
Peer-to-Peer Architecture for
Massively Multiplayer Online Games

Niels Jeppesen and Rune A. Juel Mønnike

Kongens Lyngby 2011
IMM-B.Sc.-2011-7

Technical University of Denmark
Informatics and Mathematical Modelling
Building 321, DK-2800 Kongens Lyngby, Denmark
Phone +45 45253351, Fax +45 45882673
reception@imm.dtu.dk
www.imm.dtu.dk

IMM-B.Sc.

Summary

Hosting traditional Massively Multiplayer Online Game (MMOG) servers today
requires large data centers, due to the use of the client-server architecture. This
is a very costly solution, barring smaller developers without monetary backing
from developing large scale MMOGs. We wish to change this situation, by
developing a significantly less expensive and potentially better solution, based on
peer-to-peer architecture. In this thesis we focus on the basic technical aspects
of creating and maintaining the peer-to-peer network graph. There are a number
of existing solutions on this subject, but they are generally based on technology
made for file systems and do not perform well enough nor provide the features
required in modern MMOGs. We have developed the concept of a dynamic
graph, containing a central node, supernodes, and nodes. The central node is the
network entry point and network founder. Nodes are participating players in the
game, while supernodes run on capable peer machines and make up the actual
network graph. Thus the supernodes handle communication between nodes.
They exist at a specific location in the game world, which is not predefined,
but rather dynamic depending on where they are needed in order to balance
the load on the network. We find that our solution provides good performance
between players in close proximity in terms of in-game location. As such, it
should provide low latency between interacting player, resulting in a smooth and
responsive gameplay. We conclude that our solution satisfies the performance
requirements of modern online games and may be viable for real games.

ii

Resumé

Online spil med massivt deltagerantal kræver i dag store datacentre som følge
af den klient-server struktur der anvendes. Dette er en kostbar løsning, som
umuliggør at mindre spiludviklere, uden den nødvendige finansielle opbakning,
kan udvikle og vedligeholde denne type spil. Dette ønsker vi at ændre ved at
komme med en billigere og potentielt bedre løsning baseret p̊a en peer-to-peer
arkitektur. I denne afhandling fokuserer vi p oprettelse og vedligeholdelse af
en s̊adan peer-to-peer graf. Der findes en række forslag til løsninger indenfor
dette emne, men de er generelt baseret p̊a teknologi oprindeligt designet med
henblik p̊a filsystemer, og mangler b̊ade ydelsen og funktionaliteterne krævet i
morderne online spil med massivt deltagerantal. Vi har udviklet en dynamisk
graf, som indeholder en central node, supernoder og noder. Den centrale node
fungerer som forbindelsespunkt og grundlægger af netværket. Noder repræsen-
terer spillere i spillet, mens supernoder udgør selve netværksgrafen og køres
p̊a udvalgte spilleres computere. Supernoderne h̊andterer s̊aledes kommunika-
tionen mellem noder og er placeret specifikke steder i spilverdenen, som ikke
er prædefineret, mens i stedet valgt dynamisk afhængigt af hvor de gør mest
gavn. Vi finder, at vores løsning giver god ydeevne for spillere der befinder sig
i nærheden af hinanden i spillet. Derved giver løsningen hurtig kommunikation
mellem interagerende spillere, hvilket resulterer i et flydende spil med lav reak-
tionstid. Vi konkluderer derved at vores løsning tilfredsstiller de krav der stiller
til ydeevne i moderne online spil og derved vil kunne anvendes i reelle videospil.

iv

Preface

This thesis was prepared at Informatics Mathematical Modelling, the Technical
University of Denmark in partial fulfillment of the requirements for acquiring
the B.Sc. degree in engineering. It was composed in the period from February
1st till June 20th and grants 15 ETCS points.

The thesis analyzes some of the problems of applying a peer-to-peer network
architecture to multiplayer video games, and mainly focus on creating a net-
work graph, which can be employed in peer-to-peer massively multiplayer online
games. Our supervisor Robin Sharp has been very helpful in pointing us in the
right directions during the process.

Lyngby, June 2011

Rune A. Juel Mønnike (s082938)

Niels Jeppesen (s082927)

vi

Terms

MMOG (or MMO Game(s)) Massively multiplayer online game. Many players
act and interact in the same fictional world. This is an extension of a
normal multiplayer game, which is limited to anything from 4 to 64 players.
In MMOGs, several hundred or even a thousand players may play in a
connected online game.

RPG Role-playing game. Players control one in-game character and act through
it. This genre is somewhat blurred, but may include goals such as level-
ing up (by slaying bad guys or completing quests), picking skills for the
character, gathering loot such as weapons and gold. In general it is based
upon improving this one character the player controls.

RTS Real-time strategy. Players act at the same time, as opposed to turn-
based where they wait for each other.

Worldstate The state of the in-game world at a given point in time. This
could include for instance position of players, states of items (is a chest
open or closed?), time of day, etc.

Node Any single entity (a computer or an application) participating in a net-
work.

Supernode A node that is given special treatment (more work or more control)
in a network. May be chosen due to certain advantageous properties, such
as more bandwidth or processing power.

Churning When nodes connect and disconnect from a peer-to-peer network at
a very high rate.

viii

Port In order to distinguish different network packets arriving at a machine,
packets are assigned a target port number. Applications then inform the
operation system which ports they wish to receive packets from.

Sync (Short for “synchronization”). Worldstates across participating players
should agree on important game factors such as player positions, status,
actions where relevant. When they do that, they are said to be in sync.

Player character The in-game character (sometimes called avatar) the player
controls. The representation of the players actions in the game.

Shard When MMOGs choose to run many simultaneous instances of the same
game world, each such instance is called a shard.

Zone (or region) The areas a game world may be split into, most often by
geographical delimitation.

Indie (Short for “independent”) Developers releasing games without being as-
sociated with mainstream publishing ways. Games released from indie
developers are often only available for purchase on the internet and are
not backed financially by large publishing houses.

Server farm A (large) collection of servers, often in a data center.

Gameplay A term describing the collection of rules, mechanics, interactions
and more that make up the core idea of a game.

ix

x Contents

Contents

Summary i

Resumé iii

Preface v

Terms vii

Introduction xiii

1 Analysis of Game Requirements and Technologies 1
1.1 Games . 1

1.1.1 Genres . 2
1.2 Requirements . 2

1.2.1 Latency . 3
1.2.2 Bandwidth . 4
1.2.3 Consistency . 4
1.2.4 Properties . 4

1.3 Technologies . 5
1.3.1 TCP . 5
1.3.2 UDP . 7
1.3.3 UPnP and NAT Traversal 8
1.3.4 DHT . 8

1.4 Conclusion . 9

2 Existing Solutions 11
2.1 Client-server . 11

2.1.1 Description . 11
2.1.2 Discussion . 13

xii CONTENTS

2.2 Peer-to-Peer . 14
2.2.1 Mercury . 14
2.2.2 Peer-to-Peer Support for Massively Multiplayer Games . . 16
2.2.3 Hydra . 18

2.3 Commercial Use of Peer-to-Peer 21
2.4 Conclusion . 22

3 Proposed Solution 23
3.1 Ideas . 23

3.1.1 Supernodes . 23
3.1.2 Network Graph . 24

3.2 Theory . 33
3.2.1 Types of Nodes . 33
3.2.2 Behavior . 34
3.2.3 Performance . 39

3.3 Implementation . 43
3.3.1 Central Node . 44
3.3.2 Supernodes . 45
3.3.3 Communication . 46
3.3.4 Consistency . 47
3.3.5 Parameters . 47

3.4 Conclusion . 49

4 Simulation of a Dynamic Graph 51
4.1 Implementation . 51
4.2 Results . 53

4.2.1 Message hops and node distances 53
4.2.2 Number of nodes, hops, and supernodes 55

4.3 Conclusion . 56

5 Conclusion 57

References 60

Introduction

In this thesis we propose a new approach to designing and maintaining a peer-
to-peer graph for Massively Multiplayer Online Games (MMOGs). The solution
is not strictly peer-to-peer, as we introduce the essential concept of supernodes
as peer-hosted mini servers. We hope to contribute to further development in
this field in order to provide a low latency solution, which could be applicable
for real games.

During the last two decades the video game industry has grown from almost
nothing, to a multi-billion dollar industry, where the best selling titles generate
more revenue than the biggest movie blockbusters.

Most modern games are online games, which allow players to challenge and/or
cooperate with other players through the internet. Especially the group of
games known as massively multi-player online games have taken advantage of
the massive growth in the number of broadband users, in order to create digital
online worlds, in which thousands of players may participate. Several of these
games have become immensely popular, such as World of Warcraft which now,
more than six years after its initial launch, still has over 11 million monthly
subscribers worldwide[3].

Though many different game types and genres exist on many different plat-
forms, almost all of these use some variant of the client-server network model
for network communication. This solution works fine for types of games where
only few players are connected, however, MMOGs with thousands of players
often require huge clusters of servers, reserving MMOGs for big, well funded
developers. And even so, the server clusters may still not be powerful enough
to handle big gatherings of players without problems.

xiv Introduction

An alternative to the client-server network model does exist, in form of the peer-
to-peer model. However, only a few games have been developed which make use
of the peer-to-peer concept, and to our knowledge none of these are large scale
MMOGs. The peer-to-peer model has proved both effective and popular for file
sharing and a fair amount of research has been done on the subject, but when
it comes to using peer-to-peer networking in games only very limited research
has been done (see [5, 9, 11, 1]).

In this thesis we wish to analyze the requirements set by both players and
developers of modern games, and the technologies available in the context of
network communication. We will also investigate some existing solutions on
how to handle network communication in games, some of which are used today
and some of which are mere proposals. Lastly we propose our own solution based
on the peer-to-peer model with some extensions, which handle various current
problems with the model. We take a look at an application that simulates this
graph on a local machine, in order to evaluate the viability of our solution.

Chapter 1

Analysis of Game
Requirements and

Technologies

In this chapter we will identify various factors that are important for games,
Massively Multiplayer Online Games (MMOGs), and multiplayer games in gen-
eral.

1.1 Games

Video games are like most other games, it is all about challenges, competition
and having fun. Players have been able to challenge their friends in video games
for many years, but until the arrival of the internet, video games required the
players to be on the same location.

Network multiplayer video games existed long before the internet became widespread,
using different network protocols such as IPX, UDP and TCP on the local area
network. For obvious reasons these games were mostly designed to handle only a
dozen players, but with the internet developers suddenly saw an opportunity to

2 Analysis of Game Requirements and Technologies

create an entire online virtual world and populate it with hundreds or thousands
of human players. Thus the MMOG was born, but along with online gaming
and in particular MMOGs, new problems arose.

1.1.1 Genres

Knowing that a game is a MMO Game, is not telling you much about the
actual game, except that it can involve many players sharing a consistent online
world. MMO is used as a prefix for more well defined genres of games such
as Role-Player Games (RPGs) and First-Person-Shooters (FPSs), thus known
as MMORPGs and MMOFPSs. While there are many video game genres, the
above mentioned are the two of the most popular today and also they share
some important characteristics. Therefore we will analyze the MMORPG and
MMOFPS genres, before we consider the requirements for a MMOG network
communication solution best suited for these types of games.

