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Summary

This work presents development of educational resources for teaching Descrip-
tion Logics and reasoning about them using Tableaux algorithms. The start-
ing point of this work is the Master thesis of Thomas Herchenröder from the
University of Edinburgh. Using Herchenröder’s work and his implementation of
Tableaux algorithm for reasoning in ALC , two extensions are developed. One of
these extensions introduces an alternative ontology format that is more human-
friendly compared to the one used by Herchenröder. In addition, a converter
is developed that converts expressions between the two formats. The second
extension, Xtableaux.pl, is directly developed on top of the Prolog implemen-
tation of Herchenröder, tableaux.pl. This extension is meant to construct the
intermediate steps in the proof process. The intention behind this extension is
to help students understand the Tableaux algorithms and help in debugging the
ontology.
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Resumé

Dette rapport præsenterer udviklingen af uddannelsesresourcer til undervisning
af beskrivelseslogik og ræsonnement omkring dette ved hjælp af Tableaux algo-
ritmer. Udgangspunktet for dette arbejde er et speciale af Thomas Herchenröder
fra University of Edinburgh. Ved at burge Herchenröder’s arbejde og hans im-
plementation af Tableaux algoritmen er der udviklet to udvidelser. En af disse
udvidelser indfører en alternativ ontologi format, der er mere menneskevenlige
i forhold til den, der bruges af Herchenröder. Hertil er der udviklet en kon-
verter til at konvertere udtryk mellem de to formater. Den anden udvidelse,
Xtableaux.pl, er en direkte udvidelse af Prolog implementationen udviklet af
Herchenröder, den s̊a kaldte tableaux.pl. Denne udvidelse er beregnet til at kon-
struere de mellemliggende trins i bevisførelsen. Hensigten bag denne udvidelse
er til at hjælpe eleverne med at forst̊a Tableaux algoritmer og at hjælpe med at
fejlfinde ontologier.
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This bachelor project was prepared at Informatics Mathematical Modelling, the
Technical University of Denmark in partial fulfillment of the requirements for
acquiring the B.Sc. degree in engineering.

The project deals with development of educational resources for teaching De-
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Chapter 1

Introduction

In Artificial Intelligence (AI) one has always been interested in representing
knowledge in a manner so it is possible to reason about it, i.e. draw conclusions
from the knowledge. The field of the AI which deals with it is Knowledge
Representation (KR) and Reasoning.

This field was much popular in 1970s and it was in that time when the de-
velopment of approaches to knowledge representations began. These develop-
ments are sometimes divided in two categories, logical-based formalisms and
non-logical-based representations. The latter were developed based on network
structures and rule-based representation – cognitive notions that were derived
from experiments on recall from human memory and execution of tasks. These
approaches were expected to be more general-purpose, although, they were of-
ten developed for specific domains. Unlikely, the logical-based approaches were
general-purpose from the beginning since these were a variant of first-order logic
(FOL) which provides very powerful and general machinery.

In the logical-based approach, reasoning is equivalent to verifying logical con-
sequence, while in the non-logical approaches, it is accomplished by means of
ad hoc procedures that manipulate the similarly ad hoc data structures that
are meant to represent the knowledge. Among such representations we have
semantic networks and frames. Both of these can be regarded as network struc-
tures where the aim of the network is to represent sets of individuals and their
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Female Person

Woman

Mother Parent

hasChild
(1,NIL)

v/r

Figure 1.1: An example Network (cf. Fig. 1.1 in [1, p. 6]).

relationships. For this reason the term network-based structures is used to refer
to these representation.

Although, network-structures were more appealing and effective from a prac-
tical point of view, they were not fully satisfactory since they lacked a precise
semantic characterization. The recognition that frames could be given a se-
mantics by relying on FOL led to a characterization that could not capture the
constraints of semantic networks and frames with respect to logic. However, it
turned out that semantic networks and frames could be regarded as fragments
of FOL since they did not require all the machinery of FOL. Furthermore, it
turned out that different features of the representation language led to different
fragments of FOL which also resulted in computational problems of differing
complexity with respect to reasoning in these fragments. However, the typical
forms of reasoning in structured-based representations could be accomplished
by specialized reasoning techniques.

Research in the area of Description Logics (DLs) began subsequent to above
realization. In the beginning the research was under the label terminological
systems which emphasized that the representation language was used in order to
establish basic terminology in the modeled domain. Later, the label was changed
to concept languages since the emphasize was on the set of concept-forming
constructs declared in the language. In recent years the term Description Logics
became popular since the attention was moved further towards the properties
of the underlying logical systems.

1.1 From Networks to Description Logics

Using a simple example, I will provide some intuition about the ideas behind
knowledge representation in network form. We will avoid references to any
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particular system and only speak in terms of a generic network.

A network consists of two elements, nodes and links. The first one is typically
used to characterize concepts, i.e. sets of individual objects. The latter one is
used to characterize relationships among concepts. Here, we will not consider
the knowledge about specific individuals and restrict our attention to knowledge
about concepts and their relationships.

The simple example, whose pictorial representation is given in figure 1.1 on
the facing page, represents knowledge concerning family relationships. The link
between Mother and Parent is a “IS-A” relationship. In this case it means that
“mothers are parents”. The IS-A relationship provides the basis for inheriting
properties among the concepts and thus defines a hierarchy over these. For
instance the concept of Person is a more general concept than the concept of
Woman – if Person has an age so has the Woman.

The ability of DLs to represent relationships beyond the IS-A relationship makes
it their characteristic feature. For instance the property called a “role” is one of
these relationships. The concept of Parent has such property which is expressed
by a link to a node labeled hasChild. The role has a so called “value restriction”,
denoted by v/r, which puts limitations on the range of types of objects that can
fill it. The node has also a number restriction, expressed as (1,NIL), which puts
a lower and upper bound on the number of children (NIL denotes infinity). The
concept of Parent can be read as “A parent is a person having at least one
child, and all of his/her children are persons.” [1, p. 6].

The concept of Mother inherits the restriction on its hasChild role from Parent

since relationships of this kind are inherited from concepts to their subconcepts.
There may also be implicit relationships between concepts. For instance, every
Mother is a Woman since the concept of Woman is defined as a female person.
These kind of inferences are a characterization of the properties of the network.
It becomes more difficult to give a precise characterization of what kind of rela-
tionships can be computed when the established relationships among concepts
becomes more complex. Although, a number of systems were implemented and
used using the above ideas, the need for a more precise characterization of the
meaning of a network emerged. This meaning can be given by defining a lan-
guage and by providing an interpretation for the strings of the language [1, p. 7].
Such language is given in chapter 2 on page 7.



4 Introduction

KB

TBox

ABox

Description
Language

Reasoning

Application
Programs Rules

Figure 1.2: Architecture of a DL-based knowledge representation system (cf.
Fig. 2.1 in [4, p. 50]).

1.2 DL-based KR Systems

There has been a tight connection between theoretical results and implemen-
tation of systems in the research on DL. This has been a characterization of
research on DL.

A DL-based KR system provides facilities to set up knowledge bases, to reason
about their contents and to manipulate them [4, p. 50]. The architecture of
such a system is sketched in figure 1.2.

A knowledge base (KB) consists of two components, the TBox and the ABox.
The first one introduces the terminology of an application domain, while the sec-
ond one contains assertions about named individual in the application domain.
These are further described in chapter 2 on page 7.

A DL system is not only a storage place for terminologies and assertions of an
application domain. The system also offers services that reason about the stored
terminologies and assertions. Typical reasoning tasks for TBox and ABox are
described in more details in chapter 2 on page 7.

As shown in figure 1.2 a KR system is embedded into a larger environment. This
is the case in any application. There is an interaction between other components
and the KR system. These components query the KB and modify it, i.e. adding
and retracting concepts, roles and assertions. A restricted mechanism for adding
assertions uses rules [4, p. 51]. This notion is beyond the scope of this work and
will not be further mentioned here.
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1.3 Application Domains

Description Logics have many application domains. One of the first application
domain for DLs was Software engineering where the basic idea was to implement
a system that would support the software developer by finding out information
about a large software system.

One very successful application domain has been configuration. This includes
applications that support the design of complex systems created by combining
a number of components, e.g. choosing computer components in order to build
a home PC.

There are many other applications domain that have been addressed by the DL
community. This work will not further discuss this aspect of Description Logics.
For more information one is encouraged to look up [1].

1.4 Motivation

This work is based on a Master thesis of Thomas Herchenröder (from now
on Herchenröder) from the University of Edinburgh. The thesis with the title
“Lightweight Semantic Web Oriented Reasoning in Prolog: Tableaux Inference
for Description Logics” is from 2006.

A large portion of this work has been inspired from Herchenröder’s work. The
implemented reasoner in Prolog, tableaux.pl, has been used to develop services
for better understanding the Tableaux algorithms.

1.5 Document Structure

Chapter 2 is dedicated to discuss the foundation of Description Logics. In
chapter 3 the Tableaux algorithm for reasoning with DLs is introduced. Chapter
4 discusses various issues and design alternatives in the implementation of this
algorithm and presents the implementation introduced by Herchenröder. In
chapter 5, a formal specification of Herchenröder’s implementation is given.
Chapter 6 presents the extensions to this implementation and how they are
tested. Chapter 7 closes with some conclusions.
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Chapter 2

Description Logics

Description Logic (DL), or Description Logics, is a family of formal knowledge
representation languages which has a set-theoretical foundation. Like proposi-
tional logic and unlike first-order logic, it has decision procedures. It is, however,
more expressive than propositional logic.

DL is used to represent the knowledge of an application domain by defining
the relevant concepts in the domain. And since it is equipped with a formal,
logic-based semantics, it is possible to reason about the application domain.

2.1 Basic Description Logic

The basic DL is called Attributive Concept Language with Complements (abbre-
viated ALC) [2, p. 2]. It is the basis for the more expressive DLs.

2.1.1 Syntax

In the following I will explain the grammar of the ALC which is shown in
table 2.1 on the following page. Before doing so, I will describe the more fun-
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Concept expression :: ⊥ | > | A | ¬C | CuD | CtD | ∀R.C | ∃R.C

Terminological axiom :: C ≡ D | C v D

Table 2.1: Grammar of the ALC DL [2, p. 8].

damental elements of DL which are common for all DLs. These are presented
in both [2], [4] and [5]. Some of the elements are presented under different
names among these works, and some are only presented in one or two of the
three works. In the following I will be using the notation of Herchenröder unless
other work is referenced.

In DL there are two kinds of symbols; denoted by atomic symbols. The first one
is the so called atomic concepts (denoted by A,B) and the other one is atomic
roles (denoted by R) [4, p. 51].

From the FOL point of view, atomic concepts are unary predicates while atomic
roles are binary predicates [4, p. 49]. Beside atomic concepts and atomic roles,
DL consists of so called individuals which from FOL point of view are constants.

One can construct arbitrary concept description (denoted by C,D) using atomic
symbols and the so called constructors (concept constructors and role construc-
tors). Here, we will only consider concept constructors since ALC only has
atomic roles.

Now back to the grammar of the ALC (see table 2.1). As mentioned earlier,
DL has a set-theoretical foundation. This is because the concepts represented
in DL are interpreted as sets [2, p. 6]. Looking at grammar for forming concept
expressions in ALC , one can see that it provides two default concepts denoted
by “bottom” (⊥), the empty set, and “top” (>), the universe. These are not
further defined in the logic, but receive their contents through an interpretation
(e.g. model). According to [5], the > concept is an abbreviation for C t ¬C.
A concept expression is also an “atomic concept” (A) (also know as primitive
concept [2, p. 7] or concept name [5, p. 5]).

A concept expression is also one of the “negation” (¬C), “conjunction” (C uD)
and/or “disjunction” (C tD). These are the usual Boolean constructors known
in logic. The concept description ¬C means everything that is out side of C;
from a set-theoretical point of view it is the complement of C. Like so, the
concept descriptions C uD and C tD mean C ’and’ D and C ’or’ D (logically)
respectively. From a set-theoretical point of view it is C intersected with D and
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>I = ∆I

⊥I = ∅
(¬C)I = ∆I \ CI

(C uD)I = CI ∩DI

(C tD)I = CI ∪DI

(∃R.C)I =
{
a ∈ ∆I | ∃b. (a, b) ∈ RI ∧ b ∈ CI

}
(∀R.C)I =

{
a ∈ ∆I | ∀b. (a, b) ∈ RI → b ∈ CI

}
(C v D)I = CI ⊆ DI

(C ≡ D)I = CI = DI

Table 2.2: Formal semantic ofALC-concepts and terminological axioms [4, p. 52-
53,p. 56] [5, p. 6].

the union of C and D respectively [2, p. 7].

