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Abstract

This thesis presents an alternative method of organizing and rating music, using
the emotions expressed in music. This measure can serve as a standalone pa-
rameter for searching for new music or in combination with already established
methods e.g. happy jazz or sad rock. The approach is to create a mathematical
model that automatically can predict labels of emotional expression in music
based on audio content. The audio content is quantified using audio features us-
ing spectral, ceptral, temporal, musical and perceptual features computed from
7 different feature packs. To measure the emotions expressed in music a listening
experiment is developed using experimental design. Participants rate excerpt
of 15 seconds on two 9-point iconic scale (SAM) representing the dimensions
of valence and arousal. All ratings are modeled using fitted beta distributions,
where outliers are removed appropriately based on empirical measures. A thor-
ough investigation into the consequences of the design and the resulting ratings
is made. Furthermore the influence of participants’ musical experience, their
mood before starting the test and understanding of the test are investigated if
there is a connection to their emotional ratings.
Using audio features and emotional ratings a mathematical model is designed
where the best performing is a stepwise regression model trained on features
selected by a Sequential feature selection method using Least Squares and Root
Mean Squared Error. The most suitable features are found to model emotions
in music that include MFCC, Pulse Clarity, Main Loudness, Pulse Clarity, Spec-
tral Flatness per. band, Inharmonicity and CENS. Compared to a formulated
baseline error measure the model performs 15 % and 47 % better for valence
and arousal respectively. Resulting in an average error of 0.727 ratings on the
arousal scale and valence of 0.887 ratings given that participants rated on a
9 point scale. The model can be used to predict emotional labels for greater
datasets for future testing or to predict ratings on a shorter time scale to group
musical excerpt based on the dynamic emotional structure in music.
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Resumé

Denne opgave præsenterer en alternativ metode til at organisere og ordne musik
ved hjælp af det emotionelle indhold udtrykt i musik. Denne m̊alemetode kan
bruges som et selvstændigt parameter til at søge efter ny musik eller i kombina-
tion med allerede etablerede metoder som f.eks. ”glad jazz” eller ”sørgelig rock”.
Fremgangsm̊aden er at lave en matematisk model, der automatisk kan forudsige
værdier for følelser udtrykt i musik baseret p̊a lydindholdet. Lydindholdet er
kvantificeret ved hjælp audio features (spektral, cepstral, temporal, musikalske
og perceptuelle), der er beregnet ud fra 7 forskellige pakker af implementeringer.
Deltagere blev bedt om at bedømme musikklip af 15 sekunders varighed, p̊a en
9 punkts ikonisk skala, der repræsenterer de emotionelle dimensioner ophidselse
(opstemt-ikke optemt) og valens (positiv-negativ). Alle bedømmelser er model-
eret ved brug af beta fordelinger, hvor afvigere er fjernet ved hjælp af empiriske
metoder. En grundig undersøgelse af konsekvenserne af det udviklede design
og de heraf følgende bedømmelser er udført. Derudover bliver deltagernes mu-
siske baggrund, deres humør inden testens start og forst̊aelse af eksperimentet
undersøgt og set, om der er en forbindelse til deres emotionelle bedømmelser.
Ved brug af audio features og de emotionelle vurderinger er der designet en
matematisk model, hvor den model, der klarer sig bedst, er en trinvis regression-
smodel, der er trænet p̊a audio features udvalgt ved hjælp af Sequential feature
selection methode, der bruger Least Squares og Root Mean Squared Error. De
bedst egnede audio features til at modellere det udtrykte emotionelle indhold
i musik er MFCC, pulse clarity, main Loudness, pulse clarity, spectral flatness
per. band, inharmonicity and CENS, blandt mange andre. Sammenlignet med
et formuleret standard fejlm̊al resulterer den udviklede model i, at den klarer
sig henholdsvis 15 % og 47 % bedre for valens og ophidselse. Dette resulterer i
en gennemsnitlig fejl p̊a 0.727 trin for ophidselse og 0.887 trin p̊a valens skalaen,
forudsat at deltagere bedømmer p̊a en 9-punkt skala. Den udviklede model kan
bruges til at forudsige emotionelle værdier for ny musik. Dette kan bruges til



iv

at udvælge egnede musikklip til at bedømme i lytteeksperimenter i fremtiden.
Den kan ogs̊a bruges til at forudsige emotionelle værdier p̊a en kortere tidsskala,
der kan bruges til at gruppere musikklip baseret p̊a den dynamiske emotionelle
struktur i musik.
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Chapter 1

Introduction

1.1 Background

Music has for many years been a means of entertainment for people around the
world. People listen to music when they need to cheer up, when they are happy
and want to dance, when they want to remember a loved one and feeling sad.
There are numerous occasions where music fits in naturally in our everyday life.
What exactly in music makes us prefer one track over another and what makes
us think that it is a e.g. happy or a sad song. These questions have puzzled
researchers and music producers for many years. One might say that music is
a form of communication or a way of communicating a specific feeling or emo-
tion, by means of expression. Often a person listens to a musical track and can
instantly tell you if the person likes it or not. If they have heard it before, know
someone that likes it, or everyone else likes it, etc. also influences if the person
prefers this track or not.
Finding new music has changed throughout history from going to the local
record store and ask for what the new music was and discovering what is new
through advertising in different media, such as radio, television, newspapers in-
cluding reviews of music and mouth to mouth through people you know.
In modern time the Internet has revolutionized the means of communicating
and advertising for different music. Now the availability is not limited due to
the music the local distributor or shops buy, but through the Internet vasts
amounts of music have become available to the general public. As the world
becomes more global and people are exposed to many different styles and genres
of music, musicians are inspired and genres merge. Before genres as rock, jazz
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and pop were perhaps clearly defined or separated, but now genres such as pop-
rock, pop-jazz and jazz-rock are emerging. Similarly artists are not only defined
by one genre but are often described by a great number of different genres. This
makes the recommendation and music search increasingly difficult.
Numerous search engines such as www.itunes.com and www.amazon.com etc.
are emerging in order to fill holes in the market so that music becomes fast and
easily available to people. New approaches to finding music is the fast arising
user communities such as www.last.fm where users indicate what genre, mood
or impression they got from an artist or song by tagging. They further use
programs such as www.audioscrobbler.com to track peoples listening habits
in order to make more specific recommendations to the user. For communities
such as Last.fm the sheer number of people voting/tagging a track or artist
makes it more likely it will be recommended to you. This is an inherent weak-
ness in finding relatively unknown music, since a great number of tags forming
a tag − cloud are needed before they will be recommended. Instead of users
rating or categorizing music experts also have their websites where they can
recommend music such as www.pandora.com and www.allmusic.com (AMG)
where genres, moods, styles and themes are rated. Common for these methods
of finding music you like is the dependence of other people have listened to it
before you.
As previously mentioned genres merge and become ever more difficult to dis-
tinguish such as the approximately 840 genres represented in AMG. For this
reason an alternative method of classifying music tracks is proposed in the form
of emotional content. This information could be used cross genres as a sup-
plement to the already existing descriptives such as artist, track name, album,
year, genre, etc. That could be happy jazz music from the 80´s or all sad Beatles
music.

1.2 Previous work

The paradigm is that there is an emotional reaction in humans due to music,
this reaction can be measured using an experimental setup. This emotional re-
action can be modeled using structural information about music. Many different
approaches have been made both in measuring emotional reaction elicited by
music, further to describe music in a descriptive language and last the use of
many different mathematical models. Almost all work that has been done in the
past differs in the way they represent emotions. There are two major fractions
within this modeling and that is the categorical modeling that is based on mu-
tually exclusive emotions (e.g. happy, sad, angry, aggressive, etc.) that is often
modeled using classification. The other is the dimensional model where emo-
tions are placed in a plane spanned by dimensions such as Valence and Arousal.
These types are often modeled using regression techniques. Indirectly the way
you measure or obtain emotional data then chooses the mathematical model

www.itunes.com
www.amazon.com
www.last.fm
www.audioscrobbler.com
www.pandora.com
www.allmusic.com


1.2 Previous work 3

chosen to model this. The work done within recent years in acquiring emotional
data, what mathematical models chosen and structural musical information is
then the main choices.

Emotional data
Work has been dominated by two different methods of obtaining descriptions
of humans emotional reaction to music. One being self-report methods using a
group of test participants to rate music stimuli and the other being the gathering
of so called tags from social websites. In [Hu and Downie, 2007] they create a
dataset of metadata from AMG, www.epinions.com and Last.fm. The AMG
has 183 different mood labels that are said to describe the song, album or “over
all body of work”, these include happy, sad, druggy, nocturnal, rollicking, wry
etc. By webmining AMG they obtain a data set and divide the tags into five
mood clusters. They combine genre and mood tags, usage-statistics and mood
tags and last artist and mood tags to form data sets. They show that for artist
and genre a dataset can be constructed verified by using corroborative data
analysis from Last.fm showing that their AMG data set is stable enough to be
constructed.
In [Laurier et al., 2009c] they create a semantic mood space using Last.fm tags
searching for 120 semantic mood terms among 7 mil. tags from over 0.5 mil.
songs. Out of the 120 adjectives a subset of 80 is used frequently, and out of
the 0.5 mil. tracks found with tags a subset of 60 thousand tracks has multiple
mood tags. Thus showing that these tags are rarely used by users tagging music.
Given so many sources of emotional data from web sources a possibility is to
combine them as was proposed in [Turnbull et al., 2007] they combine informa-
tion from social tags, webmining, surveys, autotags and listening games using
Rank based interleaving. Similar approach is done in [Laurier et al., 2009b].
For these simple types of metadata it is expected that people have some sort of
agreement. A problem is that the interface can inherently cause bias. Initially
a blank cloud is present when a new song or tracks is present on e.g. Last.fm.
Users then choose themselves what to tag, the system itself then shows to other
users before they tag what other people have tagged before. Making it much
easier to reach an agreement with other users, creating a bias. Another issue
is the tags themselves, what are they a measure of when using them for e.g.
as emotional rating. No real instructions are given on these pages, to what is
meant, so the information is vague.
Self-report methods using listening experiments have also been popular and in
recent years some work has been done in the MIR community. The Audio
Mood Classification (AMC) in the MIREX competition that is a part of the
ISMIR conferences has obtained a dataset of mood labels which is reviewed in
[Hu et al., 2008]. They use 5 clusters of emotional semantic descriptors includ-
ing Rowdy, Sweet, Literate, Witty, Volatile, etc. to describe those 5 clusters.
They use the developed Evalutron 6000, a web-based device to annotate the
musical excerpts by 1250 candidates. Each 30-seconds excerpt is rated using
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a single label for the whole track, which is chosen in the middle of each song
to reduce change in emotional content along the duration of the track. Their
criteria is 3 or 2 agreements between participants of mood cluster, where in
average they achieve 67.8% agreements and 32.2% disagreement in a total of
864 votes. In [Schmidt and Kim, 2010] they use Moodswings, a self-developed
interface for self-report rating within a self developed 2-dimensional emotional
model. Using 150.000 ratings of 1000 songs from the USPOP2002 data set
they create a model. This model is used to sample the entire dataset to create
a subset of 240 15 second excerpts chosen to approximate an even distribution
across the four primary quadrants of the A-V space. These excerpts are then
subjected to intense focus, to provide a significantly higher amount of ratings.
They argue that emotions change through time and therefore create a model
that models this emotional change using post-ratings.

Mathematical models
Different mathematical models and approaches have been used to model emo-
tions in music. In [Yang et al., 2008] they reach the best performance using a
Support V ector Machines (SVM) as the regressors where features are selected
using RReliefF and correlation between Arousal and Valence is reduced using
Principal Component Analysis (PCA). The best performance using R2 statis-
tics reaches 58.3% for arousal and 28.1% for valence.
In [Eerola et al., 2009] they compare 3 data reduction algorithms the Stepwise
Regression (SR), PCA and Partial Least Squares (PLS) regression. Their
best linear model is the PLS model using Box-Cox transformed variables, that
account for 72% for Valence, 85% for Activity and 79% for tension only using
soundtrack music.
In [Hu et al., 2008] they review 9 different approaches and they find that SVM is
the approach that reaches the highest performance of classification with different
implementations. LibSVM reaches 61% average accuracy, WekaSMO 58% and
DAG− SVM 57%, using a broad range of genres. Other approaches to model
the time varying emotional content in music is done by [Schmidt and Kim, 2010]
where they compare Multivariate Linear Regression (MLR), PLS, Support
V ector Regression (SVR) approaches first to predict the distribution for 15-
second clips and subsequently shorten the analysis window to follow 1-second
clips within the A-V space. Each musical excerpt is modeled with a single 2D-
Gaussian on the A-V space, where each point is a 1-second projection. They
find that using a combination of MLR in multiple stages provide the best per-
formance.
The issue is that all use a different emotional model and furthermore rating
scales, so comparison between them is very difficult. The emotional measuring
methods also differ so ratings or labels are obtained in many different ways, also
making it difficult to compare.
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Structural musical information
Within the MIR community both audio, MIDI and lyrical features have been
used to structurally describe music. Audio and acoustical features have been the
dominating source since the data is always present regardless of there is singing.
In [Kim et al., 2010] they review the most recent work within the modeling of
emotions in music. The show that the most frequent used features include, RMS
energy, MFCCs, spectral shape, spectral contrast, roughness, harmonic change,
key clarity, majorness, chromagram, chroma centroid and deviation, rhythm
strength, regularity, tempo, beat histograms, event density, attack slope and at-
tack time. In previous years a search of the main contributing features has been
to course in the modeling emotions in music, but this approach has not shown
any dominating factor. In recent years the course has been to use multiple
features subsequently employing dimensionality reduction techniques or feature
fusion. Regardless of feature fusion or dimensionality reduction methods, the
most successful systems combine multiple audio feature types.
The other major contributor to describing music structure has been lyrics. They
can be used as the only feature foundation or as a multi-modal modeling which
was investigated in [Lu et al., 2010] 26 audio features resulting in 79 dimen-
sions are used from jAudio, 102 dimension of MIDI and lyrical features using
a Bag-Of -Words (BOW) approach constructing both uni- and bi-gram feature
set using TD-IDF . The best performance was found using only audio features
with 59.8%, MIDI features only with 58.6% and lyricical features only with
49.1% of classification error. When combined all three in combination scores
highest by a margin resulting in 72.4% audio and lyrics 72%, MIDI and lyrics
71.2% and MIDI and audio 61.2% suggesting that MIDI gives the least amount
of contribution to classification accuracy. In [Hu and Downie, 2010] they also
compare lyrics and audio features performance in classification. Using 63 spec-
tral audio features from MARSY AS for the audio and BOW approach in the
lyrical feature set using content words (CW) that was constructed from differ-
ent N-Grams (Uni, Bi and Tri). They show that for their 18 mood categories,
seven of the lyrical feature types significantly outperform audio only categories.
Where only one audio feature outperformed all lyric-based features. They ar-
gue that their work was limited due to only using audio spectral features, where
other audio dimension should be considered in the future.

1.3 Modeling of emotions in music

The approach to model the emotional reaction by human to music is taken in
the direction of using emotional data that is acquired by self-designed experi-
ments. The sheer amount of data in the different social webs seem promising in
the MIR community. When modeling emotional content in music, that poten-
tially is changing through time, by using “1-tag fits all” data such as Last.fm
or others could be utilized by a mean effect. The problem is the bias which is
inherent in these types of websites, furthermore no verification or supervision
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can be made on data or experimental variables.
Choices of emotional models, structural musical data or mathematical models
to make this model cannot be made at this point. This is due to the great
variation in different error measures, measuring techniques, emotional models,
etc. used. Therefore this has to be analyzed further.
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1.4 Problem statement

The main problem of this project is

• The development of a method of extracting emotional information from
music.

• Finding a suitable emotional model to represent emotions in music.

• The extraction of structural data from musical tracks.

• To find specific structural information that describes emotions in music.

• To develop a mathematical model to use structural data from music to
predict emotional content in music.

• To verify the model performance using appropriate baseline error measure.

1.5 Approach

Since this project is very multidisciplinary the approach taken is to break down
the project into subproblems. Each subproblem will be handled in separate
chapters where results, discussion and part conclusions will be made for each
topic. Each topic can therefore be seen as independent chapters and can be read
as such. Concerns and thoughts raised along the research into the modeling of
emotions expressed in music, will be dealt with by introducing sections labeled
e.g. initial considerations in each chapter.

1.6 Thesis layout

• Chapter 2 contains an analysis of the aspect necessary to formulate a
problem specification based on the given problem statement. The aspects
of music, emotions and the cross field of emotions and music. The models
that describe them, the effect that music has on emotions, both expressed
and induced and how to quantify these will be presented.

• Chapter 3 as a result of the analysis audio and acoustical features are cho-
sen to describe music. In this section spectral, temporal, cepstral, musical,
perceptual features etc. will be presented. Furthermore an investigation
into what the effect of lossy audio compression, temporal alignment and
output corrections have on audio features is presented.

• Chapter 4 presents all the aspects of designing, executing and lastly the
results of a listening experiment, that has the purpose of collecting emo-
tional ratings of music. The influence of participants mood, personal data
and understanding of the test will be investigated.
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• Chapter 5 introduces different mathematical models, error measures, cross
validation schemes and presents the results of the modeling. Features ap-
propriate for modeling emotions in music are investigated, and clustering
of musical excerpts is attempted based on emotional dynamics.

Throughout the entire report the use of the appendix will be made in tight
connection with the main report. Cross references will be made often so for
convenience the appendix should be read in parallel to the main report to ease
the reading.

The structure of the appendix is that each chapter, e.g. 2, 3, 4 and 5 will have
an appendix for each i.e. A, B, C and D.

• Appendix A contains additional information regarding musical descriptors.

• Appendix B contains an overview of features, an investigation into the
effect of lossy-compression, resampling of features and output corrections
have on audio features.

• Appendix C contains the GUI used for both listening experiments, meta
data analysis and ratings by participants.

• Appendix D contains a list of the audio features chosen by 3 different
feature selection methods, an investigation into the correlation between
audio features and emotional ratings. Furthermore a clustering of musical
excerpts based on emotional dynamics.



Chapter 2

Analysis
In order to find a method to solve the problem statement an analysis of relevant
areas within music and psychology will be presented. In figure 2.1 a simplified
schematic is shown that represents the knowledge prior to the analysis. A mu-
sical source communicates to subjects through some channel, e.g. a concert,
headphones in the train, etc. The music reaches the subject which, using all
senses, perceives this music and based on this perception results in some emo-
tional reaction.

Therefore an investigation of music, how it’s structured and what describes

Figure 2.1: Simplified schematic of the structure that is the aim to model in this thesis.

it should be made. The influence of the channel, e.g. performance, acoustical
properties of playback, etc. on the resulting emotional response should be inves-
tigated. The human perception of sound and the resulting emotional response
should also be analyzed. Further a definition of emotions and the emotional
model that is needed in order to quantify them, should be analyzed. In this
section these elements will be discussed.

2.1 Music

Music as a term has been broadened through the evolution of humans, even
in the past few hundred years. From Wolfgang Amadeus Mozart in the 18th



10 Analysis

century producing classical music, to the the percussion group Stomp1 that plays
on oil barrels, plastic bags, metal bars, etc. Defining music is not trivial due
to its many varieties, even on a subjective level people enjoying Mozart would
not enjoy Thrash metal artists such as Biohazard or the music genre noted as
noise. The distinction between music and noise lies not in the sound, but in
the way human beings make use of it [Hallam et al., 2009]. From an acoustical
point of view that is not pragmatic when applied, since the judgment of an
acoustical signal being music, then becomes subjective. This approach is a two
sided matter in the music industry, how to judge what music is. Traditionally a
bottom-up approach has been used to determine what genre music is. Bottom-
up in the sense that the judgment of whether it was rock or pop was determined
by the musical instruments being played in the track, and the way they were
played. A more modern means of determining genre and music classification is
using social aspects about an artist, where these metadata regarding an artist
and the society they are represented in determines the genre. This applies to
all genres and types of music, so artists can still apply noise or pure voice and
still be classified as music. What we think of it is another matter and one just
has to remember that music is that art form which medium is sound, whatever
that is.

2.1.1 Musical Structure

In general a structure exists in music, often adapted from the classical mu-
sic. Western tonal music has developed a notation that represents pitch and
duration information fairly explicit, but intensity and tone quality only approx-
imately. Other relationships, such as group boundaries, metrical levels higher
than the measure, and patterns of motion, tension and relaxation are unspecified
[Palmer, 1997]. This view might not apply to all types of music but leaves the
room for personal expression of music, and many layers of coding messages to
the listener. In modern rock, pop, jazz, etc sheet music might not be the dom-
inant way of going about making music. “Jamming” and playing what sounds
right is an approach that is often used. This is very genre and culture specific.
Whereas modern pop music is rarely played live by musicians and is very much
“produced” and manipulated leaving small room for acoustical expression. Even
though modern music has changed a lot, structure with intro, bridge, chorus and
verse etc. is still very much used, both musically and lyrically.

2.1.2 Musical descriptors

Music performance is often seen as a means of communicating an idea or ex-
pression from a composer. A piece of music can be noted in some systematic
fashion and decoded and re-encoded by the artist playing the piece of music.
The audience then decodes the acoustical signal produced by the musicians into
some ideas [Palmer, 1997]. This acoustical signal consist of the music played

1http://www.stomponline.com
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by instruments, the lyrics of the song and the expression of the vocal. Of-
ten different descriptive words are association with music such as Pitch, Am-
bitus, Register, Harmonics, Harmony, Tonality, Brightness, Timbre, Loudness,
Roughness, Tone attack/voice onset, Tempo/Speech rate, Articulation/pauses,
Rhythm/meter/mode, Jitter/vibrato which are described in greater detail in
section A.1. These are used throughout music psychology and by musicians.
In [Leman et al., 2005] a descriptive hierarchy is adopted to distinguish between
the level of descriptors.

Figure 2.2: Illustration of 3 levels of musical descriptors.

The lowest level is the physical acoustical signal, which is represented as a wave-
form. The low-level descriptors consist of structural cues such as roughness,
onset, pitch prominence, articulation and so on. In [Schubert, 1999a] he further
suggests descriptors such as loudness, timbre and duration, where duration is
also related to articulation. Mid-level descriptors as semantical structural cues
such as rhythm patterns, melodic sequences and so on [Leman et al., 2005]. The
high-level descriptors are of quality descriptive nature, such as emotional adjec-
tives [Leman et al., 2005].
In [Schubert, 1999a] he suggests high level descriptors as harmony, voicing,
phrasing, texture, form and style. Although definitions and levels of the descrip-
tors are not always clear and the two levels low- and high level are extremes,
where rhythm, contour, envelope, and articulation lie in between.
It is clear that definitions are many and connections between low- and high level
features are not trivial.
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2.1.3 Music and Lyrics

The descriptors and structure discussed so far has primarily been the acoustical
aspect of music. An equal conveyor of information lies in the lyrical content of
a song, in the case of non-instrumental music. Often musical producers create
tracks by entwining lyrics, melody and different instrumentation to create an
emotional expression. The role that the lyrics play on the overall expression
of music is a subjective matter. Whether or not people listen to the words
or the melody, or they perceive it is a whole. In [Bonnel et al., 2001] the re-
lationship between lyrics and the music was investigated in French operatic
music. They show that song and music are not perceived as one percept but
rather that they are processed independently. Cognitively this implies that if
melody and lyrics are present we are able to distinguish the two sources of in-
formation separately. Even though we can process them independently they are
highly dependent on each other as investigated in [Nichols et al., 2009]. Here
the relationship between the lyrics and melody in western popular music was
investigated by statistical analysis. They investigate western tonal sheet music,
using a database of melody, lyrics and chords which includes timing information,
words boundaries, syllables and key information. They show that the level of
syllabic stress is highly correlated with the strength of the metric position. The
stopwords (at, or, the, of, etc.) are much less likely to coincide with melodic
peaks than non-stopwords, and strongly correlated with weak metric positions.
This shows that the composer of music synchronizes the structure of the lyrics
to match the expression of the melody and instrumentation.

2.2 Emotion

To make a model of the emotional content in music it is essential to define what
emotions are and further how to measure and relate them to each other. In
this section the terms behind emotion will be defined following a presentation of
different models that relate different adjectives that describe distinct emotions
from each other.

2.2.1 Definition of Emotion

Emotions are often defined as distinct feeling states such as happy or sad, al-
though different layers of feeling states exist, different affective terms are often
used to describe a specific state a person is in e.g. emotion, mood, affect, feel-
ing, arousal and appraisal. Affect is viewed as a more instinctive reaction to a
certain stimuli, this process is manifested in individuals before any more com-
plex emotional state can form and thus is underlying for many other term. It
is viewed as an umbrella term that covers evaluative or valenced states such as
emotion, mood and preference [Juslin and Västfäll, 2008]. The affective term
mood is used as the underlying emotional state, which often has lower intensity
and last longer for several hours to days [Juslin and Västfäll, 2008]. One can be
in a good mood but still suddenly feel angry. The term emotion or an emotional
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state is influenced by a number of emotion components such as the underlying
mood, physiological arousal, expression etc. It is of relative high intensity and
can last from minutes to hours [Juslin and Västfäll, 2008]. The term arousal
is used to describe the physiological arousal or the excitement involved in an
emotional state as valence is used to describe the positive or negative nature of
the emotion. Lastly the term feelings is used as the subjective evaluation of an
or all emotions, and thus they are often measured using self-report methods.

2.2.2 Models of emotions

Intuitively one could think of emotions as a result of some stimuli or situation,
the emotion then inflicts different bodily responses. For example if one would
be in danger of being killed, the person would feel fear and it would result in
increased heart beat. The opposite could also be true that we experience an
emotion such as fear due to the fact that we perceive our bodily functions in
response to an event. One could also argue that emotions exist as to signal
to the consciousness to reevaluate a situation. Equally the body can inhibit
emotional response to different events such as being less startled when antici-
pating a slamming door. Ruling out any or the inclusion of all is not a trivial
matter, instead it is interesting to look at how these emotions are described.
Adjectives like sad and happy are often used to describe emotions and affect
although one could find a great number of synonyms for happy such as cheerful,
contented, content, glad, elated, euphoric, felicitous, joyful and joyous. How do
these differ, how are they related and by how much? Models of emotions have
been attempted for many years in order to describe the relationship between
such adjectives. There exists two main directions in modeling emotions, one is
the categorical model the other the dimensional model

Categorical model assumes a few innate emotions that carry different meaning
such as happiness, sadness, fear, anger, disgust, etc. which are distinct and
independent. All other emotions can be derived from these basic emotions.
The amount or names of these basic emotions are often debated and no clear
consensus is known. Assessing music and the emotional content and expression
were done by [Hevner, 1936] who suggested that a long list of adjectives (67)
could be divided into eight subgroups. This would enable listeners easily and
accurately report his or her interpretation of the music. These include serious,
melancholy, sentimental, quiet, humorous, merry, sensational, vigorous etc.

Dimensional model assumes that all emotions are interrelated and can be
described in some emotional space spanned by a number of independent dimen-
sions. The distinction between independence of dimensions and the issue of
bipolarity is important when posing a research question. The question of the
bipolarity of any dimension is not equivalent to the question of how many inde-
pendent dimensions are required to describe affect [Russell and Carroll, 1999].
The issue of unipolarity or bipolarity will be discussed further in section 2.2.3.
Within psychology the number and choice of independent dimension to describe



14 Analysis

the emotional dimensional model is greatly discussed. Recently there seems to
be consensus on a model: a two-dimensional space where each dimension shows
independence [Russell and Barret, 1998]. In [Russell, 1980] he proposes a cir-
cumplex model of affect with two bipolar dimensions, valence and activation,
where as seen on figure 2.3(a). Later a model was also proposed as seen on fig-
ure 2.3(b) where a list of adjectives are placed along the circumference. Many
others assume this polar relation between the adjectives in the multidimensional
models. Where exactly the semantic descriptors lie on the circle circumference
is very different depending on measurements.

(a) Circumplex model of affect, from
[Russell, 1980]

(b) Circumplex model of affect , from
[Barrett and Russell, 1999]

Figure 2.3

By circumplex is meant that each adjective is spaced equidistant to the center of
a circle that is spanned by the two emotional dimensions, but does not imply that
they are evenly spaced around the circle [Russell and Barret, 1999]. The model
offers a structure for psychologists to represent Tcognitive structure behind af-
fect. It was supported by evidence of scaling 28 adjectives in 4 different ways.
The two-dimensional space is further explored in [Russell and Barret, 1998] where
the independence of the dimensions is tested. They show that the valence
dimension was independent of activation, positive affect the bipolar opposite
of negative affect, and deactivation the bipolar opposite of activation. Al-
though one can argue there to be many other dimensions, the two dimensions
are shown to account for most of the variance but not all, in affect rating
[Russell and Barret, 1998]. Another approach to the definition of a model is
made in [Russell and Barret, 1999] where more complex prototypical emotions
are modeled as several core affects. These core affects are reflected in a two di-
mensional bipolar model of pleasantness and activation. In [Barrett and Bliss-Moreau, 2009]
a more exploratory approach is made to the structure of the circumplex model
of affect. Although they do not read the evidence of which descriptors are best
suited for anchoring the circumplex model, when looking at the brain structure,
nonetheless descriptors can be scientifically useful. In [Posner et al., 2009] they
measure the correlation between ratings of valence and arousal when partici-
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pants are presented with emotion-denoting words and BOLD (Blood Oxygen
Level Dependent) signals measured using fMRI. They show that there exist
two underlying neural networks that subserve the affective dimensions of valence
and arousal.
Although research indicates that the two dimensions of valence, meaning pos-
itive or negative felt quality in all emotions and arousal or activation meaning
preparedness for action, are the main dimensions within modeling affect, more
dimensions are used by some. In [Bradley and Lang, 1994] they use a three
dimensional model to measure affect consisting of, affective valence (pleasant-
unpleasant), arousal (calm-excited) and a dimension called dominance or con-
trol, where they show that the last dimension is not strongly-related.

Other three-dimensional models can be found by combining the circumplex
model of Russell and Thayer´s variant. The resulting model have the dimen-
sions of valence, energy arousal and tension arousal, which is shown not to be
able to be reduced to a two-dimensional model [Zentner and Eerola, 2010].
Both the categorical and the dimensional models, although seemingly are oppo-
sites, can coexist by postulating that the core affect and the underlying mecha-
nisms are best described by a dimensional model. Where the conscious interpre-
tation of these are categorical and influenced by the conceptual categories people
have for emotions [Zentner and Eerola, 2010]. This Conceptual Act Model pro-
posed by Barrett then consists of two layers: the Interpretive layer and the
Affect layer, each described by the two models described.

2.2.3 Quantification of emotions

In order to model emotions it is essential to find a model that describes emo-
tions and within this model find a method to quantify them. These two topics
are highly interrelated where one quantification method or response format in-
directly implies the use of a certain set of models. It is further suggested that
in order to make a mathematical model of emotion in music it is necessary to
convert some measure of affect or emotions into numerical values. Five different
methods of measuring emotions are evaluated here.

Psychological behavioral, where experimenters and researchers observe test
subjects during an exposure to certain events, that could be music playing. In
this way the behavior or expressiveness can be interpreted into some emotional
space.

Psychophysiological is another method that would require medical or bio-
physical equipment in order to observe changes. Often used methods are Elec-
trocardiogram (ECG) for heart and pulse rate, different Biochemical responses
such as saliva, blood and urine samples, skin conductance, respiration, blood
pressure, muscular tension, temperature, chills, etc. In recent years methods
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such as Electroencephalography (EEG) have also been used. Common issue is
what and where something is measured, since emotions are not isolated and
often there is a mixture of different emotions at one time, and also evolving over
time. So is measured is not a trivial task.

Functional Neuroimaging Functional Magnetic Resonance Imaging (fMRI),
Positron Emission Tomography (PET)and other Event Related Potentials
(ERP) have been used. Common for the use of most physiological brain imaging
methods is the issue of noise and timing. Depending of the strength of the mag-
net the machine itself creates overwhelming noise of up to above 130 dB SPL,
which makes it difficult to listen to music. Different measures such as sparse
temporal sampling or Interleaved Silent Steady State : Exp (ISSS) imaging
can be used so that images are taken in interval leaving a quieter environment
when listening to music.

Self-report method which in principle is a very broad group, which includes
Likert rating scaling, adjective checklist, visual analogue scale, continuous report
instruments, ranking and matching. Self-report methods can be implemented
numerous ways, through PC interface, verbal report, through games, etc. A
number of likert scales was discussed in [Russell, 1980] where the issue of am-
biguous scales was discussed. By presenting a user with two 7-point unipolar
scale from 1 to 7 or a bipolar scale from -7 to 7 makes a great difference in
the way people rate, it gives an assumption of the way the given emotional
dimension is modeled. So which scales and the underlying assumption of the
emotional model is tightly connected.

In many self-report methods different types of scaling of emotions is required,
either unipolar or bipolar. It is therefore important to know the implications of
the use of either of them.

