dtu . s094758 . l i b . ws . S uppo r t sC l a s s i f i c a t i o n ;

78 Experimental code

10 import java . i o . IOException ;
11 import java . i o . Writer ;
12 import java . lang . r e f l e c t . Invocat ionTargetException ;
13 import java . lang . r e f l e c t . Method ;
14 import java . u t i l . I t e r a t o r ;
15 import java . u t i l . L i s t ;
16 import java . u t i l .Map ;
17 import java . u t i l .Map . Entry ;
18 import java . u t i l . Set ;
19 import java . u t i l . l o gg i ng . Level ;
20 import java . u t i l . l o gg i ng . Logger ;
21 import javax . annotat ion . Generated ;
22 import javax . annotat ion . p r o c e s s i ng . Abs tractProces sor ;
23 import javax . annotat ion . p r o c e s s i ng . F i l e r ;
24 import javax . annotat ion . p r o c e s s i ng . Messager ;
25 import javax . annotat ion . p r o c e s s i ng . ProcessingEnvironment ;
26 import javax . annotat ion . p r o c e s s i ng . RoundEnvironment ;
27 import javax . annotat ion . p r o c e s s i ng . SupportedAnnotationTypes ;
28 import javax . annotat ion . p r o c e s s i ng . SupportedSourceVers ion ;
29 import javax . jws .WebMethod ;
30 import javax . jws . WebService ;
31 import javax . lang . model . SourceVers ion ;
32 import javax . lang . model . element . Element ;
33 import javax . lang . model . element . ExecutableElement ;
34 import javax . lang . model . element . Modi f i e r ;
35 import javax . lang . model . element .Name ;
36 import javax . lang . model . element . PackageElement ;
37 import javax . lang . model . element . TypeElement ;
38 import javax . lang . model . element . VariableElement ;
39 import javax . lang . model . type . TypeMirror ;
40 import javax . lang . model . u t i l . E l ementF i l te r ;
41 import javax . lang . model . u t i l . Elements ;
42 import javax . t o o l s . JavaFi leObject ;
43
44 /∗∗
45 ∗
46 ∗ @author l i n a s
47 ∗/
48 @SupportedAnnotationTypes (value = {”dk . dtu . s094758 . l i b . annotat ion .

C las s i f i edWebServ i ce ” })
49 @SupportedSourceVersion (SourceVers ion .RELEASE 6)
50 public class WebSer v i c eC l a s s i f i c a t i onPr oce s s o r extends

AbstractProces sor {
51
52 private F i l e r f i l e r ;
53 private Messager messager ;
54 private Elements e l ementUt i l s ;
55
56 @Override
57 public void i n i t (ProcessingEnvironment process ingEnv) {
58 super . i n i t (process ingEnv) ;
59 f i l e r = process ingEnv . g e tF i l e r () ;
60 messager = process ingEnv . getMessager () ;
61 e l ementUt i l s = process ingEnv . getE l ementUt i l s () ;
62 }

C.1 Annotation processor 79

63
64 @Override
65 public boolean pr oc e s s (Set<? extends TypeElement> annotat ions ,

RoundEnvironment roundEnvironment) {
66
67 System . out . p r i n t l n (” Proces s ing c l a s s i f i c a t i o n annotat i ons

. . . ”) ;
68
69 Set<? extends Element> annotatedWebServices =

roundEnvironment . getElementsAnnotatedWith (
Clas s i f i edWebServ i ce . class) ;

70
71 for (Element annotatedWebService : annotatedWebServices) {
72
73 PackageElement packageElement = e l ementUt i l s .

getPackageOf (annotatedWebService) ;
74
75 Name packageName = packageElement . getQual i f iedName () ;
76 Str ing class i f i edPackageName = packageName + ” .

