
Parallel Execution of Backtrack Search with optimizations

Bachelor Thesis by Christian Kaysø-Rørdam s082918

Project number: 15

Supervisor: Michael Reichhardt Hansen

Bachelor Thesis by Christian Kaysø-Rørdam S082918

2

Table of Contents
Abstract .. 5

1 Introduction ... 6

1.1 Parallel execution and optimizations of BTS ... 6

1.2 Example ... 7

1.3 Background .. 8

2 Principles of parallelization .. 8

2.1 Amdahl’s Law .. 8

2.2 Delightfully parallel problems ... 9

2.3 Hard parallel problems .. 10

2.4 Basic CPU Architecture .. 11

2.5 Threads .. 12

2.6 Complications with Parallelization .. 13

2.6.1 Shared data access ... 13

2.6.2 Thread overhead .. 14

2.6.3 Increased complexity of implementation .. 16

2.7 Parallelization in .NET .. 17

2.7.1 Tasks ... 17

2.7.2 Thread Pool .. 18

2.7.3 Parallel loops .. 19

2.7.4 Locks and monitors .. 20

2.7.5 Atomic Actions ... 21

3 Parallelization of Backtrack Search .. 22

3.1 Tree Traversal .. 22

3.2 Backtrack Search ... 23

Bachelor Thesis by Christian Kaysø-Rørdam S082918

3

3.3 Finding all solutions ... 26

3.4 Finding one solution .. 27

4 Optimization Experiments in N-Queen problem ... 29

4.1 Exploiting Symmetry.. 29

4.2 Randomization .. 31

4.3 Using Counter Examples .. 32

4.3.1 Counter examples .. 32

4.3.2 Counter examples from smaller problems .. 34

4.4 Check for invalid rows ... 36

5 Architecture of the implementation .. 37

5.1 Data grid .. 37

5.2 Solver ... 39

5.3 Counter Example Set ... 40

6 Results and discussion ... 42

6.1 Result gathering .. 42

6.2 Results of parallelization ... 42

6.2.1 Find all solutions .. 42

6.2.2 Find single solution .. 43

6.3 Results of optimizations .. 45

6.3.1 Symmetry ... 45

6.3.2 Counter examples .. 46

7 Conclusion .. 48

8 Appendix .. 49

1. Datagrid.cs .. 49

2. Solver.cs .. 51

Bachelor Thesis by Christian Kaysø-Rørdam S082918

4

3. CounterExampleSet.cs .. 59

4. WeightedPosition.cs ... 62

5. SPSolverParameter.cs ... 63

6. SmartSolver.cs ... 63

7. SmartDataGrid.cs .. 66

8. SBacktrackFinishedEventArgs.cs ... 68

9. PSolverParameter.cs ... 68

10. Position.cs .. 69

11. ListDictPair.cs .. 70

12. BacktrackFinishedEventArgs.cs ... 71

13. MainWindow.xaml .. 72

14. MainWindow.xaml.cs .. 73

9 References.. 76

Bachelor Thesis by Christian Kaysø-Rørdam S082918

5

Abstract

This project covers the implementation of a parallelized version of the generic backtrack search

algorithm and it is used to find all or just a single solution to the N-Queen problem. Furthermore,

various new heuristics and optimizations are explored. All implementations are tested and the

results are posted and discussed. The project also explores how the .NET Framework may aid in

the design on parallelized programs.

Bachelor Thesis by Christian Kaysø-Rørdam S082918

6

1 Introduction

1.1 Parallel execution and optimizations of BTS

Most new computers come equipped with a multicore processor, which software developers can

take advantage of to get better performance for their software. Even though multicore platforms

are widely available and used in most places these days, taking advantage of the additional cores

is still challenging. Using the additional cores may add a lot of complexity in the design process to

an otherwise simple problem.

In this project, a parallelization of a generic backtrack search algorithm will be investigated and

implemented and the algorithm will be used to solve the n-queen problems. A backtrack search

algorithm has several other uses such as Sudoku and SAT solving, and a parallelization of the

algorithm could easily be translated to be used with any of those. These problems are considered

hard problems to solve, as they do not run in polynomial time. In the course of the project, various

optimizations specifically for the n-queen problem will also be investigated and potentially

implemented.

For the implementation of the algorithm and optimizations, the .NET platform will be used as the

.NET Platform has many parallelization primitives which may aid in the development of a

parallelized backtrack search and it may be interesting to see to what extent these can help in the

development.

Bachelor Thesis by Christian Kaysø-Rørdam S082918

7

1.2 Example

Here is an example of using a backtrack search for finding a solution to the 5-queen problem.

Selected Possible Discarded possibility

In the first frame, we see a selection of three positions for queen placement, and the two possible

selections at the top are both discarded because neither allow for a queen to be placed on the

second row from the top. A backtrack is then performed, undoing the selection at the third row,

and we see that there are no other possible selections. We backtrack yet again in frame three;

discarding the selection at row four, note that not all possible selections are shown. In frame four,

we simply select the only possible positions giving us a solution.

Bachelor Thesis by Christian Kaysø-Rørdam S082918

8

1.3 Background

Experiments have been successfully conducted to find optimizations that allow solving of large N-

Queen problems in a realistic timeframe. Some of these optimizations include Simulated

Annealing and Genetic Algorithms, which are general approaches for creating heuristics for

specific problems and optimizing parameters. See Comparison of Heuristic Algorithms for the N-

Queen Problem1 by Ivica Martinjak and Martin Golub.

2 Principles of parallelization

2.1 Amdahl’s Law

Amdahl’s law2 can be used to predict the speedup gained by parallelizing a program. The speedup

describes the, hopefully, decrease in time taken to finish executing some algorithm by using

additional cores. Given the relative size of the parallelized portion of the program P and the

number of cores this is executed on N, the maximum speedup M is given as:

()

Where P is a number between 0 and 1 describing the parallel portion and 1-P gives us the serial

portion. The serial portion of a program can be used to determine an upper limit for the speedup

from parallelization, as the serial portion will never execute faster regardless of how many cores

aid in the execution of the parallel portion. This means that even if the parallelized portion runs

infinitely fast, due to infinitely many cores, the total execution time will be no faster than the

execution time of the serial portion. The graph shows the speedup a program with differently

sized parallel portions (0.95, 0.90, 0.75 and 0.50) can achieve when a number of extra cores are

used in the execution.

1
 http://www.zemris.fer.hr/~golub/clanci/iti2007.pdf

2
 http://www-inst.eecs.berkeley.edu/~n252/paper/Amdahl.pdf

Bachelor Thesis by Christian Kaysø-Rørdam S082918

9

Figure 1, showing maximum speedup with differently sized parallel portion and various numbers of cores.
3

The graph clearly shows that some problems are far less suited for parallelization than others, as

even a program where half of it can be parallelized cannot achieve more than a two times

speedup, regardless of cores used.

2.2 Delightfully parallel problems

A large subclass of parallelization problems can be described as being delightfully parallel4. A

delightfully parallel problem is one where the individual tasks, which together make up the full

solution, are fully or nearly fully independent of each other, and as such they do not share

variables or rely on the result of the other tasks. This means that each part of the problem can be

3
 http://en.wikipedia.org/wiki/File:AmdahlsLaw.svg

4
 http://msdn.microsoft.com/en-us/library/dd460693.aspx

Bachelor Thesis by Christian Kaysø-Rørdam S082918

10

carried out almost fully asynchronously, and therefore also being capable of utilizing the full

potential of a multicore processor, given a problem that is large enough.

An example of a delightfully parallel problem could be to update each element in an array with a

new value.

Due to the simplicity of a delightful problem, it is often worth try to a given problem in order to

achieve a delightful problem. A common place to find delightful problems is in the area of tree-

traversal, since trees are defined as having no cycles. One could imagine a binary tree where we

know that the left and right sub-tree does not share any nodes, this lets us traverse both the left

and the right side fully asynchronously and we would even be able to alter nodes in both sides

without worrying about race-conditions or telling the other thread what was changed. This can be

done because both sides of the binary tree are fully independent (if left and right was connected,

there would be a cycle through the root). In fact, one would be able to traverse and make changes

to any tree asynchronously by splitting it up into smaller sub-trees, as long as you make sure that

no sub-tree is a sub-tree of any of the other sub-trees you made.

Many problems where one searches for a solution, can be defined as a finding a path in a tree to a

node which fulfills a certain criteria, by traversing the tree and can therefore be done

asynchronously. When looking for a solution in this way, at some point one of the threads will

contain the full path needed to reach the desired node, not just part of the path. This happens

because almost no data is shared between the various threads, and this differs greatly from the

other type of parallel problems, the hard ones.

2.3 Hard parallel problems

Most of the threads used to solve a problem hard parallel problem will more often than not be

dependent on the result of some other thread. This will rely heavily upon correctly synchronizing

the various threads and gathering up and distributing the results found. The threads are very likely

to share significant variables with each other, greatly increasing the needed synchronization. Not

only are these kinds of problems very hard to provide a working implementation for, but it is also

Bachelor Thesis by Christian Kaysø-Rørdam S082918

11

very hard if not impossible to achieve the full workload on all available cores for the full duration

of the time it takes to solve the problem. This is simply because of the synchronization needed;

threads will frequently be in a locked state, where they will be waiting for some other thread to

finish before they can proceed with their own work again. It is also very likely that some of the

work that needs to be carried out, is simply too complex to parallelize and will therefore only

make use of a single thread, leaving most the CPU idle for some time.

Many of these problems share a similar way of achieving a result; they task each thread with

finding a partial solution or generating data which can be used to either find or verify partial

solutions. The problem is that most of the threads will never be able to see the full picture, so they

are capable of using the information they generate for anything on their own, a sort of control

structure must be introduced to gather up information. The simple approach to making such a

control structure is to use a thread purely for the purpose of keeping all other threads

synchronized and collecting their data once they finish. This closely follows the master/slave

pattern, frequently used in distributed computing. In fact, many of these problems are a kind of

distributed computing, even if they only run on a single machine, the main problem is still

distributed over many cores each providing its own small part of the final solution.

2.4 Basic CPU Architecture

Most desktop and server CPUs made today have more than one physical core. Each core may

execute one thread at a time, possibly switching between threads to give the illusion that many

applications may run at the same time. Many high end CPUs from Intel are equipped with Hyper

threading technology, which allows the CPU the split a physical core into two logical cores, which

may each execute a thread at the same time. The performance benefit gained from this Hyper

threading technology may be modest in many applications5.

5
 See conclusion in

http://www.intel.com/technology/itj/2002/volume06issue01/vol6iss1_hyper_threading_technology.pdf

Bachelor Thesis by Christian Kaysø-Rørdam S082918

12

2.5 Threads

A thread is what executes a series commands specified in some programming language; these

commands may also specify the creation of a new thread. Threads are contained inside a process

and a process is associated with each application running on the machine, each process may have

many threads. They are the very base of what allows us to run multiple applications on a single

machine, where all applications appear to be running at the same time. This appearance of all

applications running simultaneously is provided by the operating system in form of the scheduler.

The scheduler is tasked with managing all the threads currently running on the computer, in such a

way that they all get their share of time on the CPU. This scheduling of threads is needed because

a single logical core is only capable of running a single thread at any given time; the thread the

CPU is currently executing has much of the crucial data stored in the cache located on the CPU.

When one thread has used up the time allocated to it by the scheduler, a new one will take its

place on the CPU and this happens through a context switch, where the data from the old thread

is extracted from the CPU and written in the memory and the data from the new thread is

retrieved from the memory and stored in the cache. These context switches happen very often,

but they do come at a cost, since moving data from one piece of memory to another takes up

time, this overhead is of course minimized by the scheduler in such a way that threads that require

a lot of work will get more time to do so, and threads that have nothing to do at the moment will

get no time on the CPU.

Each thread must be individually created, and this process is very time consuming and so is tearing

down a thread once it has finished executing. This is because a thread must be allocated a part of

the memory upon creation, various handles and other required data must be generated for the

thread and it must be added to the scheduler in order to get a chance to get executed. All of this

will then have to be removed once the thread has finished, taking up even more precious time.

There are smart ways of circumventing many of these costs, to make the decision of whether to

use a thread or not becomes less of a concern for the programmer.

Bachelor Thesis by Christian Kaysø-Rørdam S082918

13

2.6 Complications with Parallelization

2.6.1 Shared data access

One of the most frequently occurring issues when constructing parallel programs is how to deal

with shared data access, as improper parallel access to shared data can lead to race conditions.

Race conditions arise from the interleaving of the side effects produced by the threads being

executed. This interleaving of the side effects, are a direct result of the scheduling performed by

the operating system and to some extent a lack of knowledge of the precise time each line of code

actually takes to execute. In most cases, the scheduler only promises some degree of fairness,

which means that all thread will be executed at some point, but it makes no promises in exactly

which order or that it will not be temporarily switched out in favor of another process. All of this

makes the interleaving unpredictable to the extent that safety measures must be worked in to the

program, in order to ensure that any interleaving of the side effects will not cause the program to

fail or produce incorrect results.

The most common place for race conditions is multiple threads writing to the same part of the

same data structure at the same time, this could simply be writing some text to a file. We must

guarantee that each thread will have exclusive access to the data or file it wishes to alter, while it

alters it. All other threads would then have to wait for that thread to finish altering the data before

they can alter it. The simplest way of providing this guarantee of exclusivity is in the form of a lock,

which is written in the code around the various points where data shared by multiple threads is

accessed. When a thread reaches a lock in the code, it will try to acquire it, and if no other thread

is currently in possession of the lock it will be able to, otherwise it will have to wait for the lock to

be released.