Last but not least, a concept expression is also one of the value restriction
(∀R.C) and existential restriction (∃R.C). They are not interpreted the same
way as we know them from FOL. According to Herchenröder , “they describe
concepts as sets of individuals that are characterized by the individuals they
relate to through a given relation” [2, p. 6]. These are further clarified in sub-
section 2.1.2.

2.1.2 Semantics

In the following I describe a formal semantics for ALC concept descriptions and
terminological axioms. Such description is given in both [4, p. 52-56] and [5,
p. 6].

The formal semantics for the grammar presented in table 2.1 on the preceding
page is given as follows. We consider an interpretation I as a pair (∆I , ·I) where
the domain (of interpretation) ∆I is a non-empty set and ·I is the interpretation
function that assigns to every atomic concept A a set AI ⊆ ∆I and to every
atomic role R a binary relation RI ⊆ ∆I×∆I . Figure 2.1 on the following page
illustrate these notions using an extended Venn diagram. Here the text on the
left is matched to the diagram elements on the right using colors.

The interpretation function is extended to the concept descriptions and the
terminological axioms presented in table 2.1 on the preceding page. This results
in inductive definitions shown in table 2.2. In the following I will elaborate on
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∆IIndividuals: iI ∈ ∆I

John

Mary

Concepts: CI ∈ ∆I

Lawyer

Doctor

Vehicle

Roles: RI ∈ ∆I ×∆I

hasChild

owns

(Lawyer u Doctor)

Figure 2.1: A diagram explaining the semantics of ALC .

two of the definitions from this table; value and existential restriction.

2.1.2.1 Existential Restriction

The interpretation of existential restriction, as it is shown in table 2.2 on the
previous page, is defined as:

(∃R.C)I =
{
a ∈ ∆I | ∃b. (a, b) ∈ RI ∧ b ∈ CI

}

∆I

CI

(∃R.C)I

RI

iI ∈ ∆I

Figure 2.2: A diagram illustrating the semantics of existential restriction.
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∆I

CI

(∀R.C)I

RI

iI ∈ ∆I

Figure 2.3: A diagram illustrating the semantics of value restriction.

In set-theoretical terms it is the set of all individuals (a) that are related through
R to at least one individual (b) from the concept C. This is illustrated by the
diagram in figure 2.2 on the facing page where colors match symbols and shapes.
For instance the concept CI is represented by a red circle. The individuals in
the domain, i.e. iI ∈ ∆I , are represented using gray dots.

In FOL, the notion of existential restriction is equal to:

∃y.R(x, y) ∧ C(y)

where x is an arbitrary individual in the interpretation domain.

2.1.2.2 Value Restriction

The interpretation of value restriction, as it is shown in table 2.1.2 on page 9,
is defined as:

(∀R.C)I =
{
a ∈ ∆I | ∀b. (a, b) ∈ RI → b ∈ CI

}
(2.1)

The FOL equivalent of above is:

∀y.R(x, y)→ C(y)

In set-theoretical terms it is the set of all individuals that are related through
(R) to only individuals from the concept (C). This is illustrated by the diagram
in figure 2.3. As it is shown in the diagram, individuals out side the domain of
R, i.e. (a, b) /∈ RI , are also in this set. The reason for that is the implication in
(2.1). Since the implication is only false when its premise is true, i.e. ¬((a, b) ∈
RI)∨ (b ∈ CI), the individuals not in the domain of R will fulfill this, thus they
qualify for being in the set.



12 Description Logics

Woman ≡ Person u Female
Man ≡ Person u ¬Woman

Mother ≡ Woman u ∃hasChild.Person
Father ≡ Man u ∃hasChild.Person
Parent ≡ Father t Mother

GrandMother ≡ Mother u ∃hasChild.Parent
MotherWithoutDaughter ≡ Mother u ∀hasChild.¬Woman

Wife ≡ Woman u ∃hasHusband.Man

Table 2.3: An example of a TBox [4, p. 56].

Example 2.1 In this example we form some correct concept descriptions in the
domain of family relationships. Lets assume that Female and Person are atomic
concepts and hasChild is an atomic role. Using these atomic symbols and
concept constructs and role restrictions we can describe more complex concepts.
For instance the concept of Woman is described as:

Person u Female

The concept of Mother can be described likewise:

Woman u ∃hasChild.Person

A more complex concept such as “mother not having any daughter” is described
using all the above concept descriptions:

Mother u ∀hasChild.¬Woman

For more examples on such concept descriptions, please refer to figure 2.3.

2.1.3 Knowledge Bases

In order to reason about any knowledge or manipulate it, a KR system based on
Description Logic has to provide a facility. This is done by providing a so called

MotherWithoutDaughter(MARY) Father(PETER)

hasChild(MARY,PETER) hasChild(PETER,HARRY)

hasChild(MARY,PAUL)

Table 2.4: An example of an ABox [4, p. 65].
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knowledge base or KB. As mentioned earlier, a KB consists of two components,
the TBox and the ABox.

2.1.3.1 TBox

The TBox contains the terminology, i.e. the vocabulary of an application domain
[4, p. 50]. These are relations such as equivalence (≡) and subsumption (v)
between concepts forming terminological axioms. An example of a TBox is
given in table 2.3 on the facing page.

It is possible to reason about the TBox and not only store terminologies. Typical
reasoning tasks are satisfiability (whether a description is non-contradictory)
and subsumption (finding a more general concept).

2.1.3.2 ABox

The ABox contains assertions about concrete individuals in terms of the ter-
minology contained in the TBox. These assertions are formed by assigning
individuals (e.g. John, Mary) to concepts (e.g. Parent) or relating them using
roles (e.g. hasChild) in order to describe relations between individuals. An
example of an ABox is given in table 2.4 on the preceding page.

For ABox, consistency of assertions is an important reasoning problem. Here
one tests whether an assertion has a model, if it is the case then it is consistent
[4, p. 50].

In a KB it is very useful to check for satisfiability of descriptions and consistency
of sets of assertions. This way one can determine weather a knowledge base is
meaningful at all. Testing whether a concept is subsumed by another one is
also useful. Doing so, one can organize concepts in hierarchy according to their
generality [4, p. 51].

2.2 Beyond ALC

As mentioned earlier, ALC is not very expressive. In order to add expressiveness
to DL, the basic Description Logic is extended carefully in order to preserve the
good computational properties. By carefully I mean that not all extensions are
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(a) Extending with feature X (b) Undecidability

Figure 2.4: Cartoons illustrating that extending DL with feature X would lead
to undecidability. The cartoons are taken from [6, p. 21].

good. Some might be harmful and lead to undecidability which is illustrate
through the cartoons in figure 2.4.

Extensions of ALC are indicated by additional letters. For instance the letter
N stands for number restrictions (e.g., > 2 hasChild,6 3 hasChild). Adding
this to ALC, we get ALCN which is Attributive Language with Complements
and Number restrictions. Often the letter S is used instead of ALC extended
with transitive roles (R+) [6, p. 7]. Below is given a list of possible extensions
to ALC. This list is taken from [6, p. 7] and slightly modified.

• H for role hierarchy (e.g., hasDaughter v hasChild)

• O for nominals or singleton classes (e.g., {ITALY})

• I for inverse roles (e.g., isChildOf ≡ hasChild−)

• Q for qualified number restrictions (e.g., > 2 hasChild.Doctor)

• F for functional number restrictions (e.g., 6 1 hasMother)

The complexity of reasoning in the various DLs resulting from extension of
ALC can be found using the Complexity Navigator1 of Evgeny Zolin from the
University of Manchester.

The basis for W3C’s OWL Web Ontology Language is the so called SHIQ
DL. This acronym stands for ALC with transitive roles (S), role hierarchy (H),

1http://www.cs.man.ac.uk/ ezolin/dl/
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inverse roles (I) and qualified number restrictions (Q). Extending SHIQ with
nominals (O) results in the so called SHOIQ which is the basis for the OWL DL.
Likewise, we have SHIF which is SHIQ with functional restrictions instead of
qualified number restriction. SHIF is the basis for the so called OWL Lite.
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Chapter 3

Tableaux Algorithm

The DL reasoning algorithms, before the tableau-based algorithms, was the so
called structural subsumption algorithms. These kind of algorithms compare the
syntactic structure of concept descriptions. The problem with these algorithms,
although usually being very efficient, is that they are only complete for languages
that are not so expressive. For instance, these algorithms can not handle DLs
with full negation and disjunction [4, p. 81].

With tableau-based algorithms which were first presented for satisfiability of
ALC-concepts, it is possible to have interesting hypotheses such as satisfiability,
subsumption, equivalence and disjointness. These four kind of hypotheses can
be reduced to only subsumption or unsatisfaibility [2, p. 11]. For instance testing
that C is subsumed by D, i.e. C v D, the formula is rewritten as C u¬D which
is tested for satisfiability. This is possible since a concept C is subsumed by
concept D iff C u ¬D is empty. Testing C v D for satisfiability is not possible.
In order to do it, as it is, one has to show that each concept in C is also in D.

3.1 Illustration of Tableau-based Algorithms

Before describing the actual Tableaux inference rules and how these are applied,
I illustrate the underlying ideas behind the tableau-based algorithms. This is
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done using a simple example which is presented in [4] on pages 85-86.

Lets assume that we want to know whether

(∃R.A) u (∃R.B) v ∃R.(A uB)

In order to find this out, the query is transformed and the following concept
description is created:

C = (∃R.A) u (∃R.B) u ¬∃R.(A uB)

Now, instead of checking for subsumption, above concept description is checked
for unsatisfaibility. First, all the negation signs are pushed as far as possible
into the description. This is done using De Morgan’s rules and the usual rules
for quantifiers. In case of C it means that we obtain:

C0 = (∃R.A) u (∃R.B) u ∀R.(¬A t ¬B)

The above concept description is now in negation normal form. This means
that only concept names are negated.

Now, we construct a finite interpretation, I, such that CI0 6= ∅, i.e. there must
exist an individual in ∆I (interpretation domain) that is an element of CI0 .

The tableaux algorithm just generates such an element, say b, and imposes the
constraint b ∈ CI0 . This means:

b ∈ (∃R.A)I and b ∈ (∃R.B)I and b ∈ (∀R.(¬A t ¬B))I

From all three constraints, presented above, we can deduce the following. In the
case of b ∈ (∃R.A)I there must exist an individual c such that (b, c) ∈ RI and
c ∈ AI . Analogously, in the case of b ∈ (∃R.B)I there must exist an individual
d such that (b, d) ∈ RI and d ∈ BI . The two individuals, c and d, are not
the same since “For any existential restriction the algorithm introduces a new
individual as role filler, and this individual must satisfy the constraints expressed
by the restriction.” [4, p. 86].

In the case of b ∈ (∀R.(¬A t ¬B))I the individuals from the existential restric-
tions are used. This means:

c ∈ (¬A t ¬B)I and d ∈ (¬A t ¬B)I

In order to satisfy c ∈ (¬At¬B)I we can only choose c ∈ (¬B)I since c ∈ (¬A)I

will be in conflict with c ∈ AI from above.
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The same way we can only choose d ∈ (¬A)I in order to satisfy d ∈ (¬At¬B)I

since d ∈ (¬B)I will be in conflict with d ∈ BI from above.

This concludes that C0 is satisfiable since all constraints are satisfiable, i.e.
c ∈ AI , (b, c) ∈ RI , d ∈ BI , (b, d) ∈ RI , c ∈ (¬B)I and d ∈ (¬A)I . This means
that (∃R.A)u (∃R.B) is not subsumed by ∃R.(AuB), since the interpretation,
I, is a witness of it. Formally this interpretation is as shown below. This is
what the tableaux algorithm generated.

∆I = {b, c, d}; RI = {(b, c), (b, d)}; AI = {c}; BI = {d}

This also means that b ∈ ((∃R.A) u (∃R.B))I , but b /∈ (∃R.(A uB))I .