Bipolar is seen as two descriptors from a semantic vocabulary that are antonyms
such as happy and sad or unhappy. These are positioned opposite on an axis,
where a neutral term is centered between the two. These can either be measured
using unipolar or bipolar scales, which further results in problems in the proof of
bipolarity of affect. This is discussed in [Russell and Carroll, 1999] where they
investigated the bipolarity of positive and negative affect, by using a unipolar
format in order not to impose the assumption of bipolarity upon their data.
They conclude that their model and data indeed suggest that bipolarity exist
between positive and negative affect. The issue of response format will not be
discussed further here, but will be discussed in greater detail in 4.3.2.
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Unipolar measuring scales can be used to quantify multiple dimensional mod-
els, which in turn is a way to rate numerous adjectives on a scale from neutral
to e.g. happy. The evaluation of unipolar multidimensional structures is en-
twined with the issue of bipolarity. Many factors can mask bipolarity, and as
these artifacts are eliminated, unidimensional affect dimensions can be shown
to be part of a bipolar space [Russell and Barret, 1999]. An argument for the
unipolar format is the issue of people feeling both happy and unhappy at the
same time. It could be that they are depressed but happy to hear some mu-
sic. In [Russell and Carroll, 1999] and [Barrett and Bliss-Moreau, 2009] they
explain this with the argument of time, suggesting that people switch between
two or more different emotions such as happy and unhappy at some speed, thus
indicating a unipolar connection when it is still in fact bipolar.

Which scales and response formats to use is highly interrelated with the amount
of bias or which kind of bias one wishes to eliminate or choose to accept for the
experiment. Likewise what assumptions are made about the emotional model
as discussed previously.

Bias in self-report, some often encountered bias were discussed in [Zentner and Eerola, 2010]
and include.

• Demand characteristics, where the participant figures out what is being
tested and so conveying the hypothesis resulting in hypothesis-consistent
behavior. Much like the issue of bipolar scales or unipolar scales, but could
also be many others.

• Self-presentation bias, is when the participant is asked to do or rate
something they feel is socially undesirable. Could be the liking of music
that “no one else” likes and therefore would be hesitant to rate that they
like it.

• Limitation of the awareness of ones emotions, can seriously limit
the rating of emotions in music. If the participant is unclear of how the
person actually feels regarding a song. The level of detail also plays in
here, the greater the detail of a model and thereby factors to measure the
more “fine tuned” the participant has to be of their emotions.

• Communication is a barrier if the person does not know what is being
meant by the scale, anchors, labels, etc. If there is any doubt as to what is
being asked the participant to do in the test, it would lead to inconsistent
data.

The validity of using self-report methods in measuring emotions in music is
discussed in [Zentner and Eerola, 2010]. They argue that this method is valid
given the bias discussed, due to the fact that when in a listening situation it
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is not likely that an overt expression or action takes place, and therefore the
subjective experimental dimension will be the only one activated.

2.3 Emotions and Music

The question behind what makes us like a certain type of music or what el-
ements of the music which make us like it, are intriguing and are attempted
to be answered in the field of music psychology. This field tries to understand
the underlying elements that e.g. evoke emotions, affect or different moods. In
this section a more detailed look is presented on the effect music has on the
emotional human.

2.3.1 Emotions in Music

Darwin’s view on music was that it was a likely precursor of language, having
its origin in the vocal expression of emotions [Cross, 2009]. It seems that emo-
tions are evoked in humans when listening to music but what kind of emotions
people perceive or are induced by when listening to music, and what elements
or combinations of elements in music represent what emotions? Research within
detection of emotions in speech as well as music has been done for a long time.
Two aspects of music comes into play when talking about the emotional content
and that is the two major sources of information, the acoustical signal itself, and
the later decoded information from the signal in the form of the lyrical content.

Acoustical source
The work has been dominated by music psychologists that have researched
the psychoacoustical elements in sound with psychological experiments as well
as physiological measurements (for review see [Juslin and Laukka, 2003] and
[Scherer, 2003]). In [McCraty et al., 1998] the effect of different types of mu-
sic is measured using self-report methods, where an evaluation is made before
and after listening to music. They show that listeners across age groups and
preferences reduce stress and increase mental clarity when listening to designer
music. Grunge rock is shown to increase hostility, fatigue, sadness and tension,
where new age music is decreasing or have no effect on the same factor, but
increasing relaxation. They further conclude that the reduction of stress and
tension is higher for music that people enjoy and know. These emotions are
rather broad in terms and could be constructed by more core affective terms,
and some researchers argue that emotions induced or perceived in relation to
music is much different from ”normal emotions”. In [Juslin and Västfäll, 2008]
this is reviewed, one could argue that emotions that are likely to be experi-
enced with music is somewhat naturally limited. The scenario of listening to
music and feel the same kind of fear as when meeting a lion on the savanna is
not likely. The amplitude of the emotion could also be different in the sense
that when experiencing an emotion described as disgust when using another
sense such as smell, would be much different and weighted different when us-
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ing the hearing sense. On the other hand, emotions experienced when listening
to music such as sadness could be much higher than other situations. It is
safe to say that emotional experience is influenced by the perception of mu-
sic, speech and sound in general. What emotions and to what degree this is
the case is not certain. In [Russell and Barret, 1998] as was discussed before,
argues that prototypical emotions consist of a combination of core affect. In
[Scherer and Oshinsky, 1977], they suggest that combinations of acoustical pa-
rameters may serve to differentiate attributions of subclasses of certain emotions.
One could argue that core affects are combined into emotions that are experi-
enced with sound, music and speech in particular, where other combinations are
then experienced when e.g. tasting or feeling.

Lyrical source
Another aspect which is not covered in great detail here is the lyrical content
in music. One aspect is the way the performer sings the lyrics. It can be in
a sorrowful or angry way, which is more a acoustical aspect linking it to the
performers expression [Palmer, 1997]. Another is the lyrics themselves. It is ob-
vious that there lies a great difference between a singer singing “I love you”, or
“I hate you”, whether it be ironically or not. Nonetheless information is carried.
In [Herbert et al., 2008] and in [Kissler et al., 2007] they investigate the Early
Cortical Response (ECR) and other ERP during reading. It is clear that read-
ing semantically valenced words does induce emotions in humans, which can
directly be measured as demonstrated in their work. To which extend a person
is more emotional captivated by the lyrics or by the music itself is highly sub-
jective. Often it is difficult to understand the lyrics in a musical track due to
masking by the music and the singers pronunciation, where a lot of the infor-
mation is lost. In [Ali and Peynirciogly, 2006] they show that lyrics do influence
the overall emotional valence of music, allowing music to more easily convey neg-
ative emotions when they are present, and allowing music to more easily convey
positive emotions when they are absent. They further show that the melodies
rather than the lyrics are the most dominant component when eliciting all four
of the emotions they use in their experiments. Consisting of (Happy, Sad, Calm
and Angry) one for each of the quadrants from the circumplex emotional model
of [Russell, 1980]. This view is also supported by [Sousou, 1997] where they test
undergraduate students by means of self-report methods using two lyrical states
(Happy and Sad Lyrics) and three musical conditions (No Music, Happy Music
and Sad Music). They show that the mood of the participants was influenced
more dominantly by the music and not the lyrics.

2.3.2 Perception vs. Induction of emotion

If one has to model the emotions in music it is essential to know how to mea-
sure these, and more important to know what is measured. At this point it is
therefore relevant to distinguish between the perception of emotions and the in-
duction of emotions. The perception of an emotion in music draws on the ability
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to describe qualities of music using a vocabulary that is defined in some emo-
tional adjective space. This is often measured using self-report methods, where
the subject is asked to rate or use some defined adjectives or descriptors, certain
characteristics or features in music that they recognize. The distinction between
perception and induction is related to the distinction between cognitivism and
emotism, where emotivists hold that music elicits real emotional responses in
listeners, cognitivists argue that music simply expresses or represents emotions
[Scherer and Zenthner, 2001].
When an emotion is induced the psychological and mental state of a person
is changed due to a stimuli. A number of factors can be measured and prove
the induction of emotions as was described in [Juslin and Västfäll, 2008] includ-
ing, subjective feeling, psychophysiology, brain activity, emotional expression,
action tendency, emotion regulation. These are measured using the methods
which were described in section 2.2.3.
These factors serve to prove that emotions are induced in people when listening
to music, where different reactions occur due to different structural, circum-
stantial, musical and listener circumstances around a musical percept. e.g. the
musical signal itself, the coloring of this signal through a “channel” that the
music is perceived through and where you are when you hear the music. In
[Scherer and Zenthner, 2001] a set of production rules is suggested that account
for the actual experience of an emotional response in music. They suggest a
number of factors including,

• Structural features both supra- and segmental. Where the segmental are
the acoustical building blocks of the musical structure and the supraseg-
mental include melody, tempo, rhythm, harmony etc. which will be dis-
cussed later in section 2.3.4.

• Listener features, which include their musical experience, the familiarity,
current motivation or mood, the learned associations and conditioning and
the cultural context, where the listener is from.

• Contextual features, such as where the music is being played and which
acoustical scene the musical experience is set in. That could be a choir
singing in a church or in a studio which would lead to much different expe-
rience, or listening to music via headphones or in a live concert. Further
if the musical experience is a part of a greater event such as a festival or
carnival.

• Performance features, where the identity of a performer including the
physical appearance, expression and reputation of an artist influence the
preference. The technical and interpretive skills and finally the perfor-
mance state which includes interpretation, concentration, motivation, mood,
stage presence, audience contact, etc.

In order to find specific reasons or origins of an induced emotion due to music,
[Juslin and Västfäll, 2008] further proposes, a hypothesis, a theoretical frame-
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work consisting of six mechanisms that are involved in the induction of emotions
due to music and can explain emotions complementarily.

• Brain stem reflexes, due to musical stimuli is caused by the physical
acoustical signal such as the stapedial reflex when impulse sounds are
present that might be harmful, or loud music that can cause pain in the
ear.

• Evaluative conditioning, refers to the trained association between a
auditory stimuli and an emotional response, that can be caused by many
factors, such as hearing some music every time something pleasant hap-
pens.

• Emotional contagion, refers to an internal expression of music induced
by feedback from peripheral muscles or activation of an emotional center
in the brain. In this sense a person ’mimics’ what the person hears through
music or vocal expression or sees through facial expression or behavioral
movement.

• Episodic memory, contrary to emotional contagion the episodic memory
reflects on the past memory of when a song or acoustical signal has been
heard in the past.

• Musical expectancy, refers to the listeners expectancy of a specific
acoustical feature in music occurring, which results in an emotion be-
ing induced in the listener. Since music depending on the style is built by
components arranged in a certain structure, due to the context the acous-
tical features are presented in, one might expect some acoustical event to
occur. This prediction is solely built on the structure where it is natural
that this ability could be trained, and is more developed by musicians and
people that have trained with an instrument [Palmer, 1997]. It could also
be an implicit knowledge about the genre or common features with other
genres [Stevens and Byron, 2009].

This theoretical framework gives the possibility to break down the influences
music has on inducing emotions and potentially accounting for the possible ef-
fects, it might have when measurements are made. Atomizing the elements in
music emotion induction is rarely done and by no means agreed amongst re-
searchers. To give an overview of where the different terms have relevance, the
figure 2.1 is extended on figure 2.4. An addition is made here in the form of
perceptive skills, which here covers a rather broad group of the participants
abilities to hear, e.g. are they normal hearing or does there exist any damage
to the auditory system that would hinder the perception of the music.

One can argue intuitively that indeed music does induce emotions as a combina-
tion of the single elements presented in the framework. The connection between
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Figure 2.4: Extended schematic of the influences on the emotional response to music.

what an artist or musician expresses in the music and can be perceived, and the
link to the induction of an emotion in a human is not simple and highly complex
[Gabrielsson, 2002]. It is obvious that the induction of music is highly subjective
and one person may have none or neutral induction of emotions due to specific
musical piece where others may have strong emotional experiences as was shown
in [Gabrielsson, 2001], so called peak experiences. Others may enjoy negative
emotions expressed in music [Schubert, 1996]. This serves to show that a person
might perceive an excerpt as being very negative and dark but actually liking the
track, and the track inducing a positive feeling. People might prefer perceived
negative music and naturally would be biased in their self-report about what
the person feels about the track. It is obvious that many combinations could
be made where people hate classical music or country music etc. although none
of the acoustical features suggests so due to many other factors such as emo-
tional contagion, episodic memory and evaluative conditioning. Nonetheless in
[Evans and Schubert, 2006] is showed that by quantifying the relation between
felt and expressed emotions in music, that there indeed there is a connection.
Using self-report methods they show that, imagined and real music show the
same valence and arousal shape for a concert pianist [Schubert et al., 2006],
where music was chosen to be familiar for the test subjects. They show that
in average in 70 % of the cases there is a positive connection between felt and
expressed emotion, although furhter concludes that it is far from generalizable
due to subjective differences. The results are also greatly influenced on the
measuring technique and which rules are set up for the experiment.

2.3.3 Models of emotions in music

The distinction between general emotional models as described in section 2.2.2
and emotional models describing music, lies here in the semantic vocabulary
used to describe the two. In section 2.3.1 it was argued that not all emo-
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tions may be experienced when listening to music, hence limiting the choice
of emotional models. Whether a dimensional or a categorical model is chosen,
the anchoring of dimensions or labels used to describe the emotions elicited by
music is crucial. The categorical method used in [Hevner, 1936] was indeed re-
lated specifically to music, but related to the dimensional models only few have
been properly tested. Schubert suggests a two dimensional model that use va-
lence (happy-sad), arousal (aroused-sleepy) space which he calls 2-Dimensional
Emotions Space (2DES) in [Schubert, 1999a]. In order to obtain a list of ad-
jectives from all the emotional semantic words which exist and are suitable to
describe music, he uses 91 words sampled from musical and non musical words.
They are gathered from Hevner Adjective Circle (1936), Farnsworth’s revision of
Hevner (1960), Russel’s circumplex model (1989), Whissell’s dictionary of affect
(1980) and Sloboda (1989) amongst others. He comes up with a reduced list of
37 words by frequency of use testing in musical description amongst 24 highly
training musicians. The validity and reliability of this 2DES were further tested
and confirmed in [Schubert, 1999b]. Test subjects were asked to rate the words
within the 2DES given a developed interface, and the result shows that there is
a good intuitive understanding of the 2DES, and demonstrated good test-retest
reliability. Further there was a high correlation between hypothesized responses
from adjectives from Russell and Whissell.
In [Zentner and Eerola, 2010] a review of methods used to model emotions and
they conclude that the best method for modeling emotions in music is the do-
main specific model using Geneva Emotional Music Scales (GEMS). Where
Zentner et. al. uses questionnaires filled out by 801 participants at a festival
primarily focused on classical music (72% classic, 11% rock, 10% world, 7%
jazz). People are asked to fill out the questionnaires right after or during per-
formance, whether they have felt any of the 66 emotional adjectives “somewhat”
or “a lot”. The most frequently reported include relaxed, happy, joyful, dreamy,
stimulated, dancing (bouncy), enchanted and nostalgic etc. Using confirmatory
factor analysis they reduce the list to a 9-dimensional model.
It is obvious that given so many synonyms of affect adjectives, many of them
overlap where a solution could be to map these words from e.g. [Russell, 1980] or
[Hevner, 1936] into a multi dimensional space. This could e.g. be done by using
rated words from the ANEW database or as it was done in [Schubert, 1999a].
Problem lies in whether or not these adjectives are usable for the description
of music, or as in the case of ANEW whether these adjectives have the same
relation to music as they do to e.g. pictures, sounds or just the words themselves.

2.3.4 Acoustical cues and emotional response

Whether or not emotions are perceived or induced by music, it is the acoustical
signal that is encoded by the musician and decoded by the listener that is the
carrier of information. Disregarding other senses when listening to music such
as the smell of a concert or the visual aspect of the e.g. back droppings, etc. The
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goal here is to explore what acoustical features of the sound which are associ-
ated with what emotions. Like core affect could be responsible for prototypical
emotions core acoustical features could be responsible for the communication of
specific emotions. Different approaches have been taken in exploring acoustical
features communicating emotions such as synthetic sounds, speech and music.
It has to be mentioned that due to the fact that it is psychologists who are dom-
inating this research field, the technical descriptions of the cues and methods to
manipulate them is scarce. Musicians often use descriptors that was explained
in section 2.1.2 and A.1 to account for what acoustically is the source of a change
in emotion.

Rating scale Acoustical parameter (main effects) and configurations (interac-
tion effects) listed in order of predictive strength

Pleasantness
Fast tempo, few harmonics, large pitch variation, sharp envelope,
low pitch level, pitch contour down, small amplitude variation
(salient configuration: large pitch variation plus pitch contour up)

Activity
Fast tempo, high pitch level, many harmonics, large pitch varia-
tion, sharp envelope, small amplitude variation

Potency
Many harmonics, fast tempo, high pitch level, round envelope,
pitch contour up (salient configurations: large amplitude variation
plus high pitch level, high pitch level plus many harmonics)

Anger
Many harmonics, fast tempo, high pitch level, small pitch varia-
tion, pitch contours up (salient configuration: small pitch varia-
tion plus pitch contour up)

Boredom
Slow tempo, low pitch level, few harmonics, pitch contour down,
round envelope, small pitch variation

Disgust
Many harmonics, small pitch variation, round envelope, slow
tempo (salient configuration: small pitch variation plus pitch con-
tour up)

Fear

Pitch contour up, fast sequence, many harmonics, high pitch
level, round envelope, small pitch variation (salient configurations:
small pitch variation plus pitch contour up, fast tempo plus many
harmonics)

Happiness
Fast tempo, large pitch variation, sharp envelope, few harmonics,
moderate amplitude variation (salient configurations: large pitch
variation plus pitch contour up, fast tempo plus few harmonics)

Sadness
Slow tempo, low pitch level, few harmonics, round envelope, pitch
contour down (salient configuration: low pitch level plus slow
tempo)

Surprise
Fast tempo, high pitch level, pitch contour up, sharp envelope,
many harmonics, large pitch variation (salient configuration: high
pitch level plus fast tempo)

Table 2.1: Cross-Modal Patterns of Acoustic Cue for Discrete Emotions from
[Scherer and Oshinsky, 1977]

In [Scherer and Oshinsky, 1977] they use 128 different synthetic sounds created
by a MOOG synthesizer by variations of amplitude variations (small-large),
pitch level (high-low), pitch contour (up-down), pitch variation (small-large),
tempo (slow-fast), envelope (low attack/decay ratio-equal attack/decay ratio).
Further they create 36 tone sequences by manipulating 4 tone sequences by:
Two three level factors, filtration (lowpass-bandpass-highpass), tonality (major-
minor), rhythm (even-uneven), tempo (fast-slow) totaling in 24 sequences. Test
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subjects evaluated these stimuli for the emotional content using self-report scal-
ing on a 3-point semantically differential scale. They can account for 66%-77%
of the variance in the test data by manipulation of the acoustical parameters
of the tone sequences. Where tempo seems to be the most powerful predictor
accounting for a third of the variance. The main finding of the experiment is
shown in table 2.1, where the acoustical features are organized by rating scale
so that the acoustical feature that contributes most to the description of the
variance for the given semantical differential dimension is listed first and sorted
in descending order.
In [Gabrielsson and Juslin, 1996] nine professional musicians were instructed to
perform short melodies to communicate specific emotions using different instru-
ments - the violin, electrical guitar, flute and singing voice. The performances
were grouped according to the physical characteristics e.g. tempo, dynamics,
timing and spectrum. They showed that the performer’s expressive intention
had a marked effect on all analyzed variables. They further conclude that
it is unlikely to find physical cues in the sound which are independent of in-
strument, musical style, performer or listener in communicating emotions. In
[Laurier et al., 2009a] they use features which are commonly used in MIR and
compare them with ratings given by 116 participants of 110 15-second excerpts
from film soundtracks. They comapare Dissonance or roughness, mode (major
vs. minor), onset rate and loudness to the 5 mood categories of happy, sad,
angry, fear and tender. They find a positive correlation between dissonance
and anger and fear, whereas a negative correlation with sadness and tenderness.
They also show that happy music is dominated by major mode, minor mode in
sadness, fear mostly by minor, tenderness mainly in major mode whereas anger
was ambiguous. Onset rate shows that happy music tends to be faster music
with a high onset rate and for sad and tender they have lower values meaning
slower music. Fear also has high onset values. With loudness they find that for
anger and sadness it has a small variation of high loudness, relating it to arousal.

2.3.5 Temporal emotional dimension

As discussed previously emotions in general change as a result of events occur-
ring, and in music being a dynamic media, change through time. First question
is how fast is this? What timescale does the emotional response to music oper-
ate? In [Bigand et al., 2005a] they investigate what the duration of a musical
excerpt affects on the emotional rating, with untrained and trained musicians.
They use excerpts of different lengths (250 ms, 500 ms, 1 s, 2 s, 5 s and 20 s
on average) on two groups of participants. They find that as little as 250 ms
was enough to induce strong or weak “feelings” in listeners, whatever style was
played. They conclude that less than 1 s of music is enough to instill elabo-
rated emotional response in listeners suggesting that emotional responses are
quasi-immediate was soon as music is played. Where emotions accumulate over
the duration of a musical piece. This finding of music played less than 1 s in
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order for an induction of emotion is also found in [Bigand et al., 2005b] where
they also show that the musical experience of the participants has a very small
influence on the results.
If listeners have an emotional response which is fast reacting, this could be
measured. But the emotions that was investigated for very short intervals was
not very complex emotions. Complex emotions could arise after a longer pe-
riod of time, as the participant has time to use all the elements as discussed
in 2.3.2. Music emotion measured as a continuous variable, meaning that emo-
tions changing as a function of time due to musical stimuli, were investigated
in [Schubert, 2010]. A great deal of research and tools have been developed in
order to capture the emotional change (see [Schubert, 2010]). Common for most
is that a dial or mouse cursor is moved within a dimensional space, often 2-D.
Using more dimensions is tricky due to the cognitive load on test participants,
since this task is very demanding, both understanding scales and continuously,
“online” have to rate the music. This compared to measuring music in dis-
crete intervals, e.g. 15 s or 30 s as seen often in the MIR community. In
[Duke and Colprit, 2001] they investigate if the ratings given by participants
when e.g. post-rating 15 s excerpts are the same as the mathematical mean
of the continuous response of the same excerpt. This is not the case. In an
extensive test they show that listeners post hoc or post performance overall
perception is a result of a complex interaction between temporal, qualitative
and dimensional variables. This means that the listeners memory of a musical
excerpt is not merely a sum of all the emotional response during the excerpt,
some single events are weighted highly where others are completely forgotten or
distorted by previous or future events.

2.4 Problem specification

The objects presented in figure 2.1 was analysis within the scope of this project.

This section will present a summary and discussion of the analysis and a further
specification of the problems presented in section 1.4. The major elements of
modeling emotional content in music consist of the emotional model to use, the
mathematical model to use, how to obtain the emotional data, how and which
acoustical features to extract.

Emotional model
The emotional model to use is chosen to be a two dimensional model of the
dimension of Valence and Arousal. It has not with sufficient proof or consistency
been shown in the work reviewed what other dimensions to add in order to model
the emotional content better. The choice of a dimensional model lies in the the
work which has been done in confirming its validity in representing appraisal
with the human mind by e.g fMRI and other ERP . Descriptors of different
core affect, musical specific emotions or combinations of affect should not be
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further investigated, thus disregarding anchoring. The multidimensional model
is kept as simple as possible, with the two dimensions of Valence and Arousal.

Mathematical model
Within the reviewed work previously done in modeling of emotions in music
one method does not stand out in particular, the problem as mentioned be-
fore is finding common comparative measure. The approach taken is to start
with simple models and increasing complexity if found necessary. Due to the
choice of bag of acoustical features, dimensional reduction methods have to be
investigated and used together with the mathematical models, potentially incor-
porating them. Given that the emotional model is used, i.e. a two dimensional
model, a regression model seems to be the logical choice.

Emotional data
Due to the limitations of facilities and issue of scope for this work, self-report
methods will be used. Issues of bias with the different measuring methods
should be investigated and at all times minimized where possible. In figure
2.4 the chain from music to emotional response was illustrated. Since a very
great number of influences exists for the induction of emotions, this cannot be
modeled in one single model. Therefore a two-model strategy is viewed here,
one for the expressed or perceived emotional expression by music and that of the
induced emotions, the subjective impression. In this work the focus is on the
first model. It is obvious that a completely clear distinction between the two is
very difficult, using self-report methods on test participants. The theory here is
that subjective variance does exist and this should be facilitated in the model.
The large variations will be averaged out by asking a number of participants.
The modeling of the temporal development of emotional content in music should
be captured within the devised self-report listening experiment.
The choice between using post rating or continuous scales is partially made here.
Common in the MIR community excerpts of 15-30 seconds has been used, only
a few use a continuous rating method (sampling e.g. 1-4 Hz). To follow previous
work post ratings is chosen and for reasons regarding the design of the listening
experiment which will be discussed later in section 4.1. The main reason lies
in previous work done by [Schmidt and Kim, 2010] where they use post ratings
to predict the temporal evolution of emotions in time. The problem is that
if temporal predictions of a potential mathematical model is made, these do
not directly correspond to the actual emotions measured at that point, but are
based on the post ratings. It was shown that a simple mean across an excerpt
measured using continuous scales is not equivalent to the post rating. No work
has been done within the mathematical modeling world to the knowledge of the
author as to show the connection between a mathematical model of post ratings
predicted on a shorter time scale and the connection to continuous ratings. So
the aim is not to predict the actual emotional content, but to use the prediction
to find a potential structure e.g. emotional dynamics, that can cluster data
across genres and emotional ratings.
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Audio features
Although at present day lyrical features seem to be as semantically potent as
acoustical information, the audio dimension is chosen here. It is the opinion of
the author that previous work has not included the full scale and knowledge
of acoustical information in previous attempts in the modeling of emotions ex-
pressed in music. Using acoustical data also ensures that a data foundation for
the automatic prediction of the emotional evolution in music is always available.
This is rarely the case for lyrical data. The approach to be used is a bottoms-up
approach since there has not been sufficient work done in validating both algo-
rithms to represent the musical features or work by musical psychologists in the
technical description of their findings. So a wide variety of features should be
extracted to cover as wide an area as possible.

Musical data
A problem using self-designed experiments becomes what music should be rated.
There is also an inherent limitation in the amount of participants to test. Ap-
proaches so far in MIR is a random sampling of datasets e.g. USPOP2002 1,
CAL500 2, AMC or MSD 3 have been made, but this approach will result in
redundant testing. Songs that are tested might be equal in emotional expression
or audio data. Therefore an intelligent sampling of songs to be rated, which was
used in [Schmidt and Kim, 2010] can be used. Acquiring 150.000 ratings is not
a small matter as they did, so a new method is proposed as seen on figure 2.5.

Figure 2.5: Schematic of the proposed sequential design, to intelligently sample musi-
cal data, for the purpose of modeling the emotional content expressed in
music.

A sequential design, using an initial model constructed with emotional data
based on audio features. This model can be used to sample large data sets of

1http://labrosa.ee.columbia.edu/projects/musicsim/uspop2002.html
2http://cosmal.ucsd.edu/cal/
3Million song dataset - http://labrosa.ee.columbia.edu/millionsong/

http://labrosa.ee.columbia.edu/projects/musicsim/uspop2002.html
http://cosmal.ucsd.edu/cal/
http://labrosa.ee.columbia.edu/millionsong/
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music, which can subsequently be experimentally measured obtaining emotional
data and used to update the model.
As musical data are hard to come by due to availability and copyright issues,
a private archive is used for the preliminary testing. This is constructed using
private archives, and webradio mining. For this reason the quality, encoding
formats, etc. are varying which potentially can cause an error source when ex-
tracting acoustical cues. If the system should be used in the future for mobile
players or computers where the data are of equivalent quality, this is acceptable.

In the rest of the thesis three different chapters will be presented that will ex-
plore the major aspects of modeling the expressed emotions in music. A section
about audio features, the design of a listening experiment and the design of a
mathematical model.
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Chapter 3

Audio features

The audio features used for the modeling of the emotions expressed in music
will be presented in this section.

3.1 Initial considerations

• The main goal is to be able to describe the descriptors that were mentioned
in section 2.1.2 and A.1, which are often used in music psychology by
psychologists to describe the influences of the acoustical signal on the
expression of emotion in music. Further more the descriptors in table 2.1
in section 2.3.4 should also be accounted for by the features computed.

• A majority of the features found in the toolboxes listed on table 3.1 are
correlated if not close to the same information. Feature selection algo-
rithms or other types of information reducing measures can be used at a
later stage to reduce these.

• Concerns such as computational time, complexity and redundancy should
also be considered. Given that more algorithms computing the same fea-
ture where all are performing equally but one is faster to compute, this
should be chosen for future use.

• Temporal alignment of features should be investigated, given that all fea-
ture extractors do not operate at the same output rate.

• The effect of lossy compression of audio data on the extraction of audio
features should be investigated. Potentially some features could suffer
greatly and are potentially unusable due to e.g. mp3-compression.
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Given that the approach in acquiring and computing features is bottom-up,
implementations were found in different academic DSP toolboxes and publicly
available Matlab, Python and C + + functions under the GNU license. These
cover directly or indirectly the descriptors used by musicians and psychologists.
Some of the feature extractors are considered “blackbox” since no information
about the implementation methods were available. For this reason, only the
information that was available in articles and technical documentation is pre-
sented here and within a level of detail that is appropriate for the problem given.
The feature packs chosen are listed below.

• Y AAFE 1 Yet Another Audio Feature Extraction toolbox, is a *nix based
feature extraction program which is shown to be very fast and efficient in
computation. Features include Amplitude Modulation, Auto Correlation,
Complex Domain Onset Detection, Energy, Envelope, etc.

• MIR 2 MIRtoolbox offers an integrated set of functions written in Matlab,
dedicated to the extraction from audio files of musical features such as
tonality, rhythm, structures, etc.

• MA3, Music Analysis (MA) toolbox is a collection of functions for Matlab.
It contains functions to analyze music (audio) and compute similarities.

• PsySound 4 is software for the analysis of sound recordings using phys-
ical and psychoacoustical algorithms. It is an easy to use platform that
does precise analysis using standard acoustical measurements, as well as
implementations of psychoacoustical and musical models (such as loud-
ness, sharpness, roughness, fluctuation strength, pitch, rhythm and run-
ning IACC).

• ChromaToolbox 5 Chroma Toolbox (CT) was developed by Meinard Müller,
it contains MATLAB implementations for extracting various types of novel
pitch-based and chroma-based audio features.

• BCST 6 Binaural Cue Selection Toolbox is a toolbox for calculation of
Interaural differences based on psychoacoustical models.

• ISP Intelligent Sound Project toolbox, was developed as a cooperation
between IMM atDTU and AAU amongst others. It consist of a collection
of feature extraction functions for Matlab used within the project and
inhouse at IMM .

1http://yaafe.sourceforge.net/
2https://www.jyu.fi/hum/laitokset/musiikki/en/research/coe/materials/

mirtoolbox
3http://www.pampalk.at/ma/
4http://psysound.wikidot.com/
5http://www.mpi-inf.mpg.de/~mmueller/chromatoolbox/
6http://www.acoustics.hut.fi/software/cueselection/

http://yaafe.sourceforge.net/
https://www.jyu.fi/hum/laitokset/musiikki/en/research/coe/materials/mirtoolbox
https://www.jyu.fi/hum/laitokset/musiikki/en/research/coe/materials/mirtoolbox
http://www.pampalk.at/ma/
http://psysound.wikidot.com/
http://www.mpi-inf.mpg.de/~mmueller/chromatoolbox/
http://www.acoustics.hut.fi/software/cueselection/
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In table 3.1 the packs and the resulting dimensions are shown. Meaning that
not all features that can be computed by those pack are used, due to a multitude
of reasons, e.g not working, producing invalid results, etc.

Feature pack Total Dimension

ID 43
MIR 510
PSY 302

YAAFE 141
MA 64
CT 124
ISP 188

Total 1373

Table 3.1: The feature packs used to extract audio features from musical data. Specific
features were selected and the resulting total dimensions of those features
are shown in second column.

A complete list of all the features and their dimensions can be seen in section B.1.

3.2 Separation of audio data

A musical excerpt that is used for the testing and extraction of features is a
dynamic media, being a non-stationary and non-linear temporal signal. The
features used operate in different domains, e.g. time, spectral, modulation, etc.
In each of these domains the signal must be separated in e.g. time frames,
frequency bans or modulation bans, etc. Therefore two different types of sepa-
rations is presented here that are common across all the features that are used.

3.2.1 Temporal separation

In order produce multiple features across each excerpt temporal framing is used.
Basic assumption on the time-series are made by the different features, some
need stationarity to use Fourier analysis, other feature need a great deal of data
to analyze the change of modulation spectra over time. Thus the temporal win-
dowing is much different from feature to feature. A majority of features are
based on the Short T ime Fourier Transform (STFT) where the FFT is cal-
culated for each short time window. In order for the STFT to be applicable the
time series must be stationary. Depending on the audio signals content this lies
between 20-100ms and thus the frame length lies in this window. Most features
use a Hanning based windowing, with a certain number of samples overlapping
between each frame, to create a smooth output. The overlap vary from 10% to
50% depending on features, including the different frame sizes misalignment can
occur this issue will be dealt with in section 3.9.1, at present point it is noted
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that a form of either alignment or integration of features into a feature vector is
necessary for the modeling. For this reason temporal frame lengths are chosen
to be the optimum for that particular algorithm where it is possible, equally for
the amount of overlap of each frame.

3.2.2 Spectral separation

Across features, spectral separation is often used, using subband division by
bandpass filtering. The width, shape and number of these filters is very differ-
ent between implementations. Many of the filters are based on the non-linear
properties of the inner-ear, specifically the basilar membrane. Different attempts
have been made to account for these properties for normal hearing people. On
figure 3.1(a) the center frequencies of different filter types are shown. The
Bark scales relates to the Critical Bandwidth, another scale is the Equivalent
Rectangular Bands (ERB), and the third octave band scale, which all are often
used within the psychoacoustical community.

