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Summary
The DTU IMM ESE section is developing the many-core FPGA based Tinuso processor for 
research into future architectures of multi- and many-core processors. The focus of this thesis is to 
develop the infrastructure needed for Tinuso cores to access main memory over a Network On Chip 
(NOC). 

The reason a NOC is interesting is that the Tinuso core which is designed for multi- and many-core 
implementations can be implemented with more than one core in a Tinuso processor architecture. 
For implementing this multi-core architecture different technologies is needed - one of the main 
features being the NOC.

The Tinuso core is already developed. It can directly access memory via a interface. To access 
memory with multiple cores in one processor a NOC is needed. This requires then a Network 
Interface Controller to interface between core and NOC is needed. Also a routing & switch 
component and a memory controller with network interface are needed.

In this project a NOC solution is designed for the Tinuso processor cores so that these cores can 
access main memory over the NOC. This was designed by analyzing current theory and design 
concepts based on specific prioritization of requirements. This prioritization was achieved via agile 
analysis of the base requirements, ideas for extensions and division of the base requirements into 
sub components and technologies.

The design chosen was a Torus 2D mesh with a YX routing algorithm with a twist of torus routing.

The design was implemented in VHDL for FPGA's and tested towards a simulated Tinuso core 
interface. This interface was design in cooperation with the Tinuso core developer[1] which 
developed his own test-bench. As a result slight differences was found between the actual core's 
expectations and what was used in the simulations here. The differences are documented in results.

Clock frequency results obtained from synthesis indicates that the NOC has to run at about half the 
clock frequency of the Tinuso cores[1]. This was expected as the implementation has not been 
optimized for fast clock frequency. This is the raw results from first total system test of an 
experimental prototype: the system is synthesized on a FPGA that is too small to even map it in 
synthesis. 

The implemented solution demonstrates the feasibility of the design and network protocol when 
tested. It also demonstrates how many challenges there are in designing and implementing deadlock 
free solutions in concurrent systems. Concurrent access to the main memory from multiple cores 
failed in many cases in the test-bench as a result of a specific deadlock situation. 

Most of the deadlocks were even expected as the testing went outside the requirements for this 
version of the NOC system. This was done to test support for interesting extensions such as core to 
core communication or and cache coherency.

Several solutions for the few deadlocks situations experienced in testing has been suggested 
demonstrating that there is many ways, with different tradeoffs, to handle deadlocks. 



Resume
DTU's IMM ESE sektion udvikler den mange-kernede  FPGA baserede Tinuso processor til 
forskning i fremtidige arkitekturer inden for multi- og mange-kernede processorer. Fokus i dette 
Diplom speciale er at udvikle infrastrukturen, som er nødvendig for at Tinuso kerner kan tilgå den 
primære hukommelse over et Network On Chip (NOC) design. Dette netværk er optimeret til intern 
kommunikation på chippen.

Grunden til at en NOC er interessant er at Tinuso kernen, som er designet til multi- og mange-
kernede implementeringer, kan bliver implementeret med mere end én kerne i en Tinuso processor 
arkitektur. For at implementere denne multi-kerne arkitektur kræves forskellige teknologier, hvor 
NOC er en af de primære.

Tinuso kernen er allerede udviklet. Den kan direkte tilgå hukommelsen via et interface. For at tilgå 
hukommelsen med flere kerner i en processor skal der bruges et NOC. Til det skal bruges en 
Network Interface Controller til at kommunikere mellem kernen og NOC. Derudover skal en switch 
og router komponent samt en hukommelses kontroller bruges.

I dette projekt er der designet et NOC løsning til Tinuso processorens kerner, sådan at disse kan 
tilgå den primære hukommelse over NOC'en. Designet blev udført ud fra en analyse af nuværende 
teori og design koncepter baseret på en prioriteret kravspecifikation. Denne prioritering var udledt 
via agile analyse af de basale krav beskrevet øverst, ideer til udvidelser og uddybelse af de basale 
krav i mindre del komponenter og teknologier.

Det valgte design er et torus 2D mesh med YX trafikstyrings algoritme med en blanding af torus 
elementer.

Designet var implementeret i VHDL på en FPGA og testet mod et simuleret Tinuso kerne interface. 
Dette interface var designet i samarbejde med Tinuso kernens udvikler[1], som også udviklede sit 
eget testkørsels system. Som resultat heraf blev der fundet mindre forskelle mellem den faktiske 
kernes implementering af interfacet og det der var simuleret i dette speciales test opstilling. 
Forskellene er dokumenteret i resultat sektionen (Results).

Clock frekvens resultatet der blev dannet via syntesen indikerer at dette NOC system kan køre 
omkring halv frekvens af Tinuso kernen[1].  Dette var forventet, da denne implementering ikke er 
blevet optimeret til høj clock frekvens. Testen var den først runde af system tests af dette prototype 
system, der ikke engang kunne være på den FPGA syntesen var lavet efter.

Den implementerede løsning demonstrerer gennemførligheden af dette design og netværks 
protokollen der blev designet i testene. Der blev også demonstreret de mange udfordringer der i at 
designe og implementere løsninger der ikke går i baglås i parallelle, samtidige, systemer. Samtidig 
tilgang til hukommelsen fra flere kerner fejlede og gik i baglås i mange tilfælde, som konsekvens af 
en specifik ”deadlock” - ”baglås situation”.

De fleste af ”baglås situationerne” var faktisk forventede, da test opsætningen gik et godt stykke ud 
over de krav, der var sat. Dette blev gjort for at teste supportering af interessante forbedringer og 
udvidelser til den nuværende version af systemet, så som kerne til kerne kommunikation og ”cache 
coherency”.

Flere løsninger er blevet foreslået i dette speciale, for de få situationer hvor det vides, at det 
implementerede system kan gå i baglås via teori og tests. Løsningerne demonstrerer at der mange 
måder, med forskellige konsekvenser, at håndtere sådanne situationer.
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1 Introduction
The DTU IMM ESE section is developing the many-core FPGA based Tinuso processor for 
research into future architectures of multi- and many-core processors. The focus of this thesis is to 
develop the infrastructure needed for Tinuso cores to access main memory over a Network On Chip. 

The reason a NOC is interesting is that the Tinuso core which is designed for multi- and many-core 
implementations can be implemented with more than one core in a Tinuso processor architecture. 
For implementing this multi-core architecture different technologies is needed - one of the main 
features being the NOC.

The Tinuso core is already developed. It can directly access memory via a interface. To access 
memory with multiple cores in one processor a NOC is needed. For that a Network Interface 
Controller to interface between core and NOC is needed. Also a routing & switch component and a 
memory controller with network interface are needed.

Several of the extensions and expansions can be developed on top of this basic setup. Of particular 
interest is core to core communications and deadlock prevention when multiple cores try to 
communicate on NOC at the same time. These and other steps towards supporting cache coherency 
protocols on top of the basic implementation will be introduced and analyzed. 

Any steps towards cache coherency support are important for multi- and many-core systems as 
cache coherency is important for the overall speed of the processor when multiple cores are 
employed.

Other research related extensions that is also interesting will be studied in this thesis is: torus NOC 
configuration and routing design, good scalability features of NOC's and implementation of variable 
length of the main lanes in NOC systems.

1.1 Tinuso
The pipeline or processor core of the Tinuso architecture has already been developed. This core and 
architecture is designed and implemented specifically for FPGA implementation to research in 
multi- and many-core processor [1]. Its instruction set makes use of predicated instructions and 
supports C/C++ and assembly language programming. The Tinuso core is deeply pipelines and 
achieves clock frequencies close to 400 MHz in FPGA's comparable to the FPGA that will be used 
as the basis of this thesis.

The Tinuso architecture are designed to be easy extendable to be flexible for the research its used 
for. Tinuso already contains a co-processor interface to connect to a network interface which will be 
used in this thesis.

The name Tinuso comes from the Esperanto word for “tuna”. Since this species live in swarms there 
is a level of analogy to multi-core systems. Also Clupea, the Latin word for “herring”, is developed 
at DTU IMM which is an intelligent network interface. In the food chain the tuna is one level above 
the herring which is in good correlation with system level architecture.
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1.2 Objectives
The requirements of Network On Chip and main memory interfacing can be broken into the 
following sub requirements and systems:

First we needed to design and implement a Network On Chip. For this we need to design a interface 
between the current Tinuso core and the Network Interface Controller which is the interface towards 
the NOC. The NIC also needs to be designed and implemented to interface with the NOC. Then a 
routing and switching component in the NOC is required.

To serve main memory request on the NOC a memory interface is required towards the memory. 
On-FPGA memory (SRAM) and controller interface will do for testing and smaller programs etc. 
This memory interface is meant to be combined with the NIC so this is reused for all interfaces 
towards the NOC.

To make sure the NOC interfaces and routing interacts correctly a network protocol has to be 
designed as the guideline for behavior and communication in the NOC.

Further all these parts should be as configurable as possible for an example in terms of lane width of 
the NOC system so differences can be studied – this is for a research processor after all.
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2 Theoretical background
To understand the decisions made in this thesis some background theory is needed into the topics of 
general network theory and Networks On Chip specifically.

