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Preface

This is the 7 edition of the textbook for course 02409, Multivariate Statistics. The first
edition where the main parts (corresponding to the course curriculum) were translated
to English was edition 6. Compared to that a large number of corrections have been
made.

Errors and suggestions for corrections are very welcome.

Knut Conradsen and Bjarne Kjær Ersbøll (be@imm.dtu.dk )
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Chapter 1

Summary of linear algebra

This chapter contains a summary of linear algebra with special emphasis on its use in
statistics. The chapter is not intended to be an introduction to the subject. Rather it is a
summary of an already known subject. Therefor we will not give very many examples
within the areas typically covered in algebra and geometry courses. However, we will
give more examples and sometimes proofs within areas which usually do not receive
much attention in all-round courses, but which do enjoy significant use within algebra
in statistics.

In recent years one has started to involve concepts like dual vector space in the theory of
multidimensional normal analysis. Despite the advantages this might bring the author
has chosen not to follow this line. Therefore the subject is not covered in this summary.

In the course of analysis of multidimensional statistical problems one often needs to
invert non-regular matrices. For instance this is the case if one considers a problem
given on a true sub-space of the consideredn-dimensional vector-space. Instead of
just considering the relevant sub-space, many (= most) authors prefer giving partly
algebraic solutions by introducing the so-called pseudo-inverse of a non-regular matrix.
In order to ease the reading of other literature (e.g. journals) we will introduce this
concept and try to visualize it geometrically.

We note that use of pseudo-inverse matrices gives a very convenient way to solve many
matrix equations in an algorithmic form.

1.1 Vector space

We start by giving an overview of the definition and elementary properties in the fun-
damental concept of a linear vector space.

1



2 CHAPTER 1. SUMMARY OF LINEAR ALGEBRA

1.1.1 Definition of a vector space

A vector space (on the real numbers)is a setV with a composition rule + in the set
V ×V → V which is calledvector addition and a composition rule· in R×V → V
calledscalar multiplication , which obey

i) ∀u,v ∈ V : u + v = v + u ( commutative law for vector addition)

ii) ∀u,v,x ∈ V : u+(v+x) = (u+v)+x (associative law for vector addition)

iii) ∃0 ∈ V ∀u ∈ V : u + 0 = u ( existence of a neutral element)

iv) ∀u ∈ V ∃ − u ∈ V : u + (−u) = 0 ( existence on an inverse element)

v) ∀λ ∈ R∀u,v ∈ V : λ(u + v) = λu + λv ( distributive law for scalar
multiplication)

vi) ∀λ1, λ2 ∈ R∀u ∈ V : (λ1 + λ2)u = λ1u + λ2u ( distributive law for scalar
multiplication)

vii) ∀λ1, λ2 ∈ R∀u ∈ V : (λ1λ2)u = λ1(λ2u) ( associative law for scalar
multiplication)

viii) ∀u ∈ V : 1u = u

EXAMPLE 1.1. It is readily shown that all orderedn-tuples

x =


 x1

...
xn




of real numbers constitute a vector space, if the compositions are defined by element,
i.e.


 x1

...
xn


+


 y1

...
yn


 =


 x1 + y1

...
xn + yn




and

λ


 x1

...
xn


 =


 λx1

...
λxn




This vector space is denotedRn �
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A vector spaceU which is subset of a vector spaceV is called asubspacein V . On
the other hand, if we consider vectorsv1, . . . ,vk ∈ V , we can define

span{v1, . . . ,vk}

as the smallest subspace ofV , which contains{v1, . . . ,vk}. It is easily shown that

span{v1, . . . ,vk} = {
k∑

i=1

αivi|αi ∈ R, i = 1, . . . , k}.

A vector of the form
∑
αivi is called a linear combination of the vectorsvi, i =

1, . . . , k. The above result can then be expressed such thatspan{v1, . . . ,vk} pre-
cisely consists of all linear combinations of the vectorsv1, . . . ,vk. Generally we
define

span(U1, . . . , Up)

whereUi ⊆ V , as the smallest subspace ofV , which contains allUi, i = 1, . . . , p.

A side-subspace is a set of the form

v + U = {v + u|u ∈ U},

whereU is a sub-space inV .

The situation is sketched in fig. 1.1.

Vectorsv1, . . . ,vn are said to be linearly independent if the relation

α1v1 + · · · + αnvn = 0

implies that

α1 = · · · = αn = 0

In the opposite case they are said to be linearly dependent and at least one of them can
be expressed as a linear combination of the other two.
A basis for the vector spaceV is a set of linearly independent vectors which span all
of V . Any vector can be expressed unambiguously as a linear combination of vectors
in a basis. The number of elements in different basises of a vector space is always the
same. If this number is finite it is called the dimension of the vector space and it is
writtendim(V ).
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Figure 1.1: Sub-space and corresponding side-subspace inR2.

EXAMPLE 1.2. Rn has the basis




1
0
...
0


 ,



0
1
...
0


 , . . . ,




0
0
...
1


 ,

and is thereforen-dimensional �

In an expression like

v =
n∑

i=1

αivi

where{v1, . . . ,vn} is a basis forV , we call the setα1, . . . , αn v’s coordinates with
respect to the basis{v1, . . . ,vn}.
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1.1.2 Direct sum of vector spaces

Let V be a vector space (of finite dimension) and letU1, . . . , Uk be sub-spaces ofV .
We then say thatV is the direct sum of the sub-spacesU1, . . . , Uk, and we write

V = U1 ⊕ · · · ⊕ Uk =
k
⊕

i = 1
Ui,

if an arbitrary vectorv ∈ V in exactly one way can be expressed like

v = u1 + · · · + uk, u1 ∈ U1, . . . ,uk ∈ Uk (1.1)

This condition is equivalent to that for vectorsui ∈ Ui the following holds true

u1 + · · · + uk = 0 ⇒ u1 = · · · = uk = 0.

This is again equivalent to

dim(span(U1, . . . , Uk)) =
k∑

i=1

dimUi = dimV

Finally, this is equivalent to that all unions of some of theUi’s are0. Of course, it is
a general condition thatspan(U1, . . . , Uk) = V , i.e. that it is at all possible to find an
expression like 1.1. It is the unambiguousity of 1.1 which implies that we may call the
”sum” direct.

We sketch some examples below in fig. 1.2

If V is partitioned into a direct sum

V = U1 ⊕ · · · ⊕ Uk

then we call any arbitrary vectorv’s component inUi for v’s projection ontoUi (by
the direction determined byU1, . . . , Ui−1, Ui+1, . . . , Uk) and we denote itpi(v)

The projectionpi is idempotent, i.e.pi ◦ pi(v) = pi(v), ∀v wheref ◦ g denotes the
combination of f and g.

1.2 Linear projections and matrices

We start with a section on linear projections.
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U1 ⊕ U2 ⊕ U3 = R3 The sum
is direct because for instance
dimU1 +dimU2 +dimU3 = 3

R3 is not a direct sum ofU1

U2; becausedimU1+dimU2 =
4

Her U1 ⊕ U2 = R3 because
for instanceU1 and U2 be-
sides spanningR3 also satisfy
U1 ∩ U2 = 0

Figure 1.2:
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Figure 1.3: Projection of a vector.

1.2.1 Linear projections

A projectionA : U → V , whereU andV are vector spaces are said to be linear if

∀λ1, λ2 ∈ R ∀u1,u2 ∈ U : A(λ1u1 + λ2u2) =
λ1A(u1) + λ2A(u2)

EXAMPLE 1.3. A projectionA : R → R is linear if its graph is a straight line
through (0,0). If the graph is a straight line which does not pass through (0,0) we say
the projection is affine.

By the null-spaceN(A) of a linear projectionA : U → V we mean the sub-space

A−1(0) = {u|A(u) = 0}

The following formula holds connecting the dimension of image space and null-space

dimN(A) + dimA(U) = dimU

In particular we have

dimA(U) ≤ dimU

with equality ifA is injective (i.e. unambiguous). IfA is bijective we readily see that
dimU = dimV . We say that such a projection is an isomorphism and thatU and
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Figure 1.4: Graphs for a linear and an affine projectionR → R.

V are isomorphic. It can be shown that anyn-dimensional (real) vector space is iso-
morphic withRn. In the following we will therefore often identify ann-dimensional
vector space withRn. �

It can be shown that the projections mentioned in the previous section are linear pro-
jections.

1.2.2 Matrices

By a matrixA we understand a rectangular table of numbers like

A =


 a11 · · · a1n

...
...

am1 · · · amn


 .

We will often use the abbreviated notation

A = (aij).

More specifically we callA anm × n matrix because there arem rows andn
columns. Ifm = 1 then the matrix can be called a row-vector and ifn = 1 it can be
called column-vector.
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The matrix one gets by interchanging rows and columns is called the transposed matrix
of A and we denote it byA′, i.e.

A′ =


 a11 · · · am1

...
...

a1n · · · amn




An m × n matrix is square ifn = m. A square matrix for whichA = A′ is call a
symmetric matrix. The elementsaii, i = 1, . . . , n are called the diagonal elements.

An especially important matrix is the identity matrix of ordern

In = I =


 1 · · · 0

...
...

0 · · · 1


 .

A matrix which has zeroes off the diagonal is called a diagonal matrix. We use the
notation

∆ = diag(δ1, . . . , δn) =


 δ1 · · · 0

...
...

0 · · · δn


 .

For givenn×m matricesA andB one defines the matrix sum

A + B =


 a11 + b11 · · · a1m + b1m

...
...

an1 + bn1 · · · anm + bnm


 .

Scalar multiplication is defined by

cA =


 ca11 · · · ca1m

...
...

can1 · · · canm


 ,

i.e. element-wise multiplication.

For anm×n matrixC and ann×p matrixD we define the matrix productP = CD
by having thatP is am× p matrix with the(i, j)’th element

pij =
n∑

k=1

cikdkj
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We note that the matrix product is not commutative, i.e. thatCD generally does not
equalDC.

For transposition we have the following rules

(A + B)′ = A′ + B′

(cA)′ = cA′

(CD)′ = D′C′

1.2.3 Linear projections using matrix-formulation

It can be shown that for any linear projectionA : Rn → Rm there is a corresponding
m× n matrix A, such that

∀x ∈ Rn : A(x) = Ax

Conversely anA defined by this relation is a linear projection.A is easily found as
the matrix which as columns has the coordinates of the projection of the unit vectors in
Rn. E.g. we have

A e2 =


 a11 a12 · · · a1n

...
...

...
am1 am2 · · · amn






0
1
0
...
0


 =


 a12

...
am2


 = a2

If we also have a linear projectionB : Rm → Rk with corresponding matrixB
(k ×m), then we have thatB ◦A↔ BA i.e.

∀x ∈ Rn(B ◦A(x) = B(A(x)) = BAx)

Here we note, that ann× n matrixA is said to be regular if the corresponding linear
projection is bijective. This is equivalent with the existence of an inverse matrix, i.e. a
matrixA−1, which satisfies

AA−1 = A−1A = I

whereI is the identity matrix of ordern.
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, u =




α1e1 + α2e2 =
[

e1 e2

] [ α1

α2

]

α̂1ê1 + α̂2ê2 =
[

ê1 ê2

] [ α̂1

α̂2

]

Figure 1.5: Sketch of the coordinate transformation problem.

A square matrix which corresponds to an idempotent projection is itself called idem-
potent. It is readily seen that a matrixA is idempotent if and only if

AA = A

We note that if an idempotent matrix is regular, then is equals the identity matrix, i.e.
the corresponding projection is the identity.

1.2.4 Coordinate transformation

In this section we give formulas for the matrix formulation of a linear projection from
one basis-set to another.

We first consider the change of coordinates going from one coordinate system to an-
other. Normally, we choose not to distinguish between a vectoru and its set of coor-
dinates. This gives a simple notation and does not lead to confusion. However, when
several coordinate systems are involved we do need to be able to make this distinction.
In Rn we consider two coordinate systems(e1, . . . , en) and(ê1, . . . , ên) Tre co-
ordinates of a vectoru in each of the two coordinate systems is denoted respectively
(α1, . . . , αn)′ and(α̂1, . . . , α̂n)′, cf. figure 1.5.

Let the ”new” system(ê1, . . . , ên) be given by

(ê1, . . . , ên) = (e1, . . . , en)S
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i.e.

êi = s1ie1 + · · · + sniei, i = 1, . . . , n.

The columns in theS-matrix are thus equal to the ”new” systems ”old” coordinates.S
is called the coordinate transformation matrix.

REMARK 1.1. However, many references use the expression coordinate transforma-
tion matrix about the matrixS−1. It is therefore important to be sure which matrix
one is talking about.

Since

(e1 · · · en)


 α1

...
αn


 = (ê1 · · · ên)


 α̂1

...
α̂n


 ,

(cf. fig. 1.5), the connection between a vectors ”old” and ”new” coordinates becomes


 α1

...
αn


 = S


 α̂1

...
α̂n


⇐⇒


 α̂1

...
α̂n


 = S−1


 α1

...
αn


 .

H

We now consider a linear projectionA : Rn → Rm, and letA’s matrix formulation
w.r.t. the bases(e1, . . . , en) and(f1, . . . ,fm) be

β = Aα

and the formulation w.r.t. the bases(ê1, . . . , ên) = (e1, . . . , en)S and
(f̂1, . . . , f̂m) = (f1, . . . ,fm)T be

β̂ = Âα̂

Then we have

Â = S−1AT,

which is readily found by use of the rules of coordinate transformation on the coordi-
nates.
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If we are concerned with projectionsRn → Rn and we use the same coordinate
transformation, then we get the relation

Â = S−1AS.

The matricesA andÂ = S−1AS are then called similar matrices.

1.2.5 Rank of a matrix

By rank of a linear projectionA : Rn → Rm we mean the dimension of the image
space, i.e.

rg(A) = dimA(Rn).

By rank of a matrixA we mean the rank of the corresponding linear projection.

We see thatrg(A) exactly equals the number of linearly independent column vectors
in A. Trivially we therefore have

rg(A) ≤ n.

If we introduce the transposed matrixA′ it is easily shown thatrg(A) = rg(A′)i.e.
we have

rg(A) ≤ min(m,n).

If A andB are twom× n matrices, then

rg(A + B) ≤ rg(A) + rg(B).

This relation is obvious when one remembers that for the corresponding projectionsA
andB we have(A+B) (Rn) ⊆ A(Rn) ∪B(Rn).

If A is an(m× n)-matrix andB is an(k ×m)-matrix we have

rg(BA) ≤ rg(A).

If B is regular(m×m) we have

rg(BA) = rg(A).
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These relations are immediate consequences of the relationdimB(A(Rn)) ≤ dim(A(Rn)),
where we have equality ifB is injective. There are of course analogue relations for an
(n× p)-matrixC:

rg(AC) ≤ rg(A)

with equality ifC is a regular(n × n)-matrix. From these we can deduce for regular
B andC that

rg(BAC) = rg(A).

Finally we mention that an(n× n)-matrixA is regular ifrg(A) = n.

1.2.6 Determinant of a matrix

The abstract definition of the determinant of a squarep× p matrixA is

det(A) =
∑

alle σ
±a1σ(1) . . . apσ(p),

whereσ is a permutation of the numbers1, . . . , p and where we use the + sign if the
permutation is even (i.e. it can be composed of an even number of neighbour swaps)
and - if it is odd.

We will not go into the background of this definition. We note that the determinant
represents the volume of the corresponding linear projection i.e. for an(n×n) -matrix
A

| det(A)| =
vol(A(I))

vol(I)
,

whereI is an n -dimensional box andA(I) is the image ofI (being ann -
dimensional parallelepiped) found by the corresponding projection.

The situation is sketched in 2 dimensions in fig. 1.6. For2× 2 and3× 3 matrices the
definition of the determinant becomes

det
(
a b
c d

)
= ad− bc

det


 a b c
d e f
g h i


 = aei+ bfg + cdh− gec− hfa− idb.
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Figure 1.6: A rectangle and its image after a linear projection.

For determinants of higher order (heren’th order) we can develop the determinant by
thei’th row i.e.

det(A) =
n∑

j=1

aij(−1)i+j det(Aij),

whereAij is the matrix we get after deleting thei’th row and thej’th column ofA.
The number

Aij = (−1)i+j det(Aij)

is also called the elementaij ’s cofactor. Of course an analogue procedure exists for
development by columns.

When one explicitly must evaluate a determinant the following three rules are handy:

i) interchanging 2 rows (columns) inA multipliesdet(A) by−1.

ii) multiplying a row (column) by a scalar multipliesdet(A) by the scalar.

iii) adding a multiplum of a row (column) to another row (column) leavesdet(A)
unchanged.

When determining the rank of a matrix it can be useful to remember that the rank
is the largest numberr for which the matrix has a determinant of the minor which
different from 0 and ofr’th order. We find as a special case thatA is regular if
and only ifdetA 6= 0. This also seems intuitively obvious when one considers the
determinant being the volume. If it is 0 then the projection must in some sense ”reduce
the dimension”.

For square matricesA andB we have

det(AB) = det(A) det(B)
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For a diagonal matrixΛ = diag(λ1, . . . , λn) we have

det(Λ) = λ1 . . . λn

For a triangular matrixC with diagonal elementsc1, . . . , cn we have

det(C) = c1 · · · cn

By means of determinants one can directly state the inverse of a regular matrixA. We
have

A−1 =
1

det(A)
(Aij)′,

i.e. the inverse of a regular matrixA is the transposed of the matrix we get by substi-
tuting each element inA by its complement divided bydetA. However, note that
this formular is not directly applicable for the inversion of large matrices because of
the large number of computations involved in the calculation of determinants.

Something similar is true forCramérs theorem on solving a linear system of equations:
Consider the regular matrixA = (A1, . . . ,An). Then the solution to the equation

Ax = b

is given by

xi =
det(a1, . . . ,ai−1, b,ai+1, . . . ,an)

detA

1.2.7 Block-matrices

By a block-matrix we mean a matrix of the form

B =


 B11 · · · B1n

...
...

Bm1 · · · Bmn




where the blocksBij are matrices of ordermi × nj .

When adding and multiplying one can use the usual rules of calculation for matrices
and just consider the blocks as elements. For instance we find

[
A B
C D

] [
R
S

]
=
[

AR + BS
CR + DS

]
,
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under the obvious condition that the involved products exist etc.

First we give a result on determinants of the ”triangular” matrix.

THEOREM 1.1. Let the square matrixA be partitioned into block-matrices

A =
[

B C
0 D

]

whereB andD er kvadratiske og are square and0 is a matrix only containing 0’s.
Then we have

det(A) = det(B) det(D)

N

PROOF 1.1. We have that[
B C
0 D

]
=
[

I 0
0 D

] [
B C
0 I

]

where theI ’s are identity-matrices, not necessarily of same order. If one develops the
first matrix by its 1st row we see that it has the same determinant as the matrix one gets
by deleting the first row and column. By repeating this until the remaining minor isD,
we see that

det
[

I 0
0 D

]
= det(D)

Analogously we find that the last matrix has the determinantdetB and the result
follows. �

The following theorem expands this result.

THEOREM 1.2. Let the matrixΣ be partitioned into block matrices

Σ =
[

Σ11 Σ12

Σ21 Σ22

]

Then we have

det(Σ) = det(Σ11 − Σ12Σ−1
22 Σ21) det(Σ22),

under the condition thatΣ22 is regular. N
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PROOF 1.2. Since[
Σ11 Σ12

Σ21 Σ22

] [
I 0

−Σ−1
22 Σ21 I

]
=
[

Σ11 − Σ12Σ−1
22 Σ21 Σ12

0 Σ22

]
,

the result follows immediately from the previous theorem. �

The last theorem gives a useful result on inversion of matrices which are partitioned
into block matrices.

THEOREM 1.3. For the symmetrical matrix

Σ =
[

Σ11 Σ12

Σ21 Σ22

]

we have

Σ−1 =
[

B−1 −B−1A′

−AB−1 Σ−1
22 + AB−1A′

]
,

where

A = Σ−1
22 Σ−1

21

B = Σ11 − Σ12Σ−1
22 Σ21,

conditioned on the existence of the inverses involved. N

PROOF 1.3. The result follows immediately by multiplication ofΣ andΣ−1. �

1.3 Pseudoinverse or generalised inverse matrix
of a non-regular matrix

We consider a linear projection

A : E → F

whereE is ann-dimensional andF anm-dimensional (euclidian) vector space. The
matrix corresponding toA is usually calledA and it has the dimensionsm× n. We
equal the null space ofA toU , i.e.

U = A−1(0),
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and call its dimensionr. The image space

V = A(E)

has dimensions = n− r , cf. p. 7.

We now consider an arbitrarys -dimensional spaceU∗ ⊆ E, which is complementary
toU , and an arbitrarym−s dimensional subspaceV ∗ ⊆ F , which is complementary
to V .

An arbitrary vectorx ∈ E can now be written as

x = u + u∗, u ∈ U og u∗ ∈ U∗,

sinceu andu∗ are given by

u = x − pU∗(x)
u∗ = pU∗(x)

HerepU∗ denotes the projection ofE ontoU∗ along the sub-spaceU . Similarly any
y ∈ F can be written

y = (y − pV (y)) + pV (y) = v∗ + v

where

pV : F → V

is the projection ofF ontoV alongV ∗.

Since

A(x) = A(u + u∗) = A(u∗),

we see thatA is constant on the side-spaces

u∗ + U = {u∗ + u|u ∈ U}

and it follows thatA’s restriction onU∗ is a bijective projection ofU∗ ontoV . This
projection therefore has an inverse

B1 : V → U∗
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Figure 1.7: Sketch showing pseudo-inverse projection.
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given by

B1(v) = u∗ ⇔ A(u∗) = v

We are now able to formulate the definition of the pseudo-inverse projection.

DEFINITION 1.1. By a pseudoinverse or generalised inverse projection of the projec-
tionA we mean a projection

B = B1 ◦ pV : F → E,

wherepV andB1 are as mentioned previously. N

REMARK 1.2. The pseudo-inverse is thus the combined projection ontoV alongV ∗

and the inverse ofA’s restriction toU∗. H

REMARK 1.3. The pseudo-inverse is of course by no means unambiguous, because
we get one for each choice of the sub-spacesU∗ andV ∗. H

We can now state some obvious properties of the pseudo-inverse in the following

THEOREM 1.4. The pseudo-inverseB of A has the following properties

i) rg(B) = rg(A) = s

ii) A ◦B = pV : F → V

iii) B ◦A = pU∗ : E → U∗

N

It can be shown that these properties also characterise pseudo-inverse projections, be-
cause we have

THEOREM 1.5. Let A : E → F be linear with ranks. Assume thatB also has
rank s, and thatA ◦ B andB ◦ A both are projections of ranks. ThenB is a
pseudo-inverse ofA as defined above. N

PROOF 1.4. Omitted (relatively simple exercise in linear algebra). �
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We now give a matrix formulation of the above mentioned definitions.

DEFINITION 1.2. Let A be an(m× n)-matrix of ranks. An (n×m)-matrixB of
ranks, which satisfies

i) AB idempotetn with ranks

ii) BA idempotent with ranks,

is called a pseudo-inverse or a generalised inverse ofA. N

By means of the pseudo-inverse we can characterise the set of possible solutions of a
system of linear equations. This is due to the following

THEOREM 1.6. Let A andB be as in definition 1.2. The general solution of the
equation

Ax = 0

is

(I− BA)z, z ∈ Rn,

and the general solution of the equation (which is assumed to be consistent)

Ax = y,

is

By + (I − BA)z, z ∈ Rn.

N

PROOF 1.5. We first consider the homogeneous equation. A solutionx is obviously
a point in the null-spaceN(A) = A−1(0) of the linear projection corresponding
to A. The matrixBA according to theorem 1.1 - corresponds precisely to the
projection ontoU∗. ThereforeI − BA corresponds to the projection onto the null-
spaceU = N(A). Therefore, an arbitraryx ∈ N(A) can be written

x = (I − BA)z, z ∈ Rn.

The statement regarding the homogeneous equation has now been proved.
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The equationAx = y only has a solution (i.e. is only consistent) ify lies in the
image space ofA. For such ay we have

ABy = y,

according to theorem 1.4.

The result for the complete solution follows readily. �

In order to illustrate the concept we now give

EXAMPLE 1.4. We consider the matrix

A =


 1 1 2

2 1 1
2 1 1


 .

A obviously has the rank 2.

We will consider the linear projection corresponding toA which is

A : E → F

whereE andF are 3-dimensional vector spaces with bases{e1, e2, e3} og{f1,f2,f3}.
The coordinates of these bases are denoted by smallx’s andy’s respectively, such that
A can be formulated in the coordinates


 y1
y2
y3


 =


 1 1 2

2 1 1
2 1 1




 x1

x2

x3


 .

First we will determine the null-space

U = N(A) = A−1(0)

for A. We have

x ∈ U ⇔ Ax = 0
⇔ x1 + x2 + 2x3 = 0 ∧ 2x1 + x2 + x3 = 0
⇔ x1 = x3 ∧ −3x1 = x2

⇔ x′ = x1(1,−3, 1).
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The null-space is then

U = {t ·

 1

−3
1


 |t ∈ R} = {t · u3|t ∈ R}

As complementary sub-space we choose to consider the orthogonal complementU∗.
This has the equation

(1,−3, 1)x = 0,

or

U∗ = {x|x1 − 3x2 + x3 = 0}

We now consider a new basis forE, namely{u1,u2,u3}. Coordinates in this are
denoted using smallz’s. The conversion fromz-coordinates tox-coordinates is given
by


 x1

x2

x3


 =


 1 3 1

0 2 −3
−1 3 1




 z1
z2
z3




or

x = Sz.

The columns of theS matrix are known to be theu’s coordinates in thee-system.

A’s image spaceV is 2-dimensional and is spanned byA’s columns. We can for
instance choose the first two, i.e.

v1 =


 1

2
2


 , v2 =


 1

1
1


 .

As complementary sub-spaceV ∗ we chooseV ’s orthogonal complement. This is
produced by making the cross-product ofv1 andv2:

v1 × v2 =


 0

1
−1


 = v3
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We now consider the new basis{v1,v2,v3} for F . The coordinates in this are
denoted using smallw’s. The conversion fromw-coordinates toy-coordinates is given
by


 y1
y2
y3


 =


 1 1 0

2 1 1
2 1 −1




 w1

w2

w3


 ,

or in compact notation

y = Tw.

We will now find coordinate expressions forA in z- andw-coordinates. Since

y = Ax

we have

Tw = AS z

or

w = T−1AS z.

Now we have

T−1 =


 −1 1

2
1
2

2 − 1
2 − 1

2
0 1

2 − 1
2


 ,

wherefore

T−1AS =


 −1 1

2
1
2

2 − 1
2 − 1

2
0 1

2 − 1
2




 1 1 2

2 1 1
2 1 1




 1 3 1

0 2 −3
−1 3 1




=


 2 0 0

−3 11 0
0 0 0


 .