c l a s s i f i e d ” ;
77
78 Name className = annotatedWebService . getSimpleName () ;
79 Element ful lClassName = annotatedWebService ;
80
81 JavaFi leObject j avaF i l e = null ;
82 try {
83 j avaF i l e = f i l e r . c r ea t eSou r c eF i l e (

c lass i f i edPackageName + ” . ” + className) ;
84 } catch (IOException ex) {
85 Logger . getLogger (WebSe r v i c eC l a s s i f i c a t i onPr oce s s o r .

class . getName ()) . l og (Level .SEVERE, null , ex) ;
86 }
87
88 Writer wr i t e r = null ;
89 try {
90 wr i t e r = j avaF i l e . openWriter () ;
91
92 wr i t e r . wr i te (”package ” + class i f i edPackageName + ”

;\n”) ;
93 wr i t e r . wr i te (”\n”) ;
94
95 Clas s i f i edWebServ i ce c l a s s i f i edWebSe r v i c e =

annotatedWebService . getAnnotat ion (
Clas s i f i edWebServ i ce . class) ;

96 Str ing targetNamespace = c l a s s i f i edWebSe r v i c e .
targetNamespace () ;

97 Str ing serviceName = c l a s s i f i edWebSe r v i c e .
serviceName () ;

98 Str ing portName = c l a s s i f i edWebSe r v i c e . portName () ;
99 Str ing wsdlLocation = c l a s s i f i edWebSe r v i c e .

wsdlLocation () ;
100
101 wr i t e r . wr i te (”@” + Generated . class . getName () + ” (\”

” + packageName + ” . ” + className + ” \”) \n”) ;
102 wr i t e r . wr i te (”@” + Suppo r t sC l a s s i f i c a t i o n . class .

80 Experimental code

getName () + ” () \n”) ;
103 wr i t e r . wr i te (”@” + WebService . class . getName () + ” (

targetNamespace = \”” + targetNamespace + ” \” ,
serviceName = \”” + serviceName + ” \” , portName
= \”” + portName + ” \” , wsdlLocation = \”” +
wsdlLocation + ” \”) \n”) ;

104 wr i t e r . wr i te (” pub l i c c l a s s ” + className + ”
extends ” + ful lClassName + ” {\n”) ;

105 wr i t e r . wr i te (”\n”) ;
106
107 for (ExecutableElement method : E l ementF i l te r .

methodsIn (annotatedWebService .
getEnclosedElements ())) {

108
109 Name methodName = method . getSimpleName () ;
110 TypeMirror returnType = method . getReturnType () ;
111
112 Str ing mod i f i e r s S t r i ng = bu i l dMod i f i e r s S t r i ng (

method . g e tMod i f i e r s ()) ;
113 Str ing methodParametersStr ing =

bui ldMethodParametersStr ing(method .
getParameters ()) ;

114 Str ing ca l lPa r amete r sS t r i ng =
bui ldCa l lParameter sStr ing (method .
getParameters ()) ;

115
116 Classi f iedWebMethod class i f i edWebMethod =

method . getAnnotat ion (Classi f iedWebMethod .
class) ;

117 Str ing operationName = class i f i edWebMethod .
operationName () ;

118 Str ing act i on = class i f i edWebMethod . act i on () ;
119 Boolean exclude = class i f i edWebMethod . exclude ()

;
120 C l a s s i f i c a t i o n L e v e l c l a s s i f i c a t i o n L e v e l =

class i f i edWebMethod . c l a s s i f i c a t i o n L e v e l () ;
121
122 wr i t e r . wr i te (” @” + Generated . class . getName

() + ” (\” ” + packageName + ” . ” + className
+ ” . ” + methodName + ” () \”) \n”) ;

123 wr i t e r . wr i te (” @” + WebMethod . class . getName
() + ” (operationName = \”” + operationName
+ ” \” , act i on = \”” + act i on + ” \” , exclude
= ” + exclude + ”)\n”) ;

124
125 wr i t e r . wr i te (” ” + mod i f i e r s S t r i ng + ” ” +

returnType + ” ” + methodName + ” (” +
methodParametersStr ing + ”) throws ” +
C l a s s i f i c a t i o nExc ep t i o n . class . getName () + ”
{\n”) ;