Race conditions can also be dealt with in other ways. One of the more obvious ones is to try and

reduce the amount of data shared between threads, which not only reduces the number of race

conditions but might also greatly reduce the complexity of writing the program. This is also why

we chose to call some class of parallel problems delightful, because they have little to no need to

share data between the threads, making writing a program that solves such a problem, delightful.

Bachelor Thesis by Christian Kaysø-Rørdam S082918

14

Here we see two cases of two processes adding one to the shared value X. The dashed line

represents a time line and the vertical lines represents some actions taking place at some specific

time.

Process A Process B Process A Process B

Case 1 Case 2

Read X = 0

X=X+1

Write X =1

Read X = 0

X=X+1

Write X = 1

X = 1

X = 0

Read X = 0

Write X =1

X=X+1

Read X = 1

Write X = 2

X=X+1

X = 2

X = 0

X starts out as zero in both cases, but becomes one in the first case and two in the other. In case 1,

the problem is that the read of Process B happens after the read of Process A and before the write

of Process A. When Process A writes the updated value of X, Process B does not update its value of

X, since it already performed a read, leading to the first update of X by process A to be lost.

In case 2, we see an example where X becomes two as expected, because the neither process has

any overlap with the other at any time.

2.6.2 Thread overhead

When presented with a problem that greatly lends itself to being parallelized, such as a delightfully

parallel problem, one might simply make a new thread for each of the tasks the problem needs

solved. However, due to the way threads on the operating system functions, many limitations

Bachelor Thesis by Christian Kaysø-Rørdam S082918

15

apply to the use of threads and each task should be looked at to see if it is indeed worth making a

thread purely for the purpose of executing it.

The first problem with making a lot of threads for each task, is the context switching. Because only

a single thread can be executed per logical core, making more threads than there are logical cores

available can lead to unwanted overhead due to the increase in context switching. A general

guideline would be to only make the same number of threads as there are logical cores present on

the machine the program is running on. Making more threads than there are logical cores is called

oversubscription, which will slow down the program due to the increase in threads the scheduler

will start doing context switches with the threads the program itself is using, which just wastes

time.

In some cases, a thread in a parallel program will spend a considerable amount of time waiting for

locks on data structures it needs to continue executing, or will it using some form of I/O device

which are inherently slower than reading or writing to the RAM or cache of the CPU. When this is

the case, the thread might require very little or no CPU time at all, perhaps leaving one of the

logical cores running under full capacity. So whenever a program has a lot of synchronization of

access to outside I/O devices, one should strongly consider using a few more threads than there

are logical cores, to ensure that each core will always be running at full capacity.

Note that if the program is running on a machine not dedicated to only run that program, there

will almost certainly be a large number of other processes running side-by-side with the program,

and each of the process will also use a large number of threads. Typically these processes will not

be doing any CPU intensive work very frequently, therefore the time they are allocated by the

scheduler will be minimal and their effect on the performance on your program will also be

minimal.

Another issue one must consider is whether or not all threads are given small or large amounts of

work. Due to the cost of creating and later tearing down a thread, the amount of work done by a

thread should be substantial enough to justify that cost, otherwise making the thread will slow the

program down. If the problem at hand only consists of a lot of small operations, one should not

immediately dismiss parallelization as a valuable tool to increases performance. Instead of

executing each small operation on a separate thread, one could make batches of small operations

Bachelor Thesis by Christian Kaysø-Rørdam S082918

16

and then have a thread execute many operations; these batches would again have to be

substantial enough to justify the creation of a new thread. This can greatly lower the needed for

creating new threads, as much fewer will be needed in order to execute all the operations. This

approach has the downside, that you may not be sure that all of the created batches will take an

equal amount of time to execute, meaning that some threads will finish before others, leaving the

CPU running at less than full capacity. Instead one might want to find a more dynamic solution to

the problem. One way of providing such a solution, would be to keep a centralized list of

operations that have yet to be executed, then each thread would be able to an operation out of

the list and execute. All the threads would continue doing so, until no elements in the list remains.

This provides a much more dynamic solution, where each of the operations is allowed to consume

greatly varying amounts of time and the CPU is better utilized. Of course, some heuristic is

required to ensure that the most time consuming operations are not executed last, as this again

would lead to several threads having nothing left to do and some threads having a lot of work left

on execution of their operation. Dealing with the problem of uneven distribution of workloads on

the cores is referred to as load balancing.

2.6.3 Increased complexity of implementation

Even when implementing simple algorithms, attempts to parallelize the execution can greatly

increases the complexity of actually implementing the algorithm as numerous extra considerations

must be taken to ensure the correctness of the algorithm and ensure an increase in execution

speed. Another issue also arises when race conditions are accidentally implemented into the

algorithm, namely removing them. Traditional debugging will often be unable to show you where

the race condition is, as most debuggers are not well equipped to debug a program running on

multiple threads. In most cases, a debugger will only pause the execution of the first thread that

hits a breakpoint, leaving the remaining threads still running and possibly changing the data of the

thread the debugger paused. This makes stepping through a small piece of parallel code much less

rewarding in terms of information than a similar piece of serialized code would.

Bachelor Thesis by Christian Kaysø-Rørdam S082918

17

2.7 Parallelization in .NET

2.7.1 Tasks

Tasks are the preferred way to represent an asynchronous operation in the .NET framework. Tasks

operate at a much higher abstraction level than threads do, as creating a task will not always

result in the creation of a thread and it is not possible to specify which core a task is executed on.

As such, tasks are a very high level construct which simply contains a piece code you may wish to

run asynchronously.

Tasks support the most important operations used to control the flow of a parallel program, such

as various wait functions, the simplest of which causes the calling thread to wait for the task to

finish execution before continuing. Two options are also given for starting a task, one is to start

asynchronously, where it will run in parallel with the calling thread and the other is to start it

synchronously, which causes the calling thread to start running the task. When a task is started, it

will be queued on the current Thread Pool (See 2.7.2), and in most cases start executing shortly

after on a thread selected by the thread pool. Due to the abstraction level of tasks, not all of the

control available to threads is available to tasks, since a lot of the scheduling and thread creation

and removal is handled by various heuristics in the .NET framework. But using tasks over threads is

often simpler and it is often faster as well, due to the way the thread pool optimizes its use of

threads.

The following illustration shows how tasks are not directly connected to threads, and we see that

all scheduling of tasks on threads is handled by the Task Parallel Library.

Bachelor Thesis by Christian Kaysø-Rørdam S082918

18

Figure 2 Showing how the .NET framework handles parallelization when using tasks.
6

2.7.2 Thread Pool

The basis for the thread pool is fairly simple, since it is what the name says, a pool of threads.

When an application is started, a number of threads are injected into the thread pool, this number

is usually the number of cores available on the machine, and put to sleep. When a task is started,

the thread pool may wake one of its threads and start executing the task on that thread, this helps

mitigate the overhead incurred by creating threads, as the threads had been created previously.

When the task finishes, the thread is simply put back to sleep. This is the basic principle of the

thread pool though a lot of heuristics are used to optimize how it uses the threads and it may even

add more if necessary. It is important to note that all threads in the thread pool is considered

background threads, and this type of thread will not keep a program running after the foreground

thread has finished, so if the main thread finishes the program will terminate regardless of all

background threads were doing work or not.

6
 http://msdn.microsoft.com/en-us/library/dd460693.aspx

Bachelor Thesis by Christian Kaysø-Rørdam S082918

19

Another way to use the threads of the thread pool is to use the method QueueUserWorkItem,

which takes a method as argument and runs it on the next available thread. This process bypasses

the task creation process, which means it has much lower overhead but it does come with any sort

of control, this means that possible synchronization must enforced in some other way. The

framework has several constructs for this.

2.7.3 Parallel loops

The .NET Framework also contains parallel versions of the standard loop constructs, the for-loop

and the forEach-loop. Theses parallel loops are well suited for when and algorithm has a lot of

work to do, with shared data access, as the implementation of the loops allows them to load

balance efficiently and minimize the overhead incurred by the tasks given to the thread pool.

When iterating over a list, in order to minimize the overhead and improve load balancing, it

supports an operation for splitting the list it is iterating over into smaller chunks, which is then

passed on to a task. These chunks will vary in size over the execution, or the programmer can set a

fixed limit, in order to find the best possible size. It also tries to maximize the utilization of the

cache on the CPU, by trying to have the tasks work in the same area of the collection, so most of

the threads will be able to access the data they need directly in the CPU cache. They also support

breaking the loop early, as their serial versions do. Implementing these loops is slightly different

than the serial loops, as these are in fact just methods whose arguments look like that of a normal

loop.

Here is a very simple example of a parallel forEach loop and its serial counterpart:

Parallel.ForEach(list, item => testMethod(item));

foreach (var item in list)
{
 testMethod(item);
}

Bachelor Thesis by Christian Kaysø-Rørdam S082918

20

Both these loops do the same work, the parallel version simply attempts to speed up the process

as much as possible, by using all available cores to do so. The forEach loop allows for much more

complex behavior than this example shows such as specifying how much parallelism it may utilize

and the exact way it partitions the list into chunks.

With all of these optimizations, this parallel version of the forEach loop and the for loop, should be

used whenever possible to maximize the usage of your CPU and to minimized the time required to

implement the desired logic.

2.7.4 Locks and monitors

The basic construct for mutual exclusion in the .NET Framework is the Monitor. It has two key

methods, Enter and Exit, where enter takes an object as parameter and acquires the mutual

exclusion lock on that object, and Exit releases the lock. This is used to ensure mutual exclusion for

some fragment of code located between an Enter and Exit statement. The object passed as

parameter should be a private object created specifically for the purpose of being used as the

locking object. Using value-types will cause exceptions and using publicly available objects can

make it much harder to avoid deadlocks, since an outside programmer may not know which object

is being used to acquire locks and accidentally use the same object for another unrelated lock. It is

important that Exit is always called following an Enter call, despite what happens inside the

mutually exclusive code, this is done by wrapping the code and the Exit statement in a try…finally

construct as such:

private object objectLock = new object();

…

Monitor.Enter(objectLock);
try
{
 //Code that requires mutual exclusion.
}
finally
{
 Monitor.Exit(objectLock);
}

Bachelor Thesis by Christian Kaysø-Rørdam S082918

21

This code represent the correct way of using the Enter and Exit statements, even if the code in the

try part fails with an exception, the lock is still released as it should be since we left that part that

required mutual exclusion.

The monitor class also has support for Wait, Pulse and PulseAll calls. Where the wait call releases

the lock and waits to be notified by some future call to Pulse or PulseAll. This can be used to

achieve synchronization and optimize access to objects that can cause side effects.

The correct way to use the Enter and Exit statements may not be used by a developer, as you can

easily neglect the try…finally construct or forget to Exit after an Enter call, and both of these will

only result in problems at runtime. To make the process simpler, the .NET Frame has a Lock

keyword in C# (other keywords are used in other .NET languages, but have the same effect), which

is simpler way of writing the correct Enter and Exit statements, it looks like this:

private object objectLock = new object();

…

lock (objectLock)
{
 //Code that requires mutual exclusion.
}

In this case, the developer environment will inform you of a missing end bracket at compile time

and the lock will always be released, regardless of exceptions throwing during execution of the

mutually exclusive code. The two code fragments do the exact same thing, but using the Lock

keyword is simpler and much less prone to be incorrect.

2.7.5 Atomic Actions

To avoid race conditions associated with certain operations, such as incrementing counters, a lock

could be used to ensure mutually exclusive access to the counter. These race conditions appear

since incrementing a counter is not, usually, an atomic actions which means increments might be

lost due to caching by the CPU. This constant locking can be slow if the value needs to be updated

Bachelor Thesis by Christian Kaysø-Rørdam S082918

22

frequently. Instead of using locks in such a manner, the .NET Framework provides a convenient

way of performing very basic actions in an atomic fashion. The Interlocked class contains several

static methods, such as increment and add, which can be used to perform those actions

atomically, eliminating the need for using locks everywhere.

3 Parallelization of Backtrack Search

3.1 Tree Traversal

Some problems can be modeled as a tree traversal problem. For instance SAT solving or the N-

Queen problem can both be modeled as a tree where nodes represent a decision and a path is

simply a list of decisions, and a solution is a path that fulfills a certain criteria or a lack of such a

path to prove a lack of a solution. In order to conclusively say that a problem has no solution, all

possibilities must have been checked by some traversal or eliminated by some heuristic. Since we

are traversing a tree, it is clear that all paths used to traverse the entire tree will be unique, unless

the same path is traversed twice which serves no purpose, and traversing the tree does not cause

any changes to it. This is a clear example of a delightfully parallel problem, as it has no side effects

and a natural division of the problem into sub-problems exists.

All of these traversals may be done completely independent of each other and therefore also

completely asynchronously7. This means that an algorithm for doing such traversals have virtually

no serial part, and looking at Amdahl’s Law, this allows us to gain a speedup roughly equal to the

number of cores without ever being limited by the serial portion. Tree traversal is therefore a very

good problem to try and parallelize, as the speedup can be immense.