Since{u1,u2} spansU∗ and{v1,v2} spansV , we note that the condition

A : U∗ → V
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has the coordinate expression[
w1

w2

]
=
[

2 0
−3 11

] [
z1
z2

]
.

It has the inverse projection

[
z1
z2

]
=
[

1
2 0
3
22

1
11

] [
w1

w2

]
.

If we consider the points as points inE andF - and not just as points inU∗ andV
then we get


 z1
z2
z3


 =


 1

2 0 0
3
22

1
11 0

0 0 0




 w1

w2

w3


 (1.2)

The projection ofF ontoV alongV ∗ has the formulation in coordinates
 w1

w2

w3


→


 w1

w2

0


 (1.3)

This is thez − w coordinate formulation for the pseudo-inverseB of the projection
A. However, we want a description inx− y coordinates. Since

z = S−1x = Cw = CT−1y

we get

x = SCT−1y,

whereC is the matrix in formula 1.1.

We therefore have

B = SCT−1

=


 1 3 1

0 2 −3
−1 3 1




 1

2 0 0
3
22

1
11 0

0 0 0




 −1 1

2
1
2

2 − 1
2 − 1

2
0 1

2 − 1
2




=
1
22


 −8 7 7

2 1 1
14 −4 −4




This matrix is a pseudo-inverse ofA. �
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As it is seen from the previous example it is rather tedious just to use the definition in
order to calculate a pseudo-inverse. Often one may utilise the following

THEOREM 1.7. Let them× n matrixA have ranks and let

A =
[

C D
E F

]
,

whereC is regular with dimensions× s. A (possible) pseudo-inverse ofA is then

A− =
[

C−1 0
0 0

]
,

where the 0-matrices have dimensions such thatA− has the dimensionn×m. N

PROOF 1.6. We have

AA−A =
[

C D
E F

] [
C−1 0
0 0

] [
C D
E F

]
=
[

C D
E EC−1D

]
.

Sincerg(A) = s, then the lastn− s columns can be written as linear combinations of
the firsts columns, i.e. there exists a matrixH, so

[
D
F

]
=
[

C
E

]
H

or

D = CH
F = EH

From this we find

F = EC−1D.

If we insert this in the top formula we have

AA−A = A

By pre-multiplication withA− and post-multiplication withA− respectively, we see
thatA−A andAA− are idempotent. The theorem is now derived from the definition
page 22. �
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We illustrate the use of the theorem in the following

EXAMPLE 1.5. We consider the matrix given in example 1.4

A =


 1 1 2

2 1 1
2 1 1


 .

Since

[
1 1
2 1

]−1

=
[ −1 1

2 −1

]
,

we can use as pseudo-inverse:

A− =


 −1 1 0

2 −1 0
0 0 0




�

The advantage of using the procedure given in example 1.4 instead of the far more
simple one given in example 1.5, is that one obtains a precise geometrical description
of the situation.

REMARK 1.4. Finally, we note that the literature has a number of definitions of
pseudo-inverses and generalised inverses, so it is necessary to specify exactly what
the definition is. A case of special interest is the so-calledMoore-PenroseinverseA+

of a matrixA. It satisfies the following

i) AA+A = A

ii) A+AA+ = A+

iii) (AA+)′ = AA+

iv) (A+A)′ = A+A

It is obvious that a Moore-Penrose inverse really is a generalised inverse. The other
conditions guarantee that a least squares solution of an inconsistent equation find a so-
lution with minimal norm. We will not pursue this further here, only refer the interested
reader to the literature e.g. [19]. H
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1.4 Eigenvalue problems. Quadratic forms

We begin with the fundamental definitions and theorems in

1.4.1 Eigenvalues and eigenvectors for symmetric matrices

The definition of an eigenvector and an eigenvalue given below are valid for arbitrary
square matrices. However, in the sequel we will always assume the involved matrices
are symmetrical unless explicitly stated otherwise.

An eigenvalueλ of the symmetricn× n matrixA is a solution to the equation

det(A − λI) = 0.

There aren (real-valued) eigenvalues (some may have equal values). Ifλ is an eigen-
value, then vectorsx 6= 0, exist such that

Ax = λx,

i.e. vector exist such that the linear projection corresponding toA leads to a multiplum
of its self. Such vectors are called eigenvectors corresponding to the eigenvalueλ. The
number of eigenvalues different from 0 equalsrg(A). An eigenvalue is to be counted
as many times as its multiplicity indicates. A more interesting theorem is

THEOREM 1.8. If λi andλj are different eigenvalues, and ifxi andxj are the
corresponding eigenvectors, thenxi andxj are orthogonal, i.e.x′

ixj = 0. N

PROOF 1.7. We have

Axi = λixi

Axj = λjxj

Here we readily find

x′
jAxi = λix

′
jxi

x′
iAxj = λjx

′
ixj .

We transpose the first relationship and get

x′
iA

′xj = λix
′
ixj .
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SinceA is symmetric this implies that

λix
′
ixj = λjx

′
ixj ,

and sinceλi 6= λj thenx′
ixj = 0 i.e. xi ⊥ xj . �

The result in theorem 1.8 can be supplemented with the following theorem given with-
out proof.

THEOREM 1.9. If λ is an eigenvalue with multiplicitym, then the set of eigen-
vectors corresponding toλ forms anm-dimensional sub-space. This has the special
implication that there existsm orthogonal eigenvectors corresponding toλ. N

By combining these two theorems one readily sees the following

COROLLORY 1.1. For an arbitrary symmetric matrixA a basis exists forRn con-
sisting of mutually orthogonal eigenvectors ofA.

If such a basis consisting of orthogonal eigenvectors is normed then one gets an or-
thonormal basis(p1, . . . ,pn). If we let P equal then× n matrix whos columns are
the coordinates of these vectors, i.e.

P = (p1, . . . ,pn)

we get

P′P = I

P is therefore an orthogonal matrix, and

AP = PΛ

whereΛ is a diagonal matrix with the eigenvalues forA (repeated corresponding to
multiplicity) on the diagonal. By means of this we get the following

THEOREM 1.10. Let A be a symmetric matrix. Then an orthogonal matrixP exists,
such that

P′AP = Λ
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whereΛ is a diagonal matrix withA ’s eigenvalues on the diagonal (repeated cor-
responding to the multiplicity). AsP one can choose a matrix, whos columns are
orthonormed eigenvectors ofA. N

PROOF 1.8. Obvious from the above relation. �

THEOREM 1.11. Let A be a symmetric matrix with non-negative eigenvalues. Then
a regular matrixB exists such that

B′AB = E,

whereE is a diagonal matrix having 0’s or 1’s on the diagonal. The number of 1’s
equalsrg(A). If A is of full rank thenE becomes an identity matrix. N

PROOF 1.9. By (post-) multiplication ofP with a diagonal matrixC which has the
following diagonal elements

ci =
{ 1√

λi
λi > 0

1 λi = 0
,

we readily find the theorem withB = PC. �

The relation in theorem 1.10 is equivalent to

A = PΛP′

or

A = (p1 . . .pn)


 λ1 · · · 0

...
...

0 · · · λn




 p′

1
...

p′
n


 ,

i.e. we have the following partitioning of the matrix

A = λ1p1p
′
1 + · · · + λnpnp′

n.

This partitioning of the symmetrical matrixA is often called its spectral decomposi-
tion, since the eigenvalues{λ1, . . . , λn} are called the spectrum of the matrix.
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With the obvious definition ofΛ
1
2 beingdiag(

√
λ1, . . . ,

√
λn), we note that we can

write

A = (PΛ
1
2 )(PΛ

1
2 )′ = GG′.

Here we mention that ifA is positive definite, then there is a relation

A = LL′,

whereL is a lower triangular matrix. This relation is called the Cholesky factorisation
of A (see e.g. [21]).

Finally we have

THEOREM 1.12. Let A be a regular symmetrical matrix. ThenA andA−1 have
the same eigenvectors corresponding to reciprocal eigenvalues. N

PROOF 1.10. Let λ be an eigenvalue ofA andx be a corresponding eigenvector,
i.e.

Ax = λx.

SinceA is regular then this is equivalent to

A−1x =
1
λ

x,

which concludes the proof. �

Finally, we note that

detA =
∏

i

λi.

EXAMPLE 1.6. Orthogonal transformations of the plane. In order to give a geometri-
cal understanding of the transformations which reduce a symmetrical matrix into diag-
onal form, we state the orthogonal transformations of the plane.

By utilising the orthogonality conditionsP′P = I we readily see, that the only or-
thogonal2 × 2-matrices are matrices of the form

[
cosα − sinα
sinα cosα

]
og

[
cosα sinα
sinα − cosα

]
.
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Figure 1.8: Rotation and reflection as determined by the angleα.

We will now show that these correspond to rotations around the origin and reflections
in straight lines.

We do this by determining coordinate expressions for the linear projectionsdα andsα

, which respectively represent a rotation of the plane of the angleα and a reflection in
the line having the angleα with the 1.st axis.

The projections are illustrated in figure 1.8. Sincex = r(cos v, sin v)′, wherer is
equal to 1, we have

dα(x) =
[

cos(α+ v)
sin(α+ v)

]
=
[

cosα cos v − sinα sin v
sinα cos v + cosα sin v

]

=
[

cosα − sinα
sinα cosα

] [
cos v
sin v

]
.

From this we finddα has the matrix representation

[
x1

x2

]
→
[

cosα − sinα
sinα cosα

] [
x1

x2

]
.

Analogously we find

sα(x) =
[

cos(2α− v)
sin(2α− v)

]
=
[

cos 2α cos v + sin 2α sin v
sin 2α cos v − cos 2α sin v

]

=
[

cos 2α sin 2α
sin 2α − cos 2α

] [
cos v
sin v

]
.
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so thatsα has the matrix representation

[
x1

x2

]
→
[

cos 2α sin 2α
sin 2α − cos 2α

] [
x1

x2

]
.

This concludes the proof of the introductory statement.

It is often useful to to have the following relations between rotations and reflektions of
the plane in mind

sπ
4
◦ dα = sπ

4 −α
2

sα = sπ
4
◦ dπ

2 −2α.

The first relation follows from

[
0 1
1 0

] [
cosα − sinα
sinα cosα

]
=[

sinα cosα
cosα − sinα

]
=
[

cos(π
4 − α) sin(π

4 − α)
sin(π

4 − α) − cos(π
4 − α)

]
.

The last two relations are forund from the first by substitutingα with π
2 − 2α. �

Part of the following section will be devoted to consider the problem of generalising
the spectral decomposition of an arbitrary matrix.

1.4.2 Singular value decomposition of an arbitrary matrix.
Q- and R-mode analysis

We first state the main result, also known as Eckart-Young’s theorem.

THEOREM 1.13. Let x be an arbitraryn × p matrix of rankr. Then orthogonal
matricesU (p× r) andV (n× r) exist, as do positive numbersγ1, . . . , γr, such that

x = VΓU′ = [v1 · · ·vr]


γ1· · · 0

...
...

0 · · · γr




u′

1
...

u′
r


 = γ1v1u

′
1 + · · · + γrvru

′
r,

whereΓ = diag(γ1, . . . , γr) andv1, . . . ,vr are the columns ofV andu1, . . . ,ur

are the columns ofU. N
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PROOF 1.11. Omitted. See e.g. [9]. �

The numbersγ1, . . . , γr are calledx’s singular values.

In the sequel we will investigate the relationship betweenx ’s singular values and the
eigenvalue problems for the symmetrical matricesxx′ (n× n) andx′x (p× p).

However, first we will state

THEOREM 1.14. For an arbitrary (real valued) matrixx it holds thatx′x andxx′

have non-negative eigenvalues and

rg(x′x) = rg(xx′) = rg(x)

N

PROOF 1.12. It suffices to prove the results forx′x. It is obvious thatx′x is
symmetric, so an orthogonal matrixP, exists such that

P′x′xP = Λ

i.e.

(xP)′(xP) = Λ.

By lettingxP = B = (bij), we findB′B = Λ, i.e.

λi =
∑

j

b2ij > 0,

i.e. x′x has non-negative eigenvectors. Furthermore we see that

rg(x′x) = card(λi 6= 0)
= card{columnsbj in B , which are6= 0 }

Sinceb′ibj = 0 for i 6= j (due to equation 1.1) we have

rg(x′x) = rg(B)

SinceP is regular, and using a result on page 13, we find

rg(B) = rg(xP) = rg(x).

�
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We state a small corollary to the theorem.

COROLLORY 1.2. Let Σ be symmetrical and positive definite. Then for an arbitrary
matrixx it holds that

rg(x′Σ−1x) = rg(x),

under the condition that the involved products exist.

PROOF 1.13. SinceΣ−1 is also regular and positive definite, an orthogonal matrix
P exists, such that

P′Σ−1P = Λ,

whereΛ is a diagonal matrix. This implies

Σ−1 = PΛP′ = PΛ
1
2 Λ

1
2 P′ = PΛ

1
2 (PΛ

1
2 )′ = BB′.

HereΛ
1
2 denotes the diagonal matrix, whos diagonal elements are the square roots

of the corresponding elements ofΛ. It is obvious thatB is regular. This relation is
inserted and we find

x′Σ−1x = x′BB′x = (B′x)′B′x,

i.e.

rg(x′Σ−1x) = rg(B′x) = rg(x),

which concludes the proof. �

Using the notation from theorem 1.14 we have.

THEOREM 1.15.

i) the matrixxx′ (n×n) hasr positive eigenvalues andn− r eigenvalues equal
to 0. The positive eigenvalues areγ2

1 , . . . , γ
2
r , whereγ1, . . . , γr are the singular

values ofx. The corresponding eigenvectors arev1, . . . ,vr.

ii) Similarly x′x (p × p) hasr positive and(p − r) 0-eigenvalues. The positive
eigenvalues areγ2

1 , . . . , γ
2
r and the corresponding eigenvectors areu1, . . . ,ur.
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iii) The positive eigenvalues ofxx′ andx′x are therefore equal and the relation-
ship between the corresponding eigenvectors is(m = 1, . . . , r)

vm =
1
γm

xum og um =
1
γm

x′vm,

or in a more compact notation

V = xUΓ−1 og U = x′VΓ−1

N

PROOF 1.14. Follows by use of Eckart-Young’s theorem. �

REMARK 1.5. Analysis of the matrixx′x is calledR -mode analysis and the analysis
of xx′ is calledQ -mode analysis. These names originate from factor analysis, cf.
chapter 8. H

REMARK 1.6. The theorem implies that one can find the results for an R-mode anal-
ysis from a Q-mode analysis ad vice versa. For practical use one should therefore
consider which of the matricesx′x andxx′ has lowest order. H

1.4.3 Quadratic forms and positive semi-definite matrices

In this section we still consider symmetrical matrices only.

By the quadratic form corresponding to the symmetrical matrixA we mean the pro-
jection

x → x′Ax =
∑

aiix
2
i + 2

∑
1<j

aijxixj .

We say that a symmetrical matrixA is positive definite respectively positive semi-
definite if the corresponding quadratic form is positive respectively non-negative for
vectors different from the 0-vector, i.e. if

∀x 6= 0 : x′Ax > 0,
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respectively

∀x 6= 0 : x′Ax ≥ 0.

We then also say the quadratic form is positive definite respectively positive semi-
definite.

We have the following

THEOREM 1.16. The symmetrical matrixA is positive definite respectively semi-
definite, if allA ’s eigenvalues are positive respectively non-negative. N

PROOF 1.15. With P as in theorem 1.10 we have

x′Ax = x′P′PAPP′x = (P′x)′Λ(P′x)
= y′Λy = λ1y

2
1 + · · · + λny

2
n.

�

Another useful result is

THEOREM 1.17. A symmetricaln × n matrixA is positive definite if all principal
minors

di = det


 a11 · · · a1i

...
...

ai1 · · · aii


 , i = 1, . . . , n,

are positive. N

PROOF 1.16. Omitted �

We now state a very important theorem on extrema of quadratic forms

THEOREM 1.18. If we let the eigenvalues for the symmetrical matrixA equalλ1 ≥
· · · ≥ λn with corresponding eigenvectorsp1, . . . ,pn, and we define

R(x) =
x′Ax

x′x
,
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and

Mk = {x|x′pi = 0, i = 1, . . . , k − 1},

Then it holds that

sup
x
R(x) = R(p1) = λ1,

inf
x
R(x) = R(pn) = λn,

sup
x∈Mk

R(x) = R(pk) = λk.

N

PROOF 1.17. An arbitrary vectorx can be written

x = α1p1 + · · · + αnpn.

If p′
ix = 0, i = 1, . . . , k − 1, we findα1 = · · · = αk−1 = 0, i.e.

x = αkpk + · · · + αnpn.

Therefore we have

x′Ax = α2
kλk + · · · + α2

nλn,

and

R(x) =
x′Ax

x′x
=
α2

kλk + · · · + α2
nλn

α2
k + · · · + α2

n

It is obvious that this expression is maximal for

(αk, . . . , αn) = (αk, 0, . . . , 0),

where it takes the valueλk. The result with inf is proved analogously. �

REMARK 1.7. The theorem say fork = 1, that the unit vector, i.e. the ”direction”,
for which the quadratic form takes its maximal value, is the eigenvector corresponding
to the largest eigenvalue. If we only consider the quadratic form in unit vectors which
are orthogonal to eigenvectors corresponding to thek− 1 largest eigenvalues, then the
theorem says that maximum is in the direction corresponding to the eigenvector which
corresponds to thek’th largest eigenvalue. H
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Figure 1.9: Illustration showing change of basis

REMARK 1.8. R(x) is also called Rayleigh’s coefficient. H

We will now describe the level curves for positive definite forms.

THEOREM 1.19. LetA be positive definite. Then the set of solutions for the equation

x′Ax = c, c > 0,

is an ellipsoid with principle axes in the directions of the eigenvectors. The first prin-
ciple axis corresponds with the smallest eigenvalue, the second to the second smallest
eigenvalue etc. N

PROOF 1.18. We consider the matrixP = (p1, . . . ,pn), whos columns are the
coordinates of orthonormed eigenvectors ofA. Assumingy = P′x the following
holds

x′Ax = y′Λy

= λ1y
2
1 + · · · + λny

2
n

=
y2
1

(1/
√
λ1)2

+ · · · + y2
n

(1/
√
λn)2

(1.4)

The matrix equation

y = P′x ⇔ x = Py

corresponds to a change of basis from the original orthonormal basis{e1, . . . , en} to
the orthonormal basis{p1, . . . ,pn}.



1.4. EIGENVALUE PROBLEMS . QUADRATIC FORMS 41

This is seen by lettingS be a point whos{e1, . . . , en}-coordinates are calledx and
whos{p1, . . . ,pn}-coordinates are calledy. Then it holds that

x1e1 + · · · + xnen = y1p1 + · · · + ynpn,

or

(e1 · · ·en)x = (p1 · · ·pn)y,

i.e.

Ix = Py,

whereI is a unit matrix.

The expression in 1.4 therefore shows the equation of the set of solutions iny-coordinates
corresponding to the coordinate system consisting of orthonormed eigenvectors. This
shows that we are dealing with an ellipsoid. The rest of the theorem now follows by
noting that the 1.st principle axis corresponds to theyi, for which1/

√
λi is maximal,

i.e. for whichλi is minimal. �

REMARK 1.9. If the matrix is only positive semi-definite then the set of solutions to
the equation correspond to an elliptical cylinder. This can be seen by change of base to
the base{p1, . . . ,pn} consisting of orthonormal eigenvectors, where we for simplicity
assume thatp1, . . . ,pr corresponds to the eigenvalues which are different form 0. We
then have

x′Ax = c ⇔ λ1y
2
1 + · · · + λry

2
r + 0y2

r+1 + · · · + 0y2
n = c

⇔ λ1y
2
1 + · · · + λry

2
r = c.

This leads to the the statement. If we consider the restriction of the quadratic form to
the subspace spanned by the eigenvectors corresponding to eigenvectors> 0, then the
set of solutions becomes an ellipsoid. H

EXAMPLE 1.7. We consider the symmetrical positive definite matrix

A =
[

3
√

2√
2 2

]
.

The quadratic form corresponding toA is

x′Ax = 3x2
1 + 2x2

2 + 2
√

2x1x2,
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Figure 1.10: Ellipse determined by the quadratic form given in example 1.7.

so the unit ellipse corresponding toA is the set of solutions to the equation

3x2
1 + 2x2

2 + 2
√

2x1x2 = 1.

In order to determine the principle axes we determineA’s eigenvalues. We find

(A − λ I) = 0 ⇔ λ2 − 5λ+ 4 = 0
⇔ λ = 1 ∨ λ = 4.

Eigen vectors corresponding toλ = 1 respectivelyλ = 4 are seen to be of the form
t(1,−√

2) respectivelyt(1,
√

2/2). We norm these and get

p1 =

[ √
3

3
−√

6
3

]
, p2 =

[ √
6

3
−√

3
3

]
.

If we choose the base{p1,p2}, then the coordinate representation of the quadratic
form becomes

y → y2
1 + 4y2

2 ,

The ellipse has the equation

y2
1

12
+
y2
2

1
2

2 = 1.
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It is illustrated in figure 1.10

Since

p1 =

[ √
3

3
−√

6
3

]
=
[

0.577
−0.820

]

'
[

cos(−54.7◦)
sin(−54, 7◦)

]
,

the new coordinate system corresponds to a rotation of the old one with the angle
−54.7◦. �

1.4.4 The general eigenvalue problem for symmetrical ma-
trices

For use with the theory of canonical correlations and in discriminant analysis we will
need a slightly more general concept of eigenvalues than seen in the previous sections.
We introduce the concept in

DEFINITION 1.3. Let A andB be real-valuedm×m symmetrical matrices and let
B be of full rank. A numberλ, for which

det(A − λB) = 0,

is termed an eigenvalue ofA w.r.t. B. For such aλ it is possible to find anx 6= 0
such that

Ax = λBx.

Such a vectorx is called an eigenvector forA w.r.t. B. N

REMARK 1.10. The concepts given above can be traced back to eigenvalues and
eigenvectors for thenon-symmetrical matrixB−1A. H

THEOREM 1.20. We consider again the situation in the definition 1.3 and further let
B be positive definite. There are thenm real eigenvalues ofA w.r.t. B. If A is
positive semi-definite, then these will be non-negative and ifA is positive definite then
they will be positive. N
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PROOF 1.19. According to theorem 1.11 there is a matrixI where

T′BT = I.

Let

D = T′AT

D is obviously symmetrical, and since

x′Dx = (Tx)′A(Tx),

we see thatD andA are at the same time respectively positive semi-definite and
positive definite.

Now we have

(D− λI)v = 0 ⇔ (T′AT − λT′BT)v = 0
⇔ (A − λB)(Tv) = 0

From this we deduce thatD’s eigenvalues equalA’s eigenvalues w.r.t.B, and that
the eigenvectors ofA w.r.t. B are found by using the transformationT on D ’s
eigenvectors. The result regarding the sign of the eigenvalues follows trivially.�

THEOREM 1.21. Let the situation be as above. Then a basis exists forRm consisting
of eigenvectorsu1, . . . ,um of A w.r.t. B. These vectors can be chosen as conjugated
vectors both w.r.t.A as well as w.r.t.B , i.e.

u′
iAuj = u′

iBuj = 0.

N

PROOF 1.20. Follows from the proof of the above theorem and of the corollary to
theorem 1.9, remembering that

0 = v′
ivj = (v′

iT
′)T′−1T−1(Tvj) = u′

iBuj ,

wherevi, . . . ,vm is an orthonormal basis forRm consisting of eigenvectors ofD.

Finally we have

u′
iAuj = λju

′
iBuj = 0

�
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THEOREM 1.22. LetA be symmetrical and letB be positive definite. Then a regular
matrixR exists with

R′AR = Λ = diag(λ1, . . . , λn),

and

R′BR = I,

whereλ1, . . . , λn are the eigenvalues ofA w.r.t. B. If we term thei’th column in
R′−1 si then these relations can be written

A = λ1s1s
′
1 + · · · + λmsms′

m,

and

B = s1s
′
1 + . . .+ sms′

m.

N

PROOF 1.21. From the proof of theorem 1.20 we consider theD = T′AT. SinceD
is symmetrical, according to theorem 1.10 there exists an orthogonal matrixC with

C′DC = Λ,

because we have thatD’s eigenvalues areA’s eigenvalues w.r.t.B.

If we chooseR = TC, then we have that

R′BR = C′T′BTC = C′C = I,

and

R′AR = C′T′ATC = C′ DC = Λ.

�

Finally we state an analogue of theorem 1.18 in the following
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THEOREM 1.23. Let A be positive semi-definite and letB be positive definite. Let
A’s eigenvalues w.r.t.B beλ1 ≥ · · · ≥ λm and letv1, . . . ,vm denote a basis for
Rm consisting of the corresponding eigenvectors withviBvj = 0 i 6= j. We let

R(x) =
x′Ax

x′Bx

and

Mk = {x|x′Bv1 = · · · = x′Bvk−1 = 0},

and we then obtain

sup
x
R(x) = R(v1) = λ1

inf
x
R(x) = R(vm) = λm

sup
x∈Mk

R(x) = R(vk) = λk.

N

PROOF 1.22. Without loss of generality thevi’s can be chosen so thatv′
iBvi = 1,

and since an arbitrary vectorx can be written

x = α1v1 + · · · + αmvm,

we find

R(x) =
∑
α2

i v
′
iAvi∑

α2
i v

′
iBvi

=
∑
λiα

2
i∑

α2
i

.

From this the two first statements are easily seen. Ifx ∈Mk, thenx can be written

x = αkvk + · · · + αmvm,

and

R(x) =
λkα

2
k + · · · + λmα

2
m

α2
m + · · · + α2

m

,

which leads to the desired result. �
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1.4.5 The trace of a matrix

By the term trace of the (symmetrical) matrixA we mean the sum of the diagonal
elements. i.e.

tr(A) =
n∑

i=1

aii.

For (square) matricesA andB the following holds

tr(AB) = tr(BA). (1.5)

Furthermore we have that the trace equals the sum of eigenvalues, i.e.

tr(A) =
n∑

i=1

λi.

This follows trivially from 1.5 and theorem 1.10
For positive semi-definite matrices the trace is therefore another measure of ”size” of a
matrix. If the trace is large then at least some of the eigenvalues are large. On the other
hand this measure is not sensitive to if some eigenvalues might be 0, i.e. if the matrix
is degenerate. The determinant is sensitive to that, since we recall

det(A) =
n∏

i=1

λi.

We note further that for an idempotent matrixA we have that

tr(A) = rg(A).

Further we have

tr(BB−) = rg(B),

whereB− is an arbitrary pseudo-inverse ofB.

Finally we note that for a regular matrixS we have that

tr(S−BS) = tr(B).
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1.4.6 Differentiation of linear form and quadratic form

Let f : Rn → R. We will use the following notation for the vector of partial derivatives

∂f(x)
∂x

=
∂f
∂x

=




∂f(x)
∂x1
...