126 wr i t e r . wr i te (”\n”) ;
127
128 wr i t e r . wr i te (” ” + C l a s s i f i c a t i o nL e v e l .

class . getName () + ” c l a s s i f i c a t i o n L e v e l =
acce s sCr eden t i a l s . g e tC l a s s i f i c a t i o n L ev e l ()

C.1 Annotation processor 81

;\n”) ;
129 wr i t e r . wr i te (”\n”) ;
130
131 wr i t e r . wr i te (” i f (c l a s s i f i c a t i o n L e v e l .

getNumericValue () < ” + C l a s s i f i c a t i o n L e v e l
. class . getName () + ” . ” +
c l a s s i f i c a t i o n L e v e l . t oS t r i ng () + ” .
getNumericValue ()) {\n”) ;

132 wr i t e r . wr i te (” throw new ” +
C l a s s i f i c a t i o nEx c ep t i o n . class . getName () + ”
() ;\n”) ;

133 wr i t e r . wr i te (” }\n”) ;
134 wr i t e r . wr i te (”\n”) ;
135
136 wr i t e r . wr i te (” ” + returnType + ”

returnData = super . ” + methodName + ” (” +
ca l lPa r amete r sS t r ing + ”) ;\n”) ;

137 wr i t e r . wr i te (”\n”) ;
138
139 wr i t e r . wr i te (” Class<? extends ” +

returnType + ”> r e turnClas s = returnData .
getC las s () ;\n”) ;

140 wr i t e r . wr i te (” ” + Method . class . getName
() + ” [] methods = returnClas s . getMethods ()
;\n”) ;

141 wr i t e r . wr i te (” ” + Map. class . getName () +
”<” + Str ing . class . getName () + ” , ” +

C l a s s i f i e dVa r i a b l e . class . getName () + ”>
c l a s s i f i edVar i ab l eMap = ” +
WebSe r v i c eC l a s s i f i c a t i o nUt i l s . class . getName
() + ” . bu i ldClas s i f i edVar i ab l eMap (methods)
;\n”) ;

142 wr i t e r . wr i te (”\n”) ;
143 wr i t e r . wr i te (” f o r (” + I t e r a t o r . class .

getName () + ”<” + Entry . class .
getCanonicalName () + ”<” + Str ing . class .
getName () + ” , ” + C l a s s i f i e dVa r i a b l e . class
. getName () + ”>> i t e r a t o r =
c l a s s i f i edVar i ab l eMap . entrySet () . i t e r a t o r ()
; i t e r a t o r . hasNext () ;) {\n”) ;

144 wr i t e r . wr i te (”\n”) ;
145 wr i t e r . wr i te (” ” + Entry . class .

getCanonicalName () + ”<” + Str ing . class .
getName () + ” , ” + C l a s s i f i e dVa r i a b l e . class
. getName () + ”> entry = i t e r a t o r . next () ;\n”
) ;

146 wr i t e r . wr i te (” ” +
C l a s s i f i e dVa r i a b l e . class . getName () + ”
c l a s s i f i e dVa r i a b l e = entry . getValue () ;\n”) ;

147 wr i t e r . wr i te (”\n”) ;
148 wr i t e r . wr i te (” i f (

c l a s s i f i e dVa r i a b l e . g e tC l a s s i f i e dGe t t e r () .
g e tC l a s s i f i c a t i o n L e v e l () . getNumericValue () \
n”) ;

149 wr i t e r . wr i te (” >

82 Experimental code

c l a s s i f i e dV a r i a b l e . g e t C l a s s i f i e d S e t t e r () .
g e tC l a s s i f i c a t i o n L e v e l () . getNumericValue ())
{\n”) ;

150 wr i t e r . wr i te (”\n”) ;
151 wr i t e r . wr i te (” throw new ” +

C l a s s i f i c a t i o nExc ep t i o n . class . getName () + ”
() ;\n”) ;

