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Summary

This bachelor thesis sets out to look into and analyze part of an extensive
collection of data from the LADIS (Leukoaraiosis And DISability) Study. This
data collection contains 1) bitmap images of mid-sagittal magnetic resonance
images of human brains, 2) associated, expert-reviewed landmarks signifying the
contour of the brain structure corpus callosum, 3) clinically assessed parameters
evolved from tests done to the scanned persons. The analysis focuses on a)
performing a sparse principal component analysis (SPCA) on the landmarks to
describe local atrophical changes in the corpus callosum contour outline over a
period of three years and also, on b) performing a regression analysis between
these described local shape changes and the clinical parameter changes during
the same period.

The analysis is carried out in Matlab and leads to results that point towards
connections between clinical parameters describing gait speed, executive motor
control, verbal fluency and geriatric depression scale. The overall results show
fairly acceptable similarities with those described in literature of research groups
who performed both similar and non-similar analyses for describing correspon-
dende between corpus callosum changes over time in correlation with clinical
observations.
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Resumé

Denne bachelorafhandling har til hovedform̊al at undersøge og analysere dele
af en omfattende kollektion af data fra LADIS-studiet (Leukoaraiosis And DIS-
ability). Datamaterialesamlingen indeholder 1) bitmap-billeder af mid-sagittale
magnetisk resonans-skanninger af menneskehjerner, 2) dertil knyttede, ekspertre-
viderede landmærker der betegner konturen af hjernestrukturen corpus callo-
sum (hjernebjælken), 3) klinisk vurderede parametre udviklet fra forsøg udført
p̊a de samme skannede personer. Analyserne fokuserer p̊a a) at udføre en spar-
som principalkomponentanalyse (SPCA) p̊a landmærkerne for at beskrive lokale,
atrofiske ændringer i hjernebjælkekonturer over en tidsperiode p̊a tre år, samt,
b) p̊a at foretage en regressionsanalyse mellem disse beskrevne, lokale formæn-
dringer og de kliniske parameterændringer i den samme periode.

Analysen er gennemført i Matlab og fører til resultater der peger p̊a sam-
menhænge mellem kliniske parametre beskrivende ganghastighed, udøvende mo-
torkontrol, talefærdighed, samt geriatrisk depressionsskala. Det samlede resultat
viser nogenlunde acceptable ligheder med dem beskrevet i litteratur af forskn-
ingsgrupper der har udført b̊ade lignende og anderledes analyser til beskrivelse
af sammenfald mellem hjernebjælkeændringer over tid i korrelation med kliniske
observationer.
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Chapter 1

Introduction

In the modern society we may expect a longer life expectancy than in previous
generations. This implies that more people will live longer and in consequence,
the impact on society from neurodegenerative diseases such as Alzheimer’s or
dementia will increase. Besides the efforts put in by researchers and physicians
towards treatment, there is also a significant need of methods and tools for
diagnosing whether a person is in danger of developing such a disease.

The LADIS study is based on a collaboration between 11 European hospitals
and consists of clinical tests and neuropsychological assessments of over 600
male and female individuals aged 65 to 84 evaluated with three year intervals.
Together with the assessments, mid-sagittal brain MRi and CT scans have been
made.

One of the purposes behind the study is

To evaluate age-related cerebral white matter changes (ARWMC) as inde-
pendent determinant of the transition from healthy status to disability in elderly
individuals.

In the human brain, the largest collection of transversal nerve fibers are found
in a white matter structure, called the Corpus callosum (CC). It is evident
that the different parts of the CC contains nerve fibers which conduct highly

http://www.unifi.it/LADIS/
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specific information. Figure 1.1 shows a human mid-sagittal magnetic resonance
imaging (MRi) slice with 5 CC subdivisions. The topographic parts are named
([3]):

• CC1 rostrum and genu,

• CC2 rostral body,

• CC3 midbody,

• CC4 isthmus and

• CC1 splenium.

Figure 1.1: Example of mid-sagittal magnetic resonance imaging slice with 5
subdivisions of corpus callosum. Image originates from [2].

The aim of this thesis is to determine correspondences between CC shape
changes and clinical data collected in the LADIS study.

The present work not only lays the foundation for the bachelor thesis of the
author, but will hopefully also contribute to the LADIS work and provide new
insight into the ways of determining the correlation between the corpus callosum
shape changes due to atrophy and the corresponding clinical data. The 11
hospitals are:

• Helsinki, Finland (Memory Research Unit, Department of Clinical Neuro-
sciences, Helsinki University)

• Graz, Austria (Department of Neurology and Department of Radiology,
Division of Neuroradiology, Medical University Graz)
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• Lisboa, Portugal (Serviço de Neurologia, Centro de Estudos Egas Moniz,
Hospital de Santa Maria)

• Amsterdam, The Netherlands (Department of Radiology and Neurology,
VU Medical Center)

• Goteborg, Sweden (Institute of Clinical Neuroscience, Goteborg Univer-
sity)

• Huddinge, Sweden (Karolinska Institutet, Department of Neurbiology,
Care Sciences and Society; Karolinska University Hospital Huddinge)

• Paris, France (Department of Neurology, Hopital Lariboisiere)

• Mannheim, Germany (Department of Neurology, University of Heidelberg,
Klinikum Mannheim)

• Copenhagen, Denmark (Memory Disorders Research Group, Department
of Neurology, Rigshospitalet, and the Danish Research Center for Mag-
netic Resonance, Hvidovre Hospital, Copenhagen University Hospitals)

• Newcastle-upon-Tyne, UK (Institute for Ageing and Health, Newcastle
University)

• Florence, Italy (Coordinating centre, Department of Neurological and Psy-
chiatric Sciences, University of Florence)

1.1 Background

The human brain has many white and gray matter clusters and tracts that serve
various purposes. Interconnecting nerve fibers each contribute an incomprehen-
sible variety of functional and cognitive manifestations. The basic nerve signals
are motoric, sensory and autonomous, and in combination they give rise to mus-
cular contraction, both voluntary and reflectory, conscious unconscious senses.
Explanations to phenomena such as emotions are not easily understood.

In [3], Ryberg et al. looked for significant correlation between local CC area
changes and assessment on certain clinical parameters, including subjective
memory complaints, geriatric depression scale (GDS) score and walking speed.

Due to the organization of the nerve fibers in CC, certain clinical observations
should be expected to correlate with white matter hyperintensities (WMH) in
specific parts of the CC in the median midsagittal plane. Jokinen et al. [2]
describe age-related WMH as nerve cell atrophy as seen on magnetic resonance
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images. Atrophy is the concept of nerve cell axons deteriorating and loosing
their conductivity ability. Several million nerve fibers are contained within the
median transversal tract called corpus callosum

Jokinen et al. [2] has described how The Danish Research Center for Magnetic
Resonance at Hvidovre Hospital in Copenhagen has used a learning-based active
appearance model that has been able to automatically locate and segment the
mid-sagittal corpus callosum contour. The model contour is then described by
landmark coordinates. Subsequently, an expert has adjusted these landmarks
for inaccuracies. Figure 1.2 shows an example of how well these landmarks
describe the corpus callosum contour outline.

Figure 1.2: Top: close-up of CC baseline MR scan of test person CP59. Red
shape represents landmarks computed by the learning-based active appearance
model and yellow shape represents the expert corrected landmarks. Bottom:
same as top for the follow-up scan. This test person was not sorted away in
reduction step 3 described in Chapter 3.3.1.

1.2 Motivation

The Magnetic Resonance Images and associated clinical assessments emerged
from the LADIS study provides excellent material for data analysis. In particu-
lar, the nerve fiber type organisation of the corpus callosum makes it meaningful
to expect that clinical symptoms may manifest themselves as local white matter
hyperintensities.
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Instead of subdividing corpus callosum and looking into the volume changes,
a method of subspace projection of the landmark coordinate changes named
sparse principal component analysis may lead to local shape change represen-
tations that are directly comparable to changes in clinical neuropsychological
performance parameters.

Based on the idea that local shape changes may correspond with certain clinical
manifestations, this method is worth looking into and trying to understand. One
of the advantages of sparse principal component analysis is that one can enforce
the variation in corpus callosum shape change to be explained by a selected
number of landmark coordinate changes.

The methods for selecting, or regressing, the number of variables, the landmark
coordinate changes in this case, have been refined over several years by different
authors, which will be described in the Theory Chapter. An analysis on the
ways of performing sparse principal component analysis by regressing on the
variables derived from a regular principal component analysis and performing
a regression analysis of this outcome and the clinical observations will be the
overall purpose of this thesis.

1.3 Thesis structure

The present chapter has described the background for the interest in analyzing
the shape changes of the corpus callosum in a mid-sagittal view. It has also
stated the motivation that drives the author towards working on method for
analyzing these shape changes.

Chapter 2 describes the theoretical background for the analytical work of the
thesis.

Chapter 3 describes how the theory has been implemented.

In Chapter 4, the results from the analysis are presented and evaluated.

The theoretical parts of the thesis involves the use of certain mathematical
entries that will be described below:

• Bold lower-case entries describe vectors. Example: b.

• Bold upper-case entries describe matrices. Example: Z.
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• Subscripts denote dimensionality. Vector example: bi. Matrix example:
Zi,j .

• Italized lower entries describe scalars. Example: s.

• Greek letters (with dimension subscript) denote random model coeffi-
cients. Example: βi.

• The number of observations is denoted by n.

• The number of variables is denoted by p, or if number is altered, k.



Chapter 2

Theory

This section describes the theory that lays the foundation for implementation
of the work carried out in the thesis work.

2.1 Landmarks distances

When working with mid-sagittal magnetic resonance images which are two-
dimensional, it is import to notice that the landmarks describing the contour
of interest may not necessarily be of the same scale and position in the images.
This needs to be corrected for, and in this thesis, the methods for aligning these
structures involve two steps: centering and normalization, as adapted from [4].

Centering: By collecting a set of landmarks in a column vector x we can
write it: xij = [xx1,xx2, · · · ,xx78,xy1,xy2, · · · ,xy156]

T ∈ Rn×p with n being
the number of observations, p be the number of variables (156 landmark coor-
dinates) and the indices x, y being the first- and second coordinate. Letting
xj
1×1

= 1
n

∑n
i=1 xij

n×p

enables us to compute the centered n × 1 column vectors
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xcentj by Equation 2.1

xcentj
n×1

= xj
n×1

− k
n×1
· xj
1×1

, (2.1)

with k being the unit n× 1 one-vector: k = 1 ∈ Rn×1.