∂f(x)
∂xn


 .

The following theorem holds for differentiation of certain forms

THEOREM 1.24. For a symmetrical(n×n)-matrixA and an arbitraryn-dimensional
vectorb it holds that

i) ∂
∂x (b′x) = b

ii) ∂
∂x (x′x) = 2x

iii) ∂
∂x (x′Ax) = 2Ax.

N

PROOF 1.23. The proof of i) and ii) are trivial. iii) is (strangely) proved most easily
by means of the definition. For an arbitrary vectorh we have that

(x + h)′A(x + h) = x′Ax + h′Ah + 2h′Ax

By choosingh = (0, . . . , h, . . . , 0)′ we see that

∂

∂xi
(x′Ax) = 2

h∑
j=1

aijxj ,

and the result follows readily. �

We will illustrate the use of the theorem in the following

EXAMPLE 1.8. We want to find the minimum of the function

g(θ) = (y − Aθ)′B(y − Aθ),
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wherey, A andB are given andB is further positive semidefinite (and symmetrical).
Sinceg(θ) is convex (a paraboloid, possibly degenerate), then the point corresponding
to the minimum is found by solving the equation

∂

∂θ
g(θ) = 0.

First we rewriteg. We have that

g(θ) = y′By − θ′A′By + θ′A′BAθ − y′BAθ

= y′By − 2y′BAθ + θ′A′BAθ.

Here we have used that

θ′A′By = y′BAθ

(both1 × 1 matrices, i.e. a scalar, and each others transposed). From this follows that

∂g
∂θ

= −2A′By + 2A′BAθ,

and it is seen that

∂g
∂θ

= 0 ↔ A′BAθ = A′By.

This equation has as mentioned always at least one root. IfA′BA is regular then we
have

θmin = (A′BA)−1A′By.

If the matrix is singular, then we can write

θmin = (A′BA)−A′By,

where(A′BA)− denotes a pseudo-inverse ofA′BA. �

We are now able to find an alternative description of the principle axes in an ellipsoid,
due to

THEOREM 1.25. Let A be a positive definite symmetrical matrix. The principle
directions of the ellipsoidEc with the equation

x′Ax = c, c > 0
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are those directions wherex′x, x ∈ Ec, has stationary points. N

PROOF 1.24. We may assume thatx = 1. We then need to find the stationary points
for

f(x) = x′x

with the condition that

x′Ax = 1

We apply a Lagrange multiplier technique and define

ϕ(x, λ) = x′x − λ(x′Ax − 1).

Be differentiation we obtain

∂ϕ

∂x
= 2x− 2λAx.

If this quantity is to equal0, then

x = λAx

or

Ax =
1
λ

x,

i.e. x must be an eigenvector. �

1.5 Tensor- or Kronecker product of matrices

It is an advantage to use this product when treating the multidimensional general linear
model.

DEFINITION 1.4. Let A be anm × n matrix and letB be ak × ` matrix. By the
term tensor - or Kronecker product ofA andB we mean the matrix

A⊗ B = (aijB) =


 a11B · · · a1nB

...
...

am1B · · · amnB


 (1.6)
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This concept corresponds to the tensor product of linear projections, which can be
stated independently of coordinate system (see e.g. [3]). It this is introduced in coor-
dinate form then we can either use 1.6 or equivalently,A ⊗ B = (Abij). This only
corresponds to changing the order of the coordinates, i.e. to changing row and columns
in the respective matrices. N

We briefly give some rules of calculation for the tensor-product. These are proved tri-
ally by means of the definition.

O⊗ A = A ⊗ O = O

(A1 + A2) ⊗ B = A1 ⊗ B + A2 ⊗ B

iii) A ⊗ (B1 + B2) = A ⊗ B1 + A ⊗ B2

iv) αA ⊗ βB = αβA ⊗ B

v) A1A2 ⊗ B1B2 = (A1 ⊗ B1)(A2 ⊗ B2)

vi) (A ⊗ B)−1 = A−1 ⊗ B−1, if the inverses exist

vii) (A ⊗ B)− = A− ⊗ B−

viii) (A ⊗ B)′ = A′ ⊗ B′

ix) Let A be symmetrical andp× p, have eigenvaluesα1, . . . , αp and eigenvectors
xi, and letB, be symmetrical andq × q, have eigenvaluesβ1, . . . , βq and
eigenvectorsy1, . . . ,yq. ThenA ⊗ B will have the eigenvaluesαiβj , i =
1, . . . , p, j = 1, . . . , q, with corresponding eigenvectors.

(xi ⊗ yj ∼)



x1iyj

...
xpiyj




x) det(A ⊗ B) = (detA)q(detB)p

1.6 Inner products and norms

Forn-dimensional vectors we note that the inner product or scalar product or dot prod-
uct ofx andy is defined by

x · y = x′y = (x1 . . . xn)


 y1

...
yn


 =

n∑
i=n

xiyi,
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‖x + y‖2

= (x + y)′(x + y)
= x′x + x′y + y′x + y′y
= x′x + y′y
= ‖x‖2 + ‖y‖2.

and we note thatx andy are orthogonal if and only if

x · y = x′y = 0.

The corresponding norm is

‖x‖ = (x · x)
1
2 = (x′x)

1
2 =

√
x2

1 + · · · + x2
n

We note that‖x − y‖ represents the euclidian distance between the pointsx andy.

For orthogonal vectorsx andy (i.e. x ⊥ y) we have the pythagorean theorem

‖x + y‖2 = ‖x‖2 + ‖y‖2;

see figure 1.6. Further we note that the (orthogonal) projectionp(x) of a vectorx onto
the sub-spaceU can be determined by means of the norm, since we have thatp(x) is
given by

‖x− p(x)‖ = min
z∈U

‖x − z‖

PROOF 1.25.

Due to the Pythagorean theorem
we have that

‖x − p(x)‖2 − ‖z − p(x)‖2

= ‖x − z‖2,

i.e. the minimal value of

= ‖x − z‖2, and therefore of

= ‖x − z‖ is achieved for

z = p(x).
�
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It is now very easy to show that the validity of the above results only depend on 4
fundamental properties of the inner product. If we term the inner product ofx andy
by (x|y) then they are

IP1 : (x|y) = (y|x)
IP2 : (x + y|z) = (x|z) + (y|z)
IP3 : (kx|y) = k(x|y)
IP4 : x 6= 0 ⇒ (x|x) > 0.

For an arbitrary bi-linear form(·|·) , which satisfies the above one can define a concept
of orthogonality by

x ⊥ y
d⇔ (x|y) = 0.

For an arbitrary positive definite symmetrical matrixA we can define an inner product
by

(x|y)A = x′Ay.

It is trivial to prove that IP 1-4 are satisfied. for this inner product and the corresponding
norm given by

‖x‖A =
√

(x|x)A =
√

x′Ax,

we will - whenever it does not lead to confusion - use the terms(x|y) and‖x‖.

We note that the set of points with constantA -norm equal to 1 is the set

{x| ‖x‖2 = 1} = {x|x′Ax = 1},

i.e. the points on an ellipsoid.

Conversely, to any non-degenerate ellipsoid there is a corresponding positive definite
matrixA, so

E = {x|x′Ax = 1} = {x| ‖x‖2
A = 1}.

In this way we have brought about a connection between the set of possible inner
products and the set of ellipsoids.

Two vectorsx andy are orthogonal (with respect toA), if

x′Ay = 0,
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i.e. if x andy are conjugate directions in the ellipsoid corresponding toA.

It is also possible to introduce a concept of angle by means of the definition

cos(∠a, b) =
(a|b)

‖a‖ ‖b‖ .

We now give a lemma which we will need for the theorems of independence of projec-
tions of normally distributed stochastic variables.

L EMMA 1.1. LetRn be partitioned in a direct sum

Rn = U1 ⊕ · · · ⊕ Uk

of ni dimensional sub-spaces. These are orthogonal w.r.t. the positive definite matrix
Σ−1, i.e.

x ⊥ y ⇔ x′Σ−1y = 0.

For i = 1, . . . , k we let the projectionpi ontoUi be given by the matrixCi. Then

CiΣC′
j = 0

for all i 6= j. Furtmermore, we have

Σ−1Ci = C′
iΣ

−1 = C′
iΣCi.
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PROOF 1.26. Sincepi ◦ pi = pi, we have

CiCi = Ci,

and since

pi(x) ⊥ x − pi(x),

(cf. the illustration) we have

pi(x)′Σ−1(x − pi(x)) = 0,

i.e.

xC′
iΣ

−1[x − Cix] = 0.

This holds for allx, and therefore

C′
iΣ

−1(I − Ci) = 0,

or

C′
iΣ

−1 = C′
iΣ

−1Ci.

The right hand side of the equation is obviously symmetrical, so that

C′
iΣ

−1 = Σ−1Ci.

By pre- and post-multiplication withΣ we get

ΣC′
i = CiΣ,

so

CiΣC′
i = CiCiΣ = CiΣ.

This gives

CiΣC′
j = CiΣC′

iC
′
j = CiΣ0 = 0.

The second-last equal sign follows from the fact that the sum is direct, so for allx it
holds that

pj(pi(x)) = 0,
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i.e.

CjCix = 0.

Sincex - as was mentioned previously - is arbitrary, then this implies

CjCi = 0,

or

C′
iC

′
j = 0.

�



Chapter 2

Multidimensional variables

In this chapter we start by supplementing the results on multidimensional stochastic
variables, given in chapter 0, volume 1. Then we discuss the multivariate normal dis-
tribution and distributions derived from it. Finally we shortly describe the special con-
siderations that estimation and testing give rise to.

2.1 Moments of multidimensional stochastic vari-
ables

We start with

2.1.1 The mean value

Let there be given a stochastic matrix, i.e. a matrix, where the single elements are
stochastic variables:

X =


 X11 · · · X1n

...
...

Xk1 · · · Xkn




We then define the mean value, or the expectation value, or the expected value ofX as

E(X) =


 E(X11) · · · E(X1n)

...
...

E(Xk1) · · · E(Xkn)


 =


 µ11 · · · µ1n

...
...

µk1 · · · µkn


 = µ.

57
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THEOREM 2.1. Let A be ak × n matrix of constants. Then

E(A + X) = A + E(X).

This theorem follows trivially from the definition as does the following. N

THEOREM 2.2. Let A andB be constant stochastic matrices, so thatAx andxB
exist. Then

E(AX) = A E(X)

E(XB) = E(X)B

N

Finally we have

THEOREM 2.3. Let X andY be stochastic matrices of the same rank. Then

E(X + Y) = E(X) + E(Y).

N

REMARK 2.1. We have not mentioned that we of course assume, that the involved
expected values exist. This is assumed here and in all the following, where these are
mentioned.

H

2.1.2 The variance-covariance matrix (dispersion matrix).

The generalisation of the variance of a stochastic variable is the variance-covariance
matrix (or dispersion matrix) for a stochastic vectorX. It is defined by

D(X) = Σ = E{(X − µ) (X − µ)′},

where

µ = E(X).
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It should be noted, thatD(X) also often is called the covariance-matrix and is then de-
notedCov(X). However, this is a bit misleading, since it could misunderstood as the
covariance between two (multidimensional) stochastic variables. Another commonly
used notation isV(X). Furthermore, we note that

(X − µ) (X − µ)′ =


 X1 − µ1

...
Xn − µn


 (X1 − µ1, . . . , Xn − µn) =




(X1 − µ1)2 (X1 − µ1)(X2 − µ2) · · · (X1 − µ1)(Xn − µn)
(X2 − µ2)(X1 − µ1) (X2 − µ2)2 · · · (X2 − µ2)(Xn − µn)

...
...

. . .
...

(Xn − µn)(X1 − µ1) (Xn − µn)(X2 − µ2) · · · (Xn − µn)2




i.e. the variance-covariance matrix’s(i, j)’th element isCov(Xi, Xj), or

Σ = D(X) =




V(X1) Cov(X1, X2) · · · Cov(X1, Xn)
Cov(X2, X1) V(X2) · · · Cov(X2, Xn)

...
...

. . .
...

Cov(Xn, X1) Cov(Xn, X2) · · · V(Xn)


 .

We will often use the following notation

Σ =




σ2
1 σ12 · · · σ1n

σ21 σ2
2 · · · σ2n

...
...

...
σn1 σn2 · · · σ2

n


 =



σ11 σ12 · · · σ1n

σ21 σ22 · · · σ2n

...
...

...
σn1 σn2 · · · σnn


 ,

i.e. the variances can be denoted both asσ2
i and asσii. We note, thatΣ is symmetric.

More interesting is the following

THEOREM 2.4. The variance-covariance matrixΣ for a stochastic vector (i.e. a
multidimensional stochastic vector) is positive semidefinite. N

PROOF 2.1. For any vectory we have

y′ Σy = y′ E{(X − µ)(X − µ)′}y
= E{y′ (X − µ)(X − µ)′y}
= E{ [(X − µ)′y]′[(X − µ)′y] }
≥ 0 ,

since the expression in the curly brackets is≥ 0. �
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Theorems exist which are analogous to the ones known from the one dimensional
stochastic variables.

THEOREM 2.5. Let X andY be independent. Then

D(X + Y ) = D(X) + D(Y ).

Let b be a constant. Then we have

D(b + X) = D(X).

If A is a constant matrix, so thatAX exists, then the following holds

D(AX) = A D(X)A′.

N

PROOF 2.2. The first relation comes from

Cov(Xi + Yi, Xj + Yj) = Cov(Xi, Xj) + Cov(Xi, Yj) +
Cov(Yi, Xj) + Cov(Yi, Yj)

= Cov(Xi, Xj) + Cov(Yi, Yj),

sinceCov(Yi, Xj) = 0, becauseXj andYi are independent. The second relation is
trivial. The last one comes from

D(AX) = E{(AX − Aµ)(AX − Aµ)′}
= E{A[X − µ][X − µ]′A′}
= AE{[X − µ][X − µ]′}A′

= AD(X)A′

= A ΣA′

�

If we let

V = diag
(

1
σ1
, . . . ,

1
σn

)
=


 σ−1

1 · · · 0
...

. . .
...

0 · · · σ−1
n



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and we ”scale”X by V, we get

D(VX) = VΣV′ =




1 σ12
σ1 σ2

· · · σ1n

σ1 σn
σ12

σ1 σ2
1 · · · σ2n

σ2 σn

...
...

...
σ1n

σ1 σn

σ2n

σ2 σn
· · · 1


 .

We note, that the elements are the correlation coefficients betweenX ’s components,
which is why this matrix is also called the correlation matrix forX, and we write

R(X) =


 1 · · · ρ1n

...
...

ρ1n · · · 1


 ,

where

ρij = Cor(Xi, Xj) =
Cov(Xi, Xj)√
V(Xi)V(Xj)

.

2.1.3 Covariance

Let there be given two stochastic variables

X =


 X1

...
Xp


 and Y =


 Y1

...
Yq




with mean valuesµ andν. We now define the covariance betweenX andY as

C(X ,Y ) = E[(X − µ)(Y − ν)′] =


 Cov(X1, Y1) · · · Cov(X1, Yq)

...
...

Cov(Xp, Y1) · · · Cov(Xp, Yq)


 .

Then

C(X ,X) = D(X)

and

C(X ,Y ) = [C(Y ,X)]′.

Less trivial is



62 CHAPTER 2. MULTIDIMENSIONAL VARIABLES

THEOREM 2.6. Let X andY be as above, and letA andB ben × p andm× q
matrices of constants respectively. Then

C(AX ,BY ) = AC(X,Y )B′.

If U is ap-dimensional andV is a q-dimensional stochastic variable the following
holds

C(X + U ,Y ) = C(X ,Y ) + C(U ,Y )

C(X ,Y + V ) = C(X,Y ) + C(X,V ).

Finally

D(X + U) = D(X) + D(U) + C(X,U) + C(U ,X).

N

PROOF 2.3. According to the definition we have

C(AX ,BY ) = E[(AX − Aµ)(BY − Bν)′]
= E[A(X − µ)(Y − ν)′B′]
= AE[(X − µ)(Y − ν)′]B′

= AC(X,Y )B′.

This proves the first statement. Similarly - if we letE(U) = δ -

C(X + U ,Y ) = E[(X + U − µ − δ)(Y − ν)′]
= E[(X − µ)(Y − ν)′ + (U − δ)(Y − ν)′]
= E[(X − µ)(Y − ν)′] + E[(U − δ)(Y − ν)′]
= C(X ,Y ) + C(U ,Y ),

and the corresponding relation withY + V is shown analogously. Finally we have

D(X + U) = C(X + U ,X + U)
= C(X,X) + C(X,U) + C(U ,X) + C(U ,U).

�
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If C(X ,Y ) = 0 thenX andY are said to be uncorrelated. This corresponds to all
components ofX being uncorrelated with all components ofY .

Later, when we consider the multidimensional general linear model we will need the
following

THEOREM 2.7. Let X1, . . . ,Xn be independent,p-dimensional stochastic variables
with the same variance-covariance matrixΣ = (σij). We let

X =


 X ′

1
...

X ′
n


 =


 X11 · · · Xp1

...
...

X1n · · · Xpn




(Note, that the variable index is the first index and the repetition index is the second).
If we define

vc(X) =




X11

...
X1n

...
Xp1

...
Xpn




i.e. as the vector consisting of the columns inX (vc = vector of columns) we get

D(vc(X)) = Σ ⊗ In,

whereIn is the identity matrix of n’th order. N

PROOF 2.4. Follows trivially from the definition of a tensor-product and from the
definition of the variance-covariance matrix.

�

2.2 The multivariate normal distribution

The multivariate normal distribution plays the same important role in the theory of
multidimensional variables, as the normal distribution does in the univariate case. We
start with
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2.2.1 Definition and simple properties

Let X1, . . . , Xp be mutually independent, N(0,1) distributed variables. We then say
that

X =


 X1

...
Xp


 ,

are standardised (normed)p-dimensionally normally distributed, and we write

X ∈ N(0, I) = Np(0, I),

where the last notation is used, if there is any doubt about the dimension.We note, that

E(X) = 0, D(X) = I.

We define the multivariate normal distribution with general parameters in

DEFINITION 2.1. We say that thep-dimensional stochastic variableX is normally
distributed with parametersµ andΣ, if X has the same distribution as

µ + AU ,

whereA satisfies

AA′ = Σ,

and whereU is standardisedp-dimensional normally distributed. We write

X ∈ N(µ,Σ) = Np(µ,Σ),

where the last notation again is used, if there is any doubt about the dimension.N

REMARK 2.2. The definition is only valid, if one shows, thatAA′ = BB′ implies

£(µ + AU) = £(µ + BV ),

whereU andV are standardised normally distributed and not necessarily of the same
dimension. The relation is valid, but we will not pursue this further here. From theo-
rem 1.10 follows that for any positive semidefinite matrixΣ there exists a matrixA
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with AA′ = Σ, so the expressionN(µ,Σ) makes sense for any positively semidefi-
nitep× p matrixΣ and anyp-dimensional vectorµ.

Trivially, we note that

X ∈ N(µ,Σ) ⇒ i) E(X) = µ ∧ ii) D(X) = Σ

i.e. the distribution is parametrised by its mean and variance-covariance matrix.H

If Σ has full rank, then the distribution has the density given in

THEOREM 2.8. Let X ∈ Np(µ,Σ), and let rg(Σ) = p. ThenX has the density

f(x) =
1√
2π

p
1√

detΣ
exp[−1

2
(x − µ)′Σ−1(x − µ)]

=
1√
2π

p
1√

detΣ
exp[−1

2
‖x − µ‖2],

where the norm used is the one defined byΣ−1 , see p. 53. N

PROOF 2.5. Let U ∈ Np(0, I). ThenU has the density

h(u) =
p∏

i=1

1√
2π

exp(−1
2
u2

i ) =
1√
2π

p exp(−1
2

p∑
i=1

u2
i )

=
1√
2π

p exp(−1
2
u′ u).

We then consider the transformation fromRp → Rp given by

u → x = µ + Au

whereAA′ = Σ. From theorem 1.14 it follows thatA is regular. We obtain

u = A−1(x − µ),

giving

u′u = (x − µ)′A−1′A−1(x − µ)
= (x − µ)′Σ−1(x − µ).
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Furthermore, since

det(Σ) = det(AA′) = det(A)2,

i.e.

det(A−1) =
1√

detΣ

the result follows from theorem 0.8 in volume 1. �

We note that the inverse variance-covariance matrixΣ−1 is often called the precision
of the normal distribution.

If Σ is not regular, then the distribution is degenerate and has no density. We then
introduce the concept of the affine support in

DEFINITION 2.2. Let X ∈ Np(µ,Σ). By the (affine) support forX we mean the
smallest (side-) sub-space ofRp, whereX is defined with probability 1. N

REMARK 2.3. If we restrict the considerations to the affine support, thenX is regu-
larly distributed and has a density as shown in theorem 2.8. H

We have different possibilities of determining the support of ap-dimensional normal
distribution. Firstly

THEOREM 2.9. Let X ∈ Np(µ,Σ), and letA be anp×m matrix, so thatAA′ =
Σ. We then let V equalA’s projection-space, i.e.

V = {v ∈ Rp|∃u ∈ Rm : v = Au}.

Then the (affine) support forX is the (side-) sub-space

µ + V = {µ + v|v ∈ V }.

N

PROOF 2.6. Omitted. �

Further, we have
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THEOREM 2.10. Let X be as in the previous theorem. Then the subspaceV equals
the direct sum of the eigen-spaces corresponding to those eigenvalues inΣ which are
different from 0. N

PROOF 2.7. Omitted. �

Finally we have

THEOREM 2.11. Let X be as in the previous theorems. Then the subspace V equals
the orthogonal complement to the null-space forΣ, i.e.

V = {v|Σv = 0}⊥

N

PROOF 2.8. Omitted. �

The three theorems are illustrated in

EXAMPLE 2.1. We consider

X ∈ N




 1

2
4


 ,

 1 2 2

2 5 3
2 3 5




 = N(µ,Σ).

Since

det




 1 2 2

2 5 3
2 3 5




 = 0,

thenX is singularly distributed, and we will determine the affine support.

We first seek a matrixA, soAA′ = Σ. To do that we first determineΣ’s eigenvalues
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and (normed) eigenvectors. These are

λ1 = 9 ∧ p1 =


 1

3
2
3
2
3


 ,

λ2 = 2 ∧ p2 =


 0√

2
2

−
√

2
2


 ,

λ3 = 0 ∧ p3 =




2
√

2
3

−
√

2
6

−
√

2
6


 .

It now follows that

Σ =




1
3 0 2

√
2

3
2
3

√
2

2 −
√

2
6

2
3 −

√
2

2 −
√

2
6




 9 0 0

0 2 0
0 0 0






1
3

2
3

2
3

0
√

2
2 −

√
2

2
2
√

2
3 −

√
2

6 −
√

2
6




From this we see that we asA-matrix can choose

A =


 1 0 0

2 1 0
2 −1 0


 (=




1
3 0 2

√
2

3
2
3

√
2

2 −
√

2
6

2
3 −

√
2

2 −
√

2
6






√
9 0 0

0
√

2 0
0 0 0


).

If we regardA as the matrix for a linear projectionR3 → R3 we then obtain that the
projection-space is

V = {Au|u ∈ R3}
= {u1p1 + u2p2|u1 ∈ R ∧ u2 ∈ R}.

It is immediately noted that this is also the direct sum of the eigen-spaces corresponding
to the eigenvalues which are different from 0.

The null-space forΣ is given by

Σu = 0 ⇔ u = t · p3.

This again gives the same description of V.

The affine support forY is then the (side-) sub-space

µ + V =




 1

2
4


+ u1


 1

3
2
3
2
3


+ u2


 0√

2
2

−
√

2
2


 |u1, u2 ∈ R


 .
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�

REMARK 2.4. From the example the proofs of theorems 2.9-2.11 can nearly be de-
duced completely. H

We now formulate a trivial but useful theorem.

THEOREM 2.12. Let X ∈ N(µ,Σ). Then

AX + b ∈ N(Aµ + b, AΣA′),

where we implicitly require that the implied matrix-products etc. exist.

N

PROOF 2.9. Trivial from the definition. �

2.2.2 Independence and contour ellipsoids.

In this section we will give the conditions for independence of the normally distributed
stochastic variables, and we will prove that the isocurves for the density functions are
ellipsoids. First we have

THEOREM 2.13. Let

X =
[

X1

X2

]
∈ N

([
µ1

µ2

]
,

[
Σ11 Σ12

Σ21 Σ22

])
.

Then

Xi ∈ N(µi,Σii),

and

X1,X2 are stochastically independent⇔ Σ12 = Σ′
21 = 0,

where0 is the null matrix. N

PROOF 2.10. The first statement follows from the previous theorem. The second
follows by proving that the conditionΣ12 = 0 assures, that the distribution becomes
a product distribution. �
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Figure 2.1: Density functions for two-dimensional normal distributions with the
variance-covariance matrices(

1 0
0 3

)
,

(
1 0
0 1

)
,

(
1 −0.9

−0.9 1

)
and

(
1 −0.5

−0.5 1

)
.



2.2. THE MULTIVARIATE NORMAL DISTRIBUTION 71

From the theorem follows that the components in a vectorX ∈ N(µ,Σ) are stochas-
tically independent ifΣ is a diagonal matrix. We will now show that independence is
just a question of choosing a suitable coordinate-system.

Let X ∈ N(µ,Σ) and letΣ have the ortho-normed eigenvectorsp1, . . . ,pn. We
now consider a coordinate system, with origo inµ and the vectorsp1, . . . ,pn as
base-vectors. The coordinates in this system are calledy.

If we let

P = (p1, . . . ,pn),

we have the following correspondence between the original coordinatesx and the new
coordinatesy for any point∈ Rn.

y = P′(x − µ) ⇔ x = Py + µ,

cf. p. 12.

Note: The above relation is a relation between coordinates for a fixed vector viewed in
two coordinate-systems.

Using this, if we letY be the new coordinates forX we have

THEOREM 2.14. Let X ∈ N(µ,Σ) and letY be as above. Then

Y ∈ N(0,Λ),

whereΛ is a diagonal matrix withΣ’s eigenvalues on the diagonal. N

PROOF 2.11. Follows from theorem 2.12 and theorem 1.10. �

REMARK 2.5. By translating and rotating (or reflection of) the original coordinate-
system we have obtained, that the variance-covariance matrix is a diagonal matrix. I.e.
that the components in the stochastic vector are uncorrelated and thereby also indepen-
dent. H

By rescaling the axes we can even obtain that the variance-covariance matrix has zeros
or ones on the diagonal. Considering the base-vectors

c1p1, . . . , cnpn,
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where

ci =
{ 1√

λi
if λi > 0

1 if λi = 0
,

cf. p. 31, and calling the coordinates in this systemz, we get the equation

z = C′P′(x − µ) = (PC)′(x − µ),

whereC = diag(c1, . . . , cn).