152 wr i t e r . wr i te (” }\n”) ;
153 wr i t e r . wr i te (”\n”) ;
154 wr i t e r . wr i te (” i f (

c l a s s i f i e dV a r i a b l e . g e tC l a s s i f i e dGe t t e r () .
g e tC l a s s i f i c a t i o n L e v e l () . getNumericValue () \
n”) ;

155 wr i t e r . wr i te (” > ” +
C l a s s i f i c a t i o n L e v e l . class . getName () + ” . ” +
c l a s s i f i c a t i o n L e v e l . t oS t r i ng () + ” .

getNumericValue ()) {\n”) ;
156 wr i t e r . wr i te (”\n”) ;
157 wr i t e r . wr i te (” ” + Method . class .

getName () + ” method = c l a s s i f i e dVa r i a b l e .
g e tC l a s s i f i e d S e t t e r () . getMethod () ;\n”) ;

158 wr i t e r . wr i te (” ” + Object . class .
getName () + ” nu l lObj ect = nu l l ;\n”) ;

159 wr i t e r . wr i te (”\n”) ;
160 wr i t e r . wr i te (” t ry {\n”) ;
161 wr i t e r . wr i te (” method . invoke

(returnData , nu l lObj ect) ;\n”) ;
162 wr i t e r . wr i te (” } catch (” +

I l l e ga lAcce s sExcep t i on . class . getName () + ”
ex) {\n”) ;

163 wr i t e r . wr i te (” throw new ” +
C l a s s i f i c a t i o nEx c ep t i o n . class . getName () +

” () ;\n”) ;
164 wr i t e r . wr i te (” } catch (” +

Il l egalArgumentExcept ion . class . getName () +
” ex) {\n”) ;

165 wr i t e r . wr i te (” throw new ” +
C l a s s i f i c a t i o nEx c ep t i o n . class . getName () +

” () ;\n”) ;
166 wr i t e r . wr i te (” } catch (” +

InvocationTargetExcept ion . class . getName () +
” ex) {\n”) ;

167 wr i t e r . wr i te (” throw new ” +
C l a s s i f i c a t i o nEx c ep t i o n . class . getName () +

” () ;\n”) ;
168 wr i t e r . wr i te (” }\n”) ;
169 wr i t e r . wr i te (” }\n”) ;
170 wr i t e r . wr i te (” }\n”) ;
171 wr i t e r . wr i te (”\n”) ;
172
173 wr i t e r . wr i te (” r eturn returnData ;\n”) ;
174 wr i t e r . wr i te (” }\n”) ;
175 }
176
177 wr i t e r . wr i te (”}\n”) ;

C.1 Annotation processor 83

178
179 wr i t e r . f l u s h () ;
180 wr i t e r . c l o s e () ;
181
182 } catch (IOException ex) {
183 Logger . getLogger (WebSe r v i c eC l a s s i f i c a t i onPr oce s s o r .

class . getName ()) . l og (Level .SEVERE, null , ex) ;
184 }
185 }
186
187 return true ;
188 }
189
190 private Str ing bu i l dMod i f i e r s S t r i ng (Set<Modi f i er> mod i f i e r s) {
191
192 S t r i ngBu i l d e r mod i f i e r S t r i ngBu i l d e r = new St r i ngBu i l d e r () ;
193
194 i f (! mod i f i e r s . isEmpty ()) {
195
196 for (Modi f i e r mod i f i e r : mod i f i e r s) {
197 mod i f i e r S t r i ngBu i l d e r . append (mod i f i e r . t oS t r i ng ()) ;
198 mod i f i e r S t r i ngBu i l d e r . append (” ”) ;
199 }
200
201 mod i f i e r S t r i ngBu i l d e r . deleteCharAt (

mod i f i e r S t r i ngBu i l d e r . l ength () − 1) ;
202 }
203
204 return mod i f i e r S t r i ngBu i l d e r . t oS t r i ng () ;
205 }
206
207 private Str ing bui ldMethodParametersStr ing(List <? extends