7
 If something is asynchronous, it can happen independently of the main program.

Bachelor Thesis by Christian Kaysø-Rørdam S082918

23

3.2 Backtrack Search

Backtrack search is a general approach to find all solutions for a given problem, or a single one by

terminating once a solution has been found. It works by continuously building up a list of

candidates, in a graph a candidate would be a node, and then removing a candidate once it

realizes that it could never be part of a solution and then trying some other candidate. The

removal of a candidate will often remove a large set of other possible candidates as well, which

helps to quickly reduce the problem to a more manageable size. The classic example of backtrack

search is the 8-Queen problem, or its more general form the N-Queen problem, in both of which a

solution consists of a placement of all queens, on a chess board where each side has the length of

the number of queens, such that no queen can capture another queen. Other examples problems

that may be solved using the backtrack search algorithm includes Sudoku and SAT solving.

The general backtrack search algorithm implicitly constructs a tree during its execution, where

each node corresponds to a candidate and the path it has traversed contains the list of candidates.

In the case of the N-Queen problem, the tree is formed by having each position on chess board

represent a candidate and such a candidate will be connected to all other candidates if their

position is free and once it is considered safe. A candidate will only be accepted, considered safe,

if that position is safe from all other queens on the table. A queen can move horizontally, vertically

and diagonally to capture another queen, therefore any position where a queen can move to is

considered unsafe in the case of the N-Queen problem. A solution is said to be found once the list

of candidates contains exactly N candidates, which is N placements of queens, since the algorithm

will never accept a candidate if it cannot be part of a solution.

Bachelor Thesis by Christian Kaysø-Rørdam S082918

24

The general algorithm looks as follows:

BacktrackSearch(P,C) =

 If !Safe(P,C) then return

 R = P.Add(C)

 if Complete(R) then Output(R)

 S = first(R,C)

 While S != null

 BacktrackSearch(R,S)

 S = next(R,S)

 Return

Where P is the partial solution and C is a candidate.

 Safe checks if C can extend the partial solution P, and returns in the case that it cannot,

otherwise C extends P.

 Complete checks if the new partial solution R is a solution and then uses Output to return

the solution.

 First finds the first possible candidate S that may extend R.

 BacktrackSearch is then recursively called with the updated solution R and the new

candidate S.

 If the recursive call returns, S is updated to be the next possible extension. This is done

until there are no more possible extensions, and the method returns.

For the N-Queen problem, the first queen would be placed on row zero, and the first and next calls

would return the positions of row one. It continues to place a queen on the next row until all rows

have a queen or no queen can be placed on the next row and it backtracks. The actual

implementation of the safe and the complete method will of course vary greatly with the problem

at hand.

Bachelor Thesis by Christian Kaysø-Rørdam S082918

25

In order to make the parallelization of the algorithm easier, the actual implementation follows this

slightly modified version of the algorithm:

BacktrackSearch(P,C) =

 If !Safe(P,C) then return

 R = P.Add(C)

 if Complete(R) then Output(R)

 nexts = getNexts(R,C)

 For each element S in nexts

 BacktrackSearch(R,S)

 Return

The getNexts method returns all safe positions of the row above R. This allows us to get all the

positions we need to check, instead of getting them one at a time, which will make it easier to

divide the work between Tasks used in the parallelization.

This algorithm can be viewed as traversing a tree that, in the case of N = 5, will look partially like

this:

0,0

2,1 3,1 4,1

4,2 1,2 1,2

1,3

X,Y

3,4

4,3

2,4

Bachelor Thesis by Christian Kaysø-Rørdam S082918

26

Note that this is only the tree originating from (0, 0), all the other positions of row zero would also

have a tree similar to this. All these trees are tied together at a top node that is not part of the

actual solution, but merely a result of the loop that loops over all positions of row zero.

3.3 Finding all solutions

Finding all solutions means finding all the paths that satisfy our criteria of having length N. The

simplest way to parallelize this would be to start a new thread for each of the nodes in row zero,

let them all finish with their part of the search tree and gather up the solutions they came across.

This is a very good approach to the problem, but it requires some modifications before it can run

optimally. For a moderately sized problem, say N>16, this solution will most likely produce more

threads than there are logical cores on the computer leading to oversubscription which will slow

down the execution.

Instead, the positions of row zero could be broken in to a number of small groups equal to the

number of logical cores available for use; this would solve the problem of oversubscription but

potentially lead to a load imbalance in the case where one of the groups finished much faster than

the slowest group. To handle the load imbalance, some sort of queue of positions would have to

be implemented and each thread could take the first element of the queue and start the search

from there. Once a thread finished its search, it would take another element out of the queue and

start again. This will give us a better load balance, but the slowest start element might be the very

last in the queue, potentially giving us the same problem as originally. To properly deal with load

imbalance, some heuristic must be applied to the queue in order to sort it from slowest to fastest,

so the slowest start element will be taken first, this gives the program the best chance finishing all

the searches at about the same time.

Another approach would be to allow threads to help out each other, by segmenting the possible

choices of positions based on an estimate of how many solutions a given position would have.

More tasks would then be allocated to the segments where there may be many solutions, and

fewer tasks for the segments with fewer solutions. This can quickly become very complex to

Bachelor Thesis by Christian Kaysø-Rørdam S082918

27

implement, and before starting on such a task, the problem should be analyzed to see if this kind

of optimization is even warranted. In the case of the N-Queen problem, once a reasonable size of

N is reached, about N>12, most of the positions at row zero will contain roughly the same amount

of solutions and take equal time to find. And when N is still small, the time it takes to find all

solutions, is so short, much less than a second, that the optimizations would just slow it down.

The .NET Framework contains a construct that will allow us to parallelize at row zero, while

avoiding over subscription and minimizing load imbalances, namely the parallel forEach loop. This

efficiently handles the problems outlined above and is very simple to implement. The full code for

parallelizing the backtrack search for finding all solution is as follows:

var candidateList = GetStartCandidates(dataGrid);
Parallel.ForEach(candidateList, s => SolveAll(dataGrid, s));

Where the candidate list contains some positions of row zero (See 4.1 for explanation), and the

SolveAll method is simply the general backtrack algorithm described in 3.2. The dataGrid is the

partial solution, initially containing no nodes, and s is a candidate.

3.4 Finding one solution

When looking for a single solution, we want to invest all resources into finding any single solution

as fast as possible and then terminate the execution. This means we are interested in exploring

single paths as fast as possible, which leaves out the solution used for finding all paths. The

general approach will be one similar to that of the famous depth-first search, as this employs the

tactic of going deep in to a single path. Using the N-Queen problem as an example for parallelizing

the general backtrack search, a series of solutions will be explored. For small problems, finding a

single solution, even with a serial version of the algorithm, takes very little time. For the problem

to benefit from parallelization the input size should be larger than fifteen to twenty depending on

the speed of the platform.

Bachelor Thesis by Christian Kaysø-Rørdam S082918

28

A simple way of exploring a path starting at some position at row zero, is to place a queen at that

position and then do the exact same as finding all solutions but starting out with a partial solution

consisting of that one queen placement and the list of candidates would contain the nodes of row

one. This will find a single solution faster than a serial version of the algorithm would, but not

much faster. The speed of the parallel version with an input size of N, would be comparable to the

serial version with input size of N-1, assuming the first queen placement is part of at least one

solution which it will be in reasonably sized problems, as placing one queen effectively reduces the

size of the problem by about one. The problem with this is that each thread will still have large

portion of the search to check.

Another approach is to split the path into two new paths, each time a queen is placed. The idea is

that some tasks starts with a single queen placement at row zero and before it places a queen at

row one, it splits the list of candidates into two equally sized parts then creates a new task and

passes one part of the list to it. Then the originally task would continue in one direction and the

new task would continue in another, effectively splitting the path into two.

But this continuous split of paths will very quickly lead to oversubscription, as there would be 2L

threads total when the algorithm reached level L. The over subscription can easily be dealt with by

introducing a counter for the number of tasks currently being used, and simply preventing the

creation of tasks if there as many tasks as there are logical cores. Such a counter would have to be

both incremented and decremented atomically, to ensure that count stays correct, which can be

done by using the Interlocked class in the .NET Framework. Load balancing is not much of a

problem, since each tasks will very often try to create a new task, and will be allowed to do so the

instant some task finishes its assigned workload, leaving all logical cores running all the time.

There is another problem with this approach; a new task may be created at the N-1 level, where

all it has to check are the candidates at level N which there can never be more than one of. This is

too little work to warrant the creation of a new task, and this will also be the case even at lower

levels of the tree. To correct this problem, a variable must be introduced, specifying the maximum

level new tasks may be created at. This helps ensure that all tasks will have a large enough amount

of work to do, so they are worth creating.

Bachelor Thesis by Christian Kaysø-Rørdam S082918

29

Along with this idea of a maximum depth to create new tasks, we also need a minimum depth to

create a task. When the problem becomes bigger, the choices of the first few queen positions are

trivial as they will almost always be part of some solution. If we use all our available tasks for

checking paths that we are sure will lead to a solution, we might as well just use a single task and

still achieve the same speed. The minimum depth, if set correctly, can help greatly reduce the size

of the problem allowing for speed ups higher than the number of cores on the platform, as we are

effectively removing the first several choices since they are trivial.

When we increase the minimum depth, the number of solutions that can be found using the

queens positions before the minimum depth drops drastically. But with more cores available for

the execution of the algorithm, the higher the minimum depth can be set, since all we need to find

is a single solution so we do not care if many of the cores were assigned a path that may never

lead to a solution.

The difference between the maximum and minimum depth must be large enough such that there

will be created as many threads as specified, if the difference is too small, the splitting behavior

will not have enough room to start all the tasks. It is also important to ensure that the difference is

not too big, as this would allow the splitting behavior to create too many threads.

4 Optimization Experiments in N-Queen problem

4.1 Exploiting Symmetry

To increase the speed of finding all solutions, the symmetry of the chess board can be used to

generate new solutions based on old solutions, simply by mirroring around the x or y-axis.

To find all solutions, the initial list of candidates contains all positions in row zero. We can easily

see that all solutions starting with the first position in row zero (0,0) can be mirrored on the y-axis

to give all solutions for the last position in row zero (N,0). If we use an initial list containing only

Bachelor Thesis by Christian Kaysø-Rørdam S082918

30

one half of row zero, we can then mirror all the solutions we find to provide the solutions for the

other half of row zero. Here is an example of how a y-axis mirroring provides an additional

solution.

Y-Axis mirroring

Using the x-axis to generate new solutions may seem possible at first, but since the initial selection

of candidates is given by a row rather than a column, it turns out the x-axis cannot provide any

new solutions. If we have found solutions of one half of row zero and mirrored all those, we have

all solutions, since a solution must contain exactly one position in each row and we have all

solutions containing the positions in row zero, we must have all solutions. Otherwise, a solution

must exist which contains no positions of row zero, but this cannot be a solution due to the

definition.

To generate anything new from an x-axis reflection, this must happen prior to the y-axis reflection

and after the solutions of half of row zero is found, else there are no solutions to mirror. If a

solution contained in a position of row zero is reflected across the y-axis, another solution will

appear which also contains a position P in row zero. The position P may either be part of the half

of row zero chosen for the initial candidate list or it may not, in the case where it is part of it, P is

not a new solution, otherwise it is a new solution. All the new solutions an x-axis reflection could

generate can also be generated by the y-axis reflection, since they must all contain a position of

row zero. This would imply that you could simply do either of the reflections, but this is not the

case either, as the reflections gained from the x-axis is not guaranteed to all be new, and if just a

single one of those reflections are not new, we will not have all solutions. This is because we know

there should be twice as many solutions as found we using only half of the first row (if N is odd,

Bachelor Thesis by Christian Kaysø-Rørdam S082918

31

there would be 2 times the number of solutions found in all but the middle position), and we

would then be missing at least one of these. Here is an example showing how an x-axis mirroring

may give the same solution as some other y-axis mirroring would.

X-Axis mirroring

Y-Axis mirroring providing
the same solution.

The only way to use the x-axis for generating new solutions is to have the initial list of candidates

contain half of column zero, rather than row zero, but then the y-axis is useless.

4.2 Randomization

The algorithm used for finding solutions will mostly always traverse the tree in the same way, this

means it may run in to the same dead ends every time and have to backtrack or it may avoid the

same dead ends and find a solution fast, all depending on the input size. This behavior only

Bachelor Thesis by Christian Kaysø-Rørdam S082918

32

happens with multiple runs of the same input size, not in a single run. Since there are more

incorrect solutions than there are correct ones, it would stand to reason that it will make the same

mistakes more often than it will make the same correct choices. To try and avoid this problem,

some randomization could be added to the part of the algorithm that determines which position

is the next to try, this would lead to a much more varying runtime of the algorithm but hopefully it

would be faster on average.

However, there is one detail about the non-randomized algorithm that makes the randomized

version much slower if it were to be implemented; the normal algorithm implicitly stores data

about paths it has already traversed, since the approach is systematic in the way the next position

is chosen, it will never attempt to traverse the same path twice or make the same mistake twice,

on a single run. This implicit data comes from the systematic approach, since it will use a list of

positions and simply go through that list and it will never take a position it has already used in the

list, but it will take the next element or get a list of positions for the next row/column. The

randomized algorithm would not implicitly have this information, but the path would have to be

stored whenever a mistake or a solution was found, and other traversals would have to check if

they are on the path of something that has been proven to work or not to work. The data

structure and associated functions required to provide such information would cause a

considerable amount of overhead, which the normal algorithm can completely avoid, leading to

the idea of randomization being abandoned.

