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Some Linear Algebra Libraries use Level-2 routines during the factorization part of any Level-3
block factorization algorithm. We discuss four Level-3 routines called DPOTF3i, i = a,b,c,d, a

new type of BLAS, for the factorization part of a block Cholesky factorization algorithm for use
by LAPACK routine DPOTRF or for BPF (Blocked Packed Format) Cholesky factorization. The
four routines DPOTF3i are Fortran routines. Our main result is that performance of routines
DPOTF3i is still increasing when the performance of Level-2 routine DPOTF2 of LAPACK starts

to decrease. This means that the performance of DGEMM, DSYRK, and DTRSM will increase
due to their use of larger block sizes and also by making less passes over the matrix elements. We
present corroborating performance results for DPOTF3i versus DPOTF2 on a variety of common

platforms. The four DPOTF3i routines use simple register blocking; different platforms have
different numbers of registers and so our four routines have different register blocking sizes.

Blocked Packed Format (BPF) is introduced and discussed. LAPACK routines for POTRF
and PPTRF using BPF instead of full and packed format are shown to be trivial modifications

of LAPACK POTRF source codes. We call these codes BPTRF. There are two forms of BPF:
we call them lower and upper BPF. Upper BPF is shown to be identical to Square Block Packed
Format (SBPF). SBPF is used in “LAPACK” implementations on multi-core processors. Per-
formance results for DBPTRF using upper BPF and DPOTRF for large n show that routines

DPOTF3i do increase performance for large n. Lower BPF is almost always less efficient than
upper BPF. A form of inplace transposition called vector inplace transposition can very efficiently
convert lower BPF to upper BPF.

Categories and Subject Descriptors: G.1.3 [Numerical Analysis]: Numerical Linear Algebra –
Linear Systems (symmetric and Hermitian); G.4 [Mathematics of Computing]: Mathematical
Software

General Terms: Algorithms, Cache Blocking, BLAS, Performance

Additional Key Words and Phrases: LAPACK, real symmetric matrices, complex Hermitian ma-
trices, positive definite matrices, Cholesky factorization and solution, novel blocked packed matrix
data structures, inplace transposition.

1. INTRODUCTION

We consider Cholesky block factorizations of a symmetric positive definite matrix
A where A is stored in Block Packed Format (BPF) [Gustavson 2000; Gustavson
2003]. In [Andersen et al. 2005], [Gustavson et al. 2007, Algorithm 685] a variant of
BPF called BPHF,where H stands for Hybrid, is presented. We will mostly study a
block factoring of A into UTU , where U is an upper triangular matrix. Upper BPF
is also Square Block Packed Format (SBPF) [Gustavson 2000]; see Section 1.2
for details. We also show in Section 1.2 that the implementation of BPTRF us-
ing BPF is a restructured form of the LAPACK factorization routines PPTRF or
POTRF. BPTRF uses slightly more storage than PPTRF. BPTRF uses about
half the storage of POTRF; however, BPTRF performance is better than or equal
to POTRF performance. Matrix-matrix operations that take advantage of Level-3
BLAS are used by BPTRF and thereby its higher performance [Dongarra et al.
1990; IBM 1986] is achieved. This paper focuses on the replacement of routines
LAPACK PPTF2 or POTF2, which are based on Level-2 BLAS operations, by
routines POTF3i 1. POTF3i are Level-3 Fortran routines that use register block-

1i stands for a,b,c,d. We consider four DPOTF3 routines. Henceforth, the suffix i will mean i

= a,b,c,d.
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ings; see [Gustavson et al. 2007]. The four routines POTRFi use different register
blocking sizes.
The performance numbers presented in Section 3 show that the Level-3 factori-

zation Fortran routines POTF3i give improved performance over the traditional
Level-2 factorization POTF2 routine used by LAPACK. The gains come from the
use of Square Block (SB) format, the use of Level-3 register blocking and the elim-
ination of all subroutine calls within POTF3i. It is necessary that POTF3i not
call the BLAS for register block sizes kb that are tiny. The calling overheads have
a disastrous effect. We give performance results to demonstrate what will happen;
see also, [Gustavson and Jonsson 2000; Gunnels et al. 2007].

The performance gains are two fold. First, for n ≈ nb, POTF3i outperforms
both POTRF and POTF2. For large n, POTRF routines gain from Level-3
BLAS routines GEMM, SYRK and TRSM that are performing better due to
using a larger nb value than the default nb value used by LAPACK. Some per-
formance results for DGEMM, DTRSM and DSYRK are presented to show this
fact. Also, performance results for DPOTRF and DBPTRF are reported for large
n. These gains, especially for DBPTRF, suggests a change of direction for tradi-
tional LAPACK packed software. We mention that “LAPACK” implementations
for Cholesky inversion use SBPF [Agullo et al. 2010; Bouwmeester and Langou
2010]. Therefore, these implementations can be done using upper BPF.

A main point of our paper is that the Level-3 Fortran routines POTF3i allows
one to increase the block size nb used by a traditional LAPACK routine such as
POTRF. Our experimental results show that performance usually starts degrading
around block size 64 for POTF2. However, performance continues to increase past
block size 64 to 120 or more for our new Level-3 Fortran routines POTF3i. Such
an increase in nb will improve the overall performance of BPTRF as the Level-
3 BLAS TRSM, SYRK and GEMM will perform better for two reasons. The
first reason is that Level-3 BLAS perform better when the K = nb dimension of
GEMM is larger. The second reason is that Level-3 BLAS are called less frequently
by a ratio of increased block size of the Level-3 Fortran routines POTF3i over the
block size used by Level-2 routine POTF2. Experimental verifications of these
assertions are given by our performance results and also by the performance results
in [Andersen et al. 2005]. The recent paper by [Whaley 2008] also demonstrates
that our assertions are correct; he gives both experimental and qualitative results.

One variant of our BPF, lower BPF, is not new. It was used by [D’Azevedo
and Dongarra 1998] as the basis for packed distributed storage used by a variant
of ScaLAPACK. This storage layout consist of a collection of block columns; each
of these has column size nb. Each block column is stored in standard Column
Major (CM) format. In this variant one does a LLT Cholesky factorization, where
L is a lower triangular block matrix. Lower BPF is not a preferred format as it
does not give rise to contiguous SB. It probably should never be used. All of our
performance results only use upper BPF. Therefore, another point of our paper is
that we can transpose each block column inplace to obtain upper BPF which is then
also a SB format data layout. Both layouts use about the same storage as LAPACK
PPTRF routines. More importantly, BPF can use Level-3 BLAS routines so their
performance is about the same as LAPACK POTRF routines and hence they have
much better performance than the LAPACK PPTRF routines.
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The field of data structures using matrix tiling with contiguous blocks dates
back at least to 1997. Space does not allow a detailed listing of this large area
of research. We refer readers to a survey paper which partially covers the field
up to 2004 [Elmroth et al. 2004], and to five more recent papers [Herrero and
Navarro 2006; Herrero 2007; Kurzak et al. 2008; Agullo et al. 2010; Bouwmeester
and Langou 2010].

1.1 Use of GEMM, TRSM, SYRK, GEMV and POTF3i in this paper

We use standard vendor or ATLAS BLAS in this paper. POTF2 uses GEMV
to get its performance. A Programming Interface, (API), for these BLAS is full
format. Use of BLAS can be considered as using a “black box”, since the BLAS we
use do not know that we are using BPF instead of full format. Hence, our use of
these BLAS may be suboptimal [Gustavson 2000; Gustavson 2003; Gustavson et al.
2007; Herrero 2007]; eg, these BLAS may re-format BPF when this re-formatting is
unnecessary. It is beyond the scope of this paper to deal with this issue. The four
POTF3i routines are Fortran routines! So, strictly speaking they are not highly
tuned as the BLAS are. However, they give surprisingly good performance on
several current platforms. Like all traditional BLAS, their API is full format which
is the standard two dimensional array format that both Fortran and C support.
One could change the API for POTF3i to be “register block” format and achieve
even better performance. However, for portability reasons this has not been done.
All of our performance studies except one concern a single processor so parallelism

is not an issue except for that processor. However, in Section 3.7 we consider an
Intel/Nehalem X5550, 2.67 GHz, 2x Quad Core processor using a Portland compiler
and vendor BLAS for Double Precision computations using LAPACK DPOTRF
with DPOTF2 and DPOTF3i and DBPTRF using BPF with DPOTF3i. We note
or remind the reader that the vendor BLAS have been optimized for this platform
but that routines DBPTRF and DPOTF3i are not optimized for this platform.