VariableElement> parameters) {
208
209 S t r i ngBu i l d e r parameterStr ingBui lder = new St r i ngBu i l d e r () ;
210
211 i f (! parameters . isEmpty ()) {
212
213 for (VariableElement parameter : parameters) {
214
215 Str ing parameterName = parameter . getSimpleName () .

t oS t r i ng () ;
216 Str ing parameterType = parameter . asType () . t oS t r i ng

() ;
217
218 parameterStr ingBui lder . append (parameterType) ;
219 parameterStr ingBui lder . append (” ”) ;
220 parameterStr ingBui lder . append (parameterName) ;
221 parameterStr ingBui lder . append (” , ”) ;
222 }
223 }
224
225 parameterStr ingBui lder . append (Acces sCredent i a l s . class .

getName ()) ;
226 parameterStr ingBui lder . append (” ”) ;

84 Experimental code

227 parameterStr ingBui lder . append (” ac c e s sCr eden t i a l s ”) ;
228
229 return parameterStr ingBui lder . t oS t r i ng () ;
230 }
231
232 private Str ing bu i ldCa l lParameter sStr ing (List <? extends

VariableElement> parameters) {
233
234 S t r i ngBu i l d e r parameterStr ingBui lder = new St r i ngBu i l d e r () ;
235
236 i f (! parameters . isEmpty ()) {
237
238 for (VariableElement parameter : parameters) {
239
240 Str ing parameterName = parameter . getSimpleName () .

t oS t r i ng () ;
241
242 parameterStr ingBui lder . append (parameterName) ;
243 parameterStr ingBui lder . append (” , ”) ;
244 }
245
246 parameterStr ingBui lder . d e l e t e (parameterStr ingBui lder .

l ength () − 2 , parameterStr ingBui lder . l ength ()) ;
247 }
248
249 return parameterStr ingBui lder . t oS t r i ng () ;
250 }
251 }

Listing C.1: Annotation processor

Bibliography

[1] SpringSource a division of VMware. Enterprise Java development tools.
http://www.springsource.com/developer/spring.

[2] Aslan Askarov and Andrei Sabelfeld. Secure implementation of crypto-
graphic protocols: A case study of mutual distrust. In In ESORICS.
Springer-Verlag, 2005.

[3] David E Bell and Leonard LaPadula. Secure computer system: Unified
exposition and multics interpretation. Technical Report, 44(5):134, 1976.

[4] Paul V. Biron and Ashok Malhotra. XML schema part 2: Datatypes, W3C
recommendation. http://www.w3.org/TR/xmlschema-2/, October 2004.

[5] David Booth, Hugo Haas, Francis McCabe, Eric Newcomer, Michael Cham-
pion, Chris Ferris, and David Orchard. Web services architecture, W3C
working group note 11. http://www.w3.org/TR/ws-arch/, February 2004.

[6] Roberto Chinnici, Marc Hadley, and Rajiv Mordani. The Java API for
XML-Based Web Services (JAX-WS) 2.0. Sun Microsystems Inc., 4150
Network Circle Santa Clara, CA 95054 USA, final release edition, April
2006.

[7] Stephen Chong, Jed Liu, Andrew C. Myers, Xin Qi, K. Vikram, Lantian
Zheng, and Xin Zheng. Secure web applications via automatic partitioning.
SIGOPS Oper. Syst. Rev., 41:31–44, October 2007.

[8] Stephen Chong, Andrew C. Myers, K. Vikram, and Lantian Zheng. Jif ref-
erence manual. http://www.cs.cornell.edu/jif/doc/jif-3.3.0/manual.html,
February 2009.

86 BIBLIOGRAPHY

[9] Stephen Chong, K. Vikram, and Andrew C. Myers. Sif: enforcing confiden-
tiality and integrity in web applications. In Proceedings of 16th USENIX Se-
curity Symposium on USENIX Security Symposium, pages 1:1–1:16, Berke-
ley, CA, USA, 2007. USENIX Association.