2.1 Networks in communication
The Internet is just one of many, many systems that interconnect devices for communications across 
any distance from nanometers to galaxies. Typically such systems are designed in a way that allows 
several devices to use the same communication channel for communicating with other devices on 
the channel. This is possible via a set of rules defined in what’s called a network protocol to 
communicate. A communication channel would in case of human speaking be the air. It is the 
medium the signals, in this example sound, is traveling in. These systems of communicating devices 
are called a network as they often in design or effective real world wiring and connections looks 
like a spider networks. Hence, the term coined for an Internet protocol which is called "the World 
Wide Web" and is why the prefix “www.” is used when requesting websites.

2.1.1 Network Communication basics

There are two main ways to look at and design networks: Package switching and circuit switching.

Package switching is the same way humans have designed the mail and package delivery systems. 
Your items needs to have a sender and receiver address and a distribution system then takes your 
items, sorts them and tries to deliver them to the receiver or another distribution central closer to the 
receiver.  This is how the Internet and many other networks work.

In communication network terms your items are called packages with the distribution central called 
a router or switch as it routes your package via its header information of receiver and sender 
information and possible further data. The switch part is analogous to a train network where a big 
station might have many trains that need to go back and forth between very few lines of track so the 
station managers need to switch back and forth on the holding or loading tracks that in 
communication network are called buffers. Notice it's the holding & station tracks that are 
analogous to buffers in networks - the train stopping security features called buffers is something 
completely different. Buffers are used in many kind of routers and switches in many sorts of 
network types to temporally contain some information before transmitting it further. 

In a network a human would be analogous to a node or a client E.I. a member of the network that 
can send and receive. In some cases nodes also route or switch the data for others just like humans 
can. For an example just think about much routing a receptionist or coordinator in a company does 
on a daily basis by selectively passing information to others.

To design circuit switching in communication network is analogous to directing flow of water or 
old school long distance phone calls. Say I want to talk to a person in a city in a nearby. What I then 
do is I send a signal to all the city’s or other connection points in between and ask for them to open 
a most often physical line between me and the destination. They then open to a connection point 
they think is closer to the destination than where my line ends now. When the line is open I now 
have a line where I can send and receive my data in this case my voice. 

Time Division Multiplexing is a circuit switching example where each device communicates with 
each other in specific allocated time slots. This is how a small number of today's digital phone-line 
connections can handle all the cross-Atlantic conversations. They use TDM to fit many 
conversations sliced up in small bites inside a single digital cable.

Page 3 of 48



2.1.2 Network Protocols

Network protocols are needed just like the human language which are arguably a special case of 
network protocols on its own. They are required so that senders and receivers of messages have the 
same rules and guidelines to interpret and form messages.

Many of the behavioral norms and ideas of the Internet and other networks can be traced back to 
when humans used light, flag, smoke sources and other visual signals to communicate over 
distances. In fact Morse code is perhaps the best known network protocol. This is a good example 
as this protocol is not just the Morse code alphabet as most would believe but includes human 
behavior and rules. Such rules as who are allowed to use a ships Morse code sending device, 
emergency procedures, waiting for others to respond that they acknowledge and understand the 
message you have sent. Or to resent your message if the receiver couldn't recover enough of the 
message for it to be understandable with their human wit and so forth. 

Network protocols usually have many if not all of the above described features and more depending 
on number of parameters. These deciding parameters could be the practicality in the intended 
networks maximum distance, speed and number of devices connected. For an example some 
networks like the Internet Protocol (IP) and most of its associates we now all use in our life on a 
daily basis for most of our communications has all some level of error correction. They have this 
via algorithm design in the protocol due to the messages have to travel relative long or hazardous 
distances where errors are likely. While others like the Tinuso system NOC protocol we have 
designed has no use for such features as their complexity and speed loss is vastly to great compared 
to the frequency of error rate internally on a chip in our current systems. 

However this could again change in a not too distance future so protocols are often updated if 
practical or other “service” protocols are layered on top. For an example if some of the data 
transported in that network critically have to be error free or encrypted – think bank transfers or 
real-time emergency systems like in power plants or your car.

Page 4 of 48



2.1.3 ISO Open Systems Interconnection

The International Standards Organization (ISO) has defined a reference model for protocols and 
networks called Open Systems Interconnection (OSI). The core concept of this model and all you 
really need to know if you have read the rest of this theory section is that OSI defines a 7 layer 
model for designing and implementing networks where each layer does not know or need to know 
of the one below or above if everyone adheres to the model. 

The below is a 7 layer model – notice how the layers have color similarities if they are “merged” in 
the fewer layer models:
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There is the lower hardware layers like package routing that makes actual physical and the basic 
sending of data from one end to the other possible in shorter distances the lower you come. The 
middle layers that can offer various services on top of this or in some cases total ignored for going 
straight to the top layers where the individual devices specific needs are met. In most cases via 
software programs that most often can use many or none of the middle layers as a service to reduce 
their work load and development time.

Top layer could be your internet banking’s security layer and on top of it their functional system 
you interact with. The middle layers in this case would be internet protocols that help with basic 
security and correct transmission etc. and in the lowest layers we have the first have the Internet 
Protocol (IP), unless you count that as a middle layer. IP makes it possible for transmission to go all 
the way to the destination even though sender and receiver is on different internal networks. An 
example would be like the local one a company can have internally and the one is between space 
agencies and the International Space Station which in fact is one of the few places connected to the 
normal Internet where the lower protocols are actually different than de facto protocols due to the 
delay to and from ISS.

The lowest protocols just makes sure your network interface like your wireless chip can work with 
your wireless connection point at physical parameters such as frequencies, connection plugs, 
connection protocol to and from locally between the 2 or more devices on this communication line 
– in case of wireless often some form of the earlier mention Time Division Multiplexing is use to let 
more devices talk to the same wireless connection point or router at the same time at the cost of 
splitting the speed up in the number of clients connected.

Some think a 5 layer model of the same type is better but that’s not a ISO standard and both models 
can have their usefulness depending on which type of network your building a device for. For 
reference the above theory used between 3 and 5 layers depending on how you count.

What really is essence here is that the concept here is to reuse as much as possible if you can. So 
every time you want to develop say a chat client for a smartphone you don't have to reinvent the 
entire Internet and the mobile communications network but can reuse the majority of components 
and it will still be comparable with what everyone else uses on the network.

As a developer you might even be so lucky that you get to choose whether you want to use top layer 
protocols that give you no fuss speed but gives you no guaranties at all or stability protocols both 
with guaranties of delivery of information and correct order of deliveries but as tradeoff for less 
speed. Or even security protocols that works on top and with existing networks but gives you 
perfect security in terms of encryption and prof of identity for sender and receiver like use in proper 
internet shopping payment systems. The no fuss speed option is actually the most basic option that 
all others work on top of or combine with as all it really does is trying to get data back and forth 
with sender and receiver addresses provided and using the lower hardware near protocols like 
package switching to try to actually move the data. In its bare for its often used in live media 
transmissions or other time critical transmissions where retransmissions and other time delaying 
features such as demanding error correction means data is coming in way to late to be practical 
except for special circumstances the end user program or device usually want to decide on its own 
and always can by building a layer on top.

This reuse yet highly customizable end product is the beauty of the concept ISO has standardized in 
the OSI reference model.
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2.1.4 Topologies

One important topic of generic networks is how the physical hardware devices are connected as this 
have huge ramifications for the network protocol design and difference performance parameters. 
Here are the major types:

Bus: This is basically the way some wireless networks, some 
special application wired and older networks work. Everyone 
shares one channel and has to take turns communicating on it. This 
clearly have scalability issues if everyone on it wants to talk 
relative often and for extended time. Also if the channel 
malfunctions there is no backup. On the other hand due to how 
such networks is design if nodes malfunctions there are a good 
chance that only that devices malfunctioning and devices that 

communicates with these will suffer and the rest of the system can continue. It is also relatively 
simple, predictable and cheap implement compared to other topologies which makes it suitable for 
small systems.

Ring: Everyone is connected in a ring and if you want to connect 
to someone that’s not your neighbor you have to ask the neighbor 
to send it to him or to the next neighbor over and so forth. This is 
one step up from buses but with some advantages and limitations. 
Everyone has potential more speed as there is 2 ways around the 
network and if nobody else talks to your neighbors you have 
highest possible speed. If a link to one neighbor malfunctions it’s 
possible to design it so that messages can go the long way around 
and still reach them. If both a devices neighbors malfunctions 
however total connection is lost would be lost. That is why most 
ring topologies are designed so that in case of malfunction the 

signal path between the neighbors of the malfunctioned is still open.

Star: Here everyone has to talk to the star in the center and that stars 
routing or switching system will decide where your messages will 
go. Everyone has full speed to the star device but is depending on 
the star to have enough internal speed to route fast enough to other 
devices than the star or for the star to respond fast enough. If two 
The Star device is a single point of failure like your wireless or 
wired network at home so if it goes down there is no local or 
Internet for you. However mobile networks, larger local wireless 
networks and such star networks work with more than one star 
within range a large part of the time depending on your location and 
network. This means the device can switch over in case of failure or 

overcrowded network but usually with some loss in signal speed or stability for wireless networks 
due to physical rules. On wired networks it’s like having 2 internet providers or 2 routers for the 
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same local network – if one fails there is a short downtime while you manually or automatically 
switch to the other if you are not connect to both at once which technically is a border line mesh 
case.