1.1.1 Use of SBPF and Customized BLAS. We illustrate what is possible with
SBPF when the architecture is known and hence DGEMM, DSYRK, DTRSM and a
special DPOTF3 2 routine are designed using this knowledge. In Fig. 1 we compare
a right looking version of DPOTRF with a right looking SBPF implementation of
Cholesky factorization [Gustavson 2003].
Fig. 1 gives performance in MFlops versus matrix order n. The x-axis is log

scale. We let order n range from 10 to 2000. Like the four DPOTF3i routines, the
DPOTF3 routine is written in Fortran.
The square block size has order nb = 88. SBPF Cholesky performance exhibits

some choppy behavior, especially when n ≈ nb. The matrix orders where this
behavior occurs satisfy mod (n, kb) 6= 0; eg, when n = 70, the performance is about
the same as when n = 60. This is because SBPF Cholesky routine is solving an
order n = 72 problem where two rows and columns have zero or one padding; the
MFlops calculation is done for n = 70. SBPF Cholesky performance in Fig. 1 is
always faster than DPOTRF performance by as much as a factor of 4 or 400% when
n = 60 and at least 15% for n = 2000.

2DPOTF3 uses an order kb = 4 register block size on an IBM POWER3; it makes use of 24 FP
out of 32 FP registers.
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Fig. 1. Performance of Right Looking SBPF (plot symbol ◦) and DPOTRF (plot symbol 2)
Cholesky factorization algorithms on an IBM POWER3 of peak rate 800 MFlops. DPOTRF calls
DPOTF2 and ESSL BLAS. SBPF Cholesky calls DPOTF3 and BLAS kernel routines

1.2 Introduction to BPF

The purpose of packed storage for a matrix is to conserve storage when that matrix
has a special property. Symmetric and triangular matrices are two examples. In
designing the Level-3 BLAS, [Dongarra et al. 1990] did not specify packed storage
schemes for symmetric, Hermitian or triangular matrices. The reason given at the
time was “such storage schemes do not seem to lend themselves to partitioning into
blocks ... Also packed storage is required much less with large memory machines
available today”. Our BPF algorithms, using BPF, show that “packing and Level-3
BLAS” are compatible resulting in no performance loss. As memories continue to
get larger, the problems that are solved get larger: there will always be an advantage
in saving storage especially if performance can be maintained.
We pack a symmetric matrix by using BPF where each block is held contigu-

ously in memory [D’Azevedo and Dongarra 1998; Gustavson 2000]. This usually
avoids the data copies, see [Gustavson et al. 2007], that are inevitable when Level-3
BLAS are applied to matrices held in standard CM or Row Major (RM) format in
rectangular arrays. Note, too, that many data copies may be needed for the same
submatrix in the course of a Cholesky factorization [Gustavson 2000; Gustavson
2003; Gustavson et al. 2007].
We define lower and upper BPF via an example in Fig. 2 with varying length

rectangles of width nb = 2 and SB of order nb = 2 superimposed. Fig. 2 shows
where each matrix element is stored within the array that holds it. The rectangles
of Fig. 2 are suitable for passing to the BLAS since the strides between elements
of each rectangle is uniform. In Fig. 2a we do not further divide each rectangle
into SB’s as these SB are not contiguous as they are in Fig. 2b. BPF consists
of a collection of N = ⌈n/nb⌉ rectangular matrices concatenated together. The
size of the ith rectangle is n − i · nb by nb for i = 0, . . . , N − 1. Consider the ith
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Fig. 2. Lower Blocked Column Packed and Upper Square Blocked Packed Formats

do i = 1, N ! N = ⌈n/nb⌉

symmetric rank K update Aii ! Call of Level-3 BLAS SYRK i− 1 times
Cholesky Factor Aii ! Call of LAPACK subroutine POTF2

Schur Complement update Aij ! Call of Level-3 BLAS GEMM i− 1 times
Scale Aij ! Call of Level-3 BLAS TRSM

end do

Fig. 3. LAPACK POTRF algorithms for BPF of Fig. 2. The BLAS calls take
the forms SYRK(uplo,trans,...), POTF2(uplo,...), GEMM(transa,transb,...), and
TRSM(side,uplo,trans,...).

rectangle. Its leading dimension, called LDA, is either i · nb or nb. In Figs. 2a,
b the LDA’s are n − i · nb, nb. The rectangles in Fig. 2a are the transposes of
the rectangles in Fig. 2b and vice versa. The rectangles of Fig. 2b have a major
advantage over the rectangles of Fig. 2a: the ith rectangle consists of N − i square
blocks. This gives two dimensional contiguous granularity to GEMM for upper
BPF which lower BPF cannot possess. We therefore need a way to get from a lower
layout to an upper layout in-place. If the matrix order is n and the block size is
nb, and n = N · nb then this rearrangement may be performed very efficiently in-
place by a “vector transpose” routine [Gustavson 2008; Karlsson 2009; Gustavson
et al. 2011]. Otherwise, this rearrangement, if done directly, becomes very costly.
Therefore, this condition becomes a crucial condition. So, when the order n is not
an integer multiple of the block size, we pad the rectangles so the ith LDA becomes
(N − i) · nb and hence a multiple of nb. In effect, we waste a little storage in order
to gain some performance. We further assume that nb is chosen so that a block fits
comfortably into a Level-1 or Level-2 cache. The LAPACK ILAENV routine may
be called to set nb. In Section 1.5 we briefly discuss vector transposition.
We factorize the matrix A as laid out in Figs. 2 using LAPACK’s POTRF

routines trivially modified to handle the BPF of Figs. 2; see Fig. 3. This trivial
modification is shown in Fig. 3 where one needs to call SYRK and GEMM i− 1
times at factor stage i because the layout of the block rectangles do not have uniform
stride across the block rectangles. For all our performance studies in Section 3 we
only use upper BPF. We do not try to take advantage of additional parallelism
that is inherent in upper BPF. This allows for a fair comparison of POTRF and
BPTRF in an SMP environment that is traditionally Level-3 BLAS based. In fact,
this decision is decidedly unfair to BPTRF because POTRF makes O(N) calls
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to Level-3 BLAS whereas BPTRF makes O(N2) to Level-3 BLAS; see Table 1 of
Section 3.1 where the calling overhead of POTRF and BPTRF is given a detailed
treatment. The reason we say unfair has to do with Level-3 BLAS having more
surface area per call in which to optimize. The greater surface area comes about
because POTRF makes O(N) calls whereas BPTRF makes O(N2) calls.

Now we briefly discuss an additional advantage of only upper BPF: One can call
GEMM (N − i − 1)(i − 1) times where each call is a SB GEMM update. This
approach was used by a LAPACK multicore implementation [Kurzak et al. 2008];
see also Section 1.4. We close Section 1.2 with an important observation: a BPF
layout supports both traditional and multicore LAPACK implementations.

1.3 Four other Definitions of Lower and Upper BPF

One can transpose each of the variable N = ⌈n/nb⌉ rectangular blocks of lower
BPF. What one gets is a set of N(N + 1)/2 SB each stored rowwise. We call
this format lower SBPF. Now reflect lower SBPF along its main block diagonal.
What one gets is upper BPF. Thus, lower SBPF and upper BPF are isomorphic
or identical. Now take upper BPF. Note that its N(N + 1)/2 SB are stored
block rowwise in the order of lower packed format of size N . We now “sort” these
N(N + 1)/2 blocks so that they are stored block columnwise in upper packed
format order of size N . Note that this “sort” can be done in-place using the
mapping k → k̄ of lower blocked packed storage to upper blocked packed storage:
k = j(2N − j + 1)/2 + i− j → j(j + 1)/2 + i = k̄. Each domain element k of this
in-place map corresponds to a SB so that each storage move of a SB at memory
locations k : k + nb2 − 1 to a SB at memory locations k̄ : k̄ + nb2 − 1 corresponds
to nb2 contiguous elements being moved. When done the N(N + 1)/2 SB will be
in regular upper packed format where each scalar aij is a SB. Here we use a vector
transpose algorithm similar to the algorithm briefly described in Section 1.5. The
vector length is nb2. We define this data layout as another form of upper SBPF
and call it upper columnwise SBPF. This is definition one. Next, transpose each of
the N(N + 1)/2 SB of upper columnwise SBPF. Now we have upper columnwise

SBPF order with each SB stored rowwise. This is definition two.