[10] Luc Clement, Andrew Hately, Claus von Riegen, Tony Rogers, Tom Bell-
wood, Steve Capell, Luc Clement, John Colgrave, Matthew J. Dovey,
Daniel Feygin, Andrew Hately, Rob Kochman, Paul Macias, Mirek
Novotny, Massimo Paolucci, Claus von Riegen, Tony Rogers, Katia Sycara,
Pete Wenzeland, and Zhe Wu. UDDI Version 3.0.2, UDDI Spec Technical
Committee Draft. UDDI Spec TC, OASIS, 10 2004.

[11] Dorothy E. Denning and Peter J. Denning. Certification of programs for
secure information flow. Commun. ACM, 20:504–513, July 1977.

[12] Dawson Engler. Static analysis versus model checking for bug finding, pages
1–1. Springer-Verlag, London, UK, 2005.

[13] eZ Systems AS. OpenESB community. http://openesb-community.org/.

[14] David C. Fallside and Priscilla Walmsley. XML schema part 0: Primer,
W3C recommendation. http://www.w3.org/TR/xmlschema-0/, October
2004.

[15] Robert Bruce Findler and Matthias Felleisen. Contracts for higher-order
functions. SIGPLAN Not., 37:48–59, September 2002.

[16] The Apache Software Foundation. Apache ode (orchestration director en-
gine). http://ode. apache.org/.

[17] The Apache Software Foundation. Apache struts. http://struts.
apache.org/.

[18] The Eclipse Foundation. BPEL designer project. http://www.eclipse.
org/bpel/.

[19] The Eclipse Foundation. BPEL to Java (B2J) subproject.
http://www.eclipse.org/stp/b2j/.

[20] James Gosling, Bill Joy, Guy Steele, and Gilad Bracha. The Java Language
Specification, Third Edition. Addison-Wesley Longman, Amsterdam, 3 edi-
tion, June 2005.

[21] Hugo Haas and Allen Brown. Web services glossary, W3C working group
note 11. http://www.w3.org/TR/ws-gloss/, February 2004.

[22] David Heinemeier Hansson and Rails core team. Ruby on rails.
http://rubyonrails.org/.

BIBLIOGRAPHY 87

[23] Facebook Inc. Facebook developers documentation. http://developers.
facebook.com/docs/.

[24] Google Inc. Google code apis & tools. http://code.google.com/more/.

[25] IBM iSeries Information Center. Eserver iSeries, Web services, WebSphere
Application Server - Express Version 5.1. IBM, 2 edition, August 2005.

[26] Diane Jordan, John Evdemon, Alexandre Alves, Assaf Arkin, Sid Askary,
Charlton Barreto, Ben Bloch, Francisco Curbera, Mark Ford, Yaron
Goland, Alejandro Gúızar, Neelakantan Kartha, Canyang Kevin Liu, Rania
Khalaf, Dieter König, Mike Marin, Vinkesh Mehta, Satish Thatte, Danny
van der Rijn, Prasad Yendluri, and Alex Yiu. Web Services Business Pro-
cess Execution Language Version 2.0, OASIS Standard. OASIS Web Ser-
vices Business Process Execution Language (WSBPEL) Technical Commit-
tee, April 2007.

[27] D. Kaye. Loosely Coupled: The Missing Pieces of Web Services. RDS Press,
2003.

[28] Henry George Liddell and Robert Scott. A Greek-English Lexicon. Claren-
don Press, Oxford, 1940.

[29] Andrew C. Myers. JFlow: practical mostly-static information flow control.
In Proceedings of the 26th ACM SIGPLAN-SIGACT symposium on Princi-
ples of programming languages, POPL ’99, pages 228–241, New York, NY,
USA, 1999. ACM.

[30] Andrew C. Myers. Mostly-Static Decentralized Information Flow Control.
PhD thesis, Massachusetts Institute of Technology, January 1999.