4.3 Using Counter Examples

4.3.1 Counter examples

When a path turns out to be a dead end, the algorithm has no candidates which may extend it,

forcing the algorithm to backtrack, that path can be said to be a counter example for any proposed

solutions containing it. Such a counter example could also be used during the construction of a

path, if a partial path contained the counter example the algorithm should backtrack. If a partial

Bachelor Thesis by Christian Kaysø-Rørdam S082918

33

path contains part of a counter example, the order of the next positions to check may be altered in

such a way that the position that is also contained in the counter example is tested last or not at

all if that position is the final position in the counter example. Since a counter example is found

every time the algorithm backtracks, this gives us a lot of counter example, many of which may be

sub-sets of each other, so we introduce the notion of a shortest possible counter example (SPCE).

Such a counter example could contain many other counter examples, but only the shortest one

would have to be stored as it is simply a more general counter example than the ones it contain.

When a counter example is found and the algorithm backtracks, it may either backtrack again

since the first backtrack ended up in yet another counter example, or it may try different

positions. If all these different positions also end up being a counter example, another backtrack is

performed, the algorithm may continue this behavior until at some point, a different position

leads to an actual solution and then the shortest possible counter example would be the one that

we had just before the last backtrack happened. So given many backtracks, the SPCE would be

found at the very last one of them. It would contain all the counter examples contained in the

other backtracks before, and therefore be the shortest and most general backtrack possible. Many

such SPCEs may exist, since not all solution start at the same node and in the worst case, each of

the positions of row zero could be a SPCE, giving us N SPCEs, this happens in the case where no

solutions exists for the problem of size N.

In this example we see 1 SPCE and 3 CEs. The red and the green position make up one CE and the

red and the blue positions make up another and finally the red, blue and purple make up the third.

Bachelor Thesis by Christian Kaysø-Rørdam S082918

34

But we see that these three CEs all share the red position, and no solutions may be found starting

from the red position, making the red position a SPCE.

One way of using these counter examples would be to store them whenever we find one in a given

run of the algorithm, and use it for the remainder of the run. However, using the same reasoning

about the systematic approach as in the randomization, we can quickly realize that if we find a

counter example in the problem we are currently trying to solve, we can be sure that we will not

hit it again in the same run of the algorithm, due to the how the next positions are chosen. This

means that any counter examples found during a search for solutions cannot be used.

The only way to use counter examples in a search for solutions, is to have the counter examples

prior to beginning the search, as we would then be able to use some heuristic which allows us to

avoid them when searching. To find the counter examples of a problem of size N, we will have to

find the solutions as well, otherwise we cannot be sure that a SPCE is really the shortest possible

or even a counter example at all.

When a backtrack happens we know for a fact it was because of a dead end and this gives us an

actual counter example. If we were to simply store all counter examples found in such a way, the

structure containing these would become immense and using it later on to check if some path is a

partial path of one of these counter examples would take far too long to check.

So instead of trying to find SPCEs in a problem of the same size as the one we want solutions for,

we may try finding them in problems that are smaller.

4.3.2 Counter examples from smaller problems

The obvious advantage of using smaller problems to find SPCEs in is that smaller problems run

much faster due to the exponential running time of the algorithm, however, any SPCEs found for

smaller problems also provide much less information since they are not actual counter examples

for full size problem. Therefore they cannot eliminate any paths from the full size problem, but

Bachelor Thesis by Christian Kaysø-Rørdam S082918

35

they might be able to influence the choice of paths made in the full problem in a way that speeds

up the run time.

To use a SPCE from a smaller problem in the full size problem, we have to realize what information

can be gained from it. Placing a queen in the full sized problem N may tell us that we are working

towards constructing a path that was a counter example in the smaller problem M, obviously if we

place a queen in such a way that the path would no longer fit inside M, the counter example could

no longer be used. This is what we will try to use, when we realize we are on a path that was a

counter example in some smaller problem, we try to place the next queen in a way that breaks

that counter example, in the hopes that such an approach will help us avoid backtracks.

In the image we see the red circle is a SPCE of a problem of size four, outlined with red, and the

green circles are queen placements in the full size problem, size ten. We clearly see that the green

circles make up a path that was considered a counter example in size four, and placing the next

green circle on the purple circle would simply extend such a counter whereas placing it on the blue

would break it.

Bachelor Thesis by Christian Kaysø-Rørdam S082918

36

We need more than a single counter example for a single size if we hope to gain anything, so we

go looking for SPCEs in many differently sized smaller problems and store these in a quickly

accessible fashion. Since none of these SPCEs can eliminate any positions, the heuristic simply

becomes an ordering of the choices we have for placing queens on each row, where we prefer to

place queens in such a way that we avoid the smaller SPCEs.

4.4 Check for invalid rows

We know from the definition of a solution, that each row must contain a queen or it cannot be a

solution. This information may be used to stop the exploration of a giving path prematurely, in the

case where some row that does not yet have a queen has no valid positions in it, because this

means that the path can never lead to a solution. Blindly checking all the rows that does not yet

contain a queen for this criteria would be too slow, as the method for checking if a single position

is safe runs in O(N) and there may be N2 positions to check.

Instead we should choose to only check a single row. Checking the row we are about to try to

place a queen on is not needed as already happens due to the structure of the algorithm and if

there are no valid positions to place a new queen the algorithm backtracks. Checking any other

row than just the next one can only yield minimal benefits; the added runtime caused by such a

check would remove any such benefits, since it takes a lot of queen placements to completely

cover all positions in a given row.

Placing a queen will at most remove three possible positions on some row; one position from

vertical movement and two from diagonal movement, this would mean we have to place at least

N/3 queens before any row can be invalid. But a queen may only remove from rows that are

within N/2 rows of the queen. A queen placement may also only remove one, two or even no

positions, placing queen that remove three positions at a given row can only be done very few

times, since any additional placements will start removing some of the same positions again. It

turns out you have to place at least N/2 queens to invalidate a single row. These N/2 queens

would have to be place in a way that removes the most positions from a row, but such an

Bachelor Thesis by Christian Kaysø-Rørdam S082918

37

approach will never lead to a solution, and for the approach used by the algorithm, starting at row

zero and working towards row N, many more placements are needed to invalidate some row.

It turns out that checking any other row provides no real benefit, as by the time such a row

becomes invalid, only a few queens will need to be placed for the check of the next row to reach

the same conclusion, or in most cases, no queens at all, this is simply because of the way the

algorithm places queens, going from row zero to row N. To see a small benefit from such a check,

the check should only start happening once enough queens have been placed for there to be a

real chance of some row actually being invalid.

5 Architecture of the implementation

5.1 Data grid

The data grid is the data structure used to store queen placements. Given an x-y coordinate for

the chess board, it can tell you if a queen is at that position or not, or the full list of queen

placements can be retrieved. See appendix 1 for the full code.

The internal structure of the data grid used to store the queen positions have gone through

several iterations, the first being a simple two-dimensional list where each element had a Boolean

value indicating if a queen was placed there or not. This approach offers simplicity in checking

individual positions, as it allows two-dimensional indexing out of the box; however, it contains N2

elements giving it poor size scaling. The .NET Framework has a data structure specifically for the

purpose of storing an array of Booleans, the BitArray class and this was used in another iteration

of the internal structure. Since the BitArray is one dimensional, this worked as a flattened version

of the two-dimensional list structure. This meant that an x-y coordinate would have to be

translated into a single value, to allow lookup in the BitArray and this adds a slight bit of overhead

compared to the normal indexing function. The BitArray also contained N2 elements, but in this

Bachelor Thesis by Christian Kaysø-Rørdam S082918

38

case, each element only takes up a single bit instead of a full byte as a Boolean normally does. This

still gives us poor size scaling, but with a much lower constant.

The final version of the data grid uses a single list of positions, where each position represents a

queen placement. This data structure takes advantage of the fact that the algorithm places queens

in a systematic way, such that a new queen will only be placed one row above the previous one.

When a lookup is performed on this data structure, the y-coordinate of the position is used as an

index into the list retrieving an element E, a check first ensures that such an index actually exists,

and then the x-coordinate from the indexer is compared to the x-coordinate stored in the element

E, if the x values match, it returns true and otherwise false. This structure will only contain up to N

elements, giving us much better size scaling and the indexing function also runs fast as it only

compares to values in addition to the lookup itself. It does limit how the algorithm places it

queens, as this structure would not work if queens are not placed the way they are, as the y-

coordinate used to retrieve element E would return the wrong element E, since the E y-coordinate

would not match the y-coordinate from the index. Both the x- and y-coordinates are stored in the

list, despite the y-coordinate being redundant when just performing lookups but it is useful when

getting the full list of positions.

The data grid can also return a version of itself where every queen position is mirrored around the

y-axis.

The data grid is immutable, at least when seen from outside the class, so when a new queen is

placed, the data grid returns a copy of itself with the one queen being added. This immutability

helps the parallelization, as it eliminates the concern of shared data access when dealing with the

data grid.

A non-immutable version the data grid also exists, but this was abandoned early as it provided no

measureable speed benefit, and the total size of the data stays very limited so the immutable

approach does not cause any out of memory problems.

Bachelor Thesis by Christian Kaysø-Rørdam S082918

39

5.2 Solver

The solver is the core of the program; it contains all the methods and algorithms needed to solve

the problem with and without parallelization. The solver contains four segments of methods, one

for finding all solutions, one for finding a single solution, one for finding SPCEs and a bunch of

helper methods including the methods checking if a position is considered safe. Each of the

segments for finding solutions or SPCEs use the same basic backtrack search algorithm, but

modified to best suit the need of the particular job. See appendix 2 for the full code.

The implementation for finding all solutions is the simplest of the three, as it is the basic backtrack

search algorithm initialized in a specific way. Half the start candidates for the problem is retrieved,

this list is candidates is the iterated over using the Parallel.ForEach construct with each iteration

starting a new backtrack search running on a new task. As noted earlier, this construct will avoid

oversubscription and otherwise optimize each task, making it the ideal choice for finding all

solution. There are no race conditions in this implementation, as each task has a completely

separate part of the problem. When a task finds a solution, the solution is then added to a list of

solutions and the algorithm backtracks as it would if it hit a dead end, allowing it to continue

looking for more solutions until it has found all possible solutions starting with the start candidate

it was originally given. Once all the solutions have been found for the given start candidates, we

have to mirror all of them, since we only initialized the algorithm with half the positions of row

zero, to get the remaining solutions.

The implementation for finding a single solution functions in much the same way as the one for

finding all solutions, since it is still the same algorithm being used. The parallelization instead

occurs inside the method and only when specific conditions are fulfilled and this version of the

algorithm will terminate once a single solution has been found. To decide if a new Task should be

created, it checks if there already exists too many tasks such that adding another will bring to total

number of tasks created above some set threshold. It then checks if the current depth of the tree

is between the minimum and maximum depths specified. Both of these parameters may be set on

the Solver object. Lastly, we make sure that the list of valid position “nexts” contains more than

one position.

Bachelor Thesis by Christian Kaysø-Rørdam S082918

40

If all of these checks are passed, we begin the process of creating a new task, first by splitting the

list of valid positions in two, one half goes to the new task and the other half is left for the old task.

The list of valid positions may be sorted before the split based on the information in the Counter

Example Set, if that option is selected; the split does not split the list in the middle, but takes every

other element out. We then atomically increment the Task counter, and then finally create the

new Task, telling it to run a special method created for this purpose. Methods used for Tasks must

take exactly one object, containing all the relevant data which in this case is half the valid positions

and a copy of the current partial solution, as parameter or no parameters at all and this method

then simply calls the algorithm. When the call to the algorithm finishes, the Task counter is

atomically decremented with one. If at any point a solution is found, a Boolean is so to true so

when all other threads checks this Boolean they will stop their execution.

The final use of the algorithm is for finding SPCEs. This works like the implementation for finding

all solutions, except for a few important differences. The first difference is that you specify a range

of problem sizes, rather than just a single size, and SPCEs will be found in all of these and added to

the Counter Example Set. It also contains the logic for finding SPCEs in the way described in

Counter examples from smaller problems.

5.3 Counter Example Set

This class is used for storing and retrieving SPCEs found by the Solver. The base data structure for

storing these SPCEs is a dictionary with positions as keys and tuples with a dictionary and a list of

counter examples as values, the dictionary in the tuples are constructed in the same way, giving us

a recursive data structure. See appendix 3 for the full code.

When adding a SPCE to the data structure, the list of queen positions is retrieved from the data

grid which is passed as a parameter, and then the dictionary is recursively traversed starting with

the first queen position ending with the last queen position. Key/Value pairs are added if a

position is not already a key in the relevant dictionary, this helps limit the size of the structure,

since we are doing a form of lazy initialization only adding the exact Key/Value pairs we need.

Bachelor Thesis by Christian Kaysø-Rørdam S082918

41

Once the full list of queen positions has been used as a lookup, the list of counter examples found

in the tuple is updated with the counter examples contained in the data grid. In end result is a data

structure that functions like a dictionary with lists of positions as keys and lists of counter

examples as values would. Since the add function is called by many different threads, it is

important that a lock is acquired before any changes to the data structure is allowed.

Retrieving a list of counter examples functions in the same way as adding counter examples,

except Key/Value pairs are not added if they are missing, since this simply means that no counter

examples exist for the given list of positions. The retrieve function does not use any form of

locking to ensure mutually exclusive access, since all changes to the data structure are made

before the first retrieve call. We know this because the retrieve function is only used in the

function for sorting the list of valid positions in the Solver, and this only happens during the

execution of the FindSingleSolution function, which happens after all SPCEs have been found.