Upper columnwise SBPF with each SB stored rowwise has its block column i
consisting of i SB concatenated together. Hence this “block column i is single
row matrix of size nb × i · nb with LDA = nb. Now transpose each of these N
variable rectangular row blocks to get N rectangular blocks stored columnwise,
with LDA = i · nb, using the vector transpose algorithm described in Section 1.5.
Call the resulting format upper rectangular BPF. This is definition three. Now
reflect this upper rectangular BPF along its main block diagonal. What one gets
is lower rectangular BPF with N rectangular blocks stored rowwise. These two
formats are isomorphic or identical.

Finally, transpose each of the N(N + 1)/2 SB of upper BPF, see Fig. 2b, to
get each of its N(N + 1)/2 SB to be stored rowwise. The storage order of these
N(N + 1)/2 SB is lower packed storage order. Now reflect upper SBPF with all
SB stored rowwise along its main block diagonal. One gets isomorphic or identical
lower SBPF with all SB stored columnwise. Call the resulting format lower rowwise
SBPF order with each SB stored columnwise. This is definition four.
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1.4 Use of upper BPF on Multicore Processors

Let A be an order n symmetric matrix. Because of symmetry only about half the
elements of A need to be stored. Here SBPF is upper BPF; see Fig. 2b. Lower
BPF, see Fig. 2a, can be easily converted in-place to SBPF; see Section 1.5. Now
using full format requires that LDA ≥ n. Clearly, this wastes about half the storage
allocated by Fortran or C to A. On the other hand, for each SB, LDA = nb. This
means no storage is wasted! In [Agullo et al. 2010; Bouwmeester and Langou 2010]
the authors use SBPF. These two papers concern LAPACK implementations of
Cholesky inversion POTRI on multicore processors. POTRI uses three LAPACK
codes: POTRF, TRTRI and LAUUM. All of these four codes are LAPACK codes
and hence A requires storage of LDA× n where LDA ≥ n. The authors note that
they get better parallel performance when they use extra buffer storage for their
tiles (SB). However, it is not true that they use extra storage over what POTRI
requires: They must use SBPF to obtain high performance. Hence, even with the
extra storage allocated for the buffers (to gain better performance) these authors
are using less storage than the storage that full format LAPACK POTRI requires.
So, based on a storage comparison alone, they probably should be comparing their
performance results to parallel implementations of PPTRI.

1.5 In-place transformation of lower BPF to upper BPF

We briefly describe how one gets from standard CM format to SB format for a
rectangle with LDA a multiple of nb. Denote any rectangle i of lower BPF as a
matrix B and note that B is in CM format: B consists of nb contiguous columns; B
has its LDA = (N − i) ·nb. Think of B as a N − i by nb matrix whose elements are
column vectors of length nb. Now “vector transpose” this N − i by nb matrix B of
vectors of length nb inplace. After “vector transposition” B will be replaced (over-
written) by BT which is a size nb by N − i matrix of vectors of length nb. It turns
out, as a little reflection will indicate, that BT can also be viewed as consisting of
N − i SB matrices of order nb concatenated together; see Fig. 2a and Fig. 2b for
examples. This process is very efficient as data is moved in contiguous memory
chunks of size nb. For lower BPF one can do ⌈N/2⌉ parallel operations for each of
the N different rectangles that make up the lower BPF. After completion of these
⌈N/2⌉ parallel steps one has transformed lower BPF asN variable rectangles inplace
to be upper BPF as N(N + 1)/2 SB matrices. Of course, upper BPF and upper
packed SB format are identical representations of the same matrix. It is beyond
the scope of this paper to discuss the details of inplace transposition [Gustavson
and Swirszcz 2007] and “vector transposition” [Gustavson 2008; Karlsson 2009;
Gustavson et al. 2011]. We only mention that inplace transposition of scalars
has very poor performance and inplace transformation of contiguous vectors has
excellent performance.

2. THE POTF3I ROUTINES

POTF3i are modified versions of LAPACK POTRF and they can be used as
subroutines of LAPACK POTRF. They can be used as a replacement for POTF2.
However, they are very different from POTF2. POTF3i work very well on a
contiguous SB that fits into L1 or L2 caches. They use tiny block sizes kb. We
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DO k = 0, nb/kb - 1

aki = a(k,ii)

akj = a(k,jj)

t11 = t11 - aki*akj

aki1 = a(k,ii+1)

t21 = t21 - aki1*akj

akj1 = a(k,jj+1)

t12 = t12 - aki*akj1

t22 = t22 - aki1*akj1

END DO

Fig. 4. Corresponding GEMM loop code for the GEMM TRSM fusion computation.

mostly choose kb = 2. Blocks of this size are called register blocks. A 2 × 2 block
contains four elements of A; we load them into four scalar variables t11, t12,

t21 and t22. This alerts most compilers to put and hold the small register blocks
in registers. For a diagonal block ai:i+1,i:i+1 we load it into three of four registers
t11, t12 and t22, update it with an inline form of SYRK, factor it, and store
it back into ai:i+1,i:i+1 as ui:i+1,i:i+1. This combined operation is called fusion by
the compiler community. For an off diagonal block ai:i+1,j:j+1 we load it, update it
with an inline form of GEMM, scale it with an inline form of TRSM, and store it.
This again is an example of fusion. In the scaling operation we replace divisions by
ui,i, ui+1,i+1 by reciprocal multiplies. The two reciprocals are saved in two registers
during the inline form of a SYRK and factor fusion computation. Fusion, as used
here, avoids procedure call overheads for very small computations; in effect, we
replace all calls to Level-3 BLAS by in-line code. See [Gustavson 1997; Gustavson
and Jonsson 2000; Gunnels et al. 2007] for related remarks on this point. Note
that POTRF does not use fusion since it explicitly calls Level-3 BLAS. However,
these calls are made at the nb ≫ kb block size level or larger area level; the calling
overheads are therefore negligible.
The key loop in the inline form of the GEMM and TRSM fusion computation

is the inline form of the GEMM loop. For this loop, the code of Fig. 4 is what we
used in one of the POTF3i versions, called DPOTF3a.

In Fig. 4 we show the inline form of the GEMM loop of the inline form of the
fused GEMM and TRSM computation. The underlying array is Ai,j and the 2 by
2 register block starts at location (ii,jj) of array Ai,j . A total of 8 local variables
are involved, which most compilers will place in registers. The loop body involves
4 memory accesses and 8 floating-point operations.
In another POTF3i version, called DPOTF3b, we accumulate into a vector block

of size 1×4 in the inner inline form of the GEMM loop. Each execution of the
vector loop involves the same number of floating-point operations (8) as for the
2×2 case; it requires 5 real numbers to be loaded from cache instead of 4.

On most of our processors, faster execution was possible by having an inner in-
line form of the GEMM loop that updates both Ai,j and Ai,j+1. This version
of POTF3i is called DPOTF3c. The scalar variables aki and aki1 need only be
loaded once, so we now have 6 memory accesses and 16 floating-point operations.
This loop uses 14 local variables, and all 14 of them should be assigned to regis-
ters. We found that DPOTF3c gave very good performance, see Section 3. The
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implementation of this version of POTF3i is available in the TOMS Algorithm
paper [Gustavson et al. 2007, Algorithm 685].
Routine DPOTF3d is like DPOTF3a. The difference is that DPOTF3d does not

use the FMA instruction. Instead, it uses multiplies followed by adds. We close
this section by making a very important remark: Level-1 BLAS AXPY is slower
than Level-1 BLAS DOT. The opposite statement is true when the matrix data
resides in floating point registers.