As in classic table-top RPGs, the player in video RPGs assumes position of
an in-game character and builds up the character through choices and actions.
Even in real-time RPGs the pace of the game is often slow and many aspects of
the character control, especially regarding combat, are handled automatically in
order to keep focus on the RPG elements rather than on how you act in combat.
RPGs fit very well into the concept of a large, persistent, player populated world,
as RPGs are all about slowly building up a persistent virtual character. This is
probably also one of the reasons why MMORPGs are the most popular type of
MMOGs today.

In a FPS the player views the world through the eyes of a character, usually a
soldier, with a common objective being to eliminate all enemies using the arsenal
of weapons provided by the game. Many FPSs are very fast-paced games and
requires a high degree of precision, when it comes to movement and especially
shooting, where the player, as opposed to RPGs, has to do all the aiming himself.
FPSs fit the MMOG concept well, especially when added some RPG elements
making the persistence more meaningful. Adding RPG elements to other types
of games is very common today, yet very few MMOFPSs have been made.

1.2 Requirements

Before we start looking into technologies and solutions available for MMOG
network communication, it is important to establish the requirements in order

1.2 Requirements 3

for the different genres to function well online.

The different genres of games have different requirements when it comes to
latency, bandwidth and level of consistency between players. In fact, even
the different phases and actions within a game have different requirements[6].
MMORPGs and MMOFPSs share many (real-time player interaction and move-
ment) of these requirements and are at the same time two very popular genres,
which is why these will be examined. In the following we always consider real-
time games with direct player interaction, because for example turn based games
do not share most of these requirements.

1.2.1 Latency

In general computer networks, latency either refers to the one-way time (time
from a package is sent until it is received by the recipient) or the round-trip
time (time from a package is sent until a response is received at the original
sender). In video games the term latency is often used synonymously with
terms such as lag and ping, but the meaning of these terms vary slightly. Lag
means to fall behind and is the time from the player takes an action to the game
actually reacts to the player’s input, meaning that lag can actually appear in
single player games due to local machine not being powerful enough. However
in most online games, lag is a result of the client awaiting server response before
an action is performed, or that client actions are revoked by the server through
a scheme such as dead reckoning, often returning the player to an earlier game
state. Thus high latency usually result in lag, while lag is not necessarily a
result of high latency. Ping just refers to the round-trip latency.

Low latency is very important for both a fluent and a fair game-play in games
where players interact. For FPSs a latency of approximately 100 milliseconds
has been found to be the tolerable threshold, and for third-person RPGs a
latency of 500 milliseconds provides a measurable degradation[6]. From personal
experiences we believe, that a latency of 500 milliseconds is well above the
level most players will tolerate in a modern RPG, and the MMORPG World
of Warcraft does, from our experience, mostly provide a latency less than 100
milliseconds. This leads us to the conclusion that modern MMORPGs should
aim at providing an average latency below 100 milliseconds, but that the latency
threshold may be much higher. MMOFPSs should not only aim at providing
low latency, but are required to keep the latency below 100 milliseconds in order
to provide a fluent and responsive gameplay at all time.

4 Analysis of Game Requirements and Technologies

1.2.2 Bandwidth

The connection bandwidth describes the amount of data which can be trans-
ferred over the connection within a given time frame. Game clients, running on
the players’ computers, usually do not require much bandwidth. It is however
very important that the bandwidth is sufficient, because if not, the latency may
greatly increase. For game servers the requirements to bandwidth are much
higher than for clients, as opposed to a full peer-to-peer system the bandwidth
requirement is be distributed equally amongst all peers. No matter how one
decides to handle the network communication, one has to design the system in
such a way that the players’ bandwidth is sufficient (a qualified guess would be
256 Kbps download and 128 Kbps upload).

1.2.3 Consistency

Keeping a game synchronized and consistent across all participants, while keep-
ing bandwidth requirement and latency low turns out to be a major problem in
online games. There are several different ways to solve this issue, all with dif-
ferent strengths and weaknesses. A classic way is to have an authority (usually
the server), which rules in case of conflicts. The players usually are allowed to
take certain actions before asking the server, in order to reduce lag. In case of
a conflict the actions can later be revoked by the authority using for example a
dead reckoning scheme. We will not discuss this in further detail, but just note
the importance of maintaining consistency, while keeping latency, bandwidth
and CPU time, required by the synchronization scheme, low.

1.2.4 Properties

To better compare different solutions to the problem we are working with, we
have identified a number of properties, or sub-problems, on which the solutions
will be evaluated:

Availability describes the risk of the network being unreachable or completely
down. Basically networks with a single point of failure, such as networks
with a centralized server have lower availability than fully distributed peer-
to-peer networks.

Robustness is how well the solution handles consistency and player churning.
Failure to handle these issues correctly can be just as bad as a complete

1.3 Technologies 5

network failure, since an inconsistent gameworld probably will be game-
breaking.

Performance is basically all about latency. However, there are many differ-
ent factors which may affect latency, such as bandwidth use, refresh rate
and player churning. We are both concerned with average and maximum
latencies, and it is important to realize that not all messages have the
same latency requirements. The relevance of the messages differs between
players.

Security describes how resistant the system is to both players wanting to ma-
nipulate data (cheaters) and hackers wanting simply to break the network.
Even though our solution does not handle security, we will briefly look into
how well other solutions handle this.

Implementation is about how well we expect a real-life implementation of a
given solution to work.

1.3 Technologies

In the following sections we will briefly describe some of the technological con-
cepts used and discuss the various benefits, drawbacks and consequences of
these.

1.3.1 TCP

Transmission Control Protocol (TCP) is one of the transport layer protocols
used to move packages around on the internet. It guarantees delivery of packets,
and at the same time, that packets are delivered to the receiver in the same order
they are sent from the transmitter. This is obviously a beneficial property in
any application, but it comes at the price of significant overhead.

This overhead stems from multiple sources, all intentional parts of the protocol:
First, TCP is a connection-based protocol, so the involved parties must con-
tinuously send small bits of information to ensure the other half is still there.
Secondly TCP ensures delivery of packets by having the receiver send a confir-
mation back to the transmitter - if the sender does not receive this confirmation,
it retransmits the packet(s) in question. Thirdly TCP packets include check-
sums for error detection. Finally the protocol does flow- and congestion control
which limits the data transmitted depending on receiver and network perfor-
mance, respectively.

6 Analysis of Game Requirements and Technologies

Another thing that affects TCP usability for real-time applications is that, even
though the connection is seen as a stream from the applications point of view,
data is obviously not transferred on a byte-per-byte basis. Instead bytes are
buffered up in the transmitters network stack, and send off when enough data is
ready. If the game sends out messages far smaller than this threshold, it means
they may have to wait a significant amount of time before truly being send out
on the network.

Further worsening the situation on a poor network connection is the fact that
TCP may not acknowledge every single packet, but only perhaps every fourth. If
then, by the fourth packet, an acknowledgement is not returned, all the previous
four packets will be resent. This also raises the problem that if the receiver
detects a missing packet, it will hold back any other packets received until that
missing packet is successfully retransmitted. This is in order not to break the
stream property of the protocol, but means that the application will be starved
as soon as one single packet fails to transmit.

These two problems are intended properties of the protocol, and work very well
when the issue at hand is simply transmitting data in a reliable way. However
for a real-time game, these properties usually are only required for some of the
data, whereas most of the data is required to reach its destination fast. There
are ways to tune the TCP protocol settings: We can lower the outgoing buffer
threshold, and make the protocol acknowledge every single packet. However,
while this might help us reduce latency, it will also introduce further overheads,
increasing bandwidth usage, since we will then be sending out more packets and
will also be returning acknowledgements more often. This kind of tuning has
been used by users to reduce lag in games such as World of Warcraft, since the
increased bandwidth is no problem to the clients who are mainly concerned with
latency. Even small programs have been developed, which will automatically
change the Windows registry setting for unexperienced users.[12]

One last fact to consider is that a TCP packet is comparatively larger than a
UDP packet because the TCP header itself is larger than an UDP header. [18]

All in all TCP overhead may be five to thirty percent of the transmitted data.
[7] Furthermore the overhead introduced by simply opening, closing and main-
taining a TCP connection puts an upper limit to the number of connections a
peer can hold, even with no actual data being transferred.

1.3 Technologies 7

1.3.2 UDP

Contrary to the stream-based nature of TCP, the User Datagram Protocol
(UDP) is based on datagrams — self-contained, individual packages containing
one message each from the transmitter to the receiver. UDP does not guarantee
delivery or package ordering, meaning messages can arrive in an arbitrary order
or not at all.

UDP is also connection-less, meaning there is no built-in way to know if the
other end is still available or if a message is received. This requires additional
implementation in the application, if such features are necessary. This also
means that it is, unlike when using TCP, not necessary to establish a connection
between two network nodes before data can be transferred. One simply sends
out a message to a given IP-address and port. UDP may contain a checksum
for verification of addresses and data, which should of course be used unless one
has a really good reason not to do so.[15]

The connection-less nature incurs certain problems when a peer is behind a
router applying Network Address Translation (NAT), as used in many homes
today. NAT-enabled routers can handle outbound TCP connections (initiated
from within the local network to an outside host) because of the connection
based nature of this protocol. However, with UDP the router has the con-
stant problem of never knowing which of the local machines a message should
be forwarded to — this is the same problem we face with new inbound TCP
connections.

In both cases the problem is solved by letting the router know which local
machine should receive messages targeted at a specific port. A few years ago
it was necessary to have the user do this manually, by logging on to the router
administration interface and specifying the details. Luckily, today UPnP is
widespread enough that we may rely on it to fix this problem in most cases (see
section 1.3.3).

The sacrifice of features such as delivery guarantee and ordering is not fruitless
though, as UDP may provide both lower latency and bandwidth usage compared
to TCP, which can be feasible for types of messages which are frequently sent and
where delivery guarantee and order is irrelevant. However, for messages where
the guarantees provided by TCP are important, there is a price to be paid
for using UDP. As stated above it is now completely up to the application to
ensure packages are delivered and handle bad ordering, which not only requires
an implementation of such, but also may end up generating more overhead than
that related to the use of TCP. Still this overhead is of course only present for
the messages in question.

8 Analysis of Game Requirements and Technologies

1.3.3 UPnP and NAT Traversal

Universal Plug and Play (UPnP) is a term referring to a number of network
protocols. In general these protocols can be said to enable devices connected to
the same network to discover each other and interoperate more easily.

The key feature that we are interested in, is that UPnP allows applications to
enumerate and modify the port mappings of a router or gateway on the fly. This
allows us to do NAT traversal, in that we can expose a given set of ports to the
outside internet by mapping them to a specific local machine on the internet
gateway device (which is in most cases a router) — without requiring the user to
do anything. The specific protocol that facilitates NAT traversal is the Internet
Gateway Device (IGD) protocol. [19]

NAT traversal solves both the important problems of whether an application
uses TCP or UDP: For UDP it allows us to receive messages at all, while TCP
allows us to accept incoming connections. Of course these are only problems if
the application is running behind a NAT-enabled router. Since IPv4 addresses
are sparse these days, and has been for a number of years, ISPs are likely to give
only one IP per costumer and this can be considered a common problem.[16]

The specifics of how UPnP, and more specifically the IGD protocol works is
outside the scope of this thesis, but it is extremely relevant to consider this
issue since a direct consequents of being behind a NAT-enabled router, without
UPnP, is that peers may not be able to receive incoming packets.