(a) Center frequency for different sub-
band division scales.

(b) Bandwidth comparison for different
subband division scales.

Figure 3.1

Within the MIR community and speech recognition the so called MEL-scale is
often used, which is a pitch based scale. The implementation of filters using this
scale is very different. The two red curves on figure 3.1(a) show this fact, where
the same filterbank script is used to compute filters from the ISP toolbox. It
computes some user specified amount of filters to cover the frequency range also
specified by the user. This changing the center frequencies drastically. Therefore
between implementations based on the this scale, a direct frequency comparison
cannot always be used.
On figure 3.1(b) the bandwidth of the filters again are shown on a logarithmic
scale, where most a approximately linear on this scale. The MEL-scale is not
shown here since the bandwidth of these filter vary a great deal, from different
implementations.
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Throughout this section a collection of features are presented divided into tem-
poral, spectral, cepstral, perceptual, musical and misc. featues. The exact
division into these categories was made for convenience and often these cate-
gories overlap.

3.3 Spectral features

Features that use the spectrum of Hanning-windowed decomposed musical sig-
nal, computing features that describe each of the frames. Most of these features
are MPEG-7 features described in that standard.

Short Time Fourier Transform
All features are based in the STFT and is calculated as

Xk,f =

N−1∑
n=0

wnxn exp(−2j2πkn/N) (3.1)

for k=0,1,...,N-1 where k corresponds to the frequency fk = kfs/N where fs is
the sampling frequency and wn is the window function. The amplitude of the
spectra Xk,f will be denoted ak,f and the magnitude will be denoted Mk,f .

Spectral Rolloff
A way of estimating the amount of high frequency content is to find the fre-
quency at which a certain fraction of the total power in a given frame is con-
tained. In [Tzanetakis and Cook, 2002] they suggest a fraction of 0.85.

Rf∑
k=1

Mk,f = 0.85

N∑
k=1

Mk,f (3.2)

where Mk,f is the magnitude of the kth frequency component of the Fourier
transform of xn in the f th frame.

In Y AAFE they suggest a fraction of 0.99.

The MIR implements a supplementary method that measures the brightness,
where the cutoff frequency fixed to 1500 Hz and then measuring the fraction of
energy in the signal above this frequency.

Spectral Flux
The spectral flux gives an indication of the change in spectrum as a function
of time, and is defined as the squared difference between the spectrum of two
successive frames.

Ff =

N∑
k=1

(Mk,f −Mk,f−1)2 (3.3)
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where Mk,f is the magnitude of the Fourier transform of frame f , summing over
all frequency components k.

In the Y AAFE toolbox it is calculated as

Sflux =

∑N−1
k=0 (ak,f − ak,f−1)2√∑N−1
k=0 a2

f−1,k

√∑N−1
k=0 a2

k,f

(3.4)

where ak,f−1 is the amplitude of the kth frequency component of the Fourier
transform of xn in the f th frame.
fk is the frequency of the bin k.
N is half of the FFT window size of frame f .

In the statistical world often different descriptors are used to describe a Gaussian
distribution. These include the mean, variance, skewness and kurtosis. Which
are the 1st, 2nd, 3rd and 4th moment of the mean. Assuming the spectra is a
Gaussian distributed frequency distribution. Instead of using the whole spectra
as a feature vector these descriptors can be used to reduce dimensionality and
describe the shape of the distribution.

Spectral Centroid
Is the first moment of the mean and is referred to as the centroid and gives an
indication of the brightness of a musical piece and is defined as the center of
gravity for the STFT.

Cf =

∑N−1
k=0 Mk,fk∑N−1
n=0 Mk,f

(3.5)

where Mk,f is the magnitude of the kth frequency component of the Fourier
transform of xn in the f th frame.

Notationwise here is another way of writing the same equation for later use.
Here the f is omitted to make the notation easier.

µi =

∑N−1
k=0 f ikak∑N−1
k=0 ak

(3.6)

where ak is the amplitude of the kth frequency component of the Fourier trans-
form of xn.
fk is the frequency of the bin k.
N is half of the FFT window size of frame f .
The i here indicates the moment of the mean.

Spectral Spread
This spectral shape feature is often referred to as Spectral Spread or Spectral
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Width. This second moment of the mean is a measure of the variance of the
mean/centroid calculated.

Sw =
√
µ2 − µ2

1 (3.7)

where µi is calculated as in (3.6) for the second moment the whole equation is
written out as

Sw =

∑N−1
k=0 (fk − µ1)2ak∑N−1

k=0 ak
(3.8)

Spectral Skewness
This measure is also called the spectral asymmetry and is the third moment of
the mean and is calculates as

Ss =
2µ3

1 − 3µ1µ2 + µ3

S3
w

(3.9)

where µi is calculated as (3.6)

Spectral Kurtosis
This features is often also referred to spectral flatness and is the fourth moment
of the mean and is calculated as

Sf =
−3µ4

1 + 6µ1µ2 − 4µ1µ3 + µ4

S4
w

− 3 (3.10)

where µi is calculated as (3.6)

Spectral slope
It represents the amount of decrease of the spectral amplitude. It is computed
my linear regression where the slope is calculed as

Sslope =
N
∑N−1
k=0 fkak −

∑N−1
k=0 fk

∑N−1
k=0 ak

N
∑N−1
k=0 f2

k − (
∑N−1
k=0 fk)2

(3.11)

Spectral Variation
Spectral Variation is the normalized cross-correlation between two consecutive
frames’ amplitude spectra and is calculated as

Svar = 1−
∑N−1
k=0 ak,f−1ak,f√∑N−1

k=0 a2
k,f−1

√∑N−1
k=0 a2

f,k

(3.12)
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This method of computing the difference between two consecutive spectra is also
the approach pursued in Spectral Flux. When it is close to 0 if the two spectra
are similar and close to 1, when the two spectra are highly dissimilar.

Spectral Decrease
The spectral decrease feature is similar to the spectral rolloff and is a measure
of much the spectral amplitude decreases. The method comes from perceptual
studies and should give a more correlated result to human perception.

Sdec =
1∑N

k=2 ak

N∑
k=2

ak − a1

k − 1
(3.13)

Spectral Flatness
Some also calculate the spectral flatness in a different way, here as the ratio
between the geometric and the arithmetic mean of the spectra.

Sflatness =
exp( 1

N

∑N−1
k=0 log(ak))

1
N

∑N−1
k=0 ak

(3.14)

3.4 Temporal features

In this section a description is given of some of the features that use the tem-
poral waveform of the acoustical signal.

Root mean square energy
A very simple way of calculating the energy

xrms,f =

√√√√ 1

N

N∑
n=1

x2
n,f (3.15)

where N is the number of samples in the fth frame. Calculating the RMS power
in each frame gives a temporal evolution of the power, over time resulting in an
energy calculation. No frequency division is made here.

Low energy percentage
This feature uses a set of smaller frames to form a window to calculate what
percentage of frames in one window have a power that is below the mean RMS
value of that given window. It can be calculated as

Le =
1

G

G∑
f=1

H(x̄rms,W − xrms,f ) (3.16)

where xrms,f is the RMS-power of frame f , calculated by (3.15).
x̄rms,W is the average RMS-power of the whole window.
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G is the number of frames in window W .
H is the Heaviside step function defined by H(x) = 1 for x > 0 else 0.
As suggested in [Tzanetakis and Cook, 2002] vocal music with silences between
each utterance will have a large low-energy value, while continuous instrumental
playing will have a small low-energy value

Zero crossings
The amount of time domain zero crossings of a waveform is said to give an idea
of the noisiness of a signal. The higher rate the more noisy the music track is.

Zf =
1

2

N∑
n=1

|sign(xn)− sign(xn−1)| (3.17)

where the sign function is 1 for positive values and 0 for negative and xn is the
temporal waveform. This also indicates something about the articulation, i.e.
the temporal distance between notes.

Temporal Shape descriptors
Similarly to 3.4 the shape of the waveform is here described by the centroid, vari-
ance, skewness and kurtosis. For the temporal waveform similar to (3.6),(3.8),
(3.9) and (3.6) the time samples are used instead of the frequency bins. This
only makes sense if the histogram of the given time frame is Gaussian shaped.
Often this is not the case for musical signals, nonetheless the feature might hold
some information.

Envelope Shape descriptors
The amplitude of the temporal envelope is extracted using a Hilbert transform,
then low-pass filtered followed by a decimation. The methods as used in (3.6),
(3.8), (3.9) and (3.6) are used on the envelope curve, where instead of spectral
bins, it is samples of the amplitude of the envelope curve. As mentioned pre-
viously this only makes sense if each frame is Gaussian, which is true in many
cases.

Onsets
Another more simple method of detecting the tempo or rhythm in a musical
track is to detect the peaks or onsets on the temporal envelope of the audio
signal. The approach is to choose maxima or peaks on the temporal envelope
curve in each frame, where the envelope is calculated using a simple low-pass
filtering approach.

Complex Domain Onset Detection
In [Duxbury et al., 2003] they develop a method of onset detection in musical
signals. They combine phase and energy information instead of the more trivial
energy-based approaches, in their onset detection function. The combination
gives a more robust setup and provides sharp peaks at onset and smooth every-
where else.
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3.5 Cepstral features

Cepstrum
Is the Fourier transform taken of the logarithm taken of the spectrum. So
a spectrum of a spectrum where the phase information can be preserved or
removed by the log operation.

FT{log(FT (x(n)))} (3.18)

The Cepstrum results in giving information about the change in the spectrum
and is often used in speech and music analysis. Often it is predecomposed in to
frequency bins on the Mel-scale, which will be discussed later.

Cepstral flux
Is simply the change in the Cepstrum as a function of time, where the resolution
is dependent of the frame size the waveform is decomposed to. It is calculated
similarly to (3.9) where the Cepstrum is used instead of the Magnitude spec-
trum.

Cepstral centroid
Is similar to the spectral centroid where here it is the quefrency centroid calcu-
lated similarly to (3.5).

Mel Frequency Cepstral Coefficients
Is the Cepstrum divided into Mel-frequency bands. The MFFCs have often
been used in speech recognition and increasingly in music research. Here seven
different implementation are used, four from ISP and single implementations
from Y AAFE, MA and MIR. Illustrative the implementation from ISP is
shown. The first stage is to make a short time decomposition of the temporal
waveform xn and compute the discrete Fourier transform of each window. This
is done as was shown in (3.1). Different types of windowing functions can be
used, where the rectangle and hamming windows are often seen.
The magnitude spectrum is now scaled logarithmically and using the Mel filter
bank (Hk,m) it is additionally divided into frequency bins. The Mel filter bank
used is different for different implementation with a “logarithmic” frequency
scaling tendency, but in general it is used to mimic the frequency resolution of
the inner ear and the basilar membrane particular. This gives

X ′m = ln(

N−1∑
k=0

|Xk ·Hk,m|) (3.19)

for m = 1,2,..,M , where M is the number of filterbanks where the number of
filterbanks is restricted to much less than the length of the waveform. The
shape, type and center frequencies for the filterbank is implementation specific
but in general an approximation to the center frequencies of the Mel scale is
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given by

φ = 2595log10(
f

700
+ 1) (3.20)

further the amount of MFFC filters M to use, and what the maximum frequency
is different. Given a fc = 22.050 Hz the fmax = 11.025 Hz dependent on the
width of the filters M = 11−40. Finally to obtain the MFCCs a Discrete Cosine
Transformation (DCT) is made on X ′m

cl =

M∑
m=1

X ′m cos(l
π

M
(M − 1

2
)) (3.21)

for l = 1, 2, ...,M , where cl is the lth MFCC.

3.6 Perceptual features

Pitch
Pitch may be defined as that attribute of auditory sensation in terms of which
sounds may be ordered on a musical scale. In other words variation in pitch
gives rise to melody and is related to the repetition rate of a waveform. For
a pure sinusoid this is referred to as the frequency and for complex tones it is
called the fundamental frequency [Moore, 2004]. It is important to note that
it is not just the spectrogram that describes the pitch, but rather the human
perception of it.
Four different methods are used to extract the pitch of each musical track.
An autocorrelation method and a spectral decomposition method that both
return the frequency of the presence of a pitch component from MIR. The last
is method from [Müller, 2007] that uses a multirate filterbank decomposition
using elliptic filters with center frequencies corresponding to pitches A0 to C8
corresponding to MIDI pitches p = 21-108. They then compute the short-time
mean-square power (STMP) for each band to indicate the amount of energy
that is present at a given musical note.

Roughness
Using the knowledge of the auditory system, that whenever two sinusoids are
close in frequency and time, the auditory system cannot perceive them as two
tones but rather a beating sound is perceived with the frequency of the spectral
distance between them. This sensory dissonance gives a sensation of roughness
in sound. The method here is to sum up all pairs of sinusoids with selective
spectral peak picking.

Fundamental frequency
In ISP a method of calculating the fundamental frequency is used, that is a
maximum likelihood and order estimator. It calculates likelihoods using an FFT
and is based on an assumption of white Gaussian noise based on MDL.
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Harmonics
In ISP based on the calculation of the fundamental frequency the number of
harmonics, or overtones is calculated equally based on MDL. Thus the features
relates to the musical descriptor of harmony.

Inharmonicity
Is here defined as the amount of frequency components or partials that are not
multiples of the fundamental frequency. So the divergence of the signal spectral
components from a purely harmonic signal. In [Peeters, 2004] it is calculated as

Ih =
2

f0

∑N−1
k=0 |fk − f0k|a2

k,f∑N−1
k=0 a2

k,f

(3.22)

where ak,f is the amplitude of the kth frequency component of the Fourier
transform of xn. fk is the frequency of the bin k. It ranges from 0-1 since
ak,f − f0k is at maximum at f0.

Total/Main and specific Loudness
A general description of loudness was given in section 2.1.2, for all different
feature packs most contain measures of loudness. The implementation from
[Peeters, 2004] computes an approximation of the relative loudness in a bark
band scale using a simplified approach than was suggested in [Moore et al., 1997],
where some conditions for quiet signals are removed. In PSY two major
different methods are used. A implementation of the method proposed in
[Chalupper and Fastl, 2002] was made that computes the dynamic loudness
model. These models use the Bark critical band rate scale to model auditory
filters, and auditory temporal integration is included in the loudness model.
A loudness fluctuation model is also included. The static loudness model of
[Moore. et al., 1997] is also calculated, although it is a static model, it is ap-
plied to each analysis window as if it were a dynamic model.

Perceptual Sharpness
The measure of sharpness is a perceptual equivalent to the spectral centroid
where, in this implementation, it is computed using a Bark band scale. It is
calculated according to [Peeters, 2004] as

Ssharp = 0.11

∑nbands
b=1 bgbN

′
b

N
(3.23)

where

gb =

{
1

0.66exp(0.17b)
for
for

b < 15
b ≥ 15

(3.24)

Perceptual spread
This feature is a measure of the distance from the largest specific loudness value
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to the total loudness. It is calculated as

Pspread =

(
N −maxbN ′(b)

N

)2

(3.25)

Interaural differences
For humans to perceive spaciousness or to locate sound sources, temporal and
level differences between our two ears are used, along with monaural cues. Us-
ing perceptual models, estimates of these differences can be computed. The
auditory peripheral system, perceives temporal differences (Interaural T ime
Difference (ITD)), when low frequency sounds reach first one ear and then
the next, creating a time difference. This occurs with little to no ambiguity at
frequencies at 725 Hz and below. Sound pressure difference between two ears
called the Interaural Level Difference (ILD) occurs with sounds containing
high frequency contents, where the head acts as an acoustical shadow, thus
dampening the sound. This only occurs at frequencies of 500 Hz and above.
Due to these limitations only the bark bands that lie within these limits are
used in the extraction of these features. The Interaural Coherence (IC) has
also showed to be useful for audio source location, therefore this features is also
used here.

3.7 Musical Feautures

Chromagram
The chromatic scale has been used in music for many years, and consist of a 12
evenly spaced pitches, one semitone apart, ranging from C to B. This adding
up all tones thus reduces the dimension of the pitch scale. The theory for the
use in Music Information Retrieval is that perceptually there is no difference
between a C in each octave. This is the case for single frequency components
or complex tones, but the greater amount of tones played at the same time, the
easier it is perceptually to distinguish tones across octaves [Moore, 2004]. The
implementation approach taken in [Müller, 2007] is to simply appropriately add
each STMP up so that A0, A1, A2, etc are added up.

Hybrid-Chroma The Chroma Energy Normalized Statistics (CENS) that
were used in [Müller et al., 2005] provide short-time statistics across energy dis-
tributions within each of the chroma bands. The feature shows a high correlation
with the short-time harmonic content of the temporal acoustical signal. It has
a high level of robustness to variations of properties such as dynamics, timbre,
articulation, execution of note groups, and temporal micro-deviations.
Another hybrid feature that is based on the Chromagram is the Chroma DCT -
Reduced log P itch (CRP) which was introduced in [Müller et al., 2009]. The
idea comes from MFCC where it is said that the lower coefficients are very
related to the concept of timbre. Thus if one wants to create a feature that is
robust to just that, one removes this information, and that is the approach here.
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Combining the idea of Chroma and MFCC one can then, instead of using the
mel-scale one replaces it with a nonlinear pitch scale. Then a discrete cosine
transform (DCT) is applied on the logarithm of the pitch representation to
obtain pitch-frequency cepstral coefficients (PFCC). Removing the timber
dependent data by only keeping the upper coefficients, then an inverse DCT is
applied. The resulting pitch vectors are then projected onto the 12-dimensional
chroma vectors.

Fluctuations
In [Pampalk et al., 2002] a method of calculating a time-invariant representa-
tion of the rhythmic-pattern is proposed, which contains information about how
strong and fast beats are played. It uses the amplitude of the modulation coef-
ficients weighted using a psychoacoustical function, that models the fluctuation
strength. The implementation in MIR is based on this approach and consists
of a spectrogram computation transformed by an auditory model. The audio
signal is decomposed to 23ms frames half overlapping, the Terhardt outer ear
model is applied and spectrally divided into bark-band scale, where magnitude
values are converted to dB values. Each bin for each frame a FFT is computed,
from 0 to 10 Hz,corresponding to a rhythm pattern of up to 600 bpm. The mod-
ulation coefficients amplitudes are then weighted using a psychoacoustic model
of the fluctuation strength. This measure is related to the computation of the
rhythm in music.

Tempo
The tempo is estimated using the onset curve, where the autocorrelation is
computed and a peak picking algorithm is applied. In order for the tempo
detection to be valid a frame size of over 1 sec is used, with a hop size of
50 %. For each frame a single value is returned as beats-per-minut(BPM). This
measure is also related to the rhythm of a song.

Pulse clarity
Pulse clarity is considered a high-level musical dimension that conveys how easily
in a given musical piece, or a particular moment during that piece, listeners can
perceive the underlying rhythmic or metrical pulsation [Lartillot et al., 2010].
This given method uses the maximum autocorrelation value for each frame of
the audio signal giving a indication of the strength of the beat. A multitude of
other values to pick out on the autocorrelation curve of the onset curve and can
be compared at a later stage.

Keystrength
Is computed as the probability of each key candidate, through a cross-correlation
of the wrapped and normalized Chromagram and a set of similar profiles for each
key. Where the resulting values, the cross correlations of each key result in a
measure of the strength of each key.
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Key
This feature is closely related to the keystrength, where the estimation of the
tonal centerpoints is calculated using a peak picking algorithm on the keystrength
cross-correlation curve. Here also the clarity is calculated using the ordinates of
the curve.Thus the features relates to the musical descriptor of Register.

Tonal centroid
Also called tonality, where in [Harte et al., 2006] they suggest a new model
for Equal Tempered Pitch Class Space, where a 6-dim tonal centroid vector is
calculated. A 12-bin chroma vector is mapped into the so called interior space
of a 6-D polytope, where pitch classes are mapped vertices of this polytope.
Which should correspond to a projection of the chords along circles of fifths, of
minor thirds, and of major thirds.

Harmonic Change
Is again proposed in [Harte et al., 2006] and is the flux or change of the the
tonal centroid vector between each frame. Giving a way of calculating a rhythm
related measure

3.8 Misc. features

Linear Predictor Coefficients
Linear Predictor Coding is normally used in the mobile communication world
to code and compress a speech signal, which gives the best quality speech at low
bitrates. Here the coefficients are computed for each frame. It uses an autocor-
relation method in combination with a Levinson-Durbin recurrsion algorithm.
Since it is used for speech signals the results on musical signals and singing
speech voice is unknown.

Linear Spectrum Frequency
The approach in LSF is similarly to LPC which is a predictive method of coding
a speech signal. The implementation is adapted from [Duxbury et al., 2003].

3.9 Post-processing

Given the great number of features some post-processing should be carried out
in order to enable the use of them in the mathematical modeling. Further some
meta analysis should be made in order to gain perspective prior to modeling.
Three main areas will be investigated here, the temporal alignment of features,
the issue of the potential degradation of information due to lossy encoding of
audio source data, and last a look at corrections of the output of the feature
extraction toolboxes.
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3.9.1 Alignment of features

Given that most of the features operate in a frame based computational manner,
the window size was chosen to be the default for all algorithms. For the sake of
mathematical modeling these features have to be aligned in some manner. An
example of the problem is illustrated on figure 3.2, where some features have e.g.
frame sizes of several seconds where others exist in as little as 9 ms. One idea
is to integrate short-time features as was suggested in [Meng et al., 2005] thus
changing the features into alternative features that would align. The sheer num-
ber of features used in this project and further investigation of this is non-trivial.
Another method is simply to resample all features to a common temporal frame
length. Issues such as interpolation noise, when upsampling, and the removal
of high frequency components, when downsampling, should be investigated fur-
ther. When resampling the features, even though a degradation of information
occurs, this degradation is not direct transferable to a potential performance of
a mathematical model. But crucial information could potentially be removed
due to this choice.

Figure 3.2: Illustration of audio features miss alignment in the temporal dimension.

In section B.3 a more thorough investigation is made. A sampling frequency
was chosen to be a compromise between available computational power, for later
mathematical modeling, and audio feature degradation. Ideally the smallest
temporal frame, should be chosen. The compromise was a factor 8 of it, re-
sulting in a sampling of 110 Hz, producing 1654 frames for 15 second excerpts.
All features were then resampled, where all features that were downsampled
was investigated in greater detail. 10 excerpts were used, and the r2 correla-
tion coefficient was averaged across all excerpts. The result was that features
that were computed across multiple audio frequency bands, were the features
that suffered most. IC, Chromagram and Loudness measures suffered up to as
much as r2 = 0.4. The resulting error due to this degradation, in the mathemat-
ical modeling is not directly transferable, thus exclusion of features due to this
measure cannot be made. Caution has to be made, if variance and co-variance
analysis is made on resampled features, since variance is removed from these
features.
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3.9.2 Effect of Lossy-compression

Due to the varying source of quality present in the pilot2 dataset and potentially
future data, an investigation of the effect of different encoding types on the fea-
tures extracted was made in section B.2. Two different aspects of the encoding
of audio can reduce the quality of the audio signal. First a lowpass filtering is
made of the audio signal, after that a sub-band division is made, within each
of these bands a psychoacoustical model is applied, on this basis the quantiza-
tion bits are chosen of the particular sub-band. If a sound is inaudible due to
masking effects of the auditory system, the quantization bits allocated, will be
reduced. Thus producing a lossy compression.
The conclusion of the investigation was that, common across most features the
128 kbit encoding is the worst of the four compared (128 kbit, 192 kbit, 320 kbit
and Variable Bit Rate avg. 192 kbit), where the 192 kbit and VBR follow and as
expected the best is the 320 kbit. For features showing a low correlation due to
encoding, the general rule is that 192 kbit is the best of the rest, where 320 kbit
is the clear winner over all features. Based on these results, 192 kbit and above
is acceptable for the musical data. If features that have a low robustness to
encoding get selected by a feature selection algorithm, caution has to be taken.

3.9.3 Output corrections

For reasons unknown to the author a number of the features that are used
produce or output so called NaN values, which in Matlab is Not a Number.
This in terms indicates that the algorithm produce missing data points. For
these values, so called NaN -painting is used, which is often used within image
processing. An investigation of this made in section B.4, where the feature
of MFCC Flux was investigated. This feature was the one that produced the
most missing values across all features and was therefore used for investigation.
To test the performance of so called NaN -painting methods and to see the
effect of potentially using this feature a test setup was made. MFCC Flux
features calculated from 10 excerpts with no missing values was used. These
were corrupted with an increasing amount of missing values using a distribution
of errors similar to the existing errors of other missing values in feature vectors.
The result showed that of up to 50 missing values was the maximum that will
be allowed, resulting in a r2 statistics of 0.9 using a method that uses an average
of the 8 surrounding values to calculate the missing value.

3.10 Conclusion

The objective was the obtain structural information about music, which was
achieved. This was done using audio features extracted from musical data. Us-
ing a bottom up approach from an acoustical point of view, to gather features
that describe both aspects as musical psychologists, musicians and features used
and investigated in MIR and DSP community. 7 different feature extraction
packs were found and working and relevant features were chosen from each.
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Following were chosen and the dimensions they contain ID 33, MIR 540, PSY
280, Y AAFE 143, MA 64, CT 124, ISP 189, totaling in 1373 dimensional fea-
ture vector. These features are divided into the domains of spectral, temporal,
cepstral, musical, perceptual and a miscellaneous. Features where information
and relevant information were available was presented.
The musical data used for the foundation of making a mathematical model for
the prediction of emotions expressed in music was based on lossy compressed
audio data. An investigation was made into the effect the compression had on
the extraction of audio features. The result was that data that had a compres-
sion at no lower than 192 kbit could be used without any severe degradation of
data. On the other hand no direct connection between loss of information in
features and the resulting predictions of mathematical models could be made.
To align features a resampling method using a 100th order polyphase resampling
method of Matlab. The effect of this on features was investigated when features
were downsampled. For features which are frequency decomposed this showed
to have a profound effect on the correlation of the features between original and
downsampled.



Chapter 4

Listening experiment

In order to obtain emotional data for music, a listening experiment is devised.

4.1 Experimental considerations

Some issues should be considered before starting the design of a listening ex-
periment.

Issues regarding the choice of musical data to test, and the length of these has
to be taken into account. Following points are considered

• Enough music should be rated so that a mathematical model can be based
on it. Thus be representative across genres.

• The music used should cover the whole emotional space when using a
valence and arousal two-dimensional model.

• The emotional data obtained from participants should be reliable so a
model is feasible and reflects the actual feelings expressed in music.

• The length of excerpt should have a length which on one side is not so
short so as to demand a high amount of cognitive strain on participants to
rate them but also not so long that large changes in expressed emotions,
heavily influence the ratings.

Issues around the experimental planning that should be considered are the fol-
lowing
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• The length and number of excerpts also come in to play in the experi-
mental planning. A golden rule within listening experiments is that each
participant can only be asked to concentrate on a single task, such as a
listening experiment for no more than an hour. This not including in-
troduction and instructions. (see e.g. [Zacharov and Bech, 2006]). Given
musical data how long each participant take to rate in average, should be
investigated.

• The order of the excerpts that are presented to the test subject can po-
tentially have an effect on the ratings. No previous work has been found
in documenting whether an effect is seen on the emotional rating if e.g. a
heavy metal track is played before a classical piece or vice versa. It has
been shown as discussed in section 2.3.5 that the ratings and experiences
of listeners do in some way get added up in a non-linear way to some final
post-rating percept, but nothing specific about order.

• A limitation of the testing, is the number of possible test participants
is not being endless. A compromise has to be made between how many
excerpts will be rated and how many ratings is needed for each excerpts
in order for the data to be reliable. In [Schmidt and Kim, 2010] they rate
240 songs that is evenly distributed across the four quadrants of the A-V
space, where they undergo “intense” rating. No information regarding
how many different participants rated these excerpt or whether they rated
themselves are available.

Measuring the expressed emotions is what is the aim using the listening ex-
periment. The sources of emotional induction as was discussed in section 2.3.2
should be limited, to reduce bias. This can be done by controlling the experi-
mental variables. Following points are considered,

• Listeners, Contextual and Performance features can be controlled by the
listening room and reproduction system. These should be as neutral as
possible, so not to influence the test participants. Furthermore test partic-
ipants should be instructed to disregard any potential musical preferences.

• Musical expectancy should be limited so participants only rate what is
being presented, and not what they know is about to come, they are
familiar with the given musical song that the excerpt is taken from.

• Brain stem reflexes can partially be controlled by the volume of the music
in which it is presented to the participant in.

• Emotional contagion can be limited in the visual sense by having a clean
listening room with have monotone colors. If lyrics are learned or the music
does result in some contagion, only instructions can be used to minimize
this. The length of the excerpts can be chosen to be a length that ensures
that participants are not heavily influenced by the learning of the lyrics.
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However if long excerpts are needed, division of these into smaller segments
and ordering them appropriately can reduce the contagion due to learning
of lyrics.

• Episodic memory and Evaluative conditioning are two factors that are
difficult to control and can only be done by instructions to the user as to
focus what is being expressed in the music and what the person perceives.

• Perceptive influences can be partially controlled by determining whether
or not people have normal hearing ability. This could e.g. be done by
acquiring an audiogram or ask if participants have one. In this context
it is within 20 dB HL which is considered normal hearing. Other more
complex disorders should not be taken into account.

• A cognitive variable that has to be taken into account is whether or not
participants are on any mood altering drugs, or suffer from disorder that
might change their perception or induction of emotions. Simple questions
to participants can reveal this issue.

The general bias that can occur when measuring emotions were discussed in
section 2.2.3. To control these bias, following aspects should be taken into
account,

• Demand characteristics is not a major concern for the primary experi-
mental setup of rating excerpts on two emotional scales. The main ob-
jective is that the participants understand the underlying idea behind the
test. The issue can come in to play at different pilot experiments where
effects of the ordering of excerpts or ordering of scales.

• Self −presentation bias can be reduced by making all ratings completely
anonymous, and position participants isolated so exchange of any kind can
not take place that can influence their behavior.

• Limitation of the awareness of ones emotions is a major issue in the
test, regardless of what scales chosen. The underlying premise is that
participants know how they feel about any piece of music. If participants
fundamentally do not know or can not express how they feel about a piece
of music, then this could lead to biased data. This issue is difficult to take
in to account other than data interpretation.

• Communication bias is an extension of the last point, which is whether
or not participants can, given they know what they feel, rate this on two
given scales. If they do not know what the scales mean or represent the
data it becomes error prone as a result. Thorough specific instruction has
to be given to participants prior to testing. But not so much as to lead
them into being biased by the instruction themselves.

The choice of scales and self-report methods following initial considerations are
made
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• Whether to use a continuous measuring method or use post rating of
excerpts in order to capture the temporal emotional dimension. It was
previous argued that post ratings should be used. The main concern at
present point is that the test should be intuitive and not much training can
be made, if any at all. This means that the cognitive load on participants
should be kept at a minimum to provide stable result. For this reason
knowing the possible bias involved as discussed in section 2.3.5, post rating
of excerpts is still the choice. The precise length should be comparable
with those used in the MIR community or multiple of them.

• When rating two dimensions of Valence and Arousal a possibility is to
use either two one-dimensional scales or one two-dimensional scale (2D
valence-arousal). The use of two separate scales, can cause bias towards
the order of presentation of these, e.g. if arousal is always presented before
valence or vice-versa. Instead of presenting both scales for each excerpt
one scale could also presented per excerpt, but this would reduce the data
acquired by a factor of two.

• Regardless of a two-dimensional scale (2D valence-arousal) or two single
dimensional scales, the direction can potentially have an influence on the
ratings, e.g. if positive valence is always to the right and the negative is
to the left.

• The use of bipolar or unipolar scales to measure the two bipolar dimensions
of Valence and Arousal could possibly increase the number of scales by a
factor of 2. At present point no investigation is initiated to prove or
disprove the dimensions or bipolarity of Valence and Arousal and therefore
bipolar scales should be used.

• Issues like the scales used in the self-report method, are also elements that
should be tested prior to the test. Since no previous work has been found
documenting it, it should be investigated in a pilot experiment.

This multitude of initial considerations will be investigated throughout the fol-
lowing sections, and result in pilot experiments that will test and clarify these.

4.2 Design of listening experiments

To design the experimental procedure, both the independent and the dependent
variables have to discussed and defined. These variables are responsible for the
question presented to the test participant and later the quantification of this
answer. The response attribute is the question to the participant, the dependent
variable is the answer the test participant provides, and the response format is
the method of quantifying this answer.
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4.3 Quantification of emotion

The quantification of emotion is done by means of self-report method. In
[Zentner and Eerola, 2010] a great variety of method for quantifying the emo-
tional content in music was discussed. Key issue is that the scale has to be easy
to understand and intuitive. Another aspect is that it should be understood by
a great variety of different types of people, e.g. education, age and nationality.
For this reason valenced adjectives should be limited due to vocabulary limita-
tion by the test subjects, to limit bias.

4.3.1 Response attribute

The vocabulary of use should be limited, in order to measure the two dimen-
sions of valence and arousal for the response to music. One could as suggested
in [Zacharov and Bech, 2006] develop a consensus or individual vocabulary and
thereby let the test participants suggest what adjectives should be used being
representative for the two dimensions. This however is very time consuming
and therefore a costly affair. The question to participants therefore be a direct
one to rate the music using the two dimensions of valence and arousal.

