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Abstract

This thesis describes Graph Cut as a method applied for automatic segmen-
tation of boundaries using information in three dimensions from T1-weighted
3-dimensional abdominal Magnetic Resonance Images, MRI. The data origins
from a clinical research study where the subjects are scanned prior to and after
12 weeks of intervention.

The abdomen boundary, interior SAT boundary and Scarpa’s Fascia divide the
abdomen into three compartments containing different adipose tissue classes.
The classes are called visceral adipose tissue, VAT, deep subcutaneous adipose
tissue, dSAT, and superficial subcutaneous adipose tissue, sSAT. Research shows
different clinical relevance of the three classes.

Before the segmentation the MRI data are preprocessed in several steps. The
spatial image intensity inhomogeneities, called the Bias Field, are removed.
Two methods, a Thin Plate Spline and N3, for correcting the bias field effect
are investigated before choosing which to apply.

The interior SAT boundary and Scarpa’s Fascia are located using Graph Cuts. A
weighted directed graph is constructed from image characteristics. A Maximum
Flow / Minimum Cut algorithm cuts the graph by finding the maximum flow.
For labeling the adipose and nonadipose tissue two methods are compared, Fuzzy
C-Means Clustering and Graph Cut.

A statistical analysis is performed on weight losses according to the interven-
tion groups. Furthermore, the segmentation method described in this thesis is
statistically compared to a previous method.
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Resumé

Denne afhandling beskriver, hvordan Graph Cuts anvendes som en metode
til automatisk segmentering af afgrænsninger i maveregionen ved brug af in-
formation i tre dimensioner fra T1-vægtet, tredimensionelle Magnetisk Reso-
nans billeder, MR. Datasættet stammer fra et klinisk forskningsstudie, hvor
forsøgspersonerne er blevet skannet før og efter 12 ugers intervention.

Den abdominale afgrænsning, den interiore SAT afgrænsning og Scarpas Fascia
opdeler maveregionen i tre rum, der indeholder forskellige fedtvævs klasser.
Klasserne kaldes visceralt fedtvæv, VAT, dybt subkutant fedtvæv, dSAT, og
overfladisk subkutant fedtvæv, sSAT. Forskning viser, at de tre klasser har
forskellig klinisk relevans.

Før segmenteringen skal MR data forarbejdes i flere trin. De spatiale billed-
intensitets inhomogeniteter, som kaldes Bias Feltet skal fjernes. To metoder,
Thin Plate Spline og N3, til at korrigere bias feltet er undersøgt, før der vælges,
hvilken der benyttes.

Den interiore SAT afgrænsning og Scarpas Fascia er lokaliseret vha. Graph
Cuts. En retningsbestemt, vægtet graf konstrueres ud fra billedegenskaber.
En Maximum Flow /Minimum Cut algoritme ”skærer” grafen ved at finde det
største flow. Til at afmærke hvad der er fedt og ikke-fedt sammenlignes to
metoder, Fuzzy C-means Clustering og Graph Cut.

En statistisk analyse foretages for at sammenligne vægttab med interventions-
grupperne. Ydermere sammenlignes segmenteringsmetoden beskrevet i denne
afhandling med en tidligere metode.
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Chapter 1

Introduction

The prevalence of obesity and overweight in the western world is dramatically
increased over the past years and WHO now consider this an epidemic. Obesity
is related to the risk of developing diseases as non-insulin-dependent diabetes
mellitus (NIDDM), hypertension, and cardiovascular disease. Research in the
abdominal adipose tissue field have proposed that an increased amount of vis-
ceral adipose tissue,VAT, leads to these metabolic disturbances. Despite this
knowledge, investigators doubt that VAT alone is responsible for these risks re-
lated to obesity. The abdominal subcutaneous adipose tissue, SAT, may also
contribute to these risks [21]. A study by Enevoldsen et al. [7] showed that the
break down of lipides is at a lower level in the deep SAT than in the superficial
SAT. Likewise, a study has shown a correlation between the amount of deep
SAT and insulin resistance. Such a correlation for superficial SAT is not docu-
mented. This suggests that the deep SAT has a greater impact on the hormonal
balance and thereby the decreased or terminated production of insulin in the
endocrine part of pancreas [9]. The development of an automatic method to
estimate the depots of VAT, dSAT and sSAT in vivo could on this basis be
relevant. A clinical intervention study at the Faculty of Health Sciences at the
University of Copenhagen is examining the effect of training due to fat losses of
the above-mentioned adipose tissue depots. The MRI data being processed in
this thesis origins from this study.
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1.1 Clinical background

The increasing obesity is partly explained by changes in lifestyle during the past
60 years, as non-physical sedentary work, less exercise and an overconsumption
of food. However, some of the risks of getting one of the lifestyle-related diseases
cannot only be explained from lifestyle differences, genetic factors also have an
influence. Research show that physical activity has an impact on these factors.
The question is, how much exercise a person should do before reducing the
risks? It is suggested by the National Health Administration of Denmark, to do
30 minutes of physical activity each day. One of the goals of the clinical study
is to determine whether or not the recommendation should be changed in the
future.

The clinical intervention study, called FINE, has its focus on the effects of
physical training on overweight individuals and its related diseases. It is the
goal to find the factors, which determine a persons inborn insulin sensitivity,
and how physical training influences this and different other metabolic health
parameters. The FINE (Four-IN-onE) project has 4 subprojects:

1. Genetic conditional dispersion in the populations’ insulin sensitivity.

2. Dose response effects of physical training.

3. Physical training and energy balance.

4. Cultural barrier of physical training.

There are 60 subjects in the study. They are all healthy inactive males between
20 and 40 years and moderate overweight with a Body-Mass-Index, BMI, of 25-
30. The subjects are split into 3 groups with different training doses prescribed
for 12 weeks. The three intensity groups are: high intensity training (600 kcal/-
day ∼ 1 h), moderate intensity training ( 300 kcal/day ∼ 1/2 h) and a sedentary
control group. No restrictions on calorie intake are prescribed. A lot of tests
and measurements will be done including MRI scans before and after the 12
weeks’ training period [12]. An automatic method to estimate the abdominal
adipose tissue depots from the MRI is therefore needed for a comparison with
the other clinical data obtained.

VAT is the intraabdominal adipose tissue closest to the organs. VAT surrounds
the organs and is commonly thought of, as the adipose tissue of the highest risk
related to metabolic diseases. The SAT layer is located just below the skin, and
is delimited by the abdomen boundary and the interior SAT boundary. The
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SAT layer can be subdivided in a deep and superficial layer, by a thin layer
of connective tissue called Scarpa’s Fascia. In Figure 1.1 a cross-section of the
abdomen is shown. A cross-section of the abdomen is from now on denoted a
slice. The dotted red line indicates where Scarpa’s Fascia is located. In vivo the
fascia is a more smooth boundary.

Figure 1.1: Cross-section of the abdomen. The red curve indicates the position
of Scarpa’s Fascia.

1.1.1 Previous work

It is possible to automatically determine the quantity of VAT, sSAT and dSAT
from T1-weighted 3-dimensional MRI data. This can be done by an algorithm
developed by Thomas Mosbech, IMM, DTU [18]. The method is from this
point called the Old Method. The method distinguishes between VAT, sSAT
and dSAT. The present MRI data have prior to this project been segmented
with this method. This leads to an opportunity of comparison. The method is
implemented in 2D, the segmentation is done slice by slice, causing problems
related to the segmentation of the adipose tissue classes. Figure 1.2 shows 3
different slices of the abdomen before and after the current program has been run
on the MRI data. Figure 1.2 (a) right shows the division of SAT and VAT. It is
revealed that the segmentation, at a glance, is well performed. Likewise, Figure
1.2 (b) right shows a division into SAT and VAT. However, the segmentation
is not satisfying. A white area, normally indicating VAT, is located in the
SAT-area. This is due to the fact that the old method has some difficulties
segmenting the boundary between the SAT and VAT layer. Figure 1.2 (c) right
shows a division into VAT, dSAT and sSAT. The dSAT and sSAT is segmented
by locating Scarpa’s Fascia, but as the image reveals, this segmentation is not
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done perfectly, as Scarpa’s Facia is also visible in the upper part. This causes a
wrong distribution of sSAT and dSAT. Therefore, the data segmented with the
old method is only divided with respect to SAT and VAT. To be able to segment
the adipose tissue into dSAT and sSAT it is necessary to locate Scarpa’s Fascia
more correctly.

(a) Left: MRI of subject 5 slice 6. Right: Segmentation of the left image divided into
SAT and VAT.

(b) Left: MRI of subject 47, slice 1. Right: Segmentation of the left image divided
into SAT and VAT.

(c) Left: MRI of subject 6, slice 3. Right: Segmentation of the left image divided into
dSAT, sSAT and VAT.

Figure 1.2: Different outputs with the current 2D program.
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1.2 Project goal

The goal of this thesis is to develop a new method using information in 3 di-
mensions to determine the distribution of VAT, sSAT and dSAT automatically,
from T1-weighted 3-dimensional MRI data. The idea is to transfer information
in one slice to its neighbourgs for a more precise segmentation.

The problem is approached by investigating the slice-by-slice algorithm devel-
oped by Thomas Mosbech. A bias field correction using a Thin Plate Spine
method is already implemented in this program and the task is to improve and
compare it to another bias field correction available, called N3. The image el-
ements need to be labelled into adipose and non-adipose tissue. Two methods
available are compared, Fuzzy C-means Clustering and Graph Cut. To make
it possible to divide the adipose tissue in the abdomen into the relevant tissue
types, it is necessary to locate the abdomen boundary, the interior SAT bound-
ary and Scarpa’s Fascia. Li et al. [16] present a method called Graph Cut for
optimal boundary search by initially constructing a weighted directed graph of
the 3D dataset. This method is believed to solve the segmentation problem
more precisely than the old method.

1.3 Thesis overview

The following section gives a brief overview of the chapters and appendices in the
thesis. After chapter 3,4,5 and 6 an evaluation is performed on the intermediate
results.

• Chapter 2 - Data introduces the data in this project. The image
anatomy is described and a comment is made on the image quality.

• Chapter 3 - Preprocessing describes how the bias field effect is esti-
mated and removed using two different methods.

• Chapter 4 - Locating boundaries using Graph Cuts presents the
theory, method and algorithm used for locating the boundaries dividing
the abdomen into the relevant adipose tissue compartments.

• Chapter 5 - Segmenting regions covers two methods used for labeling
the data into adipose and non-adipose tissue. This labeling is combined
with the segmented boundaries resulting in the final segmentation.
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• Chapter 6 - Final results evaluates the segmentation results. A statisti-
cal analysis is performed. The results of the analysis are visually compared
to the segmentation results. The new and old method are compared as
well.

• Chapter 7 - Conclusion gives the conclusion together with the future
work.

• Appendix A holds a table with the final segmentation of 12 subjects
together with there weight losses.

• Appendix B shows 3 slices of the final segmentation results from 12
subjects.

• Appendix C is an overview of the software used in the final segmentation.

• Appendix D holds a CD with the original and segmented images ob-
tained by the new and the old method. Voxel percentages of the adipose
tissue classes are included together with the algorithm used to get the
segmentation results and the R-code.

• Appendix E contains important m-files used when Graph Cutting.