1.3.4 DHT

Distributed Hash Tables (DHTs) is a way of storing information distributed
over many nodes/peers. DHT is not an implementation in itself, but rather a
general technique and implemented in such systems as Chord, Pastry and the
like.

Hashing algorithms normally have the desired property of generating hashes
fairly well spread out in the used range. This property is used in DHTs to store
information evenly among the participating nodes. Likewise, a random number
generator is also trusted upon to generate well distributed numbers that are
assigned as node IDs.

A piece of information, or data, identified by a key as in an ordinary hash table,
is then stored by locating the node with the ID closest to the hash of the data.

1.4 Conclusion 9

In the basic setup, nodes are connected to their nearest neighbors by closeness
of ID numbers, as in a double liked list. This forms a sort of “ring” of nodes
(since the largest ID is connected to the smallest). Apart from the connections
making up the ring, most implementations create additional connections in order
to optimize the DHT infrastructure.

When a new node enters the network, it is assigned a random ID and then
inserts itself between the closest IDs in the current network, and takes over
responsibility for a portion of their data. This may involve relocating some of
the data to the new node. If the random number generator is well implemented,
it will ensure that nodes always share the data ranges more or less equally.

A way to optimize key location lookup, is to establish connection not just to
the nearest neighbors, but to other nodes in the “ring” as well. Chord does this
in a way that provides lookups in O(log(n)) time.[17]

DHTs are well suited to storing data in a peer-to-peer graph, when the query
might be for any data in the entire set. However we do not often in games
need access to any data, but more often to data related to specific properties of
the current gamestate — for example the position of the local player character.
Furthermore basic DHT implementation provides no way of querying ranges —
like getting information on all players within a certain geographical. Extensions
do exist, which allows the forming of multicast trees within the overlay, allowing
nodes to rather efficiently broadcast messages to a set of subscribers.[4]

1.4 Conclusion

In this chapter we have examined the requirements of two of today’s most popu-
lar game genres and we have described the relevant properties of game network
architectures. Clearly, for a network solution to have a place in commercial
games, the solution has to have several of these properties. We have particularly
looked into the performance requirements in terms of latency and bandwidth,
as solutions which do not meet the requirements in these aspects are not viable
for games at all.

Furthermore we have described some of the technologies which are important
with regards to network and peer-to-peer solutions. We have explained the core
concepts of these technologies, how they work, and how they are related to the
subject of this thesis.

10 Analysis of Game Requirements and Technologies

Chapter 2

Existing Solutions

In this chapter we will investigate and evaluate some of the existing solutions
for handling online game communication, based on properties we have found to
be relevant in our analysis. Firstly we will look into the general client-server
architecture and then some of the concrete peer-to-peer solutions.

2.1 Client-server

There has been a countless number of MMOGs released using some form of the
client-server model. Small indie-games might use a single physical machine as
the server, while larger commercial games use large server farms. For example
World of Warcraft had over nine thousand servers globally in 2006[8]. In this
section we will examine some of the general principles involved.

2.1.1 Description

Developers often choose to use different roles for the servers, and the complete
server side of a game can consist of one or more of the following types: authen-
tication server, world (or realm or shard) server, chat server, and game logic

12 Existing Solutions

server. Most large games will also have a separate set of servers for storage, e.g.
in the form of a database server, but this is of less interest for this thesis.[20]

The authentication server takes care of players signing in to the game. It
checks their login information against the database for correctness, but
may also check whether the player is allowed to play (the player could be
banned or not have a valid subscription). It may also handle such things
as signing up new players, character selection, new character creation, and
other tasks that need to be sorted before the game itself can be played.

The chat server handles communication between players. Having a separate
server for this allows the developer to impose restrictions and give permis-
sions as of to whom players may talk, depending on or regardless of which
server they are playing on or where they are in the in-game world.

The world server is responsible for the actual game play. It analyzes input
from the players such as desired actions they wish to take and judges
whether these are legal in the current game state. If they are, they will
be applied and other connected players will be informed. As we shall see
below, the world server may not exactly be just one server.

The game logic server can offload the world server with calculations related
to physics, artificial intelligence and more.

This distribution of work onto different servers is not always sharply defined,
and may vary substantially from one game to another.

The critical problem to solve is how to handle many players at the same time.
Most developers seem to find, that it is simply impossible to have all players
in the same virtual world and therefore the first measure is to create multiple,
simultaneously running instances of the in-game world, called shards. Each
shard will then handle a portion of the players. For example, World of Warcraft
has approximately 11 million players[3], they do not all play on the same server,
but rather on over 800 different shards (world-wide)[21].

The term “server” is a slight misnomer here, since it is not a single physical
or even logical machine running the server software. Each world instance is
often further divided into smaller regions, also known as zones or instances.
This further helps distribute the load. Whenever a game character crosses
from one region into another, he is transferred to the responsible server, often
creating a game loading phase. The zones can be either static or dynamic, i.e.
they may be responsible for a predefined portion of the in-game world, or their
responsibility may be assigned on-the-fly. Dividing the world into zones has the

2.1 Client-server 13

added advantage that a sudden influx of players into a certain location in the
game will not affect unrelated players far away.

Even a single zone server is not bound to run on a single physical machine.
It may be virtualized and run on a logical machine that exists across several
physical ones — further details about how this works is out of the scope of this
thesis, but it allows the software to use more processing power than a single
machine can provide.

No matter how the server side is implemented, a common trait (at least in
commercial games) is that the client is seen as being completely untrustworthy.
Players may use software that modifies the game executable in order to obtain
personal benefits over other players. Therefore it is necessary to verify each
single action the game client wishes to apply to the worldstate.

There are a number of articles and discussions about how to implement large,
commercial MMOGs. However this is proprietary information, and it is in the
best interest of developers and their companies to keep their solutions secret,
making it difficult to obtain specific information.

[10, 20]

2.1.2 Discussion

An obvious upside to the client-server model, and probably the reason it is used
so widely commercially, is that everything can be controlled from the server.
And the server, in turn, is controlled by those who run the game. This makes it
easy, compared to peer-to-peer solutions, to weed out cheaters, perform access
control, and securely store information. In the same way, the world-state is
always maintained by the server, and as such is never in danger when players
disconnect.

Since the server environment is set up by the game developers, the problems
related to NAT and household firewalls are not present. It can be assumed
that the servers will always be able to accept incoming connections and data.
Similarly, hardware and bandwidth can be upgraded and extended whenever
needed — there is no dependency on the players to achieve sufficient computa-
tion power. The central server also ensures just two hops between the players,
thus being able to provide good latency, and since the server knows everything
it is also able to distribute information optimally, meaning players only receive
relevant information.

14 Existing Solutions

This centralized structure is the model’s greatest strength, but also the source
of its weaknesses. Running a data center is expensive, especially on the scale
required by popular MMOGs. There is hardware to be bought, power consump-
tion, the cost of property and the cost of personnel to service the hardware.

One may argue that having a central server structure makes the game more
prone to failure. However, any game network needs a known entry point, so
peer-to-peer models could be just as fragile in this respect. The problem can be
overcome in the same way in both cases by having multiple data centers or entry
point servers. For instance, World of Warcraft has 10 data centers, in different
geographical locations in North America and Europe [13] (although these are
only accessible from within the continent they are located in).

Another fact that goes in favor of a traditional client-server model, is that it
is just that: traditional. There is a vast knowledge about how to construct
and maintain this model. Large developer studios with the capacity to run
data centers in this way are unlikely to invest in another model. Especially
when this model holds as many unsolved problems as peer-to-peer does at the
moment (access control, cheat prevention, and so forth). However, for smaller
developers, it can be prohibitively expensive to run or rent a sufficient number
of servers, and this may prevent them from developing an MMOG.

2.2 Peer-to-Peer

In this section we will describe three solutions that have been proposed in order
to solve the problem of implementing a MMOG using peer-to-peer.

2.2.1 Mercury

2.2.1.1 Introduction

As mentioned earlier, one of the problems with basic DHTs when using it in
games, is that only one value can be queried at a time. The goal of the Mer-
cury protocol is to add multi-attribute ranged-based queries to the basic DHT
structure, without degrading the overall performance of the system.

In order to allow for ranged queries Mercury has to abstain from using random
and hash values when assigning node IDs, which is providing the load balancing
in DHTs. Therefore the authors have had to take new measures in order to try

2.2 Peer-to-Peer 15

to balance the load. In order to allow multiple attribute queries, the network is
divided into multiple branches, called hubs, each of which can be viewed as a
separate “ring” of nodes and each of which handles a single attribute.

[1]

2.2.1.2 Properties

Availability The system uses the standard DHT approach where the con-
nection to the network can be obtained through any node. This provides high
availability, since in theory there is no single point of failure. However an in-
coming node needs to know at least one node currently in the network, and thus
need to acquire this information somewhere.

Robustness State replication is not really handled, but each hub could hold
a data replica rather than a data pointer. Since the DHT structure is used we
suppose already known replica solutions for DHTs could be applied to Mercury,
but because it is not discussed in the article we are not sure how straight forward
this would be.

Performance Compared to regular DHT overlays the Mercury multi-query
system provides a good way of getting the relevant data, but the increased
functionality is at the expense of speed. The average number of hops seems to
be between 10 and 20 for 10k to 30k nodes, meaning a query has to pass through
a several nodes before a result is returned. In the example games shown in the
article with 20 and 40 players the average number of hops are 4.44 and 4.61
respectively, rendering the system unsuited for FPSs even with few players and
unsuited for RPGs as well, as the number of hops grows, resulting in a total
latency of 250 milliseconds for 5 hops with 50 milliseconds inter-node latency.

Security This issue is not discussed at all in the article. The structure pro-
vides no obvious way of managing authority or avoid cheating.

Implementation

• The tests including the game implementation gives some idea of the system
performance, which might be sufficient for some types of games.

16 Existing Solutions

• The system does not handle data replication or persistence in any way.

• Router firewall and NAT is not accounted for in the system, which assumes
all nodes can connect to each other, which might not be the case in real
world situations.

2.2.1.3 Conclusion

The Mercury protocol provides some interesting features, which are not present
in the regular DHTs and the system seems to scale quite well, even with thou-
sands of peers.

However, we feel that the solution is very general, and not really aimed at find-
ing a MMOG peer-to-peer solution. The system does not handle replication,
persistence, authority or security in any way. Furthermore the solution disre-
gards the problems posed by router firewall and NAT, making us wonder if it
could even be successfully implemented in a consumer application at all.

2.2.2 Peer-to-Peer Support for Massively Multiplayer Games

2.2.2.1 Introduction

The solution proposed here is also based on DHTs, but takes advantage of the
Pastry extension Scribe, which is a multicast tree protocol.

The solution divides the world into regions and assumes players are only in-
terested in information about their current region. Player interaction messages
are sent directly via UDP, while updates relevant to all players are broadcasted
through Scribe. Each region has an coordinator, which handles shared objects
and may resolve disputes between players, and a backup coordinator is ready
to take over if the coordinator leaves.

While players may move between regions there is no inter-region interaction and
there is a strict limit to how many players there can be in a region.

[11]

2.2 Peer-to-Peer 17

2.2.2.2 Properties

Availability The solution uses a centralized account and management server,
which can be considered a single point of failure.