4.3.2 Response format

Which response format the expressed valence and arousal in music should be
measured with is very much linked with the response attribute. As discussed pre-
viously in [Zentner and Eerola, 2010] a number of methods and scales are pre-
sented. The constraint there is on the use of adjectives, visual response formats
are chosen. In [Bradley and Lang, 1994] they present the Self -Assessment
Manikin (SAM) that consist of a series of drawn iconic images of a human rep-
resenting pleasure, arousal and dominance (see figure C.6 in the section C.1.4).
Where each series of images have a 9-point scale below them. Using this method,
under the assumption that the images are understood, reduce the vocabulary
bias. The manikins have effectively been used to measure emotional responses
to pictures, images, sounds, advertisement, painful stimuli, etc. They have been
used in tests on children, anxiety patients, analogue phobics, psychopaths and
other clinical populations. Showing that the method has been widely tested in
the psychological world. Within the MIR community or music testing with this
method has not been found. Given the shortcomings the test is still used to its
status as standard. As mentioned in section 2.4 only valence and arousal dimen-
sions will be used in this experiment, and therefore the corresponding manikin
will only be used. The biggest issue with using such manikins is whether or not
the test participants understand them (i.e. communication bias), and further-
more find them appropriate in rating music. This should be investigated in the
pilot experiments in order to make sure that people actually understand them,
without any adjectives to describe the images.
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Given the method of measuring expressed emotions in music, two pilot exper-
iments are designed to gather appropriate information about the setup of an
listening experiment.

• Pilot 1 Will deal with the ordering of the stimuli, excerpt length, and
appropriateness and understanding of scales giving no instruction about
the scales. It will also deal with the time it takes to rate an excerpt and
potential influence of mood prior to testing and musical experience and
training of participants.

• Pilot 2 Based on the findings in pilot1, an appropriate amount of excerpts
will be rated. Ratings should be the foundation of a mathematical model.
Investigations in to the length of excerpts, effect of presentation order of
scales appropriateness and understanding of scales based on finding in the
first experiment.

Common for the listening experiments are most of the independent variables,
which includes calibration, reproduction system, listening room and user inter-
face. The changing elements are the stimuli and the test subjects that vary
between each of the tests. Statistical tool should be used where necessary in
order for verification of the results.

4.4 Common experimental variables

In this section the instructions, user interface, reproduction system including the
listening room and the calibration used for all the listening test is presented.
The general requirement for these aspects of a listening experiment is to reduce
the influences that were discussed in section 2.3.2.

4.4.1 User interface

Given that the manikins are self explanatory the interface should be easy, in-
tuitive and require as little amount of work from the test subject as possible.
To make the whole process automated a computer program should be devised.
This should be designed to

• Minimize user interaction e.g. mouse clicks, typing on keyboard, etc.

• Timing of each participant to rate an excerpt.

• Use manikins from [Bradley and Lang, 1994]

The resulting interface for the rating of emotions expressed in music can be
seen on figure C.6. To ensure that the interface is understood by participants, a



4.4 Common experimental variables 55

pre-test will be made prior to all experiments. This will be marked with a clear
indication so participants are sure it is a test.

4.4.2 Instructions

The instruction given to the participants should emphasize that what should be
rated is the expressed emotions in music and not what is being felt. Therefore
clear instructions as to how the test procedure will be should be made. The
written instruction can be seen in section on figure C.1 and C.2. Taking into
account that the written instructions were not understood a verbal repeat of the
written instructions were also given. Participants were allowed to ask question
within the scope of each test.

4.4.3 Reproduction system

Two major different setups are evaluated for the reproduction system. One
being a stereo speaker setup and the other using headphones. Whether or not
music is indented for playback on a stereo or headphones is a long discussion.
Being aware of the possible bias being enforced on the experiment, a setup using
headphones is chosen for practical issues. Following equipment is used for the
experiments

• ATCAHR4 computer using Windows XP.

• Matlab R2006b.

• Sennheiser HD 580 Precision headphones.

• pa wavplay matlab pluging is used for playback.

4.4.4 Listening room

The listening room used for all listening tests is the CAHR Right booth at
Center for Applied Hearing Research at the Acoustical department in the Tech-
nical University of Denmark. The room is chosen due to its very monotone
appearance, with gray walls and a computer placed inside. The booth is sound
insulated so that no exterior sound influences are present during testing.

4.4.5 Calibration

The musical excerpts should be normalized so that the presented playback vol-
ume is the same. By playing one excerpt louder or softer could influence the
subjective evaluation of the experienced emotion in the excerpt. It is clear that
when using multiple musical genres from rock to classical and pop, the tempo-
ral evolution of the music is very different. A normalization using Loudness or
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Specific Loudness could be an option. However changing the overall playback
volume frequency dependent, could change the original intended expression by
the artist, due to the change in frequency balance. An overall Loudness normal-
ization could also be used, but the perceptual consequences are unknown and
further investigations of this is out of scope and will not be covered. A widely
used normalization method in the form of RMS is also perceptually unknown
but chosen here for convenience.

4.4.6 Order of presentation

Two different emotional scales exist, that of valence and arousal. Which of the
two scales should be presented first to the participant, or should only one scale
be presented to the participant at a time, to reduce correlation between the two
emotional scales. Another issue is in which direction the two scales should be
directed. Should the positive or negative valence be to the left or right. Due
to time constraints and the limited number of test participants, both scales will
be presented to the test participant for each excerpt. To balance the design
the valence and arousal scales should be presented equally first and last. The
issue of the direction of scales (i.e. happy to the left or right), will not be closer
investigated within these listening experiments and the scales are as presented
in [Bradley and Lang, 1994].

4.5 Pilot 1

The pilot1 experiment has the objective to make investigations regarding an
experimental setup. The main issues of the test are

• Main concern for this experiment is to test the ordering of the stimuli,
which would be the most pertinent to use in a potential test.

• The appropriateness and understanding of the scales for the use in music.

• The length of the musical excerpts: whether or not the test participants
find it appropriate.

• The duration of the test and the time it takes to rate each excerpt should
be measured and investigated.

• Questions describing the participant, e.g. musical experience, and demo-
graphic data.

Given these concerns to be able to have something to test, a testable paradigm
is formulated. For all other aspects these will merely be information gathering.

4.5.1 Test paradigm

Here the test paradigm is given for the main objective of the test.
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• Premise 1, There is a change in subjects rating of emotion expressed in
music due to the musical excerpt previously presented (Carry-over effect).

• Premise 2, The emotional carry over effect can be measured using lis-
tening experiments.

• Conclusion, A carry over effect of emotion exist due to the ordering of
musical excerpts.

The experimental variables for the first pilot experiment is presented.

4.5.2 Subjects

For the first pilot experiment 24 participants are chosen amongst students and
employees of the acoustical department and the department of Informatics at
DTU. The first 12 participants should be used in the testing of the sequential
presentation and the other 12 should be used for the balanced structural design.

4.5.3 Stimuli

The stimuli chosen here is three different excerpts that are different in genre
and relative unknown to the author. Genres are pop/r&b, pop/rock and heavy
rock. The total length of each clip is 30 seconds chosen in the middle of each
song.

1. Metallica - Better than You.

2. U2 - In Gods Country.

3. Back Street Boys - Spanish Eyes.

Each clip is divided into 4 equal excerpts of 7.5 seconds with a Hanning shaped
fade in and out of 0.2 seconds. The format is PCM at 44.1 kHz sampling, 16-bit
stereo wave files.

4.5.4 Order of stimuli

To test the emotional carry over effect of musical excerpts, two different exper-
imental order of stimuli must be constructed.

Sequential ordering (SO), is ordered so that the 4 clips of each song is pre-
sented sequential, but each song should be ordered so that the carryover of the
last clip in each song and the first in each song is balanced. The first excerpt
presented to the participant should also be different so that no carryover exists
from e.g. pre-testing. Here completely random or a simple Latin Square does
not suffice.
Balanced ordering (BO), is the possible combinations of the 12 clips in a
balanced design. So that excerpt one and excerpt two are only succeeding each
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other once. It should also hold that the starting sound excerpt should also
be different for each test participant so that no emotional carry-over effect is
present from pre-testing.
For both these cases a balanced Latin Square design is the solution to these
requirements, the so called Williams Latin Square (WLS).

4.5.5 Data processing

To compare the two set of results, the BO and SO of excerpt an objective
measure should be used. Given that for each excerpt 12 ratings are made for
each of the methods, these two groups will be compared with a Two-sample
Kolmogorov − Smirnov (2KS) test. The null hypothesis for the 2KS test is
that the two measurements are from the same continuous distribution. The
alternative hypothesis is that they are from different continuous distributions.
For each excerpt a test is made between the SO and the BO results. To test
the effect of the BO and SO within each clip, the 4 excerpts within each clip
will equally be tested with 2KS test.
An alternative method of testing the difference between the two is to simply
compare the sample-mean of the given two distributions, not implying no spe-
cific underlying distribution at present point. Furthermore no regard is made
on outliers on either of the datasets. Another aspect to investigate is that one
could expect participants given a sequential ordering, would give more consis-
tent ratings Therefore this will be investigated using variance analysis of ratings
across excerpts for each participant.

4.5.6 Meta data

Demographical data should be gathered about each test participants together
with some personal information about musical background and medical infor-
mation.

• Age

• Occupation

• Time listening to music per day

• Years of musical training

• Preferred musical genres

• Suffer from mood disorders

• On any anti depressive medicine
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The questionnaire can be seen in section C.1.2 on figure C.3.
To test scales and excerpts length questions should be asked after the experi-
ment has completed, which can be seen in section on figure C.4.

• Understanding of scales

• Appropriateness of scales

• Appropriateness of excerpt length

To see if their mood prior to the test has an influence on their ratings, this
should be rated prior to testing, this can be seen in section C.1.3.

4.5.7 Results

All participants were normal hearing and did not suffer of any mood disorders
or were on any medication. All participants were PhD student or master stu-
dents with an average age of 27 years. Using the 2KS test between each of the
4 excerpts, that represent a 30 second clip, for all excerpts using both designs,
the NULL hypothesis was accepted. It is likely that regardless of the ordering
method within each of the excerpts, that they originate from the same under-
lying distributions for each of the clips.
To test the ratings across ordering designs each excerpt e.g. 1, 2, 3 and 4 ex-
cerpts from clip 1 in the BO design, was compared to the ratings of the same
excerpts from the SO design.

Clip 1 2 3
Excerpt 1 2 3 4 5 6 7 8 9 10 11 12

2KS
Valence 0 0 0 0 0 0 0 0 1 0 0 0
Arousal 0 0 0 0 0 0 0 0 0 0 0 0

Table 4.1: Results of Two-sample Kolmogorov − Smirnov test between the results
obtained in the pilot1 experiment comparing results from a sequential and
balanced design, to see the effect on emotional ratings of music using the
scales of Valence and Arousal.

On table 4.1 the results of the Two-sample Kolmogorov − Smirnov test is
shown, where all excerpts pass the test, except no. 9 which is the first ex-
cerpt in Back Street Boys - Spanish Eyes. A histogram of those ratings can
be seen on figure 4.1. By visual inspection there is a clear difference between
the two, where the sequential produces much more consistent results, than that
of the balanced. Another thing is that the mean of the ratings has changed by 1.
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Figure 4.1: Histogram of the ratings of excerpt 9, in the balanced and sequential or-
dered experiment. The KS2 test in the two set of ratings was the only that
failed. The red bar marks the mean of the ratings in the given experiment.

The difference in mean and variance between the two ordering methods, is used
to visually having a measure that is easier to interpret. The results are shown
on figure 4.2. The difference between the means show that across the 12 ex-
cerpts, using the SO on the arousal scale, participants produce higher ratings
compared to using BO. On the valence ratings, specially the ratings for Back
Street Boys show that using BO produce ratings that are in average 1 rating
higher than that of the sequential.

By using a SO design, it it was tested if the ratings given by participants would
become more consistent. The results are shown on figure 4.3, where a slight
change in the average variance over all participants, with 0.38 for SO and 0.75
for BO on the valence scales is observed. 0.38 for SO and 0.56 for BO on the
arousal scales, which is not a huge difference. On arousal ratings of excerpt no.
5 or valence ratings excerpt no. 11 and 12, the BO has a lower variance than
the SO. On the other hand valence ratings of excerpt no. 5 and arousal ratings
of excerpt no. 4 and 9 show a much higher variance.
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Figure 4.2: The difference between the mean of the ratings given in the pilot1 exper-
iment. Bars that are red, indicate that the sequential design produced
higher ratings than the balanced design. Vice versa the black indicates
that the balanced design produced higher ratings than the sequential.

Figure 4.3: Variance of each participant’s ratings. The variance was calculated for
each clip consisting of 4 excerpts. The average was then taken between
each of the 3 clips, used in the test. The red line indicated the average
over all participants, where it is numerical indicated on the left of the line.
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Meta data results
An analysis of the meta data gathered was made in C.2. The analysis of the time
it took to rate an excerpt with the two scales was analyzed in section C.2.1. It
was shown that across participants only participant 1 in the BO design seemed
to find the test very straining. Comparing the two methods, the time it took to
rate for each participant in average was 6 seconds for SO design and 8.6 seconds
for the balanced design. If the time taken to rate is taken as a sign of the cog-
nitive load, it shows that using a balanced design uses a great deal of cognitive
power compared to the SO. This trend is explained by looking at the time it
takes to rate the individual excerpts where it can be seen that rating the first
excerpt in each clip takes the longest, and after that decreases in time. Whereas
the BO design is rather constant.
An analysis of the questions posted to the participants regarding the under-
standing and appropriateness of the scales was investigated, in section C.2.2
and C.2.3. Based on the results and post questioning of participants, it was
found that the scale of arousal was difficult to understand. Especially for the
use in music. Regarding the length of the excerpts, it was found that par-
ticipants had to use a high amount of cognitive power to rate the excerpts of
7.5 seconds, and they would prefer something longer. They were prone to rate
similar results, e.g. the middle of the scales, when they were in doubt because
there was too little music to make a proper assessment.

4.5.8 Discussion

The effect of the ordering of excerpts in the rating of emotions expressed in mu-
sic using the dimensions of valence and arousal was tested. The test method was
the 2KS test and visual comparison by comparison of mean. 24 participants
were divided in two groups that used a SO and BO design. The 2KS showed
that within each ordering method, the excerpts were likely to originate from
the same underlying probability distribution. That is, regardless of methods
used to order the excerpts, the results were consistent within a margin. This
result is very important as it shows, that both methods can be used and still
obtain consistent results. The second test was to test whether or not there was
a change in ratings given by users, due to the excerpt that came prior to the
rated. Using 2KS test one excerpt failed the test. One can suspect based on
these results, that using the sequential ordering, participants are more prone to
rate the same in succession. Thus producing a great deal of the same ratings,
but on 4.3 a clear difference is not seen. In some cases the BO ratings have
a slightly lower variance, but in some cases are also much larger than SO. It
could be that by only using 3 clips, participants memorize their ratings when
using the BO, thus still producing rather consistent ratings. On the other hand
it could just be chance. Given the failing of 2KS on excerpt no. 9, the general
larger ratings on the arousal scale and in some cases much larger on the valence
scale on e.g. Back Street Boys, there is a difference between the two types of



4.6 Pilot 2 63

ordering of stimuli, as the purpose of this test was set out to investigate. “Pros”
and “Cons“ between the two methods is that SO does produce slightly more
consistent results and results are somewhat different that using BO. BO does
not produce a much larger variance between ratings, and by enough participants
it could result in more neutral results. Depending on what is desired to model,
e.g. if one wants to model the emotional buildup in a song, SO would be the
method to use. If one wishes to model the emotions expressed in music and dis-
regard any temporal buildup as it is in this case, the BO would be the method
to choose.
Based on the findings in questionnaire and post questioning of participants,
it was found that a more detailed explanation of the scales should be given,
specifically the arousal scale. Another finding was that longer excerpt should
be used, as participants became very cognitively exhausted, making them rate
“neutral” (in the middle of the scale), not to account for errors in the test.
This is confirmed by a temporal analysis of the ratings, where it shows that it
takes a longer time to rate each excerpt in the BO design than in the SO design.

4.6 Pilot 2

The pilot2 experiment has the objective to make further investigations regarding
a experimental setup. The main issues of the test is

• The experiment should acquire data for the basis of creating a mathemat-
ical model, that can predict emotional ratings of valence and arousal.

• To test whether or not the participants can be asked to rate on both scales
every time an excerpt is presented. It could be that there is an enforced
correlation between the two scales, if they are both used.

• Given the experimental emotional data, an analysis of it should be made,
to clean the data for potential outliers.

• Acquire meta data regarding appropriateness and understanding of the
scales used, when they are explained.

• Investigate meta data regarding the participants that can potentially in-
fluence the results from the experiment, e.g time to rate, listening habits,
musical training, familiarity of the music and mood prior to the test.

4.6.1 Test paradigm

Here the test paradigm is given for the test of the change in participants ratings
due to the order of presentation of scales.

• Premise 1, There is a change in subjects rating of emotion expressed in
music, due to the order the scales are presented to participants.
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• Premise 2, The effect the ordering of scales have on emotional ratings,
can be measured using a listening experiment.

• Conclusion, An effect is present on emotion ratings due to the ordering
of the rating scales.

4.6.2 Subjects

For the second pilot experiment 14 participants were willing to participate,
amongst students and employees of the acoustical department at DTU.

4.6.3 Stimuli

The stimuli chosen here should cover the whole valence-arousal space. Due to
the results of pilot1, a length of each excerpt is chosen to be 15 seconds. Another
finding was that the response time for each rating was between 3-20 seconds.
Although there was an innate lag of the timing in the Matlab system, so they
are not completely reliable. Once a routine is built in after a long test session
the response time is presumably going to go down, and the scales have been
given a clearer definition. Thus estimating around 2-6 seconds of time to rate
one excerpt. This totals of 17-21 seconds per clip. Aiming for 1-hour total
testing time, it results in 200 excerpts of evaluation. This could exceed the
golden 1-hour rule of auditory testing but it is seen as acceptable since the task
at hand should not put the test participant under heavy cognitive load, when
listening to music. Users will also be instructed to have a break if they become
cognitively exhausted.

Figure 4.4: Histogram of the genres for each of the 200 tracks used in pilot 2 exper-
iment. The genres used were those of the AMG, and the same genres
as the USPOP2002 including a classical, which contains all subgenres of
classical genre, opera and scoring/film music. The number above each bar
indicates the percentage of the total amount of excerpts
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The 200 excerpts are chosen among all musical data available by the author
using self-rating of excerpts and the number of excerpts in each quadrant is
calculated post test. The same genres as the USPOP2002 dataset is used to
approximate the same distribution, where a second genre is added in the form
of classical (see figure 4.4). This genre is a collection of opera, film music, and
all varieties of classical music. These types of music are specially made to elicit
emotional responses in listeners as was discussed in [Cohen, 2010]. The method
obtaining the data has been mining webradios, and therefore the whole musical
tracks have not been available and the quality has been changing from excerpt.
The distribution of bitrates for the data can be seen in section C.4.

4.6.4 Order of stimuli

A complete WLS design of the 200 excerpts would require 200 test participants.
Since this is not practically possible a compromise should be made. Concate-
nated individual WLS of 20 test participants where the WLS has a randomized
initial column is used. Using this method the number of excerpts in the test
should be a multiplum of the number of test participants. Where each concate-
nated WLS should be increased with the number of test participants.

4.6.5 Instructions

All instruction for the second pilot experiment was the same as pilot1 with one
exception. Given the results from pilot1 a thorough verbal explanation of the
scales should be given to each participant. The scale of valence was explained
to be positive or negative using very common and yet neutral anchors. The
scale of arousal was explained to be excited or not excited. Still emphasizing
that it is the expressed not induced emotion.

4.6.6 Data processing

As can be seen in 4.5 the data for valence and arousal on the two scales are
illustrated. The two 9-point scales used for the manikins are in nature ordinal
scales, that is, the distance between the first and second point does not have to
be the same distance as the third and fourth point. Even within each subject the
mapping of each point can be different. The ratings from each participant form
two histograms on a 9-point scale. To model this, the underlying structure of
data, a distribution should be fitted to this data. Although the data is ordinal,
for the purpose of modeling this approach, it is used for practical issues. The
distribution should only contain probability mass in the given interval of the
9 point, and should be 0 everywhere else. The truncated normal distribution
or the beta distribution has those qualities, in this case the beta distribution is
used and given by

prob(x|α, β) =
xα−1(1− x)β−1∫ 1

0
tα−1(1− t)β−1dt

(4.1)
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which is only defined in the interval [0; 1] with a mean of µβ = α
α+β and mode

α−1
α+β−2 for α > 1 and β > 1. The 9-point scale’s intervals are defined so that 1st

ordinal point of the scale is defined in x1 ∈ [0.5; 1.5], 2nd in x2 ∈ [1.5; 2.5] etc.
as seen on figure 4.5.

Figure 4.5: Illustration of the fitting of beta distribution to experimental data from
listening experiments.

On the figure the dotted lines indicate the rating values given by the partici-
pants. This is so called grouped data where one discrete value represents all
the data in the interval e.g. f(x1) in x1 ∈ [0.5; 1.5] as the participants given
the ordinal scale could not rate in between. These intervals are mapped to the
rating interval of x′ ∈ [0; 1] defined by the beta distribution. For simplification
reason the beta distribution is fitted on the grouped data using maximum likeli-
hood estimates of the variables α and β. Alternatively the area under the curve
AI = f(xI + 1)− f(xI) for I ∈ (1, 9), should be used for the MLE, but is not
seen as necessary here. The mapping is done by xβ = (2xr − 1)/18

Outlier criteria Given the beta distribution of the ratings of each excerpt,
outlier criteria can be formulated. Two different scenarios are thought of here,
for data being an outlier.

1. A test participant has fundamentally misunderstood one or both of the
scales, and therefore would make error full ratings consistently.

2. A participant looses concentration due to a number of reasons, and thereby
momentarily makes error prone ratings.

The fundamental assumption here is on the experimental data, that the un-
derlying mechanism of objectively rating the expressed emotions in music is
somewhat the same for test participants. If ratings are far from the majority,
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then this would be considered an outlier. To formulate the two outlier crite-
ria (OC1 and OC2), a center of opinion in the form of the mean of the beta
distribution is used.

OC1
To test if participants fundamentally misunderstood the test, the distance be-
tween the rating a participant rates on a excerpt and the mean of all ratings on
that given excerpt, is summed up over all excerpts rated by the test participant.
This can be written as

Υj =

N∑
i=1

|yj,i − µβi
|, where µβi

=
αi

αi + βi
(4.2)

where Υj is the summed error of the jth participant of K total. yj,i is the rating
of test participant j of the ith excerpt out of N total excerpts. αi and βi are
the MLE fitted parameters of the beta distribution for excerpt i. Using the
summed error over all excerpts an outlier criteria can be formulated as

Υ̂ =

K∑
j=1

H(Υj − φt) (4.3)

Υ̂ is then the number of outliers of the total K possible outliers, and φt is the
criteria for which the participant is judged to be an outlier. H is the Heaviside
step function defined by H(x) = 1 for x > 0 else 0. If the participant makes
consistently error prone ratings Υj will become large and be considered an
outlier if greater than φt.

OC2
To test if participants looses concentration and thus makes an error on an excerpt
by excerpt basis, the distance between a given rating to the mean of the beta
distribution fitted on all ratings of that excerpt is used.

Ψ =
N∑
i=1

K∑
j=1

H(yj,i − (µβi
+ σu)) +H((µβi

− σl)− yj,i) (4.4)

where Ψ is the number of outliers out of all ratings made in the test. σu is the
upper and σl is the lower limit of which ratings are considered an outlier.
In statistics when estimating the mean of a distribution often so called trimming
is used where 2 % of the ratings on each tail of a distribution is removed. Given
the shape of the beta distribution and the postition of ratings, σu and σl might
not be the same to obtain this measure.
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To calculate an objective outlier criteria for distributions for each of the N
excerpt, L samples are drawn. ŷi ∼ Beta(yi|αi, βi) where i = [1, 2, ..., L] simu-
lating L participants.

The probability of being an outlier, given the two outlier criteria, is then calcu-
lated as

• p(Outlier|OC1) = Υ̂
L .

• p(Outlier|OC2) = Ψ
LN .

where L should be chosen so that stable results are obtained. The aim is then
to find φt, σu and σl appropriately.

Order of Scales analysis
To test if there is an effect of whether the arousal scale or the valance was
presented first, a test should be made of the data. A simple Two-sample
Kolmogorov − Smirnov (2KS) test is used again. Thus comparing distribu-
tion of ratings for each of the excerpts given by half of the participants to the
ratings given by the other half, i.e. arousal presented first or valence presented
first. The assumption here is that there is enough data to form the basis of
comparison.
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4.6.7 Results

The aim of the choice of musical excerpts by the author was to cover the entire
Valence-Arousal space. On figure 4.6(a) the distribution of all ratings are seen.
A clear dominance is seen around the center point of the valence scale as seen on
figure 4.6(b), where the rating point donated 4, 5 and 6 contribute account for
∼ 60 % of the total amount of ratings, whereas arousal only contribute ∼ 45%
of the total ratings. It is also observed that some participants e.g. participant
1 uses the middle rating point very dominantly on the valence scale.

(a) Valence - Arousal

(b) Valence (c) Arousal

Figure 4.6: On (a) valence and arousal are plotted for the total number of ratings in
pilot2 listening experiment. On (b) and (c) valence and arousal ratings
accumulated through all rated excerpts are plotted.

Of all the 200 rated excerpts, the two with the highest and the lowest variance is
shown on figure 4.7(b) and 4.7(a) respectively. All the histograms for all ratings
and the corresponding fitted beta distribution can be seen in section C.5 on
figure C.12, C.13, C.14 and C.15 .
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(a) Valence rating for Nina Simone -
Suzanne, σn = 0.61 and µn = 5.00.

(b) Arousal ratings for Carl Orff -
Carmina Burana - O Fortuna, σn = 2.02
and µn = 5.21.

Figure 4.7: On (a) and (b) the histogram and fitted beta distribution for the excerpts
that have the highest and lowest normal variance

Order of Scales
To compare the effect of presenting one scale first and subsequently presenting
the second on the same excerpt a 2KS test was made. Given that the ratings
of half of the participants were compared to the other half using 2KS test. The
results of rating valence, comparing the data where the arousal scale was pre-
sented first and the valance scale was presented first, 8 did not pass 2KS Null
hypothesis for the valence scale, excerpt 2, 8, 32, 65, 82, 109, 123, 168 and using
the same type of test scheme, 5 did not for the arousal scale, excerpts 74, 112,
159, 180 and 183.

OC1
1.000 samples were drawn from each beta distribution fitted to the experimental
data. The accumulated deviation from the mean was calculated for all samples
drawn. The resulting histograms for valence and arousal can be seen in section
C.8 in figure C.19. Based on visual inspection φt = 240 for valence, and φt = 270
for arousal, based on the fact that this number is much higher than any of the
sampled participants. The results are presented in table 4.2.

Using OC1, test participant 8, 9 and 14 were considered an outlier with a accu-
mulated deviation from mean of 311, 355 and 409 respectively for the arousal
scale. Averaging around 1.5-2 ratings away from mean through all the excerpts.
If this criteria would be used, this would exclude 300 ratings on the arousal scale
equivalent to 21 %.
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Participant 1 2 3 4 5 6 7
Arousal 153 196 218 193 196 213 206
Valence 141 226 147 193 150 234 172

Participant 8 9 10 11 12 13 14
Arousal 311 355 247 204 169 189 409
Valence 203 176 211 231 156 182 224

Table 4.2: Accumulated deviation from mean where outliers are considered when φt =
270 for arousal and φt = 240 for valence. Participants that are considered
outliers based on the given criteria are marked with bold.

OC2
The results of the OC2 is presented in table 4.3 and 4.4. Drawing 1.000 samples
from each of the 200 distributions, σl and σu are determined so that in average
over all beta distribution of 2% ratings in each tail will be removed. Using σl
and σu determined on emperical data on the experimental data, it is evident
that fewer outliers are seen on the valence scale, than of the arousal scale. In
average, if a participant rates 2.6 of a rating interval away from mean, it would
be considered an outlier for valence and 2.82 for the arousal scale.
The valence ratings show that applying the same criteria that removes a total

Empirical Experimental
Value Outliers Percentage Outliers Percentage

σl 2.6 4.059 2.03% 29 1.04%
σu 2.6 3.937 1.97% 56 2.00%

Total 7.996 4.00% 85 3.04%

Table 4.3: Results of outlier criteria 2 on the valence ratings, Empirical data where σl
and σl estimated to reach 2% in each tail. Resulting outlier removal on
experimental data to the right

of 4% of the ratings using emperical data, removes 3.04% of the ratings on
experimental data. On the arousal scale this removes 5.71% of the ratings.

Using the OC2, thus removing 160 arousal ratings and 85 valence ratings of

Empirical Experimental
Value Outliers Percentage Outliers Percentage

σl 2.82 4.060 2.03% 76 2.71%
σu 2.82 3.894 1.95% 84 3.00%

Total 7.954 3.98% 160 5.71%

Table 4.4: Results of Outlier criteria 2 on the arousal ratings, Empirical data where
σl and σu estimated to reach 2% in each tail. Resulting outlier removal on
experimental data to the right
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the total 2800 ratings, how the outliers distribute over participants and specific
excerpts is shown in section C.9 on figures C.20(b) and C.21(b). It is evident
that participants 8, 9 and 14 have clearly the highest amount of ratings removed.
An example of an outlier removed can be seen on figure 4.8.

(a) Original (b) Outlier removed

Figure 4.8: On (a) the histogram and fitted distribution for the ratings of the 15 second
excerpt of Gogol Bordello - Wonderlust king is plotted and on figure (b)
the OC2 has been applied and removed 1 rating.

Using the data where outliers are removed, new beta distributions are estimated,
the resulting α and β of the beta distributions are plotted on figure 4.9. There
is a clear clustering of the α and β coefficients describing the beta distribution.
The properties of the beta distribution is that when α = β, the distribution
is centered, in this case around 5 or 0.5 of the beta scale. The higher the co-
efficients become the more narrow the distribution becomes. Excerpt 154 is a
narrow centered distribution meaning that people agreed on the valence rating
on that excerpt. Once the coefficients are off diagonal, e.g. α > β ratings are
in the higher range e.g. very happy or excited and vice versa. The grouping
shows that not very narrow distributions are fitted and that there is a tendency
towards higher ratings on the valence scale.

The distribution of the beta means for both the arousal and valence scales were
compared in section C.10 on figure C.22 and C.23. To see the effect of the
outlier removal in the distribution of the beta distributions. It was shown that
by using OC2 the distribution for the arousal scale became wider thus covering
a greater area of the emotional space. No significant changes could be seen on
the valence scale.
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Figure 4.9: Alpha and beta coefficients of the fitted beta distributions plotted with
the 5%, 50% and 95% confidence intervals. Numbers indicate the excerpt
number from 1-200. The confidence intervals were calculated using the
negative beta log likelihood function given α, β and the experimental data
where outliers were removed using OC2, using the asymptotic covariance
matrix.
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Prior mood
Prior to any emotional rating of excerpts, participants were asked how they
would rate their emotional state at that present point. The results can be seen
on figures C.16 and C.17 in section C.6. Visually there is a large distance be-
tween the prior emotional state and the ratings given during the test in some
cases, and in others they seem very much similar. To test if there is a connection
between participants prior mood and the ratings provided for all excerpts and
analysis was made in section C.7. The distribution of all ratings provided by
each participant was parameterized by using a variation measure of the differ-
ent between the 50 th and the 25 th percentile. This was compared to each
participants pre-emotional rating, using visual inspection of scatter plots and
correlation coefficients. It was shown that no measurable connection between
the two was present and participant seemingly were able to disregard their mood
when ratings excerpts.

Timing data
The time it took to rate an excerpt for each of the participants was measured
using simple timing algorithms; the results can be seen on figure C.24. The time
it took each of the participants to rate one excerpt as an average was examined.
It showed that participant 9 and 14 took 4 and 3 seconds longer to rate each
excerpt respectively. This could indicate that they found the task difficult. An-
alyzing across all excerpts it was found that some excerpts required a great deal
of extra time to rate than the average. Thus indicating that they were more dif-
ficult than the others. Removing such excerpt based on this measure is difficult
as the data acquired could potentially be very relevant for future mathematical
modeling.

Understanding of scales
In section C.11 a thorough analysis was made of the data acquired about par-
ticipants during the test. The same set of questions regarding the scales and
the length of excerpts as in pilot1 were asked here. The result was that by ex-
plaining the scales better using verbal communication, the participants found it
to be much easier to understand and use them. Post questioning revealed that
in some cases there was still some confusion as to the scales. The length of the
excerpt increasing to 15 seconds produced much higher appropriateness ratings
than in pilot1 from below average to above good. An analysis was made into
the correlation between participants understanding of scales and their emotional
ratings in section C.12. The results was that no measurable connection could
be found.

Musical background
The musical training, preference, time spend listening each day and the famil-
iarity of excerpts in the test were also investigated in section C.11.3. To quantify
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any potential influence all these aspects about participants could have on their
emotional ratings an analysis was made in section C.12. The procedure was the
same as done in analyzing the influence of prior mood to participants ratings.
The results showed that no connection could be found between any of the meta
data parameters and the participants emotional ratings.