• Appendix F holds the R-code for the statistical analysis.



Chapter 2

Data

The dataset consists of 3-dimensional T1-weighted 3 Tesla MRI-scans containing
75 scans. All MRI examinations were done on a 3T Phillips Achieva scanner
system (Phillips Medical Systems, Netherlands) at the hospital of Glostrup,
Denmark. The coil used was a 16 element phased array coil, with the subjects in
the supine position. The images were obtained using a turbo spin echo sequence
(36 slices, 7mm thickness, 1mm interslice distance, TR = 500 ms, TE = 15ms,
flip angle 90 degrees) [19]. No multi-modal image data is available. Each scan
is stored in the DICOM format as a series of slices. A header of data, the
seriesInfo, reveals the subject’s name among other information, such as gender,
age and weight. In the seriesInfo it is also possible to get information about
the image such as modality and size. The header reveals that the resolution
of each slice is 512 x 512 pixels. In this thesis the pixels of image slices will
be denoted voxels, since the data allow them to be regarded as 3-dimensional
volume elements.

Each person is scanned twice, prior to the intervention period and at the end.
Unfortunately, some of the persons dropped out, which means that no post
scanning exists. To be able to do a statistical analysis of the amount of adipose
tissue lost or gained only persons with a pre and a post scanning are examined.
This is the case for 28 persons. However, for one of the persons 2 post scans
exist. Therefore, 57 scans have to be segmented. Each scan is denoted subject.
An ID-log exists, containing information about which two subjects, make up
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one person. The ID-log also reveals the correlation between the persons and the
training intensity group. The ID-log will be considered after the segmentation
when the statistical analysis is done. Since the clinical study is ongoing, the goal
is to apply the developed segmentation method to the rest of the data, which
corresponds to about 60 extra subjects.

Since the data is T1-weighted MRI, high image intensities corresponds to adi-
pose tissue, whereas air and tissue with high water content exhibit low image
intensity. When displaying the images a method, scaling the intensities to uti-
lize the full colormap, is used. Thus, the displayed intensities are relative and
should not be compared between slices.

2.1 Image anatomy

The 3-dimensional data visualizes the abdomen of the given subject, Figure 2.1.
There are 36 slices in the image series, but only between 16 and 26 in the middle
have to be segmented. The slices of interest, delimited by the L11-L12 disc and
the L4-L5 disc, have been selected by a physician in the FINE project at the
Faculty of Health Sciences [19]. The same number of slices are selected from
the pre and the post scanning.

Figure 2.1: 3D plot of the slices of interest in subject 2.
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The anterior and posterior part of the images are indicated by a red and a blue
arrow respectively in Figure 2.2. Low slice number corresponds to the lower
part of the abdomen whereas a high slice number corresponds to the upper
part. Organs and structures anatomically located in the right side appear in
the left side on the images and vice versa.

Figure 2.2: Subject 5 slice 8. The red arrow indicates the anterior part of the
abdomen, while the blue indicates the posterior part.

2.2 Image quality

Since the data origins from a 3 T MRI scanner with resolution 512x512 the
image quality should be considered to be of high quality. However, a rather large
number of slices are dark and some have artifacts. There has been doubt about
whether or not this is due to an error in the coil. This cannot be confirmed by
Glostrup Hospital. An example of a dark slice with artifacts is shown in Figure
2.3.
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Figure 2.3: Subject 1 slice 1. Dark slice with artifacts indicated by blue arrows.



Chapter 3

Preprocessing

3.1 Bias Field

Spatial intensity inhomogeneity is a problem in computer analysis of MRI data
because automatic computer segmentation often requires intra-class homogene-
ity. This inhomogeneity is called the Bias Field effect, caused by the radio-
frequency coil creating the large magnetic field in the scanner. The subject’s
anatomy and movements during the scanning can also contribute to the bias
field. These parameters make the bias field unique for each subject and scan.
The inhomogeneities make it difficult to label the voxels with a tissue type in an
automatic and robust way because same-tissue classes have different intensities
[2]. Likewise, a phenomenon called Bias Peaks is observed in most MRI data
due to a sudden change in intensity. The bias field effect in slice 7 of subject 20
is shown in Figure 3.1. The estimation of the bias field is a complicated process
and can be done in many ways. In this thesis two methods of estimating the
Bias Field effect have been examined before choosing which method is most ap-
propriate for this particular dataset. The methods are called Thin Plate Spline,
implemented in the old method, and N3 contained in Freesurfer.



12 Preprocessing

Figure 3.1: Slice 7 of subject 20, showing the bias field effect before a correction
has been made. The crosses mark the adipose tissue and the dots mark the
non-adipose tissue.

3.1.1 Bias Field correction using a Thin plate spline

The first step is to locate the abdomen boundary. The abdomen boundary is
characterized by a large intensity gradient between the low intensity background
and the high intensity skin and SAT-layer. The boundary is located using the
method Active Contours. When the abdomen boundary is found, the area of
interest is extracted from the image and the local maxima and minima inside the
abdomen are found. This is done on each slice separately. Local minima indicate
high water content points, which characterize non-adipose tissue, while local
maxima correspond to adipose tissue points, Figure 3.1. Due to the intensity
variation and peaks some of the points will not be positioned correctly. Only
correct points must be left in the area of interest, therefore it is necessary to
trim the area. This is done by removing local extrema with intensities below
a given threshold. Correct points are obtained by subdividing the image into
smaller rectangles and only selecting local maxima and minima compared to the
other points of the class inside the given region. It is the assumption that the
effect of the bias field is almost constant inside every rectangle. The image is
divided into 12 subdivisions vertical and 9 subdivisions horizontal with overlaps
of 10 voxels vertical and horizontal. The parameters can be varied and have to
be chosen carefully. If the rectangles are too large, the assumption of constant
bias field is not obtained. On the other hand, the rectangles must not be too
small because at least one correct voxel point of each class should be present
in each rectangle. In each rectangle, points, which do not have an intensity
over a given threshold relative to the local maxima or minima, respectively, are
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discarded.

The first step in the estimation of the true image is to logarithmically transform
the points found in the previous step by the following equation.

log(yobserved) = log(ytrue) + log(ybias)⇔ (3.1)

log(ytrue) = log(yobserved)− log(ybias) (3.2)

The next step in estimating the bias field is done for the entire 3D volume. When
the bias field is known it can be subtracted from the observed points resulting
in the true image. A thin plate spline model (TPS) is used when estimating
a function corresponding to the bias field. This is done from the two classes
of points found earlier. The principle is to fit an interpolating TPS to the two
point classes. This can be thought of, as an infinite thin metal plate being forced
through the points - creating an interpolating fit with minimal bending energy.

Figure 3.2 shows an image intensity histogram before and after the TPS correc-
tion is applied. The right figure shows a clear separation of the two intensity
peaks compared to the left. Low intensities correspond to non-adipose tissue
and high intensities correspond to adipose tissue.

Figure 3.2: Histograms of subject 1 before and after bias field correction with
TPS. In the right image the division of the two classes are shown. The left peak
corresponds to non-adipose tissue while the right peak is adipose tissue.

In the smoothing TPS function, a parameter alpha, α, controls the amount of
smoothness enforced. A low α value will allow the function to have much curva-
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ture while a large value will allow less curvature. It is important to determine a
value which allows the surface to be flexible, but it must not be too large since
this could increase the risk of incorporating noise. There is an optimal value for
each subject. However, it is undesirable to select a new and different value of
smoothness for each subject and therefore another way of representing this fac-
tor is implemented: The effective degrees of freedom, df. df can be interpreted
as the effective dimensionality of the fit. The purpose is to find a value of the
df suitable for all images in the dataset [18], [17]. An investigation to choose
the must suitable df is given later in Section [3.2.1].

3.1.2 Bias Field correction with N3 in Freesurfer

The Freesurfer program package [13] contains a bias field correction based on the
N3 method, a short for nonparametric, nonuniform intensity and normalization
algorithm. The method is developed to correct intensity inhomogeneities in
brains, where 3 classes of tissue need to be distinguished, grey matter, white
matter and cerebrospinal fluid (CSF). The N3 method is based on the following
model:

v(x) = u(x)f(x) + n(x) (3.3)

Where x is the location, v is the measured signal, u is the true signal, f is an
unknown smoothly varying bias field over the region of interest (ROI), and n
is white noise. The purpose of the correction is to estimate f, however this is
difficult using the above equation and a noise-free additive model is used instead,
with the notation û(x) = log[u(x)] :

v̂(x) = û(x) + f̂(x) (3.4)

The probability densities of û, v̂ and f̂ are U,V and F. If it is assumed, that û
and f̂ are independent random variables, the distribution of their sum is found
by convolution:

V (v̂) = F (v̂)
⊗

U(v̂) =

∫
F (v̂ − f̂)U(f̂)df̂ (3.5)

The task of the N3 correction method is to restore the frequency content of U.
Unfortunately, it is not known which frequency components of U that need to
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be restored. The field f̂ is assumed to be smooth and slowly varying. The
N3 approach is to find the smooth slowly varying field that maximizes the
frequency content of U. This is done by sharpening the distribution of V, which
leads to a suggestion for the distribution of U. The next step is to estimate
a smooth field which produces a distribution of U close to the one suggested.
It is supposed that the distribution of F is gaussian having zero mean and a
given variance, which means that it is only necessary to search for distributions
U corresponding to the properties of F. There are different parameters which
reflect the result and can be varied. One is the FWHM of F, short for full
width at half maximum, which expresses the deconvolution size. Another is
the distance, d, which is the distance between basis functions and expresses
the smoothness of the estimated field. The size of FWHM has an impact on
the convergence rate and performance. A decrease in FWHM would lead to
an improvement in accuracy but a decrease in convergence rate, which means
a longer computation time. The standard values of FWHM is 0.15 and the
distance, d, is 200 mm [20].

3.2 Entropy

The Shannon entropy is a measure of the average information content that is
missing when the value of the random variable is unknown and therefore the
Shannon entropy should be as small as possible. The unit is bits and is expressed
as:

H = −
∑
u

(p(u) · log(p(u))) (3.6)

where log2 is used. p(u), the probability distribution function, can be calculated
from h(u), the image histogram, and N, the sum of the image histogram values,
by this formula [15]:

p(u) = h(u)/N (3.7)

3.2.1 TPS - Effective degrees of freedom

The Shannon entropies of four randomly chosen subjects have been calculated
for different degrees of freedom, df. A plot of entropy versus df is made for
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every subject. This is done to find the most appropriate df to apply on all the
subjects. The df chosen should be the most common minimum of all the graphs
in Figure 3.3.

(a) Subject 12 (b) Subject 18

(c) Subject 35 (d) Subject 57

Figure 3.3: Plot of the entropy as a function of the degrees of freedom of subject
12, 18, 35, and 57. The bias field correction is performed using the the Thin
Plate Spline.