Mesh: This topology comes in two versions: Full mesh and partial 
mesh. In full mesh every node is connected to every other one 
directly with a channel. This means everyone has the possibility of 
full speed to everyone else if everyone can receiver and send to 
everyone else independently of how many they are 
communicating to at the same time. This requires very fast nodes 
or limits the speed advantage. Also the number of channels makes 
this both more expensive to setup and maintain compared to any 
other solution. It’s also possibly unpractical for high speed 
connections with many nodes or node numbers such as the 
Internet where full mesh status would never be achievable with 
current technology as just the probability for a few channel to fail 
even before the full mesh is connect for the first time is practically 

a certainty. The stability for practical node size can however be very good as there is minimal points 
of failure E.I. a node has to fail on its own or loose connection to all its lines to loose connection to 
anyone or the receiver have to experience the same. Stability can also be very bad if a protocol 
doesn’t take into account that everyone can retransmit to everyone else and overcrowd the network 
with.

Partial mesh version are where every node is 
connected to more than one other so that Ring 
topology is a special  lowest version of partial mesh 
with connection to 3 other nodes and their being at 
least 4 nodes in the network the first normal partial 
mesh type in terms of size. It’s basically all the 
advantages of full mesh topology with none or very 
limited version of the disadvantages as long as the 
partial mesh network includes more than 5 nodes 

and at least 4 connections or so depending on number of nodes. Dangers of overcrowding via 
retransmitted data in endless loops is still existent however. All normal partial mesh requires 
relative complex and there by expensive node and router solutions 3 sub types are interesting in 
relation to this thesis:

2D partial mesh – This is a type where a node is only 
connected to itself and its neighbors as seen in a 2D grid array. 
Typically only the adjacent nodes left and right and up and 
down are connected but connections where all 8 adjacent 
nodes in 2D grid is also an option. This means that every node 
have to ask its neighbor like in ring topologies if it was to 
communicate with logically distant nodes. This is worse than 
most other partial mesh types in terms of speed and delay but 
make for very simple high-speed switches and routers due to 
the limit number of routing options in a known grid. Edge 
nodes however only have 2 or 3 neighbor connections.
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Torus partial mesh – This is a special case of 2D 
partial mesh where edge nodes have been 
connected so that left edge goes to right edge and 
top to bottom and vice versa. Meaning all nodes 
have 4 neighbors with the potential speed boosts 
this added routing can bring. This also means 
additional complexities to routing protocols 
which is a current research topic. In the Network 
On Chip section this topic and routing concepts 
related is introduced.

Dynamic partial mesh mash-up – This is not an official or de facto name for a topology if it can 
even be called that and is entirely the authors own interpretation of what exists in the wild. This is 
in the authors mind the best way to describe a subcategory where connections are changing often or 
rapidly and where many current networks can be placed as they exhibit the clear markings of a 
mash-up between several network topologies and routing concepts.

The core of this type is typical partial mesh with some nodes connected to many others in what is 
comparable to local star configurations in several layers. Many of the of the stars nodes like main 
core routing networks of the internet are also interconnect with each other directly for speed or 
stability reasons. It’s a mash-up of network topologies and routing concepts.

It is how the Internet is setup at the world wide core infrastructure between internet providers and 
depending on your local or regional network this may also be the case there.

This mash-up is done mainly on key locations around the world like in Amsterdam, London and to 
a lesser extends the older original regional or national locations like the Danish Internet eXtange 
point at DTU when talking about the internet. These older regional locations is connected to a 
number of other locations over long distances across borders and most connections out from the 
region would go through these using them as both outbound star connection point and regional 
partial mesh interconnect center. Connections change all the time due to new faster/better 
technologies, repairs or expansion needs that are very rapidly changing.

This is one of the main reasons time and speed from your computer anywhere in the world to any 
other can be very unpredictable or the connection even unstable. Even for connections to the 
neighbor town if they are not directly connected.

On the other side the Internet Protocols makes it possible to at least have connections from 
practically most industrialized places in the world. With proper network infrastructure many 
European countries can even enjoy internet based real-time games or video links from other well 
establish internet nations on other side of the Earth such as South-Korea and East-coast USA with 
only between 1 and 4 hundred milliseconds delay. Comparably current mobile wireless technologies 
such as 3G mobile networks can have the same delay between 2 mobiles in the same room while the 
new LTE protocols has delays more comparable to home WiFi besides the public marketed speed 
boosts.

All these technologies can be seen as part of the internet or their own Dynamic partial mesh mash-
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up in their own right. In LTE, 3G and other mobile protocols there is a star configuration to the local 
mobile reception mast while the masts now are all running on some level of backbone network 
being interconnected at some level depending on what’s physically practical. In many homes WiFi 
networks are also connected with wired networks for internet access and stationary objects such 
TV's, gaming consoles etc.

In conclusion on this sub type: it can be very stable for over all routing with few or no single points 
of failures depending on how you use these networks which is constantly evolving. This was a 
primary goal the US military research division intended when they developed what is now the 
internet. This type can be very ineffective and slow at relative short distances due to the lack of any 
overall plan for local area interconnections which means there is no guaranty of geographical 
relations to performance in short distances.
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2.2 Network On Chip
Networks on a chip comes from the ideas of using classical computer networking for on chip 
communications between a larger number of components where development time and 
communication performance is not well supported with direct links or buses. Originally naive 
implementations with large router components or the like was used which had good scalability in 
development time but was slow and used too much chip space. Currently designs in very fine tuned 
versions are emerging with tune in on the different tradeoffs faced. This is emerging partially with 
the need for interconnecting more and more components to satisfy performance goals. This has 
made NOC a very promising technology in everything from internals of heavy optical routers to the 
internals of a smartphone. Most embedded devices like smartphones are merging towards single 
chip designs that literally are the “System on a Chip” and for that the components which are often 
made by different manufactures and are insanely complex needs to communicate.

The main goal of NOC systems is to be fairly easily scalable with a range of resources such as 
general processor cores or special signal processors attached. The scalability is twofold;

1.Scalability in design and implementation face where modularity and network infrastructure has to 
function so that it requires at worst close to linear cost with increasing number of resources 
connected and attaching new types of resources.

2.Scalability in terms of the network performance. It has to be both practical in terms of chip space 
usage, power and scale in speed at worst near linearly which means that full mesh and bus 
topologies are impractically expensive or to slow as the number of connected resources rise.

2.2.1 Network topologies
The resulting choices for network layout based on the scalability requirements is typically a mix of 
partial mesh, star topology and such network topologies custom made for the specific needs of 
communication between many resource inside one chip. Any NOC designs are application specific 
to enhance performance parameters such as energy or thought put for a particular combination of 
resources while some NOC designs are trying to be general in nature for compatibility with many 
resources. Below is two very popular choices explained that can fulfill the requirements for NOC:
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2D grid

4x4 2D grid – C is cores; R is the routing & switching components.

This graphs shows better than words the perhaps most well-known layout used successfully in NOC 
systems. The 2D grid is often but not always based on a partial mesh topology where each node is 
connected to its direct neighbors and a local resource. This means that in order for a package or 
signal to propagate to a faraway resource it has to travel many clock cycles. On the other hand the 
length of the connection wires is short so clock frequency can be high. It also means as many as all 
resources potentially can communicate simultaneously in best case. Often due to the relative slow 
rate of communicating over any network resources try to do as much internally as possible giving 
the same effect as in any other network where only a portion of the resources need to communicate 
to another resource at any time. This means the use of connections, bandwidth and power is well 
balanced and is better than many alternatives as the bandwidth scales well when adding additional 
resources. It’s also relatively easy and predictable to develop fast routing algorithms for which is an 
important speed factor in NOC systems.
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Torus

4x4 2D grid with torus edge connection scheme.

C is cores; R is the routing & switching components.

A torus design is 2D grid with added features. The edge nodes of this grid are connected to its 
opposite edge so that if all nodes where distributed with equal distance in a 3D map it would look 
like a torus shape. This makes routes between 2 nodes potentially a lot faster in some situations and 
adds more routes leaving less chance of intersection between communications lines. The advantages 
of a torus design largely depend on the resulting long wire length across the NOC from edge to edge 
in current 2D FPGA designs is limiting to the clock frequency of the NOC. Also a major factor is 
the routing algorithms used as there is many ways to support torus routing where the tradeoff is 
between complexity of routing algorithm and efficient use of torus advantages.
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2.2.2 Routing algorithms
There are many well documented routing algorithms for NOC networks. In this section some of the 
most relevant and efficient routing algorithms for 2D grid and torus topologies are described.