Normalization is performed after centering the landmark matrix xcentij to
ensure that the sum of all columns become of unit length 1. Equation 2.2 shows
the calculation:

xnormj
n×1

=
1√

k
n×1
·
∑n

i=1 x2
centij
1×1

xcentj
n×1

, (2.2)

such that
√∑n

i=1 xnormij
1×1

= 1. This can be interpreted such that the sum of

all squared column elements equals 1. Figures 3.2 and 3.3 show the landmark
normalization procedure.

2.2 Principal component analysis

Here follows a description of the theory of principal components analysis as
adapted from Sjöstrand et al. [5], [6], Zou et al. [8] and Sjöstrand [4].

When the CC have been segmented and normalized (scaled and centered), the
number of landmarks/variables p (see Figure 2.1) distributed among the CC
outlines (corresponding to the number of images/observations n) can be col-
lected in an X

n×p
data matrix. The variables are non-orthogonal and will span

a p-dimensional hyperplane of unknown correlation (linear dependency). If we
want to find out in which directions the CC outlines differ most from each other,
the PCA is a method of rotating the data matrix such that the variance in each
direction can effectively be identified.

The rotation of X
n×p

is done by use of a rotation matrix B
p×k

in which the columns

are called loading vectors. The rotation results in a matrix Z
n×k

in which the
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columns are the principal components (PCs), as seen in Equation 2.3.

Z
p×k

= X
n×p

B
p×k

(2.3)

The number k ≤ p signifies the number of loading vectors that are utilized in
the rotation. Together, the loading vectors describe p orthogonal directions
along which the variations in the data set are distributed. The total variation
for the entire data set is described by the sum of variation for all principal
components. By sorting these in descending order (and making the same sorting
of the rotation matrix B) and summing from the highest variation towards
the lowest, the most significant desired variation percentage can be obtained.
Spanning vectors by linear combinations of the principal components result in
completely linearly independent vectors which can lead to a better perception
of the differences between the CC outlines.

The principal component matrix can be computed by computing the covariance
matrix of X and performing an eigenanalysis on this matrix. It can also be
computed by performing a singular value decomposition (SVD) of X such that

X
n×p

= U
n×n

D
n×p

VT

p×p
. (2.4)

Performing a SVD on B as described in Equation 2.4, the PCs Z is the product
of UD. The p× p matrix V contain the loadings that correspond to the PCs.

When distributing landmarks along the CC outlines, some of these landmarks
will correspond better than others when comparing images, see Figure 2.1. Since
PCA takes every single variable (landmarks coordinates, in this case) into con-
sideration, some of the variation that the PCs take into consideration may not
be easily interpretable in term of CC shape variation and are therefore difficult
to use for shape analysis. This gives rise to a popular interest in investigating
methods for determining which principal components to use in the analysis. The
focus of this thesis is to investigate the concept of sparse principal components
analysis.

2.3 Sparse principal component analysis

The following theory of sparse principal components analysis is adapted from
Sjöstrand et al. [5], [6], Zou et al. [8] and Sjöstrand [4].
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Figure 2.1: Sample of 78 landmarks along a corpus callosum outline.

When investigating local shape changes with respect to landmark coordinates,
it is crucial to use a method of applying sparsity to the landmark perturbations
performed by the loadings associated with regular principal components. Based
on the fact that each principal component computed by a regular principal
component analysis are in fact correlated with the landmark coordinates and
weighed by the loadings, sparsity can be enforced by regressing on these principal
components.

The elastic net regression in Equation 2.5 is a method of forcing the right- and
lefthand side elements of Equation 2.3 towards zero in a manner that the number
of non-zero elements is controlled:

bi = arg min
bi

‖zi −Xbi‖2 + λ ‖bi‖2 + δ ‖bi‖1 , (2.5)

in which ‖·‖ = ‖·‖2 =
√∑p

i=1 ·2i signifies the squared 2-norm Euclidean distance,
`2, and ‖·‖1 =

∑p
i=1 |·i|, the 1-norm, `1 of ·.

In Equation 2.5, ‖zi −Xbi‖2 describes the residual distance between the i ’th
principal component xi of Z, called the response variable, and the perturbation
on X by the i ’th loading vector, xi, denoted as the predictor variable. If λ = 0,
we are left with the so-called LASSO method, which stands for Least Absolute
Shrinkage and Selection Operator method. When the number of variables, p is
higher than the number of observations, n, the LASSO method is able to force
each of the coefficients in b, to zero as δ grows larger. As as more coefficients
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are turned to zero, a desired number of remaining non-zero coefficients can be
detected. If δ = 0, we have the so-called ridge regression, which is a method of
shrinking the coefficients of b.

The elastic net regression computes a sparse loading vector b that is close to
the response variable, z. These loading vectors suffer from the lack of the prop-
erty that the regular, non-sparse loading vectors have: they are at right angles
with each other, which is why they are able to describe variance in each their
own principal direction. To make the sparse loadings assimilate the orthogonal
properties of the non-sparse loadings, Zou et al. [8] have formulated a ”SPCA
Criterion”, formulated in Equation 2.6:

(Â, B̂) =arg min
A,B

n∑
i=1

∥∥∥xi −ABTxi

∥∥∥2 + λ

K∑
j=1

‖bj‖2 +

K∑
j=1

δ1,j ‖bj‖1

subject to ATA = IK×K .

(2.6)

The implementation of this criterion is done by setting A equal to the first K
loadings of the ordinary principal components. All sections of Chapter 3 refer
to exactly this number, K. By denoting A as A = [α1, · · ·αK ] and solve the
so-called elastic net problem in Equation 2.7 (first iteration step):

bj = arg min
b

(αj − b)TXTX(αj − b) + λ ‖b‖2 + δ1,j ‖b‖1 (2.7)

for j = 1, 2, · · · ,K, by fixing B to B = [b1, · · ·bK ], a singular value decom-
position can be computed of XTXB = UDVT as described in Equation 2.4.
Then update A = UVT (second iteration step). By performing first and second
iteration steps for a preset λ value, the method makes it possible to iterate until
a desired number of non-zero δ coefficient are found. These coefficients decide
what b-coefficients are kept non-zero in the loading vectors from the regular
principal component analysis. Computing non-zero b-coefficients in this way is
the essence of making the principal component analysis sparse.

2.3.1 Deformation modes

When visualizing the effect a principal component analysis (sparse or non-
sparse) has on a set of landmark coordinates, deformation modes will show
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how the landmarks are perturbed.

xmodei = xi + s ·
√
λi · bi (2.8)

Equation 2.8 shows the computation of the perturbed landmarks, also referred
to as deformation modes, or modes of variation. xi is the i ’th mean shape as
described in Section 2.1, and s is an integer signifying the number of standard
deviation perturbations. λi is the i ’th eigenvalue and xi is the i ’th loading
vector (i ’th column in B in Equation 2.3).

2.4 General linear model

In order to compare the scores from the sparse principal component analysis
with the clinical observations, a series of univariate test are performed. The
target is to determine if there is a correspondence between the changes over
time of the clinical observations and the computed sparse loadings. First, the
response variable of the regression analysis is defined by

∆y
n×var

= PCk,stop
n×1

· β
1×1

, (2.9)

for which n is the number of observations (test persons), var is the centered
differences between the baseline and follow-up clinical variables which will be
described further in Section 3.3.1. k = 1, · · · , K, where K is the number of
computed principal components computed as described in Section 2.3. stop is
integer values ranging from 2 to p which declare the number of desired non-zero
components computed by the LASSO method. p is the number of variables
(landmark coordinates).

The scores, PC in Equation 2.9 are the principal components and are computed
by Equation 2.10

xk,stop
n×1

= ∆xnorm
n×p

· bk,stop
p×1

, (2.10)

for k = 1, ..., K, stop = 2, ... p and ∆xnorm = x(baseline)norm−x(follow-up)norm
for which the right-hand side is computed by Equation 2.2.
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The full regression analysis will cover K = 10 sparse principal components,
20 stop values and 5 clinical difference variables, giving rise to 10 × 20 × 5
β = 1000 values with 1000 corresponding p-values. These p-values each show
the probability that there is a significance that a given score has the same mean
as a given clinical difference variable.

Each p-value will be investigated for significance levels of 10, 5, 1 and 0.1%.
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Chapter 3

Implementation

The data analysis of the thesis has been implemented in Matlab. The present
chapter is divided into three sections. The first section contains a description
of the data provided by the Danish Research Centre for Magnetic Resonance
(DRCMR). The second section describes the built-in Matlab functions that
have been crucial to the computations. The section also contains a description
of Karl Sjöstrand’s publically available sparse principal component analysis soft-
ware package. The third section describes the Matlab scripts and functions
created by the thesis author for carrying out the data analysis.

3.1 Description of the data

The data used in the analysis covers three different file types:

bitmap Contains the actual image data,

mat contains the landmark coordinates, and

Excel contains the clinical assessment data.

Each type will be described more thoroughly in the following subsections.

http://www2.imm.dtu.dk/~ksjo/kas/software/spca/index.html
http://www2.imm.dtu.dk/~ksjo/kas/software/spca/index.html
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3.1.1 The bitmap image files

The locations of the bitmap files are divided into three folders named ccam,
cccp and ccladis. They contain image data for the hospitals in Amsterdam,
Copenhagen and the remaining 9 hospitals as mentioned in Chapter 1. The
actual magnetic resonance images are 8 bit grayscale of dimension 218 × 182.
There are 978 images, summing to 489 test persons.

The naming convention for the images is shown in Table 3.1 and constitutes
a form that contains three elements that are crucial to the present work: the
hospital name code, the test person number of the hospital and an index telling
whether the image arises from a baseline or a follow-up scan. These alternatives
of these index codes are shown in Table 3.2.

Bitmap file name: mam101_mpr.bmp

Index: -HhSTp----.bmp

Table 3.1: Table shows an example of the naming of the bitmap images. The
indeces Hh, S and Tp refer to the hospital name, time of scan and test person
number, respectively. The file name points to the baseline scan of test person
number 1 at the Amsterdam hospital.

Index term Alternatives Explanation

Hospital (Hh) am Amsterdam
cp Copenhagen
fl Florence
gr Graz
gt Gothenburg
he Helsinki
hu Huddinge
ls Lisboa

ma Mannheim
nc Newcastle-upon-Tyne
pa Paris

Time of scan (S) 1 baseline
2 follow-up

Test person number (Tp) 01 Varies
...