The graphs plotted in Figure 3.3, unfortunately, do not have a common mini-
mum, which would have been the optimal outcome. There is a tendency that
the curves have a negative gradient at the starting point at 80 df. This might
indicate that the choice of 100 df, which was applied earlier on this particular
dataset in the old method, is set too low. In (a), the graph of subject 12, the
gradient is positive from 140 df, which makes 140 df the most appropriate choice
for subject 12. In the graphs shown for subjects 18, 35 and 57 the gradient is
still negative at 160 df and there is no common minimum. This might indicate
that the minimum is not reached yet. However, this indication should not be
taken too much into account, as there is a risk of incorporating noise to the
image if the df value is too large. The investigation indicate, at this point, that
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a df value above or equal to 140 is the most appropriate. However, at the end,
the choice of effective degrees of freedom is an empirical decision and a tradeoff
between many parameters. This will be discussed further in Section 3.3.

3.2.2 N3 - Smoothing distance and deconvolution size

The Shannon entropies of subjects 12 and 18 are calculated with the N3 method
in Freesurfer. This is done in the exact same way as with the TPS correction.
Two parameters, the smoothing distance, d, and the deconvolution size, FWHM,
have been varied to optimize the correction, as described in Section 3.1.2.

(a) Deconvolution size 0.15 (b) Deconvolution size 0.05

Figure 3.4: Plot of the entropy as a function of the smoothing distance of subject
12 with deconvolution size 0.15 (a) and 0.05 (b). The bias field correction is
performed using the N3 method.

Figures 3.4 and 3.5 do not give a precise indication of which parameter values
that give the best results. From the theory, it is assumed that the smallest value
of entropy gives the best correction. The tendency is that the entropy declines
as the smoothing distance increases. The tendency is that the entropy is smaller
when FWHM = 0.05.
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(a) Deconvolution size 0.15 (b) Deconvolution size 0.05

Figure 3.5: Plot of the entropy as a function of the smoothing distance of subject
18 with deconvolution size 0.15 (a) and 0.05 (b). The bias field correction is
performed using the N3 method.
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3.3 Evaluation

The quality of the bias field correction cannot only be based on the entropy, since
it has shown ambiguous results. Therefore, it is necessary to look and compare
some of the images corrected with the two methods for different parameter
choices. Subjects 12 and 35, slice 10 is further looked at. Figures 3.7 and 3.6
show slice 10 of subjects 12 and 35, with two different choices of df to see if it
is possible to identify a difference. The first value is 80 df, which according to
Figure 3.3 gives a high entropy, while the second value is 145 df which according
to Figure 3.3 gives a small entropy. As adipose tissue also include the yellow and
light green areas, the intensity difference is reduced and the image has become
more homogeneous in Figure 3.6 (b). There is almost no difference in Figure
3.7 where subject 12 is corrected with 80 df and 145 df, respectively. Though,
the right image might appear more homogeneous than the left image.

(a) 80 degrees of freedom (b) 145 degrees of freedom

Figure 3.6: Bias field correction of subject 35 slice 10 with 80 degrees of freedom
(High entropy) and 145 degrees of freedom (Low entropy).
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(a) 80 degrees of freedom (b) 145 degrees of freedom

Figure 3.7: Bias field correction of subject 12 slice 10 with 80 degrees of freedom
(High entropy) and 145 degrees of freedom (Low entropy).
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Figure 3.8 also shows subject 12 slice 10, but here the output is from the N3
method. The FWHM are 0.05 on both slices, but the smoothing distance is 100
mm for the left image and 500 mm for the right image. According to Figure
3.4, a distance equal to 100 mm gives a large entropy, while a distance equal to
500 mm gives a smaller entropy. It is not possible to see a difference between
the two slices and still large bias peaks exist in the anterior part of the images.
This means, that even voxels belonging to the same-tissue classes have large
differences in intensities. By the naked eye it is difficult to see from Figures
3.7, 3.6 and 3.8 that the correction method with a parameter choice giving the
smallest entropy is better than the correction method with values giving the
highest entropy. This is valid for both the N3 method and the TPS method.

(a) Distance: 100 (b) Distance: 500

Figure 3.8: Bias field correction of subject 12 slice 10 with FWHM = 0.05 for
both images. Image (a) has a smoothing distance of 100 mm (Large entropy)
and image (b) has a smoothing distance of 500 mm (Small entropy).
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Several subjects are corrected with the N3 method. The corrected images
showed a general tendency of not having well defined classes of tissue and are
accordingly, not included in this thesis. This method is therefore empirically
considered useless for solving this particular problem. The N3 correction in
Freesurfer is developed for bias field correcting brain MRI data and not abdom-
inal MRI data. From this point of view it makes sense that better results are
obtained using Thin Plate Spline which is developed for abdominal MRI data.
As N3 now has been tried out, the focus returns to the TPS method, which will
be applied on this dataset.

The TPS method is developed for estimating the bias field of abdominal MRI
data and gives better defined classes of tissues. It is difficult to decide which
df is the most appropriate for the entire dataset. As the bias field is unique
for each scan the most appropriate value varies from subject to subject. The
outcome of this data-driven investigation is that the df value should generally
be larger than first expected. The df value chosen in the old method was 100
df, but the corrections with the smallest entropies are all above or equal to 140
degrees of freedom. Though, it should be taken into account that there is a
risk of incorporating noise when the df value is to high. Therefore, the data is
corrected with TPS at the effective degrees of freedom of 145 on the basis of the
entropies calculated and the images examined because this value is considered
to give the best general tradeoff and results.



Chapter 4

Locating boundaries using
Graph Cuts

After the preprocessing described in Chapter 3, the data is ready to be seg-
mented into different types of adipose tissue based on the location in the ab-
domen. First step is to locate three different boundaries, the abdomen boundary,
the interior SAT and Scarpa’s Fascia. The boundaries can be seen in Figure 4.1.
The abdomen boundary has already been found when preprocessing the data.

Segmentation of the interior SAT and Scarpa’s Fascia will be done using a Graph
Cut approach, which divide the image series into ”object” and ”background”.
This is done by constructing a 3D graph, applying Graph Cut theory and finally
using an algorithm for cutting made by Yuri Boykov and Vladimir Kolmogorov
[6] called Maximum Flow / Minimum Cut. This chapter describes the construc-
tion of the graph and the above-mentioned algorithm.
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Figure 4.1: Cross section of the abdomen showing three boundaries of the ab-
dominal wall, the abdomen (Blue), Scarpa’s Fascia (Green) and the interior SAT
(Red) in subject 14 slice 7.
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4.1 Graph theory

By definition a weighted graph G = (V,E) is a set of nodes/vertices, V, and a
set of edges, E, which connect the nodes. The nodes correspond to voxels in 3D
[3]. Each edge has an associated cost/weight/capacity, from now on denoted
capacity, which is found from given characteristics in the object of interest, for
example local intensity gradients, laplacian zero-crossing or other criteria. Two
special nodes exist called terminals. One is denoted Sink-Node (T) and the other
a Source-Node (S). They represent object and background labels, respectively.
The edges consist of two different types of links, n-links and t-links. N-links,
neighboring links, connect neighboring nodes in a regular grid. T-links, terminal
links, connect nodes to terminals [3], [6]. The total capacity function is given
by:

E(f) = En−links(f) + Et−links(f) (4.1)

where En−links(f) are the capacity of the n-links and Et−links(f) are the ca-
pacity of the t-links. A graph is undirected when two nodes only have one link,
Figure 4.2 (a). The graph is directed when two links are present between two
nodes. The link in one direction has a capacity whereas the link in the reverse
direction can have a different capacity associated, Figure 4.2 (b) [4].

Figure 4.2: (a) Undirected graph: One link from node p to node q. (b) Directed
graph: Two links, one from node p to node q and a reverse from node q to node
p. The two links can have different capacities [4].

4.2 Graph Cuts

Graph Cuts are used when it is necessary to distinguish ”object” from ”back-
ground”. This is done by making a s-t cut, C, in a subset of edges C ∈ e, which
separates the source and the sink so no dipath can be established from S to T.
In the following s-t cuts are referred to as cuts. The capacity of the cut is the
total capacity of the edges in the cut:
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|C| =
∑
e∈C

Ee (4.2)

The best cut is the most efficient way to cut the edges in the graph, so that
the object is separated from the background. This is also called a minimum
cut, because it has the minimum capacity among all cuts [3]. According to
the theorem of Ford and Fulkerson the minimum cut can be solved by finding
the maximum flow from the source to the sink. As a visual illustration of the
maximum flow, the edges are representing pipes with capacities equal to the
edge weights. The Maximum flow is the maximum amount of water that can
be sent from the sink to the source by the pipes [6].

To be able to separate object from background, it is necessary to use seeds which
indicate whether or not a given area belongs to the object or the background
[4]. This can be done manually or automatically, and is illustrated in Figure 4.3
(a). In Figure (b), a graph is built based on the the illustration in Figure (a).
The capacities of the edges are illustrated by the thickness of the links. Figure
(c) shows the minimum cut solved by finding the maximum flow. In Figure (d),
the segmentation result is shown, which separates the image into two classes,
object and background, respectively [5].

Many Maximum Flow / Minimum Cut algorithms exist. Most of the algorithms
belong to one of the two following groups: Goldberg-Tarjan style ’push-relabel’
methods and algorithms based on Ford-Fulkerson style ’augmenting paths’ [6].
The algorithm used in this thesis is developed by Yuri Boykov and Vladimir
Kolmogorov. This new Maximum Flow / Minimum Cut algorithm is based on
Augmenting path algorithms, for which reason this kind of algorithm will be
shortly described, before the new algorithm is described in details.

The ’augmenting path’ algorithms pushes flow from the source to the sink by
paths. When these paths are saturated the maximum flow is achieved. The
information about the distribution of the current s→ t flow, f, among the edges
of G are stored in a residual graph Gf . The capacity of the edge in Gf is
dependent on the amount of flow already in the edge. Before any flow is pushed
from the source to the sink the edge capacities in Gf are the same as the original
graph G. At each new iteration the algorithm finds the shortest path from s to
t, were the edges of the residual graph are unsaturated. When a path is found,
the algorithm pushes the maximum possible flow df that saturates at least one
edge in the path. The residual capacity of edges in the path are reduced by df
whereas the residual capacity of the reverse edges increases by df. When any s
→ t path crosses at least one saturated edge in the residual graph the maximum
flow is reached and the minimum cut is found [6].
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Figure 4.3: Illustration of graph cutting in a 3x3 image. (a) Image with object
and background seeds. (b) Graph, with edge capacities illustrated by the thick-
ness of the links. (c) Minimum cut solved by finding the maximum flow. (d)
Segmentation result [5].
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4.2.1 New Maximum Flow / Minimum Cut algorithm

The new Maximum Flow/ Minimum Cut algorithm used in this thesis is based
on the augmenting path algorithm described above. The algorithm builds search
trees for finding the augmenting path. In this algorithm two search trees are
built. One from the sink and one from the source. These search trees are
reused, which means that new search trees are never built from scratch. This
fact influences the run time making the new algorithm 2-5 times faster than
earlier developed algorithms [6].

Two non-overlapping search trees S and T exist with roots at the source s and
sink t respectively. Tree S has nonsaturated edges from each parent node to
its children, whereas in tree T, the edges from children to their parents are non
saturated. The nodes which are not a part of tree S or T are called free. In both
trees active and passive nodes exist. The active nodes are the outer border in
each tree, and the passive nodes are internal. Active nodes allow the trees to
grow by acquiring new children from free nodes along nonsaturated edges. The
passive nodes cannot grow because they are blocked by other nodes from the
same tree. As soon as an active node in one tree detects a neighboring node that
belongs to the other tree, an augmenting path is found [6]. This is illustrated
in Figure 4.4.