XY
This routing algorithm is very popular for its efficiency 
in 2D grids. In test's it beats the current competitors for 
medium to large NOC designs by being deterministic 3, 
having no gridlocks and simple implementation leading 
to fast clock frequencies. The design is as simple as 
first moving in the horizontal direction or x-axis in a 
2D coordinate system and the vertically or on the y-
axis. This makes gridlocks like the below example 
impossible, when a signal being blocked by another 
wait for it to remove itself. This is due to the limit 
degrees of freedom in how many times the route is 
allowed to turn – i.e. there is no freedom; only 
movement in horizontal direction and then vertical is 
allowed and only once each. Below is the electronic 
version of a New York 1970'is gridlock:

YX
The same as XY routing but where the routing is 
first done in the vertical direction and then in the 
horizontal direction. YX is often just included as 
minor note in XY descriptions as there is no 
difference in speed, implementation time etc. 
between them in most systems.
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Torus designs

In torus designs the algorithms have to be somewhat different from normal 2D grid versions to 
effectively use the additional routing possibilities. Deadlocks are harder to avoid in a torus design 
but there are solutions. Generally they revolve around virtual channels where horizontal and vertical 
lines are not directly connected on a logical level. Instead package switching inside the router 
transport from one “virtual channel” to the other when a package has reached its destination in the 
axis it is traversing as illustrated below:
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Partially adaptive
Partially adaptive algorithms is trading efficient use of connections for additional routing 
implementation complexity and there by possibly raw thought put loss due to big routing logic, 
blocking so as not to run into gridlocks etc. The algorithms do this by trying to steer signal 
connections or packages around blockages where other connections are using the fastest or first path 
selected to the destination with the algorithm used. The main difference from XY routing is that 
they can travel in x then y then x again or y the x the y again and such path with further degree of 
freedom. But they are not allowed full freedom as not to make the logic to complex when avoiding 
deadlocks hence the name partially adaptive. An example:

Page 16 of 48



3 Analysis
This section will detail the planning, analyzing questions and results used to scope the tasks of this 
project.

3.1 Agile development
Agile analysis is an ongoing process throughout the project span. To understand it here is some 
general information about agile development.

Agile in this context is a way of doing, mainly, software development that is a kind of grand overall 
strategy that is subdivided into smaller components depending on what you look at. It is almost all 
inclusive with many features not usually incorporated into development thinking even though these 
are important to the end user and developer of the project. It’s important here to state that many 
critics of agile argue that this is mostly not the fact as many of these features are now used by most 
developers that do not state they use agile development techniques. They argue that some of these 
changes were simply a result of smaller modernization or additions to older flawed techniques that 
became broadly accepted by most as flaws was found. On the other hand many agile and related 
developers argue that in fact it’s the other developers that are slowly moving towards agile 
development by using most of its components while still using fundamentally flawed or not having 
a development strategy.

Generally agile has been accepted when used in relevant cases as leading to more efficient 
developing with better end user value and/or lower cost of development as feature creep and other 
often stated problems of untimely, bad or expensive products is battled. Feature creep is a well-
known phenomenon. It describes the phenomenon for adding more feature than needed for the core 
product to work efficiently for waste majority of end users. It happens most often as the developers 
or end users think in some cases would be smart to have the feature. This usually gets worse as 
development progresses and end user requirements and values change or expand.

Agile been popularized with internet and mobile software applications as it works great for fast 
changing end user requirements, fast development cycles that can be used to put new features into a 
live running product often. Also research projects with many unknowns is good target as priorities 
here change can change very often as dead ends of research and too time consuming paths are 
found. In fact risk migration by uncovering problems with central features first is a key component 
of agile.

That is why based on previous experience the author decided with the Tinuso team (Sven Karlsson 
and Pascal Schleuniger) to use this as our development strategy on this project.

3.2 Agile analysis
Basically the concept of agile analysis is to in the team to update a list of the core features needed to 
finish the core product to a fully working state. This should be done as often as weekly is based on 
current status of development at the meeting. These features are then ranked on properties such as:

•The end user value for that feature.

•How critical the feature is for the product to function.

•Have the feature any unproven technology etc.

This range generally from “need to have” features that the product would fail to meet the most core 
functionality without too “nice to have” features that could be superficial changes, features that 
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have very small effects or effect very few end user little. In between is “want to have” features that 
are perfect targets for additions to current release date of project if there is time when “need to 
have” features are done or for next versions. These are typically the targets for the rapid updates 
after launch that is part of modern internet and mobile application development. Bugs that leave 
non-core functionality not working as in tended would be a “want to have” fix while any bugs to the 
core functionality would almost exclusively be “need to have”.

From this table it’s easy to coordinate who works on what that short period inside a team if needed 
or just plan your own time effectively to be as productive as possible. Then more or less daily a 
number of sub tasks can be selected based on their critical importance to the features major features.

Generally a project has failed developing the product if it’s stopped early. This means before all 
features of the need to have list is not done making the product practically unusable for its intended 
use. On the other hand many projects are finishing the development early if all the “need to have” 
features is complete. This is because its often not worth focusing the resources on the project any 
more if the developer can work on other projects that is “need to have” within the organization 
according to case studies[2]. What is the central point of this is that it easy for everyone to see when 
it’s worth continuing development on a product or sub feature. There is always a clear picture at any 
time of what state the product is in - even after “need to have” features are implemented.

3.3 Scoping the task
As agile scoping as already explain in the previous sections is a on-going process thought out the 
length of a project this section is a mix initial thoughts and ideas with the end result schematic 
which can be seen below. The requirements for completing this project are divided into the 3 
primary groups: “Need to have” features that has to be designed, implemented and tested. “Want to 
have” features which cover what the Tinuso team wished for this thesis to get as much of as 
possible. Then there is “nice to have” features which might be actually be implemented before 
“want to have” features as most of our want to have features have rather large implications on the 
total system while many nice to have features fortunately neatly can be developed largely as 
independent components with much less development time needed.

Need to have Want to have Nice to have
Network protocol Communication between cores Main memory interface

Switch/router Cache coherency

Network Interface Controller Torus routing algorithm

NIC interface towards Tinuso core Multi-core access to the main 
memory

Network interface for memory

Test memory & interface

Test-bench with simulated Tinuso 
core interface towards NIC

Scalable Network On Chip

The features seen here in the final table version is based on the requirements of cache coherency 
introduced in the introduction section. The mainly focus on the Network On Chip architecture 
which is the core interlinking feature between all these components and sub-components.
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4 Design
There are several major design decisions critical to this project and in this chapter. This section 
covers the main sections of network protocol design, Tinuso core interface design and NOC design 
decisions. Test designs and related is appropriately in its own sections. The following are the final 
revision of these design decisions and where relevant changes from initial drafts are noted.

4.1 Network protocol design
One of the main features of a network protocol is the package design I.e. how the parts coordinate 
and understand what’s being said over the communication line. In this system the header and data 
parts has to be able to be divided into smaller chunks depending on the lane width implemented. 
Minimum lane width supported was set at 16 bits but actually smaller could be supported like 8 bits 
width with this design but it would be harder to make an easy switch in implementation between 
lower than 16 bits without major changes.

Due to this system is to be implemented on a FPGA there is limits to how many points or connected 
resources that can be connected. In the current design 8 bits for addressing nodes giving near 256 
unique address possibilities is then enough even if a few addresses should be reserved. To route the 
package there is a need for including both the sender and receiver information – the sender 
information being especially invaluable if return responses are needed once the package reaches the 
destination. The entire package structure is defined below:
Package design

Size in bits Type:
8 Receivers address

8 Sender address

16 Type + special data (ack bit etc.)

0-288 Data

Type data:
To support cache coherency types related types and general types such a core to memory read or 
write operations effectively, 16 bits is set aside as type + special data.
There is no types included specifically for cache coherency such as acknowledgments, responses, 
write backs etc. but the structure supports extension with these by having enough types and special 
data space to support huge number of package types which doesn't need extra data appended for up 
to 8 bits of type related data.

Bit 3 down to 0 defines the length of data included in a package coded in the special steps. No data 
meaning all information is contained in the type and special data such as acknowledge (ACK) or not 
acknowledged (NACK) uses. Or 288 bits of additional data for sending more than entire cache lines 
in one package. A cache line being 8 X 32bits in this design as standard but this is configurable:

•"0000" = 0 bit

•"0001" = 16bit

•"0010" = 32bit

•"0011" = 64bit

•"0100" = 128bit
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•"0101" = 256bit

•"0110" = 288bit

Bit 8 down to 4 defines the type of the package with these already defined types and plenty of space 
for additions:

•0001 - read memory line from location defined in package data and return memory line

•0010 – write package data to memory line location defined in first 32 bit of package data.

•0011 – read-return type for the memory line returned to sender in type “0001”

Routing design
The address bits is defined as locations in a coordinate system with 2 axes so it’s split in 2 x 4 bit 
numbers. 0000 0001 being lower left corner and 1111 1110 being the top right corner. 0000 0000 
and is reserved for signaling and 10100000 as explained later is also reserved. The first 4 bits for 
location of the switch/resource pairs in the vertical direction and last 4 bit is location vertical so 
0001 0100 would be location (1,3) in a normal coordinate system starting in (0,0), vertical bits 
starting at 0001 to work around 0000 0000 being reserved.

Further routing design decision is explained under the NOC design section as they are based on 
NOC design decisions.

Line Ready Signal
The receiver of a package needs to send a signal when successfully stabilizing a communication 
line with the sender to make sure data are not lost down the line. This can happen in case of having 
to wait for other lines blocking the path or if the receiver is not ready. At least in this basic 
implementation this is an issue. For this the following line is send from receiver to sender: 
"0000001010100000". That word then need to be reserved as signaling lengths in NOC system 
easily comes to the length that a receiver getting this signal could have gone back to idle state after 
responding to this before sender got the command that this signal and would now think it was the 
start of an incoming package header. However since the length of this word is the same as both 
sender and receiver addresses put in a package header only one of the half’s need to be reserved and 
the line 10100000 is then as a consequence reserved.