3.2 Overview of Tableaux

Before the tableaux algorithm can start working the DL hypothesis or query
must undergo some transformation. These transformations are:

1. First the goal is constructed. This means that the query is reduced to
unsatisfaibility. For instance if the query is C ≡ D the constructed goal
is then to show that both (C u ¬D) and (¬C uD) are unsatisfiable.

2. Next, all concepts in the goal are unfolded, i.e. TBox-elimination. This
means that all terminological axioms are unfolded such that the goal con-
tains only base symbols, i.e. primitive concepts.

3. The goal is written in Negation Normal Form, i.e. all the negations are
pushed inwards such that only primitive concepts are negated.

When the transformation steps are completed the tableaux algorithm can start
working. It manipulates the goal by applying four kinds of rules; intersection,
union, existential and universal elimination. These rules are shown in table 3.1
on the next page and further explained in the following section.

3.3 Tableaux Inference Rules

In this section I give an informal description of each tableaux inference rule
presented in table 3.1 on the following page. These rules are for the basic
DL, i.e. ALC. Additional rules for the proof algorithm exists that take care
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u – rule if 1. (C1 u C2) ∈ L(x)
2. {C1, C2} * L(x)

then L(x) −→ L(x) ∪ {C1, C2}
t – rule if 1. (C1 t C2) ∈ L(x)

2. {C1, C2} ∩ L(x) =
then L(x) −→ L(x) ∪ {C1, C2}

a. save T
b. try L(x) −→ L(x) ∪ {C1}

If that leads to a clash then restore T and
c. try L(x) −→ L(x) ∪ {C2}

∃ – rule if 1. ∃R.C ∈ L(x)
2. there is no y s.t. L(〈x, y〉) = R and C ∈ L(y)

then create a new node y and edge 〈x, y〉
with L(y) = C and L(〈x, y〉) = R

∀ – rule if 1. ∀R.C ∈ L(x)
2. there is some y s.t. L(〈x, y〉) = R and C /∈ L(y)

then L(y) −→ L(y) ∪ C

Table 3.1: Tableaux Inference Rules for ALC [2, p. 14].

of the additional operators and constructors added to the language. For more
information on this subject please refer to [1].

The notions C, C1 and C2 in table 3.1 denote arbitrary DL concepts. A relation
is represented by R. The whole proof tree is represented by T, while x and y
denote specific nodes in the tree. The set of DL formulas associated with a node
x is denote by L(x) (node label).

Each rule in table 3.1 consists of two parts, an precondition part (the if part) and
an action part (the then part). The precondition part consists of two conditions
that both must be satisfied in order for the action part to take effect. The first
condition is always a check for the presence of the term in the node label, while
the second one is usually a check for the result not already being presence in
the node label.

The first rule (denoted u–rule) is applied to intersection terms within a given
node label. The second condition makes sure that both of the operands are not
already presence in the node label. In the action part, both operands are added
as new members to the current node label.

The second rule (denoted t–rule) is applied to union terms within a given node
label. The second condition of this rule makes sure that none of the operands
are already in the node label. The action part consists of three steps. In the first
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step the whole tree (denoted T) is saved. In the second step, the first operand
of the union term is added to the current node label and the proof procedure
proceeds. If this instance of the tree lead to a clash then the tree is restored. In
step three the second operand is added to the just restored tree and the proof
procedure is proceeded.

The third rule (denoted ∃–rule) is applied to the existential restriction terms
(∃R.C) in a given node label. The second condition in this rule makes sure that
a node with the same relation (R) as edge label and containing the constrained
concept (C) does not already exist. If this is not the case, such a node is created.

The last rule in table 3.1 on the preceding page (denoted ∀–rule) is applied to
the value restriction terms. In this rule, the second condition makes sure that a
node having the relation as the edge label and not containing the constraining
concept exist. If this is the case, the constraining concept is added to the node
label of that node.

Example 3.1 Here the above rules are applied using a simple example. For the
example we use following expression as the hypothesis

{[∃S.C u ∀S.(¬C t ¬D) u ∃R.C u ∀R.(∃R.C)]}

where { } delimitate a tree and [ ] delimitate a node label. To begin with we
apply the u-rule. As one can see, there are three u-terms. It is arbitrary which
one to choose. Let us choose the one such that C1 is

∃S.C u ∀S.(¬C t ¬D)

and C2 is
∃R.C u ∀R.(∃R.C)

Now the second precondition being true, i.e. both C1 and C2 are not member of
the current node label, we can move on to the action part of the u-rule. As one
can see the action part does not tell to discard the affected term, i.e. C1 u C2.
We will, however, discard this term in order to have a clean node label. This
will result in the following expression.

{[∃S.C u ∀S.(¬C t ¬D),∃R.C u ∀R.(∃R.C)]}

Likewise, we apply the u-rule to the remaining two u-terms and end up with the
following expression

{[∃S.C, ∀S.(¬C t ¬D),∃R.C,∀R.(∃R.C)]}

which does not have any u/t-terms that can be eliminated. Next, we apply the
∃-rule to all possible ∃-terms. We have two such terms available in the above
expression. Expanding them we will get

{[∃S.C,∀S.(¬C t ¬D),∃R.C,∀R.(∃R.C)], [〈S, [C]〉], [〈R, [C]〉]}



22 Tableaux Algorithm

where 〈R,C〉 represents the expansion of a ∃-term with R being the edge and C
the new created node. Next, we expand all possible ∀-terms. There are two of
such terms which result in

{[∃S.C,∀S.(¬Ct¬D),∃R.C,∀R.(∃R.C)], [〈S, [C,¬Ct¬D]〉], [〈R, [C, ∃R.C]〉]}

which is the result of adding the concept of each ∀-term to the node having the
role as the edge. The two new nodes that resulted from the expansion of ∃- and
∀-terms are taken as the current nodes, i.e. the nodes that the proof rules are
applied to. We have following current nodes:

{[C,¬C t ¬D], [C,∃R.C]}

The same way as above, the proof rules are applied to the above nodes one by
one. We apply the t-rule to the first node and get

{[C,¬C], [C,∃R.C]}L
{[C,¬D], [C,∃R.C]}R

where we have two trees labeled L (left) and R (right). We proceed with the left
tree and immediately realise that there is a clash, C and ¬C, which closes this
branch of the Tableaux. The rest of the proof is left for the reader to complete.
We can already conclude that the hypothesis is unsatisfiable since we already had
a clash on one of the branches of the Tableaux.

3.4 Properties of Tableaux

According to Herchenröder [2, p. 16], the tableaux algorithm presented in ta-
ble 3.1 on page 20 is sound and complete. It will also always terminate using
exponential time and space complexity.

The termination property is derived from the fact that the algorithm only adds
subexpressions that are strictly smaller than the parent expressions. There is
always a limited number of these expressions, since the initial expression is finite.
The branching and depth of the proof tree is also limited, since this depends on
the number of existential in the initial formula, which again is limited. Moreover,
the rules conditions are there to prevent loops in expanding terms [2, p. 16].

According to Herchenröder, soundness and completeness rely on the equivalence
of the satisfiability of the initial formula and the consistency of the saturated
proof trees. This can be shown partly using a canonical model and taking
advantage of the finite tree model property.
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Regarding the complexity of the algorithm, it is exponential in time and space
in worst-case [2, p. 16].
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Chapter 4

Implementing the Tableaux
Algorithm

In this chapter, I will present the design and implementation decisions made
in [2] in order to implement a more efficient implementation with regards to
memory consumption and runtime. These decisions are:

• Applying tableaux rules in order instead of randomly.

• Replacing terms by their rule derivatives instead of keeping both.

• Instead of keeping the whole proof tree only the fringe of the proof is kept
during the proof procedure.

• When eliminating union (t) a choice point is made and the resulting trees
are explored sequentially instead of concurrently.

These decisions are explained more thorough in the following.
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4.1 Application of Rules

Although the original definition of the Tableaux algorithm does not suggest
any thing about the order of the application of rules, it is of great importance
and provides significant advantages in a concrete implementation. As shown by
Baader and Sattler (cf. [2]) it reduces the worst-case space requirements of the
algorithm to polynomial.

The modified algorithm stated by Herchenröder operates in iteration consisting
of two steps. These steps are first applied to the goal, denoted C0(x0). In step
one the u- and t-rules are applied as long as possible and the node is checked
for clashes. In the second step the algorithm generates all the direct successors
of x0 using the ∃-rule and thoroughly applies the ∀-rule to the corresponding
role assertions. The algorithm continues by applying step one and two to the
successors in the same way.

This section summarizes the discussion of Herchenröder regarding this approach.
I have used his example in order to make the arguments obvious.

Example 4.1 We start with the goal node

{(∃R.A uB) u ∀R.C}
and apply the u-rule (which is the only applicable rule at this stage). This results
in

{(∃R.A uB),∀R.C}
In this stage the only applicable rule is again the u-rule. The ∀-rule is blocked
until we apply the hidden ∃-rule inside the u-rule. Applying the u-rule results
in

{∃R.A,B, ∀R.C}
Now it is possible to apply the ∃-rule and successively apply the ∀-rule which
results in a new child node with two constraints.

{∃R.A,B,∀R.C}, {A,C}

As illustrated in example 4.1 it is suitable to expand all possible u- and t-terms
in a node. This makes the hidden ∃-terms available for quantifier elimination.

The ∀-terms are always blocked and only available when the preconditions for
the ∀-rule are met. This happens when the corresponding ∃-terms are ex-
panded and new edges are created. Consequently, an exhaustive application
of ∃-rule guarantees the availability of maximum number of edges for succeed-
ing ∀-expansions.
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u – rule if 1. (C1 u C2) ∈ L(x)
2. {C1, C2} * L(x)

then L(x) −→ (L(x) \ (C1 u C2)) ∪ {C1, C2}
t – rule if 1. (C1 t C2) ∈ L(x)

2. {C1, C2} ∩ L(x) =
then L(x) −→ L(x) ∪ {C1, C2}

a. save T
b. try L(x) −→ (L(x) \ (C1 t C2)) ∪ {C1}

If that leads to a clash then restore T and
c. try L(x) −→ (L(x) \ (C1 t C2)) ∪ {C2}

∃ – rule if 1. ∃R.C ∈ L(x)
2. there is no y s.t. L(〈x, y〉) = R and C ∈ L(y)

then create a new node y and edge 〈x, y〉
with L(y) = C and L(〈x, y〉) = R and
L(x) −→ L(x) \ ∃R.C

∀ – rule if 1. ∀R.C ∈ L(x)
2. there is some y s.t. L(〈x, y〉) = R and C /∈ L(y)

then L(y) −→ L(y) ∪ C for every applicable y and
L(x) −→ L(x) \ ∀R.C

Table 4.1: Modified Tableaux Inference Rules for ALC. Taken from [2, p. 14].

4.2 Parsimonious Rules

The ordered and exhaustive application of the tableaux inference rules to the
DL expressions of a node label as discussed above makes it possible to deduce
the so called Parsimonious Rules. According to Herchenröder these rules makes
it possible to kill to birds with one stone. This means that parsimonious rules
not only remove the redundant information from the proof tree and only keep
the derivative terms, but also makes some of the preconditions for the original
rules superfluous.

In this section I present the parsimonious rules derived by Herchenröder in [2,
p. 24-29].

4.2.1 Replacement of Expressions by their Derivatives

In the standard tableaux algorithm the derivatives of the expressions are just
added to the corresponding node label and new child nodes are added to the
proof tree. This is shown in example 4.2 on the following page (cf. [2, p. 24]).
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Example 4.2 We begin with the initial DL expression that form the initial
single member of the set, say

{A u (B u (C uD))} (4.1)

We apply the u-rule and get the set

{A, (B u (C uD)), A u (B u (C uD))}

that contains the operands of the intersection in addition to the initial member.
Now we apply the u-rule to the second member of the above set. Notice that it
is not possible to apply the u-rule to the initial expression any more. This is
because of the precondition checking the presence of the operands (cf. table 3.1
on page 20). The resulting set is

{A,B, (C uD), (B u (C uD)), A u (B u (C uD))}

We proceed the same way as above and apply the u-rule, this time to the third
element in the above set.

{A,B,C,D, (C uD), (B u (C uD)), A u (B u (C uD))}

No further rules are applicable since the proof tree is saturated.