2.1 POTF3i routines can use a larger block size nb

The element domain of A for Cholesky factorization using POTF3i is an upper
triangle of a SB. Furthermore, in the outer loop of POTF3i at stage j, where
0 ≤ j < nb, only address locations L(j) = j(nb − j) of the upper triangle of
Fig. 2b 3 are accessed. The maximum value of nb2/4 of address function L occurs
at j = nb/2. Hence, during execution of POTF3i, only half of the cache block of
size nb2 is used and the maximum usage of cache at any time instance is just one
quarter of the size of nb2 cache. This means that POTF3i can use a larger block size
before its performance will start to degrade. This fact is true for all four POTF3i
computations. This is what our experiments showed: As nb increased from 64 to
120 or more the performance of POTF3i increased. On the other hand, POTF2
performance started degrading relative to POTRF as nb increased beyond 64. In
Section 3.2 we give performance results that experimentally verify these assertions.
Furthermore, and this is one of our main results, as nb increases so does the k

dimension of GEMM increase as k = nb is used for all GEMM calls in POTRF
and BPTRF. It therefore follows that, for all n, overall performance of POTRF
and BPTRF increases: GEMM performance is the key performance component
of POTRF and BPTRF. See the papers of [Andersen et al. 2005; Whaley 2008]
where performance evidence of this assertion is given. In Sections 3.4 to 3.7 we
give performance results that experimentally verify these assertions for large n. In
Section 1.1.1 we gave an extremely good experimental result of both assertions of
this Section. That result used a highly tuned version of POTF3 and Level-3 BLAS
kernels for right looking SBPF Cholesky. For DPOTRF using DPOTF2, the same
BLAS kernels were used as building blocks for the Level-3 BLAS that DPOTRF
was using.

3. PERFORMANCE

We want to experimentally verify three conjectures. In Section 2, we argued, based
on theoretical considerations, that these conjectures are true. In [Gustavson 2000;
Gustavson 2003; Andersen et al. 2005; Whaley 2008] similar theoretical and exper-
imental results were given and demonstrated. Here are the conjectures:

(1) GEMM performance on SMP processors increases as nb increases when GEMM
calling variables M , N and K equal nb, n and nb respectively and n > nb. The
same type of statement is true for TRSM and SYRK.

(2) Using the four Fortran POTF3i routines with BPTRF gives better SMP per-
formance than using POTF2 routine with full format POTRF.

3nb = 2 in Fig. 2b. In real applications nb ≈ 100 and so the triangle holds 5050 elements out of
10000 when nb = 100.
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(3) Using a small register block size kb as the block size for BPTRF and then
calling BPTRF with n = nb degrades performance over just calling Fortran
codes POTF3i with n = nb; in particular, calling DPOTF3c.

Conjecture (1) is true because the GEMM flop count ratio per matrix element is
r32 = nb3/nb2. Here nb3 and nb2 are the block sizes used by the Level-3 POTF3i
routines and the Level-2 POTF2 routine. Roughly speaking the performance of
Level-3 GEMM is proportional to this ratio r32.
In Experiment I, we are concerned with performance when n ≈ nb. We demon-

strate that for larger nb POTF3i gives better performance than POTF2 or POTRF
using POTF2. This fact, using the results of Experiment II, implies BPTRF and
POTRF have better performance for all n. Conjecture (2) is true for all n because
besides GEMM, both SYRK and TRSM have the same ratio r32 of Experiment
II. Experiment II runs DGEMM, DTRSM and DSYRK for different M , N and K
values as specified in Conjecture (1) above. Therefore, for large n, the Flop count
of POTRF and BPTRF is almost equal to the combined Flop counts of these
three Level-3 BLAS routines; the Flop count of POTF3i is tiny by comparison.
Conjecture (3) is true because the number of subroutine calls in BPTRF is r2

where ratio r = nb/kb. Hence for nb = 64 and kb = 2 there are over one thousand

subroutine calls to Level-3 BLAS with every one having their K dimension equal
to kb. On the other hand, the four POTF3i routines make no subroutine calls.
The conclusion is that, at the register block level, the calling overhead is too high
in BPTRF. More importantly, the flop counts per BLAS calls to SYRK, GEMM
and TRSM are very small when their K dimension equals ≈ kb and kb has register
block sizes; the results of Experiment III in Sections 3.6 and 3.7 experimentally
verify Conjecture (3) above.

3.1 Calling Overhead for POTRF, BPTRF and SBPF Cholesky

The traditional Level-3 BLAS approach for LAPACK factorization routines like
LU=PA, QR and Cholesky factorization was to cast as much of the computation
as possible in terms of Level-3 BLAS. The API of Level-3 BLAS is full format.
For Cholesky, BPF allows the use of Level-3 BLAS as well as using about half
the storage of full format. SBPF is the same as upper BPF. Full format does
have an advantage over BPF and SBPF in that for large n the number of Level-3
BLAS subroutines calls is much lower for full format. We now demonstrate this.
Let N = ⌈n/nb⌉ be the block order of the Cholesky problem. A simple counting
analysis demonstrates that the number of calls for POTRF is max(4(N−1), 1), for
BPTRF it is N2 and for SBPF it is N(N + 1)(N + 2)/6. Here is a breakdown of
the number of calls to Factor, SYRK, TRSM, and GEMM for routine POTRF,
BPTRF and SBPF: For POTRF they are N , N −1, N −1, N −2; for BPTRF of
Fig. 3 they are N , N(N−1)/2, N−1, (N−1)(N−2)/2; and for SBPF Cholesky of
Section 1.1.1, using the upper BPF of Fig. 2b, they are N , N(N−1)/2, N(N−1)/2,
N(N − 1)(N − 2)/6. In Table 1 we show values for these number of calls for three
matrix orders n and eight block sizes nb that explicitly indicate the number of
subroutine calls made by POTRF, BPTRF and SBPF. In experiments II and III
of Sections 3.4 to 3.7 only routines POTRF, BPTRF are used.
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nb n=120 n=500 n=4000

N PO BP SBP N PO BP SBP N PO BP SBP

2 60 236 3600 37820 250 996 62500 2.6E6 2000 7996 4.0E6 1.3E9

8 15 28 225 680 63 248 3969 43680 500 1996 2.5E5 2.1E7

32 4 12 16 20 16 60 256 816 125 496 15625 3.3E5

64 2 4 4 4 8 28 64 120 63 248 3969 43680

96 2 4 4 4 6 20 36 56 42 164 1764 13244

120 1 1 1 1 5 16 25 35 34 132 1156 7140

128 1 1 1 1 4 12 16 20 32 124 1024 5984

200 1 1 1 1 3 8 9 10 20 76 400 1540

Table 1. Number of Subroutine Calls for Full Format DPOTRF, BPF DBPTRF and SBPF
Cholesky.

3.2 Performance Preliminaries for Experiment I

We consider matrix orders of 40, 64, 72, 100 since these orders will typically allow
the computation to fit comfortably in Level-1 or Level-2 caches.

We do our calculations in DOUBLE PRECISION. The DOUBLE PRECISION
names of the subroutines used in this section are DPOTRF and DPOTF2 from the
LAPACK library and four simple Fortran Level-3 DPOTF3i routines described be-
low. These four routines are subroutines used by DBPTRF for matrix orders above
size 120. LAPACK DPOTF2 is a Fortran routine that calls Level-2 BLAS routine
DGEMV and it is called by DPOTRF. DPOTRF and DBPTRF also call Level-3
BLAS routines DTRSM, DSYRK, and DGEMM. DPOTRF also calls LAPACK
subroutine ILAENV which sets the block size used by DPOTRF. As described
above the four Fortran routines DPOTF3i are a new type of Level-3 BLAS called
FACTOR BLAS.
Table 2 contains comparison numbers in Mflop/s. There are results for six com-

puters inside the table: SUN UltraSPARC IV+, SGI - Intel Itanium2, IBM Power6,
Intel Xeon, AMD Dual Core Opteron, and Intel Xeon Quad Core.
This table has thirteen columns. The first column shows the matrix order. The

second column contains results for the vendor optimized Cholesky routine DPOTRF
and the third column has results for the Recursive Algorithm [Andersen et al. 2001].
Column four contain results when DPOTF2 is used within DPOTRF with block

size nb = 64. On most of our computers this block size was best. Column 5
contains results when DPOTF2 is called by itself. In columns 7, 9, 11, 13 the
four DPOTF3i routines are called by themselves. In columns 6, 8, 10, 12 the four
DPOTF3i routines are called by DBPTRF with block size nb = 64. We now denote
these four routines by suffixes a,b,c,d.
The resolution of our timer used to obtain the results in Table 2 was too coarse.