4.2 Network On Chip design decisions
The NOC system was chosen to be a 2D grid as a partial mesh. It uses YX routing design with a 
few novel design features. One of these novelties is an experimental torus design where edge nodes 
of this grid are connected so that if all nodes where distributed with equal distance in a 3D map it 
would look like a torus shape. This requires some additions to the routing protocol compared to 
normal 2D grid routing. The Torus design is not a novel NOC system in itself. Only the routing 
decisions related that used in the routing components are novel - at least to the authors knowledge 
the exact design is not mentioned anywhere else.

To simplify the implementation the YX routing is used with exception of routing at edge nodes 
where all routing choices are considered. Specifically if it can save connection length torus edge 
connections are used even if the end target node is not an edge node. But this is only considered if a 
package reaches a edge node so with larger NOC designs the effects on the central part of the grid is 
very little while the edge areas can have much shorter connections. In fact the corner area nodes 
keeps having a the same very short connection length to each other regardless of the NOC 
dimensions. See diagram below:
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On a practical level it is 
decided that each router 
component should have 4 
connections to its 
neighbors and one line to 
the NIC. The lines should 
be going to the neighbors 
up, down, left and right of 
the router. The standard 
lane width of these lines 
should be 16 for 16 bit per 
clock cycle as a good 
compromise between 
space, speed and power 
use and the width should 
be scalable, as easily as 
possible, to 32, 64 etc. 
when implementing.

The NIC should be 
implemented so that it is 
independent of the 
interface to the connected 
resource by only 
communicating with the 

resource indirectly via buffers and a glue logic process in VHDL. This is needed anyway to 
guaranty only successful transmitted packages from the NOC is transformed and send to the 
resource. Also to guaranty the resource that any packages it wants to send over the NIC is actually 
sent. Another important reason to do this is so that the NIC can independently send or receive a 
package from the NOC while the resource is also communicating with the NIC. The Tinuso 
interface and many other resources, especially if they support multiple send operations before 
receiving packages expects to always have access to the communicating with the NIC. In fact as is 
detailed in the next section it’s not even possible for the NIC to tell that its busy.

4.3 Tinuso core interface
The team working on the Tinuso hardware platform includes the original Tinuso pipeline and core 
developer Pascal Schleuniger. He is also the team lead on the Tinuso architecture, a PhD student 
and the guide for this project. Together with Pascal a interface between the core's cache controller 
and the planned Network Interface Controller was designed.

The interface consists of several flags the core can use to communicate with the NIC. There is a flag 
for requesting a read and one for requesting write operations with data provided in an address line 
and a data line. The data line sends 32 bit at a time for writing cache lines of 8x32bit. Also there is a 
special address line for which receiver the NIC should send this request to. This was for core to core 
communication support, cache coherency and other future additions.

The NIC has a flag for when it’s ready to send responds data it has been receiving to the core 
together with a 32 line for the data.
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5 Implementation on FPGA
The implementation was done in Xilinx ISE 12.4 in VHDL as the natural choice: the author as most 
DTU students and staff have learned, teaches and uses this in course and projects. In the author 
previous history there has been a general indifference between the main hardware description 
languages: VHDL, System-C and Verilog. Also the Tinuso project is based on VHDL and everyone 
involved have previous experience with the ISE tool kit and VHDL.
The development cycle as previously stated is based on agile development practices so this chapter 
will both describe development process related events leading to the decisions made and the final 
resulting implementation.

5.1 Network On Chip
At the beginning the first goal was to make a NIC, a routing component with a 16 lane connection 
and a on-FPGA memory controller and memory device using then NIC interface as base.

The layout of the components is implemented in component that just was named path which in 
essence could have been called NOC or SOAC – System On A Chip. This component merely 
contains gating and the VHDL definitions of the lanes and other Input and Output (IO) from 
components. The name path was just selected as a development name for the file and VHDL 
component name as it had to have some name and "path" was referring to the content of this file 
and component being the paths between components.

The network protocol was already developed at close to the final specifications except for the line 
ready signal part and some minor definitions. A key part of the physical document the author 
developed for reference of the protocol also have notes and concept details on much of what is also 
documented in the design section. This was the basis for the implementation.

Development testing
A setup of a test-bench with 2 routing components connected to a NIC and the NIC & memory 
interface controller was made with some several debug signals outputted from the path component 
including all lanes which is feasible in smaller model NOC simulations.
During development in VHDL the test-bench was expanded. As described in detail in in section 5.6 
it became clear at the first tests that the memory and memory interface had to physically be moved 
to the test-bench if not the entire system was to be optimized away.
To debug routing during development a third switch and a second NIC was put into the test-bench. 
This made it easy to debug any unintentionally behavior of components who should be idling as no 
signals should be routing to or thought them etc.
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5.2 Scalability
Scalability is implemented in a number of ways the three most important being modularity of 
design to speed up addition scaling to very large NOC grid sizes, performance related scalability.

5.2.1 Development scalability and re-usability

A core concept in NOC designs is modularity and other re-usability techniques to improve 
development speeds. VHDL has the component concept which makes it even quicker to reuse 
previously made components. Also the VHDL feature packages and in that records is used to define 
global finite state machines state variables and constants. The records are used to define IO of 
components in a simple manner like the routing component below:
type switch_record_in is record

clock : std_logic;
IN1 : unsigned(LANE_WIDTHM1 downto 0);
IN2 : unsigned(LANE_WIDTHM1 downto 0);
IN3 : unsigned(LANE_WIDTHM1 downto 0);
IN4 : unsigned(LANE_WIDTHM1 downto 0);
IN5 : unsigned(LANE_WIDTHM1 downto 0);
SNUM : unsigned(7 downto 0);

end record;
Note LANE_WIDTHM1 is a constant which is defined of the constant LANE_WIDTH but Minus 
1. The other inputs shown are the clock and the SNUM which is the variable for the switch's unique 
position in the 2D grid. When sorting component IO in an input and output records the 
implementation and debugging is easier by having good organization overview and faster as a 
result.

As LANE_WIDTH is a global constant for all VHDL files in this implementation the scalability of 
lane width to 32, 64 etc. is much easier to implement. In all the components decision are as much as 
possible based on LANE_WIDTH. The routing component waits for package transmissions to 
finish and go to idle after exactly the needed clock cycles by using the package data size minus lane 
width time’s clock cycles from connection established.

In some situations such as interfacing towards resources in the NIC and the mem-NIC which have 
fixed 32 bit interfaces it was not feasible to implement total independence of lane width. This 
means some manual editing dependent on target lane width in the VHDL code is needed to fully 
support a change lane width. Alternatively additional logic would have to be used which would 
have further increased development time and chip space usage. For an example the buffers in a NIC 
scales with lane width to support one lane width of data per array element but do not lower the total 
number of elements in the buffer. This means if lane width is changed to 32 bit many interfaces to 
resources would only need to fill half the number of buffer elements.

Scaling of lane width was a parameter defined as important for the researching with this NOC 
system for the Tinuso system so this was quite an important addition and took some development 
time. While a package and records was not introduced at day one in implementation when it was 
introduced and implemented it made it very fast to develop most of the VHDL code lane width 
independent.
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5.2.2 Performance scalability
As an integral feature of the NOC design used the general performance parameters scale with the 
number of resources attached. Other ways to scale performance could be to scale the lane width of 
the NOC. The implementation was made as independent or adjustable as feasible in regards to lane 
width which is already detailed in the previous section. For power and space performance 
parameters the lane width can even be reduced. The author estimates it’s would take as much effort 
scaling the lane width from 16 to 8 as from 16 to 64.

5.3 Switch / router
In the following section the routing component implemented is referred as the switch as the in 
source file, component name and other code references it is referenced as such.

The switch is based around a process with a finite state machine:

Starting in Ready state a switch is idling. When the switch receives enough of a package header to 
get the sender and receiver address these are sent put into some variables that are checked at before 
the end of each clock cycle. In this area the input signal is routed to the relevant output signal via 
XY routing parameters and the torus parameters described in the design and network protocol. Then 
the switch state is set to SignalWait.

In SignalWait state the switch waits for the receiver of the package to acknowledge the connection 
is established with the line ready signal. Then the switch waits for the sender to send the type data 
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which is also the acknowledgment from the sender that it sees the connection established signal 
from the receiver. This data is kept in a local register. The switch state is then set to GetType.

In the GetType state the switch converts the package data size to number of bit still needed to be 
transmitted and this number is stored in variable. This state was defined before SignalWait and 
could well be merged into that state and much it actually was but some was left as this would add 
additional maximum delay time to an already complex step. The switch state is then set to 
WaitForClose.

In WaitForClose state the switch uses the knowledge of how much data is still to be sent over the 
connection line to calculate how many additional cycles it should stay open with this connection. 
This is done by taking the initial package data type size in bits and subtracting the lane width for 
each clock cycle. When this counter reaches 0 the switch state is set to close.

In close state all the global signals and some variables is reset and the switch state is set to Ready. 
Note there is no transitional conditions for setting the state to Ready.

When a sender and receiver address is received in a switch and it is in Ready state the package 
header part is either ignored or used to start a routing. The way its deciding this is by first checking 
it’s not a line busy signal when a neighbor is indicating its busy which is indicated by all high or '1' 
on all the outgoing lines not used on the busy component. Also that it’s not just the connection idle 
signal which is all low or '0'. Then if more than one connection is coming in at the same time it’s 
prioritized with above first, below next, then left and then right. Incoming data from the local 
connected resource is prioritized last so that if that resource constantly tries to send packages it’s not 
always blocking others going by.