If we let thez -coordinates forX equalZ we get

Z = N(0,E),

where

E = (PC)′ΣPC = C′P′ΣPC = C′Λ C

has zeros or ones on the diagonal.

The transformation into the new bases is closely related to the isocurves for the density
function for the normal distribution.

As mentioned earlier the density for anX ∈ N(µ,Σ) is

f(x) = k · exp(−1
2
(x − µ)′Σ−1(x − µ))

= k · exp(−1
2
(‖x − µ‖)2).

Therefore we have

f(x) = k1 ⇔ (x − µ)′Σ−1(x − µ) = c,

wherek1 andc are constants. SinceΣ−1, is positive definite the isocurves

Ec = {x|f(x) = k1}

will be ellipsoids, cf. p. 40. From theorem 1.19 is also seen that the major axes in these
ellipsoids are the eigenvectors forΣ−1, but from theorem 1.12 we note that they are
also eigenvectors forΣ. In the new coordinates the densities become

g(y) = k · exp(−1
2
Σ

1
λi
y2

i ),
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whereλi is thei’th eigenvalue forΣ, and

h(z) = k1 · exp(−1
2
Σz2

i ).

The ellipsoidsEi are often called contour-ellipsoids. From the above we get

THEOREM 2.15. Let P andC be as above. Then

(X − µ)′(PC)(PC)′(X − µ) ∈ χ2(rgΣ).

If Σ has full rankp then

(X − µ)′Σ−1(X − µ) = ‖X − µ‖2 ∈ χ2(p).

N

PROOF 2.12. (X − µ)′(PC)(PC)′(X − µ) = Z ′Z = ΣδiZ2
i ,

whereδi = 1 if λi 6= 0 and equal to 0 otherwise.

Since the non-degenerate components inZ are stochastically independent and N(0,1)-
distributed the result follows immediately. The last remark comes from

PC(PC)′ = PCC′P′ = PΛ−1P′ = Σ−1

�

REMARK 2.6. The result of the theorem is that the probability of an outcome being
within the contour ellipsoid can be computed using aχ2-distribution. H

Examples of these concepts will be given in example 2.3, where we consider the two-
dimensional normal distribution.

2.2.3 Conditional distributions

In this section we consider the partitioning of a stochastic variableX ∈ Np(µ,Σ),
into

X =
[

X1

X2

]
; µ =

[
µ1

µ2

]
; Σ =

[
Σ11 Σ12

Σ21 Σ22

]
.
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We then have

THEOREM 2.16. If X2 is regularly distributed, i.e. ifΣ22 has full rank, then the
distribution ofX1 conditioned onX2 = x2 is again a normal distribution, and the
following holds

E(X1|X2 = x2) = µ1 + Σ12Σ−1
22 (x2 − µ2)

D(X1|X2 = x2) = Σ11 − Σ12Σ−1
22 Σ21.

If Σ22 does not have full rank then the conditional distribution is still normal andΣ−1
22

in the above equations should be substituted by a generalised inverseΣ−
22. N

PROOF 2.13. The proof is technical and is omitted, however cf. section 2.2.5.�

REMARK 2.7. It is seen that the conditional variance is independent ofx2. This result
is not valid for all distributions, but is special for the normal distribution. Also we see
the conditional mean is an affine function ofx2, cf. the discussion in section 2.3.3.H

We will not discuss the implications of the theorem here. Instead we refer to the exam-
ples in section 2.2.5.

2.2.4 Theorem of reproductivity and the central limit theo-
rem.

Analogous to the theorem of reproductivity for the univariate normal distribution we
have

THEOREM 2.17. (Theorem of reproductivity). LetX1, . . . ,Xk be independent, and
let Xi ∈ N(µi,Σi).

Then

k∑
i=1

Xi ∈ N

(
k∑

i=1

µi,
k∑

i=1

Σi

)
.

N

PROOF 2.14. Omitted. �
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As in the univariate case, central limit theorems exist, i.e. sums of independent multidi-
mensional stochastic variables are under generel assumptions asymptotically normally
distributed. We state an analogue to Lindeberg-Levy’s theorem.

THEOREM 2.18. (Central limit theorem). Let the independent and identically dis-
tributed variablesX1, . . . ,Xn, . . . have finite first and second moments

µ = E(X i),Σ = D(Xi).

Then we have - with̄Xn = 1
n (X1 + · · · + Xn) - that

√
n(X̄n − µ)

has anN(0,Σ) -distribution as its limiting distribution, and we say thatX̄n is asymp-
totically N(µ, 1

nΣ) distributed. N

PROOF 2.15. This and the previous theorem can be proved from the corresponding
univariate theorems by first using a theorem, which characterises the multivariate dis-
tribution (a multidimensional variable is normally distributed if and only if all linear
combinations of its components are (univariate normally distributed); and by using a
theorem which characterises a multivariate limiting distribution as limiting distribu-
tions of linear combinations of the components (coordinates). However, this is out
of the scope of this presentation and the interested reader is referred to the literature
e.g. [18], section 2c.5. �

2.2.5 Estimation of the parameters in a multivariate normal
distribution.

We consider a number of observationsX1, . . . ,Xn, which are assumed independent
and identicallyNp(µ,Σ) distributed. We assume there are more observations than
the dimension indicates, i.e. thatn > p. In this section we will give estimates of the
parametersµ andΣ.
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We introduce the notation

Xi =


 X1i

...
Xpi




X̄ =
1
n

n∑
i=1

Xi =


 X̄1

...
X̄p




S =
1

n−1

n∑
i=1

(Xi −X̄)(Xi −X̄)′=
1

n−1

n∑
i=1

XiX
′
i −

n

n−1
X̄ X̄

′
.

If we consider the data-matrix

X =


 X ′

1
...

X ′
n


 =


 X11 · · · Xp1

...
...

X1n · · · Xpn


 ,

where thei’th row corresponds to thei’th observation, we can also write

(n− 1)S =
n∑

i=1

(Xi − X̄)(X i − X̄)′ = X′X− nX̄X̄
′
.

With this we can now state

THEOREM 2.19. Let the situation be as stated above. Then the maximum likelihood
estimators forµ andΣ equal

µ̂ = X̄

Σ̂ =
n− 1
n

S =
1
n

n∑
i=1

(Xi − X̄)(Xi − X̄)′.

µ̂ is an unbiased estimate ofµ, andS is an unbiased estimate ofΣ. N

PROOF 2.16. Proof. Omitted, see e.g. [2], chapter 3. �

REMARK 2.8. Since the empirical variance-covariance matrixS is an unbiased esti-
mateΣ, and since it only differs from the maximum likelihood estimator by the factor

n
n−1 , we often preferS as the estimate. Often one will see the notationΣ̂ used forS.

One should in each case be aware of what the expressionΣ̂ precisely means.
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The distribution of̂µ comes trivially from theorem 2.2.4. The following holds

µ̂ = X̄ ∈ Np(µ,
1
n
Σ).

The distribution ofS is more complicated. It is stated in section 2.5.

We give an example of estimating the parameters in the following section. H

2.2.6 The two-dimensional normal distribution.

We now specialise the results from before to two dimensions.

Let X =
[
X1

X2

]
be normally distributed with(µ,Σ), where

µ =
[
µ1

µ2

]

and

Σ =
[
σ2

1 σ12

σ12 σ2
2

]
.

Since

det(Σ) = σ2
1σ

2
2 − σ2

12

is, if det(Σ) 6= 0,

Σ−1 =
1

σ2
1σ

2
2 − σ2

12

[
σ2

2 −σ12

−σ12 σ2
1

]
.

Introducing the correlation coefficientρ

ρ =
σ12

σ1 σ2
,

we get

Σ−1 =
1

1 − ρ2

[
1

σ2
1

−ρ
σ1σ2−ρ

σ1σ2

1
σ2
2

]
,
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Figure 2.2: The density of a two-dimensional normal distribution.

and the density becomes

f(x1, x2) =

1
2π

1

σ1σ2

√
1 − ρ2

exp

[
−1

2
1

1 − ρ2

{[
x1 − µ1

σ1

]2

−2ρ
x1 − µ1

σ1

x2 − µ2

σ2
+
[
x2 − µ2

σ2

]2}]
.

The graph is shown in fig. 2.2 It is immediately seen that we have a product distribution
i.e. thatX1 andX2 are stochastically independent, ifρ = 0, i.e. if Σ is a diagonal
matrix.

The conditional distribution ofX1 conditioned onX2 = x2 is proportional to the
intersecting curve between the plane through(0, x2, 0) parallel to the (1)-(3) plane. If
we denote the density asg we have

g(·) = cf(·, x2),
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wherec is a normalisation constant. We have

g(x1) = k1 · exp

[
−1

2
1

1 − ρ2

{[
x1 − µ1

σ1

]2
− 2ρ

x1 − µ1

σ1

x2 − µ2

σ2

}]

= k2 · exp

[
−1

2
1

1 − ρ2

[
x1 − µ1

σ1
− ρ

x2 − µ2

σ2

]2]

= k3 · exp

[
−1

2
1

σ2
1(1 − ρ2)

(
x1 − µ1 − ρ

σ1

σ2
(x2 − µ2)

)2
]

= k3 · exp
[
− 1

2γ2
(x1 − ξ1)2

]
.

Note that no bookkeeping has been done with respect tox2. It has disappeared into
different constants. From the final result we note that the conditional distribution is
normal and that

k3 =
1√

2πσ1

√
1 − ρ2

,

and finally that

E(X1|X2 = x2) = ξ1 = µ1 + ρ
σ1

σ2
(x2 − µ2)

and

V(X1|X2 = x2) = γ2 = σ2
1(1 − ρ2).

We have shown the result of theorem 2.16 for the casen = 2. Note, that the conditional
mean depends linearly (or more correctly: affinely) uponx2, and that the conditional
variance is independent ofx2. Further we have

V(X1|X2 = x2) ≤ V(X1),

and the squared coefficient of correlation represents the reduction in variance. i.e. the
fraction ofX1’s variance, which can be explained byX2, since

ρ2 = V(X1) − V(X1|X2 = x2)
V(X1)

.

In the following example we consider a numerical example which also involves an
estimation problem.
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EXAMPLE 2.2. In the following table corresponding values of the air’s content of
flying dust measured inµg

m3 . is shown. Two different measuring principles were used,
a measure of grey-value (using a so-called OECD instrument) and a weighing principle
(using a so-called High Volume Sampler). Among other things the reason for the large
deviations is that the measurements using the grey value principle are sensitive to flying
dust’s deviation from "normal dust". In this way, a large content of calcium dust in the
air could result in the measurements being systematically too small.

I 2 5 15 16 16 19 26 24 16 36
Method II 2 12 4 21 41 14 31 29 31 8

I 39 42 44 40 42 42 50 51 58 64
II 30 44 26 60 34 34 14 41 58 47

We consider this data as being observations from independent identically distributed
stochastic variables[

X1

Y1

]
, . . . ,

[
X20

Y20

]
.

We will examine whether we can assume the distribution is normal with parameters
(µ,Σ). If the distribution is normal, we find the estimates

µ̂ =
[
µ̂1

µ̂2

]
=
[
X̄
Ȳ

]
=
[

32.35
29.05

]
,

and

Σ̂ =
[
σ̂2

1 σ̂12

σ̂12 σ̂2
2

]
=
[
S2

1 S12

S12 S2
2

]
=
[

311 182
182 279

]
,

whereΣ̂ is the unbiased estimate ofΣ. Specially we have

S12 =
1

n− 1

n∑
i=1

(Xi − X̄)(Yi − Ȳ ).

We now want to check if the observations can be assumed to come from a normal
distribution with parameters(µ̂, Σ̂). To do that we first estimate the contour ellipses.
The eigenvalues and eigenvectors forΣ̂ are

λ̂1 = 477.613 and p̂1 =
[

0.736
0.678

]

and

λ̂2 = 112.676 and p̂2 =
[ −0.678

0.736

]
.
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If we choose the coordinate system with origo inµ̂ and withp1 andp2 as base
vectors, the contour ellipsoids have equations of the form

z2
1

λ̂1

+
z2
2

λ̂2

= c,

or

z2
1

477.613
+

z2
2

112.676
= c,

where the new coordinates are given by

Pz = (p1p2)z = x − µ̂.

In figure 2.2 we show the observations and 3 contour ellipses corresponding to thec-
valuesc1 = χ2(2)0.40 = 1.02, c2 = χ2(2)0.80 = 3.22 andc3 = χ2(2)0.95 = 5.99.
This has the effect (see theorem 2.15) that in the normal distribution with parameters
(µ̂, Σ̂) we have the probabilities40%, 80% and 95% of having the observations
within the inner, the middel and the outer ellipse. For the areas between the ellipses
resp. outside these, we have the probabilities40%, 40%, 15% and5%. These numbers
can be compared to the corresponding observed relative probabilities40%, 30%, 30%
and0%. The fit is - if not overwhelming - at least acceptable.

If one wants a more precise result, one can perform aχ2 -test. It would then be
reasonable to divide the plane further according to the eigenvectors. In the case shown,
this would result in4 × 4 areas with estimated probabilities of10%, 10%, 3.75% and
1.25%. One can then compute the usualχ2 test-statistic:

∑ (observed− expected)2

expected

and compare it with aχ2(n− 6) distribution (we have estimated 5 parameters). In the
present case there are not really enough observations to perform this analysis.
The correlation coefficient is estimated at

ρ̂ =
182√

311 · 279
= 0.62,

and the conditional variances are estimated at

V̂(X |Y = y) = 311(1 − ρ̂2) = 192

V̂(Y |X = x) = 279(1 − ρ̂2) = 172.
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Figure 2.3: Estimated contour ellipses and estimated density function corresponding to
the data in example 2.2
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We see, that the conditional variances have been reduced by 38% corresponding to
ρ2 = 0.38. That the conditional variance of e.g. an OECD-measurement for given
High Volume Sampler measurement is substantially less than the unconditional vari-
ance seems rather reasonable. We know, that the amount of flying dust measured using
a High Volume Sampler is found as e.g.2 µg

m3 , so we would not expect to get results
from the OECD-instrument, which deviate grossly. This corresponds to a small condi-
tional variance. If the result from the High Volume Sampler is unknown, then we must
expect a measurement from the OECD-instrument can lie anywhere in its natural range
of variation - corresponding to a larger unconditional variance. �

2.3 Correlation and regression

In this section we will discuss the meaning of parameters in a multidimensional nor-
mal distribution in greater detail. First we will try to generalise the properties of the
correlation coefficient seen in the previous section.

2.3.1 The partial correlation coefficient.

The starting point is the formula for the conditional distributions in a multi-dimensional
normal distribution. LetX ∈ Np(µ,Σ), and let the variables be partitioned as follows

X =
[

X1

X2

]
; µ =

[
µ1

µ2

]
; Σ =

[
Σ11 Σ12

Σ21 Σ22

]
,

whereX1 consists of them first elements inX and likewise with the others. Then the
conditional dispersion ofX1 for givenX2 = x2 is, as was shown in theorem 2.16,
equal to

D(X1|X2 = x2) = Σ11 − Σ12Σ−1
22 Σ21.

By the partial correlation coefficient betweenXi andXj , i, j ≤ m, conditioned
on (or: for given)X2 = x2 we will understand the correlation in the conditional
distribution ofX1 given thatX2 = x2. It is denoted byρij|m+1,...,p.

Let

Σ =


 σ2

1 · · · σ1p

...
...

σ1p · · · σ2
p



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and

Σ11 − Σ12Σ−1
22 Σ21 =


 a11 · · · a1m

...
...

a1m · · · amm


 ,

we now have

ρij|m+1,...,n =
aij√
aii

√
ajj

.

For the special case ofX being three dimensional we have with

Σ =


 σ2

1 ρ12σ1σ2 ρ13σ1σ3

ρ12σ1σ2 σ2
2 ρ23σ2σ3

ρ13σ1σ3 ρ23σ2σ3 σ2
3


 ,

that

Σ11 − Σ12Σ−1
22 Σ21

=
[
σ2

1 ρ12σ1σ2

ρ12σ1σ2 σ2
2

]
− 1
σ2

3

[
ρ2
13σ

2
1σ

2
3 ρ13ρ23σ1σ2σ

2
3

ρ13ρ23σ1σ2σ
2
3 ρ2

23σ
2
2σ

2
3

]

=
[
σ2

1(1 − ρ2
13) σ1σ2(ρ12 − ρ13ρ23)

σ1σ2(ρ12 − ρ13ρ23) σ2
2(1 − ρ2

23)

]
.

From this follows that the partial correlation coefficient betweenX1 andX2 condi-
tioned onX3 is

ρ12|3 =
ρ12 − ρ13ρ23√

(1 − ρ2
13)(1 − ρ2

23)
.

For ap-dimensional vectorX we therefore find

ρij|k =
ρij − ρikρjk√

(1 − ρ2
ik)(1 − ρ2

jk)
. (**)

Since it is possible to find conditional distributions for givenXm+1, . . . , Xp by succes-
sive conditionings we can therefore determine partial correlation coefficients of higher
order by successive use of (**). E.g. we find

ρij|kl =
ρij|k − ρil|k · ρjl|k√

(1 − ρ2
il|k) · (1 − ρ2

jl|k)
,
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C 3S C3A BLAINE Strength 3 Strength 28
C3S 1 -0.309 0.091 0.158 0.344
C3A -0.309 1 0.192 0.120 -0.166
BLAINE 0.091 0.192 1 0.745 0.320
Strength 3 0.158 0.120 0.745 1 0.464
Strength 28 0.344 -0.166 0.320 0.464 1

Table 2.1: The correlation matrix for 5 cement variables.

here we have first conditioned onXk and then conditioned onXl.

In section 2.2.6 we saw that the (squared) correlation coefficient is a measure of the
reduction in variance if we condition on one of the variables. Since the partial correla-
tion coefficients are just correlations in conditional distributions we can use the same
interpretation here. We have e.g. thatρ2

ij|kl gives the fraction ofXi’s variance for
givenXk = xk andXl = xl which is explained byXj . It should be emphasised
that these interpretations are strongly dependent on the assumption of normality. For
the general case the conditioned variances will depend on the values with which they
are conditioned (i.e. depend onxk andxl).

When estimating the partial correlations one just estimates the variance-covariance ma-
trix and then computes the partial correlations as shown. If the estimate of the variance-
covariance matrix is a maximum-likelihood estimator then the estimates of the partial
correlations computed in this way will also be maximum likelihood estimates (cf. the-
orem 10 p. 2.28 in volume I).

We will now illustrate the concepts in

EXAMPLE 2.3. (Data are from [17]).

In table 2.1 correlation coefficients between 3- and 28-day strengths for Portland Ce-
ment and the content of minerals C3S (Alit, Tricalciumsilicat Ca3SiO5) and C3A
(Aluminat, Tricalciumaluminat, Ca3Al2O6), and the degree of fine-grainedness (BLAINE)
are given. The correlations are estimated using 51 corresponding observations.

It should be noted that C3S constitutes about 35-60% of normal portland clinkers and
C3A is about 5-18% of clinker. The BLAINE is a measure of the specific surface so
that a large BLAINE corresponds to a very fine-grained cement.

We will be especially interested in the relationship between C3A content in clinker
and the two strengths. It is commonly accepted cf. the following figure, that a large
content of C3A gives a larger 3-day strength which is also in correspondence with
ρ̂C3A,Strength3 = 0.120. The problem is that this larger 3-day strength for cement
with large content of C3A only depends on C3A ’s larger degree of hydratisation (the
faster the water reacts with the cement the faster it will have greater strength. C3A’s

far greater hydratisation after 3 days as seen from figure 2.4(c) and the degree of
hydratisation and its influence on the strengths has been sketched in figure 2.4(d).
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(a) Strength by pressure test at ordinary tem-
perature of paste of C3S and C3A seasoned
for different amounts of time. (from [13]).

(b) Pressure strengths for different fine-
grainedness of the cement. (from [13]).

(c) Degree of hydratisation for cement miner-
als and their dependence on time (from [13]).

(d) Relationship between degree of hydratisa-
tion and strength (from [13]).

Figure 2.4:
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C3S C3A Strength 3 Strength 28
C3S 1 -0.333 0.137 0.333
C3A -0.333 1 -0.035 -0.246
Strength 3 0.137 -0.035 1 0.358
Strength 28 0.333 -0.246 0.358 1

Table 2.2: Correlation matrix for 4 cement variables conditioned on BLAINE.

If we look at the correlation matrix we also see that the content of C3A is positively
correlated with the BLAINE i.e. cements with a very high content of C3A will usually
be very fine-grained and as it is seen in figure 2.4(b) this should also help increase the
strength.

Finally we see that the 28-day strength is slightly negatively correlated with the content
of C3A This does not seem strange if we consider the temporal dependence of C3S’s
and C3A’s as seen in e.g. in figure 2.4(a) even though the finer grain (for cement with
large content of C3A ) should also be seen in the 28-day strength cf. figure 2.4(b).

In order to separate the different characteristics of C3A from the effects which arise
from a C3A -rich cement seems to be easier to grind and therefore often is seen in
a bit more fine-grained form. Therefore, we will estimate the conditional correlations
for fixed value of BLAINE. These are seen in table 2.3. We see that the partial
correlation coefficient between 3-day strength and C3A for given fine-grainedness is
negative (note the unconditioned correlation coefficient was positive). This implies
that we for fixed fine-grainedness must expect that cements with a high content of C3A
will tend to have lower strengths. This might indicate that the large 3-day strength for
cements with high content of C3A rather depends on these cements having a large
BLAINE (that they are crushed somewhat easier) than that C3A hydrates quickly!

We see a corresponding effect on the correlation between C3A and 28-day strength.
Here the unconditional correlation is -0.168 and the partial correlation for fixed BLAINE
has become -0.246. �

REMARK 2.9. The example above shows that one has to be very cautious in the in-
terpretation of correlation coefficients. It would be directly misleading e.g. to say that
a large content of C3A assures a large 3-day strength. First of all it is not possible
to conclude anything about the relation between two variables just by looking at their
correlation. What you can conclude is that there seems to be a tendency that a high
content of C3A and a high 3-day strength appear at the same time. The reason for this
could be that they both depend on a third but unknown factor without there having to
be any direct relation between the two variables. Secondly we also see that going from
unconditioned to partial correlations can even give a change of sign corresponding to
an effect which is the opposite of that we get by a direct analysis. The reason for this
is a correlation with a 3rd factor in this case BLAINE which disturbs the picture.H
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In many situations we would like to test if the correlation coefficient can be assumed
to be 0. You can then use

THEOREM 2.20. LetR = Rij|m+1...p be the empirical partial correlation coefficient
betweenXi andXj conditioned on (or: for given)Xm+1,...,Xp . It is assumed to be
computed from the unbiased estimates of the variance-covariance matrix and fromn
observations. Then

R√
1 −R2

√
n− 2 − (p−m) ∈ t(n− 2 − (p−m)),

if ρij|m+1,...,p = 0. N

PROOF 2.17. Omitted. �

REMARK 2.10. The number(p − m) is the number of variables which are fixed
(conditioned upon). The degrees of freedom are therefore equal to the number of ob-
servations minus 2 minus the number of fixed variables. The theorem is also valid if
p−m = 0 i.e. if we have the case of an unconditional correlation coefficient. H

We continue example 2.3 in

EXAMPLE 2.4. Let us investigate whether the value ofr24|3 is significantly different
from 0. We find withr24|3 = R:

R√
1 −R2

√
n− 2 − (p−m) =

−0.035√
1 − 0.0352

·
√

51 − 2 − (5 − 4)

= −0.243 = t(48)40%.

A hypothesis thatρ24|3 is 0 will therefore be accepted using a test at levelα for α <
80%. (Note: this is by nature a two-sided test.) �

If we wish to test other values ofρ or to determine confidence intervals we can use

THEOREM 2.21. Assume the situation is as in the previous theorem. We consider the
hypothesis

H0 : ρij|m+1,...,p = ρ0

versus

H1 : ρij|m+1,...,p 6= ρ0.
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We let

Z =
1
2

ln
1 +Rij|m+1,...,p

1 −Rij|m+1,...,p

and

z0 =
1
2

ln
1 + ρ0

1 − ρ0
.

UnderH0 we will have

(Z − z0) ·
√
n− (p−m) − 3 approx.∈ N(0, 1).

N

PROOF 2.18. Omitted. �

EXAMPLE 2.5. Let us determine a 95% confidence interval forρ24|3 in example 2.4.
We have

P {−1.96 < (Z − z) ·
√

51 − (5 − 4) − 3 < 1.96} ' 95%
⇔ P{−1.96− 6.86Z < −6.86z < 1.96 − 6.86Z} ' 95%
⇔ P{Z − 0.29 < z < Z + 0.29} ' 95%.

The relationship betweenz andρ24|3 = ρ is

z =
1
2

ln
1 + ρ

1 − ρ
⇔ ρ =

e2z − 1
e2z + 1

The observed value ofZ is

Z =
1
2

ln
1 − 0.035
1 + 0.035

= −0.03501.

The limits forz become

[−0.3250, 0.2549].

The corresponding limits forρ25|4 are

[
e−0.6500 − 1
e−0.6500 + 1

,
e0.5098 − 1
e0.5098 + 1

]
= [−0.31, 0.25].

�
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2.3.2 The multiple correlation coefficient

The partial correlation coefficient is one possible generalisation of the correlation be-
tween two variables. The partial correlations are mostly intended to describe the degree
of relationship (correlation, covariance) between two variables. Instead we will now
consider the formula on p. 79

ρ2 = V(X1) − V(X1|X2 = x2)
V(X1)

,

This is the "degree of reduction in variation" interpretation of the (squared) correlation
coefficient. This we now seek to generalise. We again consider the partition of the
p-dimensionally normally distributed vectorX i anm-dimensional vectorX1 and a
(p−m)-dimensional vectorX2, and the resulting partitioning of the parameters i.e.

X =
[

X1

X2

]
; µ =

[
µ1

µ2

]
; Σ =

[
Σ11 Σ12

Σ21 Σ22

]
.

We now define the multiple correlation coefficient betweenXi, i = 1, . . . ,m andX2

as the maximal correlation betweenXi and a linear combination ofX2’s elements. It
is denotedρi|m+1,...,p.

It can be shown that the optimal linear combination ofX2’s elements is

β′
iX2 = (Σ12Σ−1

22 )iX2,

whereβ′
i is thei’th row in the matrixΣ12Σ−1

22 . This matrix appears in the expression
for the conditional mean ofX1 givenX2. As stated before this is

E(X1|X2 = x2) = µ1 + Σ12Σ−1
22 (x2 − µ2) = µ1 +


 β′

1
...

β′
m


 (x2 − µ2).

It can also be shown that

inf
α

V(Xi − α′X2) = V(Xi − β′
iX2),

i.e. the considered linear combination minimises the variance of(Xi − α′X2).