Table 3.2: Table shows the different alternatives for the index terms of the
naming of the bitmap image files shown in Table 3.1.
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3.1.2 The mat files

The mat files are found within the same folders as the bitmap images and follow
a similar naming pattern as that of the bitmap files, only with a different ending,
as shown in Table 3.3. The index terms are the same as mentioned in Tables
3.1 and 3.2.

bitmap file name: mam101_mpr.bmp

Corresponding mat file name: mam101_mpr_result

Table 3.3: Table shows the correspondence in naming pattern for the bitmap
image files and the mat files.

The mat files, when loaded into the Matlab workspace, leads to one char

type variable named basename which matches the bitmap file name shown in
Table 3.3 without the .bmp ending. It also leads to 6 double type variables, out
of which only the two variables named landmarks and landmarks_edited are
used in the thesis work. These are both of size (78,2) and their columns hold
the first and second axis landmark coordinates for the corpus callosum contour.
The landmarks have been segmented by staff at the Danish Research Centre for
Magnetic Resonance (DRCMR) at Hvidovre Hospital, using a learning-based
active-appearance model which has subsequently edited by an expert to correct
for the automatic segmentation ([5], [1], [7]).

3.1.3 The Excel files

All in all, there are 13 Excel datasheet files containing a vast amount of clinical
assessments performed on 639 test persons. Out of these, the 14 assessments
mentioned in Table 3.5 are used in the work in the present analysis.

The test person nomenclature of the Excel datasheets are different from that of
the bitmap and mat files.

Excel database test person naming pattern: AM01

Index: HhTp

Table 3.4: Table shows the Excel datasheet naming pattern for the same test
person as in Table 3.1. The indeces Hh and Tp refer to the hospital name and
test person number, respectively. See Table 3.2 for explanation on the indeces.
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Each of the 13 Excel datasheets contain test person names in the first column
and clinical parameters in the first row. Table 3.5 shows which Excel files are
used for catching the selected data.

Excel datasheet name Contained clinical variables

compound_measures_wp4.xls MEMORY

MEM3y

SPEED

SPEED3y

EXECUTIVE

EXEC3y

table2_baseline.xls verbal

gdstotal

table2_3y.xls verbal3y

gdstotal3y

table1_baseline.xls sex

birthday

daterif

table1_baseline.xls datefu3

Table 3.5: Table shows which Excel datasheet files contain the selected clinical
variables.

3.2 Description of the available Matlab packages
and functions that are used

This section contains information about the Matlab packages and functions
that have been utilized in the thesis work.

xlsread. Built-in Matlab function. The call: [NUMERIC,TXT,~]=
XLSREAD(FILE) is used and reads into the data specified in the Excel .xls file
named FILE. Two outputs are extracted, namely NUMERIC, a cell type variable
holding the numeric datasheet values and TXT, a cell type variable holding the
text datasheed values. ~ signifies a non-utilized output.

ismember. Built-in Matlab function. The call: ISMEMBER(A,S) returns 1
where the elements of A are contained within the set S and 0 in the opposite
case. The output is an array which has the same size as A. This function is
used for detecting which columns from the imported Excel datasheets holds
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info about which clinical variables.

findstr. Built-in Matlab function. The call FINDSTR(S1,S2) finds the shortest
of the two strings S1 and S2 and returns the starting indices in case the shortest
string is contained within the longest. The function is used as a logical operator
to decide if a string is contained within another in order to compare the test
person names due to the different nomenclature occuring in the bitmap/mat
files and Excel datasheets.

regstats. Function which is a part of Matlab’s statistical toolbox. The
call: STATS = REGSTATS(RESPONSES,DATA,MODEL,WHICHSTATS) is used to carry
out the regression analysis between the clinical variables and sparse principal
scores. The RESPONSES input is the clinical variable vector ∆y in Equation 2.9,
and the DATA input is a principal component PC of same size as ∆y. The input
MODEL is set to ’linear’ to enable the general linear model functionality. The
input WHICHSTATS receives the cell array {’fstat’, ’beta’} in order to catch
the F-statistic p- and β values.

center. Function which is a part of Karl Sjöstrand’s sparse principal

component analysis toolbox. The call X = CENTER(X) computes and outputs
the centered matrix of same size as the input, which is (n,p) with n being
the number of observations (sets of landmarks) and p being the number of
variables (landmark coordinates within each set). This function implements the
calculations described in Equation 2.1 in Chapter 2.

normalize. Function which is a part of Karl Sjöstrand’s sparse principal

component analysis toolbox. The function is called by X = NORMALIZE(X).
The input data matrix is centered by utilizing the function center and scaled
such that the columns have unit length. This function implements the calcula-
tions described in Equation 2.2 in Chapter 2.

svd. Built-in Matlab function. The call: [U,S,V] = SVD(X,’econ’) com-
putes the singular value decomposition of the data matrix X from Equation 2.4
of the dimensions (n,p) in which n is the number of observations (landmark
sets) and p, the number of variables (landmark coordinates). The input ’econ’
assures that in the case with the data used in the thesis work where n>p, only
the p columns of U in the mentioned equation are computed. This also implies
that the output, S (D in the equation), becomes of size (p,p).

larsen. Function which is a part of Karl Sjöstrand’s sparse principal

component analysis toolbox. The call: BETA = LARSEN(X, Y, LAMBDA2,

STOP, TRACE) has the following inputs: X is the normalized (n,p) data vec-
tor where each column contains the set of landmark coordinates organized as
mentioned in Chapter 2.1. The input response vector Y is the centered scores
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contained in the Z matrix in Equation 2.3. The input lambda is the ridge re-
gression coefficient described in Chapter 2.3. The input stop contains negative
numerical integer values ranging from -2 to -156, corresponding to the desired
number of nonzero variables (landmark coordinates) in the LASSO part of the
elastic net regression framework. The input trace is set to zero and is not
utilized in the present thesis work. The output beta contains the remaining,
non-zero loading coefficients emerged from the elastic net regression.

spca. Function which is a part of Karl Sjöstrand’s sparse principal

component analysis toolbox. Main function for computing the sparse prin-
cipal principal components and sparse loadings. The call: [SL SV PCAL PCAV

PATHS] = SPCA(X, Gram, K, LAMBDA, STOP) has the following inputs: X is
the (n,p) matrix with n observations (sets of landmark coordinates) and p vari-
ables (landmark coordinates). Gram is not utilized in the present thesis work. K
is the desired number of principal components. The inputs lambda and stop are
passed onto the function larsen. The outputs PCAL and PCAV are the regular
principal component loadings (the columns of B in Equation 2.3 and corre-
sponding principal components (the columns of Z in the same equation). The
outputs sl and sv contain the sparse principal component loadings and corre-
sponding sparse principal components whose number of non-zero elements are
determined by the current stop number. The output paths is not utilized in
the present thesis work.

3.3 Data analysis carried out in Matlab

This section describes how Matlab has been used to perform the data analysis.
The overall main.m Matlab script which provides the basis for the scripts and
functions described in the following subsections, is shown in Listing B.1. Please
note the following when reading the code listings throughout the thesis:

• The sign ¬ corresponds to the sign ∼ when viewed in Matlab.

• The sign ∆ corresponds to the entry delta when viewed in Matlab.

3.3.1 Selection of clinical variables

The LADIS foundation contains a vast amount of clinically assessed parameters,
out of which those mentioned in Table 3.5 have been selected. Listing 3.1 shows
the creation of base, dir_bmp and dir_mat structs for use when importing data
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into Matlab. The full Matlab code for setting the file directories is shown in
Listing B.2.

1 base.am='E:\LADIS\ccam\';
2 dir bmp.am=dir([base.am '*.bmp']);
3 dir mat.am=dir([base.am '*.mat']);

Listing 3.1: Matlab code for creation of structs for use when loading data into
workspace.

There are three reducing steps involved in selecting test person data prior to
performing the actual sparse principal component analysis on their associated
corpus callosum contour landmarks.

First reduction step. No. of test persons reduced from 639 to 385:

When using the above mentioned structs, the Matlab script clinimp.m (shown
in Listing B.3) imports the selected clinical variables and checks if all test persons
have both baseline and follow-up assessments of the variables. The remaining
test person data is stored in the structs clin and full and are saved in the mat
file clinimp.mat.

clin contains 3 fields: vars, a cell with 14 fields: the first 10 are those described
in Table 3.5, and the remaining 4 are age, age3y, male and female. The gender
information comes from the column sex in table1_baseline.xls and age and
age3y has been computed from birthday, daterif and datefu3. The Matlab
code for computation of the test person age is shown in Listing B.4. clin also
contains a double field named num in which the rows correspond to the test
persons and the columns correspond to the 14 variables in the var field. The
last field in the clin struct is a cell with the test person names as they appear
in the Excel datasheets.

full is a struct with 2 fields: num and txt which hold the full data extracted
from the 5 Excel datasheets mentioned in Table 3.5.

Second reduction step. No. of test persons reduced from 385 to 216:

The function convertname.m in Listing B.5 utilizes the three functions
clinred.m, getcoords.m and deltaclin.m shown in Listings B.6, B.7 and B.8
to do the following steps of reduction:

1. Convert the Excel datasheet test person names to that of the bitmap and
mat files.
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2. Find matching stringnames for the found test person names that imply
that they have both baseline and follow-up MR scan performed on them.

3. Create LMi struct containing indices showing the which bmp and mat files
that match with each other for the reduced list of test persons for both
baseline and follow-up.

4. Reduce the number of rows in clin.num and clin.name to match the test
person names that are left after the second reduction step.

5. Use the LMi index struct to get the learning-based active appearance model
computed landmarks and also the expert editions of those landmarks. This
step is performed by getcoords.m which generates a struct x with non-
edited landmarks, edited landmarks and distance computations of those
landmarks.

6. Compute the differences between the baseline and follow-up performance
assessments for the found test persons.

Third reduction step. No. of test persons reduced from 216 to 205:

The final reduction step is prepared via the script inspect.m shown in Listing
B.9. The script displays both baseline and follow-up bitmap images together
with both the non-edited and edited landmarks. By using the built-in Matlab
function waitforbuttonpress.m which returns zero when a mouse button is
pressed and 1 if a keyboard button is pressed, the script generates a logical
list of test persons whose edited landmarks have been visually inspected and
validated. The script then reduces the index struct LMi and also creates a
vector sortindex for later use when doing the actual test person reduction in
the clin struct. One of the test persons whose edited landmarks were accepted
is shown in Figure 1.2. The images and edited landmarks for a person who was
sorted away, is shown in Figure 3.1. Figures A.1, A.2, A.3 and A.4 in Appendix
A shows some more visual inspection plots.