For sorting the list of candidate positions, we first check if the current partial solution can be part

of any counter examples previously found, by checking the current size of the current data grid

against the size of the biggest counter example. The current size of the current data grid is not the

size N it was initialized with, but rather the number of queens placed, as we know if more queens

have been placed than the largest counter example can hold, then no counter examples found

may fit in the current data grid. Next all counter examples the current grid is part of is retrieved

and again we check if this list contain any counter examples. We then simply iterate over the list of

counter examples and the list of candidate positions, checking if a candidate position extends one

of the counter examples or breaks one. If the candidate extends a counter example, a weight of

value one is added to it and otherwise nothing is added. Once all counter examples have been

checked against all candidates, the list of candidates is sorted with respect to the weight assigned

to each candidate and then returned to the solver.

Bachelor Thesis by Christian Kaysø-Rørdam S082918

42

6 Results and discussion

6.1 Result gathering

All the results were gathered using a debugging interface created for this project, see appendix 4

and 14 for the implementation of the interface and a screenshot. For each test, different settings

were used and the settings used will be noted next to each of the test results so that any results

may be reproduced at a later time. All the tests were run on a Windows 7 platform with four

physical cores with Hyper Threading enabled, each running 2.8 GHz.

In the test results, speedup refers to how many times faster the parallel or optimized version was

compared to the serial or non-optimized version. A speedup of less than one means it was actually

slowed down.

6.2 Results of parallelization

6.2.1 Find all solutions

Relevant settings used were: Optimize = false, FindAll = true.

To make the interface use the Parallel.ForEach loop when finding all solutions, a number greater

than zero has to be entered in the textbox marked “threads”, a value of zero forces the use of a

standard ForEach loop. MinDepth and MaxDepth have no influence in this test. In all cases, both

loops found the same number of solutions.

Bachelor Thesis by Christian Kaysø-Rørdam S082918

43

 Parallel.ForEach Standard ForEach Speedup

N = 8 0,035s 0,026s 0,74

N = 10 0,136s 0,179s 1,32

N = 12 1,407s 5,387s 3,83

N = 13 8,318s 32,520s 3,91

N = 14 53,205s 211,742s 3,98

We see that for small problems, the overhead incurred by using multiple cores becomes so high

relative to the time it takes to solve the problem that it slows down the algorithm. Once the

problem size get bigger, we approach a speedup of four, whereas one might have expected a

speedup closer to eight, given that the CPU has eight logical cores. But these extra logical cores

provided by Hyper Threading may only give a modest performance increase8. This means we are

only interested in the number of physical cores present on the CPU, in which case the speedup

seen in the tests are what one should expect of a CPU with four physical cores.

This speedup would also be expected according to Amdahl’s Law, as the only portion of the

program that has to be run serially is adding a solution to the list of solution, which is a very fast

operation that runs in O(1). This means that the portion of the program that can be parallel is very

close to 100%.

6.2.2 Find single solution

Relevant settings used were: Optimize = false, FindAll = false.

The interface allows changing minimum depth, maximum depth and number of additional tasks.

Zero additional tasks means the algorithm will only use a single thread for execution. Minimum

and maximum depths have no influence on the algorithm if zero addition tasks are chosen. If a

field has a dash in it, it means that the combination of parameters was not tested. Moving to the

8
 See 2.4 Basic CPU Architecture.

Bachelor Thesis by Christian Kaysø-Rørdam S082918

44

right indicates an increase in number of extra tasks used, specified at the top of each column,

moving down changes the minimum and maximum depths.

N = 20

Min/Max 0 2 3 4 7

0/3 2,835s 0,029s 0,074s 0,068s 0,031s

1/5 2,831s 0,105s 0,022s 0,041s 0,79s

2/5 - 0,071s 0,075s 0,074s 0,102s

N = 25

Min/Max 0 2 3 4 7

0/3 0,99s 0,441s 0,505s 0,492s 0,503s

2/5 - 0,335s 0,376s 0,396s 0,396s

3/6 - 0,083s 0,089s 0,103s 0,115s

N = 28

Min/Max 0 2 3 4 7

0/3 71,303s 65,543s 70,359s 68,679s -

3/6 - 0,886s 0,929s 0,923s 0,885s

4/7 - 6,561s 6,496s 6,75s 1,183s

3/7 - 0,831s 0,983s 1,085s 1,555s

4/8 - 6,329s 7,183s 0,813s 1,105s

Looking at the results overall, we see wildly varying speedups from near one going almost up to

100 in the case of N20. Predicting the speedup gained by adding cores using Amdahl’s Law is not

possible in this case, due to the work assigned to the extra tasks. If the algorithm was run with just

a single task, the task might have to explore a large branch of the search tree only to realize the

branch did not contain any solutions. Whereas if there were more than one task created, one of

the others tasks would start on a separate branch that might lead to a solution without causing a

single back track. Obviously, this task that picks the best branch to explore may finish long before

Bachelor Thesis by Christian Kaysø-Rørdam S082918

45

all the other tasks, giving us an unpredictable speed. The speedup gained by parallelizing this

algorithm seems to depend on the size of the problem, as changing the size changes where the

simplest solution may be found.

We see that increasing the minimum depth on size 20 and 25, does not cause nearly as big a

change in execution time as it does for size 28. This difference is again caused by how solutions are

placed in the given size, for 20 and 25 there are much fewer solutions left after going three rows

into the chess board than compared to size 28. This means that the early choices for queen

positions are less trivial for 20 and 25 than for size 28. The maximum depth should stay above the

minimum depth, to ensure that the splitting behavior is able to create the full number of cores.

It is clear that the outcome of each test depends on the settings, and tweaking these correctly can

give significant difference in execution time, which is clearly demonstrated in N28 where the worst

speedup is just above one and the best speedup is around 85.

6.3 Results of optimizations

6.3.1 Symmetry

Relevant settings used were: FindAll = true, tasks > 0. All tests found the same number of

solutions.

 Symmetry No symmetry Speedup

N = 8 0,007s 0,03s 4,29

N = 10 0,096s 0,178s 1,85

N = 12 2,712 5,395s 1,99

The expected speedup from using symmetry to generate the remaining solutions is just below

two. The symmetry should be able to provide us with up to half of the solutions, but mirroring all

the solutions takes some time as well, lowering the expected speedup to just below two.

Bachelor Thesis by Christian Kaysø-Rørdam S082918

46

The size 8 test most likely suffers from the variance in execution time the garbage collector in the

.NET Framework causes, leading to a much higher than expected speedup, but with such short

running time, the variance in time plays too big a role making that result useless.

The two other results have a slightly longer running time, which diminishes the effect the variance

has on the test results, and therefore provide more accurate results. We see that both tests come

out with a speedup close to the expect two.

6.3.2 Counter examples

Relevant settings used were: FindAll = false, MinDepth = 2, MaxDepth = 5.

This first test was tested using threads = 0.

 Not using SPCEs Using SPCEs Speedup

N = 20 2,834s 1,030s 2,75

N = 22 28,251s 1,278s 22,11

N = 25 0,969s 2,505s 0,39

N = 28 71,454s 95,389s 0,75

This second test was tested using threads = 7.

 Not using SPCEs Using SPCEs Speedup

N = 20 0,133s 0,759s 0,18

N = 22 0,055s 1,062s 0,05

N = 25 0,373s 2,249s 0,16

N = 28 20,327s 116,367s 0,17

We see that this optimization may provide some speedup compared to a serial version of the

algorithm, but it may also slow it down drastically. The speedup comes from choosing a better first

Bachelor Thesis by Christian Kaysø-Rørdam S082918

47

placement of a queen in some cases and most of the slow comes from this first choice being

worse. If we look at the algorithm, it counts how many counter examples each candidate position

is part of and tries the ones that are not part of any counter examples first. But the first candidate

position that is not in any counter example is the one located so far off to the other side, that

none of the counter examples are big enough to encompass it. Once this position has been

chosen, no candidate positions going from that position will ever be a part of a counter example

again, rendering the entire optimization useless. In effect, it places the second queen one spot

further away from the corner than the largest counter example and the just consumes time for all

other queen placements without providing any benefits.

It becomes clear that the optimization does not help the algorithm when looking that execution

time for the tests where the maximum amount of tasks was utilized.

The execution time for N = 25 using zero additional tasks may seem wrong compared to the sizes

before and after it. But it is in fact a good example of why the heuristic this optimization uses is

not useful, since the solution for N = 25 is to simply place a queen at the first safe position and

continue this almost until you reach the last row. It is clear that many of the early queen

placements may be in some counter example, yet the fastest solution is to completely ignore this

fact.

Bachelor Thesis by Christian Kaysø-Rørdam S082918

48

7 Conclusion

A parallelized version of the generic backtrack algorithm was successfully implemented for solving

the N-Queen problem. The speedup achieved by the parallelization in the case of finding all

solutions to the problem, was close to the number of cores used for executing the algorithm,

which is what was expected based on an analysis of how large a portion of the program had to be

serial in combination with Amdahl’s Law. For finding only a single solution, such an analysis could

not be performed, but the expected speedup was also near that of the number of cores present,

yet the actual speedup gained greatly exceeded the expectation in many cases, sometimes

upwards of 25 times larger than then number of physical cores used, provided the parameters for

the parallelization were properly adjusted.

Some heuristics and optimizations were investigated and some implemented and tested, but only

using the symmetry of the problem provided a reliable speedup when solving for all solutions. The

heuristic for using Shortest Possible Counter Examples found in problems of a smaller size than the

one that was attempted to be solved, slowed down the algorithm in most cases but also showed

the importance of the early choices of queen placements.

The .NET Framework prove useful in the development of the parallel backtrack search, as their

primitives allows a complete abstraction away from threads. The primitive Task was used where a

thread would normally have been used if this was done on another platform, this primitive is

control by a lot of heuristics behind the scenes, which help provide load balancing across the

available cores and also makes the creation of a new Task much cheaper than a thread would have

been. The Parallel.ForEach loop also yielded very nice results when used in conjunction with the

algorithm for finding all solutions, once the problem size became large enough the speedup by the

parallel loop was as close the number of physical cores as possible.

Bachelor Thesis by Christian Kaysø-Rørdam S082918

49

8 Appendix

1. Datagrid.cs

Contains partial and complete solutions, used as the primary data structure in the algorithm.

using System.Collections.Generic;

namespace NQPSolver
{
 public class DataGrid
 {
 private readonly List<Position> grid; // Positions of queen placements.
 public int ChangesMade { get; private set; }

 /// <summary>
 /// Used with the value based approach.
 /// </summary>
 /// <param name="n"></param>
 public DataGrid(int n)
 {
 Size = n;
 grid = new List<Position>(n);
 }

 /// <summary>
 /// Constructor used for cloning.
 /// </summary>
 /// <param name="data"></param>
 /// <param name="n"></param>
 /// <param name="changes"></param>
 private DataGrid(List<Position> data, int n, int changes)
 {
 this.grid = data;
 this.Size = n;
 this.ChangesMade = changes;
 }

 public int Size { get; private set; }

 /// <summary>
 /// Returns the current queen placements. Do not alter the elements.
 /// </summary>
 public List<Position> Grid
 {
 get
 {
 return new List<Position>(grid);
 }
 }

 public bool this[Position x]
 {
 get { return this[x.X, x.Y]; }
 }

Bachelor Thesis by Christian Kaysø-Rørdam S082918

50

 /// <summary>
 /// Lookup if a queen has been placed at the specifed position.
 /// </summary>
 /// <param name="x">X coordinate.</param>
 /// <param name="y">Y coordiante.</param>
 /// <returns>Returns true if a queen is at that position.</returns>
 public bool this[int x, int y]
 {
 get
 {
 if (ChangesMade <= y) return false;
 return grid[y].X == x ? true : false;
 }
 }

 public DataGrid Set(Position t)
 {
 return Set(t.X,t.Y);
 }

 /// <summary>
 /// Returns a new datagrid with a queen placed on x,y.
 /// </summary>
 /// <param name="x">X coordinate.</param>
 /// <param name="y">Y coordinate.</param>
 /// <returns>The new grid with the new queen placement.</returns>
 public DataGrid Set(int x, int y)
 {
 var clone = Clone();
 clone.grid.Add(new Position(x,y));
 clone.ChangesMade++;
 return clone;
 }

 /// <summary>
 /// Performs a shallow clone of this datagrid.
 /// </summary>
 /// <returns>A shallow clone of this datagrid.</returns>
 public DataGrid Clone()
 {
 return new DataGrid(new List<Position>(grid), Size, ChangesMade);
 }

 /// <summary>
 /// Reflects the specified datagrid around the Y-Axis.
 /// </summary>
 /// <param name="r">Grid to be mirrored.</param>
 /// <returns>A Y-Reflection of the datagrid.</returns>
 public static DataGrid YReflection(DataGrid r)
 {
 var rgrid = new List<Position>();

 for (int y = 0; y < r.Size; y++)
 {
 for (int x = 0; x < r.Size; x++)
 {
 if (r[x,y])
 {
 int mirrorX = (r.Size - 1) - x;
 rgrid.Add(new Position(mirrorX, y));

Bachelor Thesis by Christian Kaysø-Rørdam S082918

51

 break;
 }
 }
 }

 return new DataGrid(rgrid,r.Size,r.ChangesMade);
 }
 }
}

2. Solver.cs

Has the implementations of the algorithms used for solving the N-Queen problem, both for all

solutions and a single, also has the algorithm for gathering SPCEs for use in the Counter Example

Set.