As illustrated in example 4.2 the single proof node beside containing the fully
expanded members (A,B,C and D) also contains the initial expression and all
the intermediate expressions created during the rules application. According
to Herchenröder the later ones “do not contribute any further to the decision
procedure” [2, p. 25]. Furthermore, he claims that it is safe to discard these
by replacing them with their derivatives. Doing so prevents one from checking
these expressions over and over again in order to satisfy the second precondition
of the u-, t- and ∃-rule and the second part of the second precondition of the
∀-rule. These preconditions validate the termination of the algorithm by helping
to avoid expanding the same compound term over and over again.

Pruning the parent expressions has significant improvements on the implemen-
tation. It both saves memory footprint of the procedure and computing time
[2, p. 26].

4.2.2 Derivation of the New Rules

The new rules (parsimonious rules) are simply derived from the original rules
by replacing the complex expressions with their derivatives. For instance (4.1)
in example 4.2 results in

{A, (B u (C uD))}
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after applying the u-rule.

Formally this is done as follows (cf. [2, p. 25])

L(x) −→ (L(x) \ (C1 u C2)) ∪ {C1, C2}

which means that the parent term is removed from the node label (expressed
by the “\” operator) before the derivative of a rule application is added to the
node label (expressed by the “∪” operator). Table 4.1 on page 27 presents the
complete list of the modified rules.

Now the question is whether pruning of the parent expressions alter the seman-
tics of the node label? Moreover, whether it renders the node empty? According
to Herchenröder neither is the case [2, p. 27-29]. In the following I will present
a summary of his argumentation.

In the case of u-expansion pruning the parent expression does not change the
semantics of the node label. This is due do the equivalence of sets {A,B} and
{AuB} semantically. In the set {A,B,AuB} the parent expression (AuB) just
restates the requirement that individuals must satisfy A and B and is therefore
redundant. The node label is not possible to render empty after removing the
parent term, since the set will contain the operands of the term after the rule
application.

The same holds in the case of t-expansion. Here the tree is duplicated and each
operand of the complex t-term is added to the node label in each of the trees.
This preserves fully the semantics of the t-term, since it is only satisfiable if
either there exists a model fulfilling the tree with the first operand, or a model
for the tree with second operand. Put in other words, the term does not add a
new constraint to the respective node label, and is therefore redundant and can
be discarded. The node label can not be rendered empty, since there will exists
an operand after the rule application.

In the case of ∃-terms a new child node, containing the concept name, is created
and new edge to it, with the name of the relation as the label, is added. This fully
preserves the initial semantics of the ∃-term. Keeping the term is only retaining
redundant information. While removing the term will result in prohibition of
further expansion of it. It is also possible to render the node label empty by
removing the term, but it is harmless, since the child node contains the relevant
information in order to continue the decision procedure.

The same holds in the case of ∀-terms (∀R.C). There is a possibility to render
the node label empty by pruning the term, but it is harmless because of the
same reason as mentioned above. It can, however, be damaging to the proof
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to prune the term. It is due to the fact that a ∀-term can be evaluated once
for each existing child node with matching relation (R) edge and non-existent
concept C. Therefore, we must make sure that it is maximally applied and then
prune it from the node label.

4.3 Keeping the Fringe of the Proof

Analogous to complex DL expressions which can be pruned from the node label,
once the rule is applied, the whole node can also be discarded, once it has been
exhaustively transformed and expanded, checked for clashes and its all possible
child nodes have been derived with their labels fully expanded. Therefore, it is
sufficient only to keep track of the current set of leaf nodes, or better known as
fringe [2, p. 30], instead of always maintaining the whole tree.

According to Herchenröder, keeping only the fringe of the proof tree provides
some advantages without having any negative effects [2, p. 30]. One of these
advantages is the need for less memory.

He also mentions that parent node must be fully expanded before it can be
discarded. The expansion is both in terms of child expansion and clash detection.

4.4 Handling OR Trees

One has to make non-deterministic choice every time a t-connective has to be
expanded. This leaves room for implementation variants. In his implementation,
Herchenröder has chosen the sequential version of exploring t-trees. This is,
every time a t-term has to be expanded, the proof tree containing the first
operand of the term is explored until it fails. On failure, the proof tree containing
the second operand of the term is explored in order to get a model.

An alternative way, is exploring the trees concurrently. This is, exploring
the proof tree with the first operand and its duplicates containing the second
operand simultaneously.

According to Herchenröder , the sequential version not only saves runtime mem-
ory, but is also a very attractive solution when developing with Prolog, since it
fits naturally into Prolog’s backtracking strategy.



Chapter 5

Specification of the
Implemented Tableaux

In this chapter, I summarize the specification of the tableaux.pl, the implementa-
tion of tableaux algorithm proposed by Herchenröder. This chapter is basically
the summary of chapter 5 in [2] with the addition of the running example that
I have constructed by myself.

As mentioned in chapter 3 on page 17, the DL query must undergo some trans-
formation before the actual Tableaux algorithm can start working. The first
step in the transformation process is the construction of the goal [2, p. 34]. The
complex DL concepts in the goal are replaced by their definition in order to
construct an expression that only contains atomic concepts. This step of trans-
formation is called concept unfolding [2, p. 35]. The resulting DL expression
is now transformed into so called Negative Normal Form where the negations
are pushed inwards until only the atomic concepts are negated. The actual
proof starts with the result of this transformation by first eliminating the u-
and t-connectives and then checking for clashes. Next, all possible ∃-terms are
expanded and the corresponding (with the same relation) ∀-terms are applied.
The process is then repeated for the resulting child nodes.

In the following sections I describe the above process and the specification of
the tableaux.pl thoroughly and with use of a running example. This example
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is constructed by querying the ontology (TBox) shown in table 2.3 on page 12.
The specific query is

MotherWithoutDaughter v Mother (5.1)

which means that the concept of MotherWithoutDaughter is subsumed by the
concept of Mother, i.e. the concept of Mother is a more general concept then
the concept of MotherWithoutDaughter.

In order to list the specification of certain predicates, I use the notation used
by Herchenröder in his description. The capital letters A,B,C, . . . denote well-
formed DL concept expressions. On the left of the arrow (←) are goals that
must be satisfied, while on the right of it are the subgoals that will allow one
to derive the main goal if they are satisfiable. Predicates with two parameters,
e.g. nnf (A,B), can be understood as taking the first parameter (A) as input
and constructing the second one (B) as output.

5.1 Goal Construction

As mentioned above, the first step of the transformation process is the con-
struction of the goal from the initial query. In tableaux.pl it is done using the
predicate query/1.

query(A ≡ B) ← ¬tableaux(A u ¬B) ∧ ¬tableaux(B u ¬A)
query(A v B) ← ¬tableaux(A u ¬B)
query(A uB v ⊥) ← ¬tableaux(A uB)
query(unsatisfiable(A)) ← ¬tableaux(A)
query(A) ← tableaux(A)

If this predicate succeeds, it means that the query is satisfiable, otherwise it is
unsatisfiable. The first clause matches equivalence of two concepts A and B.
The two are equivalent if the tableaux proof can show that Au¬B and B u¬A
are not satisfiable. The same way, goals for queries regarding subsumption,
disjointness, unsatisfaibility and satisfiability are constructed.

The tableaux/1 predicate is the basic tableaux proof predicate that is defined
as follows:

tableaux(A) ← expand defs(A,A1) ∧
nnf (A1, A2) ∧
expand tree(A2)
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The three subgoals (expand defs(A,A1), nnf (A1, A2) and expand tree(A2))
which this predicate consists of, are the transformation of the goal and the ac-
tual proof procedure. Concept unfolding is done by the predicate expand defs/2,
while transforming the goal to Negative Normal Form is done by the predicate
nnf /2. The expand tree/1 predicate is the actual proof procedure which trans-
forms and expands the initial node by well-defined proof steps. The goal fails
if possible clashes are inspected during the expansion of the tree. If no clashes
are detected when the tree is fully expanded, the goal succeeds.

Example 5.1 This example is the first example in a series of examples illus-
trating the specification of the tableaux.pl. In this example we construct the
goal for (5.1). The goal becomes

MotherWithoutDaughter u ¬Mother (5.2)

according to the second clause of query/1. If the tableaux proof can show that
the above expression is not satisfiable then (5.1) is true, otherwise it is false.

In the following section we proceed with concept unfolding or expansion of the
goal expression.

5.2 Concept Unfolding

In this step of the transformation all the so called name concepts that are
defined in terms of other concepts are replaced by their definition. For instance
the name concept Mother in the goal constructed in example 5.1 is replaced by
its definition

Woman u ∃hasChild.Person (5.3)

which is given in table 2.3 on page 12. In tableaux.pl this is done using the
expand defs/2 predicate which is defined as:

expand defs(A,A1) ← atomic(A) ∧ ont(equiv(A,A2)) ∧ expand defs(A2, A1)
expand defs(A,A1) ← atomic(A) ∧ ¬ont(equive(A, ))

The definition states that each atomic concept A in the ontology is replaced by
the expression in the right side of the ≡ (equiv/2). Concept names which do
not have a definition in the ontology are returned as primitives. This is applied
recursively until the whole expression is unfolded.

Example 5.2 This example is the second example in the series of examples
illustrating the specification of the tableaux.pl. In this example we unfold the
name concepts in (5.2) from example 5.1.
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We are concerned with two name concepts. These are MotherWithoutDaughter

and Mother. If we begin with the second name concept and replace it with its
definition, we will get (5.3) which contains a name concept, Woman. Replacing
it will result in the fully expanded DL concept that we called Mother.

The concept MotherWithoutDaughter can be expanded in the same way. The
goal will then become a very long expression which is not suited to be presented
here. Therefore, only the first letter of each concept ( P for Person and F for
Female) is presented and the role hasChild is replaced by the letter R. The
fully expanded goal is than given as follows:

((P u F) u ∃R.P u ∀R.(¬(P u F))) u ¬((P u F) u ∃R.P) (5.4)

In the following section we proceed by pushing all the negation in the goal
inwards such that only primitive concepts are negated.

5.3 Negative Normal Form

In order for the tableaux proof procedure to begin, the goal must undergo one
last transformation. All the negations must be pushed inside such that only
primitive concepts are negated. After this transformation the goal will be in
negation normal form. In the tableaux.pl this transformation is done by the
predicate nnf /2 which is defined as follows:

nnf (¬¬C,C)
nnf (¬∀R.C,∃R.C1) ← nnf (¬C,C1)
nnf (∀R.C,∀R.C1) ← nnf (C,C1)
nnf (¬∃R.C,∀R.C1) ← nnf (¬C,C1)
nnf (∃R.C,∃R.C1) ← nnf (C,C1)
nnf (¬(A uB), A1 tB1) ← nnf (¬A,A1) ∧ nnf (¬B,B1)
nnf (A uB,A1 uB1) ← nnf (A,A1) ∧ nnf (B,B1)
nnf (¬(A tB), A1 uB1) ← nnf (¬A,A1) ∧ nnf (¬B,B1)
nnf (A tB,A1 tB1) ← nnf (A,A1) ∧ nnf (B,B1)
nnf (¬C,¬C) ← atomic(C)
nnf (C,C) ← atomic(C)

As one can see the above clauses apply the rules such as ¬¬C ≡ C, ¬∀R.C ≡
∃R.¬C, De Morgan’s laws etc. These rules are applied recursively until only
the primitive concepts are negated.
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Example 5.3 This example is the third example in the series of examples illus-
trating the specification of the tableaux.pl. In this example we transform (5.4)
from example 5.2 on page 33 into negative normal form.

There are two concepts that are negated in (5.4). These are ¬(PuF) and ¬((Pu
F)u∃R.P). The first concept is transformed into negative normal form using De
Morgan’s rules and we get (¬Pt¬F). The second concept is more complex than
the first one. Here we must apply De Morgan’s twice and beside that also the
rule ¬∃R.C ≡ ∀R.¬C. This results in ((¬P t ¬F) t ∀R.(¬P)). The goal is now
transformed into negative normal form and looks like shown below.

((P u F) u ∃R.P u ∀R.(¬P t ¬F)) u ((¬P t ¬F) t ∀R.(¬P)) (5.5)

It is now ready to be processed by the tableaux proof procedure.

In the following section we proceed with the actual tableaux proof procedure
where the goal is expanded/transformed using the tableaux inference rules.