The actual reduction of the final step is performed by the function clinred_02

in Listing B.10. This function takes the input clin and sortindex and outputs
the final, reduced struct clin.

3.3.2 Preparing the observations for sparse principal com-
ponent analysis

The index struct LMi used for extracting the final clinical variables is now used
in association with the data struct to and the function getcoords.m to get
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Figure 3.1: Top: close-up of CC baseline MR scan of test person FL33. Red
shape represents landmarks computed by the learning-based active appearance
model and yellow shape represents the expert corrected landmarks. Bottom:
same as top for the follow-up scan. This test person was sorted away in reduction
step 3 described in Chapter 3.3.1.

the final reduced landmark coordinates. Namely, the double type numerical
matrix x.ed.delta_norm containing the edited landmark coordinate changes
from baseline to follow-up, are of interest. Figure 3.2 shows the 205 edited
landmark coordinates before normalization in red and after normalization in
green. Figure 3.3 shows a close-up of the normalized coordinates.

The function spca.m is now iteratively called with the following input parame-
ters:

• x.ed.delta_norm. The matrix is transposed such that it has the dimen-
sions (n,p) and represents X in Equation 2.4.

• trace = 1. This ensures that the function prints information in the Mat-
lab command window.

• K = 10. This is the selected number of sparse principal components.

• lambda = 1. This is the ridge regression parameter from Equation 2.5.

• stop = -round(linspace(2,156,20)); contains j = 20 integer values
which make out the changing iteration parameters. Each iteration’s inte-
ger value corresponds to the number of desired non-zero variables. This
input varies the effect of the LASSO method in Equation 2.5.
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Figure 3.2: Red: Baseline edited landmarks for the 205 test persons. Green:
Normalized versions of the same landmarks. The normalization procedure has
centered the landmarks around (0,0) and scaled to assure unit length of invidual
corpus callosum shapes.

Figure 3.3: Zoom of green structures in Figure 3.2 showing normalized baseline
edited landmarks for the 205 test persons.



3.3 Data analysis carried out in Matlab 25

The actual sparse principal component analysis procedure call in Matlab is
shown in Listing 3.2.

1 % Compute SPCA on the normalized, edited landmark coordinates
2 maxiter = 150;
3 trace = 1;
4 lambda = 1;
5 stop = −round(linspace(2,156,20));
6 K = 10;
7 for i = 1:length(stop)
8 [a b c d ¬] = spca(x.ed.∆ norm', [], K, lambda, stop(i), ...

maxiter, trace);
9 SPCA.sl.K10(i).norm = a;

10 SPCA.sv.K10(i).norm = b;
11 SPCA.pcal.K10.norm = c;
12 SPCA.pcav.K10.norm = d;
13 end
14

15 % Reorganize structure of SPCA
16 for i = 1:length(stop)
17 spca.sl(i).k10 = SPCA.sl.K10(i).norm;
18 spca.sv(i).k10 = SPCA.sv.K10(i).norm;
19 end
20 spca.pcal = SPCA.pcal.K10.norm;
21 spca.pcav = SPCA.pcav.K10.norm;

Listing 3.2: Iterative computation of sparse and non-sparse principal
components and loadings.

The output is collected in a struct, SPCA, with four fields:

sl contains 1 × j = 20 struct array K10 in which each field is a p × K (156
× 10) double type field named norm. These 20 struct fields with each 10
contain 200 sparse loadings made up of 10 loadings with each 20 different
non-zero variable numbers held in the stop input.

sv is built up in the same way as the field sl, only the double field norm has the
dimension K×1 (10 × 1) sparse eigenvalues corresponding to the loadings
in sl.

pcal contains the regular, non-sparse loadings corresponding to the regular
loadings described in Equation 2.4 as the matrix V with the dimension
p× p (156× 156).

pcav contains the p regular, non-sparse eigenvalues corresponding to the load-
ings in pcal.
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3.3.3 Performing regression analysis on the scores and
clinical variables

In order to compute the scores as in Equation 2.10, a struct of size K × j =
10 × 20 = 200 in which K is the number of sparse principal components and j
is the number of non-zero loading elements is computed. It is done iteratively,
and the main part of the code is shown in Listing 3.3. In this way, each struct
field has the size (n× 1) = (205× 1) as the mentioned equation prescribes.

1 for i = 1:r
2 for j = 1:c
3 score{i,j} = spca.sl(j).k10(:,i)'*x.ed.∆ norm;
4 end
5 end

Listing 3.3: Main part of code for computing 200 scores for use in the regression
analysis. Full function computescore.m is shown in Listing B.11.

Before implementing the general linear model computations (the regression anal-
ysis), the scores struct is reorganized for convience by the code line shown in
Listing 3.4. The reorganization stacks the 10 × 20 sized score struct such that
the 20 columns are stacked below each other a new 200 × 1 sized struct called
collect.

1 collect = score(:);

Listing 3.4: Code for reorganizing the scores struct.

For computing the p-values and corresponding β coeffiecients described in Sec-
tion 2.4, the call shown in Listing 3.5 is done. The full function newglm.m with
header is shown in Listing B.12.

1 for i = 1:size(responses.∆,2)
2 for j = 1:size(data,1)
3 stats{i,j} = regstats(responses.∆(:,i),data{j},'linear', ...
4 {'fstat','rsquare','beta'});
5 pvals(i,j) = stats{i,j}.fstat.pval;
6 betas(i,j) = stats{i,j}.beta(2);
7 rsquares(i,j) = stats{i,j}.rsquare;
8 end
9 end

Listing 3.5: Main code for calling regstats for use when carrying out the
regression analysis. Full function code is shown in Listing B.12.
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A simple method of thresholding is used to collect the p-values that are sig-
nificant at 10%, 5%, 1% and 0.1% levels. The code for doing this is shown in
Listing 3.6.

1 significancelevel = [.1 .05 .01 .001];
2 for i = 1:length(significancelevel)
3 signif{i} = find(pvals < significancelevel(i));
4 end

Listing 3.6: Code for identifying significant p values.

3.3.4 Visualization and plotting of deformation modes

For computing and visualizing the deformation modes as described in Section
2.3.1, the Matlab script defmodes.m is used. A small part of the code is shown
in Listing 3.7 and signifies the computation done in Equation 2.8. The index
i from the equation ranges from 1 to 200 = c × r in which c is the number of
sparse principal components and r is the number of stop values. The indices i
and j in the code part are different and signify the c and r indices and therefore,
have the ranges i = 1, · · · 20 and j = 1, · · · 10. The full script defmodes.m for
computing and visualizing deformation modes for all 200 principal components
is shown in Listing B.13.

1 LMp.bl p(:,i) = normed + std*sqrt(abs(spca.sv(j).k10(i)) ...

*abs(spca.sl(j).k10(:,i)));
2 LMp.bl m(:,i) = normed − std*sqrt(abs(spca.sv(j).k10(i)) ...

*abs(spca.sl(j).k10(:,i)));

Listing 3.7: Part of code for computing the deformation modes as described in
Equation 2.8.
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Chapter 4

Results and Evaluation

In this chapter the results from the analysis are presented and evaluated.

4.1 Results

The following description concerns four deformation mode figures in the present
Section. All four mentioned figures share these properties: blue shape repre-
sents mean corpus callosum shape. Green and red shapes represent deformation
modes for s = ±1 as described in Equation 2.8. They also contain data for prin-
cipal components 1 to 10, but with number of non-zero variables ranging from
2 (extremely sparse) to 156 (regular non-sparse principal component analysis):

• Figure 4.1. Baseline mean shape. Number of non-zero variables ranges
from 2 to 75.

• Figure 4.2. Baseline mean shape. Number of non-zero variables ranges
from 83 to 156.

• Figure 4.3. Follow-up mean shape. Number of non-zero variables ranges
from 2 to 75.
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• Figure 4.4. Follow-up mean shape. Number of non-zero variables ranges
from 83 to 156.

Table 4.1 shows an overview of the significant score and for which clinical vari-
ables they are significant to and also, at what significance level. Refer to tables
in Appendix C for exact, corresponding β and p-values.

Tables C.1, C.2, C.3, C.4 and C.5 contain the full list of all β coefficients com-
puted in the regression analysis described in Section 2.4. Tables C.6, C.7, C.8,
C.9 and C.10 contain the corresponding p-values.

4.2 Evaluation

The following is an interpretation of the physical manifestations, or deformation
modes of mean shapes, depicted in Figures 4.1, 4.2, 4.3 and 4.4, based on the
outcome of the regression analysis results in Table 4.1:

MEMORY The fact that the analysis shows no significance between the prin-
cipal scores and this clinical variable, is a bit discouraging. However,
according to [2], their analysis of the mental processing assessments in-
dicate that the associated corpus callosum changes might be diffuse and
therefore, hard to detect by use of SPCA.

SPEED The analysis shows the highest significance of all the clinical variables.
Ryberg et al. [3] found that the gait speed was associated with overall
corpus callosum atrophy as well as reductions in CC1, CC2 and CC5 (see
Figure 1.1 for subdivisions). The most significant score, PC6 for 148 non-
zero variables actually seem to encompass the same mentioned areas. The
same can be said for the scores PC4 (n equal to 140, 148 and 156), and
in particular, they seem to point towards changes in the subregion CC2
(rostral body). PC5 (n equal to 132) and PC6 (n equal to 156) seem
similar to the changes of PC4. The last significant deformation mentioned
here is the most sparse, PC6 (n equal to 10), also seems to explain part
of the deformation in CC2 (rostral body).

EXECUTIVE Jokinen et al. [2] found significant correlation between atro-
phy of CC1 region and scores for executive motor assessments. The only
significant score for this clinical variable is that of PC10 (n equal to 156,
which is full PCA), shows deformation modes that cover CC1, but also a
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small part of CC2 (rostral body) and CC5 (splenium). The present anal-
ysis thus points towards executive motor performance may manifest itself
in all these three CC subdivisional regions.

verbal Jokinen et al. [2] found significance between this clinical parameter
and CC atrophy in the overall CC as well as CC4 (isthmus) subregion.
The present analysis clearly show an overal change in the CC shape, but
also large changes in CC1, CC3 and CC5. Jokinen et al. expected to
see a change in the anterior part which is actually evident in the present
analysis. However, at a 10 percent significance level and with relative
low sparsity (n equal to 99, 107 and 156 for PC3), the results seem to
point more towards an overall CC shape change explanation than that of
specific, local changes.

gdstotal Ryberg et al. [3] found no significance between the geriatric depres-
sion scale assessments and local corpus callosum area changes. The present
analysis has found a 10 percent significance of an overall corpus atrophy
may be explained by the changes in this clinical variable.