Figure 4.4: Illustration of the search trees S (red nodes) and T (blue nodes) at
the end of a growth stage when a path (yellow line) from the source to the sink
is found. Active nodes are labeled by the letter A, and passive by the letter P.
Free nodes are black [6].

The following three steps are repeated in the algorithm:

1. Growth stage. The two search trees S and T grow until they reaches each
other, which give a s → t path.

2. Augmentation stage. The found path is augmented. Search trees break
into forests.
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3. Adoption stage. The trees S and T are restored.

The search trees expand in the Growth stage. This is done by the active node
which explores neighboring non-saturated edges and gain new children nodes
from at set of free nodes. These new nodes become members of the search trees.
A node becomes passive, when all nodes surrounding the node are explored.
The growth stage terminates when an active node explores a neighboring node
belonging to the other search tree, and a path is establish from the source
to the sink. In the augmentation stage the path found in the Growth stage
is augmented. The largest flow is pushed from the sink to the source, which
means that some edges become saturated whereas other do not. When some
of the nodes have saturated edges that connect them to their parents, they are
called Orphans. If this is the case, the search trees S and T are split into forests.
The source and sink are still roots of the trees S and T, while the orphans form
roots for all other trees. In the adoption stage the goal is to restore the tree
structures of S and T. This is done by trying to find a new valid parent for each
orphan. A new parent should belong to the same tree, S or T, as the orphan,
and should be connected trough a nonsaturated edge. If no valid parent exists
for an orphan, the orphan is removed from the tree, S or T, and becomes a
free node. The adoption stage ends, when no orphans are left, and the tree
structures S and T are restored. After the adoption stage the algorithm returns
to the growth stage. The algorithm is terminated when no free nodes exist,
which means that the search trees S and T cannot grow and are separated by
saturated edges [6].

4.3 Graph Construction

In constructing the graph which corresponds to the 3D dataset, the connection
between the nodes, sinks and sources have to be described and assigned with
given capacities. The slices of the abdomen can be represented as a 3D volume,
I(x,y,z). The goal is to locate two boundaries in the 3D volume, interior SAT
and Scarpa’s Fascia. According to Li et al. [10] it is possible to locate multiple
boundaries at a time using Graph Cuts. However, in this project, the interior
SAT boundary will initially be located and then Scarpa’s Fascia, because in-
formation from the first cut is used as an input to the second. The wanted
boundaries are both located in between the abdomen boundary and the center
of the image. For this reason, the sink is located on the abdomen boundary,
while the source is located at the center of the image. Both sink and source run
through the entire volume as a cylinder. A 2D case is shown in Figure 4.5.
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Figure 4.5: Image of one slice with a source at the center and sink on the outer
boundary [4].

Instead of using a single voxel as the source, an ellipse placed at the center, is
used. This is done to restrict the solution space and remove misleading infor-
mation by excluding the part of the image in the middle, where the boundary is
not located. By using an ellipse, the segmentation will be more robust. When
the slice number increases, the area of the abdomen increases, and the mask
of the Interior SAT boundary increases as well. By using a MATLAB function
called Imerode it is possible to increase the size of the source from slice to slice,
which means that unnecessary information is excluded. The t-links, linking the
sink to the abdomen boundary and the source to the ellipse are given infinity
capacities. This ensures, that the flow and the cut will be between the ellipse
and the abdomen boundary.

The interior SAT boundary is characterized by a large radial gradient, which
can be found slice by slice by the following formula.

dI

dr
=

( dI
dx
dI
dy

)
· r̂ (4.3)

where r̂ is the unit vector from the center of the image to all voxels in the given
slice. By applying a gaussian filter with standard deviation equal to 2, the data
is smoothed so sharp edges not belonging to the object of interest are blurred,
whereas the interior SAT boundary becomes more visible. Figure 4.6 shows the
radial gradient in subject 20 slice 1 before and after the gaussian filter is applied.
It is clear that the interior SAT boundary is more visible when the filter is used.
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(a) Non-filtered (b) Filtered with sd=2.

Figure 4.6: Radial gradient of subject 20, slice 1. The center part of the slice is
removed using an ellipse. b) Filtered with a standard deviation equal to 2.

Unfortunately, the ellipse in two subjects were placed in a way that the interior
SAT boundary was erased. In these two subjects the center of the ellipse was
moved a little which lead to a good segmentation result. In the m-file getInteri-
orSAT.m in Appendix E it is denoted in which subjects the ellipse were removed
and how much. In one subject the ellipse had to be enlarged to give satisfying
results. This is also stated in the m-file.

A node has one link to each neighboring node. This means that a node has two
links in each direction, which gives 6 links in 3D. However not all voxels have 6
neighbours. If the slices in a subject are considered a 3D volume, the nodes in
the 8 corners have 3 links. The nodes on the edges have 4 links and the nodes
on the surface have 5 links, whereas all others have 6 links. From this a vector
describing the connections is constructed.

The capacity, β of a link, l, from node, p, is calculated from the filtered radial
gradient ∂I

∂r , by the formula:

βl = max

(
∂I

∂r

)
− ∂I(p)

∂r
(4.4)

This ensures that no negative capacities exist. A large radial gradient corre-
sponds to a low capacity of the link from the node. The depth capacity is a
constant that has to be chosen experimentally. If this constant is large com-
pared to the capacities in the horizontal and vertical direction, the algorithm
will use too much information from the neighboring slices. In the extreme case
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the cut will be the same in all slices. However, if the value is small compared
to the other capacities, no or very little information will be used, causing the
same result as if applying the algorithm in 2D.

The Maximum Flow / Minimum Cut is found using the Boykov and Kol-
mogorov algorithm [6] described in section 4.2.1, with the inputs: n-capacities,
t-capacities and total number of nodes. The code by Boykov and Kolmogorov
is made in C++. To be able to run it from MATLAB, a C++ wrapper is used
[14]. The result is the location of the interior SAT boundary in all slices. The
cut is shown for subject 28 slice 2 as a mask and as a boundary superimposed
on the original image in Figure 4.7.

(a) Interior SAT boundary of subject 28
slice 2 located using the Maximum flow
/ Minimum Cut algorithm.

(b) Original image of subject 28, slice
2 showing the segmented interior SAT
boundary.

Figure 4.7: Results of the segmentation of the interior SAT boundary in subject
28, slice 2, using Graph Cuts.

4.3.1 Scarpa’s Fascia

The graph used when locating Scarpa’s fascia is constructed in a similar way
as the graph of the interior SAT boundary. The difference is that the Scarpa’s
Fascia is characterized by a large second order derivative. The interior SAT
boundary is used as the source, with t-links given a high capacity to ensure a
flow through these edges in the Maximum Flow / Minimum Cut solution. The
sink is defined as the abdomen boundary and is given a high capacity as well.
The second order derivative is calculated and the edge capacities are found from
the formula:
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βl = max

(
∂2I

∂r2

)
− ∂2I(p)

∂r2
(4.5)

The abdomen boundary, corresponding to the sink, is reduced to restrict the so-
lution space. Likewise, the interior SAT boundary, corresponding to the source,
is enlarged. The restricted second order derivative is shown in Figure 4.8.

Figure 4.8: Second order derivative of the SAT rim of subject 18, slice 7, where
the mask of the interior SAT boundary is used as the source by which the middle
part of the image is removed.

Scarpa’s Fascia is now found by using the algorithm by Boykov and Kolmogorov,
which result in a segmentation of Scarpa’s Fascia in all slices. The bias field
corrected image of subject 18, slice 7, is shown in Figure 4.9 together with the
segmented Scarpa’s Fascia superimposed on the bias field corrected image.
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(a) Bias corrected image of subject 18
slice 7.

(b) Bias corrected image of subject 18,
slice 7 showing the segmented Scarpas
Fascia.

Figure 4.9: Results of segmentation of Scarpas Fascia in subject 18, slice 7,
using Graph Cuts.
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4.4 Evaluation

Applying the Maximum Flow / Minimum Cut algorithm to locate the interior
SAT boundary and Scarpa’s Fascia, overall seems to be a suitable choice. How-
ever, the algorithm does not locate the boundaries correctly trough the entire
dataset. This is especially a problem when locating Scarpa’s Fascia. If Fig-
ure 4.8 is considered, it is clear, that Scarpa’s Fascia is very hard to identify.
Scarpa’s Fascia is almost impossible to see visually in the anterior part of the
abdomen in almost every slice. However, the algorithm chooses the shortest
way when it looses track of the second order derivative, which means, that a
subdivision is present in the anterior part of the abdomen. The old method
tracked the interior SAT boundary, when the Scarpa’s Fascia was not visible,
which resulted in no subdivision of the SAT layer in the anterior part of the ab-
domen. The old method was better detecting the details of the Scarpa’s Fascia
in the posterior part of the abdomen.

The Graph Cut method has generally some problems locating the boundaries
when they approximate the radial gradient. In Figure 4.10 the radial gradient
of a subject 8, slice 3, is shown. The blue arrow points out an area where the
radial gradient is blurred because it follows the interior SAT boundary. In the
left side, the SAT boundary is not continuos in the original image and therefore
the radial gradient is not visible in the figure.

Figure 4.10: Subject 8 slice 3, showing the radial gradient.
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It is possible to adjust the capacities to change the smoothness term. The ratio
of the horizontal and vertical capacities determines the smoothness. Enlarging
the capacities in one direction makes the cut more detailed in that specific
direction. This leads to a less detailed cut in the other direction. According to
this, the capacities are calculated the same way in both directions. If the radial
gradient of the interior SAT boundary is not continuos or visible, it is possible
to apply a wider gaussian filter. This makes the interior SAT boundary more
visible and easier to segment. A wider gaussian filter, sd = 4, is applied on 4
subjects, which make the segmentation more inaccurate.

The results were shown to Martin Bæk Petersen, a pregraduate research student
in medicine at the FINE project. Overall he seemed happy with the segmenta-
tion results concerning the interior SAT boundary. Because the smoothness of
the segmentation, fine details of the interior SAT boundary are missing. Espe-
cially, one place in the posterior part of the slices an error occurs, Figure 4.11.
This error seems to be systematic.

Figure 4.11: Subject 5 slice 1, showing the bias corrected image together with
the segmented interior SAT boundary. The arrow points at a detail, where the
algorithm fails to segment the boundary accurate in almost every slice.

Martin Bæk Petersen confirmed, that the segmentation of Scarpa’s Fascia was
better than the old method, but estimated that the method was not yet good
enough to be used in clinical research. As it does not track Scarpa’s Fascia
in all slices and when it does, the fine details are missing. However, he was
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impressed that it could locate Scarpa’s Fascia well in slices with a small SAT
rim. By looking at the input to locate Scarpa’s Fascia it seems clear, why the
algorithm has difficulties locating the boundary. Scarpa’s Fascia is not visible
trough the entire SAT layer. It is unknown whether this has something to do
with the quality of the scans, the bias field correction, or simply the fact that
the boundary is not visible.

Figure 4.12 shows a 3D plot of the SAT rim of subject 2 divided into dSAT
(brown) and sSAT (green). The figure is based on the 3 boundaries segmented.
The plot is made to visualize that the program operates in 3 dimensions.