Robustness The system handles coordinator churning through the backup
coordinators, but in the experiments only one backup is available for each coor-
dinator, which may be insufficient. More backup could however be added, since
all of these have to fail simultaneously in order for a region failure to occur.
The shared game object state is broadcasted best effort, which may result in
inconsistencies being present a while before being corrected.

Performance The tests show 1% of messages taking more than 18 hops, which
could be a problem, as it might result in lag-spikes, depending on the message
type. The average number of hops is low though, giving a decent performance.
Player-interaction should be really fast, since this is done directly between play-
ers.

Little bandwidth is used as nodes, according to the article, receive 50-120 mes-
sages per second, due to the use of Scribe, which is a positive feature.

Security The use of supernodes and a centralized server provide some security
and also player interactions are executed by all parts affected by the actions,
where coordinator is arbiter. However the article states that the solution does
not deal with security in detail.

Implementation

• While the tests shows that the solution can handle thousands of peers, a
basic requirement is that there are only few players per region and the
regions are separate. This, we feel, is a major restriction, which means
that a game using this solution can not provide the experience provided
by modern MMOGs where hundreds of players may gather (though also
sometimes causing major server problems).

• The use of Pastry and Scribe still means the solution has problems with
routers applying NAT, which again is a problem that needs to be solved
for the solution to work in consumer applications.

18 Existing Solutions

2.2.2.3 Conclusion

This solution is definitely interesting and may work for games with many small
regions, which players can move between. The use of Scribe and UDP, as well
as the way coordinator manages region and shared objects is quite clever. With
this said, we think that the player limit per region is very small (10 in the tests),
and we do not agree in the way this removes the possibility of having big shared
open worlds, which is a part of what we think MMOGs are all about.

We do like how the use of coordinators makes the system able to handle the
router NAT problem. The system shows good scalability, but still only under
the given restrictions.

A system much like this is described by [9].

2.2.3 Hydra

2.2.3.1 Introduction

Hydra is not a complete implementation in itself, but rather a platform that
developers can build upon. As such, there are some features that have been
deemed out of scope by the authors. It provides a layer between the game client
and the underlying network. This layer enables a peer-to-peer network between
involved nodes, and provides failure resistance.

In short, it works by splitting the player-base into many smaller regions. Each
region has a primarily responsible “slice”, as well as one or more backup “slices”.
All slices are instances of a game server, running on any machines in the network.
Clients will be connected to the primary slice, which will forward all messages
to the backup slice(s). Should the primary slice fail, a backup slice will take
over.

The protocol in use is UDP, but with an extra layer to provide optional reliability
for messages.

[5]

2.2 Peer-to-Peer 19

2.2.3.2 Properties

Availability Hydra uses a “global tracker” as the entry point to the network.
This is a well-known server to all clients, to which they will connect in order to
be informed which slice they should connect to. It is of course a single point of
failure, but since it does little else than keep a list of primary slices, it is unlikely
to be overburdened and crash.

Robustness This depends on the number of backup slices. All messages are
sent to both a primary supernode and one or more backup nodes. If the primary
node fails the backup nodes will have the same game state, and nothing is
lost. Since all clients maintain a connection to their relevant backup slices, and
backup slices are always reasonably up-to-date on the worldstate, the failure of
a primary slice has minimal effect on the game. One of the backup slices will
simply become primary, and a new backup slice can be created.

Since the number of backup slices can be chosen arbitrarily, the Hydra archi-
tecture can be made as stable as one wishes it to be. The entire system of
synchronization between primary- and backup slices, and the process of fail-
overs seem very well thought out. The only case in which the system can fail,
is if all slices fail at the same time, which is unlikely to happen except in the
case of a total network failure.

Performance In the overlay structure of Hydra, there seems to be only ever
two hops between clients: one to their common slice, and one to the destination
client. However, the system uses a step time of 150 milliseconds, which is the
frequency with which messages are sent out. This implies that two hops take
300 milliseconds, which is not fast enough for FPSs and even too slow for RPGs
by today’s standards. It is possible that this could be fixed simple by lowering
the step time, but the article does not discuss what implications this would
have.

This hop time assumes that clients which have interest in each other’s informa-
tion exist in the same region, since there is no inter-region Hydra, in the form
it is presented in the article, only supports sharing information with players
connected to the same server. It is left to the developer of the application using
Hydra to work out how transitions between regions (and thus servers) should
be implemented.

Due to hardware limitations the system was not tested with more than 15 clients,
according to the article. This seems like a very small number, considering that

20 Existing Solutions

this will limit the number of players that can interact at any time. There is no
cross-server communication, so players will not be able to see players in other
in-game regions.

Security The fact that Hydra uses a global entry point can be used to pro-
vide some means of client authentication. However, the article declares that
“[...]cheat prevention for the Hydra architecture remains as future work.”

One could imagine that it would be possible to use the existing structure of a
primary slice with several backup slices to perform verification of client actions.
The primary slice could even offload all this to its backup slices. These slices
would of course still be running on client computers, and therefore distrusted,
but such is the nature of peer-to-peer network.

Implementation

• The tests mentioned in the article include only a small number of nodes,
so it is difficult to know how Hydra would fare in on a true MMOG scale.

• The global tracker maintains a list of clients that could be turned into
primary- or backup slices. This could be used to avoid fruitlessly at-
tempting to connect to a machine behind a firewall.

• Hydra “delegates the responsibility for scalability to the game developer”,
meaning that it “is up to the game developer to divide the game world
into separate regions so the expected load on each slice (i.e. number of
clients connected) will not be excessive”

2.2.3.3 Conclusion

Hydra seems like a viable solution, if one can design a game so that the number
of clients in each in-game region is small. It makes the very daring assumption
that the game world is separated into small and completely disjoint regions.
In our opinion, this is a very harsh restriction to impose. Due to the size
constraints we feel that inter-region communication should be present, which
would be impossible in Hydra without further extension.

The platform furthermore has some problems with scalability, in the sense that
it does not deal with this in any way. If too many players enter one region,

2.3 Commercial Use of Peer-to-Peer 21

the behavior is undefined. This can be assumed to mean that it will become
unplayable at some point, if a relatively small population limit is not enforced.

All in all it seems that Hydra, in the state is it described in the article, is not
ready to be put into use for a MMO game. However, it is a quite robust system
for smaller games without strict latency requirements, with respect to failures
and synchronization.

2.3 Commercial Use of Peer-to-Peer

There are no large commercial-scale MMOG implemented using peer-to-peer
networks, and it is difficult to find more than vague discussions even on the
indie- and amateur stage (i.e. discussion boards on the internet). The possible
reasons for this have already been touched upon in section 2.1.2, and can be
summarized as follows:

Access control It is difficult to control who enters the network, and verify
who they are.

World control It is difficult to control what happens in the worldstate while
the game is being played. This opens up problems with item duplication,
people walking through walls, players not taking damage, and probably a
lot more.

Security If data such as player character information (items, strengths) are
stored in the peer-to-peer network, we can not guarantee people do not
change it. The only way to do this would be to stored it in a controlled
environment, such as a developer-owned server.

Habits and tools It is very well researched and known how to build client-
server environments in the regular sense, where all the above problems
have viable solutions. Developing a peer-to-peer based game from scratch
would be costly and dangerous (in the business sense of the word).

Controlled environment In a classic client-server setting, the developer con-
trols all factors about the server environment. For example, developers
know they can upscale data center capacity while it is impossible to up-
scale the computational power or bandwidth of clients.

These are all serious issues that would need to be solved, before a peer-to-peer
network could be used in commercial context. However, the technical (habits

22 Existing Solutions

and tools) issue seems to be the most pressing in order to move this field forward.
It appears that there are no existing solutions capable of handling real-life scale
MMOGs.

Some of the problems listed above may be solved simply by circumventing them.
For instance, one could avoid the need to upscale computational power, by mak-
ing sure that each player exerts no greater pressure on the peer-to-peer graph
than he himself provides. The need for access control could be circumvented by
changing the business model or gameplay in a way that made it uninteresting
for players to cheat it — much like Wikipedia made it uninteresting (at least to
a degree) to vandalize its entries. These issues are out of scope for this thesis,
though, in which we look at the basic technical issue only.

2.4 Conclusion

In this chapter we have examined the regular client-server structure, as well as
three existing peer-to-peer solutions for massively multiplayer online games. It
is obvious that the client-server structure has several beneficial properties, and
this becomes even more understandable when we looked into the commercial
use of peer-to-peer in games. The peer-to-peer solutions we investigated showed
potential, but they also showed that the concepts they are built upon are not
fully developed and therefore clearly do not meet the requirements of modern
MMOGs.

Aside from this, it seems that the existing concepts are mainly built on struc-
tures originally made for peer-to-peer file systems (DHTs), They lack both the
performance required in games and the support for truly massive open game-
worlds.

Chapter 3

Proposed Solution

In this chapter we will introduce our proposed solution. We will discuss our
ideas, and the related theory. Finally we will look into how the proposed solution
can be implemented.

3.1 Ideas

One of our main goals, in this thesis, has been to construct a network graph,
which would result in as few hops between nodes as possible in order to provide a
low latency. While using DHTs may provide a good average latency, the client-
server architecture is far superior since all nodes are connected through two hops
only. We therefore wished to explore different network graphs, in order to see
how well these would perform and if they they could perhaps even be combined.

3.1.1 Supernodes

One of the first conclusions we reached to, was that we wanted to use a supernode-
structured network. This kind of structure differs from a pure peer-to-peer, by

24 Proposed Solution

granting some nodes special tasks. This unbalances the network, but it is not
necessarily a problem as long as the load is not too skewed. As we have seen,
both [11] and [5] use this structure, referring to supernodes as coordinators
and region managers. Supernodes are also used by Skype[14], where millions of
users are online simultaneously, showing that the use of supernodes in consumer
applications definitely is a viable strategy.

The use of supernodes enables us to solve some problems of high importance.
Firstly, by letting regular nodes connect only to supernodes, we handle the NAT
issue, assuming only nodes which allow incoming connections are assigned to be
supernodes. Secondly, supernodes may serve as an authority, much like the
server in a regular client-server system, helping to provide both consistency and
security. As we shall see later the supernode structure is also important in other
parts of the solution.

3.1.2 Network Graph

The region based strategy proposed in [11] and [5] is very much an either-or
solution: If the player is in a region he receives all information, and if he is not
in the region he receives no information at all from that region. We really do
not approve of this isolation of the regions. It results in the game world being
divided into a series of small, totally isolated areas which the player moves
between, as opposed to a vast open world.

Our key idea therefore was, to use the geographical location of the players’ in-
game characters to create a network graph. This ensures that nearby players
are connected in very few hops. The number of hops then increases the further
apart the players are. After making this our goal, we started looking for a graph
which would satisfy this goal.

3.1.2.1 Tree Graph

The first type of graph we looked at in order to achieve our goal of having few
hops between nodes was a tree graph. One of our first concepts can be viewed
in figure 3.1. In this graph we would have the root of the tree being a central
server, which would be both the entrance point, as well as provide persistence
and handle inter-region communication if necessary. The central server could in
principle be hosted from a regular PC, but the requirements in bandwidth and
computing power will vary much depending on the number of nodes, the level
of region isolation and many other parameters.

3.1 Ideas 25

Figure 3.1 – Tree graph network with fixed regions.

When a node connects to the central node, it is forwarded to the region node
responsible for the region the player is in. If no such node exists the new node
is made responsible for this region, and thus becomes a region node itself.