Thus, for small matrices our time is the average of several executions run in a loop.
On some platforms we had to run in batch mode; eg, IBM Huge. Thus, there were
some anomalous timings; eg, for n = 40 the results for columns 4 and 5 should have
column 4 less than column 5.

3.3 Interpretation of Performance Results for Experiment I

There are five Fortran routines used in this study besides DPOTRF and DBPTRF:
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Mat Ven Recur dpotf2 2x2 w. fma 1x4 2x4 2x2

ord dor sive 8 flops 8 flops 16 flops 8 flops

lap lap lap fac lap fac lap fac lap fac lap fac

1 2 3 4 5 6 7 8 9 10 11 12 13

Newton: SUN UltraSPARC IV+, 1800 MHz, dual-core, Sunperf BLAS

40 759 547 490 437 1239 1257 1004 1012 1515 1518 1299 1317
64 1101 1086 738 739 1563 1562 1291 1295 1940 1952 1646 1650

72 1183 978 959 826 1509 1626 1330 1364 1764 2047 1582 1733

100 1264 1317 1228 1094 1610 1838 1505 1541 1729 2291 1641 1954

Freke: SGI-Intel Itanium2, 1.5 GHz/6, SGI BLAS

40 396 652 399 408 1493 1612 1613 1769 2045 2298 1511 1629
64 623 1206 624 631 2044 2097 1974 2027 2723 2824 2065 2116

72 800 1367 797 684 2258 2303 2595 2877 2945 3424 2266 2323

100 1341 1906 1317 840 2790 2648 2985 3491 3238 4051 2796 2668

Huge: IBM Power6, 4.7 GHz, Dual Core, ESSL BLAS

40 5716 1796 1240 1189 3620 3577 2914 4002 4377 5903 3508 4743
64 8021 3482 1265 1293 5905 6019 5426 5493 7515 7700 6011 5907

72 8289 3866 1622 1578 5545 5178 5205 4601 6416 6503 5577 4841

100 9371 5423 3006 2207 7018 5938 6699 6639 7632 8760 7050 6487

Battle: 2×Intel Xeon, CPU @ 1.6 GHz, Atlas BLAS

40 333 355 455 461 818 840 781 799 806 815 824 846

64 489 483 614 620 1015 1022 996 1005 1003 1002 1071 1077

72 616 627 648 700 914 1100 898 1105 903 1090 936 1163

100 883 904 883 801 1093 1191 1080 1248 1081 1210 1110 1284

Nala: 2×AMD Dual Core Opteron 265 @ 1.8 GHz, Atlas BLAS
40 350 370 409 397 731 696 812 784 773 741 783 736

64 552 539 552 544 925 909 1075 1064 968 959 944 987
72 568 570 601 568 871 909 966 1065 901 964 926 992

100 710 686 759 651 942 1037 972 1231 949 1093 950 1114

Zoot: 4×Intel Xeon Quad Core E7340 @ 2.4 GHz, Atlas BLAS
40 497 515 842 844 1380 1451 1279 1294 1487 1502 1416 1412

64 713 710 1143 1146 1675 1674 1565 1565 1837 1841 1674 1674

72 863 874 1203 1402 1522 1996 1492 1877 1633 2195 1527 1996
100 1232 1234 1327 1696 1533 2294 1503 2160 1563 2625 1530 2285

1 2 3 4 5 6 7 8 9 10 11 12 13

Table 2. Performance in Mflop/s of the Kernel Cholesky Algorithm. Comparison between dif-
ferent computers and different versions of subroutines.

(1) The LAPACK routine DPOTF2: The fourth and fifth columns have results of
using routine DPOTRF to call DPOTF2 and routine DPOTF2 directly: these
results are tabulated in the fourth and fifth columns respectively.

(2) The 2×2 blocking routine DPOTF3a is specialized for the operation FMA
(a×b+ c) using seven floating point registers (FPRs). This 2×2 blocking
DPOTF3a routine replaces routine DPOTF2: these results are tabulated in
the sixth and seventh columns respectively.

(3) The 1×4 blocking routine DPOTF3b is optimized for the case mod(n, 4) = 0
where n is the matrix order. It uses eight FPRs. This 1×4 blocking routine
DPOTF3b replaces routine DPOTF2: these results are tabulated in the eighth
and ninth columns respectively.

(4) The 2×4 blocking routine DPOTF3c uses fourteen FPRs. This 2×4 blocking
routine DPOTF3c replaces routine DPOTF2: these results are tabulated in the
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tenth and eleventh columns respectively.

(5) The 2×2 blocking routine DPOTF3d; see Fig. 4. It is not specialized for the
FMA operation and uses six FPRs. This 2×2 blocking routine DPOTF3d
replaces DPOTF2: these performance results are tabulated in the twelfth and
thirteenth columns respectively.

Before continuing, we note that Level-3 BLAS will only be called in columns 4, 6,
8, 10, 12 for block sizes 72 and 100. This is because ILAENV has set the block size
to be 64 in our study. Hence, Level-3 BLAS only have effect on our performance
study in these five columns.
The DPOTF3c code with submatrix blocks of size 2×4, see column eleven, is

remarkably successful for the Sun (Newton), SGI (Freke), IBM (Huge) and Quad
Core Xeon (Zoot) computers. For all these four platforms, it significantly outper-
forms the compiled LAPACK code and the recursive algorithm. It outperforms the
vendor’s optimized codes except on the IBM (Huge) platform. The IBM vendor’s
optimized codes, except for n = 40, are superior to it on this IBM platform. The
2×2 DPOTF3d code in column thirteen, not prepared for the FMA operation, is
superior on the Intel Xeon (Battle) computer. The 1×4 DPOTF3b in column nine
is superior on the Dual Core AMD (Nala) platform. All the superior results are
colored in red.
These performance numbers reveal an innovation about the use of Level-3 For-

tran DPOTF3(a,b,c,d) codes over use of Level-2 LAPACK DPOTF2 code. We
demonstrate why in the next two paragraphs.
The results of columns 10 and 11 are about the same for n = 40 and n = 64. For

column 10 some additional work is done. DPOTRF calls ILAENV which sets nb =
64. It then calls DPOTF3c and returns after DPOTF3c completes. For column 11
only DPOTF3c is called. Hence column 10 takes slightly more time than column 11.
However, in column 10, for n = 72 and n = 100 DPOTRF, via calling ILAENV, still
sets nb = 64 and then DPOTRF does a Level-3 blocked computation. For example,
take nb = 100. With nb = 64 DPOTRF does a sub blocking of nb sizes equal to
64 and 36. Thus, DPOTRF calls Factor(64), DTRSM(64,36), DSYRK(36,64), and
Factor(36) before it returns. The two Factor calls are to the DPOTF3c routine.
However, in column 11, DPOTF3c is called only once with nb = 100. In columns
ten and eleven performance is always increasing over doing the Level-3 blocked
computation of DPOTRF. This means the DPOTF3c routine is out performing
DTRSM and DSYRK.
Now, take columns four and five. For n = 40 and n = 64 the results are again