We now have the following important

THEOREM 2.22. We consider the situation above. Letσi be thei’th column inΣ21,
i.e. σ′

i is thei’th row in Σ12.
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Then

ρi|m+1,...,p =

√
σ′

iΣ
−1
22 σi√
σii

.

If we let

Σi =
[
σii σ′

i

σi Σ22

]
,

then

1 − ρ2
i|m+1,...,p =

detΣi

σiidetΣ22
= V(Xi|X2)

V(Xi)
,

N

PROOF 2.19. The proofs to the claims before the theorem are quite simple. One
just has to use a Lagrange multiplier and also use that the variance-covariance matrix
is positive semidefinite. What is claimed in the theorem then follows by using the
formula for the conditional variance-covariance structure (p. 74) onΣi by use of the
matrix formulas in section 1.2.7. �

REMARK 2.11. In the theorem we have obtained a large number of characteristics for
the multiple correlation coefficient and since

ρ2
i|m+1,...,p = V(Xi) − V(Xi|X2)

V(Xi)
,

we note that we have generalised the property of reduction in variance. It is important
to note that we can see from the determinant formula that it is possible to compute the
multiple correlation coefficient from the correlation matrix by using the same formulas
valid when computing it from the variance-covariance matrix. H

With regard to the estimation of multiple correlation coefficients the same remark as
on p. 85 regarding the estimation of partial coefficients holds.

In the next example we continue example 2.4.

EXAMPLE 2.6. To get an impression of to which degree the content of C3A and C3S
in example 2.4 can explain the variation in e.g. 3-day strength we can compute the
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multiple correlation coefficient between strength day 3 and (C3S, and C3A). We find

1 − ρ̂2
4|12 =

det


 1 0.158 0.120

0.158 1 −0.309
0.120 −0.309 1




1 · det
[

1 −0.309
−0.309 1

]

where the indices of the variables correspond to those used in example 2.3. We find

ρ̂2
4|12 = 1 − 0.9435 = 0.0565.

The data therefore indicate that only about 6% of the variation in the strength of the ce-
ment (from samples which have been collected the way these data have been collected)
can be explained by variations in C3S- and C3A- content alone. �

If the multiple correlation coefficient is 0 (i.e. ifσi = 0) it is not difficult to determine
the distribution of̂ρ2

i|m+1,...,p. We give the results in the slightly changed form in

THEOREM 2.23. Let R = ρ̂i|m+1,...,p be the empirical multiple correlation coeffi-
cient betweenXi andX2 = (Xm+1, . . . , Xp) based uponn observations. Then

R2

1 −R2
· n− (p−m) − 1

p−m
∈ F(p−m,n− (p−m) − 1),

if ρi|m+1,...,p = 0. N

PROOF 2.20. Omitted �

This can be used in testing the hypotheses

H0 : ρi|m+1,...,p = 0 against H1 : ρi|m+1,...,p 6= 0.

We reject the null hypothesis for large values of the test statistic. This is illustrated in

EXAMPLE 2.7. Consider the situation in example 2.6. We now want to examine if it
can be assumed that the multiple correlation betweenX4 and(X1, X2) is 0. (Note
thatp = 3 andm = 1.) We find the statistic

R2

1 −R2

51 − (3 − 1) − 1
3 − 1

=
0.0565
0.9435

· 48
2

= 1.44.
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Since

F(2, 48)0.90 = 2.42,

we will at least accept a hypothesis thatρ4|12 = 0 for any levelα < 10%. With the
available data it cannot be rejected thatρ4|12 = 0. This does not mean that it is not
different from 0 (which it probably is), only that we cannot be sure using the available
data because the true (but unknown) value ofρ4|12 is probably rather small. �

We shall not consider tests for other values ofρi|m+1,...,n.

2.3.3 Regression

We will not give any deep introduction to the so-called regression theory which must
not be confused with what we in the following section will call (linear) regression
analysis.

Let

[
Y
X

]
be a stochastic vector. By the term regression ofY on x we mean the

function given by

g(x) = E(Y |X = x),

i.e. the conditional mean as a function of the conditioned variable.

Let

[
Y
X

]
be normally distributed with parameters

µ =
[
µ1

µ2

]
and Σ =

[
σ11 σ′

1

σ1 Σ22

]
.

Then theorem 2.16 shows that

g(x) = E(Y |X = x) = µ1 + σ′
1Σ

−1
22 (x − µ2),

i.e. the regression is linear (affine).

We now specialise to two dimensions.

Let

[
Y
X

]
be normally distributed with parameters

[
µy

µx

]
and

[
σ2

y ρσxσy

ρσxσy σ2
x

]
.
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Then the regression ofY onX is given by

E(Y |X = x) = µy + ρ
σy

σx
(x− µx),

and the regression ofX onY is given by

E(X |Y = y) = µx + ρ
σx

σy
(y − µy).

Let us assume that we have measurements

[
Y1

X1

]
, . . . ,

[
Yn

Xn

]
.

The maximum likelihood estimates for the slopes are obtained by using the maximum
likelihood estimators for the parameters in the formula. Then

ρ̂ =
∑

(Xi − X̄)(Yi − Ȳ )√∑
(Xi − X̄)2

∑
(Yi − Ȳ )2

=
SPxy√

SAKxSAKy

,

σ̂2
x =

1
n

∑
(Xi − X̄)2,

σ̂2
y =

1
n

∑
(Yi − Ȳ )2,

and we see e.g. that the estimates of the slope in the expression for the regression ofY
onX becomes

ρ̂
σ̂y

σ̂x
=

SPxy

SAKx
.

This gives the empirical regression equation

Ê(Y |X = x) = Ȳ +
SPxy

SAKx
(x− X̄),

i.e. precisely the same result as we obtained in the one dimensional linear regression
analysis cf. section 5.2 in volume 1. However, there the assumptions were completely
different since then we assumed that the values of the independent variable (hereX ,
in volume 1t) were deterministic values. In the present text we assume that they are
observations of a normally distributed variable which is correlated with the dependent
variable. Concerning the estimation it is not important which of the two models one
works with but the interpretation of the results are of course dependent hereon. We
now continue with example 2.8.

EXAMPLE 2.8. In this example we will determine the linear relations from a mea-
surement by one of the two methods stated in example 2.2 to the other measurement.
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Figure 2.5:

We find the regressions

Ê(X1|X2 = x2) = x̄1 + ρ̂
s1
s2

(x2 − x̄2)

= 0.65x2 + 13.43

and

Ê(X2|X1 = x1) = x̄2 + ρ̂
s2
s1

(x1 − x̄1)

= 0.58x1 + 10.14.

These lines are shown in figure 2.5. If we wish to check if there might be some sort of
relation betweenX1 andX2 we can examine the correlation coefficient. It has been
found to be

ρ̂ =
182√

311 · 279
= 0.617,

i.e.

ρ̂2 = 0.380.

The test statistic for a test of the hypothesisρ = 0 is, cf. p. 88, withp = m = 2

t =
0.617√

1 − 0.380

√
20 − 2 = 3.32 > t(18)0.995.
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Using a test at levelα > 1% we must reject the hypothesis and we assume thatρ 6= 0,
is different from 0. I.e. we now assume there exists a linear relationship between the
methods of measurements in the two cases and it is estimated by the two regressions.
We can then find estimates of the errors etc. in the usual fashion.

In the figure we have also shown a contour-ellipse and its main axes. It can be shown
that the first axis is the line which is obtained by minizing the orthogonal squared dis-
tance to the points. On the other hand the regression equations are found by minimizing
the vertical and horizontal distances respectively. The first main axis is therefore also
called the orthogonal regression. In chapter 4 we will return to this concept. �

2.4 The partition theorem

In this section we will consider a stochastic variablex ∈ N(µ,Σ), whereΣ is regular
of ordern. We will consider the inner product defined byΣ−1 and the corresponding
norm i.e.

(x|y) = x′Σ−1y

and

‖x‖ =
√

(x|x) =
√

x′Σ−1x

Now let the sub-spacesU1, . . . , Uk be orthogonal (with respect to this inner product)
so that

R = U1 ⊕ . . .⊕ Uk.

We let dimUi = ni and call the projection ontoUi for pi. The corresponding
projection matrix is calledCi.

Using the notation mentioned above the following is valid

THEOREM 2.24. (The partition theorem) If we let

Y i = pi(x − µ), i = 1, . . . , k

and

Ki = ‖Y i‖2 = ‖pi(x − µ)‖2, i = 1, . . . , k,
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then

x − µ =
k∑

i=1

Y i

and

‖x − µ‖2 =
k∑

i=1

Ki.

FurthermoreY 1, . . . ,Y k are stochastically independent and normally distributed and
K1, . . . ,Kk are stochastically independent andχ2(ni) -distributed variables. N

PROOF 2.21. We have thatY i = Ci(x − µ) therefore

Y =


 Y 1

...
Y k


 =


 C1

...
Ck


 (X − µ).

From this we obtain

D(Y ) =


 C1

...
Ck


 · Σ · (C′

1, . . . ,C
′
k) = (CiΣC′

j)(i,j).

Now for i 6= j it follows from the lemma on page 54 that

CiΣC′
j = 0.

From this it follows that the components ofY are stochastically independent (because
Y is normally distributed).

We must now determine the distribution of‖pi(X − µ)‖2. We have thatX can be
written

X = µ + AZ

whereZ ∈ N(0, I) andAA′ = Σ. From this it follows that

‖pi(X − µ)‖2 = ‖pi(AZ)‖2 = ‖CiAZ‖2

= Z ′A′C′
iΣ

−1CiAZ = Z ′DiZ.
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Figure 2.6:
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Now

DiDi = A′C′
iΣ

−1CiAA′C′
iΣ

−1CiA

= A′C′
iC

′
iΣ

−1ΣC′
iΣ

−1Ci A
= A′C′

iΣ
−1CiA

= Di,

i.e. Di is idempotent. In the above we have used the lemma on p. 54 repeatedly. It is
obvious thatrg(Di) = ni. Now, since

Di = A′C′
iA

′−1A−1CiA

= (A−1CiA)′(A−1CiA),

thenDi is positive semidefinite (cf. theorem 1.16 p. 38) therefore there exists an or-
thogonal (and even orthonormal) matrixP′ (theorem 1.10) so that

P′DiP = Λi or Di = PΛiP′,

whereΛi is a diagonal matrix with rankni. SinceDi is idempotent we obtain

PΛiP′ = PΛiP′PΛiP′ = PΛ2
i P

′,

or Λi = Λ2
i . ThereforeΛi hasni 1’s andn− ni 0’s on the diagonal. Therefore

Z ′DiZ = Z ′PΛiP′Z = (P′Z)′Λi(P′Z)′

= V ′ΛiV

= V 2
1 + · · · + V 2

n︸ ︷︷ ︸
ni components6=0.

SinceV ∈ N(0,P′P) = N(0, I) it is seen that

Z ′DiZ = ‖pi(X − µ)‖2 ∈ χ2(ni).

�

EXAMPLE 2.9. LetX1, . . . , Xn be independent andN(µ, σ2) -distributed. Then

X =


 X1

...
Xn


 ∈ N(µ, σ2I).
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We consider the subspaceU1 given by

x ∈ U1 ⇔ x1 = . . . = xn,

and the orthogonal subspace toU1 (with respect toσ2I) calledU2. (This concept of
orthogonality corresponds to the usual one). Now the identity

∑
(xi − y)2 =

∑
(xi − x̄)2 + n(x̄− y)2,

shows that the projection ontoU1 is given by

p1(x) =


 x̄

...
x̄


 ,

which means

p2(x) = x − p1(x) =


 x1 − x̄

...
xn − x̄


 .

SincedimU1 = 1 anddimU2 = n− 1 we find from the partition theorem that

p1(X − µ) and ‖p2(X − µ)‖2

are stochastically independent.p1(X −µ) is normally distributed and‖p2(X −µ)‖2

is χ2(n− 1) distributed.

Since

p1(X − µ) =


 X̄ − µ

...
X̄ − µ


 ,

and

‖p2(X − µ)‖2 =
1
σ2

∑
1

(Xi − X̄)2,

we again find the results of the distribution ofX̄ and(n−1)S2 = 1
σ2

∑
(Xi−X̄)2. �
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Figure 2.7:

2.5 The Wishart distribution and the
generalised variance

In the one dimensional case a number of sample-distributions are derived from the
normal distribution. The most important of these is theχ2-distribution, which corre-
sponds to the sum of squared normally distributed data. Its multi-dimensional analog
is the Wishart distribution.

We give the definition by means of the density in

DEFINITION 2.3. Let V be a continuously distributed randomp × p-matrix, which
is symmetrical and positive semi-definite with probability 1. ThenV is said to be
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Wishart distributed with parameters(n,Σ), (n ≥ p), if the density forV is

f(v) = c · [det(v)]
1
2 (n−p−1) exp(−1

2
tr(v ·Σ−1)),

for v positive definite and 0 otherwise. HereΣ is a positive definitep× p-matrix, and
c is the constant given by

1
c

= 2
1
2npπp(p−1)/4(detΣ)

1
2n

p∏
i=1

Γ(
1
2
(n+ 1 − i)).

Abbreviated we write

V ∈ W(n,Σ) = Wp(n,Σ).

where the first version is used whenever there is doubt about the dimension.

We now give a remark about the mean and variance of the components in a Wishart
distribution

Let V = (Vij) be Wishart distributedW(n,Σ), whereΣ = (σij). Then it holds that

E(Vij) = nσij

V(Vij) = n(σ2
ij + σiiσjj)

Cov(Vij , Vkl) = n(σikσjl + σilσjk).

N

PROOF 2.22. Omitted. �

The analogy with theχ2-distribution is seen in

THEOREM 2.25. Let Xi ∈ Np(0,Σ), i = 1, . . . , n, be independent and regularly
distributed. Then forn ≥ p it holds that

Y =
n∑

i=1

XiX
′
i ∈ W(n,Σ).

N

PROOF 2.23. Omitted. �
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REMARK 2.12. If n < p thenY as it is defined in the theorem does not have a density
function. However, we still choose to say, thatY is Wishart distributed with parameters
(n,Σ).

Corresponding remarks hold ifΣ is singular. Using this convention the theorem holds
without the restrictionn ≤ p. H

A nearly trivial implication of the above now is

THEOREM 2.26. Let V1, . . . ,Vk be independent randomp× p-matrices, which are
W(ni,Σ)-distributed. Then it holds

V = V1 + · · · + Vk ∈ W(n1 + · · · + nk,Σ).

One of the main theorems in the theory of sampling functions of normally distributed
random variables is that̄X andS2 are independent and thatS2 is σ2χ2/f -distributed
with 1 degree of freedom less than the number of observations. This theorem has its
multidimensional analog in N

THEOREM 2.27. Let Xi ∈ Np(µ,Σ), i = 1, . . . , n, be stochastically independent.
We let

X̄ =
1
n

n∑
i=1

Xi,

S =
1

n− 1

n∑
i=1

(X i − X̄)(X i − X̄)′.

Then

x̄ ∈ Np(µ,
1
n
Σ)

and

S ∈ W(n− 1,
1

n− 1
Σ).

Furthermore,̄X andS are stochastically independent. N

PROOF 2.24. Omitted. �
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We will now consider some results on marginal distributions. We have that

THEOREM 2.28. Let V be Wishart distributed with parameters(n,Σ). We consider
the partitioning

V =
[

V11 V12

V21 V22

]
and Σ =

[
Σ11 Σ12

Σ21 Σ22

]
.

It then holds that

Vii ∈ W(n,Σii).

N

Further, it holds that

THEOREM 2.29. We again consider the above situation. IfΣ12 and Σ21 are 0-
matrices, thenV11 andV22 are stochastically independent. N

PROOF 2.25. for the theorems. They follow readily by considering the corresponding
partitions of normally distributed vectors, which produce the Wishart distributions.�

Since the multidimensional normal distribution can be defined independent of the co-
ordinate system, then it is not surprising that something similar holds for the Wishart
distribution. Because change form coordinates in one coordinate system to coordinates
in another is performed by manipulating matrices we have the following

THEOREM 2.30. Let V ∈ Wp(n,Σ) and letA be an arbitrary fixedr × p-matrix.
Then

AVA′ ∈ Wr(n,AΣA′).

N

PROOF 2.26. As indicated above one just has to consider the normally distributed
vectors which result inV and then transform them. The resultat then follows readily.

�

We now conclude the chapter by introducing a different generalisation from the one-
dimensional variance to the multidimensional case than the variance-covariancematrix.
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DEFINITION 2.4. Let thep-dimensional vectorX have the variance-covariance ma-
trix Σ. By the termthe generalised varianceof X we mean the determinant of the
variance-covariance matrix, i.e.

gen.var.(X) = det(Σ).

N

REMARK 2.13. In section 1.2.6 we established that the determinant of a matrix cor-
responds to the volume relationship of the corresponding linear projection, i.e. it is a
intuitively sensible measure of the ”size” of a matrix. H

If we have observationsX1, . . . ,Xn, then we define theempirical generalised vari-
ancein a straight forward way from the empirical variance-covariance matrix

S =
1

n− 1

n∑
i=1

(Xi − X̄)(X i − X̄)′,

i.e. as its determinant.

In the normal case we can establish the distribution of the empirical generalised vari-
ance., We have

THEOREM 2.31. Let Xi ∈ Np(µ,Σ), i = 1, . . . , n, be stochastically independent.
Then the empirical generalised variance follows the same distribution as

detΣ
(n− 1)p

· Z1 . . . Zp,

whereZ1, . . . , Zp are stochastically independent andZi ∈ χ2(n− i). N

PROOF 2.27. Omitted. �

Forp = 1 and 2 it is possible to find the density of the empirical generalised variance.
However, for larger values ofp this density involves integrals, which cannot readily be
written as known functions, but forn→ ∞ we do have

THEOREM 2.32. Let S be as above (in the normal case). Then it holds that

√
n− 1

(
det(S)
det(Σ)

− 1
)

asymptotically ∈ N(0, 2p).
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N

PROOF 2.28. Omitted. �



Chapter 3

The general linear model

In this chapter we will formulate a model which is a natural generalisation of the
variance and regression analysis models known from introductory statistics. The
theorems and definitions will to a large extent be interpreted geometrically in order to
give a more intuitive understanding of problems.

3.1 Estimation in the general linear model

We first give a description of the model in

3.1.1 Formulation of the Model.

We consider ann -dimensional stochastic variableY ∈ N(µ, σ2Σ) where Σ is
assumed known. Consider the norm given byΣ−1 i.e.

‖x‖2 = x′Σ−1x.

The norm (σ2Σ)−1 defined by the inverse variance-covariance matrix is given by

‖x‖2
σ2 =

1
σ2

x′Σ−1x =
1
σ2

‖x‖2.

The two norms are seen to be proportional and they result in the same concept of
orthogonality. We will now consider a number of problems in connection with the

107
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estimation and testing of the mean valueµ in cases whereµ is a known linear
function of unknown parameters i.e.

µ = xθ

or


 µ1

...
µn


 =


 x11 · · · x1k

...
...

xn1 · · · xnk




 θ1

...
θk


 ,

where x is assumed known.

Geometrically this can be expressed such that we assume the expected value of the
stochastic vectorY is contained in a subspaceM of Rn. M is the image ofRk

corresponding to the linear projectionx. The dimension ofM is rg(x) ≤ k. The
situation is depicted in the following figure.

Figure 3.1: Geometrical sketch of the general linear model.

We will call such a model, where the unknown mean valueµ is a (known) linear
function of the parameterθ a (general) linear model. This is also valid without the
assumptionY has to be normally distributed.

EXAMPLE 3.1. Consider an ordinary one-dimensional regression analysis model i.e.
we have observations

Yi = α+ βxi + εi, i = 1, . . . , n,
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where E(εi) = 0. This model can be written


 Y1

...
Yn


 =


 1 x1

...
...

1 xn


[ α

β

]
+


 ε1

...
εn


 ,

or

Y = xθ + ε,

i.e. the model is linear in the meaning stated above. �

Another example is

EXAMPLE 3.2. We now consider a situation, where

Yi = α+ βxi + γ lnxi + εi, i = 1, . . . , n

and still we haveE(εi) = 0. Even in this case we have a linear model which is


 Y1

...
Yn


 =


 1 x1 lnx1

...
...

...
1 xn lnxn




 α
β
γ


+


 ε1

...
εn


 .

We note that the term linear has nothing to do withE(Y |X) = α+β x+γ ln x being
linear in the independent variablex, rather thatE(Y |x) considered as a function of
the unknown parameter(α, β, γ)′ should be linear. If we had had a model such as

Yi = α+ β ln(γxi + δ) + εi,
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whereα, β, γ and δ are the unknown parameters it would not be possible to write

Y = x



α
β
γ
δ


+ ε

with the knownx -matrix and we would therefore not have a linear model. �

3.1.2 Estimation in the regular case

We will first formulate the result of estimatingθ in

THEOREM 3.1. Let x and θ be given as in the preceding section and letY ∈
Nn(xθ, σ2Σ), whereΣ is positive definite. Then the maximum likelihood estimator
θ̂ for θ is given by x θ̂ being the projection (with respect toΣ ) onto M , θ̂ is
a solution to the so-called normal equation(s)

(x′Σ−1x)θ̂ = x′Σ−1y.

If x has full rankk, then

θ̂ = (x′Σ−1x)−1x′Σ−1Y ,

and since a linear combination of normally distributed variablesθ̂ is also normally
distributed with parameters

E(θ̂) = θ

D(θ̂) = σ2(x′Σ−1x)−1.

It is especially noted that̂θ is an unbiased estimate ofθ. N

PROOF 3.1. If Y ∈ N(xθ, σ2Σ), where Σ is regular then the density forY

f(y) =
1√
2π

n
1
σn

1√
detΣ

exp[− 1
2σ2

(y − xθ)′Σ−1(y − xθ)]

= k · 1
σn

exp[− 1
2σ2

‖y − xθ‖2].

We have the likelihood function

L(θ) = k · 1
σn

exp[− 1
2σ2

‖y − xθ‖2],
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taking the logarithm on each side gives

ln L(θ) = k1 − 1
2σ2

‖y − xθ‖2.

It is now evident that maximisation of the likelihood function is equivalent to min-
imisation of the squared distance between any point inM and the observation i.e.
equivalent to minimisation of

‖y − xθ‖2 = (y − xθ)′Σ−1(y − xθ).

From the result p. 52 the value ofxθ, giving the minimum is equal to the orthogonal
projection (with respect toΣ−1) of y on M . From example 1.8 p. 48 the optimal
θ is the solution to the equation

(x′Σ−1x)θ = x′Σ−1y.

If x′Σ−1x has full rankk, i.e. if x has rankk (cf. p. 35) we therefore have

θopt. = (x′Σ−1x)−1x′Σ−1y.

We have now shown the first half of the theorem.

From theorem 2.2 we find that

E(θ̂) = (x′Σ−1x)−1x′Σ−1xθ = θ,

And from theorem 2.5 we find

D(θ̂) = (x′Σ−1x)−1x′Σ−1(σ2Σ)Σ−1x(x′Σ−1x)−1

= σ2(x′Σ−1x)−1,

�

The situation is illustrated in the following figure 3.2.

REMARK 3.1. We note thatθ is estimated by minimising the squared distance onto
M . θ̂ is therefore also a least squares estimate ofθ. If we do not have the distribu-
tional assumption we will often be able to use the estimatorθ̂ in theorem 3.1 as an
estimate ofθ. It can be shown that the least squares estimatorθ̂ has the least gen-
eralised variance among all the estimators that are linear functions of the observations
(the so-called Gauss-Markov theorem) cf. [12]. H
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Figure 3.2: Geometric sketch of the problem of estimation in the general linear model.

Since σ2 is often unknown we will now find estimators for it. We have

THEOREM 3.2. Let the situation be as above. The maximum likelihood estimator of
σ2 is

1
n
‖Y − x θ̂‖2.

The unbiased estimator ofσ2 is

σ̂2 =
1

n− rgx
‖Y − x θ̂‖2

=
1

n− rgx
(Y − x θ̂)′Σ−1(Y − x θ̂)

where x θ̂ is the maximum likelihood estimator ofE(Y ). The following holds

σ̂2 ∈ σ2χ2(n− rgx)/(n− rgx)

and σ̂2 is independent of the maximum likelihood estimator of the expected value
and is therefore independent ofθ̂. N

PROOF 3.2. The likelihood function is

L(θ, σ2) = k · 1
σn

exp[−1
2

1
σ2

‖y − xθ‖2],

and

ln L(θ, σ2) = k1 − n

2
lnσ2 − 1

2
1
σ2

‖y − xθ‖2.
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now

∂

∂σ2
ln L = −n

2
1
σ2

+
1

2σ4
‖y − xθ‖2

= −n
2

1
σ4

(σ2 − 1
n
‖y − xθ‖2).

After differentiating with respect toθ we get the ordinary system of normal equa-
tions. We therefore find that the maximum likelihood estimates to(θ̂, σ̂2) for (θ, σ2)
are solutions for

x′Σ−1x θ̂ = x′Σ−1Y

σ̂2 =
1
n
‖Y − x θ̂‖2 =

1
n

(Y − x θ̂)Σ−1(Y − x θ̂).

If we consider the partitioning ofRn as the direct sum ofM and M⊥, whereM⊥

is the orthogonal component (with respect toΣ−1) of M , we get that

PM (Y − xθ) = x θ̂ − xθ

and

Y − x θ̂

are stochastically independent and that

‖Y − xθ̂‖2 ∈ σ2χ2(dimM⊥)
= σ2χ2(n− rgx).

From this we especially get

E(σ̂2) =
1
n

(n− rgx)σ2,

i.e. the likelihood estimator ofσ2 is not unbiased. If we want an unbiased estimate
we can obviously use

1
n− rgx

‖Y − x θ̂‖2.

Most often we will be using the unbiased estimate ofσ2, and we will therefore use
the notation̂σ2 for this. �
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REMARK 3.2. If Σ is the identity matrix then‖y‖2 =
∑
y2

i . So in this case we
have

σ̂2 =
1

n− rgx

n∑
i=1

(Yi − Ê(Yi))2,

where Ê(Yi) = (x θ̂)i. The quantity Yi − Ê(i) is equal to thei’th observations
deviation from the estimated model, and it is called thei’th residual. In the caseΣ = I,
we have that the estimate of variances proportional to the sum of the squared residuals
called SSres. We will generally use this notation for the squared distance between the
observation and the estimated model i.e.

SSres = ‖Y − xθ‖2 = (Y − xθ̂)′Σ−1(Y − xθ̂).

H

Before we will go on we will give a small example for the purpose of illustration.

EXAMPLE 3.3. In the production of a certain synthetic product two raw materials A
and B are mainly used. The quality of the end product can be described by a stochastic
variable which is normally distributed with mean valueµ and varianceσ2. The
mean-value is known to depend linearly on the added amount of A and B respectively
i.e.

µ = xAθA + xBθB,

where xA is the added amount of A andxB is the corresponding added amount of
B. σ2 is assumed to be independent of the added amount of raw-materials. For the
determination of θA and θB three experiments were performed after the following
plan.