4.6.8 Discussion

The clear center point on figure 4.6(b), post questioning of the test participants
revealed that every time a test participant was in doubt of what to rate, center
ratings were often used. Using a bipolar scale also communicates that when
the test person does not feel that it is neither positive nor negative, e.g. they
feel nothing. Then the middle score would be rated on the valence scale. This
is specially seen for valence, where no particular emotions were expressed by
the music, according to the participants. This could later in the mathematical
modeling pose as a problem if the acoustical features are very different and the
ratings are the same.
Another issue is the spanning of ratings across excerpts, the music chosen for
pilot2 should have been chosen to fill out the entire emotional space, but did
not completely. One explanation is that often test participants do not like rat-
ing end-points. They save those extremes to that “special” excerpt where they
really feel something. It could also be that given the scales/manikins, no music
can actually fill the full extent of the emotional space due to the medium mu-
sic and the scales themselves. Due to the relative few test participants no real
conclusion on this matter can be made. For the purpose of acquiring data that
fill the emotional space for the purpose of designing a mathematical model, the
aim has been reached.
Using SAM as ratings scales, the aim was to find scales that were self-explanatory,
but given users feedback both using post questioning and verbal communication
after the test, participants had a problem with the scales. It was necessary to
explain the scales to participants and in future testing alternatives could be
investigated.
A comparison and investigation of whether or not there was an effect of present-
ing both scales for participants to rate each excerpt. The 2KS test showed that
on the arousal scale, 8 excerpt failed the NULL hypothesis and for the valence
scale 5 failed out of the total 200. The comparison was made on a rather small
dataset comparing 7 ratings to each other. The reason for making participants
rate on both scales for each excerpt is the element of time. It would half the
experimental time, since participants should only listen to an excerpt once, and
producing 2 ratings. A simple correlation analysis was attempted between the
two datasets, but due to the relative few ratings, nothing conclusive could be
made. It is a fact that there seem to be a difference between the order of the
scale presentation, and further investigations could be made at a later stage,
with a higher amount of participants. To balance the effect, in future designs
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equally the arousal and valence scale should be presented first as was done in
this case.
Prior to the test start participants where asked to rate their mood on the same
scales as the experiment. One could expect that the mood prior to test could
have an influence on the subsequent ratings of excerpts. Using a variation mea-
sure of the emotional ratings provided by participants and comparing these to
pre-emotional ratings no connection could be found between the two. This was
confirmed by calculating r2 coefficients between two for both valence and arousal
with a correlation of 0.218 and 0.227 for them respectively.
Musical experience was measured using two different variables, which are train-
ing and time spend listening to music every day. Lastly a similar measure was
measured in the form of familiarity of the 200 excerpts measured. The same
analysis as was performed on pre-emotional ratings were performed on the meta
data for each participant. However no connection between any of the meta data
for participants and their ratings could be found. One approach in future work
could be to group data according to any or more of these meta data and sub-
sequently training models on these data as was done in [Yang et al., 2007] to
obtain more personalized models. For now this is not used.
Two outlier criteria were compared OC1 and OC2. To make an empirical out-
lier measure for both the criteria, 1.000 samples were drawn from each of the
fitted distributions, thus simulating 1.000 participants. Using a conservative
measure where no participants were considered an outlier on empirical data 3
participants fell for this criteria using OC1 on the arousal scale. Thus removing
300 ratings out of 1400 ratings equivalent to 21 %. OC2 criteria was determined
in the same way as OC1 with 1.000 samples from each distribution. For arousal
this results in average that 5.9% of the ratings are removed, and 3.46% for va-
lence. OC2 on one hand takes into mind that all participants can make mistakes
or be mentally distracted. On the other hand imposing a grouping phenomena,
that all people to a certain degree should agree on the rating. Using the 2% rule
on the other hand does not impose this strictly, still giving room for variance
within the ratings. One could suspect that the majority would rate conserva-
tively and choose center ratings where a few actually rates the extremes. The
outlier removal would then force rating to become centered, but this is not the
case as was shown in section C.10 where it is evident that using OC2 actually
increases the variance of the distribution of beta means. The centering of rat-
ings must then lie in the choice of music, or the scales themselves. The choice
between outlier criteria is seen here regarding general experimental setups and
participants, that all can make errors due to concentration and therefore OC2
is used.
Participant 9 and 14 are distinguished in the temporal analysis where they use
much longer time to rate excerpts than the other participants. This suggests
that the temporal analysis could be used as a preliminary measure of partici-
pants understanding of the experiment, given that the same participants were
also the ones who made consistent errors.
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Given the data where outliers were removed, beta distributions were refitted,
where it is clear that the MLE of the coefficients lie within the confidence inter-
vals of multiple other estimates. This can be due to the selection of the musical
excerpts, that they were not chosen to be separated enough in the valence-
arousal space. Another issue is the number of participants of only 14, making
the estimates poor, thus increasing the confidence intervals. Given these con-
cerns on the data that should be used for the preliminary mathematical model,
the data are used.

4.7 Conclusion

The main objective of the whole investigation into listening experiments was to
develop a method to obtain reliable ratings of emotions expressed in music. A
number of consideration was presented prior to testing, that were issues that
either should be investigated or dealt with through experimental setup and in-
structions. Sources of emotional induction was limited using experimental setup
and instruction to participants, as well as the general bias that can occur when
measuring emotions. Choice of scales and self-report methods were based on
limiting any vocabulary bias, to be visual icon images of humans by expression
showing different emotions on the valence and arousal scale, using a 9-point
scale. The length of excerpts, the appropriateness of the scales and the effect
the ordering of excerpt have on ratings was investigated in the first of two pilot
experiments pilot1. Using 3 excerpt of 30 seconds divided in to 4 clips each
resulting in 12 clips. These were rated by 24 participants where the ordering
was either sequential, (i.e. excerpt 1 2 3 4 5 etc.) or a WLS design (e.g. 2
4 1 8 5 etc.) each design being rated by 12 participants. The differences were
compared using 2KS and comparison between variance and mean of ratings. It
showed that only for 1 excerpt of the 12, that there were a significant difference
between the two ordering methods. Inspection of the difference in variance be-
tween the two showed that even though participants were presented with clips
in succession the variance of the ratings were not much smaller than when using
a BO. Therefore a balanced should be used in future testing. Questionnaire
data showed that the length of excerpts was too short so this was extended to
15 seconds in pilot2 and there was confusion as to the understanding and use of
scales, so a verbal explanation was used in pilot2.
An investigation in to the whether both scales could be presented to partici-
pants when rating an excerpt was made, using a 2KS. 8 did not pass 2KS Null
hypothesis for the valence scale and 5 did not for the arousal scale out of total
200 excerpts. Given the fact that the data foundation with rather scarce only
comparing 7 ratings future testing has to be done, to test if there is an effect or
whether the different was due to the subjective differences.
A test was made of meta data of participants, e.g. their musical experience,
familiarity of the music, if they understood the scales, etc. Beta distributions
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were fitted to the experimental data obtained on the two scales of valence and
arousal, grouping all participants ratings per excerpt. Outlier criteria were made
where two were compared under the fundamental assumption that participants
either misunderstood the whole experiment or the use of one of the scales. The
other was that participants could become distracted and therefore rate incor-
rectly. The latter was chosen using a deviation from beta mean method and
the result showed that greater variance of data was achieved for arousal. The
data obtained for valence showed very little variance in ratings indicating that
participants were hesitant to use the whole scale, where post questioning showed
that participants used to middle rating as a “do not know” button. This could
potentially pose a problem in future modeling.



Chapter 5

Mathematical model

In this chapter the models used for the modeling of the emotional content ex-
pressed in music will be presented.

5.1 Initial considerations

The ratings acquired from the listening experiment described in Chapter 4
should be modeled using the acoustical data acquired by the features described
in Chapter 3. Given the ratings on two 9-point ordinal scales, different ap-
proaches can be taken in order to construct a model.

• It can be seen as a classification problem where each point of the 81
points is a class. Here the ordinality should be enforced since x1 < x2 <
....x9. The downside to this approach is the amount of data that should
be used. All ratings for all participants and acoustical features for each of
the excerpts. Using around 6.5109 floating points. The amount of point
the scale is divided into could be reduced here the problem is the fact that
there is a dominance of rating with the center. Rounding of mean ratings
could be made, resulting in only one point per excerpt and not one for all
participants reducing with a factor of 14, could be utilized.

• Since a model was constructed on the experimental data in the form of
beta distributions, a regression model could be constructed which has an
output of a beta distribution, and e.g. Generalized Linear Model (GLM).
Another option is to parameterize the beta distribution and use the α and
β coefficients as targets in a normal linear model. Using this approach
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a considerable data reduction would be made, from 28 to 4. Further the
mathematical model should not both model the mapping from acoustical
features and model the ratings themselves, thus separating the two models.

• Another issue to consider is the extensive amount of features compared to
the relative few ratings. In the choice of features it was deliberately done
so that as many features and even implementation of the same features
were computed. At a later stage the features should be selected so that,
the features providing the most information, be used for the model. A
method of selecting feature should be found or be incorporated into the
mathematical model.

5.2 Pre-analysis of data

The data obtained for pilot2, consisting of 200 songs, is the basis for a prelimi-
nary mathematical model.

5.2.1 Audio features

The 1373 dimensional feature vector, sampled so that each frame corresponds
to 9 ms. This results in a matrix of 330k by 1373. Since it is expected that
much of the data is correlated both in time, and between features a preliminary
Principle Component Analysis (PCA) is made. Due to the sheer amount data
a simplified method using Singular Value Decomposition was used.

(a) Fraction of variance using Normal-
ized Singular Value

(b) Accumulated fraction of variance us-
ing Normalized Singular Value

Figure 5.1: Principle Component analysis using Singular Value Decomposition, both
normalized to the sum of the total sum of eigenvalues.

Given the results on figure 5.1 it is evident that one feature seems to be re-
sponsible for the explanation of around 40% of the variance. The following
tail increase very slowly meaning that accumulated they account for the data,
but since the curve is so flat, a simple PCA cannot be performed to reduce
the feature dimensions. Another problem in using PCA is that eventhough
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features have no variance, it can still give a good indication as to what emo-
tional responce the given excerpt expresses, e.g. what key the song is written in.

5.2.2 Target labels

The initial considerations raised the question what labels should be used as
targets for the modeling of the ratings of the participants from the listening
experiments. For the sake of reducing the amount of data to use, a parameter-
ization of the beta distributions is used. To include alternative labels, which
potentially could be easier to predict than that of the α and β, the mean and
mode of the beta distribution is also used. The reason for choosing these two is
that the mode, is the point at which there is maximum probability that people
would rate. But this measure would punish the participants that rate in the
tail. The mean is more centered, and does not lie at the point of maximum
probability, so it could cause a small error for the majority. But would not
punish the participants that potentially would lie in the tail of the probability
distribution across ratings.

Mean Mode
Arousal 1.1712 ± 0.2377 1.2367 ± 0.2693
Valence 1.0558 ± 0.2284 1.0948 ± 0.2650

Table 5.1: A comparison of using mode or mean of beta distributions, using the average
distance between each participants ratings and the mean or mode across all
200 excerpts from the pilot2 experiment. Using the rating interval of [1; 9].

A simple way to see this is to compare all rating given by participants to the
mean and mode of the beta distribution. Using the absolute average distance
averaged over all rated excerpts. This can be seen in table 5.1. Comparing the
mean and standard deviation of the distances of the mean and mode of each
distribution, it is evident that using the mean of the beta distribution decreases
the distance from all participants to the potential predicted label. This also
shows that by using the beta distributions, if predictions should be made for a
new participant, in average there would be a deviation of approximately 1-1.2
ratings from that participants actual rating.

5.3 Labels and features

Based on prior analysis the labels used in the modeling of the emotions expressed
in music are

• α and β coefficients of the beta distribution

• µβ - is the mean of beta distributions.
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The features used are

• CT - 124 features from the Chroma Toolbox

• ISP - 188 features from the Intelligent Sound Project toolbox

• MA - 64 features from the Music Analysis toolbox

• MIR - 510 features from the Music Information Retrieval toolbox

• PSY - 302 features from the PsySound toolbox

• YAAFE - 141 features from the Yet Another Audio Feature Extraction
toolbox

• ID - 43 features from the Binaural Cue Selection Toolbox

• MIN - 65 features selected based on frequent use in MIR which are,
MFCC, Chroma, Loudness, Spectral- Decrease, Flatness, Flux, Rolloff,
Variation, Center point, Variance, Skewness and Kurtosis.

• ALL - 1373 features where features are collected.

• PCA50 - All features projected to 50 principle component vectors.

• SFS - 47 features chosen by Sequential Feature Selection.
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5.4 Selection of Model

Given that the parameters α and β, mean and mode of the beta distributions
are used for the modeling, assumptions regarding the model type should be
made. The choice of model depends on the assumed distribution of the error
and predictions of the given model. The coefficients α and β might very well
be Gaussian distributed and therefore simple linear regression models can be
used on these. The mean and mode of the beta distributions are naturally not
Gaussian distributed, where the mean being more symmetric than the mode.
Nonetheless since no GLM with a beta distributed output is found, regression
models that assume Gaussian distributions is used, well aware of the potential
problems this might result in. Moreover most of the data is not very skewed
looking at all beta distributions. Popular regression models include the Least
Squares models, which have a single output. Thus any correlation between α
and β is not taken into account, nor any correlation between valence and arousal.
Furthermore since it is single output any optimization using error measures, has
to be on the single coefficients, which will be discussed further in section 5.6.

5.5 Linear regression

Initially a simple Linear Regression (LR) model is attempted, the Ordinary
Least Squares (OLS) estimate is widely used. Let x1, x2,....,xm be vectors of
length n, representing n samples or observations of m, and let y be a vector
of n labels. Let w = (w1, w2, ..., wm)′ be a set of regression coefficients that
produces the output y. Including a bias term in the model w0 as a series of
ones it gives m+ 1 variables The feature matrix X thus has n rows and m+ 1
columns and the target vector of observations is n long.

For all models used within this work normalization is made on the data so that,

n∑
i=1

yi = 0

n∑
i=1

yij = 0

n∑
i=1

x2
ij = 1 for j = 1, 2, ...,m. (5.1)

The estimate by the linear model can then be described by

yi = w0 +

m∑
j=1

xijwj + εi (5.2)

where w is the linear regression coefficients including the bias term w0 which
can be seen as an offset for the model. εi denotes the noise or error term for each
instance of i, which is zero mean i.i.d. Gaussian noise. Due to this noise the
problem cannot be solved directly, therefore a cost function is defined in order
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to assess how well a set of regressors w predict y from X. The Least Squared
estimate is used which is a minimization of the sum of squared residual error.

n∑
i=0

(yi −
m∑
j=1

xijxi)
2 (5.3)

where here the bias term w0 is removed by adding a constant term of e.g. ones
as a column to the matrix X and letting i run from 0. We can write this in in
matrix notation as

||Xw − y||22 (5.4)

We can differentiate (5.4) with respect to w and setting the gradient to 0,
subsequently equating for w we get

w = (XTX)−1XT y (5.5)

which is known as the normal equation of the least squares problem. We can
identify XTX to be the Hessian. Inverting the Hessian can cause numerical
instability when solving this. Some methods exist to overcome this issue, one
being to use the Moore− Penrose pseudo− inverse of the matrix X which is
given by

X† ≡ (XTX)−1XT (5.6)

The normal equation is then given by w = X†y.

5.5.1 L2-regularized regression

One thing is the inversion problem, another problem that can occur with an un-
constrained linear model is the behavior of the regressors w. In [Schmidt, 2005]
an example is given, if two variables are highly correlated, this allows one coef-
ficient of wi to become e.g. very large in the positive direction where as another
grows very large in the negative direction to cancel out the first. This can pro-
duce a model with very high variance in the weight-space, which can cause very
different results of w. Another issue is that with very high variance models, with
low amount of observations n and a large number of variables/features overfit-
ting can occur. The model producing very data specific results, consequently
making poor predictions.
The Tikhonov regularization addresses the high variance of w, by adding a so
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called weight decay to the cost function.

n∑
i=1

(yi − w0 − yp)2 + λ

m∑
j=1

w2
j (5.7)

where for notational simplification the values predicted by the linear model is
written as yp =

∑m
j=1 xijwj . The bias term is moved out from w, since no

penalty of the regularization is made on it. Using the notation and arguments
from [Schmidt, 2005] we include the bias term into w by setting w0 to the mean
of the target values, and use a centered target vector. We can then write in
matrix notation as

||Xw − y||22 + λ ||w||22 (5.8)

where the λ value is a scalar that regulates the penalty upon the squared 2-norm
of the regressors. Since this penalty is on the squared 2-norm this regularization
is often also called L2-regularization. Similarly to (5.5) we now differentiate with
respect to w, and get

w = (XTX + λI)−1XTy (5.9)

for λ > 0, where I is the identity matrix. Here it is evident that by applying a
penalty on the regressors, we add a positive value to the diagonal of the Hessian,
thus improving the numerical stability of the inversion and forcing w → 0. In
L2-regularization the λ parameter then acts as a “smoothing” parameter of the
regressors. The aim is then to minimize (5.8) while keeping w small, not forcing
it to become zero and thus enforcing systematic errors by the model.

5.5.2 L1-regularized regression

L2-regularization provides a good means of generalization by imposing a penalty
on the regressors adjusted by λ thus reducing the joint 2-norm. But it does not
result in a sparse model, meaning a parsimonious model. The aim here is that
choosing the features extracted within the model, thus potentially resulting in a
better model and more simple than that of the L2-LS. A method of doing this is
to use a 1-norm penalty in the cost function. The advantage of this is that often
these model outperform those of the L2 regularized models [Schmidt, 2005].
The unconstrained cost function can be written as

||Xw − y||22 + λ ||w||1 (5.10)

this is a unconstrained convex optimization problem, but this is non-differentiable,
when w = 0. Thus it cannot be solved in a similar manner as with the L2
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regularized method. Solving this problem by minimizing Least squared error
subject to a 1-norm penalty has been attempted by numerous methods, and is
often called the Least Absolute Selection and Shrinkage Operator (LASSO).
Presently one method is used here called the LARS method.

Least Angel Regression and Selection
Different L1-regularization methods exist, that within the model, features are
selected by forcing regressors to become 0, producing a sparse model. This
so called 1-norm constraint on the regressors is called the LASSO. Different
approaches exist to obtain this solution.

A stepwise model is used here called Least Angel Regression and selection
method that was described in [Efron et al., 2004] and [Mørup et al., 2008]. A
simplified outline of the method will be made here, where the notation is changed
to follow previously used notation. The implementation used was done by
[Sjöstrand, 2005]. The same starting point as was used in (5.2) is used here,

the cost function is written similar to (5.10) and for convenience it will be
denoted c here. The gradient of the cost function is then given by

g = XT (y −Xw) + λsign(β) (5.11)

omitting λsign(β̂), (5.11) is identical to the negative gradient of the unregular-
ized problem as was used from (5.4) to (5.5).

Introducing an active set A and an inactive set I, where the initialization consist
of an empty active set, and the inactive set consist of all elements in X.

Calculating the gradient for all features in I, adding the element j with the
highest gradient.

j = argmax(|gI|) (5.12)

Element j is then added to the active set A← A∪j and I ← I\j, where initially

β̂A = 0

wA =
XTy + λsign(wA)

XTX
(5.13)

where XTX is the Hessian. To update β̂A a step of µ is taken using a Newton-
Raphson step, where the update is calculated as

w̃A = wA + µ(XTX)−1
A,Asign(gA) (5.14)

Since the inverse Hessian is given by (XTX)−1 the step (XTX)−1
A,Asign(gA) will

be in the direction such that the amplitude of the gradients in the active set
are identical, i.e. |cA1 | = |cA2 | = ... = |cAn |, µ is then calculated using three
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different criteria .

• There exist an β̃A = 0 out of q possible. Where β̃A is the β̂A at the step
of size µ. Then element Aq is removed from the active set, I ← I ∪ Aq
and A← A\Aq.

• There exist an element l in the inactive set I where the gradient of that
element in the inactive set equals any gradient in the active set A, |c̃l| =
|c̃A|.

• The gradient at the step by µ, |c̃A| = 0.

where β̂A = 0 is the so called LASSO condition for more information see
[Mørup et al., 2008].

After taken the step µ the process is repeated as long as there exist an element
j in the inactive set I such that the gradient is greater than zero, |c̃j | > 0. The
algorithm then processes all elements in X one at a time, making the method
ideal for problems with a great number of features and observations.

5.5.3 Stepwise regression

The stepwise regression model used here is the so called Forwardstepwise re-
gression approach. Using Forward instead of Backward means that initially in
the approach used here, an empty model is used. It proceeds to systematically
add and remove features from the multilinear model. Each iteration it calculates
the statistical significance of adding or removing a feature for regression, using
F -statistic. The p-value is computed with and without each of the features, if
a term is not currently in the model, the null hypothesis is that the term would
have a zero coefficient if added to the model. If there is sufficient evidence to
reject the null hypothesis, the term is added to the model. If a term is currently
in the model, the null hypothesis is that the term has a zero coefficient. If there
is insufficient evidence to reject the null hypothesis, the term is removed from
the model [Mathworks, 2010]. It follows after fitting the initial model.

1. If any terms not in the model have p-values less than an entrance tolerance,
add the one with the smallest p value and repeat this step.

2. If any terms in the model have p-values greater than an exit tolerance
(premove), remove the one with the largest p value and go to step 1, oth-
erwise end.

The approach used here although using the same initial empty model, could
produce different results based on the order in which features are added and
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excluded. So p-values should be determined to be the optimum, using e.g. cross
validation. Potentially a different sequence of steps could lead to a better fit,
thus not guaranteeing that the model reaches a global minima, but just a local
minima. Therefore multiple runs are made for each fit, to obtain the best model.

5.5.4 Sequential Feature selection

Sequential feature selection is a brute force method of obtaining sparse models.
The method used here sequentially evaluates all features that is not within the
model and adds the feature that reduces the error the most. Initially an empty
model is used, using Least Squares a model is calculated, the RMSE is then
calculated using (5.15) on all features. The feature that produces the smallest
error is then chosen.

1. Train Least squares models on all features that are not present in the
model.

2. If any features not in the model have a RMSE, by adding it to the current
model, lower than a given tolerance level, go to step 3, otherwise end.

3. The feature, by adding it to the model, decreases the model error the most
is added to the model, go to step 1.

The method will potentially find a global minima using the error measure im-
plemented. The problem with this method is that it has to compute a great
deal of models and errors, where with datasets with a great deal of dimensions
and features, becomes computational very expensive.

5.6 Error measures

It is crucial for all model evaluation that an error of performance is found. By
the choice of error measure, implicitly the underlying model is chosen. Four
different variables is sought to be model, the two coefficients of the beta distri-
butions and the mean and mode or maximum probability of that distribution.
The α and β parameters predicted by the linear regression model, are Gaussian
distributed around the true mean, making it symmetrical. Error measures could
be made directly on the models ability to predict the coefficients, but this is not
that comparable, and does not including the robustness of the beta distribu-
tion. As was mentioned previously, since a single output algorithm is used, any
optimization cannot be made using any distribution comparing measures, but
has to be made directly on the coefficients. This is also the case for the mode
and mean of the distributions. The error measure chosen is the Root Mean
Squared Error (RMSE).



5.6 Error measures 89

5.6.1 Root Mean Squared Error

It is a well known error measure, the root mean squared error that, as the name
suggests is calculated as,

RMSE =

√√√√ 1

N

N∑
i=1

(yi − ŷi)2, (5.15)

where y is the target and ŷ is the predicted value. The measure is useful within
parameter comparisons and model selection. Using this measure on the mean
and mode gives a direct measure as to how many ratings the error is across all
participants and excerpts, keeping in mind the symmetry of the RMSE and
the potential asymmetry of the beta distribution.

To compare models and data sets measures should be made on comparing the
target and predicted distributions. Three different measures are used here,
euclidean distance between means as was used in [Schmidt and Kim, 2010],
Kullback-Leibler divergence.

5.6.2 Euclidean distance between means

Given that two beta distributions for each of the dimensions of valence and
arousal should be compared, three different Euclidean distances are made. The
distance between target beta mean and predicted beta mean for both scales and
is calculated as

d(µ̂β , µβ) =

√(
α̂

α̂+ β̂

)2

−
(

α

α+ β

)2

(5.16)

where the µ̂ and α̂ and β̂ denotes the predicted values of the beta mean and the
beta coefficients. To produce results comparable to [Schmidt and Kim, 2010]
using simple Pythagoras the distance between the means of the predicted beta
distributions and the targets of the two dimensions of valence and arousal is
calculated as

d(µ̂β(val,aro), µβ(val,aro)) =
√
d(µ̂β(val), µβ(val))2 + d(µ̂β(aro), µβ(aro))2 (5.17)

the measure is somewhat comparable given that the distributions are defined
within the same numerical space.
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5.6.3 Kullback Leibler divergence

Kullback Leibler (KL) divergence is a non-symmetric measure of the divergence
between two probability distributions P and T and is written as

DKL(P ‖ T ) = ln
B(α, β)

B(α̂, β̂)
−(α− α̂)ψ(α̂)−(β− β̂)ψ(β̂)+(α− α̂+β− β̂)ψ(α̂+ β̂)

(5.18)

where B denotes the Beta function and ψ is the psi or digamma function. It
is non-symmetric so that the distance between T and P is not the same as P
and T . In this case P is the predicted distribution using only test data and T
is the target distribution, so the distance is from the predicted distribution to
the target. The measure is rather difficult to interpret and is therefore seen as a
way of comparing models and data sets. In [Schmidt and Kim, 2010] they also
compute this, but use it on 2D-Gaussian distributions, so direct comparison can
not be made.

5.6.4 Baseline error

Given any type of error measure to have something to compare with, given the
data used for modeling, a series of baseline errors are proposed. In [Schmidt and Kim, 2010]
they suggest within the 50-fold CV , to compare the predicted distribution to
another randomly selected distribution within the test set, using KL diver-
gence. This method is in their work referred to as Averaged Randomized KL
divergence. By using this method, the overall distribution of the input data
space is taken into account. The weakness of this method is that the baseline
error measure can change since it is computed randomly.
Another method proposed here is when using the two 9-point emotional scales
and the fact that a great deal of the training and test data is centered around
the middle point, e.g. 0.5 on the beta transformed axis used for beta distribu-
tions or point no. 5 on the scale. For any model the safe bet would then be to
predict this value all the time, which is illustrated on figure 5.2.

In principle the absolute averaged distance would then approximate the variation
of the training and test data, if the data was completely centered. A proposed
model will only be better if it can perform better than the safe bet predictions.
The same is the case for comparing the euclidean distance between the mean of
the beta distributions.
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(a) Arousal. (b) Valence.

Figure 5.2: Histogram of mean value of beta distributions, the red bar indicates the
rating of 5 which should be used as a baseline error measure.

5.7 Cross-validation

A problem when choosing parameters for e.g. L2-regularized least squares is
how to choose the regularization coefficient. Another issue when training linear
models is when reporting an error, then how generalizable it is or if it just is
representative for that particular chosen training and validation set. For this
reason for models that are trained, a Cross-V alidation (CV) scheme is used.

5.7.1 K-fold

To produce generalizable error and to optimize parameters within the linear
models CV is used. For parameter optimization in e.g. L2-regularization or
stepwise regression a grid search is made, regularization coefficient or p-values
for the two respectively. Each of these parameters are then traced through us-
ing CV and the optimal parameters are used. For the final testing a variety of
different folds are used in the testing, i.e. 10-50. For convenience the 10-fold
cross validation scheme is explained here, but can be scaled to to any amount.
Prior to testing the total data set is divided into 10 equal folds, 1-fold is used
for testing (red color) after the cross validation. See the top on figure 5.3. The
9 other folds is then used for a 10-fold cross validation, see bottom on figure 5.3.

For each parameter a 10-fold cross validation error is computed, meaning, train-
ing the model on 9 of the 10 folds (light blue color), and then validating on the
last (green color). This produces 10 different so called validation errors. The
mean of the 10 validation errors is then computed, representing the generalized
error for that given parameter value. All parameters are then computed and
based on the validation error the optimal value is chosen. When the parameter
value is chosen, the model is then trained on the whole 9-folds and subsequently
tested on the 1-fold that has not been used so far. This representing “unseen”
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Figure 5.3: Illustration of cross-validation scheme.(top) all data divided in to 10 equal
bins. (bottom) remaining 9-folds divided into 10 equal bins.

data. This procedure is then repeated 10 times to obtain a true generalizable
test error.
For L2-regularization values the regularization coefficient is traced through the
interval of 2[−10;10]. The optimum is used for each fold of the 50-fold CV
For stepwise regression the p-values are chosen in 0.05 increments from 0.05 to
1.00, where penter > premove.

5.7.2 Temporal issues

Given the resampling of features, a great number of features exist for each ob-
tained rating from users as described in section 4. Using a regular form of cross
validation, where each sample included in each fold is chosen randomly (Gaus-
sian), can cause overfitting. The problem lies in the fact that potentially a set of
samples from a given excerpt might end up in both test and validation set. The
labels are the same, but the features are different. Nonetheless the features are
most likely highly correlated, thus giving the wrong indication of performance.
For this reason each excerpt and all samples from that given excerpt are in
the training or validation set at all times, treating it blockwise. Using CV to
generalize model performance using this block based approach limits the folds
used for testing if the aim is to have an even amount of excerpts in each fold. If
using a 50-fold CV , there is trained on 196 and predicted 4 excerpt at a time.
Thus the λ-regularization optimization has to be done on those 196 excerpt,
limiting it to a factorization of this number. So 28-folds is used for grid search
of coefficients.
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5.8 Results

5.8.1 Baseline error

On table 5.2 the mean and standard deviation of the baseline errors using
RMSE are shown for mean and the mode of all beta distributions. It is ex-
pected that using this kind of baseline error the mean is lower than when using
the mode, simply due to the fact that the mean is a measure that is always close
to the center than the mode.

Valence Arousal
1.0412 ± 0.7278 1.3643 ± 0.8218

Table 5.2: Mean and standard deviation of the baseline RMSE for beta mean of
distributions for valence and arousal, for the 200 excerpts used in the pilot2
experiment. Measures are given on the rating scale from 1-9.

To have a baseline when comparing euclidean distances between the mean of
beta distributions, distance for valence, arousal is presented in table 5.3 together
with a measure using both fitted distributions.

Interval Valence Arousal Valence-Arousal
(0;1) 0.1157 ± 0.0809 0.1516 ± 0.0913 0.2057 ± 0.0942
(1;9) 1.5412 ± 0.7278 1.8644 ± 0.8218 2.5157 ± 0.8516

Table 5.3: Euclidean distance between means of beta distributions, for valence and
arousal and the two dimensional distance between the two using methods
from section 5.6.2. Distances are given in two different defined spaces, the
beta distribution [0; 1] and the scale space [1; 9].

5.8.2 Sequential feature selection

The feature selection method of SFS was calculated on the entire feature set
of 1373 features. Due to time constraints only the first 47 features were found.
These can be seen on figure 5.4.

A list of the names and the feature pack they came from can be found in sec-
tion D.1 in table D.1. It is evident that some features are often selected using
this feature selection method, CENS, MFCC, modulation and envelope based
features together with loudness, etc.
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Figure 5.4: SFS used on all 1373 features using OLS with a 50-fold CV scheme. Black
curve is the mean of RMSE of the 50-folds with error bar of one standard
deviation. The blue line indicates the baseline from 5.2. The training was
performed on the mode of beta distributions of the arousal data.

5.8.3 Predictions and errors

An example of predictions using OLS on SFS are shown in figure 5.5. It is
evident that there is a great difference between predictions of emotional labels
between excerpts. The variation of the predictions within each excerpt can be
seen as an error in the model, since the labels were a constant value. Whether
it is an error or it is an effect of the changing emotional expression in music will
be dealt with in section 5.9.2. For the time being, this is considered an error
by the model. The aim of the model is then to make predictions of emotional
labels for each excerpt (i.e. 15 seconds).

(a) (b)

Figure 5.5: Predictions of beta mean for two excerpts using 50-fold CV with OLS on
SFS features. Red line indicates the mean across the predictions and the
red blue line indicates the label.
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The error consist of a varying part (i.e. difference between black and red curve
on figure 5.5) and a bias part (i.e. the difference between the red and blue line
on figure 5.5). By using the mean of the 1654 predictions (red curve), resulting
in one prediction, would then remove the variance and reduce the prediction
error. For the sake of predicting emotional ratings for 15 second excerpts this
approach is used for all error measure.

5.8.4 LR - Beta mean

Here the results of the LR models predicting beta mean using both OLS, L1
and L2 regularized LS and stepwise regression.
To measure the performance of the 4 different regression models trained on 11
different features selections, predicting the mean of the fitted beta distributions
to the emotional data of valence and arousal obtained in pilot2, the RMSE is
used. On figure 5.4 the RMSE results for the valence ratings are shown. The
baseline error is indicated in the bottom of the table.
Most of the models and selected features have results that lie above the baseline
measure. The model that performs best of the four is the OLS and the selection
that produces the best predictions is using ALL features where MIR and SFS
are very close. stepwise outperforms L1 in nearly all cases, where L1 by LARS
is the worse performing method.