Figure 4.12: 3D plot of subject 2. Brown; dSAT. Green; sSAT.
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Chapter 5

Segmenting regions

After the boundaries have been found using the Maximum Flow / Minimum
Cut algorithm, the abdomen has to be divided into VAT, dSAT and sSAT. To
be able to do that, it is necessary to distinguish adipose tissue voxels from non-
adipose tissue voxels. This will be done comparing two different approaches:
Fuzzy C-means Clustering and Graph Cut. When the division of the abdomen
into the classes has been done, the classification of the different types of adipose
tissue will be proceeded.

5.1 Identifying Adipose Tissue

After the Bias field correction described in Chapter 3, the intensity histogram
generally shows two peaks. One peak at low intensities corresponding to non-
adipose tissue voxels and a peak at high intensities corresponding to adipose tis-
sue voxels. This indicates a possibility of identifying the adipose tissue from the
non-adipose tissue using an intensity-based approach separating the histogram
peaks. This can be done using a technique called Fussy C-means Clustering
(FCM), described in this section. The FCM method is used in the old method.
Another approach is to separate ’Object’ (adipose tissue) from ’Background’
(non-adipose tissue) using Graph Cuts. The general Graph Cut theory and al-



40 Segmenting regions

gorithm have been described in Chapter 4, and will not be described in this
chapter, but the Graph construction in this case will be considered.

5.1.1 Fuzzy C-means Clustering

In this particular dataset two types of clusters are present, non-adipose and
adipose clusters. In abdominal MRI no distinct split into the classes considered,
exists. The category membership of a given voxel is fuzzy, which means that a
voxel to a certain degree belongs to both clusters. The FCM assigns the voxel a
fuzzy category membership with an estimated probability that the voxel belongs
to the cluster [8]. FCM seeks a minimum of a criterion function, JFCM , which
expresses the quality of the clusters identified by a weighted sum of squared
distances:

JFCM =
∑
j=Ω

C∑
k=1

uqjk|yj − vk|
2

(5.1)

Where j denotes a voxel location in the image domain Ω, k is the class index, C
is the number of classes. The parameter ujk lies between 0 and 1 and express
the fuzzy membership value of class k for voxel j. q is a weighted exponent
higher than 1 defining the fuzziness of the classifications. yj is the intensity of
voxel j and vk is the centroid of the class.

The criterion function JFCM is minimized with respect to ujk and vk by ite-
rative updating of two equations defining ujk and vk.

There are two classes, C=2. Because q = 2 a smooth membership curve exists
but also a high degree of fuzziness.

After calculating the fuzzy membership value of each voxel a labeling function
f(j) is defined as:

f(j) =

{
1 if ujk ≥ εm
0 if ujk < εm

(5.2)

where f(j) = 1 is a label of adipose tissue. εm = 0.85, as this value gives the
best tradeoff when defining which membership values actually belong to the
adipose tissue region.
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Figure 5.1 shows slice 4 of subject 18, where the FCM has been applied to cluster
the image into adipose and non-adipose tissue.

(a) Corrected image. (b) Fuzzy C-means Clustering.

Figure 5.1: Subject 18, slice 4. Showing the bias corrected image and the
clustered image using Fuzzy C-means Clustering.

5.1.2 Graph Cut

To be able to use Graph Cuts to distinguish between adipose tissue and non-
adipose tissue, a graph has to be constructed. The graph is built in 2D. The
number of nodes are equal to the number of voxels in a slice. Each node has
4 neighbors in the plan. A node has two t-links, one that connects it to the
source (s), representing adipose tissue, and one to the sink (t), representing
non-adipose tissue. This is illustrated in Figure 5.2.

The t-links are given capacities by the following formula derived from the Ma-
halanobis distance [1]:

Unonfat =
log(det(σ2

nonfat)) + (yij − µnonfat)
T · σ2

nonfat
−1 · (yij − µnonfat)

2
(5.3)

Ufat =
log(det(σ2

fat)) + (yij − µfat)
T · σ2

fat
−1 · (yij − µfat)

2
(5.4)

where yij is the normalized intensity at a given voxel v(i, j), σ2 is the variance
and µ is the mean of the adipose tissue or non-adipose tissue, respectively.
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Figure 5.2: Illustration of Graph construction and cutting of one slice. The
nodes in the horizontal line represent voxels in a slice. The sink (t) represents
non-adipose tissue (black) and the source (s) represents adipose tissue (White).
The red dotted line represents the minimum cut [11].

The variance and mean can be found using a function in MATLAB called
Roipoly. The user specifies a polygonal by pointing out the vertices of the
polygonal. From this polygonal, the mean and variance are calculated. In this
case a non-adipose tissue region and an adipose tissue region are selected which
is shown in Figure 5.3.

(a) Polygonal region, Adipose tissue. (b) Polygonal region, non adipose tis-
sue.

Figure 5.3: Polygonal region specified by the user from which the mean intensity
and standard deviation are calculated.

The means and standard deviations from the adipose and non-adipose tissue re-
gions together with the image intensities are used as input in Equation 5.3 and
Equation 5.4. Equation 5.3 gives the t-capacities for the sink (t), non-adipose
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tissue, while Equation 5.4 gives the t-capacities for the source (s), adipose tis-
sue. All n-links are given zero capacity. The t-capacities, n-capacities and the
total number of nodes are given as input to the Maximum Flow/ Minimum Cut
algorithm. This gives a cut, which separates adipose tissue from non-adipose
tissue. The cut is illustrated graphical in Figure 5.2.

Figure 5.4 shows subject 18, slice 4. (a) is the bias corrected slice. (b)-(d) show
the division of adipose and non-adipose tissue using Graph Cuts where the
means and standard deviations are calculated from different regions of varying
size. The figures are quite similar, but the best result is achieved in Figure (d),
where large regions are chosen. The homogeneity of the region is a factor to be
considered. If the region is very large, its probability of being homogeneous is
small, which results in a calculated mean and variance of the particular tissue,
not representative for the image. The best result is obtained when the area is
as large and homogeneous as possible.

(a) Corrected image. (b) Small region.

(c) Medium region. (d) Large region.

Figure 5.4: Subject 18, slice 4. (a) Showing the corrected image. (b)-(d) Show-
ing the division of the abdomen into adipose and non-adipose tissue using the
Graph Cut method with different sizes of regions chosen when calculating the
mean and variance.
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5.2 Evaluation

Using FCM and Graph Cut to cluster the abdomen into adipose and non-adipose
tissue generates different outputs that can be compared. Comparing Figure 5.1
and 5.4 indicates, that the Graph Cut method determines the volume of adipose
tissue larger and more correct than the FCM method, especially the VAT vol-
ume. However, before clustering with Graph Cut the mean and variance have
to be calculated in each slice. To be able to develop an automatic segmenta-
tion method, the mean and variance found in one slice, should be applied in
all slices. In Figure 5.5 subject 24, slice 19, is shown together with two clus-
tered images of the same slice. (b) is clustered using Graph Cuts, and (c) using
FCM. When clustering using Graph Cuts the mean and variance calculated in
subject 18, slice 4, are used. If the images in Figure 5.5 are compared, it can be
seen, that the FCM method is a bit more accurate than the Graph Cut method.
The Graph Cut method overestimates the amount of adipose tissue. This can
be seen in Figure 5.6 where the clustered images using Graph Cut and FCM,
respectively, are shown superimposed on the original slice. If figure (a) is con-
sidered some areas are darker green than others. The dark green areas illustrate
the places, where the clustering has overestimated the VAT. The overestimation
can be eliminated if the mean and variance were calculated for this particular
slice. However, this has to be done manually, and because the method has to be
automatic, this is not a suitable choice. If it was possible to choose an adipose
and a non-adipose region, representing the classes trough the entire volume, in
all subjects, the mean and variance could be found simultaneous in all slices.
As the shape of the abdomen, and the location of the classes, varies a great deal
trough the volume, this method cannot be used.

Taking the evaluation into account, it is chosen to use the FCM method to
distinguish between adipose and non-adipose tissue. However, the Graph Cut
method would probably give better results, if the mean and variance could be
calculated automatically in all slices.
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(a) Corrected image.

(b) Clustered using Graph Cut. (c) Clustered using Fuzzy C-means Cluster-
ing.

Figure 5.5: Subject 24, slice 19. (a) Corrected image. (b) Clustered image
using Graph Cut. Mean and variance are calculated from a large polygon area
in another subject, Subject 18, slice 4. (c) Clustered image using Fuzzy C-means
Clustering.
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(a) Graph Cut (b) Fuzzy C-means Clustering

Figure 5.6: Subject 24, slice 19. Original slice with the clustered image super-
imposed (light green) with (a) Graph Cut method and (b) FCM method.
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5.3 Segmenting regions

When the abdomen boundary, interior SAT and Scarpa’s Fascia are located,
and the dataset is clustered, the classification of the abdomen into VAT, dSAT
and sSAT, can be done. A binary mask of each of the located boundaries exists.
The mask is the same size as the original image, and has the value 1 in voxels
inside the mask, and the value 0 in voxels outside the mask. The 3 masks are
combined with the clustered images which gives the classification into the 3
wanted adipose tissue classes. Figure 5.7 illustrates the 3 boundaries found in
Subject 21, slice 3. Figure (a) shows the slice with the 3 segmented boundaries
superimposed. Figure (b)-(d) illustrate the binary masks used when calculating
the different classes of adipose.

(a) (b)

(c) (d)

Figure 5.7: Subject 21, slice 4. (a) The corrected image with the three located
boundaries superimposed. (b) The interior SAT mask. (c) The Scarpa’s Fascia
mask. (d) The outer abdomen mask.
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The result of the segmentation into the 3 different adipose tissue classes are
shown in Figure 5.8 for subject 21, slice 3. White indicates VAT, light grey
indicates dSAT, dark grey indicates sSAT and black indicates non-adipose tis-
sue and background. Figure 5.9 illustrates the original slice of Subject 21, slice
3, with a superimposed image of the segmented classes. The classes are 30%
transparent, which makes it possible to see the performance of the segmenta-
tion. According to the figure, the abdomen boundary is not located accurate
everywhere. The same is valid for VAT. Though, the fact of raising the degrees
of freedom from 100 to 145, discussed in Chapter 3, seemed to have increased
the total fat segmentation. As the old method seemed to be underestimating
the amount of fat, this different parameter choice has made the segmentation
more accurate. The new and old method will be compared in the next chapter.

Figure 5.8: Subject 21, slice 3. Division of the slice into VAT (white), dSAT
(light grey) and sSAT(dark grey).
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Figure 5.9: Subject 21, slice 3. Showing the original corrected image with the
segmentation of the classes superimposed. The classes are 30% transparent.
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Chapter 6

Final results

This chapter presents the final abdominal segmentation results into VAT, sSAT
and dSAT. Furthermore, a statistical analysis is done comparing weight losses
with training intensity. A statistical comparison between the final results of the
new and old method is executed.