36 Results and Evaluation

clin
ical

variab
le

M
E

M
O

R
Y

S
P

E
E

D
E

X
E

C
U

T
IV

E
verb

a
l

G
D

S
T

O
T

A
L

sign
ifi

can
ce

lev
el

p
<

10
%

n
on

e
P

C
1,

n
=

2
P

C
3
,

n
=

9
9

P
C

3,
n

=
99

P
C

1,
n

=
43

P
C

3
,

n
=

1
0
7

P
C

3,
n

=
107

P
C

5,
n

=
2

P
C

3
,

fu
ll

P
C

A
P

C
3,

n
=

115
P

C
5,

n
=

91
P

C
7,

n
=

18
P

C
7,

n
=

26
P

C
7,

n
=

34
P

C
7,

n
=

99
P

C
7,

n
=

107
P

C
8,

n
=

59
P

C
9,

n
=

107
P

C
9,

n
=

132
P

C
9,

n
=

140
p
<

5
%

n
on

e
P

C
4,

n
=

140
n

o
n

e
n

on
e

P
C

4,
n

=
148

P
C

4,
fu

ll
P

C
A

P
C

5,
n

=
132

P
C

6,
n

=
10

P
C

6,
fu

ll
P

C
A

p
<

1
%

n
on

e
P

C
6

(n
=

148)
P

C
1
0
,

fu
ll

P
C

A
n

o
n

e
n

on
e

p
<

0
.1

%
n

on
e

n
on

e
n

o
n

e
n

o
n

e
n

on
e

T
ab

le
4
.1

:
O

v
erv

iew
of

w
h

ich
scores

are
sign

ifi
can

t
to

w
h

ich
clin

ica
l

p
a
ra

m
eters

a
n

d
a
t

w
h

at
sign

ifi
can

ce
level.



Chapter 5

Discussion

The three main foci of the analytical work contained within the thesis work were
to:

• Perform a sparse principal component analysis on treated landmarks to
make a sparse representation of local corpora callosa contour changes in
the mid-sagittal perspective of the human brain.

• Perform a regression analysis between the derived variables and changes
in clinical performance assessments prepared from the LADIS study.

• Visualize the local corpus callosum shape changes deemed significant by
the spca and regression analysis and evaluate on their interpretability with
respect to previous analytical work presented in research articles by LADIS
associated crew.

When comparing the results with those of Jokinen et al. [2] and Ryberg et al.
[3], some of the significant local corpus shape changes that were found seemed
to correspond with the results of these groups. Sjöstrand et al. [5], Sjöstrand
et al. [6] and Sjöstrand [4] already performed analyses with the same foci and
concluded that a sparse representation of the variables worked well.
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A further analysis along a similar path could include area computations of the
difference between deformation modes and mean shapes to accomodate with
research that specifically focuses on local corpus callosum area changes.
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Conclusion

A extensive amount of available data from the LADIS Leukoaraiosis And DIS-
ability) Study was provided for this thesis.

After performing three steps of narrowing down the number of test persons,
a full baseline and follow-up data set consisting of bitmap images, associated
expert reviewed landmarks of the corpus callosum contour outline and 5 clinical
parameters were ready for analysis.

A sparse principal component analysis was performed on the landmark data
with the aim of detecting local corpus callosum shape changes signifying local
atrophy. A subsequent regression analysis performed between the outcome of
this analysis and the clinical parameters showed results that to some extent
correspond acceptably with the results of the found literature on conductions of
similar studies.
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Appendix A

Additional Figures

Figure A.1: Top: close-up of CC baseline MR scan of test person AM33. Red
shape represents landmarks computed by the learning-based active appearance
model and yellow shape represents the expert corrected landmarks. Bottom:
same as top for the follow-up scan. This test person was not sorted away in
reduction step 3 described in Chapter 3.3.1.
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Figure A.2: Top: close-up of CC baseline MR scan of test person FL08. Red
shape represents landmarks computed by the learning-based active appearance
model and yellow shape represents the expert corrected landmarks. Bottom:
same as top for the follow-up scan. This test person was not sorted away in
reduction step 3 described in Chapter 3.3.1.

Figure A.3: Top: close-up of CC baseline MR scan of test person CP16. Red
shape represents landmarks computed by the learning-based active appearance
model and yellow shape represents the expert corrected landmarks. Bottom:
same as top for the follow-up scan. This test person was sorted away in reduction
step 3 described in Chapter 3.3.1.
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Figure A.4: Top: close-up of CC baseline MR scan of test person FL38. Red
shape represents landmarks computed by the learning-based active appearance
model and yellow shape represents the expert corrected landmarks. Bottom:
same as top for the follow-up scan. This test person was sorted away in reduction
step 3 described in Chapter 3.3.1.
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Appendix B

Matlab Code Listings

1 %% Main script for data extraction
2

3 % Import clinical variables by running script clin.m:
4 load clinimp
5

6 % Identify test persons from clin.name list who have both ...
baseline and follow−up scans and return lists referring to ...
nomenclature of both the .bmp and landmark folder as well as ...
of the LADIS Access database

7 [imgname clin LMi data Data x] = convertname(clin);
8

9 % Run script inspect.m to sort away erronous landmarks and ...
reduce LMi. This has already been done and new LMi and ...
sortindex is saved under reduction 03

10 load reduction 03;
11

12 % Run function clinred 02.m with new LMi to get updated clin
13 clin = clinred 02(clin,sortindex);
14

15 % Run function getcoords.m with data and new LMi to get ...
non−erroneous landmark coordinates

16 x = getcoords(data,LMi);
17

18 % Compute SPCA on the normalized, edited landmark coordinates
19 maxiter = 150;
20 trace = 1;
21 lambda = 1;
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22 stop = −round(linspace(2,156,20));
23 K = 10;
24 % for i = 1:length(stop)
25 % [a b c d ¬] = spca(x.ed.∆ norm', [], K, ...
26 % lambda, stop(i), maxiter, trace);
27 % SPCA.sl.K10(i).norm = a;
28 % SPCA.sv.K10(i).norm = b;
29 % SPCA.pcal.K10.norm = c;
30 % SPCA.pcav.K10.norm = d;
31 % end
32

33 % The SPCA computations takes approx. 1,5 hours on a regular ...
laptop and resulting SPCA struct has been saved under ...
spca final K10 ed (wrong toc value)

34 load spca final K10 ed;
35

36 % Reorganize structure of SPCA and put in spca struct
37 for i = 1:length(stop)
38 spca.sl(i).k10 = SPCA.sl.K10(i).norm;
39 spca.sv(i).k10 = SPCA.sv.K10(i).norm;
40 end
41 spca.pcal = SPCA.pcal.K10.norm;
42 spca.pcav = SPCA.pcav.K10.norm;
43

44 % Compute scores
45 [score s] = computescore(spca,clin,x);
46

47 % Reorganize scores (stack columns under each other)
48 collect = score(:);
49

50 % Compute p−values and betas (regression analysis)
51 [pvals betas] = newglm(clin,collect);
52

53 % Find significant p−values
54 significancelevel = [.1 .05 .01 .001];
55 for i = 1:length(significancelevel)
56 signif{i} = find(pvals < significancelevel(i));
57 end
58

59 % Load spca and x into workspace before plotting deformation ...
modes using the script defmodes.m.

Listing B.1: Main Matlab script for implementation of the analysis.

1 % dirs.m %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
2 %
3 % Description: Scripts sets the base directories for use when ...

extracting clinical variables from Excel datasheets, bitmap ...
images and landmark coordinates.

4 %
5 % Author: Nicolas Tiaki Otsu (s072254@student.dtu.dk)
6 % Last edited: June 13, 2011
7 %
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8 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
9

10 % Set base directories
11 base.am='E:\LADIS\ccam\';
12 dir bmp.am=dir([base.am '*.bmp']);
13 dir mat.am=dir([base.am '*.mat']);
14 base.cp='E:\LADIS\cccp\';
15 dir bmp.cp=dir([base.cp '*.bmp']);
16 dir mat.cp=dir([base.cp '*.mat']);
17 base.ladis='E:\LADIS\ccladis\';
18 dir bmp.ladis=dir([base.ladis '*.bmp']);
19 dir mat.ladis=dir([base.ladis '*.mat']);
20

21 base.excel='E:\LADIS\Excel\';
22

23 save('dirs','dir bmp','dir mat','base')

Listing B.2: Matlab code for setting file directories.

1 % clinimp.m %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
2 %
3 % Description: Script extracts clinical variables from LADIS
4 % database Excel sheets. Detects test persons with
5 % all associated clinical variables and saves data in
6 % clinimp.mat.
7 %
8 % Author: Nicolas Tiaki Otsu (s072254@student.dtu.dk)
9 % Last edited: June 4, 2011

10 %
11 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
12

13 % Load directories for data extraction (dirs.m):
14 load dirs
15

16 % Import 'MEMORY', 'MEM3y', 'SPEED', 'SPEED3y', 'EXECUTIVE', ...
'EXEC3y':

17 [full.num.compound measures wp4,full.txt.compound measures wp4,¬] ...
= ...

18 xlsread([base.excel 'compound measures wp4']);
19 order = [1 12 2 11 3 10];
20 clin.vars = full.txt.compound measures wp4(1,order+1);
21 clin.num = full.num.compound measures wp4(:,order);
22

23 % Import 'verbal', 'verbal3y', 'gdstotal', 'gdstotal3y':
24 [full.num.table2 baseline,full.txt.table2 baseline,¬] = ...
25 xlsread([base.excel 'table2 baseline.xls']);
26 [full.num.table2 3y,full.txt.table2 3y,¬] = ...
27 xlsread([base.excel 'table2 3y.xls']);
28

29 % Correct full.num.table2 3y due to xlsread not properly ...
inserting AM2, AM3 and AM4:

30 full.num.table2 3y = [repmat(str2num('NaN'),3,207); ...
full.num.table2 3y];
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31 order bl = ...
[find(ismember(full.txt.table2 baseline(1,:),'verbal')) ...