5.4 Expanding the Proof Tree

When the goal has been transformed such that all concepts names are replaced
by their most basic definitions and all negations are pushed inwards such that
only primitive concepts are negated, the tableaux proof procedure starts work-
ing. The procedure expands the tree in a standard agenda-style tree expansion
[2, p. 36] where leaf nodes are examined, transformed (u- and t-elimination) or
expanded (∃- and ∀-expansion) and the resulting node(s) are put back into the
list of current fringe nodes for further examination [2, p. 36].

In the tableaux.pl this process starts with the basic predicate, process node/2,
that is defined as follows:

process node(A,B) ← transform connectives(A,A1) ∧
expand node(A1, B)

This predicate works on a single node from the proof tree. First all the u/t-
connectives are eliminated using the transform connectives/2 and next the trans-
formed node is expanded by possible ∃/∀-expansion using the expand node/2
predicate.

The transform connectives/2 predicate basically applies the u- and t-rule re-
cursively to all u- and t-terms. This predicate is defined as follows:
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transform connectives([A uB|R], R1) ←
transform connectives([A,B|R], R1)

transform connectives([A tB|R], R1) ←
transform connectives([A|R], R1) ∧
transform connectives([B|R], R1)

The expand node/2 predicate first checks for possible clashes in the just trans-
formed node. Its core is, however, the expansion of the ∃ and ∀ quantifiers. The
definition of this predicate is given below.

expand node(N, ) ← check clash(N)
expand node(N,NL) ← expand exist(N, [], E) ∧

expand univ(N,E,NL)

Example 5.4 This example is the fourth example in the series of examples
illustrating the specification of the tableaux.pl. In this example we eliminate
all the possible u- and t-connectives in (5.5) from example 5.3 on page 34. The
initial tree where the proof procedure starts is presented below.{

[((P u F) u ∃R.P u ∀R.(¬P t ¬F)) u ((¬P t ¬F) t ∀R.(¬P))]
}

where { } and [ ] delimit trees and nodes in a tree, respectively. In the above tree
there is only one node. This node has four u-terms which all can be eliminated.
The result is {

[P, F,∃R.P,∀R.(¬P t ¬F), ((¬P t ¬F) t ∀R.(¬P))]
}

which can be further transformed by eliminating the possible t-connectives. In
the above node there are two of such connectives. The elimination of first of
these connectives result in the following:{

[P, F,∃R.P,∀R.(¬P t ¬F), (¬P t ¬F)]
}
L{

[P, F,∃R.P,∀R.(¬P t ¬F),∀R.(¬P)]
}
R

(5.6a)

The whole tree is duplicated and the t-term is pruned from the only node in
the tree and the left operand of the t-term is added to the first copy of the tree
constructing the left tree (denoted by L), while the right operand is added to the
second copy of the tree constructing the right tree (denoted by R). It is here a
choice point is made and the proof procedure is proceeded using one of the trees
and upon failure the alternative is tried. In his implementation Herchenröder
proceeds with the left tree first and on failure the right tree is processed. We will
proceed the same way.

The left tree is now transformed the same way as the initial tree— the u/t-
connectives are eliminated. In the left tree there is only one node which consists
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of only one t-term that can be transformed— the other t-term is in the scope
of the value restriction and can only be transformed after the expansion of the
∀. We get again two trees:{

[P, F,∃R.P,∀R.(¬P t ¬F),¬P]
}
LL

(5.7a){
[P, F,∃R.P,∀R.(¬P t ¬F),¬F]

}
LR

(5.7b)

Likewise, we have a choice point here. But here we notice that both nodes in the
two trees contains clashes (P, ¬P in (5.7a) and F, ¬F in (5.7b)) and thus both
are closed.

We return back to the first choice point and proceed with the right tree (see
(5.6a)). This is done in example 5.5 on the following page.

The expand exist/3 and expand univ/3 predicates are, in my opinion, the most
complex of them all. The first one is defined in the following:

expand exist([∃R.C|L], E,EE) ← ¬member((R, , ), E) ∧ id(I) ∧
expand exist(L, [(R, I, [C])|E], EE)

expand exist([∃R.C|L], E,EE) ← member((R, , L1), E) ∧
¬member(C,L1) ∧
id(I) ∧ expand exist(L, [], EE)

expand exist([], E,E)

For every ∃-term in the list of terms, it creates a new node (e.g. (R, I, [C])) and
connects the parent and the child node by an edge which is attributed with the
relation in that term (R) and gets a unique identifier (I) in order to distinguish
different child nodes that are connected through the same relation. This is only
done if a child node with the same edge and having the same concept does not
exist. In the case of no ∃-terms, the current node is returned. This will be the
final leaf node and will ascertain an open branch since it is already checked for
clashes.

When all the possible ∃-terms are expanded the expand univ/3 predicate will
proceed by applying all the possible ∀-terms. This predicate is defined below.

expand univ([∀R.C|L], E,N) ← expand univ exhaust((R,C), E,EE) ∧
expand univ(L,EE,N)

expand univ([], E,N) ← extract nodes from edges(E,N)

In order for the ∀-terms (e.g. ∀R.C) to be expanded, there must exist a node
with the same label R. When this is the case the terms is transformed by
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adding the concept C to the node. The predicate, expand univ/3, does this
using a helper predicate, expand univ exhaust/3, which applies the given ∀-
term exhaustively to the list of child nodes [2, p. 38]. This predicate is defined
below.

expand univ exhaust((R,C), E,E) ←
extract((R, I, L1), E,E1) ∧ ¬member() ∧
expand univ exhaust((R,C), [(R, I, [C|L1])|E1], EE)

expand univ exhaust( , E,E)

The expand predicate/3 predicate, unlike, the expand exist/3 returns the list
of the child nodes without attributes when every ∀-term has been exhaustively
applied to the list of child nodes. This is clarified in example 5.5. Moreover,
this examples gives a very clear picture of how the two predicates operate.

Example 5.5 This example is the last example in the series of examples illus-
trating the specification of the tableaux.pl. In this example we proceed with the
right tree, (5.6a), from example 5.4 on page 36.

This tree consists of a single node which does not have any u/t-connectives that
can be eliminated. We, therefore, start with the expansion of the quantifiers. The
result is: {

[P, F,∀R.(¬P t ¬F),∀R.(¬P)], [(R, 1, [P])]
}

The ∃-term, ∃R.P, is pruned from the parent node and a new child node, (R, 1, [P]),
attributed with R is instead created. Now, if possible, the ∀-terms are expanded.

It seems that both ∀-terms can be expanded since they scope over the same re-
lation as the ∃-term expanded above, i.e. the relation R is shared by both terms.
The two terms are pruned from the parent node and their concepts are added to
the child node. The result is then as shown below.{

[P, F], [(R, 1, [(¬P t ¬F),¬P, P])]
}

Now the parent node, [P, F], is discarded, since it does not contribute any more
to the proof procedure. The proof procedure proceeds with the new node instead
(without the attributes). This node is{

[(¬P t ¬F),¬P, P]
}

In this point in the proof procedure the node is transformed by eliminating the
u/t-connectives. Although, there is an obvious clash in the node, it is not
discovered until all the connectives are eliminated. In the above node we have
only one t-connective which is eliminated. The result is{

[¬P,¬P, P]
}
RL{

[¬F,¬P, P]
}
RR
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which gives two trees with an immediate clash in both. This closes also the
right tree from the initial node. Thus, the tableaux is saturated and all trees
are closed. This means that there is no model for the proof goal. The answer
to (5.1) is ’Yes’, i.e. the concept of Mother is a more general concept than
MotherWithoutDaughter.
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Chapter 6

Extending the Tableaux
Implementation

In his conclusion, Herchenröder lists a number of possible ways to extend the
tableaux implementation, tableaux.pl, put forth by him. The extensions put
forth in this work are close to two of the extensions suggested by him. Since the
focus of this work is to develop resources for use in education the development
of the extensions was also focused in this direction.

In this chapter I present the two extensions I have developed for the tableaux.pl.
Moreover I will also cover testing of these extensions here.

6.1 Ontology Format Converter

In his work, Herchenröder supports a specific format for expressing ALC expres-
sions in Prolog. For instance (5.4) from example 5.2 on page 33 is expressed as
shown below (negation is expressed using tilde).

and(and(and(and(P, F), exist(R, P)), forall(R, ~and(P, F))),

~and(and(P, F), exist(R, P)))
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As one can see, this format is very difficult for humans to read. Moreover it is
very easy to make mistakes when constructing complex expressions. In order to
make this format more human-friendly, I have developed another format and a
converter that can convert an expression between the two formats. For instance
expressing the above expression in this format we will get:

((P /\ F) /\ R?P /\ R!(~(P /\ F))) /\ ~((P /\ F) /\ R?P)

where tilde still expresses negation, the forward- and backslash (/\) expresses
conjunction, the question mark (?) expresses existential restriction, while ex-
clamation mark (!) expresses value restriction. The operator that is missing
in above expression is disjunction. This operator is expressed by a back- and
forwardslash (\/).

In the following section the specification of this format is given. Moreover the
Ontology Format Converter (OFC) that is developed to covert between the two
formats is also specified and described.

6.1.1 Specification

The ontology format which is developed by Herchenröder (from now on internal
format) enables one to express also axioms and hypotheses (queries) and not
only concept description. The ontology format which is developed by me (from
now on external format) only supports expressing of concept description, i.e.
concepts that are constructed using negation, union, intersection, existential
and value restriction or the combination of these.

The external format is very close to the syntax of the ALC. For instance the
expression A uB is just expressed as it is, just by changing the operator to /\.
Expressing the quantifier, however, differs a big deal. These are actually also
implemented as binary operators. The normal term ∃R.C is expressed as R?C
where the left side of the ? is the role and the right side is the concept. Likewise,
the value restriction is implemented as binary operator. For instance the term
∀R.C is expressed as R!C.

In order to remember that exclamation mark is the symbol for value restriction
and question mark is the symbol for existential restriction in this format, one
can think of existential quantifier as a question, i.e. is there exist a x such
that . . . .
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A predicate, symbol operator/2, is used in order to map the operators in the
internal and external formats. This predicate is defined as presented below.

symbol operator(!, forall)
symbol operator(?, exist)
symbol operator(\/, or)
symbol operator(/\, and)
symbol operator(∼,∼)

In addition to this predicate, there are two more predicates which converts
an expression in internal format to the equal expression in external format and
vise versa. These predicates are to external/2 and to internal/2. As the names
suggest, the to external/2 predicate takes an expression in internal format and
returns it in external format. Likewise, the to internal/2 predicate takes an
expression in external format an returns it in internal format.

The to external/2 predicate consists of three clauses. These are defined in the
following.

to external(Int, Ext) ←
Int =.. [Opr,X1, X2] ∧
symbol operator(Sym,Opr) ∧
to external(X1, Y 1) ∧
to external(X2, Y 2) ∧
Ext =.. [Sym, Y 1, Y 2]

to external(Int, Ext) ←
Int =.. [Opr,X] ∧
symbol operator(Sym,Opr) ∧
to external(X,Y ) ∧
Ext =.. [Sym, Y ]

to external(X,X)

The two of the three clauses each convert binary and unary operators. The
third claus is the basis case, i.e. returns the atomic concept. Looking at the first
claus, one can see that it converts binary operators. The Int =.. [Opr,X1, X2]
term extracts the operator (Opr) and operands (X1 and X2) of an expression.
The corresponding operator in external format is mapped to this operator using
the symbol operator/2 predicate. Recursively, the operands are converted to
the external format and the expression is constructed using the term Ext =
.. [Sym, Y 1, Y 2]. The second claus works in the same way as the first one, but
only converting the unary operators.

For converting from external format to internal format the predicate, to internal/2,
is used. This predicate is defined exactly the same way as the to external/2
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predicate. The definition of it is presented in the following.

to internal(Ext, Int) ←
Ext =.. [Sym,X1, X2] ∧
symbol operator(Sym,Opr) ∧
to external(X1, Y 1) ∧
to external(X2, Y 2) ∧
Int =.. [Opr, Y 1, Y 2]

to Internal(Ext, Int) ←
Ext =.. [Sym,X] ∧
symbol operator(Sym,Opr) ∧
to external(X,Y ) ∧
Int =.. [Opr, Y ]

to internal(X,X)

It might be difficult to see the differences between the two predicates since they
seems to be exactly the same definitions. The similarity of these predicate is
due to they being symmetrical.