6.1 Segmentation results

The results of the abdominal adipose tissue segmentation is presented in this
section. The quantities of the adipose tissue classes are calculated as a percent-
age of the total voxel volume. The percentages of total fat, VAT, SAT, dSAT
and sSAT are included on a CD in Appendix D for all subjects together with
the percentages of total fat, VAT and SAT found using the old method. These
results are used in the statistical analysis in Chapter 6.2. A closer look at 12
subjects is taken. The 12 subjects correspond to 6 persons, each having a pre
and a post scanning. There are two persons from each training intensity group.
In Appendix A the quantity of total fat, VAT, sSAT, dSAT and SAT are shown
as a percentage of the total voxel volume for these 6 persons together with the
percentage loss of total voxel volume in each class of adipose tissue. The voxel
volume can be calculated to liters, but this is considered to be unnecessary in
the specific case as it has risks of loosing information associated.
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In Appendix B the segmentation results together with the original images are
shown for the 12 chosen subjects. The first slice, middle slice and bottom slice
are displayed for the persons together with the corresponding original slice,
which makes it possible to visually compare the segmented result with the origi-
nal image. The rest of the slices are included on the CD in Appendix D together
with the entire segmented dataset of all subjects.
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6.2 Statistical analysis

On the basis of the data from the intervention study where the subjects are
scanned prior to and after 12 weeks of intervention, a statistical analysis is
performed. The segmentation was performed blindfolded and it is now revealed
which scans origin from the same person. It is relevant to do statistics on
the weight losses of the adipose tissue classes according to training intensity
groups. Two training intensity groups are prescribed to burn 600 kcal/day,
and 300 kcal/day, respectively. The control group should be sedentary. The
three groups are called high, h, medium, m, and control, c. In Appendix F the
statistical analysis performed in R is enclosed.

A test of the homogeneity hypothesis:

H0 = µ1 = µ2 = µ3 (6.1)

H1 = µi are not all equal, i = 1, 2, .., n (6.2)

is performed. The null hypothesis is tested with a one-way ANOVA test for the
five adipose tissue groups total fat(VAT+SAT), VAT, SAT, sSAT and dSAT, re-
spectively. As a one-way ANOVA test assumes variance homogeneity, Bartlett’s
test is performed on the three training intensity groups for each adipose tissue
class. The results of Bartlett’s test are shown in Table 6.1. The low P-values re-
veal variance inhomogeneity between the training groups with respect to dSAT
and sSAT. On this basis one-way ANOVA tests for total fat, VAT and SAT are
performed.

Adipose tissue type P-value
Total fat 0.07566
SAT 0.0957
VAT 0.131
dSAT 2.134e-13
sSAT 0.01396

Table 6.1: Bartlett’s tests of homogeneity of variances.
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6.2.1 One-way ANOVA tests

Table 6.2 shows the results of the ANOVA tests. The significance levels are also
included in the table.

Adipose tissue type P-value F-value Significance level
Total fat 0.003503 7.1497 1%
SAT 0.006038 6.3122 1%
VAT 0.01503 4.9882 5%

Table 6.2: Results of ANOVA tests

Based on the low P-values the null hypothesis of equal weight losses in the three
training intensity groups can be rejected.

6.2.2 Unpaired two sample t-tests

In the following section paired t-tests between two training intensity groups at
a time will be performed for the hypotheses:

H0 = µ1 − µ2 = 0 (6.3)

H1 = µ1 − µ2 6= 0 (6.4)

In Table 6.3, 6.4 and 6.5 the t-values and P-values of the unpaired two sample
t-tests between the groups are shown. The significance level is 1%. Three tests
are performed for each class: total fat, SAT and VAT. The tests are carried out
between the high intensity group and medium intensity group, high intensity
group and control group and medium intensity group and control group.

Training intensities compared t-value P-value
high & medium 0.7135 0.4847
high & control 4.1641 0.0007315
medium & control 3.0249 0.00805

Table 6.3: Results of two sample t-tests for total fat losses

Table 6.3 shows significant difference between the total fat loss of the high and
medium intensity group vs. the control group, respectively. No difference is
observed between the high and medium intensity group.
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Training intensities compared t-value P-value
high & medium -0.1195 0.9062
high & control 4.1163 0.0008085
medium & control 2.9558 0.009298

Table 6.4: Results of two sample t-tests for SAT losses

Table 6.4 shows significant difference between the SAT loss of the high and
medium intensity group vs. the control group, respectively. No difference is
observed between the high and medium intensity group.

Training intensities compared t-value P-value
high & medium 1.3839 0.1833
high & control 3.4831 0.003071
medium & control 1.8074 0.08954

Table 6.5: Results of two sample t-tests for VAT losses

Table 6.5 shows significant difference between VAT losses of the high intensity
group and the control group. No difference is observed between the other groups.

6.2.3 Comparison between segmentation results of the new
and old method independent of training intensity
groups

To evaluate the segmentation results of the new method, a comparison to the
segmentation results of the old method is performed. The segmentation of the
SAT-layer into dSAT and sSAT with the old method does not give plausible
results, which means that the statistical analysis can only be performed with
respect to the following classes: total fat, SAT and VAT.

6.2.3.1 Paired t-tests

The results of the paired t-tests between the amount of total fat, SAT and VAT
segmented with the new and old method are shown in Figure 6.6.

Based on the low P-values the null hypothesis, equal means, can be rejected.
The results with the new method are significant larger than the old method.
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Adipose tissue type P-value
Total fat 2.2e-16
SAT 2.271e-06
VAT 2.2e-16

Table 6.6: Results of paired t-tests between the new and old method

6.2.3.2 Histograms

To illustrate the deviation between the segmentation results with the old and
new method the differences between the results are calculated. The difference
is plotted in a histogram containing 25 intervals on the x-axis. The y-axis
shows the frequency and the x-axis the percentage difference. A positive value
on the x-axis corresponds to a larger estimated volume with the new method.
Histograms are made for: total fat (Figure 6.1), SAT (Figure 6.2) and VAT
(Figure 6.3).
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Figure 6.1: Histogram showing the frequency at the y-axis and the percentage
difference between the total fat volume of the new and old method at the x-axis.
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Figure 6.2: Histogram showing the frequency at the y-axis and the percentage
difference between the SAT volume of the new and old method at the x-axis.
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Figure 6.3: Histogram showing the frequency at the y-axis and the percentage
difference between the VAT volume of the new and old method at the x-axis.
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6.3 Evaluation

As Bartlett’s test for dSAT and sSAT showed, the variances within the three
training groups are not equal. This is an indication that Scarpa’s Fascia, which
divides the SAT layer into dSAT and sSAT, is not well located in all subjects.
This is a weakness of the program. When looking at the segmentation results
in Figure B.5 (a), B.7 (a) and B.9 (a) shown in Appendix B it is observed,
that location of Scarpa’s Fascia is a bit rough. Especially in the first slices,
corresponding to the slices with the largest amount of fat, the fascia is not
smooth. Though, when looking at the middle and last slices of all subjects
shown in Appendix B the location is quite accurate and smooth, even in the
last slices where the fascia is almost impossible to see with the naked eye. In
Figure B.8 and B.4, also shown in Appendix B, the location of Scarpa’s Fascia
appears precise in all six slices shown. The variance inhomogeneity of dSAT and
sSAT could also be due to the fact that there are large variations in Scarpa’s
Fascia’s location within the subjects.

A validation of the scan and segmentation quality has been performed to test
whether the segmentation is reproducible. Table 6.7 shows two post scans from
the same person performed immediately after each other.

% FAT % VAT % SAT % dSAT % sSAT
Subject 62 - Post 1 46.73% 20.48% 26.25% 12.14% 14.11%
Subject 67 - Post 2 46.76% 20.51% 26.25% 11.68% 14.57%

Table 6.7: Two post scans from the same person performed immediately after
each other. The person is from the control group.

Table 6.7 shows how the estimates of total fat, VAT and SAT is reproducible
because of the very small difference in the fat percentages. The SAT is estimated
exactly the same for both scans. The estimates of dSAT and sSAT differ from
each other with 0.46%, resulting in 0.46% more dSAT and 0.46% less sSAT in
one scan and vice versa in the other scan. This gives an indication that the
abdomen boundary and the interior SAT boundary are accurately segmented
while Scarpa’s Fascia is not located with the same precision.

The one-way ANOVA tests show that there are not equal means in the weight
losses of the three intensity groups for total fat, SAT and VAT. The results
of the ANOVA test form the basis of performing the unpaired two sample t-
test between the training intensity groups. When looking at the results of the
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t-tests for high/control and medium/control for total fat and SAT losses the
P-values are significant, which means that there has been an abdominal fat loss.
This reveals that the training does have an effect on the abdominal fat loss, as
the control group is assumed to do no exercises at all. For all three adipose
tissue classes, t-tests between the high and medium intensity group, show no
significant difference in fat losses. This indicates that the results do not tell
whether there is a difference in exercising 1 hour or 1/2 hour a day. As there
are no restrictions on the calorie intake during the training period, the subjects
belonging to the high intensity group might eat more because the training leads
to more appetite. As for VAT there is a significant abdominal fat loss between
high and control group which means the subjects in the high training intensity
group seem to have lost some of the clinical dangerous adipose tissue. The VAT
segmentation, though, is not always reliable because of the clustering method,
discussed in Chapter 5. When looking in Appendix B at Figure B.7 and B.8
the VAT is underestimated in the post scan. This results in a large VAT loss,
that does not exist in reality.

6.3.1 Comparison between the old and the new method

Table 6.8 shows how many segmentation errors the new and old method make
when the entire dataset is segmented. The errors are split into 4 categories
according to the voxel-wise errors of the entire image series of a subject.

% Small Medium Large X-large
New Method 22 1 2 0
Old Method 22 4 3 2

Table 6.8: Segmentation errors of the new and old method.

The number of small errors are 22 for both methods. The small errors of the
new method, though, seem to be systematic, when segmenting the interior SAT
boundary, caused by a very specific detail on the posterior part of the abdomen,
especially in the lower slices. The small errors of the old method seem to be
unsystematic. A small error of both methods is shown in Figure 6.8. In Figure
6.6 a small error of the old method is also seen. The figures support the theory
that the error of the old method is unsystematic as they appear different every
time. A medium error is shown in Figure 6.5. If an error of this size appears
in 2 or 3 slices, the error is classified as a medium error. If an error of this size
appears in 4 or more than slices, it is classified large. In Figure 6.4 a large and
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a X-large error of the new and old method are shown, respectively. The new
method makes a mistake when segmenting the abdomen boundary. The old
method both makes a mistake when segmenting the interior SAT boundary and
the abdomen boundary in 4 or more slices, which classify the total error X-large.
However, the mistake in the abdomen boundary is not visible in the old method
because another mask, the clustering mask, is used as the background. The
number of voxels indicated in top of the segmented images, are almost equal for
both methods, which means that the abdomen boundary is not located correctly
with the old method even though the image does not show.

(a) New method

(b) Old method

Figure 6.4: Subject 16, slice 19 segmented with the new and old method. The
top image shows the error of the new method classified a large error as the
abdomen boundary is not located right in 3 slices. The bottom image shows the
error of the old method classified an X-large error.

The medium, large and X-large errors have been reduced from 9 with the old
method to 3 with the new method. No X-large errors exist when segmenting
with the new method. The medium and the two large errors of the new method
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are solely due to the wrong location of the abdomen boundary using Active
Contours. Due to this, the errors would possibly be removed, if the abdomen
boundary was located using Graph Cuts.