Experiment Content of A Content of B
1 100% 0%
2 0% 100%
3 50% 50%

The single experiments are assumed to be stochastically independent. The simultane-
ous distribution of the experimental resultsY1, Y2, Y3 is then a three dimensional
normal distribution with mean value

µ =


 µ1

µ2

µ3


 =


 1 0

0 1
1
2

1
2


[ θA

θB

]
= xθ,
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and variance-covariance matrixσ2I.

We have

x′x =
[

5
4

1
4

1
4

5
4

]
⇒ (x′x)−1 =

[
5
6 − 1

6− 1
6

5
6

]
,

and

x′y =
[
y1 + 1

2y3
y2 + 1

2y3

]
,

giving

[
θ̂A
θ̂B

]
=
[

5
6 − 1

6− 1
6

5
6

] [
y1 + 1

2y3
y2 + 1

2y3

]
=
[

5
6y1 − 1

6y2 + 1
3y3− 1

6y1 + 5
6y2 + 1

3y3

]
.

In this case we observed


 y1
y2
y3


 =


 10.11

0.81
5.24


 ,

so that

[
θ̂A
θ̂B

]
=
[

10.037
0.735

]
.

From this we easily find

Ê(Y ) = x θ̂ =


 10.037

0.735
5.386


 ,

and

Y − Ê(Y ) = Y − x θ̂ =


 0.07

0.07
−0.15


 .

This gives the residual sum of squares

(Y − x θ̂)′(Y − x θ̂) = 0.072 + 0.072 + 0.152 = 0.0338,
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which means that an unbiased estimate ofσ2 is

1
3 − 2

0.0338 = 0.0338.

�

3.1.3 The case of x′Σ−1x singular

If rg(x) = p < k then x′Σ−1x is singular and we cannot find an ordinary solution
to the equation.

(x′Σ−1x)θ̂ = x′Σ−1y.

If we can find a pseudo inverse forx′Σ−1x then we can write

θ̂ = (xΣ−1x)−x′Σ−1y.

However, sometimes it is possible to use a little trick in the determination of the pseudo
inverse. The reason for the singularity is that we have too many parameters. It would
therefore be reasonable to restrictθ to only vary freely in a (side-)subspace ofRk.
One of those could e.g. be determined byθ satisfying the linear equations (restric-
tions)

bθ = c

or


 b11 · · · b1k

...
...

bm1 · · · bmk




 θ1

...
θk


 =


 c1

...
cm


 .

If there existθ s that satisfy this equation system then they span a subspace of dimen-
sion k − rg(b).

Since

rg(x) = p, and we havek θ -components it would be reasonable to removek − p
of these i.e. impose the restrictionk − rg(b) = p or k = p+ rg(b).
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Now if

rg
[

x
b

]
= rg




x11 · · · x1k

...
...

xn1 · · · xnk

b11 · · · b1k

...
...

bm1 · · · bmk




= k,

we can now consider the model

[
Y
c

]
=
[

x
b

]
θ +

[
ε
0

]
.

We let

D =
[

Σ−1 0n,m

0m,n Im,m

]
=
[

Σ−1 0
0 I

]
,

where the short notation should not cause confusion.

If we in the usual way compute

θ̂ = {[x′b′]D
[

x
b

]
}−1{[x′b′]D

[
y
c

]
}

= {x′Σ−1x + b′b}−1{x′Σ−1y + b′c},

then we have a quantity which minimises

g(θ) = {
[

y
c

]
−
[

x
b

]
θ}′D{

[
y
c

]
−
[

x
b

]
θ}

=
[

y − xθ
0

]′ [ Σ−1 0
0 I

] [
y − xθ

0

]
= (y − xθ)′Σ−1(y − xθ)
= ‖y − xθ‖2.

Since this is exactly the same quantity we must determine in order to find the ML-
estimates, we therefore find that

θ̂ = {x′Σ−1x + b′b}−1{x′Σ−1y + b′c}
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really is the maximum likelihood estimator forθ. The only requirement is that we

must find a matrixb so

[
x
b

]
has full rank and this corresponds to restrictingθ’s

region of variation.

The variance-covariance matrix of̂θ becomes

D(θ̂) = σ2{x′Σ−1x + b′b}−1x′Σ−1x{x′Σ−1x + b′b}−1.

This expression is found immediately by using theorem 2.5.

As before the unbiased estimate ofσ2 is

1
n− rgx

‖y − xθ̂‖2

Here we haven− rgx = n− k + rgb.

First we give a little theoretical

EXAMPLE 3.4. Consider a very simple one-sided analysis of variance with two groups
with two observations in each group. We could imagine that we were examining the
effect of a catalyst on the results of some process. We therefore conduct four ex-
periments, two with the catalyst at level A and two with the catalyser at level B. We
therefore have the following observations

level A: Y11, Y12

level B:Y21, Y22

If we assume that the observations are stochastically independent and have mean values

E(Y11) = E(Y12) = θ1

E(Y21) = E(Y22) = θ2,

then we can express the model as



Y11

Y12

Y21

Y22


 =




1 0
1 0
0 1
0 1



[
θ1
θ2

]
+ ε = xθ + ε.

We easily find that

x′x =
[

2 0
0 2

]
,
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and

θ̂ =
[

1
2 0
0 1

2

] [
y11 + y12
y21 + y22

]
=
[
ȳ1
ȳ2

]
,

which are the usual estimators. If we instead use the (commonly used) parametrisation

E(Y11) = E(Y12) = µ+ α1

E(Y21) = E(Y22) = µ+ α2

i.e. we express the effect of a catalyst as a level plus the specific effect of that catalyst.
Then we have


Y11

Y12

Y21

Y22


 =




1 1 0
1 1 0
1 0 1
1 0 1




 µ
α1

α2


+ ε = xα + ε.

It is easily seen thatx has rank 2 (the sum of the last two columns equals the first).
We will therefore try to introduce a linear restriction between the parameters. We will
try with

α1 + α2 = 0 i.e. :
(

0 1 1
) µ

α1

α2


 = 0.

We can now formally introduce the model



Y11

Y12

Y21

Y22

0


 =




1 1 0
1 1 0
1 0 1
1 0 1
0 1 1




 µ
α1

α2


+

[
ε
0

]
,

or

[
Y
0

]
=
[

x
0 1 1

] µ
α1

α2


+

[
ε
0

]
.

We now have that

[
x

0 1 1

]′ [ x
0 1 1

]
= x′x +


 0 0 0

0 1 1
0 1 1


 =


 4 2 2

2 3 1
2 1 3


 .
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The inverse of this matrix is


 1

2 − 1
4 − 1

4− 1
4

1
2 0

− 1
4 0 1

2


 .

Now, since

[
x

0 1 1

] [
y
0

]
=


 1 1 1 1 0

1 1 0 0 1
0 0 1 1 1





y11
y12
y21
y22
0


 =



∑
yij

y11 + y12
y21 + y22


 ,

we have


 µ̂
α̂1

α̂2


 =


 1

2 − 1
4 − 1

4− 1
4

1
2 0

− 1
4 0 1

2





∑
yij

y11 + y12
y21 + y22


 =


 ȳ
ȳ1 − ȳ
ȳ2 − ȳ


 ,

i.e. exactly the same estimators we are used to from a balanced one-sided analysis of
variance (note: We know in beforehand that we will get these estimators. cf. p. 119).

�

We will now give a more practical example of the estimation of parameters in the case
where x′Σ−1x is singular.

EXAMPLE 3.5. In the production of enzymes one can use two principally different
types of bacteria. Via its metabolism one type of bacterie liberates acid during the
production (acid producer). The other produces neutral metabolic products. In order to
regulate the pH-value in the substrate on which the bacterias are produced, one can add
a so-called pH-buffer. It is known, that the pH-buffer itself does not have any effect
on the production of the enzyme, rather it works through an interaction with the acid
content and the metabolic products of the bacteria.

For a ”neutral” type of bacteria which lives on a substrate without pH-buffer the mean
production of enzyme (normal production) is known. In order to estimate the above
mentioned interactions one has measured the difference between the normal production
and the actual production of enzyme in 7 experiments as shown below.

First we will formulate a mathematical model that can describe the above mentioned
experiment.
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pH-buffer
added not added

bacteria acid producer 0,-2 -19,-15
culture neutral -6, 0,-2

Table 3.1: Differences between nominal yield and actual yield under different experi-
mental circumstances.

We have observations

y11ν , ν = 1, 2
y12ν , ν = 1, 2
y21ν , ν = 1, 2, 3.

These are assumed to have the mean values

E(y11ν) = µ1 + θ11

E(y12ν) = µ1 + θ12

E(y21ν) = θ21,

where µ1 is the effect of using acid producing bacteria andθij is the interaction
between pH-buffer and bacteria culture.

Furthermore we assume that the observations are stochastically independent and we
have the same but unknown varianceσ2.

We can now formulate the model as a general linear model. We have




Y111

Y112

Y121

Y122

Y211

Y212

Y213




=




1 1 0 0
1 1 0 0
1 0 1 0
1 0 1 0
0 0 0 1
0 0 0 1
0 0 0 1






µ1

θ11
θ12
θ21


+ ε,

where the errorε ∈ N7(0, σ2I).

We find

x′x =




4 2 2 0
2 2 0 0
2 0 2 0
0 0 0 3


 ,
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and

x′y =



y1..

y11.

y12.

y21.


 ,

where a dot as an index-value indicates that we have summed over the corresponding
index.

Sincex′x only has the rank 3, we are unable to invert it. Instead we can find a
pseudo-inverse. We use the theorem 1.7 p. 27 and get

(x′x)− =




0 0 0 0
0 1

2 0 0
0 0 1

2 0
0 0 0 1

3


 ,

so the estimates from the parameters become - with this special choice of pseudo-
inverse -

θ̂ = (x′x)−x′y =




0
ȳ11.

ȳ12.

ȳ21.


 ,

where e.g.

ȳ21. =
1
3

3∑
ν=1

y21ν .

Now, since

I − (x′x)−x′x =




1 0 0 0
−1 0 0 0
−1 0 0 0

0 0 0 0


 ,

we have

(I − (x′x)−x′x)z =




z1
−z1
−z1

0



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From theorem 1.6 the complete solution to the normal equations is therefore all vectors
of the form

θ̂ +




t
−t
−t
0


 =



t
ȳ11. − t
ȳ12. − t
ȳ21.


 , t ∈ R.

An arbitrary maximum likelihood estimator forθ is then of this form.

The observed value of̂θ is

θ̂obs =




0
−1
−17
−2 2

3


 .

It is obvious that this estimator is not very satisfactory since e.g.µ̂1 always will be 0.
In order to get estimators which correspond to our expectations about physical reality
we must impose some constraints on the parameters. It seems reasonable to demand
that

θ11 + θ12 = 0,

i.e.

(
0 1 1 0

)


µ1

θ11
θ12
θ21


 = 0,

or

bθ = 0.

It is obvious that

rg(
[

x
b

]
) = 4,
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so we can use the result from p. 119. We find

x′x + b′b =




4 2 2 0
2 2 0 0
2 0 2 0
0 0 0 3


+




0 0 0 0
0 1 1 0
0 1 1 0
0 0 0 0




=




4 2 2 0
2 3 1 0
2 1 3 0
0 0 0 3


 .

Since
 4 2 2

2 3 1
2 1 3


−1

=


 1

2 − 1
4 − 1

4− 1
4

1
2 0

− 1
4 0 1

2


 ,

we find

(x′x + b′b)−1 =




1
2 − 1

4 − 1
4 0

− 1
4

1
2 0 0

− 1
4 0 1

2 0
0 0 0 1

3


 .

We now get

θ̂ = (x′x + b′b)−1x′y =



ȳ1..

ȳ11. − ȳ1..

ȳ12. − ȳ1..

ȳ21.


 .

The observed value is


−9
8

−8
−2 2

3





=




acid producing effect
buffer & acid interaction
(-buffer) & acid interaction
buffer & neutral interaction




 .

We now find the variance-covariance matrix forθ̂. We have

D(θ̂) = σ2(x′x + b′b)−1x′x(x′x + b′b)−1

= σ2




1
4 0 0 0
0 1

4 − 1
4 0

0 − 1
4

1
4 0

0 0 0 1
3


 ,
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i.e. the estimators are not independent.

In order to estimateσ2 we find the vector of residuals. Since

x θ̂ =




µ̂1 + θ̂11
µ̂1 + θ̂11
µ̂1 + θ̂12
µ̂1 + θ̂12
θ̂21
θ̂21
θ̂21




=




−1
−1
−17
−17
−2 2

3−2 2
3−2 2
3



,

the vector of residuals is

y − x θ̂ =




1
−1
−2

2
−3 1

3
2 2

3
2
3



.

We then find

‖y − x θ̂‖2 = (y − x θ̂)′(y − x θ̂) = 12 + · · · + (
2
3
)2 = 28

2
3
.

An unbiased estimate ofσ2 is therefore

s2 =
1

7 − 3
· 28

2
3

= 7
1
6
.

�

3.1.4 Constrained estimation

This section is omitted.
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3.1.5 Confidence-intervals for estimated values.
Prediction-intervals

We consider the model(n > k)


 Y1

...
Yn


 =


 x11 . . . x1k

...
...

xn1 . . . xnk




 θ1

...
θk


+


 ε1

...
εn


 ,

where

ε ∈ N(0, σ2Σ).

Here we will denote theY ’s as dependent variables and thex ’s as the independent
variables.

As usualσ2 is (assumed) unknown andΣ is (assumed) known. We have the
estimator

θ̂ = (x′Σ−1x)−1x′Σ−1Y

for θ and σ2 is estimated using

σ̂2 = s2 =
1

n− k
‖Y − xθ̂‖2

=
1

n− k
(Y − xθ̂)′Σ−1(Y − xθ̂).

If we wish to predict the expected value of the new observationY of the dependent
variable corresponding to the values of the independent variables:

(z1, . . . , zk) = z′

it is obvious that we will use

Z = (z1, . . . , zk)


 θ̂1

...
θ̂k


 = z′θ̂

as our ”best” guess.
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We have thatE(Z) = E(Y ) and that

V (Z) = z′ D(θ̂)z
= σ2z′(x′Σ−1x)−1z

= σ2c,

where

c = (z1, . . . , zk)(x′Σ−1x)−1


 z1

...
zk


 .

We therefore immediately have

Z − E(Y )
σ
√
c

∈ N(0, 1),

and therefore also

Z − E(Y )
S
√
c

∈ t(n− k).

We are now able to formulate and prove

THEOREM 3.3. Let the situation be as above. Then the(1−α) -confidence interval
for the expected value of a new observationY will be

[z − t(n− k)1−α
2
s
√
c, z + t(n− k)1−α

2
s
√
c].

N

PROOF 3.3. From the above considerations we immediately have

1 − α = P{Z − t(n− k)1−α
2
s
√
c ≤ E(Y ) ≤ Z + t(n− k)1−α

2
s
√
c},

and therefore also have the theorem. �

Often one is more interested in a confidence interval for the new (or future) observa-
tions than for the expected value of the observations. We now consider the more general
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problem of determining the confidence interval for the averageȲq of q observations
taken at(z1, . . . , zk). If Yiq ∈ N(E(Y ), c1σ2), then we have that

Ȳq ∈ N(E(Y ),
c1
q
σ2).

If we now assume that the new (or future) observations are independent of those we
already have then

Z − Ȳq ∈ N(0, σ2(c+
c1
q

)),

i.e.

Z − Ȳq

S
√
c+ c1

q

∈ t(n− k).

From this we can as before derive

THEOREM 3.4. Let us assume thatq new observations taken at(z1, . . . , zk) each
have a variancec1σ2 Furthermore, they are independent of each other and independent
of the earlier observations. In that case a(1 − α) confidence interval for the average
of the q observations equals the interval

[z − t(n− k)1−α
2
s

√
c+

c1
q
, z + t(n− k)1−α

2
s

√
c+

c1
q

].

N

REMARK 3.3. The above mentioned interval is a confidence interval for an obser-
vation and not for a parameter as we are used to. One therefore often speaks of a
prediction interval in order to distinguish between the two situations. H

REMARK 3.4. We see that the correspondence to the interval forȲq instead of the
interval for E(Ȳq) = E(Y ) just consists of the expression under the square root sign

being larger by an amount equal toc1
q which is the variance ofȲq

σ . H

EXAMPLE 3.6. We consider the following corresponding observations of an indepen-
dent variablex and a dependent variabley:

x 0 1 2 3 4 5 6
y 0.4 0.3 1.5 1.3 1.9 4.2 8
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We assume that they ’s originate from independent stochastic variablesY1, . . . , Y7

which are normally distributed with mean values

E(Y |x) = βx2

and variances

V(Y |0) = σ2, V(Y |x) = x2σ2, x > 0.

We would now like to find a confidence interval for a new (or future) observation cor-
responding tox = 10. This observation is calledY , and we have

E(Y ) = 100β

V(Y ) = 100σ2 .

We now reformulate the problem in matrix form:




Y1

Y2

Y3

Y4

Y5

Y6

Y7




=




0
1
4
9

16
25
36



β +




ε1

·
·
·

ε7




= xβ + ε,

where

D(ε) = σ2




1 . . . 0
1

· 4 ·
· 9 ·
· 16 ·

25
0 . . . 36




= σ2Σ.

We have that

x′Σ−1x = (0, 1, 4, 9, 16, 25, 36) diag(1, 1,
1
4
, . . . ,

1
36

)




0
1
...

36




= 91.
x′Σ−1y = 0.3 + 1.5 + 1.3 + 1.9 + 4.2 + 8.0 = 17.2.
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so

β̂ =
17.2
91

= 0.1890,

and

PM (y) =




0
1
4
9

16
25
36



· 0.1890 =




0
0.1890
0.7560
1.7010
3.0240
4.7250
6.8040



.

The residuals are

y − PM (y) =




0.4000
0.1110
0.7440

−0.4010
−1.1240
−0.5250

1.1960



,

so

‖y − PM (y)‖2 = (0.4000 · · ·1.1960)




1
1

1
1

. . .
1
36




 0.4000

...
1.1960




= 0.45829

i.e.

σ̂2 = s2 =
1

7 − 1
0.45829 = 0.07638 = 0.276372.

The constantsc and c1 are equal to

c = 100 · 1
91

· 100 = 109.89

c1 = 102 = 100.
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The prediction forx = 10 is

z = 100β̂ = 18.90

The confidence interval for the expected value atx = 10 is therefore given by

18.90 ± t(6)0.9750.2764
√

109.89

= 18.90 ± 2.447 · 0.2764
√

109.89
= 18.90 ± 7.09.

The corresponding prediction interval for the next observation is

18.90 ± t(6)0.975 · 0.2764
√

109.89 + 100.
= 18.90 ± 9.80,

i.e. a somewhat broader interval than for the expected value. The explanation is simply
that we have a variance of102σ2 = 100σ2 in x=10. We depict the observations and
estimated polynomial in the following graph. Further the two confidence intervals are
given. �
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3.2 Tests in the general linear model

In this section we will check if the mean vector can be assumed to lie in a true sub-space
of the model space and also check if the mean vector successively can be assumed to
lie in sub-spaces of smaller and smaller dimensions. First

3.2.1 Test for a lower dimension of model space

Let Y ∈ Nn(µ, σ2Σ), whereΣ is regular and known. We assume thatµ ∈ M , is a
k-dimensional sub-space and we will test the hypothesis

H0 : µ ∈ H against H1 : µ ∈M\H,

whereH is anr-dimensional sub-space ofM . In the following we will consider the
norm given byΣ−1 . The maximum likelihood estimator forµ is then the projection
pM (Y ) onto M and ifH0 is true then the maximum likelihood estimatorpM (Y ), is
Y ’s projection ontoH . The ML estimator forσ2 in the two cases are respectively
1
n‖y − pM (y)‖2 and 1

n‖y − pH(y)‖2.

The likelihood function is

L(µ, σ2) =
1√
2π

n
1
σn

1√
detΣ

exp(− 1
2σ2

(y − µ)′Σ−1(y − µ))

= k · σ−n exp(− 1
2σ2

‖y − µ‖2).

With this notation we have
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THEOREM 3.5. Let the situation be as above. Then the ratio test at levelα of

H0 : µ ∈ H versus H1 : µ ∈M\H,

is equivalent to the test given by the critical region

Cα ={(y1, . . . , yn)| ‖pM (y) − pH(y)‖2/(k−r)
‖y − pM (y)‖2/(n−k) > F(k−r, n−k)1−α}.

N

PROOF 3.4. The ratio test statistic is

Q =
supH0

L(µ, σ2)
sup L(µ, σ2)

=
L(pH(y), σ̂2)

L(pM (y), σ̂2)

=
[‖y − pM (y)‖2

‖y − pH(y)‖2

]n
2 exp(−n

2 )
exp(−n

2 )
=
[‖y − pM (y)‖2

‖y − pH(y)‖2

]n
2

.

From this we see

Q < q ⇔ ‖y − pM (y)‖2

‖y − pH(y)‖2
< k1.

Since we reject the hypothesis for small values ofQ we see that we reject when the
length of the legY − pM (Y ) is much less than the length of the hypotenuse. From
Pythagoras we have that

‖y − pH(y)‖2 = ‖y − pM (y)‖2 + ‖pH(y) − pM (y)‖2,

we see that we may just as well compare the two legs i.e. use

Q < q ⇔ ‖pM (y) − pH(y)‖2/(k − r)
‖y − pM (y)‖2/(n− k)

> c. (3.1)

UnderH0 both the numerator and denominator areσ2χ2(f)/f distributed with re-
spectivelyk − r andn − k degrees of freedom and they are furthermore independent
(follows from the partition theorem). The ratio will therefore be F-distributed under
H0, and the theorem follows from this. The reason why we in (3.1) have divided
the respective norms with the dimension of the relevant sub-space is of course that we
want the test statistic to be F-distributed underH0, and not just proportional to an
F-distribution. �
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Q.E.D.

One usually collects the calculations in an analysis of variance table.

Variation SS
Degrees of freedom
= dimension

Of model from
hypothesis

‖pM (Y ) − pH(Y )‖2 k − r

Of observations
from model

‖Y − pM (Y )‖2 n− k

Of observations
from hypothesis

‖Y − pH(Y )‖2 n− r

REMARK 3.5. Often one will be in the situation that the sub-spacesM andH are
parameterised, i.e.

µ ∈ M ⇔ ∃θ ∈ Rk(µ = xθ)
µ ∈ H ⇔ ∃γ ∈ Rr(µ = x0γ),

wherex andx0 aren × k respectivelyn × r (with r ≤ k) matrices. We then have
thatpM (y) = xθ̂ andpH(y) = x0γ̂ are computed by solving the equations

(x′Σ−1x)θ̂ = x′Σ−1y

(x′
0Σ

−1x0)γ̂ = x′
0Σ

−1y

with respect tôθ andγ̂. H

Once again we consider the model from p. 114.

EXAMPLE 3.7. We have the model
 Y1

Y2

Y3


 =


 1 0

0 1
1
2

1
2


[ θ1

θ2

]
+ ε.

We observe data wherey′ = (10.11, 0.81, 5.24). We wish to test the hypothesis

H0 : θ2 = 0 versus H1 : θ2 6= 0.

We reformulate the hypothesis into

H0 : E(Y ) =


 1

0
1
2


 θ1 =


 1

0
1
2


 γ.
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The estimator forγ is

γ̂ = [( 1 0 1
2 )


 1

0
1
2


]−1[( 1 0 1

2 )


 y1y2
y3


] =

4
5
y1 +

2
5
y3.

The observed value iŝγ = 10.184. From this we have

x0γ̂ =


 1

0
1
2


 10.184 =


 10.184

0
5.092


 ,

and

‖y − x0γ̂‖2 = (y − x0γ̂)′(y − x0γ̂) = 0.6835.

Since we had (p. 115)

‖y − x0θ̂‖2 = (y − xθ̂)′(y − xθ̂) = 0.0338,

we get

‖x θ̂ − x0γ̂‖2 = 0.6835 − 0.0338 = 0.6497.

From this the test statistic becomes

‖x θ̂ − x0γ̂‖2/(2 − 1)

‖y − x θ̂‖2/(3 − 2)
= 19.22 < F(1, 1)0.90,

and we accept the hypothesis at least for anyα < 10%.
Explanation of the degrees of freedom:

rgx = rg


 1 0

0 1
1
2

1
2


 = 2 = k

rgx0 = rg


 1

0
1
2


 = 1 = r

n = 3.

�
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We will now look at the continuation of example 3.5 p. 121.

EXAMPLE 3.8. From the formulation of the problem it seems reasonable to assume
that the parameterθ21 = 0. We will therefore test the hypothesis

H0 : θ21 = 0 against H1 : θ21 6= 0.

The hypothesis-spaceH is therefore given by

E(Y ) =




1 1 0
1 1 0
1 0 1
1 0 1
0 0 0
0 0 0
0 0 0





 µ1

θ11
θ12


 =




µ1 + θ11
µ1 + θ11
µ1 + θ12
µ1 + θ12

0
0
0



.

We now find

x′
1x1 =


 1 1 1 1 0 0 0

1 1 0 0 0 0 0
0 0 1 1 0 0 0







1 1 0
1 1 0
1 0 1
1 0 1
0 0 0
0 0 0
0 0 0




=


 4 2 2

2 2 0
2 0 2


 ,

and

x′
1Y =


 Y1..

Y11.

Y12.


 .

We see thatx′
1x1 is singular, and we add the linear restriction

bθ = ( 0 1 1 )


 µ1

θ11
θ12


 = θ11 + θ12 = 0.

Since

b′b =


 0 0 0

0 1 1
0 1 1


 ,
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we have

x′x + b′b =


 4 2 2

2 3 1
2 1 3


 .

This matrix is inverted on p. 121. We therefore find the estimator underH0 as

θ̂1 =


 1

2 − 1
4 − 1

4− 1
4

1
2 0

− 1
4 0 1

2




 Y1..

Y11.

Y12.


 =


 Ȳ1..

Ȳ11. − Ȳ1

Ȳ12. − Ȳ1


 .

The observed value is(−9, +8, −8)′. The new residual vector is

y − x1θ̂1 = (1,−1,−2.+ 2,−6, 0,−2)′.

The norm of this vector is 50, and the number of degrees of freedom is 7-2 = 5. We
therefore find that

‖pM (y) − pH(y)‖2 = ‖y − pH(y)‖2 − ‖y − pM (y)‖2

= 50 − 28
2
3

= 21
1
3
.

We now collect the calculations in the following analysis of variance table.