[31] Andrew C. Myers and Barbara Liskov. Complete, safe information flow with
decentralized labels. In 19th IEEE Symposium on Research in Security and
Privacy (RSP), Oakland, California, May 1998.

[32] Andrew C. Myers and Barbara Liskov. Protecting privacy using the de-
centralized label model. ACM Trans. Softw. Eng. Methodol., 9:410–442,
October 2000.

[33] Flemming Nielson, Hanne R. Nielson, and Chris Hankin. Principles of
Program Analysis. Springer-Verlag New York, Inc., Secaucus, NJ, USA,
1999.

[34] Geoffrey Smith and Dennis Volpano. Secure information flow in a multi-
threaded imperative language. In IN PROC. ACM SYMP. ON PRINCI-
PLES OF PROGRAMMING LANGUAGES, pages 355–364, 1998.

88 BIBLIOGRAPHY

[35] Henry S. Thompson, David Beech, Murray Maloney, and Noah Mendel-
sohn. XML schema part 1: Structures, W3C recommendation.
http://www.w3.org/TR/xmlschema-1/, October 2004.

[36] Jinesh Varia. Overview of amazon web services, December 2010.

[37] Jim Waldo, Geoff Wyant, Ann Wollrath, and Sam Kendall. A note on
distributed computing. Technical report, Sun Microsystems Laboratories,
2550 Garcia Avenue Mountain View, CA 94043, 1994.

[38] Petals Link (EBM Websourcing). EasiestDemo - open source BPEL to Java
generator. http://research.petalslink.org/display/easiestdemo/.

[39] Stephen A. White. Using BPMN to Model a BPEL Process. IBM Corp.,
United States of America, April 2005.

[40] Ann Wollrath, Roger Riggs, and Jim Waldo. Distributed object model
for the Java system. In Proceedings of the USENIX 1996 Conference on
Object-Oriented Technologies, Toronto, Ontario, Canada, June 1996. Sun
Microsystems, Inc.

	Summary
	1 Introduction
	2 Challenge
	2.1 Information-flow control
	2.2 Enforcing information-flow control policy

	3 Background
	3.1 Information-flow control model
	3.1.1 Decentralised label model
	3.1.2 Static analysis
	3.1.3 Jif security-type language

	3.2 Loosely-coupled systems
	3.2.1 Definition of a loosely-coupled system
	3.2.2 Web services
	3.2.3 Business Process Execution Language

	3.3 Related work
	3.3.1 SIF framework
	3.3.2 Swift framework

	4 Case study
	4.1 Online shop system
	4.2 Web service-based implementation
	4.3 Jif-based implementation
	4.4 Data types
	4.4.1 Data types used by Company Service
	4.4.2 Data types used by Postal Service
	4.4.3 Data types used by client
	4.4.4 Data types used by Shop Service

	4.5 Results

	5 Design and implementation
	5.1 Decentralised label model in loosely-coupled systems
	5.2 Adding information-flow control meta-data
	5.2.1 Adding meta-data at run-time
	5.2.2 Adding meta-data at compile-time
	5.2.3 Adding meta-data in implementation-independent way

	5.3 Information-flow control inside a BPEL process
	5.4 Mapping between Jif and XML-based languages
	5.4.1 Mapping between Jif and BPEL
	5.4.2 Mapping between Jif and XSD

	5.5 Policy validator
	5.6 Implementing the system

	6 Evaluation and discussion
	6.1 Hooking directly into the internal Jif API
	6.2 Run-time policy validation
	6.3 Client-side policy enforcement
	6.4 Propagation of the meta-data

	7 Conclusions
	A XML code
	A.1 Business process
	A.1.1 BPEL definition
	A.1.2 BPEL extension definition

	A.2 Definitions of Shop Service
	A.2.1 WSDL definitions of Shop Service
	A.2.2 XSD definitions of Shop Service

	B Jif code
	B.1 Business process
	B.2 Main class
	B.3 Bean object

	C Experimental code
	C.1 Annotation processor