using System;
using System.Collections.Generic;
using System.Threading;
using System.Threading.Tasks;

namespace NQPSolver
{
 public class Solver
 {
 private readonly DataGrid dataGrid;
 private readonly object resultsLock = new object();
 private bool findSingle;
 private int taskCounter = 0; // Keeps track of current number of tasks.
 private volatile bool isDone;
 private CounterExampleSet counterExamples; // Stores SPCEs.

 public List<DataGrid> Results;
 public int MaxDepth { get; set; }
 public int MaxThreadCount { get; set; }
 public bool ShouldOptimize { get; set; }
 public int MinDepth { get; set; }

 public Solver(int n)
 {
 this.dataGrid = new DataGrid(n);
 Results = new List<DataGrid>();
 MinDepth = n/10;
 }

 public void Solve()
 {
 Solve(true);
 }

 public void Solve(object boolean)
 {
 bool f = (bool)boolean;
 Solve(f);

Bachelor Thesis by Christian Kaysø-Rørdam S082918

52

 }

 public void Solve(bool findSingleSolution)
 {
 findSingle = findSingleSolution;

 if (findSingle)
 {
 StartSolveSingle();
 }
 else
 {
 StartSolveAll();
 }
 }

 // Solve for all solutions.
 private void StartSolveAll()
 {
 ThreadPool.SetMaxThreads(8, 1);
 //Try to solve for each of the candidates.
 List<Position> candidateList = new List<Position>();
 if (ShouldOptimize)
 {
 candidateList = GetStartCandidates(dataGrid);
 }
 else
 {
 for (int i = 0; i < dataGrid.Size; i++)
 {
 candidateList.Add(new Position(i,0));
 }
 }

 if (MaxThreadCount != 0)
 {
 Parallel.ForEach(candidateList, s => SolveAll(dataGrid, s));
 }
 else
 {
 foreach (var s in candidateList)
 {
 SolveAll(dataGrid,s);
 }
 }

 if (ShouldOptimize)
 {
 var mirrored = new List<DataGrid>();
 foreach (var result in Results)
 {
 for (int i = 0; i < result.Size / 2; i++)
 {
 if (result[i, 0])
 {
 mirrored.Add(DataGrid.YReflection(result));
 break;
 }
 }
 }

Bachelor Thesis by Christian Kaysø-Rørdam S082918

53

 Results.AddRange(mirrored);
 }
 }

 private void SolveAll(DataGrid p, IEnumerable<Position> cs)
 {
 foreach (var tuple in cs)
 {
 SolveAll(p, tuple);
 }
 }

 private void SolveAll(DataGrid p, Position c)
 {
 var newP = p.Set(c);

 if (Accpeted(newP))
 {
 lock (resultsLock)
 {
 Results.Add(newP);
 }
 return;
 }

 var nexts = GetRow(newP, GetFirst(c)).FindAll(c1 => IsSafe(newP, c1));
 if (nexts.Count > 0)
 {
 SolveAll(newP.Clone(), nexts);
 }
 }

 // Solve for one solution
 private void StartSolveSingle()
 {
 //Start candidates. Only check one half of the board,
 //other half only contains mirrored versions of the first half's solutions.

 var candidateList = GetStartCandidates(dataGrid);
 counterExamples = new CounterExampleSet();

 if (ShouldOptimize)
 {
 Task csFinder = new Task(StartFindCounterExamples);
 csFinder.Start();
 csFinder.Wait();
 }

 foreach (var tuple in candidateList)
 {
 SolveSingle(dataGrid, tuple);
 if (isDone) break;
 }
 }

 /// <summary>
 /// Method used for parallelization.
 /// </summary>
 /// <param name="gridAndPosition"></param>

Bachelor Thesis by Christian Kaysø-Rørdam S082918

54

 private void SolveSingle(object gridAndPosition)
 {
 var parameters = (PSolverParameter)gridAndPosition;
 SolveSingle(parameters.DataGrid, parameters.Positions);
 Interlocked.Decrement(ref taskCounter);
 }

 private void SolveSingle(DataGrid p, IEnumerable<Position> cs)
 {
 foreach (var tuple in cs)
 {
 if (isDone) break;
 SolveSingle(p, tuple);
 }
 }

 /// <summary>
 /// The backtrack search, using Tasks for parallelization and terminates when a
single solution is found.
 /// </summary>
 /// <param name="p"></param>
 /// <param name="c"></param>
 private void SolveSingle(DataGrid p, Position c)
 {
 var newP = p.Set(c);

 if (Accpeted(newP))
 {
 isDone = true;
 lock (resultsLock)
 {
 Results.Add(newP);
 }
 }

 if (isDone) return;

 var nexts = GetRow(p, GetFirst(c)).FindAll(c1 => IsSafe(newP, c1));

 if (ShouldOptimize)
 {
 nexts = counterExamples.SortList(nexts, newP);
 }

 if (taskCounter < MaxThreadCount && newP.ChangesMade > MinDepth
&&newP.ChangesMade < MaxDepth && nexts.Count > 1) //Nexts must contain more than one
element, else there is no reason to start a new thread.
 {
 List<Position> halfNexts = null;
 if (ShouldOptimize)
 {
 halfNexts = FairListSplit(nexts);
 }
 else
 {
 halfNexts = nexts.GetRange(0, nexts.Count/2);
 nexts.RemoveRange(0,nexts.Count/2);
 }
 Interlocked.Increment(ref taskCounter);
 Task.Factory.StartNew(SolveSingle, new PSolverParameter(newP.Clone(),

Bachelor Thesis by Christian Kaysø-Rørdam S082918

55

halfNexts));
 }

 if (nexts.Count > 0)
 {
 SolveSingle(newP.Clone(), nexts);
 }
 }

 // Find counter examples in smaller problems.
 private void StartFindCounterExamples()
 {
 //var p = new DataGrid(4);
 //var cand = GetStartCandidates(p);
 //FindCounterExamples(p, cand);

 //int stop = 0;
 counterExamples = new CounterExampleSet();
 List<Task> tasks = new List<Task>();

 for (int i = 4; i < 12; i++)
 {
 var p = new DataGrid(i);
 var candidates = GetStartCandidates(p);
 Task task = new Task(FindCounterExamples, new PSolverParameter(p,
candidates));
 task.Start();
 tasks.Add(task);
 }

 foreach (var task in tasks)
 {
 task.Wait();
 }
 }

 private void FindCounterExamples(object gridAndPositions)
 {
 var parameters = (PSolverParameter) gridAndPositions;
 FindCounterExamples(parameters.DataGrid,parameters.Positions);
 }

 /// <summary>
 /// Adds SPCEs to the dictionary of SPCEs when found.
 /// </summary>
 /// <param name="p"></param>
 /// <param name="cs"></param>
 /// <returns></returns>
 private bool FindCounterExamples(DataGrid p, IEnumerable<Position> cs)
 {
 bool foundSolution = false;
 var possibleCounters = new List<DataGrid>();
 foreach (var tuple in cs)
 {
 if (FindCounterExamples(p, tuple))
 {
 foundSolution = true;
 }
 else
 {

Bachelor Thesis by Christian Kaysø-Rørdam S082918

56

 possibleCounters.Add(p.Set(tuple));
 }
 }

 if (!foundSolution && p.ChangesMade == 0)
 {
 //counterExamples.Add(p); // Everything is a counter example, p has no
solutions.
 }
 else if (foundSolution && possibleCounters.Count > 0)
 {
 counterExamples.Add(possibleCounters);
 }

 return foundSolution;
 }

 /// <summary>
 /// Part of the backtrack search for SPCEs.
 /// </summary>
 /// <param name="p"></param>
 /// <param name="c"></param>
 /// <returns></returns>
 private bool FindCounterExamples(DataGrid p, Position c)
 {
 var newP = p.Set(c);

 if (Accpeted(newP))
 {
 return true;
 }

 var nexts = GetRow(newP, GetFirst(c)).FindAll(c1 => IsSafe(newP, c1));

 bool foundSolution = false;
 if (nexts.Count > 0)
 {
 if (FindCounterExamples(newP.Clone(), nexts))
 foundSolution = true;
 }

 return foundSolution;
 }

 // Misc functions.
 /// <summary>
 /// Used for splitting the sorted list in two pieces, ensuring both pieces have
viable positions.
 /// </summary>
 /// <param name="listToSplit"></param>
 /// <returns></returns>
 private static List<Position> FairListSplit(List<Position> listToSplit)
 {
 var firstHalf = new List<Position>();
 for (int i = 0; i < listToSplit.Count; i += 2)
 {
 firstHalf.Add(listToSplit[i]);
 }

 listToSplit.RemoveAll(firstHalf.Contains);

Bachelor Thesis by Christian Kaysø-Rørdam S082918

57

 return firstHalf;
 }

 /// <summary>
 /// Returns half of the positions of row zero in datagrid P.
 /// </summary>
 /// <param name="p"></param>
 /// <returns></returns>
 private static List<Position> GetStartCandidates(DataGrid p)
 {
 var candidateList = new List<Position>();
 int smartCandidates = (p.Size + 1) / 2;
 for (int i = 0; i < smartCandidates; i++)
 {
 candidateList.Add(new Position(i, 0));
 }

 return candidateList;
 }

 /// <summary>
 /// Returns true if N queens have been placed.
 /// </summary>
 /// <param name="newP"></param>
 /// <returns></returns>
 private static bool Accpeted(DataGrid newP)
 {
 return newP.ChangesMade == newP.Size ? true : false;
 }

 private static Position GetFirst(Position c)
 {
 return new Position(0,c.Y+1);
 }

 private static List<Position> GetRow(DataGrid p, Position c)
 {
 var cs = new List<Position>();

 int size = p.Size;
 for (int i = 0; i < size; i++)
 {
 cs.Add(new Position(i, c.Y));
 }

 return cs;
 }

 private static bool IsSafe(DataGrid p, Position c)
 {
 int size = p.Size;
 //Check vertical ONLY, horizontal is never an issue.
 for (int i = 0; i < size; i++)
 {
 if (p[c.X, i]) return false;
 }

 bool diags = IsDiagonalsSafe(p,c);
 if (!diags) return false;

Bachelor Thesis by Christian Kaysø-Rørdam S082918

58

 return true;
 }

 private static bool IsDiagonalsSafe(DataGrid p, Position c)
 {
 int size = p.Size;
 int max = size - 1;
 var start1 = new Tuple<int, int>(0,0);
 var start2 = new Tuple<int, int>(max, 0);
 int item1 = c.X;
 int item2 = c.Y;
 int posLength = size - 1, negLength = size - 1;

 //Below the Positive diagonal
 if (item2 - item1 < 0)
 {
 start1 = new Tuple<int, int>(item1 - item2, 0);
 posLength = size - start1.Item1 - 1;
 }
 //Above the Positive diagonal
 else if (item1 - item2 < 0)
 {
 start1 = new Tuple<int, int>(0, item2 - item1);
 posLength = size - start1.Item2 - 1;
 }

 for (int i = 0; i < posLength; i++)
 {
 if (p[start1.Item1 + i, start1.Item2 + i]) return false;
 }

 //Below the Negativ diagonal
 if (item1 + item2 < max)
 {
 start2 = new Tuple<int, int>(item1 + item2, 0);
 negLength = start2.Item1;
 }
 //Above the Negativ diagonal
 if (item1 + item2 > max)
 {
 start2 = new Tuple<int, int>(size - 1, item2 - (max - item1));
 negLength = size - start2.Item2 - 1;
 }

 for (int i = 0; i < negLength; i++)
 {
 if (p[start2.Item1 - i, start2.Item2 + i]) return false;
 }

 return true;
 }
 }
}

Bachelor Thesis by Christian Kaysø-Rørdam S082918

59

3. CounterExampleSet.cs

Stores and retrieve previously found counter examples. Can also sort a list of positions based on

the number of counter examples each position is involved in.

using System.Collections.Generic;
using System.Linq;

namespace NQPSolver
{
 internal class CounterExampleSet
 {
 private readonly Dictionary<Position,ListDictPair> lookup = new
Dictionary<Position, ListDictPair>();
 private readonly object lookupLock = new object();

 public int MaxDepth { get; private set; }

 /// <summary>
 /// Adds the specifed counter examples to the dictionary. This is threadsafe.
 /// </summary>
 /// <param name="counterExamples">A grid containing a counter example.</param>
 public void Add(IEnumerable<DataGrid> counterExamples)
 {
 foreach (var dataGrid in counterExamples)
 {
 Add(dataGrid);
 }
 }

 /// <summary>
 /// Adds the specifed counter example to the dictionary. This is threadsafe.
 /// </summary>
 /// <param name="counterExample">A grid containing a counter example.</param>
 public void Add(DataGrid counterExample)
 {
 lock (lookupLock)
 {
 AddCounterExample(counterExample);
 }
 }

 /// <summary>
 /// Adds the specifed counter example to the dictionary.
 /// </summary>
 /// <param name="grid">A grid containing a counter example.</param>
 private void AddCounterExample(DataGrid grid)
 {
 var listpair = GetListDictPairs(grid.Grid);
 Fill(grid,listpair);
 }

 /// <summary>
 /// Adds a counter example to a listDictPair.
 /// </summary>
 /// <param name="counter">The CE to be added.</param>

Bachelor Thesis by Christian Kaysø-Rørdam S082918

60

 /// <param name="listDictPair">The lDP to have a CE added to.</param>
 private static void Fill(DataGrid counter, ListDictPair listDictPair)
 {
 listDictPair.CounterExamples.Add(counter);
 }

 private ListDictPair GetListDictPairs(List<Position> positions)
 {
 return GetListDictPairs(positions, lookup);
 }

 /// <summary>
 /// Returns the listDictPair found using the specified path, adds the listDictPair
if it did not exist.
 /// </summary>
 /// <param name="positions">The path used for lookup in the dictionary.</param>
 /// <param name="dictionary">Dictionary containing counter examples.</param>
 /// <param name="n">Recursion counter.</param>
 /// <returns></returns>
 private ListDictPair GetListDictPairs(List<Position> positions,
Dictionary<Position,ListDictPair> dictionary, int n = 0)
 {
 var newPair = new ListDictPair(new List<DataGrid>(), new Dictionary<Position,
ListDictPair>());

 if (n == positions.Count - 1)
 {
 if (MaxDepth < n) MaxDepth = n;
 if (dictionary.ContainsKey(positions[n]))
 {
 return dictionary[positions[n]];
 }

 dictionary.Add(positions[n], newPair);
 return newPair;
 }

 if (!dictionary.ContainsKey(positions[n])) dictionary.Add(positions[n],
newPair);

 return GetListDictPairs(positions, dictionary[positions[n]].Dictionary, n + 1);
 }

 /// <summary>
 /// Sorts the list of positions based on how many counter examples such a position
would be part of.
 /// </summary>
 /// <param name="listToSort">The list to be sorted.</param>
 /// <param name="currentGrid">The current grid.</param>
 /// <returns>The list sorted based on the number counter examples each position
would be part of.</returns>
 public List<Position> SortList(List<Position> listToSort, DataGrid currentGrid)
 {
 if (MaxDepth < currentGrid.ChangesMade) return listToSort; //No counter
examples can match.