Variation SS f S2 Test
M −H 21 1

3 3 − 2 = 1 21 1
3

2.97
O −M 28 2

3 7 − 3 = 4 7 1
6

O −H 50 7 − 2 = 5

Since the observed value of the test statistic2.97 < F(1, 4)0.90 we will accept the
hypothesis, and therefore assume thatH0 is true. �

3.2.2 Successive testing in the general linear model.

In this section we will illustrate the test procedure one should follow, when one succes-
sively wants to investigate if the mean vector for ones observations lies in sub-spaces
Hi with

H0 ⊇ H1 ⊇ H2 ⊇ · · · ⊇ Hm, m ≤ k.
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We will start by considering the following numbers from the yield of penicillin fer-
mentation using two different types of sugar namely: lactose and cane sugar, at the
concentrations 2%, 4%, 6% and 8% (in g./100 ml.).

Factor B: concentration
2% 4% 6% 8%

Lactose 0.606 0.660 0.984 0.908
Factor A:

Cane sugar 0.761 0.933 1.072 0.979

The numbers are from [5] p. 314. The yield has been expressed by the logarithm of the
weight of the mycelium after one week of growth.

We are now interested in investigating the two factors A’s and B’s influence on the yield.
We assume that the observations are stochastic independent and normally distributed.
They are called

L : Y11, Y12, Y13, Y14

and

R : Y21, Y22, Y23, Y24

further we will assume that

E(Yij) = α′
i + β′

ix
′
j + γ′ix

2
j

wherex′j gives thej’th sugar concentration. We will perform change in scale of the
sugar concentration

2% −3
4% −1
6% 1
8% 3,

or more stringently definex by

xj =
x′j − 5%

1%
.

We then get the following expression for the mean values

E(Yij) = αi + βixj + γix
2
j .



3.2. TESTS IN THE GENERAL LINEAR MODEL 141

We are assuming that the yield within the given limits can be expressed as polynomials
of second degree.

One could now e.g. successively investigate

1) if γ1 = γ2 = 0, i.e. if a description by affine functions is sufficient

2) if that is accepted then ifβ1 = β2 = β, i.e. if the marginal effect by increasing
the concentration is the same for the two types of sugar

3) if that is accepted then ifα1 = α2 = α, i.e. if the two types of sugar are equal
with respect to the yield and if this is accepted

4) then ifβ = 0, i.e. if the concentration has any influence at all

i) We first write the model in matrix form


Y11

Y12

Y13

Y14

Y21

Y22

Y23

Y24




=




1 −3 9 0 0 0
1 −1 1 0 0 0
1 1 1 0 0 0
1 3 9 0 0 0
0 0 0 1 −3 9
0 0 0 1 −1 1
0 0 0 1 1 1
0 0 0 1 3 9







α1

β1

γ1

α2

β2

γ2


+




ε1
ε2
ε3
ε4
ε5
ε6
ε7
ε8



,

or

Y = xθ + ε.
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We find

x′x =




1 1 1 1 0 0 0 0
−3 −1 1 3 0 0 0 0

9 1 1 9 0 0 0 0
0 0 0 0 1 1 1 1
0 0 0 0 −3 −1 1 3
0 0 0 0 9 1 1 9







1 −3 9 0 0 0
1 −1 1 0 0 0
1 1 1 0 0 0
1 3 9 0 0 0
0 0 0 1 −3 9
0 0 0 1 −1 1
0 0 0 1 1 1
0 0 0 1 3 9




=




4 0 20 0 0 0
0 20 0 0 0 0

20 0 164 0 0 0
0 0 0 4 0 20
0 0 0 0 20 0
0 0 0 20 0 164


 .

Since


 4 0 20

0 20 0
20 0 164


−1

=


 41

64 0 − 5
64

0 1
20 0

− 5
64 0 1

64


 ,

then

(x′x)−1 =




41
64 0 − 5

64 0 0 0
0 1

20 0 0 0 0
− 5

64 0 1
64 0 0 0

0 0 0 41
64 0 − 5

64
0 0 0 0 1

20 0
0 0 0 − 5

64 0 1
64


 .

From this we see that

θ̂ =




− 1
16y11 + 9

16y12 + 9
16y13 − 1

16y14− 3
20y11 − 1

20y12 + 1
20y13 + 3

20y14
1
16y11 − 1

16y12 − 1
16y13 + 1

16y14− 1
16y21 + 9

16y22 + 9
16y23 − 1

16y24
3
20y21 − 1

20y22 − 1
20y23 + 3

20y24
1
16y21 − 1

16y22 − 1
16y23 + 1

16y24


 =




0.830
0.062

−0.008
1.019
0.040

−0.017


 .

The model corresponds to a 6-dimensional sub-spaceM in R8 (rg x = 6), and
since we are using the norm corresponding toI we have that the projection onto
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M is

pM (y) = xθ̂ =




1 −3 9 0 0 0
1 −1 1 0 0 0
1 1 1 0 0 0
1 3 9 0 0 0
0 0 0 1 −3 9
0 0 0 1 −1 1
0 0 0 1 1 1
0 0 0 1 3 9







0.830
0.062

−0.008
1.019
0.040

−0.017


 =




0.572
0.760
0.884
0.944
0.746
0.962
1.042
0.986



.

We therefore have the residuals

y − pM (y) =




0.034
−0.100

0.100
−0.036

0.015
−0.029

0.030
−0.007



.

The squared length of this vector is

‖y − pM (y)‖2 = 0.0342 + · · · + (−0.007)2 = 0.024467.

As an estimate ofσ2 we can therefore use

σ̂2 =
1

8 − 6
0.024467 = 0.0122335.

ii) If the hypothesisµ ∈ H1, i.e. γ1 = γ2 = 0, or

y =




1 −3 0 0
1 −1 0 0
1 1 0 0
1 3 0 0
0 0 1 −3
0 0 1 −1
0 0 1 1
0 0 1 3






α1

β1

α2

β2


+ ε = x1δ1 + ε1,

is true, then we get the estimates

δ̂1 = (x′
1x1)−1x′

1y =




1
4y11 + 1

4y12 + 1
4y13 + 1

4y14

− 3
20y11 − 1

20y12 + 1
20y13 + 3

20y14
1
4y21 + 1

4y22 + 1
4y23 + 1

4y24

− 3
20y21 − 1

20y22 + 1
20y23 + 3

20y24


 =




0.790
0.062
0.936
0.040



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The residuals are

y − pH1(y) = y − x1δ̂1 =




0.002
−0.068

0.132
−0.068
−0.055

0.037
0.096

−0.077



.

The squared length of this vector is

‖y − pH1(y)‖2 = 0.0022 + · · · + (−0.077)2 = 0.046215.

iii) If µ ∈ H2, d.v.s. β1 = β2 = β, the model becomes

y =




1 0 −3
1 0 −1
1 0 1
1 0 3
0 1 −3
0 1 −1
0 1 1
0 1 3





 α1

α2

β


+ ε2 = x2δ2 + ε2.

The estimates become

δ̂2 = (x′
2x2)−1x′

2y =


 0.790

0.936
0.051


 ,

and the residuals

y − pH2(y) =




−0.031
−0.079

0.143
−0.035
−0.022

0.048
0.085

−0.110



.

The squared norm of the residual vector is

‖y − pH2(y)‖2 = (−0.031)2 + · · · + (−0.110)2 = 0.050989.
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iv) If µ ∈ H3, i.e. β1 = β2 = β andα1 = α2 = α, then the model is

y =




1 −3
1 −1
1 1
1 3
1 −3
1 −1
1 1
1 3




[
α
β

]
+ ε3 = x3δ3 + ε3

We find

δ̂3 = (x′
3x3)−1x′

3y =
[

0.863
0.051

]
,

and

y − pH3(y) =




−0.104
−0.152

0.070
−0.108

0.051
0.121
0.158

−0.037



,

giving

‖y − pH3(y)‖2 = 0.094059.

v) Finally we consider the caseµ ∈ H4, i.e. β = 0, or

y =




1
1
1
1
1
1
1
1



α = x4δ4 + ε4.

We find

δ̂4 = α̂ = (x′
4x4)−1x′

4y
′ = 0.863,
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giving

y − pH4(y) =




−0.250
−0.203

0.121
0.045

−0.102
0.070
0.209
0.116



,

and

‖y − pH4(y)‖2 = 0.196365.

Since we letrg(xi) = ri andrg(x) = k we can summarise the testing procedure in an
analysis of variance table such as

Variation SS
Degrees of freedom=
dimension

H4 −H3 ‖pH4(y) − pH3(y)‖2 r3 − r4 = 2 − 1 = 1

H3 −H2 ‖pH3(y) − pH2(y)‖2 r2 − r3 = 3 − 2 = 1

H2 −H1 ‖pH2(y) − pH1(y)‖2 r1 − r2 = 4 − 3 = 1

H1 −M ‖pH1(y) − pM (y)‖2 k − r1 = 6 − 4 = 2

M − obs. ‖pM (y) − y‖2 n− k = 8 − 6 = 2

H4 − obs. ‖pH4(y) − y‖2 n− r4 = 8 − 1 = 7

This table is a simple extension of the table on p. 136. We can use the partition theorem
and get, under the different hypotheses, that the sum of squares are independent and
distributed asσ2χ2 with the respective degrees of freedom.

If a hypothesisHi is accepted then the test statistic for the test ofHi+1 becomes

‖pHi(y) − pHi+1(y)‖2/(ri − ri+1)
‖pHi(y) − y‖2/(n− ri)

.

Under the hypothesis this measure isF(ri −ri+1, n−ri) distributed (according to the
partition theorem) and - still following the theory from the previous section - we reject
for large values ofZ i.e. for

Z > F(ri − ri+1, n− ri)1−α.

Before we start testing it would be appropriate to give some computational formulas.
We consider the transition fromHi toHi+1 ⊂ Hi.
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Using Pythagoras’ theorem we now see that there are two alternative ways of compu-
tation for

z = ‖pHi+1(y) − pHi(y)‖2,

they are

z = ‖pHi(y)‖2 − ‖pHi+1(y)‖2 (3.2)

and

z = ‖y − pHi+1(y)‖2 − ‖y − pHi(y)‖2. (3.3)

Of these the first must be preferred from numerical reasons but if one has computed the
residuals sum of squares anyhow it seems to be easier to use ( reffor:3.3)).

The analysis of variance table in our case becomes

Variation SS f Test statistic

H4 −H3 0.102306 1 0.102306/1
0.094059/6 = 5.44

H3 −H2 0.043070 1 0.043070/1
0.050981/5 = 4.22

H2 −H1 0.004774 1 0.004774/1
0.046215/4 = 0.41

H1 −M 0.021748 2 0.021748/2
0.024467/2 = 0.89

M − obs 0.024467 2

Obs−H4 0.196365 7
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Since

4.22 ' F(1, 5)0.91,

and

5.44 ' F(1, 6)0.94,

we will not by testing at say, levelα = 5% - reject any of the hypothesisH1, H2, H3

orH4.

NOTE 1. We will of course not test e.g.H2, if we had rejectedH1, sinceH2 is a
sub-hypothesis ofH1.

The conclusion is therefore that we (until new investigations reject this) will continue to
work with the model that the yieldY by penicillin fermentation is independent of type
of sugar and the concentration (2%≤ concentration≤ 8%) at which the fermentation
takes place. We have with

E(Y ) = α and V(Y ) = σ2,

that

α̂ = 0.863,

and

σ̂2 =
0.196365

7
= 0.028052 ' 0.172.

Finally

V(α̂) =
σ2

8
' σ̂2

8
= 0.0035 ' 0.0592.



Chapter 4

Regression analysis

In this chapter we will give an overview on regression analysis. Most of it is a special
case of the general linear model but since a number of uses are often concerned with
regression situations we will try to describe the results in this language.

There is a small section on orthogonal regression (not to be confused with regression
by orthogonal polynomials). From a statistical point of view this is more related to the
section on principle components and factor analysis and considering ways of computa-
tion we also refer to that chapter. However, from a curve-fitting point of view we have
found it sensible to mention the concept in the present chapter too.

4.1 Linear regression analysis

In this section linear regression analysis will be analysed by means of the theory for
the general linear model. We start with

4.1.1 Notation and model.

In the ordinary regression analysis we work with the model

E(Y ) = α+ β1x1 + · · · + βkxk,

149
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where thex’s are known variables and theβ’s (andα) are unknown parameters. If we
have givenn observations ofY we could more precisely write the model as


 Y1

...
Yn


 =


 1 x11 · · · xk1

...
...

...
1 x1n · · · xkn


 ·




α
β1

...
βk


+


 ε1

...
εn


 ,

or

Y = xβ + ε.

We assume as usual that

D(ε) = σ2Σ,

whereΣ is known andσ2 is (usually) unknown.

The estimators are found in the usual way by solving the normal equations

x′Σ−1xβ = x′Σ−1Y ,

or if Σ = I

x′x β̂ = x′Y .

In the first case we talk of a weighted regression analysis.

Before we go on it is probably appropriate once again to stress what is meant by the
word linear in the term linear regression analysis.

As in the ordinary linear model the meaning is that we have linearity in the parameters.
We can easily do regression by e.g. time and the logarithm of the time. The model will
then just be

E(Y ) = α+ β1t+ β2 ln t,

cf. example 3.2.

With n observations the model in matrix form becomes
 Y1

...
Yn


 =


 1 t1 ln t1

...
...

...
1 tn ln tn




 α
β1

β2


+


 ε1

...
εn


 .
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Figure 4.1:

Another banality that could be useful to stress is that one can force the regression
surface through 0 by deleting theα and first column in thex -matrix i.e. use the model


 Y1

...
Yn


 =


 x11 · · · xk1

...
...

x1n · · · xkn




 β1

...
βk


+


 ε1

...
εn


 .

It can be useful to note that you can use the following trick if you wish the regression
surface to go through 0. We assume thatΣ = I.

We consider the observationsY1, . . . , Yn and the corresponding values of the in-
dependent variables1, xi1, . . . , xik, i = 1, . . . , n. if we add−Y1, . . . ,−Yn and
1,−xi1, . . . ,−xik, i = 1, . . . , n and write down the usual model we get




Y1

...
Yn

−Y1

...
−Yn




=




1 x11 · · · xk1

...
...

...
1 x1n · · · xkn

1 −x11 · · · −xk1

...
...

...
1 −x1n · · · −xkn







α
β1

...
βk


+ ε,

or more compactly

[
Y

−Y

]
=
[

1 x
1 −x

] [
α
β

]
+ ε,
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where we - compared to the notation on p. 150 - have used a slightly different definition
of thex matrix andβ.

The normal equations become

[
1′ 1′

x′ −x′

] [
1 x
1 −x

] [
α
β

]
=
[

1′ 1′

x′ −x′

] [
Y

−Y

]
,

or

[
2n 0
0 2x′x

] [
α
β

]
=
[

0
2x′Y

]
.

If we write out the equations we get

2nα = 0
2x′xβ = 2x′Y ,

or

α = 0
x′xβ = x′Y .

In other words in this way we have found the estimators of the coefficients to a regres-
sion surface which has been forced through0.

The reason why the above is useful is that a number of standard programmes cannot
force the surface through0. Using the above mentioned trick the problem can be
circumvented.

The output from such a programme should be interpreted cautiously since all the sums
of squares are twice their correct size. E.g. the residual sums of squares will be com-
puted as

([
Y

−Y

]
−
[

x β̂

−x β̂

])′([
Y

−Y

]
−
[

x β̂

−x β̂

])

= ([Y − x β̂]′, [−Y + x β̂]′)
[

Y − x β̂

−Y + x β̂

]
= 2[Y − x β̂]′[Y − x β̂],

i.e. twice the correct residual sum of squares. The mentioned degrees of freedom will
not be correct either. We have to write up the ordinary linear model and find the correct
degrees of freedom by considering the dimensions.



4.1. LINEAR REGRESSION ANALYSIS 153

4.1.2 Correlation and regression.

In theorem 2.23 p. 92 a result was stated, which can be used for a test if the multiple
correlation coefficient between normally distributed variables is 0. We will now show
that this result corresponds to a certain test in a regression model.

We will assume that we have the usual model p. 149 and we assume thatΣ = I.

Without any problems we can use the theory from chapter 3 to test different hypothesis
about the parametersα, β1, . . . , βk.

By formal calculations we can estimate the multiple correlation coefficient betweenY
andx1, . . . , xk using expressions mentioned in section 2.3.2.

It can be shown that we get

R2 =
‖Y − p0(Y )‖2 − ‖Y − pM (Y )‖2

‖Y − p0(Y )‖2
,

where

p0(Y ) =


 Ȳ

...
Ȳ


 (= x · β̂),

and

pM (Y ) = x β̂ = Ê(Y ).

These results are not very surprising. We remember that the multiple correlation coef-
ficient could be found as the linear combination ofX which minimises the variance
of (Y − α′X) and this corresponds exactly to writing the condition for least squares
estimates.

If we let

SStot = ‖Y − p0(Y )‖2 =
∑

i

(Yi − Ȳ )2,

and

SSres = ‖Y − x β̂‖2 =
∑

i

(Yi − Ê(Yi))2,

we can write

R2 =
SStot − SSres

SStot
,
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i.e. the squared multiple correlation coefficient can also be expressed as the part of the
total variation in theY ’s which are explained using the independent variables.

A corresponding re-interpretation of the partial correlations is of course also possible.

Furthermore, we see that if we formally write the test on p. 92 forρY |x1,...,xk
= 0 we

get

R2

1 −R2

n− k − 1
k

=
‖Y − p0(Y )‖2 − ‖Y − pM (Y )‖2

‖Y − pM (Y )‖2

n− k − 1
k

=
‖pM (Y ) − p0(Y )‖2/k

‖Y − PM (Y )‖2/(n− k − 1)

=
(SStot − SSres)/k
SSres/(n− k − 1)

From the normal theory (p. 135) this is exactly the test statistic for the hypothesis




α
β1

...
βk


 =



α
0
...
0


 ,

and the distribution of the test statistic is aF(k, n − k − 1)-distribution - exactly the
same as we found on p. 135.

For testing it is from the numerical point of view therefore of no importance if we
choose to consider thex’s as observations of ak-dimensional normally distributed
stochastic variable or as fixed deterministic variables.

This issue can therefore be separated from the assumptions we will consider in the next
section.

4.1.3 Analysis of assumptions.

If we for correspondingx-values

x1i, . . . , xpi

have more observations ofY , it would be possible to compute the usual tests for distri-
butional type (histograms, quantile diagrams,χ2 -tests, etc.) and for the homogeneity
of variances (Bartlett’s test and others). Finally we could also do run tests for random-
ness etc. etc.
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However, the situation is often that we very seldom have (more than maybe a couple) of
repetitions for different values of the independent variable. It is therefore not possible
to do these types of checks of the assumptions. Instead we consider the residuals

Ei = Yi − Ê(Yi) = Yi − α̂− β̂1x1i − β̂2x2i − · · · − β̂kxki.

If the model is valid these will be approximately independent andN(0, σ2) distributed.

If one depicts the residuals in different ways and thereby sees something which does not
look (or could not be) observations of independentlyN(0, σ2) -distributed stochastic
variables then we have an indication that there is something wrong with the model.

Most often we would probably start with a usual analysis of the distribution of the
residuals i.e. do run-tests, draw histograms, quantile diagrams etc.

Afterwards we could depict the residuals against different quantities (time, independent
variables, etc.). We show the following 4 sketches to illustrate often seen residual plots.

We will now give a short description of what the reason for plots of this kind could
be. First we note that 1 always is acceptable (however, cf. p. 157).

i) Plot of residuals against time

2 The variance increases with time. Perform a weighted analysis.

3 Lack terms of the formβ·time

4 Lack terms of the formβ1 · time+ β2 · time2

ii) Plot of residuals against̂E(Yi)

2 The variance increases withE(Yi). Perform a weighted analysis or trans-
form theY ’s (e.g. with the logarithm or equivalent)

3 Lack constant term (the regression is possibly erroneously forced through
0). Error in the analysis.

4 Bad model. Try with a transformation of theY ’s.

iii) Plot against independent variablexi

2 The variance grows withxi. Perform a weighted analysis or transform the
Y’s.

3 Error in the computations

4 Lacks quadratic term inxi

The above is not meant to be an exhaustive description of how to analyse residual plots
but may be considered as an indication of how such an analysis could be done.
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Figure 4.2: Residual plots.
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REMARK 4.1. One often sees residual plots of the type residual versus dependent
variable i.e.

Yi − Ê(Yi) against Yi,

and people are often surprised that the picture is as displayed in 3). However, there is
nothing abnormal in this. It can be shown that

Cor(Yi, Yi − Ê(Yi)) = 1 −R2,

i.e. they are positively correlated. If the multiple correlation coefficient is anything
less than 1 we would therefore get a picture as 3. Only if the regression surface goes
through all points i.e.R2 = 1, then we will have a picture as in 1.

In practise we will often have our residual plot printed on printer listings. Then the
plots might look as shown on p. 158. The 4 plots have been taken from [20] p. 14-15
in appendix C.

When interpreting these plots we should remember that there are not always an equal
numbers of observations for each value of the independent variable.

This is e.g. the case in the plot which depicts the residual against variable 10.

There are 7 observations corresponding tox10 ∼ 0.2704 E04 and 35 observations
corresponding tox10 ∼ 0.7126 E03. The range of variation for the residuals is
approximately the same in the two cases. If the residuals corresponding to the 2 values
of x10 had the same variance we would, however, expect the range of variation for the
one with many observations to be the largest.

In other words if one has most observations around the centre of gravity for an in-
dependent variable a residual plot should rather be elliptical than of the form 1 to be
satisfactory. H

4.1.4 On “Influence Statistics”

When judging the quality of a regression analysis one often consider the following two
possibilities:

1) Check if deviations from the model look random.

2) Check the effect of single observations on the parameter estimates etc.

Considerations regarding 1) are given in section 4.1.3 above. Here we will briefly
consider 2).
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Figure 4.3:
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We consider the model:


 y1

...
yn


 =


 x11 · · · x1p

...
...

xn1 · · · xnp




 θ1

...
θp


+


 ε1

...
εn




i.e.

y = xθ + ε

For the i’th row we have:

yi = (xi1, · · · , xip)


 θ1

...
θp


+ εi

or

yi = xiθ + εi.

We assume thatε ∈ N(0, σ2I) and therefore have the LS estimate

θ̂ = (x′x)−1x′y

The corresponding residual vector is

r =


 r1

...
rn


 = y − ŷ = y − xθ̂

i.e.

r = [I− x(x′x)−1x′]y

The dispersion matrices for̂y andr are

D(ŷ) = xD(θ̂)x′ = σ2x(x′x)−1x′

D(r) = σ2[I − x(x′x)−1x′][I − x(x′x)−1x′]
= [I + x(x′x)−1x′ − 2x(x′x)−1x′]σ2

= σ2[I − x(x′x)−1x′]
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For the i’th row we find

V (ŷi) = σ2xi(x′x)−1x′
i = σ2hi

V (ri) = σ2(1 − xi(x′x)−1x′
i) = σ2(1 − hi)

The deletion formula

Re-calculation of parameter estimates when discarding a single observation can be
done using the formula

(A− uv′)−1 = A−1 +
A−1uv′A−1

1 − v′A−1u
,

where the involved matrices are assumed to exist. For the caseA = x′x andu = v =
x′

i we have

(x′x − x′
ixi)−1 = (x′x)−1 +

(x′x)−1x′
ixi(x′x)−1

1 − hi

If we denote thex -matrix where the i’th row is removedx(i) we have that

x(i)′x(i) = x′x − x′
ixi.

PROOF 4.1. Omitted. �

We can now state the relevant expressions.

Cook’s D

A confidence region for the parameterθ is all the vectorsθ∗, which satisfy

1
pσ̂2

(θ̂ − θ∗)′x′x(θ̂ − θ∗) ≤ F (p, n− p)1−α.

We use the left hand side as a measure of the distance between the parameter vector
and θ̂. We let θ̂(i) be the estimate, which corresponds to the deletion of thei’th
observation

y(i) = (y1, · · · , yi−1, yi+1, · · · , yn)′
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and therefore have

θ̂(i) = [x(i)′x(i)]−1x(i)′y(i).

Cook’s D then equals

1
pσ̂2

(θ̂ − θ̂(i))′x′x(θ̂ − θ̂(i)).

If Cook’s D equals e.g.F60% then this corresponds to the maximum likelihood esti-
mate moving to the 60 % confidence-ellipsoid forθ. This is a relatively large change
when just removing a single observation. In the SAS-program REG one can find
Cook’s D together with other diagnostics statistics. Some are mentioned below.

RSTUDENT & STUDENT RESIDUAL

RSTUDENT is a so-called “studentised” residual, i.e.

RSTUDENTi =
ri

σ̂(i)
√

1 − hi

,

whereσ̂(i)2 is the estimate of variance corresponding to deletion of thei’th observa-
tion.

SAS also computes a similar statistic, where thei’th observation is not excluded

STUDENT RESIDUAL=
ri

σ̂
√

1 − hi

.

Since both these types of residual are standardised a sensible rule of thumb is that they
should lie within±2 or±3.

COVRATIO

COVRATIO measures the change in the determinant of the dispersion matrix for the
parameter estimate when excluding thei’th observation. We find

COVRATIOi =
det[σ̂(i)2(x(i)′x(i))−1]

det[σ̂2(x′x)−1]

This quantity "should" be close to 1. If it lies far from 1 then thei’th observation has a
too large influence. As a rule of thumb| COVRATIOi − 1 |≤ 3p/n
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DFFITS

DFFITS is - like Cook’s distance - a measure of the total change when deleting one
single observation. As a rule of thumb they should lie within say±2. A similar rule
adjusted for number of observations says within±2

√
p/(n− p).

DFFITS = ŷi−ŷ(i)i

σ̂(i)
√

hi

= xi[
ˆθ−ˆθ(i)]

σ̂(i)
√

hi
.

DFBETAS

While DFFITS measures changes in the prediction of an observation corresponding
to changes in all parameter estimates, then DFBETAS simply measures the change in
each individual parameter estimate. As a rule of thumb they should lie within say±2.
A rule adjusted for number of observations says within±2/

√
n.

We have

DFBETASj =
θ̂j − θ̂(i)j

σ̂(i)
√

(x′x)−1
jj

.

Call in SAS

All the mentioned statistics can be found using simple SAS statements e.g.

proc reg data = sundhed;

model ilt = maxpuls loebetid / r influence;

Model statements etc. are the same in REG as in GLM. The diagnostic tests come with
the options /r influence .

4.2 Regression using orthogonal polynomials

When performing a regression analysis using polynomials one can often obtain rather
large computational savings and numerical stability by introducing the so-called or-
thogonal polynomials. In the end this will give the same expression for estimates of
the mean value as a function of the independent variable but with considerably smaller
computational load.
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4.2.1 Definition and formulation of the model.

We will assume that a polynomial regression model is given i.e. that


 Y1

...
Yn


 =


 ξ0(t1) ξ1(t1) · · · ξk(t1)

...
...

...
ξ0(tn) ξ1(tn) · · · ξk(tn)






α
β1

...
βk


+


 ε1

...
εn


 .