When a node arrives at a region node or any other supernode it is either added
to the supernode’s set of children or forwarded to a child supernode. The latter
happens if the supernode has reached its maximum number of children (the
tree’s branching factor). Children are promoted to supernodes when needed.

When a supernode leaves, the tree will of course have to be repaired. Repairing

26 Proposed Solution

can be managed easily by the parent of the leaving node, assuming all nodes in
the tree know the path from themselves to the root.

If region sub-trees are well-balanced then even with thousands of nodes the depth
(effectively hops between nodes) will be small if we use a huge branching factor
(number of maximum children per supernode). For example with a branching
factor of 10, we will have a depth of only 3, for 1000 nodes. The maximum
number of hops between two nodes will then be 8 (2 ∗ (1 + log(n))).

It became apparent, however, that this approach had a series of critical prob-
lems. Firstly, the performance in terms of number of hops was, in some cases,
not better than that of the DHT-based solutions we had examined. For exam-
ple, in edge cases, players close in-game would be on totally different sub-trees
meaning information would have to be routed all the way up and down in the
tree. Secondly, the load on the supernodes was (almost) linearly dependant on
the number of nodes in the region, since they had to receive information about
all other nodes.

From this we concluded that in order to allow many players in one region, it
is critically important to be able to determine whether information is relevant
to a node, before you send it. If you cannot do this you will end up forwarding
way too much information and the entire network will be flooded with irrelevant
information.

3.1.2.2 Grid Graph

A problem with the tree- and DHT-based graphs is that they do not exploit the
fact that players in character-based games, such as FPSs and RPGs, are usually
only interested in their immediate surroundings. The division into regions makes
some use of this, but we believe it could be further exploited in order to reduce
latency between nearby players.

Wanting to exploit this property, we started designing a viable grid network.
The basic concept can be seen in figure 3.2, where the supernodes are laid out
in 5x5 grid. The basic idea was that players are always connected to the nearest
supernode. The dimensions, density and form of the supernode-grid should of
course fit the gameworld, such that the population of players are distributed
equally amongst the supernodes.

This grid structure ensures that adjacent nodes are connected through few hops.
In theory, the closer they are, the fewer hops. This is a property we find critically
important, as it ensures nearby players — which are the most relevant to a given

3.1 Ideas 27

Figure 3.2 – Simple grid graph

player — respond with low latency. Also, since we assume players are always
connected to the nearest supernode, we here have a way of knowing if a message
is relevant to a given supernode, based on the area in which the supernode may
have children.

The grid can either be static or dynamic. With a static predefined grid, we
can make the grid very specific to the gameworld, which allows us to optimize
the graph in several ways. If we for example have big objects such as walls or
houses, blocking the view of the players, we may chose to drop some connection
and/or supernodes as shown in figure 3.3 in order to reduce bandwidth use. The
basic static approach has two main issues though: Since we have predefined

28 Proposed Solution

the number of supernodes, player gatherings which are not accounted for in
the setup will place heavy load on few supernodes. Furthermore there is no
guarantee that we have access to the specific amount of supernodes (i.e. not
enough players with open NATs), thus we need some way to construct the graph
with less supernodes than it was designed for.

This lead us to the dynamic approach, which intuitively should solve exactly the
two issues which troubled the static structure. However, it is not immediately
clear how grid density can be changed without having to move all supernodes,

Figure 3.3 – Grid graph with some connections left out because blocking objects
make them unnecessary

3.1 Ideas 29

basically causing an expensive total restructuring of the network. Furthermore
increasing the density of the entire grid is clearly not an efficient way of tackling
the problem of players gathering in specific areas very well.

While the grid graph is good for distributing area specific information, it has
some drawbacks. The way messages are passed between supernodes means
that a supernode may receive the same message through different neighbors,
which may increase bandwidth use several times (this drawback does however
have the positive side effect that supernode failures may have less influence,
since messages are likely to be routed around the failed node). Also it is both
expensive and slow to send information to all nodes in the network.

To provide a more efficient way of flooding the network one could use a tree or
DHT overlay to handle global information, thus having several different graphs
simultaneously.

3.1.2.3 Unbalanced Grid and Tree Graphs

Clearly in order to handle a geographically poor distribution of players, we had
to create a graph with differently sized areas of responsibility for the supernodes,
such that each supernode handles roughly the same amount of players. Figure
3.4 shows the areas of responsibility for such a graph, where the colored areas
are the most densely populated areas, while area 1 is the least densely populated
area. For the grid-based solution one could have each supernode connected to
all neighboring nodes. In the figure this would give node 42 six neighbors, while
node 22 would have just two. This is just one of many ways connections could
be established.

As player density in different areas change the graph should adjust. For example,
if more players moved into area 1, the area should be split into four smaller areas,
and as players leave areas, the opposite should happen. By doing this we ensure
both that supernodes are not overburdened and that the latency between nearby
players stay low.

At some point it will no longer make sense to divide the areas of responsibility,
since all players in the area are so close to each other that they are all more
or less equally important. Also, if the areas are made very small, players will
have to change supernode very often when moving around, possibly generating
unnecessary overhead. We may then simply stop dividing areas and hope that
the responsible supernodes can handle the amount of players present, or block
new players from entering the area.

30 Proposed Solution

Figure 3.4 – Grid graph with differently sized areas of responsibility

Having explored this use of dynamically sized areas of responsibility, we looked
at how this could be applied to the tree-graphs we explored earlier. We once
again look in figure 3.4, but rather than having the responsible nodes connecting
to their neighbors, they are connected through the tree in figure 3.5. The
difference between this tree and the previously discussed trees is that this tree
is not balanced and the supernodes are each bound to an area of responsibility.

Just as for the grid, we can then determine if a message might be relevant to a
supernode, before forwarding it, thus significantly reducing bandwidth use for
supernodes close to the root. At the same time the new structure also means
that most geographically close nodes will also be close in the tree structure.

3.1 Ideas 31

Figure 3.5 – Tree graph for figure 3.4.

However, the latter is not always the case, which is one of the main issues with
the tree. The problem is that around the edges of the areas players may interact
with players in entirely different subtrees. For example, in the figure 3.4 there
are seven hops from a node in area 311 to a node in area 24, which will most
likely result in noticeable lag, if those players start interacting.

The edge problem related to the tree graph might be solved by adding direct
connections between subtrees, or simply combining the grid and tree approaches
completely, which might actually be interesting. At this point, however, we
developed another graph concept with a more promising architecture, which
made us stop exploring these structures further.

The solution given in [2] uses a region structure, which shares some properties
with grid and tree concepts proposed here.

3.1.2.4 Dynamic Grid

The graph we ended up finding most interesting is very dynamic and loosely
built, compared to the grids and trees we had previously explored.

The core concept of the graph is: We assume players, or nodes, move about
in a 2D space in the game-world (a third dimension is simply ignored). Much
like in the regular grid structure, supernodes are placed in the same space as
the nodes, although they are of course not visible to the players. But unlike
regular grids, the supernodes are not placed in specific predefined locations

32 Proposed Solution

but may be placed arbitrarily in the world. This also means that connections
have to be made such that the network is not broken into several sub-graphs,
since supernode neighbors are not well defined. The regular nodes then simply
connect to the supernode closest to their position in the world. Figure 3.6 shows
such a network.

Figure 3.6 – Dynamic grid graph

In order to avoid the graph breaking into pieces we propose the following: As-
sume a supernode is placed in the origin of a Cartesian coordinate system. Then
the supernode should have at least one neighbor in each quadrant. This ensure
the graph remain in one piece.

This approach shares many properties with the basic grid structure, but is much
more flexible when it comes to supporting the arbitrary movement of players
in many differently shaped environments. Two of the key factors are of course
how supernodes are placed and how they are connected, but it is exactly this
choice that provides the flexibility.

The general idea is that the supernodes are connected to their supernode neigh-
bors. As stated earlier, this property suggests that nearby nodes are closely
connected in the graph, meaning there is only very few hops between them.
While preserving this key property, we are also able to place the supernode
exactly where they are needed. We are not forced to place them in specific lo-
cations in order to preserve any specific pattern, just as players are not likely to

3.2 Theory 33

position themselves in any specific pattern either. We will explore this solution
further in the following sections.

While we in the structures above operate in two-dimensional spaces, the task
of moving to three dimensions seems trivial. The reason we stay in 2D is that,
while most games are in 3D, the third dimension is usually significantly more
limited than the others and most players usually stay on the ground plane.
For some games moving to three dimensions might be relevant though, such as
games taking place in outer space.

3.2 Theory

We will now take a further look into some of the structure and theory behind
our solution including theoretical performance and behavior.

3.2.1 Types of Nodes

In our system we propose three different types of nodes with different responsi-
bilities.

Nodes are much like clients in a regular client-server system. They represent
a player in the game and are connected to a supernode, but have no
obligations beyond this. If suited, they may be called upon to set up a
new supernode on the peer’s machine.

Supernodes are run by peers, but are separate from the nodes with which
they share machine. There are several good reasons for keeping the two
separate, both with regards to security and robustness. A supernode acts
as ”mini-server” for group of nodes, and is also connected to some of the
surrounding supernodes which we refer to as neighbors. Even though the
supernode has a game-world position, it does not actually exist in the
game, but only in the network. Just like a regular server, supernodes can
be used as an authority to provide consistency and security.

The Central Node is the manager and founder of the entire network. The
central node has all the functionalities of a supernode, but may also act
as a network entry point, persistence manager and final authority. As
entry point the central node supplies information about the network to
new nodes and keeps a list of nodes, which can be called upon to create
new supernodes.

34 Proposed Solution

The central node could be hosted by anyone, but for a big MMOG it might re-
quire more bandwidth and computing power than most people have at home. Al-
ternatively, one might choose to distribute the tasks of the central node amongst
different computers — and/or have several central nodes to provide better avail-
ability and spread the load.

However, the requirement of hosting the central node should still be nothing
compared to hosting a regular MMOG server. The exact roles of the nodes will
vary depending on the requirements of the game.

3.2.2 Behavior

In order for the system to remain consistent and avoid failure, it is critically
important that the behavior of the nodes are well-defined. Since both servers
(supernodes) and clients (nodes) are hosted by peers, the peer-to-peer structure
has to deal with more scenarios than client-server systems. Let us first look at
the stable network shown in figure 3.6 and then go through different scenarios.

3.2.2.1 Node Arrives

The player arrives at some location in the world. It may be predefined, random
or based on stored data. In order to ease load on the systems it is wise not to
have all players spawning in the same location.

Node arrival starts with the node contacting an entry point, in order to obtain
information about the current supernodes in the network. Using that infor-
mation the node then connects to the supernode closest to the node’s current
position. See figure 3.7.

3.2 Theory 35

Figure 3.7 – Node arrives.

3.2.2.2 Supernode Arrives

As the threshold of the number of child nodes is reached by a supernode it may
send a call for help to the central node. It is then the central node’s job to
provide a new supernode from the set of applicable nodes. However, is it the
responsibility of the supernode requesting help to provide the location of the
new supernode, since only this supernode knows where a new supernode would
aid the most.

When the supernode is in place it will try to find and connect to its neighbors
(other supernodes), as well as send out a message about its arrival and position.
This message should be forwarded to the entire network, such that all nodes
can evaluate the new supernode, and use it if feasible. See figure 3.8.