 //Order listToSort based on counterExamples.
 IEnumerable<DataGrid> matchingCounters = GetCounterExamples(currentGrid);
 if (matchingCounters == null || matchingCounters.Count() == 0) return
listToSort;

Bachelor Thesis by Christian Kaysø-Rørdam S082918

61

 var weights = AddWeights(listToSort);

 foreach (var matchingCounter in matchingCounters)
 {
 foreach (var weightedPosition in weights)
 {
 if (weightedPosition.Position.HorizontalDistance(currentGrid.Grid[0]) <
matchingCounter.Size)
 {
 weightedPosition.Weight++;
 }
 }
 }

 weights.Sort();

 return StripWeights(weights);
 }

 /// <summary>
 /// Takes a list of positions and returns a list with the same positions but with
each one having a weight.
 /// </summary>
 /// <param name="positions">The list of which to add weights.</param>
 /// <returns>The list with added weights.</returns>
 private List<WeightedPosition> AddWeights(List<Position> positions)
 {
 return positions.Select(p => new WeightedPosition(p)).ToList();
 }

 /// <summary>
 /// Removes weigths from a list with positions and weights.
 /// </summary>
 /// <param name="weightedPositions">List to have weights removed from.</param>
 /// <returns>List without the weighs.</returns>
 private List<Position> StripWeights(List<WeightedPosition> weightedPositions)
 {
 return weightedPositions.Select(position => position.Position).ToList();
 }

 private IEnumerable<DataGrid> GetCounterExamples(DataGrid currentGrid)
 {
 return GetCounterExamples(currentGrid, lookup);
 }

 /// <summary>
 /// Gives the counter examples the current path is involved in.
 /// </summary>
 /// <param name="currentGrid">The current grid containing a path.</param>
 /// <param name="dictionary">The dictionary containing counter examples.</param>
 /// <param name="n">Recursion counter.</param>
 /// <returns>Returns counter examples for the current grid.</returns>
 private static IEnumerable<DataGrid> GetCounterExamples(DataGrid currentGrid,
Dictionary<Position,ListDictPair> dictionary, int n = 0)
 {
 Position index = currentGrid.Grid[n];
 if (n == currentGrid.Grid.Count - 1)
 {
 return dictionary.ContainsKey(index) ? dictionary[index].CounterExamples :

Bachelor Thesis by Christian Kaysø-Rørdam S082918

62

null;
 }

 return dictionary.ContainsKey(index) ? GetCounterExamples(currentGrid,
dictionary, n + 1) : null;
 }
 }
}

4. WeightedPosition.cs

Used in the Counter Example Set for keep track of the weights assigned to each position. The

weighted position is not used in the algorithm itself, as the weight attribute is only used during the

sorting of the position list.

using System;

namespace NQPSolver
{
 internal class WeightedPosition : IComparable<WeightedPosition>
 {
 public Position Position { get; private set; }
 public int Weight { get; set; }

 /// <summary>
 /// A position with a weight, implements IComparable to allow sorting.
 /// </summary>
 /// <param name="p"></param>
 /// <param name="weight"></param>
 public WeightedPosition(Position p, int weight = 0)
 {
 Position = p;
 Weight = weight;
 }

 public int CompareTo(WeightedPosition other)
 {
 if (this.Weight < other.Weight)
 {
 return -1;
 }
 else if (other.Weight < this.Weight)
 {
 return 1;
 }
 else
 {
 return 0;
 }
 }
 }
}

Bachelor Thesis by Christian Kaysø-Rørdam S082918

63

5. SPSolverParameter.cs

Used by the reference based solver to pass parameters to Tasks. Currently unused.

using System;
using System.Collections.Generic;

namespace NQPSolver
{
 internal struct SPSolverParameter
 {
 public SmartDataGrid SmartDataGrid;
 public List<Tuple<int, int>> Positions;

 /// <summary>
 /// Used with the reference based approach. Discontinued.
 /// </summary>
 /// <param name="p"></param>
 /// <param name="cs"></param>
 public SPSolverParameter(SmartDataGrid p, List<Tuple<int, int>> cs)
 {
 this.SmartDataGrid = p;
 this.Positions = cs;
 }
 }
}

6. SmartSolver.cs

Solves the problem using mostly references to data grid, instead of copying them every time.

Currently unused and not updated recently.

using System;
using System.Collections.Generic;
using System.Threading;
using System.Threading.Tasks;

namespace NQPSolver
{
 public class SmartSolver
 {
 private readonly SmartDataGrid smartDataGrid;
 private int taskCounter = 0;
 private volatile bool isDone;

 /// <summary>

Bachelor Thesis by Christian Kaysø-Rørdam S082918

64

 /// Used with the reference based approach. Discontinued.
 /// </summary>
 /// <param name="n"></param>
 public SmartSolver(int n)
 {
 this.smartDataGrid = new SmartDataGrid(n);
 }

 public int Depth { get; set; }
 public int MaxThreadCount { get; set; }

 public void SSolve()
 {
 //Start candidates. Only check one half of the board,
 //other half only contains mirrored versions of the first half's solutions.
 var candidateList = new List<Tuple<int, int>>();
 int smartCandidates = (smartDataGrid.Size / 2) + 1;
 for (int i = 0; i < smartCandidates; i++)
 {
 candidateList.Add(new Tuple<int, int>(i, 0));
 }
 //ThreadPool.SetMaxThreads(8, 8);
 //Try to solve for each of the candidates.
 //Parallel.ForEach(candidateList, (s) => Solve(dataGrid, s));)
 foreach (var tuple in candidateList)
 {
 SSolve(smartDataGrid, tuple);
 if (isDone) break;
 }
 }

 private void SParallelSolve(object gridAndPosition)
 {
 var parameters = (SPSolverParameter)gridAndPosition;
 SSolve(parameters.SmartDataGrid, parameters.Positions);
 Interlocked.Decrement(ref taskCounter);
 }

 private void SSolve(SmartDataGrid p, IEnumerable<Tuple<int, int>> cs)
 {
 foreach (var tuple in cs)
 {
 if (isDone) break;
 SSolve(p, tuple);
 }
 }

 public SmartDataGrid Result;
 private readonly object resultLock = new object();

 private void SSolve(SmartDataGrid p, Tuple<int, int> c)
 {

 p.SetToTrue(c);

 if (Accpeted(p))
 {
 isDone = true;
 lock (resultLock)
 {

Bachelor Thesis by Christian Kaysø-Rørdam S082918

65

 Result = p;
 }
 }

 if (isDone) return;

 var nexts = GetRow(p, GetFirst(c)).FindAll(c1 => IsSafe(p, c1));
 if (taskCounter < MaxThreadCount && p.ChangesMade < Depth && nexts.Count > 1)
//Nexts must contain more than one element, else there is no reason to start a new thread.
 {
 var halfNexts = nexts.GetRange(0, nexts.Count / 2);
 nexts.RemoveRange(0, nexts.Count / 2);
 Interlocked.Increment(ref taskCounter);
 Task.Factory.StartNew(SParallelSolve, new SPSolverParameter(p.Clone(),
halfNexts));
 }

 if (nexts.Count > 0)
 {
 SSolve(p, nexts);
 }

 p.UndoLatestChange();
 }

 private bool Accpeted(SmartDataGrid newP)
 {
 return newP.ChangesMade == newP.Size ? true : false;
 }

 private Tuple<int,int> GetFirst(Tuple<int, int> c)
 {
 return new Tuple<int, int>(0,c.Item2+1);
 }

 private List<Tuple<int, int>> GetRow(SmartDataGrid p, Tuple<int, int> c)
 {
 var cs = new List<Tuple<int, int>>();

 int size = p.Size;
 for (int i = 0; i < size; i++)
 {
 cs.Add(new Tuple<int, int>(i, c.Item2));
 }

 return cs;
 }

 private bool IsSafe(SmartDataGrid p, Tuple<int, int> c)
 {
 int size = p.Size;
 //Check vertical and horizontal
 for (int i = 0; i < size; i++)
 {
 if (p[c.Item1, i]) return false;
 if (p[i, c.Item2]) return false;
 }

 bool diags = IsDiagonalsSafe(p, c);
 if (!diags) return false;

Bachelor Thesis by Christian Kaysø-Rørdam S082918

66

 return true;
 }

 private bool IsDiagonalsSafe(SmartDataGrid p, Tuple<int, int> c)
 {
 int size = p.Size;
 int max = size - 1;
 var start1 = new Tuple<int, int>(0, 0);
 var start2 = new Tuple<int, int>(max, 0);
 int posLength = size - 1, negLength = size - 1;

 //Below the Positive diagonal
 if (c.Item2 - c.Item1 < 0)
 {
 start1 = new Tuple<int, int>(c.Item1 - c.Item2, 0);
 posLength = size - start1.Item1 - 1;
 }
 //Above the Positive diagonal
 else if (c.Item1 - c.Item2 < 0)
 {
 start1 = new Tuple<int, int>(0, c.Item2 - c.Item1);
 posLength = size - start1.Item2 - 1;
 }

 for (int i = 0; i < posLength; i++)
 {
 if (p[start1.Item1 + i, start1.Item2 + i]) return false;
 }

 //Below the Negativ diagonal
 if (c.Item1 + c.Item2 < max)
 {
 start2 = new Tuple<int, int>(c.Item1 + c.Item2, 0);
 negLength = start2.Item1;
 }
 //Above the Negativ diagonal
 if (c.Item1 + c.Item2 > max)
 {
 start2 = new Tuple<int, int>(size - 1, c.Item2 - (max - c.Item1));
 negLength = size - start2.Item2 - 1;
 }

 for (int i = 0; i < negLength; i++)
 {
 if (p[start2.Item1 - i, start2.Item2 + i]) return false;
 }

 return true;
 }
 }
}

7. SmartDataGrid.cs

The data grid used in the reference based approach, has additional data to allow undoing of queen

placements. Unused and outdated.

Bachelor Thesis by Christian Kaysø-Rørdam S082918

67

using System;
using System.Collections;
using System.Collections.Generic;

namespace NQPSolver
{
 public class SmartDataGrid
 {
 private readonly BitArray grid; // Flattend 2D array.
 private readonly Stack<Tuple<int, int>> changeHistory;

 /// <summary>
 /// Used with the reference based approach. Discontinued.
 /// </summary>
 /// <param name="n"></param>
 public SmartDataGrid(int n)
 {
 Size = n;
 grid = new BitArray(n*n);
 changeHistory = new Stack<Tuple<int, int>>(n);
 }

 private SmartDataGrid(BitArray data, int n, Stack<Tuple<int,int>> changeHistory)
 {
 this.grid = data;
 this.Size = n;
 this.changeHistory = changeHistory;
 }

 public int ChangesMade { get { return changeHistory.Count; } }
 public int Size { get; private set; }

 public bool this[Tuple<int,int> c]
 {
 get { return this[c.Item1, c.Item2]; }
 private set { this[c.Item1, c.Item2] = value; }
 }

 public bool this[int x, int y]
 {
 get
 {
 return this.grid[x + (y * Size)] ? true : false;
 }
 private set { this.grid[x + (y * Size)] = value; }
 }

 /// <summary>
 /// Undo the lastest queen placement.
 /// </summary>
 public void UndoLatestChange()
 {
 var position = changeHistory.Pop();
 this[position] = false;
 }

 /// <summary>
 /// Place a queen at position T.

Bachelor Thesis by Christian Kaysø-Rørdam S082918

68

 /// </summary>
 /// <param name="t"></param>
 public void SetToTrue(Tuple<int,int> t)
 {
 SetToTrue(t.Item1, t.Item2);
 }

 public void SetToTrue(int x, int y)
 {
 this[x, y] = true;
 changeHistory.Push(new Tuple<int, int>(x,y));
 }

 /// <summary>
 /// Performs a shallow cloning of the SmartDataGrid.
 /// </summary>
 /// <returns>Returns a shallow clone.</returns>
 public SmartDataGrid Clone()
 {
 return new SmartDataGrid(new BitArray(this.grid), Size, new Stack<Tuple<int,
int>>(changeHistory));
 }
 }
}

8. SBacktrackFinishedEventArgs.cs

Used by the reference based solver to pass information to the interface. Unused.

using System;

namespace NQPSolver
{
 public class SBacktrackFinishedEventArgs : EventArgs
 {
 public SmartDataGrid SmartDataGrid { get; private set; }

 public SBacktrackFinishedEventArgs(SmartDataGrid smartDataGrid)
 {
 this.SmartDataGrid = smartDataGrid;
 }
 }
}

9. PSolverParameter.cs

Used by the value based solver to pass parameters to newly created Tasks.