about equal for the reasons cited above. For n = 72 and n = 100 the results
favor DPOTRF with Level-3 blocking except for the Zoot platform and the Battle
platform for n = 72. The DPOTF2 performance is decreasing relative to the
blocked computation as n increases from 64 to 100. The opposite result is true
for most of the columns six to thirteen, namely DPOTF3(a,b,c,d) performance is
increasing relative to the blocked computation as n increases from 64 to 100. The
exception platform is IBM Huge for columns (6,7), (8,9), (12,13). This platform
has 32 FPRs. Column (10,11) is using only 14 FPRs and DPOTF3c exhibits the
favorable pattern. The three exceptional columns for DPOTF3(a,b,d) use 7, 8 and
6 FPRs respectively.
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An essential conclusion is that the faster four Level-3 DPOTF3i Fortran routines
really help to increase performance for all n if used by DPOTRF instead of using
DPOTF2. Here is why. Take any n for DPOTRF. DPOTRF can choose a larger
block size nb and it will do a blocked computation with this block size for n ≥
nb. All three BLAS subroutines, DGEMM, DSYRK and DTRSM, of DPOTRF
will perform better by calling DPOTRF with this larger block size. See the last
paragraph of Section 3 for a reason.
The paper [Andersen et al. 2005] gives large n performance results for BPHF

where nb was set larger than 64. The results for nb = 100 were much better. The
above explanation in Section 3 explains why this was so. It also confirms the results
of [Whaley 2008]; Finally see Section 1.1.1 and the remaining Sections of 3 where
we give confirming experimental results for large n.

These results emphasize that LAPACK users should use ILAENV to set nb based
on the speeds of Factorization, DTRSM, DSYRK and DGEMM. This information
is part of the LAPACK User’s guide but many users do not do this finer tuning.
The results of [Whaley 2008] provide a means of setting a variable nb for DPOTRF
where nb increases as n increases.
The code for the 1×4 DPOTF3b subroutine is available from the companion

paper [Gustavson et al. 2007, Algorithm 685]. The code for POTRF and its
subroutines is available from the LAPACK package [Anderson et al. 1999].

3.4 Performance Preliminaries for Experiments II and III

Due to space limitations we only consider two processors: a Sun-Fire-V440, 1062
MHz, 4 CPU processor and an Intel/Nehalem X5550, 2.67 GHz, 2 x Quad Core,
4 instruction/cycle processor. The results of Experiments II and III are given in
Sections 3.5 to 3.7.
For Experiment II, see Table 3, DGEMM is run to compute C = C − ATB for

M = K = nb and N = n where usually N ≫ nb. The case used here of ATB is
a good case for DGEMM as the rows of A and columns of B are both stride one.
For this case of ATB each cij ∈ C is loaded, K FMA operations are performed and
then cij is stored. One expects that as K increases DGEMM performance increases
when K is sufficiently small.

Table 3 also gives performance of DTRSM for M,N = nb, n and DSYRK for
N,K = nb, nb. The values chosen were n = 100, 200, 500, 1000, 2000, 4000 and
nb = 2, 40, 64, 72, 80, 100, 120, 200. The matrix form parameters for DGEMM
are ‘Transpose’, ‘Normal’, for DTRSM are ‘Left’, ‘Upper’, ‘Transpose’,

‘No Unit’, and for DSYRK are ‘Upper’, ‘Transpose’.
For experiment III in Table 4, we mostly consider performance of DPOTRF and

DBPTRF using upper BPF for matrix orders n = 250, 500, 720, 1000, 2000, 4000.
For each matrix order n we use three values of block size nb = 2, 64, 120. Table 4
has twelve columns. Columns 1 and 2 give n and nb. Columns 3 to 12 give per-
formance in MFlops of various Cholesky Factorization routines run for these n, nb
values using either full format, upper BPF or Recursive Full Packed (RFP) format.
The Cholesky routines are DPOTRF, DBPTRF and RFP Cholesky. Column three
gives vendor LAPACK (vLA) DPOTRF performance. Column four gives recursive
performance of RFP Cholesky; see [Andersen et al. 2001]. Column five gives LA-
PACK DPOTRF using DPOTF2 and column six gives performance of calling only
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Sun-Fire-V440, 1062 MHz, 8GB memory, Sys. Clock 177 MHz, using 1 out of 4 CPU’s.

SunOS sunfire 5.10, Sunperf BLAS

nb MM TS MM TS MM TS MM TS MM TS MM TS SYRK

n = 100 n = 200 n = 500 n = 1000 n = 2000 n = 4000 n = nb

1 2 3 4 5 6 7 8 9 10 11 12 13 14

2 57 31 70 38 74 44 84 51 90 58 96 65 .059
40 1190 760 1216 841 1225 784 1231 759 1231 744 1219 777 579

64 1528 1046 1313 1102 1572 1044 1565 1035 1474 1010 1407 956 741

72 1688 1182 1725 1209 1654 1148 1566 1139 1465 1082 1475 1018 872

80 1721 1219 1753 1238 1674 1192 1515 1196 1515 1143 1519 1073 994

100 1733 1226 1771 1254 1733 1213 1593 1235 1593 1195 1586 1161 968
120 1778 1270 1798 1345 1738 1293 1641 1297 1641 1248 1657 1231 1129

200 1695 1307 1759 1358 1748 1379 1756 1375 1756 1360 1777 1357 1096

1 2 3 4 5 6 7 8 9 10 11 12 13 14

Table 3. Performance in Mflop/s for large n and various nb of DGEMM, DTRSM and DSYRK.
The headings MM and TS are abbreviations for GEMM and TRSM.

DPOTF2. The factor kernels DPOTF3a,c are used in columns 7 to 9 and 10 to 12.
The three headings of each triple (FLA,BPF,fac) mean Full format LAPACK using
DPOTRF; Cholesky DBPTRF factorization using upper BPF, see Figs. 2b and 3;
and using only DPOTF3i, i = a,c. Column one of each triple uses full format
DPOTRF with DPOTF3a,c instead of using DPOTF2. Column two of each triple
uses upper BPF DBPTRF with DPOTF3a,c. Column three of each triple uses only
full format DPOTF3a,c.

3.5 Interpretation of Performance Results for Experiment II and partly Experiment III

We first consider Experiment II; see Table 3. As nb increases performance of
DGEMM and DTRSM increases except at nb = 200 where it is leveling off. This
increase is very steep for small nb values. The experiment also verifies that using a
tiny register block size kb = 2 for the K dimension of the Level-3 BLAS DGEMM,
DTRSM and DSYRK gives very poor performance. There are two explanations:
First, the flop count is too small to cover the calling overhead cost and second, a
tiny K dimension implies Level-2 like performance. In any case, the assertions of
Conjecture 1 and partly of 3 have been verified experimentally on this processor for
DGEMM, DTRSM and DSYRK. Entries for n = 100, see columns 2, 3 and 14 of
Table 3, and row entries nb = 64, 120 of Table 3 show performance gains of 16%,
21%, 52% respectively for DGEMM, DTRSM, DSYRK.
We were only given one CPU for Experiment II so parallelism was not exploited.

Nonetheless, look at columns 2 and 12 of Table 3 corresponding to DGEMM per-
formance at n = 100 and 4000. On a multi-core processor, one could call DGEMM
forty times in parallel using upper BPF and get about a forty-fold speed-up as
upper BPF stores the B and C matrices of DGEMM as 40 disjoint concatenated
contiguous matrices. For full format the B and C matrices do not have this prop-
erty; DGEMMwould require data copy and its parallel performance would probably
degrade sharply.
At the ith block step of DBPTRF, see Fig. 3, DSYRK must be called i − 1

times in a loop. This is why we did not include performance runs for DSYRK for
(i − 1)nb × nb size A. Nonetheless, DPOTRF calls DSYRK only once during its
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Sun-Fire-V440, 1062 MHz, 8GB memory, Sys. Clock 177 MHz,

using 1 out of 4 CPU’s, SunOS sunfire 5.10, Sunperf BLAS

n nb vLA rec dpotf2 2x2 w. fma 2x4

FLA fac FLA BPF fac FLA BPF fac

1 2 3 4 5 6 7 8 9 10 11 12

250 2 1006 1017 653 1042 641 179 1229 655 179 1367
64 1015 1026 1067 1022 1102 1074 1258 1117 1097 1436