32 find(ismember(full.txt.table2 baseline(1,:),'gdstotal'))];
33 order fu = [find(ismember(full.txt.table2 3y(1,:),'verbal3y')) ...
34 find(ismember(full.txt.table2 3y(1,:),'gdstotal3y'))];
35

36 % Update clin.vars and clin.num:
37 for i = 1:2
38 clin.vars = [clin.vars ...

full.txt.table2 baseline(1,order bl(i)) ...
39 full.txt.table2 3y(1,order fu(i))];
40 clin.num = [clin.num ...

full.num.table2 baseline(:,order bl(i)−1) ...
41 full.num.table2 3y(:,order fu(i)−1)];
42 end
43

44 % Import 'sex', 'birthday', 'daterif', 'datefu3':
45 [full.num.table1 baseline,full.txt.table1 baseline,¬] = ...
46 xlsread([base.excel 'table1 baseline.xls']);
47 [full.num.table1 3y,full.txt.table1 3y,raw] = ...
48 xlsread([base.excel 'table1 3y.xls']);
49

50 sexcol = find(ismember(full.txt.table1 baseline(1,:),'sex'));
51 male = ismember(full.txt.table1 baseline(2:end,sexcol),'M');
52 fema = ¬male;
53 bdaycol = ...

find(ismember(full.txt.table1 baseline(1,:),'birthday'));
54 daterifcol = ...

find(ismember(full.txt.table1 baseline(1,:),'daterif'));
55 datefu3col = find(ismember(full.txt.table1 3y(1,:),'datefu3'));
56 agebl = computeage(full.txt.table1 baseline(:,bdaycol), ...
57 full.txt.table1 baseline(:,daterifcol));
58 agefu = computeage(full.txt.table1 baseline(:,bdaycol), ...
59 full.txt.table1 3y(:,datefu3col));
60

61 % Update clin.vars and clin.num
62 clin.vars = [clin.vars 'age' 'age3y' 'male' 'female'];
63 clin.num = [clin.num agebl agefu male fema];
64

65 % Find persons for whom all vars exists for both bl and fu:
66 index = find(sum(¬isnan(clin.num)')==length(clin.vars));
67 clin.num = clin.num(index,:);
68 clin.name = full.txt.compound measures wp4(index,1);
69

70 save('clinimp','clin','full')

Listing B.3: Matlab code for extracting clinical variables from the LADIS Excel
datasheets and collect test persons who have all selected clinical variable data.

1 function age = computeage(bday, cday)
2

3 % computeage.m %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
4 %
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5 % Description: Function for computing the age as difference ...
between two given dates.

6 %
7 % Call: AGE = COMPUTEAGE(BDAY, CDAY)
8 %
9 % Input: BDAY, birthday cell in the form (n,dd−mm−yyyy) ...

with n
10 % being the number of observations.
11 % CDAY, checkdate cell in the form (n,dd−mm−yyyy).
12 %
13 % Output: AGE, double (n,1) vector with n computed ages.
14 %
15 % Author: Nicolas Tiaki Otsu (s072254@student.dtu.dk)
16 % Last edited: June 4, 2011
17 %
18 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
19

20 age = zeros(size(bday));
21 for i = 2:length(age)
22 if sum(cday{i}) 6= 0
23 if str2double(cday{i}(4:5)) > str2double(bday{i}(4:5))
24 age(i) = str2double(cday{i}(7:10)) − ...

str2double(bday{i}(7:10));
25 end
26 if str2double(cday{i}(4:5)) < str2double(bday{i}(4:5))
27 age(i) = str2double(cday{i}(7:10)) − ...
28 str2double(bday{i}(7:10)) − 1;
29 end
30 if str2double(cday{i}(4:5)) == str2double(bday{i}(4:5))
31 if str2double(cday{i}(1:2)) < str2double(bday{i}(1:2))
32 age(i) = str2double(cday{i}(7:10)) − ...
33 str2double(bday{i}(7:10)) − 1;
34 else
35 age(i) = str2double(cday{i}(7:10)) − ...
36 str2double(bday{i}(7:10));
37 end
38 end
39 else
40 age(i) = str2double(cday{i});
41 end
42 end
43 age = age(2:end);

Listing B.4: Matlab function for computing the test person ages.

1 function [imgname clin LMi data Data x] = convertname(clin)
2

3 % convertname.m %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
4 %
5 % Description: Function converts test person names from the ...

LADIS Access database nomenclature to the nomenclature used ...
for the .bmp and edited corpus callosum contour landmark ...
coordinates. Function also corrects for minor ...
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inconsistencies in the nomenclature. Finally, function sorts ...
away those test person names that do not have both baseline ...
and follow−up .bmp images and coordinates associated with them.

6 %
7 % Call: [IMGNAME CLIN LMI DATA1 DATA2 X] = CONVERTNAME(CLIN)
8 %
9 % Input: CLIN, (n,1) struct with field 'NAME' consisting ...

of strings with test person codes of the form 'XXnn', in ...
which XX signifies the hospital code and nn, the person ...
number. n signifies the number of observations. The form ...
'XXnn' obeys the nomenclature for the LADIS Access database.

10 %
11 % Output: IMGNAME, (n,2) struct with person number names ...

obeying the nomenclature for the .bmp images and edited ...
corpus callosum contour landmark coordinates. First column ...
is baseline name, second column is follow−up name.

12 % CLIN, struct with the 'NAME' field adjusted to ...
correspond with the test person names in imgname. The ...
remained outputs are passed on via the functions that are ...
called by convertname.m

13 %
14 % Author: Nicolas Tiaki Otsu (s072254@student.dtu.dk)
15 % Last edited: June 4, 2011
16 %
17 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
18

19 load dirs
20

21 matches = lower(clin.name);
22

23 centers = {'am';'cp';'fl';'gr';'gt';'he';'hu';'ls';'ma';'nc';'pa'};
24 % Important note: There does not exist fu scans for nc ...

(centers(10))!
25

26 % Load data from all 11 centers into data
27 for i = 1:86
28 data(i)=load([base.am dir mat.am(i).name]);
29 Data.am(i)=load([base.am dir mat.am(i).name]);
30 end
31 for i = 1:107
32 data(end+1)=load([base.cp dir mat.cp(i).name]);
33 Data.cp(i)=load([base.cp dir mat.cp(i).name]);
34 end
35 cent.bl = zeros(785+length(data),length(matches));
36 cent.fu= zeros(785+length(data),length(matches));
37 for i = 1:785
38 data(end+1)=load([base.ladis dir mat.ladis(i).name]);
39 Data.ladis(i)=load([base.ladis dir mat.ladis(i).name]);
40 end
41

42 % Add second column to matches
43 for k = 1:11
44 for i = 1:length(matches)
45 if findstr(char(matches(i)),char(centers(k)))
46 matches{i,2} = k;
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47 elseif matches{i,2} < 1
48 matches{i,2} = 0;
49 end
50 end
51 end
52

53 for i = 1:length(data)
54 for j = 1:size(matches,1)
55 if length(matches{j,1}) == 3
56 tmp = [matches{j,1}(1:2) '0' matches{j,1}(3)];
57 else if length(matches{j,1}) == 5
58 tmp = [matches{j,1}(1:2) matches{j,1}(4:5)];
59 else if length(matches{j,1}) == 4
60 tmp = matches{j,1};
61 end
62 end
63 end
64 if findstr(data(i).basename(2:6),[tmp(1:2) '1' tmp(3:4)])
65 cent.bl(i,j) = matches{j,2};
66 end
67 if findstr(data(i).basename(2:6),[tmp(1:2) '2' tmp(3:4)])
68 cent.fu(i,j) = matches{j,2};
69 end
70 end
71 end
72

73 % Locate rows and cols for persons with matches for all vars ...
(.full) and for individual hospitals (.part)

74 [row.bl.full col.bl.full] = find(cent.bl);
75 for i = 1:length(centers)
76 [row.bl.part{i} col.bl.part{i}] = find(cent.bl == i);
77 end
78

79 [row.fu.full col.fu.full] = find(cent.fu);
80 for i = 1:length(centers)
81 [row.fu.part{i} col.fu.part{i}] = find(cent.fu == i);
82 end
83

84 % Find matching stringnames for baseline and follow−up and ...
update imgname

85 k = 0;
86 newclin.name = [];
87 for i = 1:length(row.bl.full)
88 for j = 1:length(row.fu.full)
89 if findstr(data(row.bl.full(i)).basename([2:3 5:6]), ...
90 data(row.fu.full(j)).basename([2:3 5:6]))
91 newclin.name{end+1} = ...

data(row.bl.full(i)).basename([2:3 5:6]);
92 k = k + 1;
93 imgname{k,1} = data(row.bl.full(i)).basename;
94 imgname{k,2} = data(row.fu.full(j)).basename;
95 end
96 end
97 end
98
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99 % Update clin to contain only test persons who correspond to ...
those in imgname and collect .bmp and landmark indices to ...
use for SPCA

100 [LMi clin x] = clinred(data,imgname,clin);

Listing B.5: Matlab function for converting test person names from LADIS Excel
datasheet nomenclature to that of the bitmap and mat file names. Function
corrects for minor inconsistencies in the naming pattern of the Excel datasheets
and collects data for those test person names who have both baseline and follow-
up scans made.

1 function [LMi clin x] = clinred(data,imgname,clin)
2

3 % clinred.m %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
4 %
5 % Description: Function for reducing CLIN so that the test ...

person names correspond to those of imgname. Function also ...
returns LMI, a struct holding the indexes to be used for ...
collecting matching .bmp and edited corpus callosum contour ...
landmark coordinates.

6 %
7 % Call: [LMI CLIN X] = CLINRED(DATA,IMGNAME,CLIN)
8 %
9 % Input: DATA, struct containing field 'basename' with ...

string of test person name.
10 % IMGNAME, (n,2) cell containing strings of test ...

person names. First column is baseline, second, follow−up.
11 % CLIN, struct with double type field 'NUM' of ...

size (m,p) with clinical observation data and with m>n being ...
the unreduced number of test persons and p being the number ...
of clinical variables. CLIN also holds cell type field ...
'NAME' of size (m,1) with m unreduced test person names.

12 %
13 % Output: LMI, struct with fields 'AM', 'CP', 'LADIS' and ...