36 Proposed Solution

Figure 3.8 – New supernode is created.

3.2.2.3 Node Moves

To keep the property that nodes are always connected to the nearest supernode,
nodes are required to change supernodes as they move around. This can be
accomplished simply by having the node finding the closest supernode once in
a while. Even if the interval is small and there are thousands of supernodes,
computation will be easily handled by today’s processors. See figure 3.9.

However keeping the previously mentioned property might not always be ben-
eficial, as we shall see in section 3.3.2. One might choose to keep the current
supernode even if it is not the closest, as long as it is still very close to the
node. This means that we now only guarantee that the node is very close to its
supernode or has the closest supernode.

3.2 Theory 37

Figure 3.9 – Node moves.

3.2.2.4 Node Leaves

Handling leaving nodes is straight forward. When a node departures gracefully
(not due to failure) it simply informs its supernode that it is leaving and closes
the connection. If the node fails the supernode will detect this with a timeout,
and clean up just as if the node departed gracefully. In both cases the supernode
should notify the central node, so the central node no longer believes the node
is available as a potential supernode (if this was the case).

3.2.2.5 Supernode Leaves

There are three possible reasons to why a supernode might leave: The peer
hosting it leaves gracefully, the peer hosting it fails, or the supernode is shut

38 Proposed Solution

down because it is no longer needed.

When a supernode leaves gracefully it informs its children and neighbors that it
is leaving, but then remains active until all these have closed their connections
or a certain amount of time has passed. This way, the other nodes have time to
find a suitable substitute for the leaving supernode, which allows the game to
continue more fluently than had the connection just been cut. See figure 3.10.

In case a supernode fails, the nodes should inform the central node which will
await confirmation from several parts before announcing the departure of the
supernode to all nodes. This way it is less likely that a supernode is mistakenly
announced dropped. Nodes discovering a failed supernode will not wait for
confirmation from the central node, but will immediately attempt to connect to
a different one.

Figure 3.10 – Supernode leaves.

3.2 Theory 39

3.2.3 Performance

As we saw in section 1.2, good performance is vitally important in order to meet
the expectations of today’s players. We will therefore analyze the theoretical
performance of our solution.

3.2.3.1 Latency

The latency of the system is directly influenced by the number of nodes a mes-
sage passes through before reaching its destination. The actual latency is the
sum of the latencies on the message’s path, but we have no direct control over
these latencies and thus our goal is to make the path (number of hops) as short
as possible.

The relatively loose structure of the graph allows the graph to take very different
shapes, effectively influencing the speed in which messages are spread. We
consider s to be the number of supernodes and n to be the number of regular
nodes in the network. We know that n/cmax < s < n/cmin, where cmax is
the maximum number of children per supernode and cmin is the minimum.
hops(n1, n2) is the number of hops between two nodes n1 and n2. We then see
that:

• The supernodes may form a line, in which case the hopsmax(n1, n2) for
any pair of nodes n1, n2 is s.

• In a well-balanced network, we expect the graph to look much like a strict
grid graph. Here hopsmax(n1, n2) for any pair of nodes n1, n2 should be
close to

√
s.

While the supernodes theoretically may form a line, it is not likely to happen in
reality, except when s is really small. Thus one would expect the average graph
to have

√
s < hopsmax(n1, n2) << s, which is clearly very bad compared to the

logn hops provided by DHTs.

We could reduce maximum number of hops significantly by adding long distance
connections, much like those used in DHTs. However it turns out that a short
path between adjacent nodes is more relevant.

The most interesting numbers then, are the relation between h and the distance
d, h/d between two nodes, and the average hops between a node and the x nodes

40 Proposed Solution

closest to it. If both these number are small and almost constant no matter how
big n is, the graph is performing well in terms of latency.

3.2.3.2 Bandwidth

As discussed earlier bandwidth is not normally an issue on the client side of
online games. But it is in fact bandwidth which puts some restriction on how
we can build the peer-to-peer network. With unlimited bandwidth we might
have all peers communicating directly with each other, reducing latency to a
minimum. The trade-off is that by adding more connections we may reduce
latency, but at the cost of bandwidth.

In general we are not concerned with the bandwidth of the regular nodes, be-
cause the amount of messages they receive easily can be regulated by their
supernode. Also there is no reason to believe that they receive more informa-
tion than clients in regular client-server games, as they should mostly have one
active connection.

Our main concern lies with the supernodes, which have to maintain many con-
nections at the same time, and send and receive information over these — much
like regular servers.

Imagine a network with 100 nodes and four interconnected supernodes each
managing 25 nodes. All nodes are sending out a package1 20 times a second,
each containing a position message. They also receive 20 packages per second,
containing 100 position messages each, summing up to 2,000 position messages
per second. If a position message consists of 128 bits (4× 32 bit, four integers),
the position messages alone use 256 Kb/s download, while the upload is clearly
insignificant. Almost any broadband connection can handle this amount of
traffic.

For the four supernodes it looks very different though. They each receive 25·20 =
500 packages and messages from their children per second. But they also receive
at least three packages with 25 messages each from their neighbors. In fact they
might receive the same information about all other 75 nodes, from all neighbors,
summing to 225 ·20 = 4, 500 messages per second. This is because the neighbors
do not know in advance if the given supernode has already received the messages.
Thus the supernode might receive 5,000 messages per second, using 640 Kb/s
download. The biggest problem is the upload. Here the supernode might send

1A package is a collection of messages. Banding messages together like this helps reduce
overhead.

3.2 Theory 41

as much as 2, 000 · 25 + 4, 500 · 3 = 63, 500 messages per second, or 8.13 Mb/s,
which is a lot more than most broadband connections can handle.

The numbers used above are all fictive, and some messages might not have to be
sent, but still it shows a critical issue which needs to be handled. The supernodes
cannot handle sending large amounts of information to many children. Either
less messages will have to be sent or supernodes need to have fewer children
(which effectively will increase hops and thereby latency).

A way to reduce the amount of messages is to enforce a limit on how far some
messages travel, since the information might at some point become irrelevant,
due to the graphical nature of the game1. Also providing players with unneces-
sary information might degrade security if the user is clever enough to look at
the messages being received. We enforce this limit by introducing the area of
interest2 for a node, which is the area covered by a circle with the node as center
and a given value as radius. The supernodes can use this to filter messages to
nodes, simply by calculating the distance between the original sender and the
node they are filtering for.

To filter messages being forwarded to a supernode is somewhat harder, since the
supernode sending the messages does not know if the message might be relevant
to the other supernode’s children. We have to figure out if the supernode might
have a child node interested in the message.

We do this by introducing an area of relevance. As opposed to the area of
interest, which is bound to a node, the area of relevance is bound to a message
and calculated when the message is sent from its origin.

area of relevance = 2 · dist(o, so) + area of interest,

where o is the original sender and so is the supernode of the origin. We now
know that supernodes for which dist(so, s) > area of relevance have no interest
in the message. If a supernode, s, had a node, p, within o’s area of interest, but
where dist(so, s) > area of relevance, then dist(p, s) > dist(p, so) and p would
pick so as its supernode instead of s.

While the area of relevance helps us filtering the messages, it is clear that su-
pernodes will still receive some irrelevant information. We see that bandwidth
usage can be reduced further by keeping the distance between nodes and their

1Most games limit the area of the game world a player can see in some way. This is called
the view distance.

2The term ”area of interest” may refer either to the area surrounding a player, which the
player should receive information about, or the radius of the circle, which encapsulates this
area, in which case it is simple a number.

42 Proposed Solution

supernodes short, thus reducing area of relevance. The problem of nodes gath-
ering is not really solved here either, but we will look more into handling this
in section 3.3.5.

Another way to reduce the amount of messages sent by supernodes is to reduce
frequency of updates. This could be done dynamically with respect to distance,
such that nodes further apart receives less frequent updates about each other.

Due to the loose structure networks may also be constructed such that, if there
are s supernodes, then s − 1 of them wants the same neighbor, resulting in
this supernode having s− 1 active connections (see figure 3.11). This is clearly
not sustainable and therefore a supernode has to be able to drop connections to
neighbors, as long as it retains at least one neighbor in each coordinate quadrant.

3.3 Implementation 43

Figure 3.11 – Dynamic grid where one node has many neighbors.

3.3 Implementation

The level of detail in which the solution has been described so far leaves many
questions unanswered about actual implementation. In this section we will we
will go through the most important issues and choices concerning implemen-
tation, and how these are affected by how the developer wants his game to

44 Proposed Solution

work.

3.3.1 Central Node

As mentioned in section 3.2.1 there are several ways to implement the central
node proposed in our solution. How we choose to implement it should reflect
how we want the game to work.

If we want regular players to be able to host the central node, the central
node software has to be implemented with regard to this. It has to initiate
the game-world and act as the first supernode. It has to work as entry point,
providing access and network information to new nodes. If we want a persistent
world, it has to provide persistence, which also means that the other supernodes
have to inform it about persistent changes in the world. Lastly, it might also
have to act as final authority in disputes between supernodes, thus providing
consistence and security. Of course, there is a limit to how big a population a
regular computer can handle as entry point and storage.

There would also have to be some system to enable players to find active cen-
tral nodes, so that they may enter the network. This could be accomplished
by a lobby mechanism seen in many multiplayer games today: The node would
connect to a central, well-known, list server and announce its availability. Con-
necting players then retrieve a list from here before choosing a central node.
Essentially we introduce one more layer of nodes to the system here, but run-
ning a list server is unarguably very simple and light weight.

On the other hand the developer might want to be the only one hosting the
central node, much like the developers host most of the MMOG servers today.
In this way they can manage accounts, charge subscription fees and provide
security. It is very likely that a commercially hosted central node would be split
up into one or more servers providing entry points, data persistence, authority
and acting as basic supernodes. This seems almost like a regular MMOG server,
but it is important to remember that the vast majority of supernodes are hosted
by peers. By hosting the central node themselves, developers are able to obtain
much of the same control as with regular MMOG servers, but use only a fraction
of the bandwidth and computing power used by regular servers.

There is a choice between having peers hosting smaller (but still massively pop-
ulated) worlds or having commercially hosted and bigger world.

3.3 Implementation 45

3.3.2 Supernodes

While we have already described the basic concepts of how supernodes work and
how they find neighbors, some questions remain. How are supernodes placed
such that nodes are well-distributed among them and the area of relevance
is kept low? How do we keep the number of neighbors low for supernodes,
without breaking the graph or increasing latency? When should a node change
its supernode? And when should supernodes be closed?

The location of supernodes is important, both in terms of performance and
load balance. Unfortunately, we have not found any particularly good way of
choosing the location, yet. In our simulation (section 4) a supernode in need of
help chooses the location of the new supernode as the average of its children’s
positions, but this seems far from optimal in many cases. A better choice would
be the center of a circle which covers the area most densely populated by the
supernode’s children. One might also want to pick a location close to the child
furthest away from the supernode, in order to shorten the distance between
node and supernode and thereby reducing area of relevance.

As we saw earlier the basic concept of our solution allows for many supernodes
to pick the same neighbor. In order to ease the load on the given supernode it
should be allowed to reject or drop some of its neighbors. The graph remains
intact as long as it keeps the closest neighbor in each coordinate quadrant, but
keeping only one might increase hops to some relevant supernodes drastically.
We therefore propose that supernodes should be allowed to have more than
one neighbor in each quadrant, and only start dropping them when an upper
threshold is reached.