Feature pack
Valence

OLS L2 (L1 by LARS) stepwise

CM 1.011 ± 0.702 1.030 ± 0.702 1.055 ± 0.708 1.004 ± 0.694
ISP 1.029 ± 0.692 1.030 ± 0.701 1.046 ± 0.719 1.023 ± 0.690
MA 1.027 ± 0.693 1.031 ± 0.702 1.043 ± 0.714 1.023 ± 0.692
MIR 0.908 ± 0.626 0.937 ± 0.638 1.046 ± 0.713 0.934 ± 0.637
PSY 1.007 ± 0.690 1.022 ± 0.700 1.045 ± 0.712 1.021 ± 0.683

YAAFE 0.980 ± 0.653 0.992 ± 0.672 1.043 ± 0.710 0.968 ± 0.650
ID 1.058 ± 0.746 1.046 ± 0.712 1.049 ± 0.716 1.051 ± 0.743
ALL 0.887 ± 0.625 0.902 ± 0.588 1.030 ± 0.705 0.950 ± 0.607
MIN 1.015 ± 0.702 1.022 ± 0.700 1.047 ± 0.715 1.010 ± 0.701

PCA050 0.997 ± 0.695 1.013 ± 0.701 1.048 ± 0.715 0.991 ± 0.692
SFS 0.945 ± 0.677 0.968 ± 0.672 1.048 ± 0.715 0.938 ± 0.675

Baseline 1.041 ± 0.728

Table 5.4: RMSE for 7 different acoustical feature packs trained using OLS, stepwise
regression, L1 and L2 regularized LS (L1 by LARS). Values are an average
of the predicted test data over 50-fold CV on the µβ of fitted beta distribu-
tions. Training was performed on each channel of the excerpts separately.
Each excerpt was kept exclusively in either the test, training or validation
data.
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Looking at the RMSE for beta mean predictions of the arousal scale on table
5.5, the results look much better compared to the valence results. Using OLS
the best performing selection of features is SFS with an error of 0.734 ratings
averaged over all excerpts, on a 9-point scale only using 47 features. ALL using
1373 features predicts in average 0.760 ratings away from target labels. The
worst performing is the ID and PCA50 where the ID is the only to have a
higher RMSE than baseline. The L2-regularized regression method produces
slightly worse results than the OLS which is rather surprising when using only
test data for error measures. The SFS is the highest performing selection of
features even performing better than ALL features using L2.

Feature pack
Arousal

OLS L2 (L1 by LARS) stepwise

CM 1.032 ± 0.653 1.117 ± 0.691 1.377 ± 0.792 1.030 ± 0.651
ISP 0.950 ± 0.657 0.960 ± 0.666 1.284 ± 0.774 0.944 ± 0.654
MA 0.974 ± 0.684 0.982 ± 0.682 1.304 ± 0.811 0.972 ± 0.680
MIR 0.835 ± 0.631 x ± x 1.204 ± 0.740 0.826 ± 0.635
PSY 0.902 ± 0.627 0.938 ± 0.654 0.925 ± 0.633 0.885 ± 0.618

YAAFE 0.867 ± 0.600 0.888 ± 0.617 1.183 ± 0.725 0.879 ± 0.604
ID 1.404 ± 1.088 1.365 ± 0.831 1.373 ± 0.824 1.397 ± 1.088
ALL 0.760 ± 0.598 x ± x x ± x x ± x
MIN 0.955 ± 0.668 0.980 ± 0.668 1.282 ± 0.776 0.953 ± 0.662

PCA050 1.042 ± 0.651 1.061 ± 0.660 1.339 ± 0.797 1.039 ± 0.649
SFS 0.734 ± 0.560 0.732 ± 0.562 1.026 ± 0.668 0.727 ± 0.558

Baseline 1.364 ± 0.822

Table 5.5: RMSE for 7 different acoustical feature packs trained using OLS, stepwise
regression, L1 and L2 regularized LS. Values are an average of the predicted
test data over 50-fold CV on the µβ of fitted beta distributions. Training
was performed on each channel of the excerpts separately. Each excerpt
was kept exclusively in either the test, training or validation data. Results
marked with x could not be computed due to time issues.

Surprisingly using L1-regularized regression it produces results which are infe-
rior compared to OLS. The complexity of the model has to be investigated at
a later stage to see if this has an effect or influence on the model performance.
In one single case does L1 outperform L2 and that is when using PSY .
The stepwise regression method produce in general inferior results compared to
the other three methods, except when trained on SFS which is the best per-
forming combination of all when prediction beta mean of arousal.

To illustrate the variation in prediction across excerpts and thus the resulting
error the RMSE is illustrated on figure 5.8. The results are obtained using
the predictions of OLS on SFS. The mean of the RMSE across all excerpts
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is compared to the baseline error which is equivalent to only prediction center
ratings
Nick Cave - As i sat sadly by her side with a RMSE of 3.63 on the arousal
scale seem to be the hardest to model where Roxette V ulnerable with a RMSE
of 0.02 is one the excerpt the model describes the best.

(a) Valence (b) Arousal

Figure 5.6: RMSE of predictions by a OLS model trained using 50-fold CV on SFS
features (i.e. 4 excerpt predicted per fold). Red line indicates the mean
across all excerpts. Blue line indicates the baseline error, calculated as
explained in 5.6.4.

To illustrate the general difference between the performance of models used to
describe valence and arousal ratings, the distributions of target and predicted
beta means for valence ratings is shown on figure 5.7 and arousal in figure
5.8. The distribution of target labels for valence is rather narrow as are the
predictions of beta means, when using rounding to fit the 9 bins.

Looking at the distribution of beta means for arousal ratings both target and
predictions show a broader distribution.
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Figure 5.7: Comparison between the distribution of target labels of beta mean for the
valence scale and the predicted labels using a OLS model trained using
50-fold CV on SFS features (i.e. 4 excerpt predicted per fold). Labels are
rounded to fit 9 bins.

Figure 5.8: Comparison between the distribution of target labels of beta mean for the
arousal scale and the predicted labels using a OLS model trained using
50-fold CV on SFS features (i.e. 4 excerpt predicted per fold). Labels are
rounded to fit 9 bins.
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5.8.5 LR - Beta distributions

In this section the results of modeling the distributions fitted on the ratings
obtained in pilot2 on the emotional scales of valence and arousal is presented.
The parameterization of the beta distribution (α,β) are the target labels, where
OLS, L2, L1 and stepwise were trained on these using 11 different selection of
features.

KL divergence
To measure the distance between target and predicted beta distributions the
KL divergence is used between distributions of arousal and valence separately.
These results can be seen on table 5.6 for valence. The baseline error, the so-
called Averaged Randomized KL divergence was computed for each of the
models and selection of features. Given that it is based on random selection of
other distributions in the test data the results between each run differ.



100 Mathematical model

Feature pack OLS Baseline L2 Baseline

CT 1.625 ± 2.389 1.854 ± 2.805 0.738 ± 0.777 0.783 ± 0.806
ISP 1.530 ± 2.365 1.741 ± 2.931 0.740 ± 0.780 0.800 ± 0.812
MA 1.471 ± 2.016 1.727 ± 2.281 0.739 ± 0.779 0.766 ± 0.810
MIR 1.358 ± 1.896 1.495 ± 2.443 x ± x x ± x
PSY 1.330 ± 2.110 1.510 ± 2.302 0.740 ± 0.781 0.784 ± 0.843

YAAFE 1.318 ± 1.860 1.560 ± 2.159 0.728 ± 0.777 0.755 ± 0.826
ID 1.519 ± 2.910 1.716 ± 4.896 0.738 ± 0.782 0.783 ± 0.783
ALL 1.484 ± 2.402 1.746 ± 2.612 x ± x x ± x
MIN 1.614 ± 2.635 1.812 ± 2.507 0.739 ± 0.784 0.763 ± 0.815
PCA50 1.682 ± 2.545 1.759 ± 2.629 0.724 ± 0.774 0.738 ± 0.761
SFS 1.502 ± 2.269 1.597 ± 2.830 0.722 ± 0.770 0.819 ± 0.788

Feature pack (L1 by LARS) Baseline stepwise Baseline

CT 0.956 ± 0.832 0.988 ± 0.858 0.701 ± 0.762 0.821 ± 0.888
ISP 0.784 ± 0.772 0.822 ± 0.648 0.734 ± 0.805 0.666 ± 0.779
MA 0.752 ± 0.782 0.646 ± 0.676 0.732 ± 0.798 0.691 ± 0.723
MIR x ± x x ± x 0.642 ± 0.740 0.764 ± 0.813
PSY 0.747 ± 0.724 0.687 ± 0.724 0.791 ± 0.900 0.838 ± 1.020

YAAFE 0.731 ± 0.784 0.702 ± 0.773 0.677 ± 0.726 0.656 ± 0.770
ID 0.743 ± 0.784 0.748 ± 0.826 N/A N/A
ALL x ± x x ± x x ± x x ± x
MIN 0.741 ± 0.783 0.699 ± 0.734 0.716 ± 0.779 0.690 ± 0.706
PCA50 0.742 ± 0.783 0.747 ± 0.814 0.699 ± 0.749 0.769 ± 0.792
SFS 0.742 ± 0.783 0.813 ± 0.832 0.678 ± 0.815 0.809 ± 0.880

Table 5.6: KL divergence between predicted and target beta distributions from the
Valence scale. Models were trained using OLS, stepwise regression, L1 and
L2 regularized LS on 11 different feature selections. Values are an average
of the predicted test data over 50-fold CV . Training was performed on
each channel of the excerpts separately. Each excerpt was kept exclusively
in either the test, training or validation data. Results marked with x could
not be computed due to time issues.
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All models and selection of features achieve a better KL divergence than the
baseline measure for valence. The model that performs best is the stepwise
regression model, where the best performing set of audio features are the MIR.
Again the SFS performs very close to the larger selection of features. It is
observed that the variance of the KL divergence is rather high indicating that
some excerpts are harder to model than others. The worst performing of the
four models is the OLS even using ALL features. The worst performing feature
is the PCA50 in combination with OLS and using ALL features does not im-
prove performance much, where many reduced feature selections perform much
better. The L1 model seems to perform very similar on all different feature
selections.

Looking at the KL divergence results for the arousal scale on table 5.7, again
stepwise is the best performing model when trained on the SFS features. The
same picture is present here on theKL divergence as was the case when modeling
the beta distributions fitted to the valence data. OLS is the worse performing
model of the four where number two and three are L2 and L1 respectively. The
N/A results indicate that the divergence was not possible to compute due to
the fact that prediction were negative and the beta distribution is not defined
for negative α and β coefficients.

To illustrate how the KL divergence is across all excerpt an illustrations is made
on figure 5.9

(a) Valence (b) Arousal

Figure 5.9: KL divergence between target and predicted beta distributions where α
and β coefficients were predicted by a OLS model trained using 50-fold CV
on SFS features (i.e. 4 excerpt predicted per fold). Red line indicates the
mean across all excerpts.Blue line indicates the baseline error, calculated
as explained in 5.6.4.
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Feature pack OLS Baseline L2 Baseline

CT N/A N/A 0.777 ± 0.803 1.040 ± 1.074
ISP 0.953 ± 1.324 1.366 ± 2.069 0.624 ± 0.692 1.137 ± 1.297
MA 0.951 ± 1.265 1.339 ± 1.612 0.640 ± 0.717 1.104 ± 1.219
MIR 0.900 ± 1.280 1.280 ± 1.601 x ± x x ± x
PSY 0.848 ± 1.169 1.207 ± 1.806 0.585 ± 0.693 1.247 ± 1.443

YAAFE 0.875 ± 1.353 1.082 ± 1.444 0.536 ± 0.623 1.315 ± 1.794
ID N/A N/A 0.980 ± 1.040 0.958 ± 0.921
ALL 1.530 ± 7.004 3.360 ± 27.071 x ± x x ± x
MIN 0.914 ± 1.365 0.982 ± 1.539 0.634 ± 0.692 1.091 ± 1.237
PCA50 0.923 ± 1.337 1.214 ± 1.716 0.694 ± 0.723 0.959 ± 1.193
SFS 0.908 ± 1.386 1.534 ± 2.918 0.480 ± 0.577 1.186 ± 1.481

Feature pack (L1 by LARS) Baseline stepwise Baseline

CT N/A N/A N/A N/A
ISP 0.982 ± 1.052 0.993 ± 1.122 0.542 ± 0.668 1.181 ± 1.259
MA 0.970 ± 1.033 0.986 ± 1.131 0.570 ± 0.688 1.107 ± 1.462
MIR x ± x x ± x 0.530 ± 0.922 1.275 ± 1.591
PSY 0.902 ± 1.101 0.988 ± 1.001 0.529 ± 0.704 1.515 ± 2.236

YAAFE N/A N/A 0.469 ± 0.607 1.109 ± 1.288
ID 0.985 ± 1.043 0.968 ± 1.051 N/A N/A
ALL 0.977 ± 1.033 0.989 ± 1.066 x ± x x ± x
MIN 0.977 ± 1.033 0.982 ± 1.025 0.554 ± 0.683 1.118 ± 1.238
PCA50 0.982 ± 1.039 0.990 ± 1.064 0.621 ± 0.657 1.172 ± 1.259
SFS 0.981 ± 1.038 0.874 ± 0.881 0.386 ± 0.523 1.511 ± 1.833

Table 5.7: KL divergence between predicted and target beta distributions from the
Arousal scale. Model was trained using OLS, stepwise regression, L1 and
L2 regularized LS on 11 different feature selection. Values are an average of
the predicted test data over 50-fold CV . Training was performed on each
channel of the excerpts separately. Each excerpt was kept exclusively in
either the test, training or validation data. Baseline refers to the Averaged
Randomized KL divergence as explained in section 5.6.4. Values indicated
x due to time they were not computed.
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Euclidean distance
To measure the distance between both the beta distributions of valence and
arousal, the distance between their means are computed (see section 5.6.2). The
baseline is similar to beta mean predictions baseline, to always predict middle
ratings (see section 5.6.4 and 5.8.1). The results can be seen on table 5.8

Feature pack
Euclidean distance Valence-Arousal

OLS L2 (L1 by LARS) stepwise

CT 0.203 ± 0.137 0.177 ± 0.115 x ± x 0.163 ± 0.116
ISP 0.200 ± 0.132 0.164 ± 0.110 0.189 ± 0.121 0.156 ± 0.106
MA 0.202 ± 0.134 0.165 ± 0.110 0.191 ± 0.122 0.159 ± 0.108
MIR 0.194 ± 0.133 x ± x x ± x 0.144 ± 0.102
PSY 0.185 ± 0.128 0.161 ± 0.108 0.181 ± 0.138 0.156 ± 0.109

YAAFE 0.187 ± 0.132 0.156 ± 0.105 0.193 ± 0.141 0.146 ± 0.099
ID 0.201 ± 0.148 0.191 ± 0.122 0.192 ± 0.122 0.195 ± 0.159
ALL 0.200 ± 0.143 x ± x x ± x x ± x
MIN 0.198 ± 0.136 0.165 ± 0.110 0.191 ± 0.122 0.156 ± 0.107
PCA50 0.207 ± 0.134 0.169 ± 0.110 0.192 ± 0.122 0.162 ± 0.106
SFS 0.194 ± 0.134 0.151 ± 0.102 0.191 ± 0.122 0.135 ± 0.098

Baseline 0.205 ± 0.094

Table 5.8: MED for 7 different acoustical feature packs trained using OLS, stepwise
regression, L1 and L2 regularized LS. Values are an average of the predicted
test data over 50-fold CV on the µβ of fitted beta distributions. Training
was performed on each channel of the excerpts separately. Each excerpt
was kept exclusively in either the test, training or validation data. Results
marked with x could not be computed due to time issues.

The best performing model is the stepwise using SFS features producing an
euclidean distance between the two beta distribution of valence and arousal
of 0.135. In general most of the models and selection of features are better
than the baseline error chosen for this measure. The worst performing model is
the OLS where again PCA50 is the selection of features that perform the worst.

On figure 5.10 it is illustrate how the euclidean distance between the beta means
of valence and arousal is distribution across all excerpts. Craig David - Hidden
Agenda with 0.351 seem to be the excerpts that the model is the hardest to
model, where Backstreet Boys - No One Else Comes Close is the track that
the model predicts best with an distance of 0.001.
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Figure 5.10: Euclidean distance between arousal and valence beta mean using α and
β coefficients predicted by a OLS model trained using 50-fold CV on
SFS features. Red line indicates mean across all excerpts. Interval given
by [0; 1].Blue line indicates the baseline error, calculated as explained in
5.6.4.
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5.9 Post data analysis

Two different aspects will be investigated in this section and that is the connec-
tion between audio features and emotional ratings. The other is the temporal
changing emotional predictions by the model investigated in previous sections.

• The comparison of audio features selected by SFS and the resulting emo-
tional ratings, to see if there are any general tendencies that if features
have a certain value then the resulting ratings are e.g. happy.

• Is there any pattern or structure in the time varying emotional predictions
made by the mathematical models. E.g. can these variations be used to
group musical excerpts into different categories crossing genre boundaries.

5.9.1 Emotional ratings and audio features

To find the relation between audio features and emotional ratings, features se-
lected by SFS that are listed in section D.1 in table D.1 are used. The approach
is similar to the one used in [Laurier et al., 2009a]. The approach taken is to
reduce the dimensionality of each feature vector for each excerpt by averaging
it across time samples. For spectrally decomposed features such as loudness the
average is taken across all coefficients.
Due to the limited amount of ratings obtained in pilot2 (i.e. 200), to obtain a
more simplified data foundation for the analysis, ratings are divided into four
quadrants of the two dimensional emotional model. The division criteria and
resulting groups can be seen in section D.4 on figure D.1.
This results in one feature value for the 108 excerpts used in the analysis for
each feature. These values are then compared using boxplots where each feature
is grouped into the corresponding 4 quadrants.
The results can be seen on figures D.2 and D.3 in section D.4. It shows that 5 out
of 7 features, CENS, inharmonicity, average loudness, average of MFCCs and
flatness show a good separation of the arousal dimension. For the valence di-
mension only pulse clarity and tempo show a difference for the Positive-Excited
quadrant. Other features were inspected but showed no or similar results to the
ones analyzed.

5.9.2 Temporal modeling of emotions

The results of the predictions made by the regression approach in the modeling of
expressed emotions in music showed a variation in predictions. The label which
is compared to using e.g. RMSE is a constant value, yet the prediction vary
around this value with different amounts of offset. This variation could be seen
as an error in the model or be seen as the measure of the time varying emotional
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expression of music. Some examples of the predictions were shown in figure 5.5.
As was argued in section 2.4 the values predicted are based on post-ratings
and therefore are not necessary a measure of the actual time varying emotional
expression. Nonetheless the approach taken in [Schmidt and Kim, 2010] was to
use a regression model trained on 15 second excerpts and later use this model
to predict time varying emotional ratings (i.e. 1 second).
As the models are designed in section 5.5 they predict emotional ratings every
9 ms producing 1654 predictions for each excerpt of 15 seconds. No ratings
are given to what the actual time changing emotional ratings are for the 200
15 second excerpts so the only verification of the model is the post-ratings
given in pilot2. Therefore what is interesting here is not to model the temporal
changes in music directly, since no verification is available, but to see what the
predictions can be used for. It could be that musical excerpts could be grouped
based on the temporal structure, e.g. some songs start of excited and happy
and end up being sad and not excited.
The approach taken to see if there is any possibility of grouping excerpts is to

• Collect predictions of beta mean for all 200 excerpts based on stepwise
on SFS (see section 5.8)

• Smooth predictions using moving average filter, subtract mean and down-
sample

• Attempt non-supervised machine learning for grouping (e.g. KNN or
GMM)

The reason for smoothing is simply to make the grouping easier. What should
be grouped is excerpts based on the temporal structure of emotional predictions,
so the offset in ratings is of no concern and the mean is therefore subtracted
for each time series. The initial results of the investigation are shown in figure
D.4 in section D.5. Where the smoothing of each excerpt is made. Using the
smoothed emotional predictions curves, a naive clustering is made by KNN
using the average of within-cluster sums of point-to-centroid distance averaged
over 20 runs to find the optimum K, and visual inspection of the clusters. The
resulting clusterings can be seen on figures D.5 and D.6 in section D.5. Some
general tendencies was found where the valence data showed smaller variation
in predictions compared to arousal data. Intuitively the results make sense that
some excerpt start being very excited and end with a low excitement or build
up as the track progresses. But no verification of the results can be made.

5.10 Discussion

The modeling of emotions expressed in music was investigated with the use of 4
different linear regression models trained on 11 different selections of features.
To parameterize ratings obtained in pilot2 beta distributions where used where
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the coefficients α and β and the mean of the beta distributions was used as
labels of the models. To select features, out of the 1373 dimensions used, that
were useful for the modeling, four different methods of selecting features where
investigated. PCA using 50 dimensions, SFS using 47 features, stepwise and
L1 by LARS. Initially concerns were raised as to the distribution of beta means
for the valence data, as it was rather centered with little variance. This obser-
vation follows in the performance of all models of beta means for valence. They
are slighter worse than the arousal scale, where predictions have a broader dis-
tribution than the valence.
In predicting beta means for valence the benefit of using ALL features is rather
small compared to the use of e.g. SFS. The SFS is the best of the feature
selection methods employed here and the initial concerns regarding the use of
PCA was confirmed as it was the poorest performing selection of features. The
models describing arousal ratings have a very high performance where all mod-
els and selection of features lie well below the baseline. stepwise on SFS is the
best performing which is odd combination of two methods used to select fea-
tures combined produce the best result. In general the best performing models
performed 15 % and 47 % better compared to the pessimistic baseline using
RMSE on beta mean predictions for valence and arousal respectively. Looking
at the RMSE across all excerpts there seem to be a great variation, where some
tracks have a zero error and some have up to a deviation of 4 ratings. The cause
of this is argued to be due to the combination of audio features and emotional
ratings for those excerpts. A series of different amount of folds used in CV show
that there is a need for high number of folds e.g. 50 and above, since predicting
emotional ratings for e.g. 4 or more excerpts at a time when training on e.g.
196 seems to be difficult.
Comparing the predictions of beta distributions fitted to the experimental data,
the same setup as used for beta means was used. Where the coefficients α and
β were models separately and optimized using RMSE in a 50-fold CV scheme.
For both valence and arousal data across all models and selection of features the
models performed better than the baseline measure, using KL divergence. The
fact that the baseline measure is calculated based on randomly selected other
distributions in the test data set seems rather odd. Given the distribution of
the ratings across excerpts this measure would change. If excerpt were chosen
to lie very separated and cover the whole emotional space the baseline would
be much worse and thereby the performance of the models would seemingly
perform much better. Looking at the best performing model and selection of
features using the KL divergence again stepwise on SFS is the best performing
combination for both valence and arousal.
To have a measure to compare the total performance of the predictions of va-
lence and arousal ratings for emotions expressed in music, the euclidean dis-
tance between both beta means were computed. The best performing combi-
nation is again stepwise on SFS with a euclidean distance of 0.135 equivalent
to a 34 % gain in performance compared to baseline. This measure is also
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the only measure that can be compared to the results that were obtained in
[Schmidt and Kim, 2010]. They achieved a distance of 0.140 using SV R trained
on MFCC audio features. The KL divergence cannot be directly compared
since their divergence was computed between 2-D Gaussians.

5.11 Conclusion

The aim was to create a mathematical model to model the emotions expressed
in music. 4 different linear regression models were compared and 11 different
selections of features. Predicting beta means of the parameterized beta distri-
bution fitted on experimental data models performed 15 % and 47 % better
compared to the pessimistic baseline measure (i.e. rating in the middle) using
RMSE for valence and arousal respectively. Considering complexity the best
performing combination was stepwise on SFS where 47 features were used,
where the stepwise across a 50-fold CV in some cases removed some features
and in others selected all.
Modeling the whole beta distribution was also done by using the coefficients α
and β as labels. The best combination of model and features was again stepwise
on SFS, where using euclidean distance showed a 34 % gain in performance
compared to baseline. Comparing results with [Schmidt and Kim, 2010] there
was an improvement, they achieved a distance of 0.140 using SV R trained on
MFCC audio features and stepwise on SFS had a distance of 0.135. The goal
of creating a model that can predict the emotions expressed in music has been
met. The model achieves better results given any of the baseline measures, both
for predictions of the mean of the beta distributions or the entire distribution.
Using the features found by SFS to model expressed emotion in music, an
exploratory investigation was made to see what the tendencies across grouped
excerpts of the audio features were. 5 out of 7 features showed a good visual
separation of the arousal dimension (CENS, inharmonicity, average loudness,
average of MFCCs and flatness). For the valence dimension pulse clarity and
tempo was found to show a difference for Positive-Excited excerpts.
Under the assumption that the variation in predictions of the stepwise model
were not in fact error but a measure of the changing emotional expression in
music modeled using post-ratings, an exploratory investigation was made. Since
no data is available for verification it only remains exploratory. These vectors
representing each excerpt was grouped using KNN , where 4 and 5 groups were
found for valence and arousal respectively. Using the average across all excerpts
within each cluster a comparison was made in the temporal development of ex-
pressed emotions in the excerpts. Some grouping were found to start being very
excited and slow down towards the end, where others build up towards the end.



Chapter 6

Conclusion

In this section a discussion of the project as a whole will be made and lastly a
summary of conclusions and achievements.

6.1 Discussion

The aim of the project was to make a model that can predict the emotional con-
tent in music. Using a systematic approach an analysis was made into what type
of model should be used to represent emotions. Given that a great deal of dif-
ferent models exist, a two dimensional model using the dimensions valence and
arousal was chosen. Through the analysis of emotions and their connection to
music it was found that the mathematical modeling of emotions in music should
be separated into two different models. A model that accounts for the expressed
emotion and another that describes the induced emotion, in other words a per-
sonalized model. The focus in this work is on the model of expressed emotions.
This is very important since this also defines the specific research question, and
subsequently the mathematical model to model the expressed emotions by mu-
sic.
The heart of the project is to extract emotional information from a musical
source. A method of choosing musical data was suggested which was to create a
simple model based on a well defined experimental setup, using structural infor-
mation about music to predict emotional ratings from larger musical datasets
and use these ratings to sample for future testing. This simple model and the
necessary steps taken to create it was used to explore all aspect surrounding the
topic.
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A self-report method was used to obtain ratings from participants, which rated
200 musical excerpts of 15 seconds duration on two SAM scales, representing
valence and arousal. Using two pilot experiments exploration was made into
experimental setup issues using statistical and quantifiable measures. The pos-
sible effect of the presentation order of these scales was investigated and the
direction of them was taken into account by balancing the design. The length of
musical excerpts, the order they are presented in and the effect it has on ratings
were also investigated. Often no thought or concern is made into these aspects
or are argued to have no effect on results. The analysis made shows results
that it does have an effect of e.g. what order musical excerpts are presented
in and the emotional ratings participants provide. Prior measures have been
taken into reducing familiarity of music but using simple measures the effect
of familiarity and a multitude of other quantifiable measures were investigated.
No quantifiable connection was confirmed by any of the meta data gathered to
the ratings provided by participants.
All emotional ratings obtained in the listening experiment using the ordinal
SAM scales were analyzed. In order for modeling of this data and to consider
outlier removal a simplification of the data was made. This was done by fit-
ting beta distributions for each excerpt on both the valence and arousal ratings.
Since 14 participants participated in the experiments each distribution was fitted
to 14 data points using MLE. The assumption was that it is actually possible
to model the data using these distributions but given the few data points the
estimates was not optimal. The estimates would become better if more partici-
pants had participated. Using these beta distribution parameters outliers of the
experimental data were removed under the idea that participants would rate
differently from the majority if participants were distracted or mentally absent.
Creating outlier criteria based on empirical data and subsequently applying the
method on the experimental data, outliers were removed and new beta distri-
butions were refitted. Measuring how long it takes participants to rate each
excerpt showed a correlation to the amount of outliers their ratings contained,
showing it could be a good preliminary measure of errors. These beta distribu-
tions form the data foundation for the modeling of emotions expressed in music.
A compromise is made of avoiding the ordinality of the scales by the modeling
of these scales using beta distribution, making an underlying assumption that
this is possible.
To simplify the beta distributions the mean was also used as a label, which was
chosen over the mode since when using the mean the distance for all participants
ratings would be lower compared to the mode, eventhough the mode has the
highest probability.
The data foundation to make predictions of the emotional ratings was chosen
to be audio features since music as a media always contains a sound signal. It
was also argued that lyrics communicate emotions but are not always available
and the way lyrics are song would be captured by audio features. The ap-
proach in finding audio features was to find as many features as possible and let
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feature selection methods find the most suitable features to model emotions ex-
pressed in music. Four different feature selection methods were compared PCA,
L1-regularized LS, SFS and stepwise regression. Using SFS 47 features were
found that were compared with emotional ratings and visually they show a good
separation of the arousal dimension and the valence dimension.
The mathematical modeling was approached by choosing simple models and
methods of reducing dimensionality of the audio features used. The approach
based on the results of the modeling shows to be the right way. Only using
e.g. features from one feature pack shows that these do not perform very well
compared to features that are selected across all the 7 different feature packs
used in this work. LS, L1 using LARS, L2 and stepwise were compared all
trained using 50-fold CV on excerpts which were grouped so that each excerpt
was only in test, training or validation set. Initial investigations showed that by
using a normal CV scheme the performance of all methods were considerably
better compared to using the one chosen here, due to the fact that by sampling
an excerpt and having samples in training, test and validation would artificially
boost performance of methods in a very simple way.
stepwise on SFS was the best performing combination of model and features,
both when measuring predictions of beta means where RMSE is used, and beta
distributions using KL divergence and euclidean distance between beta means.
A pessimistic baseline measure was formulated that the safe prediction would be
to predict 5 on the 1-9 SAM scale. Compared to this measure the best model
performed 15 % and 47 % better compared to the baseline.
The concern regarding the distribution of beta means could directly be seen on
the performance of predicting these ratings. The target distribution was rather
narrow illustrating that participants did not rate using the whole scale. This
could be an artifact of the scale in combination with music or the fact that the
music was not chosen to fill the whole range of valence. In future experimental
testing, sampling of musical excerpts should be attempted to cover the whole
valence dimension using these scales to see if the results are consistent or just
due to musical selection (i.e. limitation of scales, musical selection or emotional
model). It is a considerable problem that participants used the middle ratings
as a ”do not know” button for the sake of emotional modeling. A button that
would indicate that participants are unsure about what to rate could be used
or a scale of how sure they are of their rating. Another method to reduce the
centering of ratings could be to use a two-dimensional scale. Future work has
to be performed to explore these issues.
An analysis into the effect of lossy audio compression and using resampling of
audio features for alignment was made on all audio features. No direct con-
nections can be made to the performance of the models due to this but further
investigations could be made into the excerpts with the highest error and looking
at the musical source data. Using the predictions of the designed mathematical
model an investigation of whether or not a grouping of excerpts could be made
based on the temporal changing emotional predictions. In other words to see if
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musical excerpts can be grouped based on the emotional dynamics, well aware
that the predictions of the model are based on post-ratings of musical excerpts.
Using non-supervised machine learning principles, 4 and 5 grouping were found
for valence and arousal respectively. No data was available for validation of
these results and future work could look into what the connection is between
the predictions based on post-ratings and continuous measured emotions ex-
pressed in music.

6.2 Summary

The problems presented in 1.4 has all been investigated throughout this work
and solved satisfactory within the scope of this thesis. The development of a
method of extracting emotional information from music was achieved using a
developed listening experimental design.
An emotional model to represent emotions expressed in music was found using
a two dimensional model of valence and arousal.
The extraction of structural data from musical tracks was achieved by using
audio features from the spectral, cepstral, temporal domains and musical and
perceptual features. Features which describe emotions in music were found by
using feature selection approaches, where features such as MFCC, Pulse Clar-
ity, Main Loudness, Pulse Clarity, Spectral Flatness per. band, Inharmonicity
and CENS were found to be some of the most suitable. The development of a
mathematical model using audio features extracted from music to predict emo-
tions expressed in music was achieved. A stepwise regression model trained on
features selected by Sequential feature selection method was the best perform-
ing combination. Compared to defined baseline measures the model performed
15 % and 47 % better. Resulting in an average error of 0.727 ratings on the
arousal scale and valence of 0.887 ratings given that participants rated on a
9 point scale. An approach to cluster musical data based on their emotional
dynamics within each excerpt was investigated and can show some tendencies
that should be confirmed in the future.



Appendix A

Analysis

All supplementary notes to the analysis section is presented in this appendix.

A.1 Musical Descriptors

In this section some more detailed descriptions of the musical terms often used
by music psychologist is given.

Pitch (low-high), can be defined as that attribute of auditory sensation in terms
of which sounds may be ordered on a musical scale, which when changed gives
rise to a melody (ASA 1960). The concepts of pitch is different from signal to
signal, for pure tones it is directly related to the repetition rate of the waveform
measured as frequency. Complex tones due to its harmonic structure pitch is
related to the fundamental frequency. This is although not a directly measurable
variable since pitch is a subjective matter, where the condition of the auditory
system and the stimuli can change the perception greatly (from [Moore, 2004]).

Ambitus (small-big), is the distance from the highest to the lowest note in
music. Thus it is a measure of the spectral dynamical range.

Register (low-high), is a measure of tonal position, and is highly correlated
with the pitch.

Harmonics (few-many), complex tones are build up by a fundamental fre-
quency and a number of overtones. These overtones are also referred to as
harmonics since they are a multiplum of the fundamental frequency.
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Harmony, is in principle the same concepts as harmonics but rather than
overtones it is using ”‘overnotes”’ meaning a complex combination of notes that
gives the sensation of something being more harmonious, where frequency is not
used but rather pitch since it is a subjective perceptual measure.

Tonality, refers to the ordering and systematic hierarchical structure of pitch.

Brightness (dull-sharp), refers to the amount of high frequency acoustical en-
ergy in music or speech. A given cutoff frequency is given and the degree of
brightness is then a measure of the amount of acoustical energy above relative
to below this frequency.