Note when a switch needs to check for the ready line signal in the SignalWait state it means at this 
point the switch state has to know where the data is being routed to. It has to know this so that I can 
look for the ready line signal coming in from the direction where the sender incoming data out. This 
means routing has to be determined before this can happen and happily routing decisions in NOC's 
have to be simple to be fast so this done in the same cycle where the sender and receiver address is 
received.

In case of an undefined even in SignalWait or GetType state is set to close.
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5.4 Network Interface Controller (NIC)
The NIC is in this chapter split in two parts as the interface towards the Tinuso core is specifically 
implemented here as independently as possible within its own process with its own FSM. This is 
done so that the main NIC part towards the NOC can be reused easily for other resources.

Besides a central FSM structure the NIC also contains a third glue process which transfer the 
contents of sender and receiver buffers between the NIC and then Tinuso core interface processes 
when conditions have been met. These conditions are such that a buffer is only moved when filled 
and not in use - E.I. not being emptied or still in filling process. For this global signals for the 
component for each of the three processes and the buffers are defined with special definitions. One 
type is only able to be ether full or empty while the other type of signal only has ready or not ready 
states. I.e. this is sort of Boolean types which is just easier to debug.

NIC FSM:

Starting in Setup state the NIC will check if there is any incoming data valid data. If not it will 
check if the sending buffer has been filled by the glue logic and is ready to be sent. If there is 
incoming valid data the state is set to ReceiveSignal and the data stored in the receiving buffer 
alternatively if there is a package ready to be sent the state is set to SendWait after the size of the 
package is registered in a variable. In both situations ether the relevant sending buffer or receiving 
buffer in the NIC is set to NotReady meaning that the glue process are not allowed to touch the 

Page 26 of 48



buffer.

At ReceiveSignal state the NIC will respond to the sending NIC that a connection is successfully 
established with the line ready signal and wait for first new piece of incoming data. When is data is 
received the line ready signal is removed and the data is stored in the buffer and interpreted to 
determine package data size. State is then set to Receive if more package data is left. If not the state 
is set to setup after variables and signals are reset.

At SendWait the opposite of ReceiveSignal happens. This means the NIC here has to wait for the 
line ready signal to be received. When this happens the next part of the package is sent and if no 
more package data is left to send the state is set to setup after variables and signals are reset. If there 
is more data to send the state is set to Send.

In Send and Receive states the NIC is continuously sending or receiving package data until the local 
variable that contains the package data size is 0. Each cycle these variables are subtracted by lane 
width to account for how much data is send or received. When the variable reaches 0 signals and 
variables are reset and the state is set to setup.

Buffers are set to be filled in case of the receiving buffer after successful reception of the entire 
package or empty in case of the send buffer used for sending when they are done. Move flags 
indicating to the glue process if its allowed to touch the buffer is set to ready.

5.5 NIC interface towards Tinuso core
This is section describes how the resources process of the NIC component interfacing with the 
[simulated] Tinuso core is implemented. First the FSM diagram:

Starting in Receive state this process checks if there is any read or write requests from the interface. 
If nether of the flags are set the state is set to send.
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If read flag is set and the process receiving buffer is empty and ready a package is made: First the 
buffer is set to NotReady to keep others from using it. Then a package header is made by using the 
incoming core_addr signal as destination and the NIC's unique address as the sender. A read request 
package type is added to the buffer according to network protocol type definitions with 32 bit data 
size. This next 32 bit data part of the buffer is then filled with mem_addr signal from the interface 
which provides the intended address from which a cache line of 8x32 read and return operation is to 
start from. The receive buffer is then set to filled and ready so that the glue process knows it’s ready 
for transferring to the NIC buffers. The state is set to Send.

If write flag is set a similar sequence of package building is started in the receiving buffer with the 
exception that the type header in the built package is then setup for write type, the buffer is not set 
to filled and ready just yet and in the end the state is set to WriteReceive.

In the WriteReceive state the process receives writing data of a complete 8x32 bit cache line into 
the receive buffer which is the data in writing type cases meant to be put into the memory at the 
final receiver of the NOC package. When this is done the buffer is set to “filled” and “Ready”, some 
signals and variables is reset and then state is set to Receive.

In the Send state its check if there is any packages ready in the local sending buffer. If not state is 
set to Receive. If there is a ready package 32 bit of data is outputted at a time to mem_dat_read 
which is the signal output to the interface for ingoing data to the Tinuso core. To indicate that this 
process is ready for the Tinuso core to read what’s in that signal a data_ready signal is toggled. In 
the next clock cycle this signal is then toggled back and in the following clock cycle the next 32 bit 
of data is sent and the data_ready signal is toggled again to indicate the new data. This repeated 
until all 8x32bit chunks are send to the Tinuso core and then signals and variables is reset and state 
is set to Receive.

5.6 Memory interface controller (mem-NIC)
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The main difference between this NIC component, which has the shorted named mem-NIC, and the 
main NIC component is that the glue process and resource process is removed. Also in a single 
additional state of the NIC FSM the few interactions required to serve requests from other Tinuso 
cores waiting to access the memory is handled. Effectively the entire memory controller interface is 
handled in the MemOperations state.

This is not an interface to an external memory controller - which is part of the explanation for why 
it is so small. Instead this is an interface made for accessing memory on the test-bench. Originally 
this component in the test phase was meant to have the small memory stored directly inside it. 
However this would not allow in testing as the whole NOC would be optimized away. Instead the 
chance was ceased to implement a primitive memory interface on the test-bench.

The interface consists of a flag for requesting the data in a input lane to be written to a location in 
the memory defined in an address lane. Similarly there is a flag for the NIC to request a memory 
element which location is defined with the same address lane and the result is output from the test-
bench in 32bit lane. This means a memory operation takes at least 8 clock cycles as a cache line in 
Tinuso is defined as 8x32bit.

To do the memory operations an address is needed. The first 32 bit of non-header data in a memory 
operations request package is excepting to provide this address as an integer. The next 8x32bits of 
the package data is then expected to be the cache line to be writing in case of writing to memory 
request.

As writing requests does not require a confirmation only read-return packages are made in the 
MemOperations state. This package is made by first locking the sender buffer of the NIC then using 
the sender address of the requesting package as the receiver address of the read-return package with 
the result data together with the local address as the sender. Each line of return data is then feed 
from the memory interface 32bit at a time until all 8 elements are retrieved.

All other states are exact copy of the NIC implementation – see section 5.4 for more information.
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6 Test
Testing is a fundamental part of the scientific method as the guide behind making experiments to 
test the hypothesis. It is also fundamental to verify the function of a product and that it is within 
required quality parameters to be practical for the end-user. As a concept testing has several key 
parts and a good tester use them all to get as much data out of a hypothesis or product as possible. 
This data is in turn the core for evolving the hypothesis or product into a stage where it has 
sufficient quality and can be used as a stepping stone for other things as a completed, solid solution.

To verify the implemented designs, testing for verification are needed.  The concept of testing can 
yield a number of data interesting related to the practicality of a product besides verification testing 
such as:
•Efficiency – how much energy is needed?
•Speed – how fast is the product?
•Size – is it a practical size? Is there any benefits from trying to make it smaller or larger in terms of 
efficiency, speed or mobility that might scale positively?

Designing tests the right way is of high importance to get credible results and useful results. In fact 
often its the case that results are not useful or as useful as needed for further progress when being 
done sloppy or by inexperienced testers. The test planning and design in these cases is not properly 
organized towards giving useful results while they most often are credible. But by being aware of 
some basic points tests can be planned with minimal chance of failure for the test.

The center of good testing craftsmanship is first to clearly specify what the test are testing for which 
is not always easy to do but easy sloppy or too loosely defined. The definition on what an expected 
result would be and definition of a detailed plan for how to do the test should be define. The plan 
has to test for specifically individual results with as few variables as possible changing 
unintentionally and its not uncommon to have to redo tests where parameters that can influence the 
test have been overlook. This is why testing can be quit time consuming. Often its also a good idea 
to have testing or experimental teams to work full time on such topics not at least for also removing 
some of the bias that all creators of a product or hypothesis have even unintentionally. Such as the 
confirmation bias human hypothesis creators have unintentionally at some level due to seeing things 
in a way that lead them to setup the hypothesis in the first place. Often separate testing also leads to 
testers with a different mind set than creators. This means they often spot things and make test cases 
the creators would never have thought of.
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6.1 How the tests are designed
Testing for this thesis was done by the author that as already stated above has some issues when the 
author is also the implementer. Never the less with a good design one can come a long way. 
Especially gaining empirical data not related to verification of the hypothesis that this product I've 
made works for which I'm in no doubt biased. Speed of this system and such other parameters are 
purely readings made by other  people’s tools so here the author can rid himself of more bias but 
even these tools have settings which could bias the measured results.