As nodes move they should change supernodes — but as mentioned it might not
be feasible for them to change if the node is still very close to the old supernode
and thus is likely to change back. We do not want a node to change back
and forth between supernodes too often, as this would create a lot of overhead.
Therefore it should be considered not to have nodes changing supernode before
the distance between the node and supernode exceeds some threshold. Exactly
how far this is depends on the game, but in order for message routing to work
the supernode of a node has either to be within the node’s area of interest, or
to be the supernode closest to the node.

Having too many supernodes will increase the average number of hops between
nodes, therefore we should close supernodes that are no longer needed. This
can be done by the nodes leaving if they have only few children. How many
“few” is should be relative to how many children a supernode must have before
it calls for assistance, and it would be wise to consider whether shutting down

46 Proposed Solution

would cause a new supernode to be created immediately.

3.3.3 Communication

We propose that nodes communicate with messages of different types, such
as position, arrival and leaving messages. The types of messages and their
nature depends on the game, but there are at least three different classes of
messages. Furthermore one needs to choose which underlying protocol to use
for communication.

The three classes of messages are:

• State messages, such as position updates, usually account for the vast
majority of messages sent (over 99% [11]). The characteristics are that
they are sent often and contain information about something specific to
the given point in time. Thus we are only interested in the most recent
message and it does not matter if a message is lost. This makes state
messages very suited for the UDP protocol.

• Local event messages are triggered by events such as player attacks and
other interactions. It may also be non game-related events, such as when
nodes leave or arrive. What these messages have in common is they are
important and the order of the event execution might also be important.
These types of messages are therefore suited to be send using the TCP
protocol.

• Global event messages in our solution are messages such as supernode
arrival messages. They are much like the local event messages, but have
to reach all nodes in the network. However, the order of global events
are generally not as important as the order of local events, such as player
interaction events.

While the two first classes are fitted for two different protocols they are both
locally limited in our dynamic grid, while global events flood the network in
an inefficient way. The speed of the flooding can be aided by long distance
connects, while another overlay (such as DHT) needs to be used to decrease the
bandwidth use. However, since the number of global events is very limited, we
do not consider the flooding a problem.

For convenience we would suggest that an implementation of our solution should
use the TCP protocol, since it fits well with the way the nodes and supernodes

3.3 Implementation 47

are connected, and provides the properties required by the event messages by
nature. Alternatively, if this proves not to deliver sufficient performance, we
could use UDP with a custom delivery-guarantee layer for important messages.

3.3.4 Consistency

In order to provide consistency we propose a solution using time-stamps, or ticks.
All nodes and supernodes have a tick counter, which they keep synchronized
with the central node’s tick counter. We will not go into details as to how this
can be done, but it allows nodes to attach the time, or tick, to event messages,
describing when the action was taken. In this way all nodes and supernodes
know exactly in which order events occur and should therefore all end in the
same state when messages have been executed.

If disputes occur between a node and supernode, the supernode is assumed to
be right. If there is inconsistencies between the states of two supernodes, there
are several ways to handle this. The central node and another supernode can
act as arbiter, or we can make a decision based on the IDs of the supernodes
(as a way to avoid undefined behavior or a complex random decision system).

3.3.5 Parameters

There are several ways to tweak performance and other properties of the solu-
tion. Some of the parameters may even be dynamically adjusted to provide the
best experience for the players in the given circumstances.

3.3.5.1 Area of Interest

The area of interest parameter is very important in order to avoid flooding the
network with irrelevant information. The basic rule about the area of interest
is that it should never be larger than the area graphically visible to the player
in-game. As mentioned earlier the goal is to provide the player with an absolute
minimum of information.

The parameter greatly influences the bandwidth required by nodes and especially
supernodes. This is due to the fact that if n is the number of players who need
to share information, then the amount of messages which needs to be sent to

48 Proposed Solution

the nodes is n2. We presume this is why even today’s commercial servers have
problems when players gather up in close proximity of each other.

We can use the area of interest parameter to prevent n from growing too large,
thereby preventing overload of the supernodes. At the same time we are also able
to increase the area of interest in sparsely populated areas, allowing the players
to see others further away, thereby granting the world more detail. The area
of interest becoming very small in densely populated areas should not influence
the players much, as the large amount of nearby players would make them less
likely to notice the lack of detail in the distance.

By having the area of interest adjusted dynamically, we should be able to provide
both better performance and better game experiences.

3.3.5.2 Update Frequency

Having a high update frequency on for example position messages is very im-
portant to make the player movement seem fluent to other players. However,
as we saw earlier, the high frequency means that exactly this type of messages
may use over 99% of the bandwidth used by the game. We have already seen
how we can use the area of interest to reduce the bandwidth use, at the cost of
in-game detail.

In order to decrease bandwidth use further, possibly allowing for a larger area of
interest, we also propose that the update frequency is lowered, as the distance
between players grow. This can simply be done by having the supernodes throw
away a fraction of the position updates rather than forwarding them to their
children. If the fraction is based on the distance between the two nodes, the
players will most likely not notice it, since the frequency will only be reduced
for players far apart. We believe that this strategy could greatly reduce the
amount of messages being sent by the supernodes, which we proved earlier to
be a core issue.

Apart from this, one could of course use traditional methods such as dead reck-
oning to interpolate when in lack of position messages.

3.4 Conclusion 49

3.4 Conclusion

In this chapter we discussed various ideas we have had for how to effectively
construct a peer-to-peer graph for a massively multiplayer online game. It was
apparent from the beginning that having supernodes — nodes with more control
and responsibility — would be useful. The problem is then how to connect these
with each other and with normal nodes. We saw that while tree graphs and grid
graphs are possible solutions, they have problems with either too many hops,
flooding or viability.

Instead we proposed the dynamic grid graph. In this graph, supernodes are
placed dynamically where and when they are needed. We set up rules to ensure
that the graph is always connected, and described how the graph would behave
under various node behaviors. After discussing these theoretical aspects, we
turned to the practical side of things: how the various nodes could be imple-
mented, and different classes of messages. Some messages are vital for correct
synchronization of the worldstate across nodes. Other messages, like the po-
sition of a player, can and should be dropped if it would otherwise arrive too
late.

While our solution guarantees a low number of hops between closely located
nodes (in terms of in-game position) it has potential bandwidth problems. We
saw how this can be combated by introducing an area of interest, describing the
in-game area that nodes have interest in, and an area of relevance which is a
way for supernodes to predict when to forward messages to other supernodes.

50 Proposed Solution

Chapter 4

Simulation of a Dynamic
Graph

We implemented a simulation application in Java to test of our ideas. It is very
limited, and simulates the network on a single computer. Originally we intended
to do a larger scale simulation across an actual physical network, but due to
time constraints we had to leave that for a later date.

None-the-less we feel that if we had not implemented this simulation, we might
have missed important factors in our design. Furthermore it allowed us to
collect data on various aspects of the performance of our system, as we will see
in section 4.2.

4.1 Implementation

As mentioned above, the simulation runs on a single machine as a single appli-
cation. To simulate nodes being separate, each runs as its own thread. Nodes
communicate through a router class, whose purpose is to simulate an under-
lying network interface: nodes can send a message to another node, and will
also receive incoming messages through this class. The router class can also be

52 Simulation of a Dynamic Graph

used to introduce message delivery delay (to simulate latency), however at the
moment it is always 40 milliseconds.

In order to collect data points we have implemented a class that hooks into
various parts of the program, to collect information about message hop counts,
messages sent/received, timings, distances between communicating nodes, and
so forth. Aside from that, the implementation contains different classes to rep-
resent the three types of nodes (normal, super and central) as well as messages
and message packages (a collection of messages). Messages are then exchanged
in packages between nodes using the router.

The application contains a few tools to test various graph conditions. It is
possible to add a number of randomly placed nodes to the network, and also to
add nodes manually by clicking on the desired position. Nodes can be moved
and removed manually, with some limitations: Supernodes can only be removed
(not moved) and the central node can neither be removed nor moved. It is also
possible to make all normal nodes move towards a random position.

The simulation consists of nodes behaving according to our solution in a given
situation. This includes arranging themselves with supernodes and exchanging
position updates and other necessary messages. The seed to the pseudo-random
number generator is the same at every application launch, providing us with
reproducible test scenarios.

A problem that we encountered with our threaded approach, is that obviously
simulating each node as a separate thread quickly becomes taxing for the host
machine. We found that, on our machines, the limit is approximately 350 si-
multaneous nodes, sending 20 position messages per second each — but this
will of course vary from machine to machine. Threading also forced us to use
synchronization in certain places to avoid race conditions.

While this simulation is obviously not the same as a full-scale simulation across
a real network, it still provided some interesting insights into the benefits of our
solution which we will look into next.

In this thesis we will not go into further details about the implementation of
the simulation, as this is rather trivial and unrelated to the core issue.

4.2 Results 53

4.2 Results

4.2.1 Message hops and node distances

One of the main goals of our solution is to keep the number of hops low for
nodes close to each other. To measure this, we rigged our simulation software
to record the number of hops which a message travels and the distance between
the communicating nodes in question. The average of these measurements can
be seen in figure 4.1.

There is an obvious difference in the graph before and after a distance of 500
between communicating nodes. This is due to the fact that, when these tests
were run, the area of interests for nodes were set to 5001. Inside the area of
interests we see that nodes very close have a hop count of 2, meaning they are
connected to the same super node. As nodes come further apart, the average
number of hops slowly rises to 4 — signifying an average of 3 supernodes between
nodes at the edge of the area of interest.

When the distance exceeds the area of interest, we see a sudden change in the
spread of the measurements. Only supernodes receive messages that originate
from further away than the this area, which explains the larger spread: Supern-
odes will be forwarded a message if it is within their area of relevance, which is

Figure 4.1 – Average number of hops as a function of node distance. Conditions:
157 nodes moved randomly twice.

1There is no significance to this number, it is merely for testing purposes. The entire
simulation area stretches from -500 to 500 on both axes.

54 Simulation of a Dynamic Graph

much larger.

Since no normal nodes receive messages from outside the interest area, there is
a sudden drop in the average number of hops messages take, as seen on the plot.
This is because, since the message terminates at a supernode, it will do one hop
less than if it was passed on to a supernodes child.

Another number that is interesting to look at, is how many hops a message takes
in relation to how far away the receiving nodes are. This is plotted in figure 4.2.
What we see is that as the number of nodes rises, the number of hops messages
take increases slowly in comparison to the distance. However, it is difficult to
conclude anything from this, since as more nodes enter the world, comparatively
more will be far away from any given node, thus increasing the average number
of hops messages take. It is obvious from the plot that h increases faster than
d, which makes sense, since there is a limit on how many children a supernode
can have, thus increasing the number of hops between nodes that are close. A
trend line for these data points would seem to be linear, but we actually expect
it to grow slower than linearly, especially if long distance links exist. It can be
assumed, then, that the number of hops will not increase significantly as more
nodes are added.

Figure 4.2 – The average of h
d

as a function of the number of nodes. Here h is
the number of hops a message travels and d is the distance between sender and
receiver of that message.

4.2 Results 55

4.2.2 Number of nodes, hops, and supernodes

Figure 4.3 shows how the average number of hops a message takes between
nodes rises as more nodes are added to the world. In the very beginning this
number is low, because most of the nodes within each other’s interest area are
connected to the same supernode.