6.3.1.1 Histograms

Table 6.6 shows a significant difference between the segmentation results calcu-
lated with the new and the old method. The histograms Figure 6.1, 6.2, 6.3
reveals the size of the error in the respective classes. Histogram 6.1 shows that
the new method estimates the total amount of adipose tissue larger in every
subject. One subject, subject 21, has an outstanding difference, 2.17%. Look-
ing at the segmented images from subject 21, it can be seen, that both the
VAT and SAT are calculated larger with the new method. However, no error
in any of the algorithms have occurred. This overestimation compared to the
old method, might be due to the different degrees of freedom in the bias field
correction, which effects the clustering and thereby the amount of fat.

If histogram 6.3 is considered, it can be seen, that three subjects have a larger
volume of VAT calculated with the old method. This is the case for subjects 47,
69 and 74. In all these subjects the location of the interior SAT boundary is not
done correctly in all slices. Subject 47, slice 1, is shown in Figure 6.5, where the
wrong location can be seen. This error is representative for these three outliers.

Figure 6.5: Subject 47, slice 1, segmented with the old method.

By looking at histogram 6.2 it can be seen, that 8 subjects have a larger per-
centage of SAT segmented with the old method. 3 subjects have a much larger
percentage of SAT segmented with the new method, this is the case for subjects
46, 69, 74. There were also large differences in the VAT volume of subjects 69
and 74. Like the VAT volume, the difference is caused by a wrong segmentation
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of the interior SAT boundary with the old method, this time leading to an un-
derestimated SAT volume. Locating the interior SAT boundary is also wrong in
subject 46, Figure 6.6. However, the VAT segmentation of subject 46 was not
an outlier, but the difference was 0.66 %. The reason is that the segmentation
of the interior SAT boundary, lead to an underestimated VAT volume inside
the actual interior SAT boundary, but an overestimated VAT volume outside
the boundary. This means that even though there is an error, the total VAT
volume calculated is not wrong.

Figure 6.6: Subject 46, slice 2, segmented with the old method.

8 subjects have a larger percentage SAT-volume with the old method. This is
the case for subjects 14, 26, 39, 52, 53, 55, 61, 71. In subjects 52 and 55 the
percentage difference is largest, -0.59 % and -0.53 % respectively. If subject
55 is considered, it can be seen, that the interior SAT boundary is not located
correctly, this time overestimating the SAT volume, Figure 6.7.

Figure 6.7: Subject 55, slice 2, segmented with the old method.
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Looking at subject 52, Figure 6.8, reveals that the interior SAT boundary is
located differently with the new method in both the anterior and posterior part
of the image. In the posterior part, the new method makes the systematic error
described in Chapter 4.4. In the anterior part the old method does not find the
interior SAT correct, which overestimates the SAT volume.

(a) Old method (b) New method

Figure 6.8: Subject 52, slice 3. Showing the segmented image with a) the old
method and b) the new method.
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Chapter 7

Conclusion

The goal of this thesis was to develop an automatic method for segmentation
of abdominal adipose tissue from 3-dimensional Magnetic Resonance Images.
Graph Cuts were used to locate two boundaries, Scarpa’s Fascia and the inte-
rior SAT. This was done using information in 3 dimensions. The segmentation
method should be able to distinguish between 3 types of adipose tissue: visceral
adipose tissue, VAT, deep subcutaneous adipose tissue, dSAT and superficial
subcutaneous adipose tissue, sSAT.

The data was preprocessed before the segmentation. The abdominal boundary
was located using Active Contours. Early in the process it was chosen to use this
method, but the results in the end, unfortunately, revealed errors. To remove
the Bias Field Effect, two methods were compared, N3 and Thin Plate Spline.
The Shannon entropy was used as a measure to evaluate the robustness of the
correction methods. Thin Plate Spline was found to be the best method for this
specific dataset.

Two methods were compared in labeling the abdomen into adipose and non-
adipose tissue, Graph Cut and Fuzzy C-means Clustering. Fuzzy C-means Clus-
tering was chosen. However, the Graph Cut method showed good potential.

Graph Cuts were used to locate the interior SAT boundary and Scarpa’s Fas-
cia, which overall seemed to give satisfying results. Combining the segmented
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boundaries and the cluster labels gave the final segmentation results.

A statistical analysis was performed. From the statistics fat losses within the
high and medium intensity groups compared to the control group, were observed.
The analysis showed large variations in dSAT and sSAT. It is unknown whether
the variations stem from the segmentation of Scarpa’s Fascia or large subject
variations.

Furthermore, the new and the old method were compared. The number of large
errors were reduced using the new method and investigation showed that the
small errors made by the new method were systematic. Histograms showing
the percentage difference between the methods revealed that the new method
estimated a significant larger amount of the three adipose tissue types. How-
ever, some outliers were observed. The majority of the outliers are due to the
segmentation of the interior SAT boundary in the old method.

Overall the new method showed convincing results, though, there is still room
for improvement.

7.1 Future work

Below is a list with possible elements for improving the segmentation results.

• Locate the abdomen boundary using Graph Cuts. This would possibly
remove the medium and large errors of the new method shown in Table
6.8.

• Improve the method which classifies adipose tissue and non-adipose tissue.
In Section 5 Graph Cuts seemed to be a reasonable method if the mean
and variance were calculated automatic in all slices.

• Develop or use a method to make Scarpa’s Fascia more visible on the im-
ages. This would result in a more accurate segmentation of the boundary.



Appendix A

Volume results

This section contains the distributions of abdominal adipose tissue in 12 chosen
subjects, which correspond to the pre and post scanning of 6 persons. Two sub-
jects origins from each training intensity group. The images of the segmentation
for the 12 subjects are shown in Appendix B. The remaining segmentation re-
sults are included on the CD in appendix D. The adipose tissue quantity of each
class is shown as a percentage of the total voxel volume. The total volume is
the number of voxels in all slices in a subject inside the abdomen boundary.
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A.1 Percentage of adipose tissue classes

% FAT % VAT % SAT % dSAT % sSAT
1 - Subject 22

Pre - H 40.20% 14.69% 25.52% 10.64% 14.88%
1 - Subject 05

Post - H 37.37% 13.24% 24.14% 10.37% 13.77%
2 - Subject 53

Pre - H 46.58% 21.83% 24.75% 11.04% 13.71%
2 - Subject 63

Post - H 41.01% 18.09% 22.92% 12.17% 10.74%
3 - Subject 13

Pre - M 46.03% 19.88% 26.16% 11.05% 15.11%
3 - Subject 29

Post - M 47.26% 21.30% 25.96% 9.74% 16.22%
4 - Subject 17

Pre - M 33.82% 16.75% 17.08% 7.54% 9.54%
4 - Subject 02

Post - M 26.07% 10.38% 15.69% 74.19% 8.27%
5 - Subject 19

Pre - C 35.36% 13.47% 21.89% 10.32% 11.56%
5 - Subject 34

Post - C 36.32% 13.20% 23.12% 10.73% 12.39%
6 - Subject 43

Pre - C 35.70% 11.88% 23.82% 8.41% 15.42%
6 - Subject 74

Post - C 37.69% 11.62% 26.07% 9.52% 16.55%

A.2 Percentage weight loss

% FAT % VAT % SAT % dSAT % sSAT
1 2.83% 1.45% 1.38% 1.11% 2.83%
2 5.57% 3.74% 1.83% -1.13% 2.97%
3 -1.22% -1.43% 0.20% 1.31% -1.11%
4 7.75% 6.37% 1.39% 0.12% 1.27%
5 -0.96% 0.27% -1.23% -0.41% -0.83%
6 -1.99% 0.26% -2.25% -1.12% -1.13%
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Segmentation results

This appendix includes the final segmentation image results of the same 6 per-
sons contained in Appendix A. For each person the top, middle and bottom slice
of the original MRI are displayed together with the corresponding segmentation
result. The color coding is: white; VAT. Dark grey; sSAT. Light grey; dSAT.
Black; non-adipose tissue and background. The remaining segmentation results
are included on the CD in Appendix D.
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(a)

(b)

(c)

Figure B.1: Person 1. Final segmentation of subject 22. Pre-scanning. High
intensity training.
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(a)

(b)

(c)

Figure B.2: Person 1. Final segmentation of subject 5. Post-scanning. High
intensity training.
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(a)

(b)

(c)

Figure B.3: Person 2. Final segmentation of subject 53. Pre-scanning. High
intensity training.
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(a)

(b)

(c)

Figure B.4: Person 2. Final segmentation of subject 63. Post-scanning. High
intensity training.
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(a)

(b)

(c)

Figure B.5: Person 3. Final segmentation of subject 13. Pre-scanning. Moder-
ate intensity training.
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(a)

(b)

(c)

Figure B.6: Person 3. Final segmentation of subject 29. Post-scanning. Mod-
erate intensity training.
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(a)

(b)

(c)

Figure B.7: Person 4. Final segmentation of subject 17. Pre-scanning. Moder-
ate intensity training.
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(a)

(b)

(c)

Figure B.8: Person 4. Final segmentation of subject 2. Post-scanning. Moderate
intensity training.
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(a)

(b)

(c)

Figure B.9: Person 5. Final segmentation of subject 19. Pre-scanning. Control
group.
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(a)

(b)

(c)

Figure B.10: Person 5. Final segmentation of subject 34. Post-scanning. Con-
trol group.
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(a)

(b)

(c)

Figure B.11: Person 6. Final segmentation of subject 43. Pre-scanning. Control
group.
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(a)

(b)

(c)

Figure B.12: Person 6. Final segmentation of subject 74. Post-scanning. Con-
trol group.
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Appendix C

Software overview

This appendix presents a brief overview of the software developed to do the
segmentation. The program consists of two main m-files. The software is im-
plemented using MATLAB 7.9 and 7.10. To run the C++ algorithm written by
Boykov and Kolmogorov [6], a C++ wrapper is used [14]. Below is a list of the
most important sections (flags) of the algorithm and a short description of their
functionality. All source code is available on the CD enclosed in appendix D.

mainProprocessing.m

• doBundle puts Dicom in a single mat-file.

• doCorrect performs the 3D bias field correction using a TPS.

• doDisplay displays original and corrected plots of the selected subject.

mainSegmentation.m

• doCluster cluster the regions.

• doSegment locating the abdomen boundary, the interior SAT boundary
and Scarpa’s Fascia. Classifies the abdomen into three adipose tissue
classes.
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• doProcess saving voxel information in txt-file and saving the segmented
images.

doSegment includes the following important m-files:

• getInteriorSAT.m locates interior SAT boundary.

• getWeights3d.m gives the capacities of the n-links.

• getScarpasFascia.m locates Scarpa’s Fascia.

• getWeights3dscarpa.m gives the capacities of the n-links.

• doSegmentation2.m classifies regions.

getInteriorSAT.m, getWeights3d.m, getScarpasFascia.m and doSegmentation2.m
are included in Appendix E.



Appendix D

Data CD

The enclosed CD contains the following:

• Original and segmented images performed with the new method for all
subjects.

• Original and segmented images performed with the old method for all
subjects.

• List of voxel percentages of adipose tissue classes for all subjects for the
new and the old method.

• The MATLAB source code and C++ algorithm.