The main test-bench designed in Xilinx ISE 12.4 development tool for this system is pictured here:

What the picture is show is a 4x4 torus Network On Chip design network with multiple NIC's and 
simulated Tinuso cores attached to the NIC's. Also attached to the network is the special case 
component that is a combination of memory controller interface and a NIC shorted mem-NIC. 
Since mem-NIC is what provides the data for all the simulated Tinuso cores it is to be expected that 
close by this is where all collisions will happen. These collisions are the result of multiple NIC's 
trying to open lines to the men-NIC in the same period of time.
A 4x4 size network in with torus connections is also large enough to showcase the speed benefits of 
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the torus YX algorithm implemented. NIC's with simulated Tinuso cores attached and the mem-NIC 
is positioned strategically to showcase these and other test cases.
On a implementation level only 4 actual NIC's and 2 simulated cores is implemented at strategic 
places. The other two NIC's are intentional left idling with the possibility to easily use them or 
move any of the four NIC's to another router/node point. About 20 selected connections are 
outputted for observation in the simulation together with all input and output connections from all 
routers resource connections. Also observed is a ton of debug information lines for finite state 
machine variables and other debug relevant variables and flags.

6.2 Cross test case testing
Notice that the test cases shown in the next section can be quite similar. It’s not uncommon that one 
set of test actions covers multiple test cases. In this project in particular this is due to the strong 
interconnection between components where many features of components efficiently cannot be 
tested individually. This is in turn due to only the total combined system in this case has specified 
requirements with a high degree of freedom for implementation internally. The specification only 
states required behavior towards Tinuso core/pipeline, memory and by an network protocol.
That means the only way to test many features of a component is by combing it with most of the 
others components it needs to work with.
A functionality in component cannot be tested for failure on its own when there is no specifics on 
which component have to handle which task but only some general requirements they all have to 
serve in regards to the functionality. Such a general requirement is all components communicating 
in the network have to have the same lane width by network protocol design.
The protocol implementation or its design is then what fails if the test fails when a total system test 
is run as there is no way of saying if its component A, B or C that is to blame as the protocol does 
not state precisely who has to do what in implementation or it is too vague about it.
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6.3 Test cases
The author has designed the following test cases:

Test target Test steps Expected results Results

Speed of the entire 
system in MHz

1. Synthesize the 
system in ISE 12.4 
64bit in windows 7 
with a Xilinx 
Virtex5 XC5VLX30 
at speed -3 and 
other settings at 
default

2. Record the 
calculated numbers

Between 100 and 400 
MHz

Functional Network 
Interface Controller 

towards network

1. Run a ISE 12.4 test-
bench scenario 

where a full data 
package is send 
from one NIC to 

another via relevant 
number of switches.

2. Observe  simulation

•No component fails.
•Package is routed to 
destination memory 

and is in this at end of 
test.

•All components 
return to idle.

Functional switch/routing 
component

1. Run a ISE 12.4 test-
bench scenario 

where a full data 
package is send 
from one NIC to 

another via relevant 
number of switches.

2. Observe simulation

•No component fails.
•Routing and 

switching is done as 
defined in protocol.
•Package is routed to 
destination memory 

and is in this at end of 
test.

•All components 
return to idle.

Functional combined 
memory & network 
interface controller 
(shorted mem-NIC)

1. Run a ISE 12.4 test-
bench scenario 

where a full read 
line type package is 
send from a NIC to 
the mem-NIC via 

relevant number of 
switches. The mem-

NIC then 
communicate with 
simulated memory 
and make a new 
package it sends 
back to the NIC 
request memory 

line.

2. Observe  simulation

•No component fails.
•Package is routed to 

destination mem-NIC .
•Mem-NIC request 

correctly to memory 
for data line.

•mem-NIC saves data 
line correctly in 

responds type package.
•Mem-NIC sends 
responds package 

correctly to the NIC 
requesting the data.
•All components 

return to idle.
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Functional Network 
Interface Controller test 

interfacing towards 
Tinuso core

1. Run a ISE 12.4 test-
bench scenario 

where a request for 
a memory line is 

send from a 
simulated Tinuso 

core to the NIC who 
in turn sends a 

package over the 
network to the 

mem-NIC correctly. 
The respond line 
package from the 
mem-NIC is then 

correctly 
transformed by the 
NIC and send back 

to the simulated 
Tinuso core.

2. Observe  simulation

•No component fails.
•The NIC responds 

correctly to the 
simulated Tinuso 

interface request and 
delivers the respond 

data correctly.
•All components 

return to idle.

Functional Network on 
Chip total system test

1. Run a total system 
test with test-bench 
in ISE 12.4 with 
simulated memory 
and Tinuso core.

2. Look at simulation 
for individual 
component failure 
during simulation

3. Look for failure of 
components to 
return to idle state.

4. Check the data 
returned to 
simulated Tinuso 
core.

•The data returned to 
simulated Tinuso 
core is correct.

•Intercommunication 
between components 
is correct.

•Components does not 
fail.

•All components 
return to idle state.

Functional Multi-core 
Tinuso

1. Run a total system 
test with more than 
one simulated 
Tinuso core 
connected in a 4x4 
or larger switch 
matrix network 
setup in torus 
configuration.

2. Observe  simulation

•Routing of data is 
done as designed in 

protocol.
•There is no loss of 
data and all requests 
are eventually served 

correctly.
•All components 

return to idle.
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Multi-core Tinuso torus 
routing test

1. Run a total system 
test with more than 
one simulated 
Tinuso core 
connected in a 4x4 
or larger switch 
matrix network 
setup in torus 
configuration.

2. Observe simulation 
for faster routing by 

using edge 
connections from 

torus design

•No errors by using 
torus edge connections 

routing.
•Routing is faster in 

cases where edge 
connections are usable.

Shortest cycle time for 
memory line read from 
core request to end of 

responds

1. Run a total system 
test with more than 
one simulated 
Tinuso core 
connected in a 4x4 
or larger NOC setup 
in torus 
configuration.

2. Connect requesting 
core to NIC at node 
(1,1) and mem-NIC 
to top right node; 
(4,4) in a 4x4 NOC.

3. Observe simulation

•Measurement in 
integer number of 
clock cycles for 

shortest cycle - E.I. 
without waiting on 
other connections 

blocking
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7 Results & discussion

7.1 Results
Test target Result

Speed of the entire system in MHz Clock period: 7.110ns (Maximum Frequency: 
140.655MHz) T1

Functional Network Interface Controller towards 
network All Pass

Functional switch/routing component All Pass

Functional combined memory & network interface 
controller (shorted mem-NIC) Pass with conditionsT2

Functional Network Interface Controller test 
interfacing towards Tinuso core PassT3

Functional Network on Chip total system test All Pass

Functional Multi-core Tinuso FailT4

Multi-core Tinuso torus routing test Pass with conditionsT5

Shortest cycle time for memory line read from core 
request to end of responds 95 clock cyclesT6 * 7.110 ns =  675.45 ns

T1: Total system doesn't fit on the tested FPGA device. The device used was chosen at development start and 
was only kept for easy comparison to older revision. Also the tested Xilinx ISE version is a light license 
which doesn't support much new, bigger or faster FPGA's. This results means the NOC runs roughly half the 
speed of the Tinuso core [1].

T2: The mem-NIC has some of the slowest parts according to the synthesize report. In the known limitations 
section 7.2 is a discussion of a deadlock limitations that depending on how they are solved could be blamed 
on the mem-NIC implementation.

T3: See Tinuso implementation interface part of “known limitations” section 7.2.

T4: Fails in many cases. This is due to a deadlock issue when the more than one NIC wants to send a 
package to the mem-NIC. Specifically in many cases the timing will be so that when the mem-NIC tries to 
return a responding cache line its router is already released and at this time waiting NIC connections will 
cease the router. This means the mem-NIC will try to communicate out while the core will try to 
communicate with the mem-NIC sending both into infinite wait state. Solution is detailed in “known 
limitations” section.

T5: The initial data request package going from (1,1) is correctly routed to (4,1) and then to (4,4) by routers.

T6: 95 clock cycles was measured off test bench 4x4 size from simulated core on node (1,1) to mem-NIC at 
node(4,4). Start was from first flag set true towards the NIC at simulated core interface. End recorded was 
when last memory data was send to simulated core. Note that in a non-torus design this would have been the 
longest path but in this implementation it’s one of the shortest routes but not the shortest which would be 
sending from NIC next to the mem-NIC. That would be the positions (1,4), (3,4), (4,1) or (4,3) in this case. 
Longest route could with the implemented routing algorithm go from (2,2) giving 2 more nodes to go though 
and 4 more clock cycles in total including the line ready signal.
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7.2 Known limitations

There are a few known issues or limitations to the design and implementation that is noteworthy:

Tinuso implementation interface
The Tinuso implementation interface have 2 different directions and the cores creator, Pascal, made 
one for the NOC system he has used for testing that differs from the one used here – both where 
developed simultaneously with slightly different goals out of the same agreed design.

In the Pascal's version the core expects to be given a memory data line each cycle when the NIC 
sets flags for its ready to feed the core. In this project a line will be feed every second cycle and the 
feed ready flag is turn off and on to indicate. Also some of the signals from core to NIC are not 
turned false which if used with this projects implementation would in some cases confused the NIC 
to think there was 2 requests from the core.

This is because this projects implementation of the NIC supports multiple requests from each core 
before responses have been returned. I.e. This project NIC has additional features that make it better 
to implement the protocol in a different way. While the Tinuso core can't handle several active 
memory requests or core to core communications right now it’s important for future efficient core to 
core communications and cache coherency. Note that some of the other known limitation’s 
suggested solutions have to be implemented for the rest of this system to fully support these 
features.