120 988 1027 1014 1032 1059 1091 1256 1105 1102 1431

500 2 1109 1097 745 1130 743 204 1379 747 204 1527

64 1162 1127 1224 1130 1256 1251 1378 1194 1252 1493

120 1208 1089 1192 1126 1233 1233 1393 1243 1277 1552

720 2 1184 1126 711 622 695 178 937 705 176 1149

64 1180 1113 1220 613 1270 1241 959 1239 1296 1009

120 1236 1155 1279 688 1242 1322 910 1303 1329 1024

1000 2 1158 1067 504 270 598 142 630 558 134 607

64 1149 1080 1162 270 1157 1252 554 1175 1194 775

120 1278 1099 1231 274 1254 1327 623 1242 1302 644

2000 2 1211 1117 473 226 462 101 489 460 101 480

64 1169 1114 1241 214 1223 1193 477 1265 1193 481
120 1139 1086 1280 230 1318 1365 569 1296 1365 460

4000 2 1119 1102 385 207 448 99 432 445 98 530

64 1213 1109 1226 239 1238 1216 499 1270 1179 545

120 1210 1127 1423 219 1416 1495 501 1417 1489 516

1 2 3 4 5 6 7 8 9 10 11 12

Table 4. Performance in Mflop/s on a single CPU processor, for large n and various nb, of
DPOTRF and DBPTRF using DPOTF2 and DPOTF3a,c on a Sun four CPU processor .

ith block step; this is an example where full format has less calling overhead than
BPF; see Table 1.

3.6 Interpretation of Performance Results for Experiment III using POTRF and BPTRF
on the Sunfire Processor

As mentioned in Section 3.5 we were only given one processor for this processor.
Table 4 concerns performance results for DPOTRF using DPOTF2 and DBPTRF
using the two best performing routines DPOTF3a,c. Note that columns 3, 4, 6, 9
and 12 should have the same MFlops value for three rows of the same n value as
all of these column values do not depend on nb; the different values seen show the
resolution of our timer. For n > 500 we see that nb = 120 gives better performance
than the default block size nb = 64 for both full format and BPF computations.
For n ≤ 500 and nb = 64, 120 the performance results for DPOTRF and DBPTRF
are about equal. For DPOTRF, performance at nb = 64 is slightly better than at
nb = 120.
In [Whaley 2008], it is observed that as n increases performance of DPOTRF

will increase if nb is increased. See also the last paragraph of Section 3. We also see
this in Table 4. For DBPTRF, performance results at nb = 120 are always better
than at nb = 64 for all values of n > 500. This result was also experimentally
verified in Section 1.1.1. This suggests that setting a single value of nb for all n for
BPF is probably a good strategy. For columns 5, 7 and 10 we see that DPOTRF
performance is about the same using DPOTF2 and DPOTF3a,c. This is expected
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as these three routines contribute only a very tiny amount of flop count to the
overall flop count of POTRF when n is large.

For n = 250, 500, DBPTRF performance is maximized using DPOTF3a,c alone;
see columns 9 and 12. This is not true for DPOTRF; see also Experiment II. In
Section 2.1, we saw that maximum cache usage of DPOTF3i was nb2/4. This fact
helps explain the results of columns 9 and 12 for n = 250, 500.

Finally, we discuss the negative performance results when using nb = 2 which
is a register block size. The main reason for poor performance is the amount of
subroutine calls for both DPOTRF and DBPTRF; see Table 1. Each call has a
tiny flop count and consequently the calling overhead results in severely degrading
their MFlops; see columns 5, 7, 10 and 8, 11. The number of calls of upper BPF
is N2 and for full format is max(4(N − 1), 1). The quadratic nature of the calls is
readily apparent in columns 8 and 11.
We briefly mention columns 3 and 4. The performance of vendor code (vLA)

is slightly better than LAPACK code. The BPF codes are generally the best per-
forming codes. The recursive codes of column 4 perform quite well.

3.7 Interpretation of Performance Results for POTRF and BPTRF for the Intel/Nehalem
Processor

For this processor it is important to realize that vendor BLAS for this platform have
been optimized for parallelism. Thus we will see an example where DPOTF2 is out-
performing DPOTF3a,b. The reason for this is that DPOTF2 calls Level-2 DGEMV
which has been parallelized by the vendor. In Table 5, we mostly consider perfor-
mance of DPOTRF and DBPTRF for matrix orders n = 250, 500, 1000, 2000, 4000.
For each matrix order n we use six values of block size nb = 2, 8, 32, 64, 96, 120.
Table 5 has twelve columns arranged exactly like Table 4. Therefore, we only de-
scribe these table differences; see Section 3.4 for a description of Table 4. The
factor kernels are DPOTF3a,b instead of DPOTF3a,c and these results are given
in columns 7 to 9 and 10 to 12. Column three of each triple uses only full format
DPOTF3a,b. The reader is alerted to re-read the paragraph on the bottom of page
six and the top of page seven as a preview to understanding how DPOTF2 can
outperform DPOTF3i in a parallel environment that uses optimized Level-2 BLAS.
Again columns 3, 4, 6, 9 and 12 should have identical values for a given n row value
as none of these column values depend on nb. The variability of these performance
numbers indicates what the variability is in our timer CPU-SEC.

Note that DPOTF2 is now giving better performance than DPOTF3a,b for n ≤
2000. For n = 4000 DPOTF3a outperforms DPOTF2. The reason for this is that
DGEMV has been parallelized; DPOTF3a,b were not. DPOTF2 and DPOTF3a,b
do not use cache blocking. As n increases performance degrades as more matrix
data resides in higher level caches or memory than when cache blocking is used;
thus many more cache misses occur and each miss penalty is huge.

We used small nb values to demonstrate the effect of calling overhead of DPOTRF
and DBPTRF. For block size nb ≥ 8 performance is quite good even for BPF; BPF
calling overhead is O(N2) whereas DPOTRF calling overhead is O(N); see Table 1
for details. We did not run an experiment for SB format where the calling overhead
is O(N3). Note however that, for all value of n, multi-core SB (or upper BPF)
is best as it exposes more usable parallelism; see remark made in paragraph 2 of
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Intel/Nehalem X5550, 2.67 GHz, 2x Quad Core,

Portland compiler and BLAS, Double Precision.

n nb vLA rec dpotf2 2x2 w. fma 1x4

FLA fac FLA BPF fac FLA BPF fac

1 2 3 4 5 6 7 8 9 10 11 12

250 2 6222 6154 2841 4168 2933 479 3465 2908 478 3812

8 6223 6158 5046 4124 5298 3567 3467 5241 3559 3811
32 6235 6147 6326 4138 6599 6313 3472 6604 6306 3802

64 6224 6155 6307 4135 6349 6316 3470 6489 6466 3801

96 6218 6154 6184 4176 6056 6082 2888 6387 6410 3776

120 6239 6213 5763 4167 5482 5496 3471 5925 5977 3789

500 2 7943 7776 3213 4280 3225 533 3544 3215 533 3828

8 7961 7791 6129 4280 6227 4312 3543 6199 4302 3828

32 7958 7782 7872 4282 7993 7464 3546 7995 7412 3828
64 7960 7789 7994 4280 7977 7885 3542 8050 7908 3826

96 7955 7792 7893 4279 7820 7854 3544 7994 7972 3826
120 7984 7832 7730 4275 7624 7668 3543 7826 7744 3827

1000 2 9078 8985 3476 4204 3487 567 3520 3482 567 3791

8 9081 8985 6891 4204 6869 4833 3521 6909 4831 3791
32 9089 8985 8945 4194 8944 8175 3522 8983 8189 3788
64 9080 8983 9192 4204 9127 8884 3521 9186 8917 3791
96 9080 8985 9212 4204 9160 9107 3521 9256 9157 3789

120 9102 9007 9152 4205 9103 9084 3522 9218 9044 3792

2000 2 9954 9862 3129 3260 3100 580 3191 3131 580 2973

8 9955 9859 6949 3228 7048 5024 3185 6972 5024 2963
32 9953 9860 9360 3228 9392 8569 3178 9368 8496 2965

64 9959 9845 9773 3232 9773 9459 3194 9754 9415 2992
96 9947 9860 9862 3206 9908 9792 3184 9912 9760 2956

120 9964 9870 9875 3214 9921 9796 3187 9930 9783 3001

4000 2 10581 10558 2619 2212 2612 580 2798 2620 580 2094
8 10569 10551 6557 2207 6534 4957 2803 6533 4940 2095

32 10576 10544 9430 2211 9440 8619 2809 9432 8576 2096

64 10581 10540 10104 2206 10099 9654 2807 10093 9681 2093
96 10575 10548 10300 2214 10356 10096 2804 10351 10113 2091

120 10583 10551 10381 2208 10431 10198 2807 10431 10286 2098

1 2 3 4 5 6 7 8 9 10 11 12

Table 5. Performance in Mflop/s for large n and various nb of DPOTRF and DBPTRF using
DPOTF2 and DPOTF3a,b on an Intel/Nehalem Processor .