'FULL' containing indexes to be used to identify in which ...
folders which .bmp and edited corpus callosum contour ...
landmark coordinates are found. Remaining outputs are passed ...
on by the functions that are called by clinred.m

14 %
15 % Author: Nicolas Tiaki Otsu (s072254@student.dtu.dk)
16 % Last edited: June 6, 2011
17 %
18 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
19

20 load dirs
21 matches = lower(clin.name);
22 centers = {'am';'cp';'fl';'gr';'gt';'he';'hu';'ls';'ma';'nc';'pa'};
23

24 % Create LMi index struct
25 LMi.am = 0; LMi.cp = 0; LMi.ladis = 0;
26 for i = 1:length(imgname)
27 for j = 1:length(data)
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28 for k = 1:2
29 if sum(findstr(imgname{i,k}, data(j).basename))
30 if findstr(imgname{i,k}(2:3), centers{1})
31 LMi.am(end+1,k) = j;
32 end
33 if findstr(imgname{i,k}(2:3), centers{2})
34 LMi.cp(end+1,k) = j;
35 end
36 if ¬sum(findstr(imgname{i,k}(2:3), centers{1})) ...

&& ¬sum(findstr(imgname{i,k}(2:3), centers{2}))
37 LMi.ladis(end+1,k) = j;
38 end
39 end
40 end
41 end
42 end
43

44 LMi.am = LMi.am(2:end,:); LMi.cp = LMi.cp(2:end,:); LMi.ladis = ...
LMi.ladis(2:end,:);

45 LMi.full = [LMi.am; LMi.cp; LMi.ladis];
46

47 % Remove zero values in LMi struct fields
48 LMitemp = LMi;
49 LMitemp.am(LMitemp.am == 0) = [];
50 LMitemp.cp(LMitemp.cp == 0) = [];
51 LMitemp.ladis(LMitemp.ladis == 0) = [];
52 LMitemp.full(LMitemp.full == 0) = [];
53

54 LMi.am = reshape(LMitemp.am,length(LMi.am)/2,2);
55 LMi.cp = reshape(LMitemp.cp,length(LMi.cp)/2,2);
56 LMi.ladis = reshape(LMitemp.ladis,length(LMi.ladis)/2,2);
57 LMi.full = reshape(LMitemp.full,length(LMi.full)/2,2);
58

59 % Adjust indeces of LMi.cp and LMi.ladis to match with folder ...
indeces

60 LMi.cp = LMi.cp − length(dir bmp.am);
61 LMi.ladis = LMi.ladis − length(dir bmp.am) − length(dir bmp.cp);
62

63 % Use the baseline−follow−up matches in imgname to reduce the ...
test person names and data in clin.name and clin.num to ...
appropriately match

64 comp = 0;
65 for i = 1:length(LMi.full)
66 for j = 1:length(matches)
67 if length(matches{j,1}) == 3
68 tmp = [matches{j,1}(1:2) '0' matches{j,1}(3)];
69 else if length(matches{j,1}) == 5
70 tmp = [matches{j,1}(1:2) matches{j,1}(4:5)];
71 else if length(matches{j,1}) == 4
72 tmp = matches{j,1};
73 end
74 end
75 end
76 if findstr(data(LMi.full(i,1)).basename([2:3 5:6]), tmp)
77 comp(end + 1) = j;
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78 end
79 end
80 end
81

82 comp = comp(2:end);
83 clin.name = clin.name(comp,:);
84 clin.num = clin.num(comp,:);
85

86 % Create struct x holding both edited and non−edited landmark ...
coordinates for the test person indeces in LMi.full

87 x = getcoords(data,LMi);
88

89 % Assuming that last four columns of clin.vars are 'age', ...
'age3y', 'male', 'female', subtract follow−up data from ...
baseline data for all other columns and store in clin.∆. ...
Also create '(diff)' variable names in clin.dvars

90 clin = ∆clin(clin);

Listing B.6: Matlab function responsible for collecting those test persons from
the Excel datasheets that match with those of the bitmap and mat files.
Function also returns LMi which holds indeces to be used for collecting matching
bitmap images and coordinates.

1 function x = getcoords(data,LMi)
2

3 % getcoords.m %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
4 %
5 % Description: Function for extracting both edited and ...

non−edited corpus callosum contour landmark coordinates.
6 %
7 % Call: X = GETCOORDS(DATA,LMI)
8 %
9 % Input: DATA, struct containing field 'basename' with ...

string of test person name.
10 % LMI, struct with fields 'AM', 'CP', 'LADIS' and ...

'FULL' containing indexes to be used to identify in which ...
folders which .bmp and edited corpus callosum contour ...
landmark coordinates are found.

11 %
12 % Output: X, struct holding the landmark coordinates ...

retrieved from DATA and chosen by the test person indeces in ...
LMI.FULL.

13 %
14 % Author: Nicolas Tiaki Otsu (s072254@student.dtu.dk)
15 % Last edited: June 5, 2011
16 %
17 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
18

19 % Create struct x holding both edited and non−edited landmark ...
coordinates for the test person indeces in LMi.full

20 for i = 1:length(LMi.full)
21 x.ed.bl(:,i) = [data(LMi.full(i,1)).landmarks edited(:,1); ...
22 data(LMi.full(i,1)).landmarks edited(:,2)];
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23 x.ed.fu(:,i) = [data(LMi.full(i,2)).landmarks edited(:,1); ...
24 data(LMi.full(i,2)).landmarks edited(:,2)];
25 x.ed.∆ norm(:,i) = normalize(x.ed.bl(:,i)) − ...
26 normalize(x.ed.fu(:,i));
27

28 x.ned.bl(:,i) = [data(LMi.full(i,1)).landmarks(:,1); ...
29 data(LMi.full(i,1)).landmarks(:,2)];
30 x.ned.fu(:,i) = [data(LMi.full(i,2)).landmarks(:,1); ...
31 data(LMi.full(i,2)).landmarks(:,2)];
32 x.ned.∆ norm(:,i) = normalize(x.ned.bl(:,i)) − ...
33 normalize(x.ned.fu(:,i));
34 end

Listing B.7: Matlab function for collecting landmark coordinates contained in
the data struct via the indeces stored in LMi.

1 function clin = ∆clin(clin)
2

3 % ∆clin.m %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
4 %
5 % Description: Function for computing the change in clinical ...

performance assessments from baseline to follow−up.
6 %
7 % Call: CLIN = DELTACLIN(CLIN)
8 %
9 % Input: CLIN, struct with double type field 'NUM' of ...

size (n,p) with clinical performance data of n test persons ...
and p clinical variables. CLIN also holds cell type field ...
'VARS' of size (1,p) with clinical variable names.

10 %
11 % Output: CLIN, same as input, but with two extra fields ...

added. 'DELTA', double type of size (n,k), holds the ...
computed changes in the performance data after centering. ...
'DVARS', double type of size (1,k), holds the names of the k ...
variable names. k has size k = p/2−4 due to the assumption ...
that the last four columns of CLIN.VARS are 'AGE', 'AGE3y', ...
'MALE', 'FEMALE', which are variables that do not need their ...
baseline−follow−up differences computed.

12 %
13 % Author: Nicolas Tiaki Otsu (s072254@student.dtu.dk)
14 % Last edited: June 14, 2011
15 %
16 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
17

18 tmp = clin.num(:,1:(length(clin.vars)−4));
19 for i = 1:(size(tmp,2))/2
20 clin.∆(:,i) = center(tmp(:,2*i)) − center(tmp(:,2*i−1));
21 clin.dvars(i)= {[clin.vars{2*i−1} '(diff)']};
22 end

Listing B.8: Matlab function for computing the difference in the clinically
assessed performance parameters from baseline to follow-up.
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1 % inspect.m %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
2 %
3 % Description: Script sort away test persons with erroneous ...

edited landmarks associated with their MR scans.
4 %
5 % Author: Nicolas Tiaki Otsu (s072254@student.dtu.dk)
6 % Last edited: June 6, 2011
7 %
8 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
9

10 load dirs
11

12 folders = {'am','cp','ladis'};
13 axisstep = .2;
14 for i = 1:length(folders);
15 for j = 1:length(LMi.(char(folders(i))))
16 % if ¬imgsort 01 cell{i,j}
17

18 % Load corresponding baseline and follow−up images for ...
comparance

19 Ibl = imread([base.(char(folders(i))) ...
20 dir bmp.(char(folders(i))) ...
21 (LMi.(char(folders(i)))(j,1)).name]);
22 Ifu = imread([base.(char(folders(i))) ...
23 dir bmp.(char(folders(i))) ...
24 (LMi.(char(folders(i)))(j,2)).name]);
25

26 LM.bl = ...
Data.(char(folders(i)))(LMi.(char(folders(i)))(j,1));

27 LM.fu = ...
Data.(char(folders(i)))(LMi.(char(folders(i)))(j,2));

28

29 % Plot baseline image with CC landmarks (both edited and ...
non)

30 subplot(2,1,1)
31 imagesc(Ibl), colormap gray, hold on
32 plot([LM.bl.landmarks edited(:,1); ...

LM.bl.landmarks edited(1,1)], ...
33 [(LM.bl.landmarks edited(:,2)+1); ...

(LM.bl.landmarks edited(1,2)+1)],'.−y')
34 plot([LM.bl.landmarks(:,1); LM.bl.landmarks(1,1)], ...
35 [(LM.bl.landmarks(:,2)+1); ...

(LM.bl.landmarks(1,2)+1)],'o−r')
36 title([LM.bl.basename ...
37 ' − yellow: edited landmarks, red: non−edited ...

landmarks'])
38

39 axis([(1−axisstep)*min(LM.bl.landmarks edited(:,1)) ...
40 (1+axisstep)*max(LM.bl.landmarks edited(:,1)) ...
41 (1−axisstep)*min(LM.bl.landmarks edited(:,2)) ...
42 (1+axisstep)*max(LM.bl.landmarks edited(:,2))])
43 axis off
44

45 % Plot follow−up image with CC landmarks (both edited ...
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and non)
46 subplot(2,1,2)
47 imagesc(Ifu), colormap gray, hold on
48 plot([LM.fu.landmarks edited(:,1); ...

LM.fu.landmarks edited(1,1)], ...
49 [(LM.fu.landmarks edited(:,2)+1); ...

(LM.fu.landmarks edited(1,2)+1)],'.−y')
50 plot([LM.fu.landmarks(:,1); LM.fu.landmarks(1,1)], ...
51 [(LM.fu.landmarks(:,2)+1); ...