Core to Core communication deadlock will occur:
As core to core communications was only prepared and not part of the specifications this is a well-
known limitation. Basically the feature is not fully implemented in at the NOC level. When two 
cores try to send to each other at the same time or more cores in specific conditions the classic 
deadlock scenario will happen where cores are waiting for each other to successfully send to the 
core sending to them or in a circular chain. That means core A waits for core B who waits for core C 
who waits for core A – leaving everyone deadlocked.

This can be fixed in a number of ways. One solution would be to have a timeout counted in clock 
cycles in sending-wait states followed by a unique waiting period for each node (router and NIC) 
before the NIC try to send again. That way eventually one sender will win and force the other 
sender into receiving state. The timeout clock cycle counter should count at least as long as the 
longest possible connection time needs +1cycle.

Mem-NIC specific deadlocks
The mem-NIC related deadlocks with multicores have similarities with the core to core limitation. 
The issue is in part stated in T4 and T2 of the results section. There is an issue with the mem-NIC 
being blocked if it tries to send a responds package to a NIC and it has another NIC wanting to 
communicate with it at the same time.

Specifically in cases when a seconding NIC trying to also communicate with the mem-NIC has 
reached very close to the router mem-NIC is connected to and the mem-NIC releases its router 
before going to idle after receiving the data from the first NIC. At this point the second core will 
cease the mem-NIC router while the mem-NIC tries to send to the responds to the first NIC leading 
to both second NIC and mem-NIC waiting infinitely for getting the signal that their target received 
their initial package part (could be more than header depending on lane width).

Here is 3 solutions:

1.Implement a similar sending-wait state counter to the core to core communication deadlock that 
will close the line after a max normal routing time + some cycles. The number of additional cycles 
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is a tradeoff between waiting a short time for someone else to get done and waiting too long while 
deadlocked. At this trigger point each involved NIC waits a unique number of cycles while routers 
go back idling. Due to the unique waiting period at some point, hopefully the first time, on of the 
sending NIC's will have broken the deadlock by getting to its end point and for it into receiving 
mode.

2.For requests to the mem-NIC that needs a responds a special data size option for the requesting 
package could be implemented together with changes to the mem-NIC and NIC's. This data size 
option  dynamically and scale with the longest route in the NOC times some factor depending on 
the speed of the network and how long it takes for the mem-NIC to make and send responds 
package + normal request time. The mem-NIC then haves an extra state it goes to with this package 
type sending directly to NIC before going to idle. The NIC have to also implement a special state 
for this type of message to accept the data from the mem-NIC. This solution is less than elegant and 
claims a lot of network connections for a long time.

3.Implement a version of the second solution only instead of waiting a set number of cycles 
dynamically determined at VHDL synthesizes point; the NOC will not close special type 
connections unless the sender of the original message sends a special signal after initial normal 
package length.

4.Sacrifice some space and connections for a controller with 2 wires to each NIC. Before sending 
the problematic type of packages each NIC then has to request on one of its two wires to get 
allowed connection to mem-NIC. The controller then if the mem-NIC is free or the controller 
determines it’s the requesting NIC's turn, sends a signal back to the NIC via the other wire saying 
the NIC is free to send to mem-NIC. When the NIC then have received the first part of the responds 
package from the mem-NIC the NIC removes its request for sending to the mem-NIC on the 
controller. Now the controller knows it’s done. While this would limit the thought put for core to 
mem-NIC compared to solution 2. and 3. somewhat in that its only lets other NIC trying to open a 
connection several cycles later than 2. and 3. there is more sever issues. This 
solution uses more chip space and has potentially very long wire length connection each node with 
the central controller possibly slowing down the clock frequency but it also has advantages. The key 
advantage being that no NIC hogs NOC bandwidth and connections unnecessary waiting for a 
single resource that it already would know it can acquire in possible many cycles. It also distributes 
the potentially scares resource of mem-NIC more reasonable towards NIC far away from the mem-
NIC where closer NIC's in the direct path could even starve faraway NIC's by blocking them.
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8 Conclusion
In this project a NOC solution this designed for the Tinuso processor cores so that these cores can 
access main memory over the NOC. This was designed by analyzing current theory and design 
concepts based on specific prioritization of requirements. This prioritization was achieved via agile 
analysis of the base requirements, ideas for extensions and division of the base requirements into 
sub components and technologies.

The design was implemented in VHDL for FPGA's and tested towards a simulated Tinuso core 
interface. This interface was design in cooperation with the Tinuso core developer[1] which 
developed his own test-bench. As a result slight differences were found between the actual core's 
expectations and what was used in the simulations here. The differences are documented in results.

Clock frequency results obtained from synthesis indicates that the NOC has to run at about half the 
clock frequency of the Tinuso cores[1]. This was expected as the implementation has not been 
optimized for high clock frequency. This is the raw results from first total system tests of an 
experimental prototype: the system is synthesized on a FPGA that is too small to even map it in 
synthesis. 

The implemented solution demonstrates the feasibility of the design and network protocol when 
tested. It also demonstrates how many challenges there are in designing and implementing deadlock 
free solutions in concurrent systems. Concurrent access to the main memory from multiple cores 
failed in many cases in the test-bench as a result of a specific deadlock situation. 

Most of the deadlocks were even expected as the testing went outside the requirements for this 
version of the NOC system. This was done to test support for interesting extensions such as core to 
core communication or and cache coherency.

Several solutions for the few deadlocks situations experienced in testing has been suggested 
demonstrating that there is many ways, with different tradeoffs to handle deadlocks. 
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10 Vocabulary
NOC - Network On Chip. Typically a mix between a star topology and IP network custom 

  made for the specific needs of communication between many resources inside one 
  chip. One of its goals is to be fairly modular and easy scalable when more  
  resources are attached. Also compatible with other chip designs of the 
  same type is an option. See this reports theory section for in-depth details.

Resources - In NOC terminology resources is the module the NOC services and the NIC 
  directly talks to: E.I. The processor cores, memory attachments, DSP units or 

              other components that need to interconnect with the other on-chip components.

NIC - Network Interface Controller is the controller interfacing between the resources 
  i.e. in this a Tinuso processor core and the network.

Core - Used both in popular media and in scientific community as the major module 
  consisting of some level of ALU's, registers etc. that more or less could be an entire 
  processor in vintage systems. In GPU's they are often very small and light and could 
  not live on its own being only part of the pipeline while in this Tinuso design and 
  other generic processor designs like x86 Intel and AMD designs they are in fact best 
  described as an entire processor just optimized in some level to take advantage of 
  the multi- or many-core nature where each processor does not need a separate 
  device interface etc.

Switch or router
 - These two have different meanings depending on the context. In this these they are 

  referring to a device who is the main distributor or handler for the network traffic in 
  a NOC system. A policy for routing the traffic is implied and this policy is 
  shared with the NIC's at the sender and receiver devices. The policy is a core part of 
  the design of a network protocol for NOC's.

Node / Client - In network terms this is a device which is connected to others and can send and 
  receive. A human in the mail system is a client as it needs the services of the post 
  distribution system for sending and receiving. A node is generally the same except it 
  also in some network topologies can route or switch data for others.

VHDL - Very high speed integrated circuit Hardware Description Language was     
  initially developed by US Department of Defense’s DARPA like the internet for 
  their internal needs. VHDL was originally only used to describe digital circuits but 
  is widely used for design, synthesis and research of circuits together with FPGA's. 
  Direct sales or end user usage of FPGA's board designs running VHDL is often 
  used as in the case of Tinuso and many small unit number commercial products 
  where FPGA's additional size, clock top frequencies and power needs does not 
  compromise the product as ASIC's, generic DSP's and processors and other 
  solutions is often too expensive or too slow.

FPGA - Field Programmable Gate Array is a logic device that uses static ram to store its 
  configuration. Basically it’s a very high logic capacity version of a fumble board 
  with a set number of logic devices predefined on a single chip. FPGA’s has to be
  reconfigured after power shutdown.
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Cache coherency
- cache coherency is a technology used to synchronize all local caches of cores in a 
  multi- or many-core processor with each other and the main memory. This is 
  an integral part for getting high performance out of multi-cores systems. The 
  coherency part is particular important in that not only do the memory have to be 
  synchronized – it has to be coherent at all times. If two cores are operating on the 
  same memory element only one of them in a defined manner can update it at a time 
  which has to be synchronized to others using it. 

Finite State Machine (FSM)
- A behavioral model and tool for designing hardware and software where the 

   device is always in one of a finite number of states which each is predefined and 
  defines the devices current behavior. Transition between states is defined by 
  transition conditions which the device has to meet to transit. FSM’s are very good 
  for making predictable event driven behavior.

Process - In VHDL context a process is a section of code entered in each clock cycle which is 
  serially executed. This is contrary to VHDL outside a process which is concurrent.

Encrypted - To use mathematical algorithms or formulas to secure data so no-one else but the intended 
  receiver can read it as other than random garble. The intended receiver will in turn do a 
  decryption – E.I. a reversing process which turns the data into readable material again via 
  the receiver’s knowledge of the encryption system and a shared key information that only 
  the sender and receiver knows. This shared "key” makes sure that even if others get the 
  encrypted data and knows the entire encryption system or even was the designer they still 
  have no chance in reasonable time to get meaningful results out of the encrypted data. 
  "Reasonable time" can be anything from seconds on a PC to millions of years with all the 
  computer and manpower in the world depending on how long and how critical the data 
  transport has value for others than they intended communicators.

End of thesis
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