The average number of hops messages take rises as nodes are added, because
nodes now might be close enough to each other to be of interest, yet have more
supernodes between them. As the number of nodes is increased, this average
will increase because of the limit on supernode children.

The average number of hops messages take then seems to level out just above
3.5. This is interesting as it shows that messages do not seem to travel very far,
even with a lot of nodes in the network. Not having messages travel far means
less bandwidth used, which obviously is beneficial.

Another aspect is how the number of supernodes rises in relation to the number
of nodes in the graph. This can be seen in figure 4.4.

However, this is not really too interesting, because it is merely a function of how
many children a supernode is allowed to have, and how the nodes are placed in
the world. As it can be seen in the figure, the curve is somewhat unsteady —
probably due to the distribution of positions generated by the random number

Figure 4.3 – The average number of hops messages travel as a function of the
number of nodes.

56 Simulation of a Dynamic Graph

Figure 4.4 – Number of supernodes as a function of the number of nodes.

generator: Sometimes this may prevent supernode creation by producing nodes
that are assigned lightly loaded supernodes. At other times it may provoke
faster supernode creation by overloading one area in the gameworld.

4.3 Conclusion

In this chapter we have evaluated the data collected from our simulation ap-
plication. Even though our simulation does not run over an actual network, it
still proves an important point. It appears constructing and maintaining the
peer-to-peer graph the way we have devised does indeed keep the number of
hops between nodes low.

Our solution is not necessarily better for nodes far apart, but this is not impor-
tant in the case of online games. Important, and true for the dynamic graph, is
the fact that nodes close to each other have a low number of hops between them
— and that this number does not grow significantly as the number of nodes in
the network increases.

Chapter 5

Conclusion

There are already a number of proposals as how to implement a massively
multiplayer online game using peer-to-peer methods. Most of the proposals seem
to be in early stages of developments and are far from ready to be used in a real
game. When we started this project, we expected to find ready-to-use concepts
and wanted to test how these performed. Instead we could conclude from the
authors’ own words that the solutions are not yet ready to be implemented in
real games, and therefore we chose to focus more on developing our own solution.

We have looked at the requirements and available technologies for such a solu-
tion. We found that players are sensitive to latency in online games, and may
become frustrated if it is too high. As such, a low latency is an important
goal. We investigated how we might achieve that by looking at different ways to
design a peer-to-peer graph. It quickly became apparent that a strictly peers-
only graph was not feasible, and we thus introduced the concept of supernodes
— nodes with more control and importance. Furthermore we introduced the
central node as a governing body and possible entry point into the network.

After looking at various solutions that first came into mind, such as a static
grid or tree graph, we decided on a slightly different solution; the dynamic grid.
In the dynamic grid there is no pre-defined pattern of supernode arrangement.
They are not placed in geographically static positions, nor are they arranged in
a tree structure. Instead they exist in a flat side-by-side arrangement wherever

58 Conclusion

and when they are needed. Nodes representing actual players will then connect
to the nearest supernode. If a supernode becomes overloaded, as defined by a
threshold, a new supernode will be created in a suitable position. In this way we
guarantee low latency (or at least few hops) between players in close proximity
of each other in the game world.

At first we wanted to implement a simulation across the actual internet, using
the ideas we had developed. However, at a point we realized that this was not
possible within our time-frame, and so we chose to develop a simpler simulation
instead. This simulation runs on a single machine, where each node runs in its
own thread. This simulation did two things for us: It provided us with data
about how our solution performs, and it helped us discover problems we might
otherwise not have seen.

The data collected from the simulation supports our conclusion that we do
indeed provide a low number of hops between closely located players.

We believe that we have found a solution that provides a much more feasible
way of constructing a peer-to-peer graph for massively multiplayer online games,
than the solutions proposed earlier. Although it is not strictly peer-to-peer, be-
cause some peers are more empowered than others, this is a necessary trade-off
in order to overcome the problem of not using a central data center. Our solu-
tion should make it possible to implement a large scale game without the huge
financial backing that is required in traditional client-server implementations.

References

[1] A. R. Bharambe, M. Agrawal, and S. Seshan, Mercury: Supporting
scalable multi-attribute range queries, in SIGCOMM ’04, 2004, pp. 353–366.

[2] O. D. Billing and J. Petersen, Aspects of peer to peer game networks.
Master’s Thesis, DIKU Copenhagen University, 2006.

[3] Blizzard, World of warcraft subscriber base reaches 12 million world-
wide. http://us.blizzard.com/en-us/company/press/pressreleases.
html?101007, Oct. 2010. [Online; accessed 04-June-2011].

[4] M. Castro, P. Druschel, A.-M. Kermarrec, and A. Rowstron,
Scribe: A large-scale and decentralized application-level multicast infras-
tructure, IEEE Journal on Selected Areas in Communications (JSAC), 20
(2002), pp. 100–110.

[5] L. Chan, J. Yong, J. Bai, B. Leong, and R. Tan, Hydra: A massively-
multiplayer peer-to-peer architecture for the game developer, in Proceedings
of NetGames 07, 2007.

[6] M. Claypool and K. Claypool, Latency can kill: Precision and dead-
line in online games abstract, in MMSys’10, Feb. 2010.

[7] A. Cockcroft, Tips for tcp/ip monitoring and tuning to make your net-
work sing. http://sunsite.uakom.sk/sunworldonline/swol-12-1996/

swol-12-perf.html, Dec. 1996. [Online; accessed 04-June-2011].

[8] B. Hack, M. Morhaime, J.-F. Grollemund, and N. Bradford,
Introduction to vivendi games. http://www.sec.gov/Archives/edgar/

data/1127055/000095012306007628/y22210exv99w1.htm, June 2006.
[Online; accessed 06-June-2011].

http://us.blizzard.com/en-us/company/press/pressreleases.html?101007
http://us.blizzard.com/en-us/company/press/pressreleases.html?101007
http://sunsite.uakom.sk/sunworldonline/swol-12-1996/swol-12-perf.html
http://sunsite.uakom.sk/sunworldonline/swol-12-1996/swol-12-perf.html
http://www.sec.gov/Archives/edgar/data/1127055/000095012306007628/y22210exv99w1.htm
http://www.sec.gov/Archives/edgar/data/1127055/000095012306007628/y22210exv99w1.htm

60 REFERENCES

[9] T. Hampel, T. Bopp, and R. Hinn, A peer-to-peer architecture for mas-
sive multiplayer online games, in Proceedings of NetGames 06, 2006, p. 48.

[10] D. Jame, G. Walton, B. Robbins, E. Dunin, et al., Persistent worlds
whitepaper. http://www.igda.org/online/IGDA_PSW_Whitepaper_2004.
pdf pages 49–57, 2004.

[11] B. Knutsson, H. Lu, W. Xu, and B. Hopkins, Peer-to-peer support
for massively multiplayer games, in IEEE INFOCOM 2004, 2004.

[12] Leatrix, Leatrix latency fix. http://www.wowinterface.com/

downloads/info13581-LeatrixLatencyFix.html. [Online; accessed
08-June-2011].

[13] R. Miller, Wow’s back end: 10 data centers, 75,000 cores.
http://www.datacenterknowledge.com/archives/2009/11/25/

wows-back-end-10-data-centers-75000-cores/, Nov. 2009. [On-
line; accessed 15-June-2011].

[14] P. Parkes, Skype downtime today. http://blogs.skype.com/en/2010/

12/skype_downtime_today.html, Dec. 2010. [Online; accessed 12-June-
2011].

[15] J. Postel, User Datagram Protocol. RFC 768 (Standard), Aug. 1980.

[16] J. Tyson, How network address translation works — how stuff works.
http://www.howstuffworks.com/nat.htm. [Online; accessed 05-June-
2011].

[17] B. Whiley, Distributed hash tables, part i, Linux Journal, 114
(2003). http://www.linuxjournal.com/article/6797 [Online; accessed
05-Juny-2011].

[18] Wikipedia, Transmission control protocol — Wikipedia, the free en-
cyclopedia. http://en.wikipedia.org/wiki/Transmission_Control_

Protocol, June 2011. [Online; accessed 04-June-2011].

[19] , Universal plug and play — Wikipedia, the free encyclopedia. http:

//en.wikipedia.org/wiki/Upnp, June 2011. [Online; accessed 05-June-
2011].

[20] T. V. Wilson, The technology of mmorpgs — how stuff works. http:

//electronics.howstuffworks.com/mmorpg6.htm. [Online; accessed 06-
June-2011].

[21] WoWWiki, Realms list. http://www.wowwiki.com/Realms_list. [On-
line; accessed 06-June-2011].

http://www.igda.org/online/IGDA_PSW_Whitepaper_2004.pdf
http://www.igda.org/online/IGDA_PSW_Whitepaper_2004.pdf
http://www.wowinterface.com/downloads/info13581-LeatrixLatencyFix.html
http://www.wowinterface.com/downloads/info13581-LeatrixLatencyFix.html
http://www.datacenterknowledge.com/archives/2009/11/25/wows-back-end-10-data-centers-75000-cores/
http://www.datacenterknowledge.com/archives/2009/11/25/wows-back-end-10-data-centers-75000-cores/
http://blogs.skype.com/en/2010/12/skype_downtime_today.html
http://blogs.skype.com/en/2010/12/skype_downtime_today.html
http://www.howstuffworks.com/nat.htm
http://www.linuxjournal.com/article/6797
http://en.wikipedia.org/wiki/Transmission_Control_Protocol
http://en.wikipedia.org/wiki/Transmission_Control_Protocol
http://en.wikipedia.org/wiki/Upnp
http://en.wikipedia.org/wiki/Upnp
http://electronics.howstuffworks.com/mmorpg6.htm
http://electronics.howstuffworks.com/mmorpg6.htm
http://www.wowwiki.com/Realms_list

	Summary
	Resumé
	Preface
	Terms
	Introduction
	1 Analysis of Game Requirements and Technologies
	1.1 Games
	1.1.1 Genres

	1.2 Requirements
	1.2.1 Latency
	1.2.2 Bandwidth
	1.2.3 Consistency
	1.2.4 Properties

	1.3 Technologies
	1.3.1 TCP
	1.3.2 UDP
	1.3.3 UPnP and NAT Traversal
	1.3.4 DHT

	1.4 Conclusion

	2 Existing Solutions
	2.1 Client-server
	2.1.1 Description
	2.1.2 Discussion

	2.2 Peer-to-Peer
	2.2.1 Mercury
	2.2.2 Peer-to-Peer Support for Massively Multiplayer Games
	2.2.3 Hydra

	2.3 Commercial Use of Peer-to-Peer
	2.4 Conclusion

	3 Proposed Solution
	3.1 Ideas
	3.1.1 Supernodes
	3.1.2 Network Graph

	3.2 Theory
	3.2.1 Types of Nodes
	3.2.2 Behavior
	3.2.3 Performance

	3.3 Implementation
	3.3.1 Central Node
	3.3.2 Supernodes
	3.3.3 Communication
	3.3.4 Consistency
	3.3.5 Parameters

	3.4 Conclusion

	4 Simulation of a Dynamic Graph
	4.1 Implementation
	4.2 Results
	4.2.1 Message hops and node distances
	4.2.2 Number of nodes, hops, and supernodes

	4.3 Conclusion

	5 Conclusion
	References