6.2 Proof Constructor

The tableaux.pl only returns a true/false (satisfiable/unsatisfiable) result for
any given query. It is not possible to explore the intermediate steps toward the
final answer—beside using the Prolog trace functionality. A convenient way to
enable the user to explore the intermediate steps in a proof (a proof constructor,
PC) has a lot of benefits.

A more important benefit of PC, in my opinion, is the ability to help one in
understanding the Tableaux algorithm and how it works. This is especially
important for those who are in the learning process, i.e. students.

Another benefit which is close to the above one, is the ability to have a correct
answer in order to check ones own solution against it and thus find the inter-
mediate step where one makes mistake, i.e. like having a mentor. Again, it is
students that can benefit from this functionality.

In the following section a specification of the developed PC has been given.
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6.2.1 Specification

The basic idea behind the development of the PC was to take the tableaux.pl
as the starting point and output the result of some intermediate steps that
together constructed the proof. It turned out that this idea could be easily
realised and resulted in Xtableaux.pl—the extended tableaux implementation.
In the following I give a specification of this extended version.

The challenges in developing the Xtableaux.pl were to output the constructed
proof in a convenient way and find those intermediate steps that could result in a
more constructive proof. The first challenge was easily overcome by outputting
the constructed proof to a file. For each constructed proof the Xtableaux.pl cre-
ates a file named proofX where X is a an auto-generated number distinguishing
the proofs.

To overcome the second challenge the tableaux.pl was thoroughly examined and
understood. The intermediate steps that resulted in a more constructive proof
were chosen to be those presented in the following.

Initial Expression The expression given to the system as the hypothesis.

The Goal The reduction of the initial expression to satisfiability/unsatisfaibility,
i.e. for instance the reduction of C v D to C u ¬D.

Expanded Expression The unfolding of all the name concepts, i.e. TBox-
elimination.

Negative Normal Form The result of putting the expanded expression in
negative normal form, i.e. pushing all the negation in the expanded ex-
pression inwards until only atomic concepts are negated.

Tableaux Inference Rules The results of applying tableaux inference rules
to the initial node label in the proof tree. These results are further divided
into intermediate steps which are as follows.

u/t-elimination The result of eliminating all possible u/t-connectives
in a node label.

∃-elimination The result of expanding all the existential restrictions in
a node label.

∀-elimination The result of expanding all possible value restrictions in
a node label.

Final Result The result of the proof, i.e. whether the goal is satisfiable or
unsatisfiable.
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The above steps means some changes to some of the predicates in tableaux.pl.
These changes are highlighted in Appendix B where the complete listing of
Xtableaux.pl is also given.

6.3 Testing the Extensions

In order to ensure that the correctness of the tableaux.pl is intact after the
implementation of Xtableaux.pl and the ontology format converter works as
intended, some tests needed to be conducted. To this end, I have constructed
two different test suites.

These two test suites follow the same structure. They consists of a driver pro-
gram, the data sets and the programs to be tested. In the following each of the
two test suites are described in more details.

6.3.1 Testing Ontology Format Converter

The first test suite that I will describe in this section is intended to test the
correctness of the ontology format converter, grammar.pl.

The structure of this test suite can be summarized as follows:

grammar.pl The implementation of the ontology format converter.

ofc tester.pl The driver program that runs automatically all the test cases.

data The test cases for this test suite.

6.3.1.1 Construction of Test Data

One of the most important elements in testing any kind of software is the con-
struction of test data. A constructive test data will help in revealing more bugs.
It is always better that test data has been constructed by someone else then the
one that has developed the software.

For this test suite, the test data has been partly taken from the Extended
Mindswap Test in Herchenröder’s work [2, p. 69] and partly has been constructed
by myself.
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The test data that has been constructed by myself, covers the very basic cases
such as terms consisting of only one u/t-connectives. This way, the very basic
bugs are revealed.

Normally, the test data consists of two parts. One part is the actual data to
be fed to the software and the other part is the expected result. The test data
constructed for this test suite only consists of one part—there is no data part
for the expected result. This is due to the test data being used both as the
actual and expected result. This is clarified further in the following section.

6.3.1.2 Conducting the Test

The way this test is conducted is not the same as the usual way—comparing the
actual result of the test to the expected result. For this test suite the test data
is only in the internal format which is converted to the external format using
the to external/2 predicate. The result is used as input to the to internal/2
predicate which converts the data back to the internal format—its original form.
If this goes well the test is passed. This way both predicates are tested using
the same set of data.

The test is conducted using a driver program that takes each test case and runs
it like described above.

6.3.2 Testing the Proof Constructor

The second test suite is intended to test the correctness of the proof constructor,
Xtableaux.pl. This test suite, like the first one, consists of many different parts.
These parts are listed below.

Xtableaux.pl The extended tableaux implementation, i.e. the proof construc-
tor.

grammar.pl The implementation of the ontology format converter.

pc tester.pl The driver program that runs automatically all the test cases.

data The test cases for this test suite.

As listed above, this test suite also contains the implementation of the ontology
format converter. It is used by the proof constructor in order to convert the
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expressions in the internal format to the expressions in the external format
before outputting them.

6.3.2.1 Construction of Test Data

For this test suite, the entire test data has been taken from the Extended
Mindswap Test in Herchenröder’s work [2, p. 69]. Each test case consists of
a hypothesis and the expected result, i.e. whether the hypothesis is satisfiable
or not. Half of the test cases are TBox free while the other half has TBox.

6.3.2.2 Conducting the Test

This test suite, like the other one, is conducted using a driver program that
runs the proof constructor against every test case and tests the actual and the
expected result. If they are the same the test is passed otherwise it is failed.
The whole process is automated, i.e. both the proof constructor and the test
cases are loaded by the driver program and the result of each test case is given
back.

6.3.3 Test Results

The test suite for testing the ontology format converter passed error free the
first time. This means that there were no bugs in the program that could be
revealed by this test suite.

The test suite for testing the proof constructor revealed, though, some bugs.
These bugs were caused by missing negation sign (∼) in some of the predicates,
e.g. negnormform/2, which resulted in wrong answers some of the times. By
fixing these bugs the test suite was passed, thus ensuring the correctness of the
reasoner.
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Conclusions

The goal of this work was to develop educational resources for teaching Descrip-
tion Logics and reasoning about them using Tableaux algorithms. The starting
point of this work was the Master Thesis of Thomas Herchenröder [2] from the
University of Edinburgh.

Using Herchenröder’s work and his implementation of Tableaux algorithm for
reasoning in ALC, two extensions were developed. One of these extensions
introduces an alternative ontology format, the external format, that is more
human-friendly compared to the one used by Herchenröder, the internal format.
In addition, a converter is developed that converts expressions between the two
formats.

The second extension, Xtableaux.pl, is directly developed on top of the Prolog
implementation of Herchenröder, tableaux.pl. This extension, called Proof Con-
structor, is meant to construct the whole proof by outputting the intermediate
steps in the proof process to a file. The intention behind this extension is to
help students understand the Tableaux algorithms and help in debugging the
ontology.
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7.1 Future Work

In his conclusion, Herchenröder mentions nine different ways to extend his work
[2, p. 56-59]. This work, in addition to those extensions, can also be extended.

The ontology format converter can be extended with an interface that given a
term in internal format or external format outputs the result to some medium,
e.g. a file.

It is also possible to extend the proof constructor. One way would be to output
the constructed proof as a graphical proof tree instead of pure text.

7.2 Reflection

Looking back at the past five months, I realize that working on this project has
effected me in many levels. One important thing which I have learned in the
course of this project was the ability to work independently. Moreover, I learned
how to manage this kind of project – development based on reverse engineering.

Another important aspect of this project was learning more about Prolog and
artificial intelligence in general. This had a profound effect on my choice of
career.
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Listing of tableaux.pl

This is the code for tableaux.pl, the Tableaux reasoner that was developed by
Herchenröder . The listing below is the exact copy from his work.

% tableaux.pl -- tableaux reasoner for description logics

:- use_module(library(lists)).

:- op(100,fy,~).

:- dynamic ont/1.

:- dynamic id/1.

% Main Proof Goal

tableaux_proof(Exp) :- % true/fals = satisfiable/unsatisfiable

proof(Exp).

%construct_goal

proof(equiv(A,B)) :-

\+ tabl(and(A,~B)),

\+ tabl(and(B,~A)).

proof(subsum(A,B)) :-

\+ tabl(and(A,~B)).

proof(disjoint(A,B)) :-

\+ tabl(and(A,B)).
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proof(unsat(A)) :- % unsatisfiable A

\+ tabl(A).

proof(A) :- % try to satisfy everything else

tabl(A).

% main worker

tabl(Exp) :-

expand_defs(Exp,Exp1), % expand expression into most basic

negnormform(Exp1,Exp2), % NNF transformation

setID(0),

!,

search([[Exp2]],df,_). % do the proof as an agenda search

negnormform(~ ~X,X1) :-

negnormform(X,X1).

negnormform(~forall(R,C),exist(R,C1)) :-

negnormform(~C,C1).

negnormform(forall(R,C),forall(R,C1)) :-

negnormform(C,C1).

negnormform(~exist(R,C),forall(R,C1)) :-

negnormform(~C,C1).

negnormform(exist(R,C),exist(R,C1)) :-

negnormform(C,C1).

negnormform(~and(A,B),or(A1,B1)) :-

negnormform(~A,A1),

negnormform(~B,B1).

negnormform(and(A,B),and(A1,B1)) :-

negnormform(A,A1),

negnormform(B,B1).

negnormform(~or(A,B),and(A1,B1)) :-

negnormform(~A,A1),

negnormform(~B,B1).

negnormform(or(A,B),or(A1,B1)) :-

negnormform(A,A1),

negnormform(B,B1).

negnormform(~X,~X) :-

atom(X).

negnormform(X,X) :-

atom(X).

expand_defs(forall(R,C),forall(R,C1)) :-

expand_defs(C,C1).

expand_defs(exist(R,C),exist(R,C1)) :-

expand_defs(C,C1).

expand_defs(and(A,B),and(A1,B1)) :-
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expand_defs(A,A1),

expand_defs(B,B1).

expand_defs(or(A,B),or(A1,B1)) :-

expand_defs(A,A1),

expand_defs(B,B1).

expand_defs(~A,~A1) :-

expand_defs(A,A1).

expand_defs(X,Y) :-

atom(X),

ont(equiv(X,X1)),

expand_defs(X1,Y).

expand_defs(X,X) :-

atom(X),

\+ ont(equiv(X,_)).

% search(+Goal,+Style,-ResultList) -- agenda style search

% -- transforms Goal into a list of [clash]/[model] elements

search([],_,[]).

search(Reduced, _, Reduced) :-

Reduced = [H|_],

H = [clash], % a clash leaf fails the proof

!,

fail.

search([Node| T], Style, Reduced) :-

process_node(Node,NewNodes),

filter_nodes(NewNodes,NewNodes1),

merge_agendas(NewNodes1, T, Style, New),

search(New, Style, Reduced).

filter_nodes(NewNodes,NewNodes1) :-

( setof(X,(member(X,NewNodes),X\=[model]),NewNodes1);

NewNodes1 = []),

!.

merge_agendas(A1, A2, df, New) :-

append(A1, A2, New),!.

merge_agendas(A1, A2, bf, New) :-

append(A2, A1, New),!.

% reduce a node of the proof tree

process_node([clash],[]) :- !.

process_node([model],[]) :- !.

process_node(ListOfDLExps,ResultListOfLists) :-

transform_connect(ListOfDLExps,_,LoL3),

expand_nodes(LoL3,ResultListOfLists).
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expand_nodes([],[]).

expand_nodes([H|R],RLoL) :-

expand_node(H,RLoL1),

expand_nodes(R,RLoL2),

append(RLoL1,RLoL2,RLoL).

% process a single node

expand_node([],[]).

expand_node([model],[[model]]) :-!.

expand_node([clash],[[clash]]) :-!.

expand_node(Node,[N1]) :-

check_clash(Node,N1),!. % clash closes this branch

expand_node(Node,N1) :-

expand_exist(Node,[],LoE), % expand existential restrictions

LoE \= [], % only continue with non-empty edges

expand_forall(Node,LoE,LoE2), % try eliminate value restrictions

extract_nodes(LoE2,N1). % get the list of new fringe nodes

expand_node(Node,[N1]) :- % model closes this branch

expand_exist(Node,[],LoE),

LoE = [],

N1 = [model].