Timbre, can be defined as, that attribute of sensation in terms of which a
listener can judge that two sounds having the same loudness and pitch are
dissimilar. Timbre depends primarily upon the spectrum of the stimulus, but
it also depends upon the waveform, the sound pressure, the frequency location
of the spectrum, and the temporal characteristics of the stimulus (ASA 1960).

Loudness (soft-loud), is the subjective measure of the perceived sound level
of an auditory event measured in sone. In the psychoacoustical world this is
often confused with the intensity of the sound that is measured in dB, therefore
confusion can occur between units. A distinction is made between the specific
loudness or loudness level and loudness. The relation is that the first is a
frequency specific measure in units of phone and last is the total loudness,
measured in sone. The reason behind using sone is the novel idea that a measure
is needed to reflect the frequency different hearing in the human auditory system.
So the relation between a sound of 1 sone and another at 2 sones is so that they
are perceived double as loud. The measure of intensity of a sound is not enough
since the loudness level of that sound is frequency dependent and more complex
psycho acoustical models has to be used in order to measure this.

Roughness (consonant-dissonant ), in music, is the impression of stability and
repose (consonance) in relation to the impression of tension or clash (disso-
nance) experienced by a listener when certain combinations of tones or notes
are sounded together. In certain musical styles, movement to and from conso-
nance and dissonance gives shape and a sense of direction, for example, through
increases and decreases in harmonic tension [Encyclopedia of Britannica, 2008].

Tone attack/voice onset (short-long), this refers to the time it takes for a
tone to reach its maximum amplitude / rise time or rate of rise of amplitude for
voiced sounds and is often seen en the temporal envelope of a musical track.

Tempo/Speech rate (slow-fast), tempo is often measured as the number of
beats per minute (BPM), the tempo can be set by a number of instruments and
can be computed by methods such as, temporal envelope peak picking, fluctu-
ation patterns and correlation methods. Speech or song rate can be calculated
in a number of way, one method is to measure the number of utterances, voiced
segments, words, phonemes, etc. per minute.
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Articulation/pauses (staccato-legato), is measured as the time of a tones
onset to the onset of the next tone divided by the time from onset to offset of
the same tone. So music is legato when there is no silence between each tone and
its said to be played more smoothly, where the opposite is true for staccato. In
speech the the silence between each word can be measured either as an amount
of time or ratio between time spoken and time with to speech.

Rhythm/meter/mode, refers to the repetition of acoustical events, the rhythm
can be described by meter which is devision of the music into rhythmic units.
Often it is said that the music is in 4/4 or 3/4 time scale or rhythm.

Jitter/vibrato (low-high), refers to the temporal micro changes that are in the
formants in vowels. This is also extracted using tracking algorithms similar to
formant extraction. Vibrator also refers to microstructural changes in the pitch
or loudness of a tone, which can be calculated using same type of algorithms as
with jitter.
These are often used in western tonal classical music, where a wide range of
instruments from strings, to wooden and brass pipes etc. are used and therefore
give a differentiated sound.
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Appendix B

Audio features

All supplementary notes to the audio feature section is presented in this ap-
pendix.

B.1 Overview of features

In this section a complete list of all the features that is used is presented. The di-
mensions of each feature is shown and what feature pack contains what features.

Feature pack Feature Dimension

ID Interaural Time Difference 8
ID Interaural Level Difference 15
ID Interaural Coherence 20

Total 43

Table B.1: List of features of the Binaural Cue Selection toolbox and the dimensions
each consist of.

Feature pack Feature Dimension

MA MFCC 40
MA Sone 24

Total 64

Table B.2: List of features chosen from the Music Analysis toolbox and the dimen-
sions each consist of.
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Feature pack Feature Dimension

CT Pitch 88
CT Chroma 12
CT CENS 12
CT CRP 12

Total 124

Table B.3: List of features chosen from the Chroma toolbox and the dimensions each
consist of.

Feature pack Feature Dimension

ISP Chromagram 12
ISP chromaIF - Chromagram 12
ISP Frequency of instantaneous frequency gram 19
ISP Magnitudes of instantaneous frequency gram 19
ISP MFCC - Auditory toolbox 30
ISP MFCC 30
ISP MFCC - SIG 30
ISP MFCC - Mike Brookes’ Voicebox 30
ISP Fundamental frequency 1
ISP Number of harmonics 1
ISP Spectral bandwidth 1
ISP Spectral centroid 1
ISP Spectral flatness 1
ISP Temporal Voicing 1

Total 188

Table B.4: List of features chosen from the ISP toolbox and the dimensions each
consist of.
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Feature pack Feature Dimension

MIR Envelope (mean, variance, skewness, kurtosis) 4
MIR Spectral Flux 1
MIR Spectral Centroid 1
MIR Cepstral Flux 1
MIR Cepstral centroid 1
MIR Cepstral peaks 1
MIR Spectral RMS 1
MIR Temporal RMS 1
MIR Low energy percentage 1
MIR Fluctuations 15
MIR Envelope (Klapuri06) 410
MIR Tempo 1
MIR Autocorrelation of onset detection curve 1
MIR -Maximum correlation (Pulseclarity) 1
MIR -Minimum correlation 1
MIR -Average of the local maxima 1
MIR -Entropy of the autocorr. curve 1
MIR -Tempo related to the highest autocorr. 1
MIR -Gammatone decomposition 1
MIR Zero Crossings 1
MIR Spectral rolloff 1
MIR MFCC Flux 1
MIR MFCC 20
MIR Roughness (Sethares) 1
MIR Roughness (Vassilakis) 1
MIR Brightness 1
MIR Inharmonicity 1
MIR Fundamental frequency 1
MIR Mode (Major vs. Minor) 1
MIR Key (Best) 1
MIR - Key clarity 2
MIR - Key strength 2
MIR Key strength (major and minor) 24
MIR Tonal centroid 6
MIR Harmonic Change Detection Function (flux of

tonal centroid)
1

Total 510

Table B.5: List of features chosen from the MIR toolbox and the dimensions each
consist of.
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Feature pack Feature Dimension

PSY Tempo 1
PSY Cepstral 1st movement 1
PSY Cepstral 2nd movement 1
PSY Cepstral 3rd movement 1
PSY Cepstral 4th movement 1
PSY Cepstral std dev. 1
PSY Cepstral skewness 1
PSY Cepstral kurtosis 1
PSY Puretonalilty 1
PSY Multiplicity 1
PSY Chroma Salience 12
PSY Chord likelihood 1
PSY Pitch 1
PSY Pitch strength 1
PSY Loudness level 1
PSY Specific loudness pattern 73
PSY Excitation pattern 73
PSY Loudness 1
PSY Specific loudness pattern 1
PSY Sharpness A-weighted 1
PSY Sharpness Z-weighted 2
PSY Timbral Width 1
PSY Volume 1
PSY Tonal Dissonance (HK) 1
PSY Tonal Dissonance (S) 1
PSY Loudness 1
PSY Main loudness 24
PSY Specific loudness 47
PSY Sharpness 1
PSY Roughness 1
PSY Specific roughness 47
Total 302

Table B.6: List of features chosen from the PSY toolbox and the dimensions each
consist of.
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Feature pack Feature Dimension

YAAFE Amplitude modulation - Tremolo 4 - 8 Hz
YAAFE - Frequency of maximum energy in range 1
YAAFE - Energy difference between mean energy

over all frequencies and energy at max freq.
1

YAAFE - Energy difference between mean energy
over frequencies in range and energy at max freq.

1

YAAFE - Product of the two first values 1
YAAFE Amplitude modulation - Grain 10 - 40 Hz
YAAFE - Frequency of maximum energy in range 1
YAAFE - Energy difference between mean energy

over all frequencies and max freq.
1

YAAFE - Energy difference between mean energy
over frequencies in range and energy at max freq.

1

YAAFE - Product of the two first values 1
YAAFE Complex Domain Onset Detection 1
YAAFE Energy (RMS) 1
YAAFE Envelope (mean, variance, skewness, kurtosis) 4
YAAFE Linear Predictor Coefficients 2
YAAFE Line Spectral Frequency 10
YAAFE Loudness (Bark) 24
YAAFE Octave band signal intensity 9
YAAFE log of OBSI ratio 8
YAAFE Perceptual Sharpness (Sharpness of Loudness) 1
YAAFE Perceptual spread (Spread of Loudness) 1
YAAFE Spectral Crest Factor Per Band (1/4 oct. band) 19
YAAFE Perceptual spread (Spread of Loudness) 1
YAAFE Spectral Decrease 1
YAAFE Spectral Flatness Per Band (1/4 oct. band) 19
YAAFE Spectral Flux 1
YAAFE Spectral Rolloff 1
YAAFE Spectral Slope 1
YAAFE Spectral Variation 1
YAAFE Spectral (mean, variance, skewness, kurtosis) 4
YAAFE Zero Crossings 1
YAAFE Temporal (mean, variance, skewness, kurtosis) 4
YAAFE MFCC 20

Total 141

Table B.7: List of features chosen from the Y AAFE toolbox and the dimensions each
consist of.
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B.2 Effect of MP3 encoding on audio feature
extraction

In this section a more thorough investigation of the effect lossy encoding of audio
has on the extraction of features based on this data. On figure B.1 the spectra
of a wideband white noise signal is shown, where the signal has been encoded
using Lame 3.97 codec at different bitrates using standard settings.

Figure B.1: Comparison of spectra of white noise signal encoded using Lame 3.97 at
different bitrates.

It is evident that the lower the quality is, the lower the lowpass cutoff frequency
is used, when looking at the figure. Given that the audio feature extraction of
the audio signals used for the experiments are of varying sampling frequencies
(22-44.1 kHz) this fact may not contribute significantly to the degradation of
the features. Further most of the energy of frequency content of music is not
present at above 19 kHz. The other aspect of mp3 encoding comes from ap-
plying a psychoacoustical model on a frame and subband basis, thus reducing
the quantification based on criteria set by the user and the mp3 encoder. To
test the effect this has on the features extracted, 10 different songs of different
genre, 30 seconds of duration, all of CD quality is extracted and encoded at
320 kbit, 192 kbit, 128 kbit and a variable bitrate version available from the
Lame package, set to average 192 kbit.

To determine whether or not a significant change has been made to the audio
signal due to the use of encoding, the Pearson’s squared correlation coefficient
r2 is used as was done in [Sigurdsson et al., 2006]. Given two signal x and y of
length n the correlation is given by

rxy =

∑n
i=1 xiyi − nx̄ȳ
nsxsy

, (B.1)
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where x̄ and ȳ are the sample means, sx and sy are the sample standard devia-
tions of x and y. It is given that an absolute offset in magnitude can be made
by the different codec, for this reason the r2 is used since it will still show a high
correlation. Another issue is that when encoding with an mp3 codec, an offset
in time can occur, due to headers or other features of the encoder. To eliminate
noise caused by the codec time lag, each signal is aligned using cross-correlation
between the original signal and those of all the encoded versions.
The interpretation of the r2 coefficient is that when close to 1 a high correlation
is present and when no correlation is present the value drop to 0.

B.2.1 Results

Due to the great number of features extracted, the multi coefficient features that
have above 0.97 of r2 will not be shown as there are assumed to have perfect
correlation. Here multi coefficient refers to features i.e. MFCC that has 20-40
coefficients, or loudness that is divided into many spectral subbands, therefore
producing multiple values per feature.

MFCC
Here a comparison of all the different implementations of MFCC that is being
used, is made.

Given the 7 different MFCC implementation given here, Pampalk shows the
highest r2 of up to coefficient 11 and from thereon the implementation of
Y AAFE is the most robust to MP3 encoding, when looking at figure B.2(a).
Even at 128 kbit a high correlation is evident, and when using higher bit rates
of 192 kbit and 320 kbit, almost perfect correlation is present. Due to the way
MFCC is calculated a maximum frequency for each method is given, based in
that the number of coefficient is calculated as the number of filters designed.
Most of the methods do not surpass a maximum frequency of 16 kHz, thus this
is not the reason for the lower correlation, but the psychoacoustical model ap-
plied and the subsequent quantification.

Interaural differences
The interaural differences here made as a inter-channel difference, only the rele-
vant spectral subbands were chosen and for this reason the fc along the abscissa
on figure B.3 is different for each feature. A monaural outer ear model is ap-
plied to each signal and subsequent some comparison of the two signals across
critical subbands. It is evident that the psychoacoustical model that is used for
the encoding, and the subsequent quantification of the musical excerpts have
an influence of the Interaural differences. The psychoacoustical model reduces
the quantization bit allocated for inaudible sounds du to masking, whether or
not these inaudible differences can be detected by the binaural processing in the
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(a) 128 kbit/s encoding (b) 192 kbit/s encoding

(c) 320 kbit/s encoding (d) Variable Bitrate 192 kbit/s encoding

Figure B.2: r2 correlation of MFCC encoding using different implementations of music
encoded at different bitrates. An average over 10 excerpts were made, each
of 30 second duration. 4 different ISP implementation were used SIG,
ISP , V oiceBox refers to Mike Brookes Voicebox and AuditoryToolbox.
Pampalk, Y AAFE and MIR are all compared.
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brain is not known.

(a) Interaural Coherence (b) Interaural Level Difference

(c) Interaural Time Difference

Figure B.3: r2 correlation of Interaural Differences, the IC (a), ILD (b) and ITD
(c). Since the ITD and ILD was only used in the frequency range where
they are physically usable, the center frequency fc of the Bark filter for
the given Critical Band is used along the abscissa.

Common for IC (figure B.3(a)) and ILD (figure B.3(b)) is the decrease in
correlation at lower frequencies, which cannot be due to any lowpass filtering
but rather loss of information due to the quantification.
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Intelligent Sound features
Here the features extracted with the ISP toolbox is presented. Using the in-
stantaneous frequency gram, the chromagram was derived, here it should be said
that the resulting matrix of the instantaneous frequency gram is sparse. Giving
a presence feature, where it is a numerical value when it can be computed, else
it is 0. For this reason the r2 can be somewhat misleading since whether or not
a presence can be computed will have a large effect on the correlation.

(a) Frequency of instantaneous fre-
quency gram

(b) Magnitude of instantaneous fre-
quency gram

(c) Chromagram based on instantaneous
frequency

Figure B.4: r2 correlation of the Chromagram and instantaneous frequency gram.

All single coefficient dimensions from the ISP are presented in table B.8.

Feature name Feature pack 128 kbit 192 kbit 320 kbit VBR
Temporal Voicing ISP 0.9892 0.9982 0.9996 0.9970
Fundamental Freq. ISP 0.7422 0.8639 0.9634 0.9041
no. of Overtones ISP 0.8479 0.9282 0.9738 0.9195
Pitch presence ISP 0.4798 0.4441 0.5640 0.3792
Spectral BW ISP 0.9922 0.9959 0.9965 0.9980
Spectral Centroid ISP 0.9937 0.9979 0.9988 0.9983
Spectral Flatness ISP 0.8838 0.8989 0.9017 0.9655

Table B.8: r2 correlation of features in the ISP toolbox, comparing different bit rates
of encoding with Lame MP3 codec.

The pitch presence feature was the feature in the test that gave the greatest
variety across the 10 musical excerpts chosen. For some songs the correlation
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was 0.9 and others 0, giving a skewed image of the feature. The rest of the
features in table B.8 have a high correlation even at low bit rates.

Chroma toolbox features
Here three of the features from the toolbox dubbed CT here is presented on
figure B.5, common for the other features is that a very high correlation exist
and therefore the features are not shown.

(a) Chroma DCT-Reduced log Pitch (b) Chroma Energy Normalized Statis-
tics

(c) Pitch

Figure B.5: r2 correlation of the statistical abstraction of Chroma features from CT
and the pitch.

It seems common for the these spectral, features that they are very robust to
MP3 encoding, where the pitch feature shown on figure B.5(c) is used to derive
the other features.

Music Information Retrieval features
A great number of features are available in the MIRtoolbox, where a subset
of these are used in this thesis. The only multi coefficient feature that had a
poorer than average correlation was that of the sound onset detection made by
Klapuri and implemented in the toolbox.
The 128 kbit, 192 kbit and 320 kbit drop off at subband 300 whereas the V BR

drops off at 350, although as shown on figure B.1 it has a lower cutoff frequency.

All single coefficient dimensions from the MIR are presented in table B.9.
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Figure B.6: r2 correlation for the onset curve decomposed into subbands.

Feature name Feature pack 128 kbit 192 kbit 320 kbit VBR
Zero Crossing Rate MIR 0.9707 0.9845 0.9919 0.9839
Brightness MIR 0.9938 0.9975 0.9982 0.9983
Cepstral centroid MIR 0.4677 0.5730 0.6259 0.5693
Cepstral flux MIR 0.2603 0.3548 0.4302 0.3570
Envelope kurtosis MIR 0.5165 0.9100 0.9674 0.9087
Envelope mean MIR 0.8782 0.9677 0.9854 0.9724
Envelope skewness MIR 0.5232 0.9124 0.9683 0.9111
Envelope variance MIR 0.7428 0.9542 0.9829 0.9561
HCDF MIR 0.7588 0.9371 0.9899 0.9016
Key (Best) MIR 0.5921 0.7888 0.9122 0.7479
Key clarity MIR 0.8824 0.9702 0.9952 0.9566
Key strength (BK) MIR 0.5921 0.7888 0.9122 0.7479
Low energy % MIR 0.9676 0.9886 0.9947 0.9820
Mode MIR 0.9375 0.9874 0.9979 0.9774
Roughness (Set) MIR 0.8334 0.9331 0.9583 0.9220
Roughness (Vas) MIR 0.7754 0.8978 0.9377 0.8812
Spectral centroid MIR 0.9813 0.9834 0.9838 0.9952
Spectral flux MIR 0.9904 0.9986 0.9997 0.9979
Spectral RMS MIR 0.9955 0.9994 0.9998 0.9990
Spectral rolloff MIR 0.9729 0.9766 0.9769 0.9939
Auto corr ODF MIR 0.7439 0.6763 0.9843 0.6919
Tempo MIR 0.7676 0.6774 0.9875 0.6851
Temporal RMS MIR 0.9969 0.9995 0.9999 0.9994

Table B.9: r2 correlation of features in the MIR toolbox, comparing different bit rates
of encoding with Lame MP3 codec.
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Based on the results in table B.9 the cepstral features derived are not very
robust to encoding even at very high bit rates. Similarly the Autocorrelation
of the Onset Detection function and the Tempo, which is derived from the
autocorrelation is also seen not to be so robust. Although at 320 kbit near
perfect correlation is present.

Psychoacoustical toolbox features
The multi coefficient features that had the lowest r2 are shown on figure B.7,
where all others had a near perfect correlation of above 0.97.

(a) Sharpness (b) Specific loudness (CF)

(c) Excitation pattern (d) Specific loudness

Figure B.7: r2 correlation features from the PSY toolbox.

The only feature of the four shown on figure B.7 that of the sharpness, is the
one that stands out, with a slight lower correlation for 128 kbit. In table B.10
all single coefficient features from the PSY toolbox are shown. Here as was seen
for features from the MIR toolbox, cepstral coefficients are not very robust to
encoding with MP3. All features based on the cepstrum suffer, even at 320 kbit
encoding, with a r2 of around 0.3 and below as seen on table B.10. Only other
feature that suffers is that of Tonal Dissonance (HK) with correlation below 0.2.
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Feature name Feature pack 128 kbit 192 kbit 320 kbit VBR
Roughness PSY 0.9905 0.9982 0.9997 0.9973
Cepstral 1st mov PSY 0.3255 0.3758 0.4069 0.5550
Cepstral 2nd mov PSY 0.2520 0.2941 0.3485 0.4949
Cepstral 3rd mov PSY 0.2670 0.3107 0.3624 0.5041
Cepstral 4th mov PSY 0.2669 0.3127 0.3669 0.4978
Cepstral kurtosis PSY 0.5581 0.5942 0.5895 0.7617
Cepstral skewness PSY 0.4824 0.5260 0.5281 0.7190
Cepstral std PSY 0.3320 0.3737 0.4085 0.5767
Loudness level (CF) PSY 0.9990 0.9998 1.0000 0.9997
Loudness (MG) PSY 0.9968 0.9993 0.9999 0.9991
Spectral Disso. (HK) PSY 0.9777 0.9952 0.9993 0.9935
Spectral Disso. (S) PSY 0.9596 0.9903 0.9985 0.9860
Sharpness (A) PSY 0.9966 0.9992 0.9999 0.9990
Sharpness (Z) PSY 0.9962 0.9991 0.9999 0.9989
Tonal Dissonance (HK) PSY 0.0812 0.1872 0.4788 0.1982
Tonal Dissonance (S) PSY 0.4608 0.6209 0.8127 0.6130
Timbral Width PSY 0.9796 0.9956 0.9992 0.9934
Volume PSY 0.9936 0.9988 0.9998 0.9984
Pitch strength PSY 0.9827 0.9979 0.9997 0.9965
Pitch PSY 0.6883 0.8271 0.9788 0.8482

Table B.10: r2 correlation of features in the PSY toolbox, comparing different bit
rates of encoding with Lame MP3 codec.
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Yet Another Audi Features Extraction Toolbox
The multi coefficient features that did not have a r2 correlation of less than 0.97
across all coefficients from the Y AAFE toolbox are shown in figure B.8. The
only feature that stands out is that of the Spectral Crest Factor per Band, or
the peak-to-average ratio as it is called. By removing energy from the acoustical
signal based on a psychoacoustical model in the encoder, the peak and rms value
of the spectra would change within each subband and naturally change the Crest
factor, thereby causing lower correlation.

(a) Loudness (b) Line Spectral Frequency

(c) Spectral Crest Factor Per Band (1/4
oct)

Figure B.8: r2 correlation of the features in the Y AAFE toolbox.

All the single coefficient features of the Y AAFE package are shown on ta-
ble B.11. In general the features chosen by the Y AAFE authors are very robust
across all features, where all features shows have perfect correlation, even at low
bitrates.
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Feature name Feature pack 128 kbit 192 kbit 320 kbit VBR
Comp. Dom. Onset Det. YAAFE 0.9962 0.9994 0.9999 0.9992
Energy (RMS) YAAFE 0.9980 0.9998 1.0000 0.9996
Env. shape stat mean YAAFE 0.9998 0.9999 0.9964 1.0000
Env. shape stat var YAAFE 1.0000 1.0000 0.9996 1.0000
Env. shape stat kur YAAFE 1.0000 1.0000 1.0000 1.0000
Env. shape stat skew YAAFE 1.0000 1.0000 0.9990 1.0000
Perceptual Sharpness YAAFE 0.9972 0.9994 0.9999 0.9992
Perceptual spread YAAFE 0.9958 0.9994 0.9999 0.9989
Spectral Decrease YAAFE 0.9025 0.9873 0.9979 0.9757
Spectral Flatness YAAFE 0.9914 0.9974 0.9995 0.9974
Spectral Flux YAAFE 0.9945 0.9993 0.9999 0.9987
Spectral Rolloff YAAFE 0.9910 0.9975 0.9995 0.9970
Spectral Slope YAAFE 0.9971 0.9994 0.9999 0.9991
Spec. Shape Stat. mean YAAFE 0.9971 0.9949 0.9961 0.9963
Spec. Shape Stat. var YAAFE 0.9994 0.9987 0.9991 0.9992
Spec. Shape Stat. kurt YAAFE 0.9999 0.9998 0.9999 0.9999
Spec. Shape Stat. skew YAAFE 0.9991 0.9985 0.9989 0.9989
Spectral Variation YAAFE 0.9909 0.9988 0.9998 0.9979
Temp. Shape Stat. mean YAAFE 0.9915 0.9863 0.9898 0.9996
Temp. Shape Stat. var YAAFE 0.9989 0.9983 0.9987 0.9999
Temp. Shape Stat. kurt YAAFE 0.9998 0.9997 0.9998 1.0000
Temp. Shape Stat. skew YAAFE 0.9978 0.9964 0.9974 0.9998
Zero Crossings YAAFE 0.9794 0.9904 0.9961 0.9890

Table B.11: r2 correlation of features in the Y AAFE toolbox, comparing different bit
rates of encoding with Lame MP3 codec.
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Music Analysis Toolbox On figure B.9 the correlation for the MA toolbox
is presented, where again we see that Chroma and Sonograms are very robust
to encoding. To display the fluctuation pattern, the matrix across modulation
channels and frequency channels has been stretched out to a single vector for
each time frame of the excerpts. This is seen on figure B.9(a) which is the r2

for the entire matrix. Given that information across both modulation spectra
and spectrum is calculated, some degradation of the information is expected.
As with all previous the 320 kbit encoding ensures almost perfect correlation
across all coefficients.

(a) Fluctuation Pattern

(b) Sonegram (c) Chromagram

Figure B.9: r2 correlation of the features in the MA toolbox.

B.2.2 Discussion

Common across most features is that 128 kbit encoding is the worst of the four
compared, where the 192 kbit, VBR follow and last the best is the 320 kbit
which is expected. Where features have a low correlation due to encoding it is
a common aspect across the three lowest bit rates, where 192 kbit is of all of
them, the one that rates the best of the rest. Based on the results 192 kbit and
above is acceptable for the musical data. If features that have a low robustness
to encoding get selected by a feature selection algorithm, caution has to be taken.
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B.3 Effect of resampling on audio features

The problem of aligning the features in order to make a mathematical model is
attempted by simply resampling the features. By upsampling the potential er-
ror lies in the interpolation method used. Another issue is that the features are
calculated in a frame based manner, by interpolating between each frame data
is created under the assumption that there is e.g. a linear relation between each
frame, if one uses linear interpolation. This might not be the case, in fact since
most algorithms only function with a certain amount of data per frame, due to
e.g. change of a transient or change in spectra, there is no way of checking what
exists in the underlying structure.
The other issue is when downsampling features, high frequency components will
be removed. A spectral analysis was made of each feature in order to see what
effect the downsampling had, but by only visual inspection no conclusive re-
sults can be made. For this reason a correlation analysis is made to provide an
indication of the potential error sources in a later mathematical model. It is
obvious that even though an error is found resulting from the resampling, this
does not mean that the resulting mathematical model will produce the same
error in the output. The effect can potentially be negligible, or prove to be
substantial. Nonetheless resampling is used although errors can be introduced
due to this method.

Above is a list of the features output for the different feature extractors, mean-
ing that each feature produces an output at e.g. 23 ms intervals etc. It has to
be emphasized here that, this is not the direct frame size for the features. One
feature can have a frame length of 1 second but have an overlap/hopsize of 10 %.
over 2 seconds this feature would output 11 feature samples if the initialization
is included. A feature with a frame size of 500 ms with an overlap of 50 %
would produce only produce 7 feature samples. So the numbers in table B.12
are the time it takes between each output of the feature extractor.

The issue is finding a sampling frequency that is appropriate. On one hand it
should not degrade the data too much, and on the other hand to decrease the
amount of data for the mathematical modeling, as there is a limited amount of
memory and computational power available. Initially the highest sampling of
885 Hz with a temporal frame size of 1.13 ms was attempted but was not pos-
sible, so integer multiples of this of 2 4 8 and 16 was attempted. The minimum
was was found to be a factor of 8 resulting in a sampling frequency of 110 Hz
producing frames of 9 ms. Given excerpts of 15 seconds of duration produces
1654 frames per excerpt. This frame size was then investigated further.

To test the effect of resampling on the features, 10 different excerpts were used
where all features that had a higher sampling frequency than 110 Hz were tested.
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No. features Avg. time per. output [ms]

4 1.13
4 1.99
3 2.90
1 5.03
26 5.80
1 7.94
5 9.99
27 11.63
3 19.95
1 20.11
20 23.22
1 81.08
3 99.34
2 117.19
2 182.93
1 312.50
2 357.14
2 375.00
2 714.29
7 750.00
1 937.50

Table B.12: Number of features that produce an output at intervals given in millisec-
onds. Results are obtained using 15 second excerpts.
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The procedure was that all features were computed, then downsampling of the
features and subsequently upsampling to the original sampling frequency. The
resulting features were compared with the original, using Pearsons squared cor-
relation r2 as described in section B.2 equation (B.1). Thus the comparison is
both of the downsampling and upsampling in one coefficient, the downsampling
is assumed here to be the biggest contributor to the error. Upsampling is not
tested here, as the effect of the downsampling is seen as the major source of
error and using a 100th order polyphase resampling method of Matlab it is seen
as being negligible. Thus aliasing and other artifacts are not an issue for concern.

B.3.1 Results

All features that have a higher sampling frequency than the chosen of 110 Hz
producing 1654 sampled per 15 second excerpt, and the corresponding correla-
tion coefficients are shown here.

Feature name r2

Temporal Voicing 0.9385
Fundamental Frequency 0.7187
Fundamental Frequency Order 0.8342
Temporal Voicing 0.9385
Pitch estimate 0.6693
Spectral Bandwidth 0.9702
Spectral Center 0.9765
Spectral Flatness 0.8280
Cepstral 1st Movement 0.9702
Cepstral 2nd Movement 0.9200
Cepstral 3rd Movement 0.8913
Cepstral 4th Movement 0.8732
Cepstral Kurtosis 0.9088
Cepstral Skewness 0.9307
Loudness (CF) 0.9975
Sharpness 0.9606
Loudness (MG) 0.9841
Sharpness (A, MG) 0.9915
Sharpness (Z, MG) 0.9823
Spectral Dissonance (HK) 0.9500
Spectral Dissonance (S) 0.9203
Timbral Width 0.7559
Tonal Dissonance (HK) 0.6982
Tonal Dissonance (S) 0.8081
Volume (S) 0.9574

Table B.13: r2 coefficients for resampled features
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In table B.13 r2 results of features that were downsampled are shown. No fea-
tures show a serious degradation due to the resampling, where most are above a
correlation of 0.9. Tonal Dissonance (HK), Fundamental Frequency, Pitch
estimate and Timbral Width are the features that suffer the most but are still
not unusable.

(a) Interaural Coherence (b) Interaural Level Difference

(c) Interaural Time Difference

Figure B.10: r2 correlation of Interaural Differences, the IC (a), ILD (b) and ITD
(c). Since the ITD and ILD was only used in the frequency range where
they are physically usable, the center frequency fc of the Bark filter for
the given Critical Band is used along the abscissa.

Inspecting figure B.10 the ILD does not suffer from the resampling, indicating
that the feature does not change rapidly. On figure (a) we see that the IC indeed
suffers greatly from the resampling, specially in the high frequency coefficients
of the IC on the Bark scale, obtaining a r2 value of 0.4. The ITD also suffers
in the coefficients computed for the high frequency content of the audio signal.
Implying that the features also contain high frequency content.

On figure B.11 common for all four features is that they do suffer from the
resampling a great deal where most obtain a correlation of around 0.4 over all
coefficients. Across musical excerpts it is evident that these features contain a
great deal of high frequency components across all audio frequency bands.

On figure B.12 again a pattern is seen of degradation of the features, for figure
B.12(b), B.12(c) and B.12(d), where specially in the low audio frequency area,
a great deal of high features frequency content is present and thus suffers from
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(a) Frequency of instantaneous fre-
quency gram

(b) Magnitude of instantaneous fre-
quency gram

(c) Chromagram based on instantaneous
frequency

(d) MFCC - Auditory

Figure B.11: r2 correlation of the Chromagram, instantaneous frequency gram and
MFCC.

the downsampling. On figure B.12(d) for the Main loudness, still a degradation
is seen, not as substantial as others.

(a) Main Loudness (b) Specific loudness (CF)

(c) Excitation pattern (d) Specific loudness

Figure B.12: r2 correlation of features from the PSY toolbox.
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B.3.2 Discussion

One has to remember that the resampling does not imply that the audio signal
has changed, but rather if features change e.g. rapidly, creating high frequency
content in the features, these could be removed. So a direct comparison of what
the feature computes and the degradation due to e.g. downsampling is not triv-
ial. Most of the multi coefficient features, that often contain feature data that is
computes across audio bands, seem to suffer the most. As have been mentioned
before these errors are not directly transferable to a potential error of a math-
ematical model. Caution has to be made, when using these features. Another
aspect is that when downsampling variance within each feature is removed, thus
results of variance and co-variance analysis could be altered due to this.
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B.4 Effect of NaN painting

A number of features across all feature packs that were chosen produce few or a
lot of NaN values. Either the choice would be to disregard these features and
ignore them completely, but some features merely produce very few and there-
fore could be corrected using simple linear methods. Three different methods
are used in this work, and that is simply making a set of linear equations that
include the missing value and the surrounding. They are then solved for the
missing value, where the number of values to include is varied. In this work a
comparison of 2, 4 and 8 neighboring values are used, where the result of the
missing value is a mean of these values. As an example the number of NaNs
are shown on figure B.13(a) in the output of feature MFCC Flux from MIR ex-
tracted from the 200 excerpts from pilot2 experiment. It is evident that of over
half of the vector in some cases produce NaN , with a majority below 50. This
could simply be errors in the script since a simple euclidean distance between
two vector should not be difficult to compute. But this is simple an example
and many more have these issues.
To test how well these methods to paint over the missing data perform, and
at what level one should disregard the feature all together. 10 feature vectors
were used where no NaN were present, to provide a representative picture. The
distribution of the NaNs across feature vectors that have missing data was es-
timated, and was used to corrupt the 10 vectors. Incrementally with step of
10 up to 1000 was performed, representing from 0.6% to 60% in increments of
0.6% of the total amount om feature samples in that given vector.

B.4.1 Results

The results of this approach can be seen on figure B.13(b).