• The R source code.
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Appendix E

MATLAB code

E.1 M-files

E.1.1 getInteriorSAT.m

1 function patientstruct = getInteriorSAT(patientstruct,sd)
2 % getInteriorSAT(patienstruct,sd) locates the interiorSAT boundary.
3 %
4 %Inputs: patientstruct = patientstruct containing the biascorrected
5 % images
6 % sd = standard diviation
7 %
8 %Written by Josephine Jensen and Cecilie Anker
9 % 2011 − DTU − IMM

10 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
11

12 %original image
13 ori = patientstruct.imageSeriesCorrected;
14

15 % creates ellipse in the center of image
16 pixel1=ones(size(ori,1),size(ori,2));
17 pixel2=ones(size(ori,1),size(ori,2));
18

19 %center of ellipse
20 io=270; jo=256; % Standard io=270; jo=256; %Subject 63 = io =260



90 Appendix E

21 %Subject 73 = io = 290
22 %size of ellipse
23 a=40; b=130; % Standard a=40; b=130; %Subject 55 a=100; b=160;
24 for i = 1:512
25 for j = 1:512
26 if (((i−io)/a)ˆ2+((j−jo)/b)ˆ2)≤1
27 pixel1(i,j)=0;
28 end
29 end
30 end
31

32 %center of ellipse
33 io=280; jo=256; % standard io=280; jo=256 %Subject 63 = i0 = 270
34 %size of ellipse
35 a=65; b=140; % Standard a=65; b=140; % Subject 55 = a=110; b=150;
36 for i = 1:512
37 for j = 1:512
38 if (((i−io)/a)ˆ2+((j−jo)/b)ˆ2)≤1
39 pixel2(i,j)=0;
40 end
41 end
42 end
43

44

45 se = strel('square',3);
46

47 % creates ellipse all the way trough volume
48 ellipse = zeros(size(ori,1),size(ori,2),size(ori,3));
49 for n = 1:size(ori,3);
50 ellipse(:,:,1)=imerode(pixel1,se,'same');
51 ellipse(:,:,2:15)=imerode(ellipse(:,:,1:14),se,'same');
52 ellipse(:,:,16)=imerode(pixel2,se,'same');
53 ellipse(:,:,17:n)=imerode(ellipse(:,:,16:n−1),se,'same');
54 end
55

56 % % % Filtering image
57 gaussianfilter = fspecial('gaussian',[20 20],sd);
58 IM = imfilter(ori,gaussianfilter,'same');
59

60 % gradient horizontal and vertical
61 [FX FY] = gradient(IM);
62

63 % image centre
64 ctrx = size(IM,2)./2;
65 ctry = size(IM,1)./2;
66

67

68 % pixel coordinates (relative to centre)
69 for n=1:size(IM,3);
70 [X(:,:,n) Y(:,:,n)]=meshgrid([1:size(IM,1)]−ctry,[1:size(IM,2)]−ctrx);
71 end
72

73 %dotproduct
74 S = sqrt(X.*X + Y.*Y);
75 ndx = S>0;
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76

77 % radial unit vector
78 X(ndx)= X(ndx)./S(ndx);
79 Y(ndx) = Y(ndx)./S(ndx);
80

81 % radial gradient
82 RG = X.*FX + Y.*FY;
83

84 % removes center of image
85 l= RG.*ellipse;
86

87 abdomen = l;
88

89 % Defines sink
90 sink = ellipse;
91 sink(sink==0)=inf;
92 sink(sink==1)=0;
93

94 % Defines source
95 source = patientstruct.exteriorMask;
96 source(source==0)=inf;
97 source(source==1)=0;
98

99

100 vNodes = (1:(size(IM,1)*size(IM,2)*size(IM,3)))';
101 vSink = sink(:);
102 vSource = source(:);
103

104 % %Node,source,sink
105 tWeights =[vNodes,vSource,vSink];
106 disp('Locating interiorSAT')
107 addpath '/Users/cecilieanker/graphCutMFH'
108

109 nNodes=size(IM,1)*size(IM,2)*size(IM,3);
110

111 Weights=getWeights3d(abdomen);
112 [Cut,Flow] = GraphCutMex(nNodes,tWeights,Weights);
113

114 % assign labels by Cut
115

116 innerSAT = zeros(size(IM,1),size(IM,2),size(IM,3));
117 innerSAT(Cut)=1;
118

119 patientstruct.innerSAT = innerSAT;
120

121 end
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E.1.2 getWeights3d.m

1 function weights=getWeights3d(img)
2 % getWeights3d(img) gets the weight of the n−links in a 3d−dataset
3 %
4 %Input img: 3d−dataset
5 %
6 %Written by Josephine Jensen and Cecilie Anker
7 % 2011 − DTU − IMM
8 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
9

10

11 nP=numel(img);
12

13 b = img(:);
14

15 %create matrices that has increasing numbers downwards and leftwards
16 A=img;
17 A(:)=1:nP;
18 B=A;
19 C=A;
20

21 % %shift to find neighbour correspondance
22 A shift=circshift(A,[0 0 1]);
23 B shift=circshift(B,[0 1 0]);
24 C shift=circshift(C,[1 0 0]);
25

26

27 %remove column that wraps around after shifting
28 A=A(:,:,2:end);
29 A shift=A shift(:,:,2:end);
30

31 %remove row that wraps around after shifting
32 B=B(:,2:end,:);
33 B shift=B shift(:,2:end,:);
34

35 %remove column that wraps around after shifting
36 C=C(2:end,:,:);
37 C shift=C shift(2:end,:,:);
38

39

40 weights=[A(:), A shift(:),
41 (ones(size(A(:))))./150,(ones(size(A shift(:))))./150; %debth
42 B(:), B shift(:),
43 (max(b)−b(B(:))),(max(b)−b(B shift(:))); % Vertical
44 C(:), C shift(:),
45 (max(b)−b(C(:))), (max(b)−b(C shift(:)))];% horizontal
46 end
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E.1.3 getScarpasFascia.m

1 function patientstruct = getScarpasFascia(patientstruct)
2 % getScarpasFascia(patientstruct) locates the Scarpa's Fascia.
3 %
4 %Inputs: patientstruct = patientstruct containing the biascorrected
5 % images and the interior SAT boundary
6 %
7 %
8 %Written by Josephine Jensen and Cecilie Anker
9 % 2011 − DTU − IMM

10 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
11

12 IM = patientstruct.imageSeriesCorrected;
13

14 %IM=patientstruct.imageSeries;
15

16 % image centre
17 ctrx = size(IM,2)./2;
18 ctry = size(IM,1)./2;
19

20 % gradient
21 [FX FY] = gradient(IM);
22

23 for n=1:size(IM,3);
24 % pixel coordinates (relative to centre
25 [X(:,:,n) Y(:,:,n)]=meshgrid([1:size(IM,1)]−ctry,[1:size(IM,2)]−ctrx);
26 end
27

28 S = sqrt(X.*X + Y.*Y);
29 ndx = S>0;
30

31 % radial unit vector
32 X(ndx)= X(ndx)./S(ndx);
33 Y(ndx) = Y(ndx)./S(ndx);
34

35 % radial gradient
36 RG = X.*FX + Y.*FY;
37

38 %Laplace
39 [FX2 FY2]= gradient(RG);
40

41

42 RG2 = X.*FX2 + Y.*FY2;
43

44 %makes outer mask smaller and inner mask bigger.
45

46 se = strel('square',3);
47

48 outer=imerode(patientstruct.mask,se,'same');
49 outer=imerode(outer,se,'same');
50 outer=imerode(outer,se,'same');
51 outer=imerode(outer,se,'same');
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52

53 inner=imerode(patientstruct.innerSAT,se,'same');
54 inner=imerode(inner,se,'same');
55

56 abdomen=RG2.*inner.*outer;
57

58 %defines sink
59 sink = inner;
60 sink(sink==0)=inf;
61 sink(sink==1)=0;
62

63 %defines source
64 source = outer;
65 source(source==0)=inf;
66 source(source==1)=0;
67

68

69 vNodes = (1:(size(IM,1)*size(IM,2)*size(IM,3)))';
70 vSink = sink(:);
71 vSource = source(:);
72

73 % %Node,source,sink
74 tWeights =[vNodes,vSink, vSource];
75 disp('Locating Scarpas Fascia')
76 addpath '/Users/cecilieanker/graphCutMFH'
77

78 nNodes=size(IM,1)*size(IM,2)*size(IM,3);
79

80 Weights=getWeights3dscarpa(abdomen);
81 [Cut,Flow] = GraphCutMex(nNodes,tWeights,Weights);
82

83 % assign labels by Cut
84

85 scarpa = zeros(size(IM,1),size(IM,2),size(IM,3));
86 scarpa(Cut)=1;
87

88 patientstruct.scarpa=scarpa;
89 end

E.1.4 doSegmentation2.m

1 function patientstruct=doSegmentation2(patientstruct)
2

3 doPlots = 0;
4

5

6 %Makes x−y points of the segmented boundaries
7 for n=1:size(patientstruct.imageSeriesCorrected,3);
8

9 %innerSAT
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10 innerSATXY(:,:,n)=bwboundaries(patientstruct.innerSAT(:,:,n));
11 patientstruct.innerSATXY = innerSATXY;
12 %Scarpas Fascia
13 scarpasXY(:,:,n)=bwboundaries(patientstruct.scarpa(:,:,n));
14 patientstruct.scarpasXY = scarpasXY;
15 %outer abdomen
16 outerSATXY(:,:,n)=bwboundaries(patientstruct.exteriorMask(:,:,n));
17 patientstruct.outerSATXY = outerSATXY;
18

19 end
20

21 % Classifies the different adipose tissue classes
22 SAT=patientstruct.exteriorMask.*patientstruct.innerSAT;
23

24 SAT2=1−SAT;
25

26 VAT=SAT2.*patientstruct.clusterLabels.*patientstruct.exteriorMask;
27

28 scarpa2 = 1 − patientstruct.scarpa;
29 sSAT=patientstruct.exteriorMask.*scarpa2;
30

31 dSAT=patientstruct.scarpa.*patientstruct.innerSAT;
32

33 classes = 3*VAT + 2*dSAT + 1*sSAT;
34

35 %save relevant types of addipose tissue
36

37 patientstruct.SAT=SAT;
38 patientstruct.VAT=VAT;
39 patientstruct.dSAT=dSAT;
40 patientstruct.sSAT =sSAT;
41 patientstruct.classes=classes;
42

43 % Plots the results
44 if doPlots
45

46

47 % slice number
48 for u=1:size(patientstruct.imageSeriesCorrected,3);
49

50 %semented images
51 figure;
52 imagesc(classes(:,:,u));
53 colormap gray
54 axis square
55 axis off
56

57 end
58

59 end
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Appendix F

Statistical analysis in R

F.1 R-code

Figure F.1: R-code. Bartlett’s test and ANOVA test between intensity groups
and fat type. The code is shown for total fat. A similar code exists for SAT
and VAT.
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Figure F.2: R-code. Unpaired t-tests between intensity groups and adipose
tissue type.
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Figure F.3: R-code. Paired t-test between the new and old method for total
fat. Including code for the histograms of the differences between the new and
old method. A similar code is made for SAT and VAT.
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