% extract list of nodes from list of edges

extract_nodes([],[]).

extract_nodes([edge(_,_,N)|R],[N|R1]) :-

extract_nodes(R,R1).

% transform and/or connectives

transform_connect([],_,[[]]).

transform_connect([and(A,B)|R],N,R1) :-

( member(A,R) ->

( member(B,R) ->

transform_connect(R,N,R1);

transform_connect([B|R],N,R1));

( member(B,R) ->

transform_connect([A|R],N,R1);

transform_connect([A,B|R],N,R1))).

transform_connect([or(A,B)|R],N,LoL) :-

( \+ (member(A,R) ; member(B,R)) ->

( transform_connect([A|R],N,LoL);

transform_connect([B|R],N,LoL));

transform_connect(R,N,LoL)).

transform_connect([H|R],N,LoL) :-
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H \= and(_,_),

H \= or(_,_),

transform_connect(R,N,LL1),

LL1 = [LL2],

LoL = [[H|LL2]].

% transform forall/exist quantifiers

expand_exist([],L,L).

expand_exist([exist(R,C)|T],T1,L) :-

( (member(edge(R,_,X),T1), member(C,X) ) -> % existing R edge

expand_exist(T,T1,L);

getID(Id),

expand_exist(T,[edge(R,Id,[C])|T1],L)

).

expand_exist([H|T],T1,L) :-

H \= exist(_,_),

expand_exist(T,T1,L).

expand_forall(_,[],[]).

% push concept into exist. node

expand_forall(Node,[edge(R,I,N)|RoE],[edge(R,I,N2)|R1]) :-

setof(X,member(forall(R,X), Node),C1),

append(C1,N,N1),

remove_duplicates(N1,N2),

expand_forall(Node,RoE,R1).

expand_forall(Node,[edge(R,I,N)|RoE],[edge(R,I,N)|LoE]) :-

\+ member(forall(R,_),Node),

expand_forall(Node,RoE,LoE).

check_clash(Exp,Exp1) :-

member(A,Exp),

member(~A,Exp),

Exp1 = [clash].

remove_duplicates([],[]).

remove_duplicates([H|T],[H|R]) :-

r_d(H,T,[],R1),

remove_duplicates(R1,R),!.

r_d(_,[],T,T).

r_d(E,[E|T],TT,T1) :- r_d(E,T,TT,T1).

r_d(E,[X|T],TT,T1) :- X \= E, r_d(E,T,[X|TT],T1).

getID(I):-

id(I1),
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I is I1 + 1,

retract(id(I1)),

asserta(id(I)),!.

getID(I):-

\+ id(_),

I is 0,

asserta(id(I)),!.

setID(X):-

( id(Y) ->

retract(id(Y));

true

),

asserta(id(X)).
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Listing of Xtableaux.pl

This is the Prolog code for Xtableaux.pl that extends tableaux.pl with the notion
of proof construction.

% Xtableaux.pl -- The extended tableaux reasoner for description logics

:- use_module(library(lists)).

:- op(100,fy,~).

:- dynamic ont/1.

:- dynamic id/1.

:- dynamic fid/1.

:- ensure_loaded(’grammar.pl’).

% Unique file name generator

getFileID(I):-

fid(I1),

I is I1 + 1,

retract(fid(I1)),

asserta(fid(I)),!.

getFileID(I):-

\+ fid(_),

I is 0,
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asserta(fid(I)),!.

getFileName(X,N) :-

getFileID(I),

atom_concat(X, I, N).

% Main Proof Goal

tableaux_proof(Exp) :- % true/false = satisfiable/unsatisfiable

getFileName(proof,F),

telling(Old),

tell(F),

write(’--- INITIAL EXPRESSION: ---’), nl,

to_ext(Exp,Fml),

write(Fml), nl,

( proof(Exp) ->

write(’- SATISFIABLE -’)

;

write(’- UNSATISFIABLE -’)

),

nl,

told,

tell(Old).

%construct_goal

proof(equiv(A,B)) :-

write(’--- GOAL: ---’), nl,

to_ext(and(A,~B),Fml1),

write(Fml1),

write(’ AND ’),

to_ext(and(B,~A),Fml2),

write(Fml2),

nl,

\+ tabl(and(A,~B)),

\+ tabl(and(B,~A)).

proof(subsum(A,B)) :-

write(’--- GOAL: ---’), nl,

to_ext(and(A,~B),Fml),

write(Fml),

nl,

\+ tabl(and(A,~B)).

proof(disjoint(A,B)) :-

write(’--- GOAL: ---’), nl,

to_ext(and(A,~B),Fml),
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write(Fml),

nl,

\+ tabl(and(A,B)).

proof(unsat(A)) :- % unsatisfiable A

write(’--- GOAL: ---’), nl,

to_ext(A,Fml),

write(unsatisfiable(Fml)),

nl,

\+ tabl(A).

proof(A) :- % try to satisfy everything else

write(’--- GOAL: ---’), nl,

to_ext(A,Fml),

write(Fml),

nl,

tabl(A).

% main worker

tabl(Exp) :-

write(’--- EXPANDED EXPRESSION: ---’), nl,

expand_defs(Exp,Exp1), % expand expression into most basic

to_ext(Exp1,Fml1),

write(Fml1), nl,

write(’--- NEGATIVE NORMAL FORM: ---’), nl,

negnormform(Exp1,Exp2), % NNF transformation

to_ext(Exp2,Fml2),

write(Fml2), nl,

setID(0),

!,

write(’===== TABLEAUX INFERENCE =====’), nl,

search([[Exp2]],df,_). % do the proof as an agenda search

negnormform(~ ~X,X1) :-

negnormform(X,X1).

negnormform(~forall(R,C),exist(R,C1)) :-

negnormform(~C,C1).

negnormform(forall(R,C),forall(R,C1)) :-

negnormform(C,C1).

negnormform(~exist(R,C),forall(R,C1)) :-

negnormform(~C,C1).

negnormform(exist(R,C),exist(R,C1)) :-

negnormform(C,C1).

negnormform(~and(A,B),or(A1,B1)) :-

negnormform(~A,A1),

negnormform(~B,B1).
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negnormform(and(A,B),and(A1,B1)) :-

negnormform(A,A1),

negnormform(B,B1).

negnormform(~or(A,B),and(A1,B1)) :-

negnormform(~A,A1),

negnormform(~B,B1).

negnormform(or(A,B),or(A1,B1)) :-

negnormform(A,A1),

negnormform(B,B1).

negnormform(~X,~X) :-

atom(X).

negnormform(X,X) :-

atom(X).

expand_defs(forall(R,C),forall(R,C1)) :-

expand_defs(C,C1).

expand_defs(exist(R,C),exist(R,C1)) :-

expand_defs(C,C1).

expand_defs(and(A,B),and(A1,B1)) :-

expand_defs(A,A1),

expand_defs(B,B1).

expand_defs(or(A,B),or(A1,B1)) :-

expand_defs(A,A1),

expand_defs(B,B1).

expand_defs(~A,~A1) :-

expand_defs(A,A1).

expand_defs(X,Y) :-

atom(X),

ont(equiv(X,X1)),

expand_defs(X1,Y).

expand_defs(X,X) :-

atom(X),

\+ ont(equiv(X,_)).

% search(+Goal,+Style,-ResultList) -- agenda style search

% -- transforms Goal into a list of [clash]/[model] elements

search([],_,[]).

search(Reduced, _, Reduced) :-

Reduced = [H|_],

H = [clash], % a clash leaf fails the proof

write(’CLASH’), nl,

!,

fail.

search([Node| T], Style, Reduced) :-
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to_ext_dlist([Node|T],FmlList),

write(FmlList), nl,

process_node(Node,NewNodes),

filter_nodes(NewNodes,NewNodes1),

merge_agendas(NewNodes1, T, Style, New),

search(New, Style, Reduced).

filter_nodes(NewNodes,NewNodes1) :-

( setof(X,(member(X,NewNodes),X\=[model]),NewNodes1);

NewNodes1 = []),

!.

merge_agendas(A1, A2, df, New) :-

append(A1, A2, New),!.

merge_agendas(A1, A2, bf, New) :-

append(A2, A1, New),!.

% reduce a node of the proof tree

process_node([clash],[]) :- !.

process_node([model],[]) :- !.

process_node(ListOfDLExps,ResultListOfLists) :-

write(’*** AND/OR-eleminations: ***’), nl,

transform_connect(ListOfDLExps,_,LoL3),

to_ext_dlist(LoL3,FmlList),

write(FmlList), nl,

expand_nodes(LoL3,ResultListOfLists).

expand_nodes([],[]).

expand_nodes([H|R],RLoL) :-

expand_node(H,RLoL1),

expand_nodes(R,RLoL2),

append(RLoL1,RLoL2,RLoL).

% process a single node

expand_node([],[]).

expand_node([model],[[model]]) :-!.

expand_node([clash],[[clash]]) :-!.

expand_node(Node,[N1]) :-

check_clash(Node,N1),!. % clash closes this branch

expand_node(Node,N1) :-

write(’*** EXIST-elemination: ***’), nl,

expand_exist(Node,[],LoE), % expand existential restrictions

LoE \= [], % only continue with non-empty edges

write(’*** FORALL-elemination: ***’), nl,

expand_forall(Node,LoE,LoE2), % try eliminate value restrictions
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extract_nodes(LoE2,N1), % get the list of new fringe nodes

write(’*** NEW FRINGE NODES: ***’), nl,

!. %%% ADDED by ISMAIL (closes this branch)

expand_node(Node,[N1]) :- % model closes this branch

expand_exist(Node,[],LoE),

LoE = [],

N1 = [model].

% extract list of nodes from list of edges

extract_nodes([],[]).

extract_nodes([edge(_,_,N)|R],[N|R1]) :-

extract_nodes(R,R1).

% transform and/or connectives

transform_connect([],_,[[]]).

transform_connect([and(A,B)|R],N,R1) :-

( member(A,R) ->

( member(B,R) ->

transform_connect(R,N,R1);

transform_connect([B|R],N,R1));

( member(B,R) ->

transform_connect([A|R],N,R1);

transform_connect([A,B|R],N,R1))).

transform_connect([or(A,B)|R],N,LoL) :-

( \+ (member(A,R) ; member(B,R)) ->

( transform_connect([A|R],N,LoL);

transform_connect([B|R],N,LoL));

transform_connect(R,N,LoL)).

transform_connect([H|R],N,LoL) :-

H \= and(_,_),

H \= or(_,_),

transform_connect(R,N,LL1),

LL1 = [LL2],

LoL = [[H|LL2]].

% transform forall/exist quantifiers

expand_exist([],L,L).

expand_exist([exist(R,C)|T],T1,L) :-

( (member(edge(R,_,X),T1), member(C,X) ) -> % existing R edge

expand_exist(T,T1,L);

getID(Id),

write(’ ’),

to_ext(C,Fml),

write([edge(R,Id,[Fml])]),
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nl,

expand_exist(T,[edge(R,Id,[C])|T1],L)

).

expand_exist([H|T],T1,L) :-

H \= exist(_,_),

expand_exist(T,T1,L).

expand_forall(_,[],[]).

% push concept into exist. node

expand_forall(Node,[edge(R,I,N)|RoE],[edge(R,I,N2)|R1]) :-

setof(X,member(forall(R,X), Node),C1),

append(C1,N,N1),

remove_duplicates(N1,N2),

write(’ ’),

to_ext_list(N2,Fml),

write([edge(R,I,Fml)]),

nl,

expand_forall(Node,RoE,R1).

expand_forall(Node,[edge(R,I,N)|RoE],[edge(R,I,N)|LoE]) :-

\+ member(forall(R,_),Node),

expand_forall(Node,RoE,LoE).

check_clash(Exp,Exp1) :-

member(A,Exp),

member(~A,Exp),

Exp1 = [clash].

remove_duplicates([],[]).

remove_duplicates([H|T],[H|R]) :-

r_d(H,T,[],R1),

remove_duplicates(R1,R),!.

r_d(_,[],T,T).

r_d(E,[E|T],TT,T1) :- r_d(E,T,TT,T1).

r_d(E,[X|T],TT,T1) :- X \= E, r_d(E,T,[X|TT],T1).

getID(I):-

id(I1),

I is I1 + 1,

retract(id(I1)),

asserta(id(I)),!.

getID(I):-

\+ id(_),

I is 0,

asserta(id(I)),!.
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setID(X):-

( id(Y) ->

retract(id(Y));

true

),

asserta(id(X)).