(a) Histogram of 200 excerpts from
pilot2 experiment showing the number
of NaN in the MFCC Flux feature from
MIR

(b) r2 results for NaN-painted MFCC
flux feature vector using an average of
10 excerpts.
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B.4.2 Discussion

Up to 50 samples corrupted or 3% of the data the r2 correlation is above 0.9
for the method using the average of the 8 surrounding values. In general this
method shows to have the best performance. Above 400 samples corrupted the
method cannot produce results since clusters start to appear where the method
cannot produce meaningful results, even using linear extrapolation. Features
that have 50 or more missing data values will not be used, and the method of
using 8 neighbor values will be used for all features, where 50 data points or
below are missing.
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Appendix C

Listening experiment

All supplementary notes to the listening experiment section is presented in this
appendix.

C.1 Pilot1 - Graphical interface

The developed graphical Matlab interface that was used for the pilot1 experi-
ment will be presented here.

C.1.1 Instructions

The instruction given for both pilot experiments are seen on figure C.1 and C.2.
Aside for these instruction a verbal explanation was given of what was written
in the text, to ensure that the task at hand was clear. Questions from partici-
pants were answered within the boundaries of the test.
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Figure C.1: First screen of instructions to the user, when participating in pilot1 lis-
tening experiment.
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Figure C.2: Second screen of instructions to the user, when participating in pilot1
listening experiment.
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C.1.2 Meta data

To obtain some meta data about each of the participants a questionnaire was
presented where the interface can be seen on figure C.3.

Figure C.3: Questionnaire given to participants prior to the test beginning.

After the ratings of excerpts another questionnaire was presented about the
scales and length of each excerpt, which can be seen on figure C.4.
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Figure C.4: Questionnaire given to participants after the had finished.
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C.1.3 Prior mood

To see if there was a connection between the mood the person was in, prior
to the test, and the resulting ratings, the participants were asked to rate what
mood they were in prior to the test, given the two scales. An example of one of
the scales are shown in figure C.5.

Figure C.5: Rating of mood prior to the test had begun.

C.1.4 Primary interface

The two scales used to measure the emotional content expressed in music, using
the dimensions of valence and arousal, in the form of manikins are shown on
figure C.6. The scales were used in both pilot1 and pilot2 experiments.

(a) Arousal rating.

(b) Valence rating.

Figure C.6: Manikins used to measure the valence and arousal of emotions expressed
in music.
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C.2 Pilot1 - Meta data analysis

All data acquired in pilot1 except the ratings themselves are presented here.
These include the post questioning and the temporal analysis of the test.

C.2.1 Temporal analysis

As a mean of analyzing how long a potential listening test would take, a timer
was used in the rating of each excerpt of each participant. Using this data an
analysis can also be made of any excerpts that might be more difficult to rate,
e.g. participants did not know what to rate and therefore it took longer time
for them to rate. It could also be that given the specific ordering participants in
general just need more time, since the cognitive load has increased. On figure
C.7 the average time across participants is shown, where no excerpt in particular
stand out as being more or less difficult to rate. But comparing the two designs,
it seems that using the balanced ordering design, it requires a greater amount
of time to rate. In average it took 6 seconds to rate each of the excerpt for the
sequential design, whereas 8.7 seconds for the balanced design.

(a) Balanced ordering. (b) sequential ordering.

Figure C.7: Average time, over all participants, for each of the ordering designs, it took
to rate each excerpt in pilot1. (left) Balanced ordering (right) sequential
ordering

Comparing the time across test participants, participant 1 in the balanced or-
dering design, seem to be using quite a lot more time to rate each excerpt.

Using this data acquired, if using the time to rate as an indicator of the cog-
nitive load the participants experience when rating the musical excerpt. Then
the balanced design is indeed more difficult than the sequential. This could be
an effect of the rather short excerpts of only 7.5 seconds. When participants
remember what they just listened to and being familiar with the excerpt they
listening to at that given time then, it is easier for them. This tendency is clear
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(a) Balanced ordering. (b) sequential ordering.

Figure C.8: Average time, over all excerpts, it took each participant in the pilot1 ex-
periment to rate an excerpt. (left) Balanced ordering (right) sequential
ordering. The method used to measure the time was the Matlab method
called tic, toc this measure is an approximated method and thus not com-
pletely reliable. All times were corrected with the time it took to change
after playing an excerpt.

when looking at excerpt 1, 5 and 9 on figure C.7(b) which are the first excerpts
of a given clip. These have the highest times to rate of the excerpt from that
clip. After that the time to rate them goes down for clip 2 and 3, where clip 1
there is a small deviation at excerpt 4.

C.2.2 Analysis of scales

The purpose of the questions in pilot1, was to establish whether or not partici-
pants understood the scales, found them appropriate for rating music and last if
the excerpt used had an appropriate length. The results for the 24 participants
are shown on figure C.9. It seems that a majority did in fact understand the
scales, with a mean little over average. To the question if the participants found
the scales appropriate for rating music, the picture is slightly more negative
where 25% of the participants found the scales poor.

C.2.3 Analysis of excerpt length

Using musical excerpts in this test of only 7.5 seconds, the participants were
asked if that was appropriate. Judging the results on figure C.9(right) that a
majority did not find it so. The average of all ratings was a little below ”aver-
age”.
Post questioning of the participants revealed that they found the excerpt too
short. They had to use a high amount of cognitive power, making them very
exhausted after the test. Another aspect that became clear was that, the scales
given without any anchoring adjectives, made it very difficult for participants
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Figure C.9: Results of post questionnaire in the pilot1 experiment. (left) the under-
standing of the scales (middle) the appropriateness of the scales, (right)
the appropriateness of the excerpt length. Red line indicates the mean of
ratings.

to exactly understand what the arousal scale meant. Due to this fact it is sug-
gested that the scales need to be explained, if that is not enough, adjective end
point or markers should be used.
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C.3 Pilot2 - User interface

The interface for the second pilot experiment was nearly identical to that of the
first. Two different things were changed in the questions posted prior and post
test.

C.3.1 Meta data

Prior to testing question were asked as was in pilot1 as was seen on figure C.3,
the only extra question that was added, was that of nationality. After the test
more questions were added than in the pilot1 experiment as seen on figure C.10.

Figure C.10: Questionnaire given to participants after the had finished.

C.4 Pilot2 - Bitrates of musical data

The distribution of bitrates of the musical data used in pilot2 is shown on figure
C.11.
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Figure C.11: Histogram of the bitrates of each of the 200 excerpts used in Pilot 2
experiment. Both for CBR and VBR the averages over the whole track
was used, where the edges were (28 72,88,104,120,144,176,208,240,280
and 320) kbit. The number above each bar indicates the percentage of
the total amount of excerpts
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C.5 Pilot2 - All ratings

C.5.1 Arousal

Figure C.12: Histogram of each of the 1-100 rated excerpts pilot2 experiment rated
in the arousal scale. The green line indicates the µβ for the individual
excerpt. The red line is the beta distribution fitted to the experimental
data.
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Figure C.13: Histogram of each of the 101-200 rated excerpts pilot2 experiment rated
in the arousal scale. The green line indicates the µβ for the individual
excerpt. The red line is the beta distribution fitted to the experimental
data.
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C.5.2 Valence

Figure C.14: Histogram of each of the 1-100 rated excerpts pilot2 experiment rated
in the valence scale. The green line indicates the µβ for the individual
excerpt. The red line is the beta distribution fitted to the experimental
data.
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Figure C.15: Histogram of each of the 101-200 rated excerpts pilot2 experiment rated
in the valence scale. The green line indicates the µβ for the individual
excerpt. The red line is the beta distribution fitted to the experimental
data.
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C.6 Pilot2 - Pre-emotional ratings

The histograms of the ratings of each of the participants are presented here.

C.6.1 Arousal

Figure C.16: Histogram of each of the participants arousal ratings across the 200 ex-
cerpts in the pilot2 experiment. The green line indicates the mean value
of the individual test participants ratings. The red line indicates the
arousal rating the participants gave prior to the experiment start.
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C.6.2 Valence

Figure C.17: Histogram of each of the participants valence ratings across the 200 ex-
cerpts in the pilot2 experiment. The green line indicates the mean value
of the individual test participants ratings. The red line indicates the
valence rating the participants gave prior to the experiment start.
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C.7 Pilot2 - Analysis of pre-emotional ratings

All ratings across all excerpts for each participant was shown in section C.6 on
figures C.17 and C.16. To see if the emotional rating given by participants prior
to the test had an effect on their ratings of all the musical excerpts an analysis
is made. The distributions given in section C.6 form the basis of this analysis.
An effect could be that given the prior mood of a participant the mean of all
ratings would change or the participant would rate with a lower variation. To
test this the two histograms are parameterized using the 50 th percentile (i.e the
median) and the 25 th percentile. The difference between these two give a very
robust measure of the variation, and the median is also a very robust measure
of the general tendency of rating provided by a participants.

Figure C.18: The emotional ratings provided by participants prior to pilot2, represent-
ing their mood at that present point. These are compared to the vari-
ation of ratings provided by participants across all 200 rated excerpts.
The variation is calculates as the difference between the 50 th (i.e the
median) and the 25 th percentile of the histogram of all ratings provided
by each participants.

Visual inspection of figure C.18 does not show any correlation tendency in the
data. To ensure that there is no structure the Pearson’s squared correlation co-
efficient r2 is computed (see (B.1) in section B.2) for both valence and arousal
data. Valence data gives r2 of 0.218 and arousal gives 0.227, which does not
show a strong correlation. The fact that there is no correlation or connection
between the two set of emotional ratings gives an indication that participants
were good at ignoring their mood, when rating the expressed emotions in music.

C.8 Pilot2 - OC1 data foundation

Using the OC1 on 1.000 sampled ratings from each beta distribution a histogram
of the accumulated deviation from mean is shown on figure C.19.
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(a) Valence

(b) Arousal

Figure C.19: On (a) and (b) the histogram of the accumulated deviation from mean
is plotted, using 1000 ratings sampled from each of the 200 fitted beta
distributions, simulating 1000 participants.
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C.9 Pilot2 - Outlier removal

Using OC2 on the experimental data obtained in pilot2 the number of outliers
removed per excerpt is shown on figure C.20(b) and the number of outliers
removed from each participant is shown on figure C.21(b). All figure sum to a
total of 85 ratings for valence and 160 for arousal.

(a) Valence. (b) Arousal.

Figure C.20: Number of outliers removed using OC2 per excerpt.

(a) Valence. (b) Arousal.

Figure C.21: Number of outliers removed using OC2 per participant.

On figure C.21(b) it is evident that participant 8, 9 and 14 has clearly the high-
est amount of ratings removed.



C.10 Pilot2 - Distribution of beta mean 163

C.10 Pilot2 - Distribution of beta mean

The distribution of the mean of each beta distribution fitted to the experimental
data obtained in pilot2 is shown on figure C.22 for the arousal scale, together
with the distribution of beta mean where outliers have been removed. The data
from the valence scale is presented on figure C.23.

(a) Original. (b) Outliers removed.

Figure C.22: Distribution of µβ before and after outlier removal using OC2 on the
arousal scale. The mean and standards deviation for C.22(a) are µn =
5.14 and σn = 1.24, and for C.22(b) they are µn,out = 5.18 and σn,out =
1.25

(a) Original. (b) Outliers removed.

Figure C.23: Distribution of µβ before and after outlier removal using OC2 on the
valence scale. The mean and standards deviation for C.23(a) are µn =
4.96 and σn = 1.36, and for C.23(b) they are µn,out = 4.98 and σn,out =
1.58

Looking at the difference in standard deviation of the distribution of beta mean,
there is a clear widening of the distribution as an effect of the outlier removal,
when looking at the arousal scale results.
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C.11 Pilot2 - Meta data analysis

All the data obtained in the pilot2 experiment other than the valence and arousal
ratings will be analyzed and discussed here.

C.11.1 Temporal analysis

As a mean of analyzing how long a potential listening test would take, a timer
was used in the rating of each excerpt of each participant. Using the same
method and analysis as was used in pilot1 where the results can be seen in sec-
tion C.2.1. An extended analysis could be made of participants, either if they
are fast or slow at rating, they could potentially have more or less deviation from
other participants ratings. On figure C.24(a) the time it took each participants
to rate all 200 excerpts in average is shown.

(a) Average time, over all excerpts, it
took each participant in the pilot2 ex-
periment to rate an excerpt.

(b) Average time, over all participants,
it took to rate each excerpt in the pilot2
experiment.

Figure C.24: Temporal analysis of the pilot2 experiment. Red line indicates the aver-
age time to rate one excerpt over all participants. Since breaks within
the testing was allowed, durations of over 60 seconds per excerpt was
removed. The ratings was set to the mean of all other participants for
that excerpt. The method used to measure the time was the Matlab
method called tic, toc this measure is an approximated method and thus
not completely reliable. All times were corrected with the time it took
to change after playing an excerpt.

Participant 9 and 14 seem to take longer time than the average across all ex-
cerpts, with a time close to 9 and 10 seconds respectively. Participants 2, 3
and 5 seem to be very fast in their ratings averaging around 4 and 3 seconds
respectively. It is difficult to draw i direct line between the cognitive load of the
participants due to these temporal measurements of ratings, but being 3-4 sec-
onds slower per excerpt could indicate that those particular participants found
the task difficult.
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Looking across excerpts on figure C.24(b) there is a great deal of variance in the
time it takes to rate each excerpt. The Chemical Brothers - Chemical Beats
was rated in average in 2.88 seconds, whereas Amon Tobin - Cosmo Retro Intro
Outro was rated in average in 10.1 seconds. Admittedly the track is difficult to
interpret and might be outside the mainstream musical repertoire. Using these
results excerpts could be excluded from other tests due to the cognitive load
they strain people with. Conversely one might, by using that approach, exclude
excerpts that give a great deal of information, in the mathematical modeling.
Comparing the results of the temporal analysis of pilot1 (see section C.2.1)
and the present, it shows that the time to rate even though using a balanced
ordering design, the times have gone down. This could either be by training,
since there are more excerpts to rate here, and thereby people become faster, or
it is a result of the increased excerpt length. Likely it is a combination of the two.

C.11.2 Rating of scales

The two manikin based scales were rated by the participants after pilot2 was
finished, see figure C.10. The results for the 14 participants are shown on figure
C.25 (left), where they were asked whether or not they understood the scales,
i.e. the manikins. A majority of participants rated either average or good, with
a mean rating of the scales, between average and good. Post verbal questioning
showed that the scale that was the most difficult to understand was the scale of
Arousal. People intuitively did not understand that the manikin was excited or
not excited as was instructed.

Figure C.25: Likert ratings for the (left) understanding of the scales/manikins used.
(Middle) Appropriateness of the scales for use with music. (Right) Ap-
propriateness of the excerpt length.

The second question was whether or not the participants found that the ratings
were appropriate for the rating of music. The results can be seen in the middle
on figure C.25. The ratings here lean more towards average with one participant
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finding it poor. By post verbal questioning it showed again that the dimension
of arousal was hard to transfer to music, again this might be influenced by
the fact that some participants did not understand the scale completely, event
hough thorough instructions were given.
The last question was regarding the appropriateness of the length of each ex-
cerpt. In pilot2 each excerpt was 15 seconds long, where pilot1 the excerpt were
only 7.5 seconds. In pilot1 the average rating of the appropriateness of excerpt
length was a little under average whereas in pilot2 it is above good. Showing
that the increase in excerpt length had a very beneficial effect.

C.11.3 Musical background

In this section a series of question to each participants were asked, in order to
obtain some knowledge about their preferences and musical experience.

Musical preference by participants
Given that a great deal of different genres were tested in pilot2, see figure 4.4
in section 4.6. Potentially participants that normally would listen to music that
is much different to that of the test, would be biased and thereby rate much
different than other participants. On figure C.26 a histogram of the genres as
was stated by each participant is shown.

In figure C.26(b) the genres were converted using the AMG genres to compare
with the genres of the music that was in the test. The conversion itself is bi-
ased in the form of the selection that is present in AMG. The fact that pop
and rock are put in the same category can be debated. Nonetheless a majority
of the participants indeed have a preference for pop/rock which is also heavily
weighted in pilot2. Jazz is not that used neither is Latin or blues. Since the
preferred music by the participants are similar to the broad genres of the test,
given the broad genres, participants could tend to give a different ratings, than
compared to other participants that would reproduce this test.
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(a) Preferred genres as stated by the participants in the
test.

(b) Genres were converted using the same method of the
AMG.

Figure C.26: Pre-test questioning of test participants in pilot2 listening experiment,
regarding their preferred genres. The participants were allowed to name
multiple, thus % are not summing to 100.
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Familiarity
One thing is whether or not participants like the genre, but if they can recognize
a great deal of the songs, they might tend to be bias. Another aspect of the
fact that they know a lot of songs is that it might be difficult for them to only
rate the excerpt and the contents in them. They might tend to rate the song
as a whole since they know that excerpt within a context. On figure C.27(a)
the percentage of the excerpts that each participant was familiar with is shown.
An average of 40% is known by the participants, with a minimum of 8% and
a maximum of 70%. The goal was to choose tracks that were not particularly
popular, but given the data it seems that for some participants they were very
familiar with the data. Being familiar can be interpreted to know the artist,
that specific track or that genre in general. A comparison between ratings of
participants and their preference can be looked into.

(a) How familiar participants were with
the excerpts they rated, rating from 1-
100.

(b) What participants pay attention to
when listening to music.

Figure C.27

Lyrics vs. Audio
Given that the choice of features used within the test, it was relevant to obtain
some indication amongst the test participants of what they paid most attention
to, lyrics or the audio of music. On figure C.27(b) the results of the question-
naire is presented, which shows that for the participants within the experiment,
there is a clear tendency towards listening to mostly audio and only audio. This
result is also influenced by the genres that people prefer, where some genres
are more vocally and lyrics orientated and other e.g. electronic and jazz can be
mostly musical.

Musical experience
Two different measures to indicate the musical experience of participants were
made. The first being how much time a person spends on listening to music.
The results are presented on figure C.28(a), which shows an average of around
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3.5 hours a day, with a maximum of 8 hours and a minimum of 1.5 hours. Which
type of listening situation here is not known, e.g. is it background music in a
workplace or is it intense listening situation, where the music is the center of
attention. Nonetheless it gives an indication if people have a musical interest.

(a) Amount of time each participant
spend listening to music each day.

(b) The years of training each partici-
pant received of musical training.

Figure C.28

The other measure goes towards their musical skill, which is measured using
the number of years they have had musical training. Between participants there
is a very high variation, with an average of around 8 years and a maximum of
28 years, which is a few years under that participants age. Comparing figure
C.28(a) and C.28(b) there seem to be a connection that if the participant has
extensive musical training, the participant does not listen to music that much
every day.

C.12 Pilot2 - Meta data influence on ratings

A great deal of information about each participants was collecting in pilot2 e.g.
musical experience, preference of lyrics or audio, familiarity of tested music and
their ratings of the scales used, etc. The results of these were all presented
in section C.11. The purpose of this section is to investigate if there is any
connection between any of these variables and the subsequent ratings provided
by each participant. The approach to investigate this is the same as was done in
section C.7, where the distribution of ratings provided by each participants for
all excerpts is used. A variation measure is calculated by the different between
the 50 th and the 25 th percentile, this is compared to the meta data. By
visual inspection if there is any correlation between the two, there is indication
of a connection. Furthermore the Pearson’s squared correlation coefficient r2

is computed (see (B.1) in section B.2) for both valence and arousal data. Two
examples of analysis are given on figure C.29 and C.30, where visual inspection
does not show any particular tendency towards in structure or relation between
the familiarity of excerpt or the time spend listening to music every day and the
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participants ratings.

Figure C.29: The familiarity of excerpts in the pilot2 experiment (1-100) are compared
to the variation of ratings provided by participants across all 200 rated
excerpts. The variation is calculates as the difference between the 50 th
(i.e the median) and the 25 th percentile of the histogram of all ratings
provided by each participants.

The correlation show the same picture with r2 for familiarity of 0.003 for valence
and 0.041 for arousal. Same with hours spend listening to much each day which
results in r2 to be 0.058 for valence and 0.160 for arousal.

Figure C.30: The time spend listening to music each day by participants they partic-
ipated in the pilot2 experiment (0-24) are compared to the variation of
ratings provided by participants across all 200 rated excerpts. The vari-
ation is calculates as the difference between the 50 th (i.e the median)
and the 25 th percentile of the histogram of all ratings provided by each
participants.

This test procedure was repeated for all the meta data parameters obtained in
pilot2 and similar results were found for all. There was no measurable connec-
tion between meta data provided by participants and their ratings.



Appendix D

Mathematical modeling

All supplementary notes to the mathematical modeling section is presented in
this appendix.

D.1 Features selected by SFS



172 Mathematical modeling

No. Feature name Feature pack
1 MFCC - AUD (2/30) ISP
2 Pulse Clarity MIR
3 Main Loudness (15/24) PSY
4 Pulse Clarity - Gammatone MIR
5 Spectral Flatness per. band (10/19) YAAFE
6 MFCC VB (3/30) ISP
7 Spectral Flatness per. band (14/19) YAAFE
8 Frequency of maximum energy in modu-

lation (10-40Hz range)
YAAFE

9 Inharmonicity MIR
10 CENS (2/12) CM
11 Interaural Coherence (17/20) ID
12 Envelope klapuri (324/410) MIR
13 CENS (3/12) CM
14 CENS (12/12) CM
15 Excitation pattern (70/73) PSY
16 Specific Loudness pattern (70/73) PSY
17 Main loudness (17/24) PSY
18 CENS (1/12) CM
19 Envelope shape statistics (variance) YAAFE
20 Fluctuations (15/15) MIR
21 Envelope klapuri (375/410) MIR
22 CENS (7/12) CM
23 MFCC (21/40) MA
24 Spectral Flatness per. band (13/19) YAAFE
25 CENS (9/12) CM
26 Tempo related to the highest autocorr. MIR
27 Cepstral std. dev. PSY
28 Cepstral centroid PSY
29 Tempo PSY
30 Tempo MIR
31 ILD (15/15) ID
32 Envelope klapuri (293/410) MIR
33 Envelope klapuri (13/410) MIR
34 Sonegram (23/24) AM
35 ILD (5/15) ID
36 CENS (11/12) CM
37 CENS (5/12) CM
38 Pitch (38/88) CM
39 OBSIR (1/8) YAAFE
40 CENS (10/12) CM
41 Fluctuations (1/15) MIR
42 Pitch (22/88) CM
43 Loudness (3/24) YAAFE
44 Loudness level PSY
45 Energy difference between mean energy

in range and energy at max freq . (10-
40Hz range)

YAAFE

46 MFCC - VB (15/30) ISP
47 Pitch (51/88) CM
48 CENS (6/12) CM
49 Pitch (84/88) CM
50 Spectral Centroid ISP
51 MFCC (2/40) AM
52 Envelope klapuri (119/410) MIR
53 Envelope klapuri (2/410) MIR
54 Pitch (34/88) CM
55 Envelope klapuri (306/410) MIR
56 Pitch (15/88) CM
57 MFCC (12/20) YAAFE

Table D.1: Names of the 57 features selected by Sequential Feature Selection.
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D.2 Features selected by LARS

Here is an overview of the number of features selected by LARS.

Feature pack
Valence Arousal

α β µβ α β µβ Original

CT 0 ± 0 0 ± 0 0 ± 0 0 ± 0 0 ± 0 0 ± 0 124
ISP 0 ± 0 0 ± 0 11 ± 38 0 ± 0 0 ± 0 0 ± 0 188
MA 3 ± 1 4 ± 10 5 ± 13 3 ± 5 2 ± 0 4 ± 9 64
MIR 0 ± 0 0 ± 0 2 ± 0 0 ± 0 0 ± 0 4 ± 0 510
PSY 0 ± 0 0 ± 0 0 ± 0 0 ± 0 0 ± 0 235 ± 92 302

YAAFE 18 ± 43 13 ± 37 23 ± 50 17 ± 41 23 ± 48 25 ± 47 141
ID 2 ± 0 2 ± 0 2 ± 0 2 ± 0 2 ± 0 2 ± 0 43
ALL 2 ± 1 0 ± 0 0 ± 0 2 ± 0 2 ± 1 0 ± 0 1373
MIN 2 ± 0 2 ± 0 2 ± 0 2 ± 0 2 ± 0 3 ± 0 65

PCA050 2 ± 0 2 ± 0 2 ± 0 2 ± 0 2 ± 0 2 ± 1 50
FFS 2 ± 0 2 ± 1 2 ± 0 2 ± 0 2 ± 0 9 ± 1 47

Table D.2: Number of features chosen for 7 different acoustical feature packs trained
using LARS with a 50-fold CV method on two coefficients of the beta dis-
tributions denoted α and β, and the beta mean µβ . Training was performed
on each channel of the excerpts separately.

D.3 Features selected by stepwise

Here is an overview of the number of features selected by LARS.
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Feature pack
Valence Arousal

α β µβ α β µβ Original

CT 116 ± 1 119 ± 2 117 ± 2 116 ± 1 119 ± 2 114 ± 1 124
ISP 159 ± 1 157 ± 1 161 ± 1 158 ± 2 157 ± 1 159 ± 2 188
MA 61 ± 1 62 ± 1 62 ± 1 61 ± 0 62 ± 0 61 ± 0 64
MIR 509 ± 0 509 ± 2 508 ± 4 508 ± 3 509 ± 0 509 ± 2 510
PSY 301 ± 0 301 ± 0 301 ± 0 301 ± 0 301 ± 0 301 ± 0 302

YAAFE 135 ± 1 135 ± 1 136 ± 1 132 ± 1 133 ± 2 134 ± 1 141
ID 43 ± 0 43 ± 0 43 ± 0 43 ± 0 43 ± 0 43 ± 0 43
ALL 0 ± 0 0 ± 0 0 ± 0 0 ± 0 0 ± 0 0 ± 0 1373
MIN 65 ± 0 65 ± 0 65 ± 0 65 ± 0 65 ± 0 65 ± 0 65

PCA050 49 ± 0 49 ± 0 49 ± 0 49 ± 0 49 ± 0 49 ± 0 50
FFS 47 ± 0 47 ± 0 47 ± 0 47 ± 0 47 ± 0 47 ± 0 47

Table D.3: Number of features chosen for 7 different acoustical feature packs trained
using stepwise with a 50-fold CV method on two coefficients of the beta
distributions denoted α and β, and the beta mean µβ . Training was per-
formed on each channel of the excerpts separately.
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D.4 Emotional ratings and audio features

To compare audio features selected by SFS and the emotional ratings partic-
ipants provided in pilot2 an analysis of some of these features is made. To
simplify the emotional ratings for comparison the emotional data is divided into
four quadrants of the two dimensional emotional model. Furthermore to reduce
the influence of middle ratings, e.g. potential ”dont know” ratings the following
boundaries are used .

1. Valence < 4.5, Arousal > 5.5 (Black) - Negative-Excited

2. Valence > 5.5, Arousal > 5.5 (Blue) - Positive-Excited

3. Valence < 4.5, Arousal < 4.5 (Red) - Negative-Not excited

4. Valence > 5.5, Arousal < 4.5 (Magenta) - Positive-Not excited

Given the boundaries for 4 different quadrants of the valence-arousal space the
grouping of the musical excerpt can be seen on figure D.1. The data obtained
in pilot2 is not evenly distributed across the quadrants resulting in a difference
between the number of excerpts in each group. Group 4 has very few excerpt
where group 3 has a high amount of excerpt. A reduction of excerpts to make
the amount equal in each quadrant is not made since the data foundation would
be very small to perform a comparison of emotional ratings and audio features.

Figure D.1: Grouping of valence and arousal data, where 108 excerpt were chosen for
the analysis.
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D.4.1 Results

Boxplots of selected features are shown in figure D.2 and D.3. The red line in
each blue box indicated the median of the mean feature vector for each group-
ing. The blue line around each box indicates the 25 th and the 75 th percentile.
The socalled whiskers or bars on each box indicate the highest and lowest values
for that given feature. Outliers are not shown on these plots.
Common for all features shown in figure D.2, CENS, inharmonicity, average
loudness and average of the coefficient 2 and 3 of MFCCs is that they separate
groups 1 and 2 from 3 and 4.

(a) Average across all CENS features (b) Inharmonicity

(c) Average across all Loudness features (d) Average across MFCC (2,3)

Figure D.2: Comparison of features of excerpts grouped in 4 quadrants based on the
emotional ratings obtained for those excerpts.

On figure D.3 showing tempo and pulse clarity, surprisingly the tempo features
only show slightly higher values only for group 2 (Positive-Excited). Groups
1, 3 and 4 have very similar tempo across all excerpts. Looking at pulse clar-
ity ([Lartillot et al., 2008]) a clear distinction of group 2 the Positive-Excited
grouping is seen. Both features show a separation across the valence dimensions.
Figure D.3(b) which shows the average of all flatness per band coefficients show
as the features displayed on figure D.2 that it separates the arousal dimension.
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(a) Tempo (b) Average of flatness per band

(c) Pulse clarity

Figure D.3: Comparison of features of excerpts grouped in 4 quadrants based on the
emotional ratings obtained for those excerpts.

D.4.2 Discussion

6 different features are compared using grouping of emotional ratings into 4
quadrants. 5 out of 7 features, CENS, inharmonicity, Average loudness and av-
erage of MFCCs and flatness show a good separation of the arousal dimension.
Whether the values are high or low there is a separation. For the valence di-
mension only pulse clarity and tempo show a difference for the Positive-Excited
quadrant. Thus indicating that this quadrant contains music that has a higher
tempo and a higher pulse clarity. Similar to the results found in this investi-
gation for average loudness in [Laurier et al., 2009a] they obtained high values
with low variation for averaged loudness with emotional categories anger, happy
and tenderness which are associated with the dimension of arousal.
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D.5 Temporal emotional modeling

Using the predictions made by the regression models designed in chapter 5 a
clustering of these predictions are attempted using non-supervised learning. The
results for one excerpt for each of the valence and arousal dimensions are shown
on figure D.4.

(a) Valence (b) Arousal

Figure D.4: Predictions of valence and arousal beta means by stepwise on SFS. Pre-
dictions were smoothed using a 200 tab moving average filter and down-
sampled to 200 samples.

Using K-Nearest Neighbor (KNN) and Gaussian Mixture Model (GMM) an
attempt in made to cluster the data. Each vector of emotional predictions of
200 sampled is used to represent that given excerpt. Using this data vector no
GMM model could be found that would converge. Instead the naive KNN
was used and the average of within-cluster sums of point-to-centroid distance
averaging over 20 runs was used to find the optimumK. Using both this distance
measure and visual inspection 5 was chosen to be appropriate for arousal and 4
for valence.

D.5.1 Results

The resulting groupings for valence are shown on figure D.5. The initial 5
samples of predictions show a relative lower value compared to the rest of the
temporal curve. This is due to an artifact of the audio features extraction and
subsequently the predictions made by the model, thus it should be disregarded.

Valence
The 4 groups show a small variation of valence predictions, where cluster 1 seem
to start high and dip in valence and to throughout the excerpt increase in va-
lence. Cluster 2 and 4 are similar in progression but differ in the amount of
fluctuations, where the 4 th cluster peaks in the beginning and drops off in the
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end. Cluster 2 starts low, peaks in the middle and drops off at the end. The
opposite of cluster 4 is 3 that starts low and builds up until the end.

(a) 1st cluster (b) 2nd cluster

(c) 3rd cluster (d) 4th cluster

Figure D.5: 4 clusterings of emotional predictions using KNN on moving average
smoothed temporal predictions using a stepwise regression model trained
on SFS predicting beta mean coefficients of valence. Red line indicates
the mean of all excerpt within the individual clusters.

Arousal
The clustering of valence temporal predictions are shown on figure D.6. Clusters
1 and 2 are opposites where the first one starts up excited and drops off at the
end, where cluster 2 starts low and builds up at the end. Cluster 3 seem to have
a cyclic structure with peaks every 5 seconds. Cluster 4 seem to start at an
medium level of excitement, then to drop down and rise until the end. Cluster
5 is the most extreme of the 5 clusters with a change of 1 rating from start and
then drop down at the end.
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(a) 1st cluster (b) 2nd cluster

(c) 3rd cluster (d) 4th cluster

(e) 5th cluster

Figure D.6: 5 clusterings of emotional predictions using KNN on moving average
smoothed temporal predictions using a stepwise regression model trained
on SFS predicting beta mean coefficients of arousal. Red line indicates
the mean of all excerpt within the individual clusters.
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D.5.2 Discussion

A simple method was used to group the emotional predictions exploratorially
made by the stepwise regression model trained on SFS predicting beta mean
coefficients for both valence and arousal, using unsupervised machine learning
by KNN . 4 and 5 clusters were used for valence and arousal respectively where
some structure could be found in the structure. It has to be said that some
tendencies was found in the data, but differences between the maximum and
minimum of each averaged curve for each clusters is relatively small. Whether
this is the case in the real world, that music within 15 seconds changes in av-
erage 1 rating for some music could be. If the predictions are correct some
excerpt change in arousal a great deal more of 3-5 ratings, where for valence
the changes are not that great. This would also correspond to the general low
variance predictions that was obtained in section 5.8.4. For the sake of grouping
musical excerpts based on the temporal changes of emotional content expressed
in music, using post-rating data, there was clearly some structure. Future re-
search could look into verifying these results and look into what categorize these
musical excerpts.
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rera, P. (2009b). Music mood annotator design and integration. Seventh
International Workshop on Content-Based Multimedia Indexing, pages 156–
161.

[Laurier et al., 2009c] Laurier, C., Sordo, M., Serrá, J., and Herrera, P. (2009c).
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