Bachelor Thesis by Christian Kaysø-Rørdam S082918

69

using System.Collections.Generic;

namespace NQPSolver
{
 internal struct PSolverParameter
 {
 public DataGrid DataGrid;
 public List<Position> Positions;

 public PSolverParameter(DataGrid p, List<Position> cs)
 {
 this.DataGrid = p;
 this.Positions = cs;
 }
 }
}

10. Position.cs

Represents a position in an x-y coordinate system, supports value based equality and can generate

a hashcode, both for use with the dictionary in Counter Example Set.

using System;

namespace NQPSolver
{
 public struct Position
 {
 public int X;
 public int Y;

 public Position(int x, int y)
 {
 X = x;
 Y = y;
 }

 /// <summary>
 /// Equality check by value. Required for use as key in a dictionary.
 /// </summary>
 /// <param name="obj">Object to check equality against.</param>
 /// <returns>Returns true if the X and Y coordinates are identical, otherwise
false.</returns>
 public override bool Equals(object obj)
 {
 if (ReferenceEquals(null, obj)) return false;
 if (obj.GetType() != typeof (Position)) return false;
 return Equals((Position) obj);
 }

Bachelor Thesis by Christian Kaysø-Rørdam S082918

70

 public bool Equals(Position other)
 {
 return other.X == X && other.Y == Y;
 }

 /// <summary>
 /// Get the horizontal distance between two positions.
 /// </summary>
 /// <param name="other"></param>
 /// <returns></returns>
 public int HorizontalDistance(Position other)
 {
 return Math.Abs(this.X - other.X);
 }

 /// <summary>
 /// Generates a hashcode for the Position object. Required for use as key in a
dictionary.
 /// </summary>
 /// <returns></returns>
 public override int GetHashCode()
 {
 unchecked
 {
 return X ^ Y;
 }
 }
 }
}

11. ListDictPair.cs

The base of the recursive data structure used in the Counter Example Set.

using System.Collections.Generic;

namespace NQPSolver
{
 internal struct ListDictPair
 {
 public List<DataGrid> CounterExamples;
 public Dictionary<Position, ListDictPair> Dictionary;

 public ListDictPair(List<DataGrid> counters, Dictionary<Position,ListDictPair>
dictionary)
 {
 CounterExamples = counters;
 Dictionary = dictionary;
 }
 }
}

Bachelor Thesis by Christian Kaysø-Rørdam S082918

71

12. BacktrackFinishedEventArgs.cs

Used for communication with the interface.

using System;

namespace NQPSolver
{
 public class BacktrackFinishedEventArgs : EventArgs
 {
 public DataGrid DataGrid { get; private set; }

 public BacktrackFinishedEventArgs(DataGrid dataGrid)
 {
 DataGrid = dataGrid;
 }
 }
}

Bachelor Thesis by Christian Kaysø-Rørdam S082918

72

13. MainWindow.xaml

Screenshot:

Code:

<Window x:Class="QueenVisualizer.MainWindow"
 xmlns="http://schemas.microsoft.com/winfx/2006/xaml/presentation"
 xmlns:x="http://schemas.microsoft.com/winfx/2006/xaml"
 Title="MainWindow" Height="560" Width="752">
 <Grid>
 <Button Content="Start" Height="23" HorizontalAlignment="Left" Margin="12,486,0,0"
Name="StartButton" VerticalAlignment="Top" Width="75" Click="StartButton_Click" />
 <TextBox Height="23" HorizontalAlignment="Left" Margin="93,486,0,0" Name="ValueBox"
VerticalAlignment="Top" Width="120" />
 <Grid Name="ChessBoard" Height="430" HorizontalAlignment="Left" Margin="13,12,0,0"
VerticalAlignment="Top" Width="430" Background="AliceBlue" />
 <TextBlock Height="430" HorizontalAlignment="Left" Margin="449,12,0,0"
Name="ConsoleWindow" Text="" VerticalAlignment="Top" Width="269" Background="Khaki" />
 <Label Content="MinDepth" Height="28" HorizontalAlignment="Left"
Margin="244,458,0,0" Name="label1" VerticalAlignment="Top" />
 <Label Content="Threads" Height="28" HorizontalAlignment="Left"

Bachelor Thesis by Christian Kaysø-Rørdam S082918

73

Margin="394,458,0,0" Name="label2" VerticalAlignment="Top" />
 <TextBox Text="6" Height="23" HorizontalAlignment="Left" Margin="315,486,0,0"
Name="MaxDepthTextBox" VerticalAlignment="Top" Width="63" />
 <TextBox Text="0" Height="23" HorizontalAlignment="Left" Margin="394,487,0,0"
Name="ThreadsTextBox" VerticalAlignment="Top" Width="120" />
 <Button Content="" Height="23" HorizontalAlignment="Left" Margin="12,448,0,0"
Name="leftButton" VerticalAlignment="Top" Width="49" Click="leftButton_Click" />
 <Button Content="" Height="23" HorizontalAlignment="Left" Margin="111,448,0,0"
Name="rightButton" VerticalAlignment="Top" Width="49" Click="rightButton_Click" />
 <Label Content="0" Height="28" HorizontalAlignment="Right" Margin="0,448,647,0"
Name="resultLabel" VerticalAlignment="Top" />
 <CheckBox Content="Find All?" Height="16" HorizontalAlignment="Left"
Margin="532,489,0,0" Name="findAllCheckBox" VerticalAlignment="Top" />
 <CheckBox Content="Optimize?" Height="16" HorizontalAlignment="Left"
Margin="608,489,0,0" Name="shouldOptimizeCheckBox" VerticalAlignment="Top" />
 <Label Content="MaxDepth" Height="28" HorizontalAlignment="Left"
Margin="313,458,0,0" Name="label3" VerticalAlignment="Top" />
 <TextBox Height="23" HorizontalAlignment="Left" Margin="244,487,0,0"
Name="MinDepthTextBox" VerticalAlignment="Top" Width="65" Text="3" />
 </Grid>
</Window>

14. MainWindow.xaml.cs

This tool was meant purely for debugging during the design process, as it displays solutions in a

readable fashion and allows tweaking parameters without modifying the code. The tool is not

finished and suffers from very occasional crashes, but is still suited for performing tests.

using System;
using System.Collections.Generic;
using System.Linq;
using System.Text;
using System.Threading;
using System.Windows;
using System.Windows.Controls;
using System.Windows.Data;
using System.Windows.Documents;
using System.Windows.Input;
using System.Windows.Media;
using System.Windows.Media.Imaging;
using System.Windows.Navigation;
using System.Windows.Shapes;
using NQPSolver;
using DataGrid = NQPSolver.DataGrid;

namespace QueenVisualizer
{
 /// <summary>
 /// Interaction logic for MainWindow.xaml
 /// </summary>

Bachelor Thesis by Christian Kaysø-Rørdam S082918

74

 public partial class MainWindow : Window
 {
 public MainWindow()
 {
 InitializeComponent();

 leftButton.Content = "<-";
 rightButton.Content = "->";
 resultLabel.Content = currentResult;
 }

 private void StartButton_Click(object sender, RoutedEventArgs e)
 {

 var start = DateTime.Now;
 Solver solver = null;
 try
 {
 solver = new Solver(Int32.Parse(ValueBox.Text));

 } catch(Exception ee) {}

 if (solver == null) return;

 solver.MaxDepth = Int32.Parse(MaxDepthTextBox.Text);
 solver.MinDepth = Int32.Parse(MinDepthTextBox.Text);
 solver.MaxThreadCount = Int32.Parse(ThreadsTextBox.Text);
 solver.ShouldOptimize = shouldOptimizeCheckBox.IsChecked.Value;

 ConsoleWindow.Text += "Solver started at "+ start.ToLongTimeString() +" with N =
" + ValueBox.Text + "\n";
 Thread lol = new Thread(new ParameterizedThreadStart(solver.Solve));
 if (findAllCheckBox.IsChecked != null)
 if (!findAllCheckBox.IsChecked.Value)
 {
 lol.Start(true);
 }
 else
 {
 lol.Start(false);
 }
 lol.Join();
 var end = DateTime.Now;
 ConsoleWindow.Text += "Finished. Min/Max/Threads/Opt =
"+solver.MinDepth+"/"+solver.MaxDepth+"/"+solver.MaxThreadCount+"/"+shouldOptimizeCheckBox.I
sChecked.Value+" \n";
 ConsoleWindow.Text += "Time Elapsed: " + (end - start).TotalSeconds.ToString() +
"s. Results found: "+ solver.Results.Count +"\n";

 resultLabel.Content = 0;
 currentResult = 0;
 results = solver.Results;
 Draw(results[0]);
 }

 private int currentResult;
 private List<DataGrid> results = new List<DataGrid>();

Bachelor Thesis by Christian Kaysø-Rørdam S082918

75

 private void Draw(DataGrid dataGrid)
 {
 ChessBoard.RowDefinitions.Clear();
 ChessBoard.ColumnDefinitions.Clear();
 ChessBoard.Children.Clear();

 for (int i = 0; i < dataGrid.Size; i++)
 {
 ChessBoard.RowDefinitions.Add(new RowDefinition());
 ChessBoard.ColumnDefinitions.Add(new ColumnDefinition());
 }

 for (int x = 0; x < dataGrid.Size; x++)
 {
 for (int y = 0; y < dataGrid.Size; y++)
 {
 if (dataGrid[x,y])
 {
 var button = new Button();
 ChessBoard.Children.Add(button);
 Grid.SetRow(button, y);
 Grid.SetColumn(button, x);
 button.Content = x + "," + y;
 }
 }
 }
 }

 private void leftButton_Click(object sender, RoutedEventArgs e)
 {
 if (currentResult == 0)
 {

 } else
 {
 currentResult -= 1;
 resultLabel.Content = currentResult;
 Draw(results[currentResult]);
 }
 }

 private void rightButton_Click(object sender, RoutedEventArgs e)
 {
 if (currentResult == results.Count - 1)
 {

 } else
 {
 currentResult += 1;
 resultLabel.Content = currentResult;
 Draw(results[currentResult]);
 }
 }
 }
}

Bachelor Thesis by Christian Kaysø-Rørdam S082918

76

9 References

 http://www.intel.com/technology/itj/2002/volume06issue01/vol6iss1_hyper_threading_t

echnology.pdf

 http://msdn.microsoft.com/en-us/library/dd460693.aspx

 Modern Operation Systems. Third Edition. By Andrew S. Tanenbaum.

 Comparison of Heuristic Algorithms for the N-Queen Problem. By Ivica Martinjak and

Martin Golub. http://www.zemris.fer.hr/~golub/clanci/iti2007.pdf

http://www.intel.com/technology/itj/2002/volume06issue01/vol6iss1_hyper_threading_technology.pdf
http://www.intel.com/technology/itj/2002/volume06issue01/vol6iss1_hyper_threading_technology.pdf
http://msdn.microsoft.com/en-us/library/dd460693.aspx

	Abstract
	1 Introduction
	1.1 Parallel execution and optimizations of BTS
	1.2 Example
	1.3 Background

	2 Principles of parallelization
	2.1 Amdahl’s Law
	2.2 Delightfully parallel problems
	2.3 Hard parallel problems
	2.4 Basic CPU Architecture
	2.5 Threads
	2.6 Complications with Parallelization
	2.6.1 Shared data access
	2.6.2 Thread overhead
	2.6.3 Increased complexity of implementation

	2.7 Parallelization in .NET
	2.7.1 Tasks
	2.7.2 Thread Pool
	2.7.3 Parallel loops
	2.7.4 Locks and monitors
	2.7.5 Atomic Actions

	3 Parallelization of Backtrack Search
	3.1 Tree Traversal
	3.2 Backtrack Search
	3.3 Finding all solutions
	3.4 Finding one solution

	4 Optimization Experiments in N-Queen problem
	4.1 Exploiting Symmetry
	4.2 Randomization
	4.3 Using Counter Examples
	4.3.1 Counter examples
	4.3.2 Counter examples from smaller problems

	4.4 Check for invalid rows

	5 Architecture of the implementation
	5.1 Data grid
	5.2 Solver
	5.3 Counter Example Set

	6 Results and discussion
	6.1 Result gathering
	6.2 Results of parallelization
	6.2.1 Find all solutions
	6.2.2 Find single solution

	6.3 Results of optimizations
	6.3.1 Symmetry
	6.3.2 Counter examples

	7 Conclusion
	8 Appendix
	1. Datagrid.cs
	2. Solver.cs
	3. CounterExampleSet.cs
	4. WeightedPosition.cs
	5. SPSolverParameter.cs
	6. SmartSolver.cs
	7. SmartDataGrid.cs
	8. SBacktrackFinishedEventArgs.cs
	9. PSolverParameter.cs
	10. Position.cs
	11. ListDictPair.cs
	12. BacktrackFinishedEventArgs.cs
	13. MainWindow.xaml
	14. MainWindow.xaml.cs

	9 References