In the following a list of modification to the tableaux.pl that results in Xtableaux.pl
is given.

• The dynamic predicate fid/1 has been added in order to generate a unique
number—the same as predicate id/1.

• The two predicates getFileID/1 and getFileName/2 has been added for
the purpose of generating a unique name for each file that contains a proof.

• The main predicate, tableaux proof/1, has been extended to generate a
file (if not exists already) for the constructed proof. It is also here that
both the initial expression as the hypothesis and the result of the proof is
outputted.

• Predicate proof/1 has been extended to output the constructed goal.

• The main worker predicate, tabl/1, has been extended to output both
the expended expression and the result of the negnormform/2 (Negation
Normal Form). It also outputs the beginning of the Tableaux inference
rules.

• Predicate search/3 has been extended to output the current set of nodes
or clash if one is found.

• Predicate process node/2 has been extended to output the result of elim-
ination of u/t-connectives.

• Predicate expand node/2 has been extended to output the result of ex-
panding ∃ and ∀ restrictions. Moreover, it also outputs the beginning of
processing a new fringe nodes.

• Predicate expand exist/3 has been extended to output the result of each
∃-expansion, i.e. the construction of each new edge to the current node.

• Likewise, the expand forall/3 predicate has been extended to output the
result of each ∀-expansion.
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The Internal Ontology Format

This is the complete ontology format which is developed by Herchenröder . It
has been presented the same way as it is presented in appendix D in [2].

DLexpression :: DLconcept | DLaxiom | DLquery

DLquery :: equiv(DLconcept, DLconcept) |

subsum(DLconcept, DLconcept) |

disjoint(DLconcept, DLconcept) |

unsat(DLconcept) |

DLconcept

DLaxiom :: ont(equiv(PrimitiveConcept, DLconcept))

DLconcept :: PrimitiveConcept |

and(DLconcept, DLconcept) |

or(DLconcept, DLconcept) |

exist(Relation, DLconcept)|

forall(Relation,DLconcept)|

~DLconcept

PrimitiveConcept :: PrologLiteral
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Relation :: PrologLiteral
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Listing of grammar.pl

This is the Prolog code for the grammar.pl—the ontology format converter.

:- op(650,xfy,!). /* universal */

:- op(640,xfy,?). /* existential */

:- op(630,xfy,\/). /* disjunction */

:- op(620,xfy,/\). /* conjunction */

:- op(610,fy,~). /* negation */

sym_opr(!,forall).

sym_opr(?,exist).

sym_opr(\/,or).

sym_opr(/\,and).

sym_opr(~,~).

%

% Convert to Externel Format

%

to_ext(Int, Ext) :-

Int =.. [Opr, X1, X2],

sym_opr(Sym, Opr), !,

to_ext(X1, Y1),
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to_ext(X2, Y2),

Ext =.. [Sym, Y1, Y2].

to_ext(Int, Ext) :-

Int =.. [Opr, X1],

sym_opr(Sym, Opr), !,

to_ext(X1, Y1),

Ext =.. [Sym, Y1].

to_ext(F, F).

%

% Convert to Internal Format

%

to_int(Ext, Int) :-

Ext =.. [Sym, X1, X2],

sym_opr(Sym, Opr), !,

to_int(X1, Y1),

to_int(X2, Y2),

Int =.. [Opr, Y1, Y2].

to_int(Ext, Int) :-

Ext =.. [Sym, X1],

sym_opr(Sym, Opr), !,

to_int(X1, Y1),

Int =.. [Opr, Y1].

to_int(F, F).

%

% Convert a list of internal formulas to external format

%

to_ext_list([X|T],[Fml|L]):-

to_ext(X,Fml),

to_ext_list(T,L).

to_ext_list([],[]).

%

% Convert a two-diminsional list of internal formulas to external format

%

to_ext_dlist([X|T],[Y|L]) :-

to_ext_list(X,Y),

to_ext_dlist(T,L).
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to_ext_dlist([],[]).

The two predicates to ext dlist/2 and to ext list/2 has been developed in order
to process a two dimensional and one dimensional lists of nodes, respectively.
They are used in the development of the proof constructor (see section 6.2 on
page 44).
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Appendix E

Test Data for Proof
Constructor

This is the test data used in the test suite that tested the correctness of the
proof constructor. There are in total 10 files where each file name is proceeded
by its content.

ex1_1.pl:

sat(false).

query( and( wine, beer)).

ont(equiv(beer,and( drink,and(exist( hasingr, water),

and( exist( hasingr,hops),and( exist( hasingr, malt),

forall( hasingr, or( water, or(hops,malt))))))))).

ont(equiv(grapes,and( (~hops),and( (~malt), (~water))))).

ont(equiv(wine,and( drink, exist( hasingr, grapes)))).

ex1_2_1.pl:

sat(false).

query( and( exist( r, b), forall( r, (~b)))).

ex1_2_2.pl:

sat(true).

query( and( exist( r, b), forall( r, or( a, (~b))))).
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ex1_2_3.pl:

sat(false).

query( and( exist( r, b), forall( r, (~b)))).

ont(equiv(aa,or( a, (~a)))).

ont(equiv(a,exist( r, exist( r, exist( r, c))))).

ont(equiv(b,and( a, and(exist( r, aa), or( aa, (~aa)))))).

ex1_2_4.pl:

sat(false).

query( and( exist( r, b), forall( r, or( a, (~b))))).

ont(equiv(a,( ~b))).

ex1_3.pl:

sat(true).

query( and( werewolf, human)).

ont(equiv(werewolf,and( animal, and(exist( haspower,

magical),forall( speaks, language))))).

ont(equiv(acramantula,and( beast,and(or( male,

female),exist( haspower, magical))))).

ont(equiv(wizard,and( male,and(human,exist(

haspower, magical))))).

ont(equiv(centaur,and( animal,and((~human),and(

or( male, female),and(exist(haspower, magical),

forall( speaks, language))))))).

ont(equiv(vampire,and( beast,and(or( male,

female),forall( haspower,magical))))).

ont(equiv(beast,and( animal,(~human)))).

ont(equiv(muggle,and( human,and( or( male,

female),forall( haspower,(~magical)))))).

ont(equiv(witch,and( female,and( human,

exist( haspower, magical))))).

ont(equiv(human,and( animal,exist( speaks, language)))).

ont(equiv(male,and( animal,(~female)))).

ont(equiv(merpeople,and( animal,and( (~human),

and( forall( haspower, magical),forall( speaks,

language)))))).

ex1_8.pl:

sat(true).

query( or( and( or( a, b), or( c, d)),

and( or( a, c), or( b, d)))).

ex1_10.pl:
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sat(true).

query( and( veggiepizza, meatpizza)).

ont(equiv(veggiepizza,and( pizza, forall( hastopping,

(~meat))))).

ont(equiv(meatpizza,and( pizza, forall( hastopping,

(~veggie))))).

ont(equiv(veggie,or( mushroom, olive))).

ont(equiv(meat,or( pepperoni, sausage))).

ex1_11.pl:

sat(false).

query( and( exist( p, a), and(exist( p, b), and(

and( c, d), (~exist( p, (~and((~e), f)))))))).

ont(equiv(a,and( h, and( i, (~d))))).

ont(equiv(j,( ~k))).

ont(equiv(b,( ~g))).

ont(equiv(d,forall( q, j))).

ont(equiv(g,( ~e))).

ex2_7.pl:

sat(true).

query( and( b, and(c, and(exist( p, and( a,

and(c, exist( r, (~d))))), forall(r, d))))).
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Test Data for Ontology
Format Converter

This is the test data used in the test suite that tested the correctness of the
ontology format converter. There are in total 10 files where each file name is
proceeded by its content. The 4 first files are constructed by myself. The rest
of the files indicate where their content come from using Prolog comments. The
files that are indicated in the comments are from the Extended Mindswap Tests
[2, p. 69-80].

exp_1.pl:

query(and( a, b)).

exp_2.pl:

query(or( a, b)).

exp_3.pl:

query(exist(r, b)).

exp_4.pl:

query(forall(r, a)).

exp_5.pl:
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%

% The query from ex1_11.pl

%

query( and( exist( p, a), and(exist( p, b),

and(and( c, d), (~exist( p, (~and((~e), f)))))))).

exp_6.pl:

%

% The query from ex1_2_1.pl

%

query( and( exist( r, b), forall( r, (~b)))).

exp_7.pl:

%

% The query from ex1_2_2.pl

%

query( and( exist( r, b), forall( r, or( a, (~b))))).

exp_8.pl:

%

% The query from ex1_8.pl

%

query( or( and( or( a, b), or( c, d)),

and( or( a, c), or( b, d)))).

exp_9.pl:

%

% The query from ex1_9.pl

%

query( and( hydra, and( dragonet, exist( elemental, fire)))).

exp_10.pl:

%

% The query from ex2_1.pl

%

query( and( a, and(d, and(g, and((~m), and((~n),

and((~o), and((~p), and((~q), and((~r),

and((~s), and((~t), and((~u), and((~v1),

and((~w),(~x)))))))))))))))).
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Test Driver Scripts

The following two programs have been used as driver scripts for the two test
suites.

G.1 Listing of pc tester.pl

This is the code for the program that runs Xtableaux.pl against the test data
presented in appendix E on page 71. The invocation of the program looked like

swipl -s pc tester.pl -g run. -t halt.

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

% pc_tester.pl %

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

% Performs tests on the Xtableaux.pl

% in order to ensure the correctness of it.

% Inspired from reg_test.pl developed

% by Thomas Herschenroeder

:- consult(’Xtableaux.pl’).
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% A small program to read data from a file

% and assert it to the database

%

% The program is taken from:

% http://www.csupomona.edu/~jrfisher/www/prolog_tutorial/pt_framer.html

%

% It has been slightly modified

browse(File) :-

seeing(Old),

see(File),

repeat,

read(Data),

process(Data),

seen,

see(Old),

!.

process(end_of_file) :- !.

process(Data) :- assert(Data), fail.

% dir interface

get_files(Dir):-

consult(Dir), % get list of test files

flist(Files), % into a variable

eval_files(Files).

eval_files([F|T]):-

eval_file(F),

eval_files(T).

eval_file(File1):-

retractall(query(_)),

retractall(sat(_)),

retractall(ont(_)),

atom_concat(’data/’,File1,File),

browse(File),

write(’Testing file: ’), write(File), nl,

query(Q),

sat(S),

tableaux_proof(Q,S1),

( S1 = S -> report(File,ok) ; report(File,err)).

report(File,ok):-
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write(File),write(’: OK’),nl.

report(File,err):-

write(File), write(’: ERROR’),nl.

% Runs the test suite

run :- get_files(’data/index.pl’).

G.2 Listing of ofc tester.pl

This is the code for the program that runs grammar.pl against the test data
presented in appendix F on page 75. The invocation of the program looked like

swipl -s ofc tester.pl -g run. -t halt.

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

% ofc_tester.pl %

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

% Runs the test data for ontology format

% converter in order to test the correctness of it.

% Inspired from reg_test.pl developed by

% Thomas Herschenroeder

:- consult(’grammar.pl’).

% A small program to read data from a file

% and assert it to the database

%

% The program is taken from:

% http://www.csupomona.edu/~jrfisher/www/prolog_tutorial/pt_framer.html

%

% It has been slightly modified

browse(File) :-

seeing(Old),

see(File),

repeat,

read(Data),

process(Data),

seen,

see(Old),

!.
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process(end_of_file) :- !.

process(Data) :- assert(Data), fail.

% dir interface

get_files(Dir):-

consult(Dir), % get list of test files

flist(Files), % into a variable

eval_files(Files).

eval_files([F|T]):-

eval_file(F),

eval_files(T).

eval_file(File1):-

retractall(query(_)),

atom_concat(’data/’,File1,File),

browse(File),

write(’Testing file: ’), write(File), nl,

query(Q),

to_ext(Q,Fml), % convert to external format

( to_int(Fml,Q) -> % convert it back to internal

report(File,ok);

report(File,err)).

report(File,ok):-

write(File),write(’: OK’),nl.

report(File,err):-

write(File), write(’: ERROR’),nl.

% Runs the test suite

run :- get_files(’data/index.pl’).
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