Section 3.5. However, for nb = 2 one can see the effect of O(N2) calling overhead
for BPF DBPTRF over the only O(N) calling overhead for full format DPOTRF
for all value of n; see columns 5, 7 and 10 for DPOTRF and 8 and 11 for DBPTRF.
We now further discuss full format DPOTRF. So, any thing we say here has

nothing to do with DBPTRF which uses BPF. We mainly discuss DPOTRF per-
formance using DPOTF2 (see column 5), DPOTRF performance using DPOTF3a
instead of DPOTF2 (see column 7) and DPOTRF performance using DPOTF3b
instead of DPOTF2 (see column 10). For n = 250, nb = 32 is the best block size for
DPOTRF. Also, even though DPOTF2 shows better MFlops (see column 6) than
DPOTF3b (see column 12), DPOTRF using DPOTF3b outperforms DPOTRF us-
ing DPOTF2 by over 250 MFlops. We think there are two reasons:

(1) Full Format DPOTRF A lays out the submatrices Aii holding its diagonal
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blocks in at least n × nb storage. So, accessing any Aii will cause more cache
misses than if Aii were held in nb2 contiguous storage.

(2) This is a parallelization issue: Level-3 BLAS are competing with Level-2 DGEMV
over how a quad core will be utilized for parallelism.

Let us briefly discuss item (2) above before going on. DGEMV has been parallelised
by the vendor. For large n all of the available parallelism of the platform should
probably be used by Level-3 BLAS DGEMM, DTRSM and DSYRK. Using some of
the available parallelism in DGEMV is probably a suboptimal performance choice
when running DPOTRF.
For n = 500, 32 ≤ nb ≤ 64 is the best block size when using DPOTF3a,b; see

columns 7 and 10. Using DPOTF2, DPOTRF has slightly better performance when
nb = 64. DPOTRF has about equal performance with DPOTF3a,b and DPOTF2;
see columns 7, 10 and 5. However, the values in columns 10 are better than the
values in column 5. For DPOTRF performance at n = 1000, the best block size
using either DPOTF2 or DPOTF3a,b is nb = 96. The best performance number
occurs in column 10 although all three values are about equal. For DPOTRF
performance at n = 2000, the best block size using either DPOTF2 or DPOTF3a,b
is 96 ≤ nb ≤ 120. Again performance numbers favor column 10 slightly; however,
all three values are about equal. Finally, for DPOTRF performance at n = 4000,
the best block size with either DPOTF2 or DPOTF3a,b is slightly favoring nb = 120
but any block size between 64 ≤ nb ≤ 120 is about equally good. Again performance
numbers favor column 10 slightly; however, all three values are about equal.

This same type of result of DPOTRF performance increasing for n increasing as
nb increased was also observed in [Whaley 2008].
Now we discuss BPF and DBPTRF performance. One can see that nb = 96

is a near optimal performance choice for 250 ≤ n ≤ 4000 for DBPTRF using
DPOTF3a,b. The performance of DBPTRF with DPOTF3a is about equal to the
performance of DBPTRF with DPOTF3b with DPOTF3b numbers being slightly
better. Finally, for 250 ≤ n ≤ 4000, performance of DPOTRF using DPOTF2 is
slightly better overall than DBPTRF performance. We briefly suggest why. There
are more subroutine calls to Level-3 BLAS using BPF. Roughly speaking, there is
less opportunity to parallelize DGEMM because the size of the submatrices per call
is smaller with BPF than with full format. Nonetheless, BPF and DBPTRF also ad-
mit good multi-core implementations whereas such implementations for DPOTRF
using only standard full format will not perform well.

4. SUMMARY AND CONCLUSIONS

We have shown that four simple Fortran codes DPOTF3i produce Level-3 Cholesky
factorization routines that perform better than the Level-2 LAPACK DPOTF2
routine. We have also shown that their use enables LAPACK routine DPOTRF to
increase its block size nb. Since nb is the k dimension of the GEMM, SYRK and
TRSM Level-3 BLAS, their SMP performance will improve and hence the over-
all performance of SMP POTRF will improve. We provided “three performance
conjectures” with explanations on why they were “true”. Also, three performance
studies were conducted which “verified” these conjectures. Our results corroborate
results that were observed by [Andersen et al. 2005; Whaley 2008]. It was seen that
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DBPTRF performance was less sensitive to the choice of one nb for an entire range
of n values. For DPOTRF using DPOTF2 one needed to increase nb as n increased
for optimal performance whereas for DBPTRF using DPOTF3i usually a single nb
value gave uniformly good performance.
We used BPF format in this paper. It is a generalization of standard packed

format. We discussed lower BPF format which consisted of N = n/nb rectangular
blocks whose LDA’s were n = j · nb for 0 ≤ j < N . We showed that upper packed
format had the additional property that its rectangular blocks were really a multiple
number of i = N − j square blocks for rectangle j. In all there are N(N + 1)/2
SB. We gave LAPACK POTRF and PPTRF algorithms using BPF and showed
that these codes were trivial modifications of current POTRF algorithms. In the
multicore era it appears that SB format will be the data layout of choice. Thus,
we think that for upper BPF format the current Cell implementations of [Kurzak
et al. 2008] will carry over with trivial modifications. The very recent papers [Agullo
et al. 2010; Bouwmeester and Langou 2010] actually demonstrate that this remark
is true.
We also indicated how a rectangular block could be transformed inplace to a mul-

tiple of square blocks by a vector inplace transpose algorithm. Another purpose of
our paper is to promote the new Block Packed Data Format storage or vari-
ants thereof; see Section 1.3. BPF algorithms are variants of the BPHF algorithm
and they use slightly more computer memory than n×(n + 1)/2 matrix elements.
They usually perform better or equal to the full format storage algorithms. The
full format algorithms require additional storage of (n − 1)×n/2 matrix elements
in the computer memory but never reference these elements. Finally, full format
algorithms and their related Level-3 BLAS are no longer being used on multi-core
processors. For symmetric and triangular matrices the format of choice is SBPF
which is the same as upper BPF.
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22 · F. G. Gustavson, J. Waśniewski, J. J. Dongarra, J. R. Herrero and J. Langou

ical Software 27, 2 (Jun), 214–244.

Anderson, E., Bai, Z., Bischof, C., Blackford, L. S., Demmel, J., Dongarra, J. J.,

Du Croz, J., Greenbaum, A., Hammarling, S., McKenney, A., and Sorensen, D.

1999. LAPACK Users’ Guide (Third ed.). Society for Industrial and Applied Mathemat-

ics, Philadelphia, PA.

Bouwmeester, H. and Langou, J. 2010. A Critical Path Approach to Analyzing Par-

allelism of Algorithmic Variants. Application to Cholesky Inversion. arXiv: 1010.2000v1
(Oct. 11), University of Colorado at Denver.

D’Azevedo, E. and Dongarra, J. J. 1998. Packed storage extension of ScaLAPACK.
ORNL Report 6190 (May), Oak Ridge National Laboratory.

Dongarra, J. J., Du Croz, J., Duff, I. S., and Hammarling, S. 1990. Algorithm 679: A
set of Level 3 Basic Linear Algebra Subprograms. ACM Trans. Math. Soft. 16, 1 (March),
18–28.
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