(LM.fu.landmarks(1,2)+1)],'o−r')
52 % plot(LM.fu.landmarks edited(:,1), ...
53 % LM.fu.landmarks edited(:,2)+1,'.−y')
54 % plot(LM.fu.landmarks(:,1),LM.fu.landmarks(:,2)+1,'o−r')
55 title([LM.fu.basename ...
56 ' − yellow: edited landmarks, red: non−edited ...

landmarks'])
57

58 axis([(1−axisstep)*min(LM.fu.landmarks edited(:,1)) ...
59 (1+axisstep)*max(LM.fu.landmarks edited(:,1)) ...
60 (1−axisstep)*min(LM.fu.landmarks edited(:,2)) ...
61 (1+axisstep)*max(LM.fu.landmarks edited(:,2))])
62 axis off
63

64 % imgsort 01 cell{i,j} = waitforbuttonpress;
65 pause
66 clf
67 end
68 end
69 % end
70

71 % Save first sorting (only obviously non−erroneous landmarks ...
accepted)

72 % save imgsort 01 cell imgsort 01 cell
73

74 load imgsort 01 cell
75 % Convert imgsort 0x from cell to numerical matrix
76 for i = 1:size(imgsort 01 cell,1)
77 for j = 1:size(imgsort 01 cell,2)
78 if imgsort 01 cell{i,j}
79 imgsort 01(i,j) = imgsort 01 cell{i,j};
80 else
81 imgsort 01(i,j) = 0;
82 end
83 end
84 end
85

86 % Reduce LMi according to sorting and create sortindex for later ...
use when reducing number of clinical observations in clin

87 sortindex = 0;
88 for i = 1:size(imgsort 01,1)
89 k = size(LMi.(char(folders(i))),1);
90 for j = 1:size(imgsort 01,2)
91 if j ≤ k
92 sortindex(end+1) = imgsort 01 cell{i,j};
93 if ¬imgsort 01(i,j)
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94 LMi.(char(folders(i)))(j,:) = 0;
95 end
96 end
97 end
98 end
99 sortindex = sortindex(2:end);

100

101 % Remove zero indeces in LMi and collect in LMi.full
102 LMi.am = reshape(LMi.am(LMi.am 6= 0),sum(find(LMi.am 6= 0) ...
103 ./find(LMi.am 6= 0))/2,2);
104 LMi.cp = reshape(LMi.cp(LMi.cp 6= 0),sum(find(LMi.cp 6= 0) ...
105 ./find(LMi.cp 6= 0))/2,2);
106 LMi.ladis = reshape(LMi.ladis(LMi.ladis 6= 0),sum(find(LMi.ladis 6=...

0) ...
107 ./find(LMi.ladis 6= 0))/2,2);
108 LMi.full = [LMi.am; LMi.cp; LMi.ladis];
109

110 % new LMi and sortindex is saved under reduction 03

Listing B.9: Matlab script for preparing for last reduction step of test persons
based on sorting away erroneous edited corpus callosum contour landmarks that
do not match the bitmap images based on visual inspection.

1 function clin = clinred 02(clin,sortindex)
2

3 % clinred 02.m %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
4 %
5 % Description: Third function for reducing number of clinical ...

variables.
6 %
7 % Call: CLIN = CLINRED 02(CLIN,SORTINDEX)
8 %
9 % Input: CLIN, struct with double type field 'NUM' of ...

size (m,p) with m unreduced observations and p clinical ...
variables, cell type field 'NAME' of size (m,1) with test ...
person number according to LADIS Excel database ...
nomenclature, and double type field 'DELTA' of size (m,p) ...
containing computed baseline−follow−up differences in ...
clinical observations.

10 % SORTINDEX, double type of size (1,n) with n ...
being the number of desired, reduced observations.

11 %
12 % Output: CLIN, with mentioned fields with number of ...

observations reduced from m to n.
13 %
14 % Author: Nicolas Tiaki Otsu (s072254@student.dtu.dk)
15 % Last edited: June 6, 2011
16 %
17 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
18

19 load dirs
20

21 j = 0;
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22 clear num, clear ∆, clear name
23 for i = 1:size(clin.num,1)
24 if sortindex(i)
25 j = j + 1;
26 num(j,:) = clin.num(i,:);
27 name{j,:} = clin.name{i};
28 ∆(j,:) = clin.∆(i,:);
29 end
30 end
31 clin.num = num;
32 clin.name = name;
33 clin.∆ = ∆;

Listing B.10: Matlab function for performing the last reduction step based on
the sortindex list created by using the script inspect.m in Listing B.9.

1 function [score s] = computescore(spca,clin,x)
2

3 % computescore.m %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
4 %
5 % Description: Function for computing sparse scores.
6 %
7 % Call: [SCORE S] = COMPUTESCORE(SPCA,CLIN,X)
8 %
9 % Input: SPCA, struct with fields SL with sparse ...

loadings, SV, sparse loading vectors, PCAL, regular ...
loadings, PCAV, regular loading vectors.

10 % CLIN, struct with clinical variables.
11 % X, struct with edited landmark coordinates.
12 %
13 % Output: SCORE, cell of dimension (K, j) with K being the ...

number of sparse principal components and j being the number ...
of stop numbers. Each field is a double of the dimension ...
(1,n) with n being the number of observations.

14 % S, cell of dimension (1,K) containing the same ...
information as SCORE. Each field is of dimensions (n, K)

15 %
16 % Author: Nicolas Tiaki Otsu (s072254@student.dtu.dk)
17 % Last edited: June 15, 2011
18 %
19 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
20

21 m = size(x.ed.∆ norm,2);
22 c = size(spca.sl,2);
23 r = size(spca.sl(1).k10,2);
24 l = length(clin.dvars);
25 for i = 1:r
26 for j = 1:c
27 score{i,j} = spca.sl(j).k10(:,i)'*x.ed.∆ norm;
28 end
29 end
30

31 for i = 1:r
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32 s{i}=reshape([score{:,i}],m,r);
33 end

Listing B.11: Matlab function computing the principal scores for use in the
regression analysis as described in Section 3.3.3.

1 function [pvals betas] = newglm(responses,data)
2

3 % newglm.m %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
4 %
5 % Description: Function for implementing the regression ...

analysis between the responses and data.
6 %
7 % Call: [PVALS BETAS] = NEWGLM(RESPONSES,DATA)
8 %
9 % Input: RESPONSES, struct with field 'DELTA' of type ...

double and size (n,j) with n being the number of ...
observations and j being the number of clinical variables.

10 %
11 % DATA, cell of size (m, 1) with m being the ...

number of principal components used for the analysis. Each ...
cell entry is a double of size (1,n).

12 %
13 % Output: PVALS, double of size (n,j) showing ...

corresponding p−values for each entry in the RESPONSES.DELTA ...
field.

14 % BETAS, double of size (j,n) showing ...
corresponding beta coefficients for each entry in the ...
transposed RESPONSES.DELTA field.

15 %
16 % Author: Nicolas Tiaki Otsu (s072254@student.dtu.dk)
17 % Last edited: June 14, 2011
18 %
19 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
20

21 for i = 1:size(responses.∆,2)
22 for j = 1:size(data,1)
23 stats{i,j} = regstats(responses.∆(:,i),data{j},'linear', ...
24 {'fstat','rsquare','beta'});
25 pvals(i,j) = stats{i,j}.fstat.pval;
26 betas(i,j) = stats{i,j}.beta(2);
27 rsquares(i,j) = stats{i,j}.rsquare;
28 end
29 end
30 pvals = pvals';
31 end

Listing B.12: Matlab function for calling regstats for use in the regression
analysis as described in Section 2.4.

1 % defmodes.m %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
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2 %
3 % Description: Script to generate deformation mode plots. spca ...

struct with spca data and x struct with landmark data needs ...
to be loaded prior to running this script. The user must ...
choose (a) between using mean baseline or follow−up CC shape ...
and also choose (b) whether to plot the first or last 10 ...
stop numbers. For making choices, outcomment the lines ...
mentioned where the text Choice (a) or Choice (b) occur.

4 %
5 % Author: Nicolas Tiaki Otsu (s072254@student.dtu.dk)
6 % Last edited: June 14, 2011
7 %
8 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
9 xs = [1:78 1];

10 ys = [79:156 79];
11 stop = −round(linspace(2,156,20));
12

13 % Compute mean baseline and follow−up shapes
14 x.bl mean = mean(x.ed.bl,2);
15 x.fu mean = mean(x.ed.fu,2);
16

17 % Choice (b): Select first/second following line to select ...
first/last 10

18 % stop numbers
19 spca.sl = spca.sl(1:10); spca.sv = spca.sv(1:10);
20 % spca.sl = spca.sl(11:20); spca.sv = spca.sv(11:20);
21

22 c = size([spca.sl(1).k10],2);
23 r = length(spca.sl);
24

25 % Choice (a): Select first/second following line to select ...
baseline/follow−up

26 normed = normalize(x.bl mean);
27 % normed = normalize(x.fu mean);
28

29 clear LMp
30 std = 1;
31 figure('Position',get(0,'ScreenSize'))
32 for j = 1:c
33 for i = 1:r
34 LMp.bl p(:,i) = normed + std*sqrt(abs(spca.sv(j).k10(i)) ...

*abs(spca.sl(j).k10(:,i)));
35 LMp.bl m(:,i) = normed − std*sqrt(abs(spca.sv(j).k10(i)) ...

*abs(spca.sl(j).k10(:,i)));
36

37 subplot(r,c,r*(i−1) + j)
38 plot(LMp.bl p(xs,i), − LMp.bl p(ys,i),'g−','LineWidth',2);
39

40 if j == 1
41 ylabel(['PC' num2str(i)])
42 end
43

44 hold on
45 plot(LMp.bl m(xs,i), − LMp.bl m(ys,i),'r−','LineWidth',2);
46 plot(normed(xs), − normed(ys),'b−','LineWidth',2)
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47 set(gca,'xtick',[],'ytick',[])
48

49 if i == 1 && j == 5
50 % Choice (a): Select first/second following line to ...

select baseline/follow−up
51 title(['Mean baseline shape (blue), ...

plus/minus',num2str(std),' standard deviation ...
(green/red)'],'FontSize',14)

52 % title(['Mean follow−up shape (blue), plus/minus ...
',num2str(std),' standard deviation (green/red)'],'FontSize',14)

53

54 end
55 axis([−.18 .19 −.09 .08])
56 end
57

58 if i == r
59 % Choice (b): Select first/second following line to ...

select first/last 10 stop numbers
60 xlabel(['n = ' num2str(−stop(j))])
61 % xlabel(['n = ' num2str(−stop(j+10))])
62 end
63 end

Listing B.13: Matlab script for computing and visualizing the deformation
modes as described in Section 3.3.4.
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