Hereξi, i = 0, 1, . . . , k are known polynomials ofi’th degree int. We assume that


 ε1

...
εn


 ∈ N(0, σ2I)

In the usual fashion we can in this model estimate and test hypotheses regarding the
parameters(α, β1, . . . , βk).

As noted before it would be a great advantage to consider the so-called orthogonal poly-
nomialsξi since the computational load will be reduced considerably. We introduce
these polynomials in

DEFINITION 4.1. By a set of orthogonal polynomials corresponding to the values
t1, . . . , tn we mean polynomialsξ0, ξ1, . . . whereξi is of i’th degree which satisfy

n∑
j=1

ξi(tj) = 0, i = 1, 2, . . . , k (4.1)

n∑
j=1

ξµ(tj)ξγ(tj) = 0, µ 6= γ. (4.2)

N

REMARK 4.2. It is seen thatξ0 is a constant, so 4.1 is of course not used forξ0. For
notational reasons we letξi(tj) = ξij , ∀i,j . Later we will return to the problem of
actually determining orthogonal polynomials. H
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If we now assume that the polynomials in the model are orthogonal we find using

ξ =


 ξ0 · · · ξk1

...
...

ξ0 · · · ξkn


 =


 ξ0(t1) ξ1(t1) · · · ξk(t1)

...
...

...
ξ0(tn) ξ1(tn) · · · ξk(tn)


 ,

that

ξ′ξ =



nξ20 0 · · · 0
0

∑
ξ21j

...
. . .

...
0 · · · ∑

ξ2kj


 ,

i.e. ξ′ξ is a diagonal matrix. We therefore find

β̂ = (ξ′ξ)−1ξ′Y =



Ȳ /ξ0∑
ξ1jYj/

∑
ξ21j

...∑
ξkjYj/

∑
ξ2kj




and

D(β̂) = σ2




1/nξ20 0 · · · 0
0 1/

∑
ξ21j

...
. . .

...
0 · · · 1/

∑
ξ2kj


 .

We now have that the estimators for the parameters are uncorrelated and since we are
working in a normal model they are therefore also stochastic independent.

We find that the residual sum of squares is

SSres = ‖Y − ξ β̂‖2

= (Y − ξ β̂)′(Y − ξ β̂)

= Y ′Y − β̂
′
ξ′ξ β̂

=
∑

Y 2
j − {α̂2nξ20 + β̂2

1

∑
ξ21j + · · · + β̂2

k

∑
ξ2kj}

=
∑

(Yj − Ȳ )2 − {β̂2
1

∑
ξ21j + · · · + β̂2

k

∑
ξ2kj}.

From this we immediately have
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THEOREM 4.1. We have the following partitioning of the total variation

∑
(Yj − Ȳ )2 =

β̂2
1

∑
ξ21j +· · ·+β̂2

k

∑
ξ2kj +

∑
{Yj−Ȳ −β̂1ξ1(tj)−· · ·−β̂kξk(tj)}2,

or with an easily understood notation

SStot = SS1.grad + · · · + SSk.grad + SSres,

i.e. the total sum of squares has been partitioned in terms corresponding to each poly-
nomial plus the residual sum of squares. The degrees of freedom aren−1 respectively
1, . . . , 1 andn− k − 1. N

PROOF 4.2. Follows trivially from the above mentioned. �

Using the partition theorem we furthermore have

THEOREM 4.2. The sums of squares which have been stated in the previous theorem
are stochastic independent with expected values

E(SSi.deg) = E(β̂2
i

∑
j

ξi(tj)2)

= σ2 + β2
i

∑
j

ξi(tj)2, i = 1, . . . , k.

and

E(SSres) = E[
∑

j

(Yj − Ȳ − · · · − β̂kξk(tj))2] = (n− k − 1)σ2.

Finally

1
σ2

SSres ∈ χ2(n− k − 1),

and ifβi = 0 -

1
σ2

SSi.deg ∈ χ2(1).

N
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PROOF 4.3. Obvious. �

The theorems contain the necessary results to be able to establish tests for the hypothe-
ses

H0i : βi = 0 against H1i : βi 6= 0.

We collect the results in a analysis of variance table

Variation SS f E(SS/f)

Linear SS1.deg 1 σ2 + β2
1

∑
j

ξ1(tj)2

Quadratic SS2.deg 1 σ2 + β2
2

∑
j

ξ2(tj)2

Cubic SS3.deg 1 σ2 + β2
3

∑
j

ξ3(tj)2

...
...

...
...

k’th order SSk.deg 1 σ2 + β2
k

∑
j

ξk(tj)2

Residual SSres n− k − 1 σ2

Total SStot n− 1

REMARK 4.3. The big advantage of using orthogonal polynomials in the regression
analysis is that one without changing any of the previous computations can introduce
polynomials of degree(p + 1) and degree(p + 2) etc. When establishing the order
for the describing polynomial we will usually continue (estimation and) testing until 2
successiveβi ’s = 0 since contributions which are caused by terms of even degree and
terms of odd degree are different in nature. This is, however, a rule of thumb which
should be used with caution. If we e.g. have an idea which is based on physical con-
siderations that terms of 5th order are important, then we would not stop the analysis
just because the 3rd and 4th degree coefficients do not differ significantly from 0.H

4.2.2 Determination of orthogonal polynomials.

It is readily seen, that multiplication with a constant does not change the orthogonality
conditions 4.1 and 4.2. We therefore choose to let

ξ0(t) = ξ0 = 1.
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The polynomial of 1st degree is

ξ1(t) = t+ a,

since we can choose the coefficient fort as 1. From 4.1 we have

0 =
n∑

j=1

ξ1(tj) =
n∑

j=1

(tj + a) =
n∑

j=1

tj + na,

or

a = − 1
n

n∑
j=1

tj = −t̄,

i.e.

ξ1(t) = t− t̄.

We can then chooseξ2 as a linear combination of 1,ξ1 ξ21 , i.e.

ξ2(t) = a02 + a12(t− t̄) + a22(t− t̄)2.

From 4.1 we have

0 =
n∑

j=1

ξ2(tj) = na02 + a12

∑
j

(tj − t̄) + a22

∑
j

(tj − t̄)2

a02

a22
= − 1

n

∑
j

(tj − t̄)2.

From 4.2 we have

0 =
n∑

j=1

ξ1(tj)ξ2(tj)

= a02

∑
j

(tj − t̄) + a12

∑
j

(tj − t̄)2 + a22

∑
j

(tj − t̄)3

= a12

∑
j

(tj − t̄)2 + a22

∑
j

(tj − t̄)3.

From this we get

a12

a22
= −

∑
j(tj − t̄)3∑
j(tj − t̄)2

.
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ξ3, ξ4 etc. are found analogously.

The computations are especially simple if thetj ’s are equidistant. Then we let

uj =
tj − (t1 − w)

w
,

wherew = t2 − t1 = ti+1 − ti. We then have

ui = i, i = 1, . . . , n.

Corresponding to the values1, . . . , n we then have the polynomials given by

ξ0(t) = 1 (4.3)

ξ1(t) = t− n+ 1
2

(4.4)

ξi+1(t) = ξ1(t)ξi(t) − i2(n2 − i2)
4(4i2 − 1)

ξi−1(t). (4.5)

In the table on p. 169 we have given some values of orthogonal polynomialsξ1, . . . , ξk,
k ≤ 5, with t = 1, . . . , n for n = 1, . . . , 8.

In order to avoid fractional numbers and large values we have chosen to give polyno-
mials where the coefficient to the term of largest degree is a numberλ which is also
seen in the table. Furthermore we have stated the terms

D =
n∑

j=1

ξi(j)2 =
n∑

j=1

ξ2ij .

We now give an illustrative

EXAMPLE 4.1. In the following table corresponding values of reaction temperature
and yield of a process (in a fixed time) have been given.

Temperature Yield
200◦F 0.75 oz.
210◦F 1.00 oz.
220◦F 1.35 oz.
230◦F 1.80 oz.
240◦F 2.60 oz.
250◦F 3.60 oz.
260◦F 5.45 oz.

We will try to describe the yield as a function of temperature using a polynomial. We
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n 3 4 5 6 7 8
t ξ1 ξ2 ξ1 ξ2 ξ3 ξ1 ξ2 ξ3 ξ4 ξ1 ξ2 ξ3 ξ4 ξ5 ξ1 ξ2 ξ3 ξ4 ξ5 ξ1 ξ2 ξ3 ξ4 ξ5

1 −1 1 −3 1 −1 −2 2 −1 1 −5 5 −5 1 −1 −3 5 −1 3 −1 −7 7 −7 7 −7
2 0 −2 −1 −1 3 −1 −1 2 −4 −3 −1 7 −3 5 −2 0 1 −7 4 −5 1 5 −13 23
3 1 1 1 −1 −3 0 −2 0 6 −1 −4 4 3 −10 −1 −3 1 1 −5 −3 −3 7 −3 −17
4 3 1 1 1 −1 −2 −4 1 −4 −4 2 10 0 −4 0 6 0 −1 −5 3 9 −15
5 2 2 1 1 3 −1 −7 −3 −5 1 −3 −1 1 5 1 −5 −3 9 15
6 5 5 5 1 1 2 0 −1 −7 −4 3 −3 −7 −3 17
7 3 5 1 3 1 5 1 −5 −13 −23
8 7 7 7 7 7
D 2 6 20 4 20 10 14 10 70 70 84 180 28 252 28 84 6 154 84 168 168 264 616 2184
λ 1 3 2 1 10

3 1 1 5
6

35
12 2 3

2
5
3

7
12

21
10 1 1 1

6
7
12

7
20 2 1 2

3
7
12

7
10
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will assume that the assumptions in order to perform a regression analysis are fulfilled.
First we transform the temperaturesτi, i = 1, . . . , 7 by means of the following relation

ti =
τi − (200 − 10)

10
=
τi − 190

10

We then get the valuest1, . . . , t7 = 1, . . . , 7.

We give the computations in the following table

tj ξ1 ξ2 ξ3 ξ4 ξ5 yj
1 −3 5 −1 3 −1 0.75
2 −2 0 1 −7 4 1.00
3 −1 −3 1 1 −5 1.35
4 0 −4 0 6 0 1.80
5 1 −3 −1 1 5 2.60
6 2 0 −1 −7 −4 3.60
7 3 5 1 3 1 5.45∑
ξ2ij 28 84 6 154 84 16.55 =

∑
yj∑

ξijyj 20.55 11.95 0.85 1.15 0.55 56.0475 =
∑
y2
j

λ 1 1 1
6

7
12

7
20

∑
(yi − ȳ)2 = 56.0475− 16.552

7
= 56.0475− 39.1289
= 16.9186

α̂ = 16.55
7 = 2.36

β̂1 = 20.55
28 = 0.7339 SS1.grad = 20.552

28 = 15.0822
β̂2 = 11.95

84 = 0.1423 SS2.grad = 11.952

84 = 1.7000
β̂3 = 0.85

6 = 0.1417 SS3.grad = 0.852

6 = 0.1204
β̂4 = 1.15

154 = 0.0075 SS4.grad = 1.152

154 = 0.0086
β̂5 = 0.55

84 = 0.0065 SS5.grad = 0.552

84 = 0.0036

We summarise the result in the following table.

We see that the terms of 1st, 2nd and 3rd degree are significant and the two following
are not significant, so we will choose a polynomial of 3rd degree for the description.
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Variation SS f S2 Test F-percentile
Total 16.9186 6
1. degree 15.0822 1 15.0822
Residual1 1.8364 5 0.3673 41.06 99.8%
2. degree 1.7000 1 1.7000
Residual2 0.1364 4 0.0341 49.85 99.7%
3. degree 0.1204 1 0.1204
Residual3 0.0160 3 0.0053 22.72 98.0%
4. degree 0.0086 1 0.0086
Residual4 0.0074 2 0.0037 2.32 75.0%
5. degree 0.0036 1 0.0036
Residual5 0.0038 1 0.0038 0.95 < 50.0%

From the recursion formulas 4.3, 4.4 and 4.5 we get - sincen = 7

ξ1(t) = t− 4

ξ2(t) = (t− 4)2 − 48
12

= t2 − 8t+ 12

ξ3(t) = (t− 4)(t2 − 8t+ 12)− 4 · 45
4 · 15

(t− 4)

= t3 − 12t2 + 41t− 36.

Sinceλ1 = 1, λ2 = 1 andλ3 = 1/6 we get the following estimated polynomial

µ̂(t) = 2.36 + 1 · β̂1ξ1(t) + 1 · β̂2ξ2(t) +
1
6
β̂3ξ3(t)

= 0.0236t3 − 0.1409t2 + 0.5631t+ 0.2818.

Since

ti =
τi − 190

10
,

we can get an expression where the original temperatures are given by entering this
relationship in the expression forµ̂(t). We find

g(τ) = 0.000024τ3 − 0.014861τ2 + 3.147610τ − 223.15440.

The estimated polynomial is shown together with the original data in the following
figure. �
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Figure 4.4: The correspondence between temperature and yield by the process given in
example 4.1.

4.3 Choice of the ”best” regression equation

In this section we will consider the problem of choosing a suitable (small) number of
independent variables giving a reasonable description of our data.

4.3.1 The Problem.

If we are in the (unpleasant) situation of not being able to formulate a model based
upon physical relationships for the phenomena we are studying, we will often simply
register all the variables we think could have some effect on our observed values. If we
then compute a regression by e.g. polynomials in these independent variables (from a
Taylor-approximation point of view) we will very quickly have an enormous number
of terms in our regression. If we start off with 10 basic-variablesx1, . . . , x10, then
an ordinary second order polynomial in these variables will contain 66 terms. If we
include 3rd degree we have on the order of 150 terms. Expressions containing so many
terms will (if it is at all possible to estimate all the parameters) be very tedious to
work with. If we e.g. wish to determine optimal production conditions for a chemical
process we could estimate the response surface and find the maximum for this. This
will be extremely difficult if there are many variables involved. We would therefore
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seek to find a considerably smaller number of terms which will give a reasonably good
description of the variation in the material (cf. the section on ridge regression).

It is important, however, to note that an expression found by applying the methods dis-
cussed in the following should be used with caution. It will (probably) be an expression
which describes the data at hand very well. Whether or not the method is adequate to
predict future observations depends upon if the expression also describes the physical
conditions well enough. One way of determining this is in the first instance only to base
the estimation on half of the data and then compare the other half with the estimated
model. If the degree of agreement is reasonable we have the indication that the model
is not completely inadequate as a prediction model.

We will use a single illustrative example for all the methods we will describe. In order
for it to be possible to overlook (and maybe check) the individual calculations we
have only taken a very small part of the original data material. We should therefore
not evaluate the suitability of the methods by means of the example, but only use it
as an illustration of the principals and the way of going about these. The data are
some corresponding measurements of the qualityY of a food additive (measured using
viscosity) and some some production parametersx1, x2 x3 (pressure, temperature and
degree of neutralisation). In order to simplify the calculations the data are coded, i.e.
the variables have had some constants subtracted and been divided by others. We have
the following measurements

y x1 x2 x3

4.9 0 0 2
3.0 1 0 1
0.2 1 1 0
2.9 1 2 2
6.4 2 1 2

Experience shows that within a suitably small region of variation of the production
parameters it is reasonable to assume that the quality shows a linear dependency on
these. We will therefore use the following model

E(Y |x) = α+ β1x1 + β2x2 + β3x3,

or in matrix form

Y1

Y2

Y3

Y4

Y5


 =




1 0 0 2
1 1 0 1
1 1 1 0
1 1 2 2
1 2 1 2






α
β1

β2

β3


+



ε1
ε2
ε3
ε4
ε5


 ,

ε ∈ N(0, σ2I).
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In the numerical appendix (p. 183) all the23 regression analysis withy as depen-
dent variable and one of the more of thex’s as independent variables are shown. The
following models are possible

M : E(Y ) = α + β1x1 + β2x2 + β3x3

H12 : E(Y ) = α + β1x1 + β2x2

H13 : E(Y ) = α + β1x1 + β3x3

H23 : E(Y ) = α + β2x2 + β3x3

H1 : E(Y ) = α + β1x1

H2 : E(Y ) = α + β2x2

H3 : E(Y ) = α + β3x3

H0 : E(Y ) = α

.

For each of these 8 models the estimators forα and theβ ’s are shown, we find the
projection of the observation vector onto the sub-space corresponding to the model we
determine the residual vector, the squared length of the residual vector (the residual
sum of squares), the estimate of variance, and the (squared) multiple correlation coef-
ficient. After that we show the analysis of variance tables for the possible sequences
of successive testings of hypotheses: that the mean vector is a member of successively
smaller (lower dimension) sub-spaces in sequences like

M ⊇ H12 ⊇ H2 ⊇ H0.

The above mentioned sequence of sub-spaces corresponds to successive testing of the
hypothesis

β3 = 0, β1 = 0, β2 = 0.

There are 6 (= 3!) possible tables of this type. Finally we show some partial correlation
matrices. If we let y = x4 the empirical variance-covariance matrix is (as usual)
defined by the(i, j)’th element being

Sij =
1

n− 1

∑
µ

(xiµ − x̄i)(xjµ − x̄j).

The(i, j)’th element in the correlation matrix is then

rij =
sij√
siisjj

.

Using the formula on p. 84 in section 2 we then compute the partial correlations for
givenx3 and for givenx2, x3.

We now have enough background material to mention some of the most popular ways
of selecting single independent variables to describe the variation of the dependent
variable.
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4.3.2 Examination of all regressions.

This method can of course only be used if there are reasonably few variables. We
summarise the result from the appendix in the following table

Model Multiple Residual variance Average
R2 S2

r of S2
r

H0 : E(Y ) = α 0 5.47 5.47
H1 : E(Y ) = α+ β1x1 5.1% 6.91
H2 : E(Y ) = α+ β2x2 3.8% 7.01 5.35
H3 : E(Y ) = α+ β3x3 70.8% 2.13
H12 : E(Y ) = α+ β1x1 + β2x2 15.3% 9.26
H13 : E(Y ) = α+ β1x1 + β3x3 76.0% 2.63 4.68
H23 : E(Y ) = α+ β2x2 + β3x3 80.4% 2.14
M : E(Y ) = α+ β1x1 + β2x2 + β3x3 97.1% 0.634 0.634

Looking at the multiple correlation coefficient quickly indicates that we do not gain so
much by going from one variable(x3) up to 2 variables. The crucial jump happens
when including all 3 variables. Considerations of this type lead us rather to just usex3

i.e. the modelE(Y |x) = α + β3x3. This decision is strengthened by looking at the
residual varianceS2

r . We then see thatS2
r for the best equation in one variable is less

than for the best equation in two variables which strongly indicates that we should just
look at one variable (or use all three). If we besides looking at the smallestS2

r also
look at the average values and depict them by number of included variables we have
graphs like

This also indicates that the number of variables in an equation should be either 1 or 3
(there is no significant improvement by going from 1 to 2).
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If we only look at the graph with the average values it is not obvious that we should
include any independent variable at all. We could therefore test ifβ3 = 0 in the model
H3 (E(y|x) = α+ β3x3)

‖pH0(y) − pH3(y)‖2/1
‖y − pH3‖2/3

=
21.868− 6.38

6.38/3
' 7.28.

Therefore we will rejectβ3 = 0 at all levels greater than8%.

As a conclusion of these (rather loose) considerations we will use the modelH3:

E(Y |x) = α+ β3x3 ' 0.4 + 2.2x3.

Here' means estimated at). The estimate of the error (the variance) on the measure-
ments is (estimated with 3 degrees of freedom):

s2 = 2.13.

REMARK 4.4. It should be added here that the idea of looking at the averages of the
residual variances does seem a bit dubious. It has been included merely because the
method seems to enjoy widespread use - at least in some parts of the literature.H

4.3.3 Backwards elimination.

This method is far more economical with respect to computational time than the pre-
vious one. Here we start with the full modelM and then investigate which of the
coefficients which has the smallest F-value for a test of the hypothesis that the coeffi-
cient might be 0.

This variable is then excluded and the procedure is repeated with thek − 1 remaining
variables etc.

We can then stop the procedure when none of the remaining variables have an F-value
less than the1 − α quantile in the relevant F-distribution.

We can illustrate the procedure using our example. We collect the data in the following
table.

From the table can be seen that this procedure also will end with the modelH3: E(y) =
α+ β3x3 when we use anα , greater than8%.
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Figure 4.5: Flow diagram for Backwards-elimination procedure in stepwise regression
analysis.

Step F-value for test ofβi = 0 / Quantile in F-distribution

Model : E(Y ) = α+ β1x1 + β2x2 + β3x3

β1 : 3.625/1
0.634/1 = 5.76 = F (1, 1)0.71

1 β2 : 4.621/1
0.634/1 = 7.29 = F (1, 1)0.72

β3 : 17.879/1
0.634/1 = 28.20 = F (1, 1)0.86

Removex1 : Model is now: E(Y ) = α+ β2x2 + β3x3

2 β2 : 2.095/1
4.285/2 = 0.98 = F (1, 2)0.55

β3 : 16.757/1
4.285/2 = 7.82 = F (1, 2)0.88

Removex2 : Model is now: E(Y ) = α+ β3x3

3 β3 : 15.488/1
6.38/3 = 7.28 = F (1, 3)0.92

The disadvantage with this method is, that we have to solve the full regression model
which can be a problem if there many independent variables.

This problem is circumvented by using the following procedure.
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Figure 4.6: Flow diagram for Forward-selection procedure in stepwise regression anal-
ysis

4.3.4 Forward selection

In this procedure we start with the constant term in the equation only. Then we choose
the independent variable which shows the greatest correlation with the dependent vari-
able. We then perform an F-test to check if this coefficient is significantly different
from 0. If so, then it is included in the model.

Among the independent variables not yet included we now choose the one that has the
greatest (absolute) partial correlation coefficient with the dependent variable given the
variables already in the equation. We perform an F-test to check if the new variable
has contributed to the reduction of the residual variance, i.e. if the coefficient for it is
different from 0. If so, continue as before if not stop the analysis.

In our example the steps will be the following

1) From the correlation matrix (p. 188) we see thatx3 has the greatest correlation
coefficient with y, viz. 0.8416. We test ifβ3 in the modelE(Y ) = α + β3x3 can be
assumed to be 0 we have the test statistic (see p. 187).

15.488/1
6.38/3

= 7.28 ' F(1, 3)0.92.
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If we useα = 10% we continue (since we then rejectβ3 = 0).

2) From the partial correlation matrix givenx3 (p. 188) we see that the variable which
has the greatest partial correlation coefficient with they’s (given thatx3 is in the
equation) isx2 (ρx2y|x3 = −0.5728). We includex2 and check ifβ2 in the model

E(y) = α+ β2x2 + β3x3

can be assumed to be 0. We have the test statistic (see p. 188)

2.095/1
4.2855/2

= 0.98 ' F(1, 2)0.55.

Since we were usingα = 10%, then this statistic is not significantly different from 0,
and we stop the analysis here without includingx2 . The resulting model is

E(Y ) = α+ β3x3,

whereα andβ are estimated as earlier. We especially note thatx1 has not been
included in the equation at all.

REMARK 4.5. If we had usedα = 50% we would have continued the analysis and
considered the partial correlations givenx2 andx3. According to the matrix p. 189
the partial correlation coefficient betweeny andx1 given thatx2 andx3 are included
in the equation

ρx1y|x2x3 = 0.8956.

Nowx1 is the only variable not included so it is trivially the one which has the greatest
partial correlation withy. We now includex1 in the equation and investigate ifβ1 in
the modelE(y) = α+ β1x1 + β2x2 + β3x3 is significantly different from 0. The test
statistic is (p. 187)

3.652/1
0.634/1

= 5.76 ' F(1, 1)0.71.

In the case we have seen that the equation was extended considerably just by changing
α. It is important to note that changes inα can have drastic consequences for the
resulting model. H

REMARK 4.6. The procedure of choosing the variable which has the greatest partial
correlation with the dependent variable at every step, is equivalent to choosing the
variable which has the greatest F-value in the partial F-test. This result comes from
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the relation between the partial correlation coefficient and the F-statistic.This is of the
form

F = g(r) =
r2

1 − r2
· f,

wheref is the number of degrees of freedom for the denominator (cf p. 154). This
relation is monotonously increasing

If we e.g. in step 2 want to compute the F-test statistic from the correlation matrix we
would get

F =
(−0.5728)2

1 − (−0.5728)2
· 2 = 0.98.

It is further seen that the mentioned criterion is equivalent to at each step always taking
the variable which gives the greatest reduction in residual sum of squares. H

REMARK 4.7. In many of the existing standard regression programmes it is not possi-
ble to specify anα-value. We must then instead give a fixed number as the limit for the
F-test statistics we will accept respectively reject. We must then by looking at a table
over F-quantile find a suitable value. If we e.g. wish to haveα = 5%, we see that we
should use the value 4 since

F(1, n)0.95 ' 4,

for reasonably large values ofn. H

The ’forward selection’ method has its merits compared to the backward elimination
method in that we do not have to compute the total equation. The greatest drawback
with the method is probably that we do not take into account that some of the variables
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could be redundant if others enter at a later stage. If we e.g. have thatx1 = ax2 + bx3

(approximately) and thatx1 has been chosen as the most important variable. If we
then at a later stage in the analysis also includex2 andx3 then it is obvious that we
no longer needx1. It should therefore be removed. This happens in the last method
we mention.

4.3.5 Stepwise regression.

The name is badly chosen since we could equally well call the last two methods by this
name. There are also many authors who use the name stepwise regression as a common
name for a number of different procedures. In this text we will specifically have the
following method in mind. Choice of the variable to enter the equation is performed
like in the forward selection procedure, but at every single step we check each of the
variables in the equation as if they were the last included variable. We then compute an
F-test statistic for all the variables in the equation. If some of these are smaller than the
1−α quantile in the relevant F-distribution then the respective variable is removed. If
we look at our standard example we get the following steps(αin = 50%, αout = 40%).

1) x3 is included as in the forward selection procedure and we test ifβ3 is signifi-
cantly different from 0. The test statistic and the conclusion are as before.

2) We now includex2 . We compute the partial F-test forβ2 (in the modelE(Y ) =
α+ β2x2 + β3x3):

x2 : F-value=
2.095/1
4.285/2

= 0.98 ' F(1, 2)0.55.

Then we compute a partial F-test forβ3 (in the modelE(Y ) = α+β2x2+β3x3).
Using the table p. 187 we find that

x3 : F-value=
16.757/1
4.285/2

= 7.82 ' F(1, 2)0.88.

3) We now again removex2 from the equation since 0.55< 0.60. The difference
at this step between the forward selection procedure and the stepwise procedure
is that we also compute an F-value forx3 and thereby have a possibility thatx3

again will be eliminated from the equation. This was not possible by the ordinary
forward selection procedure.

4) The only remaining variable isx1. It has a partial F-value of

x1 : F-value=
1.125/1
5.255/2

= 0.43 < F(1, 2)0.50,

so it does not enter the equation at all.
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Figure 4.7: Flow diagram for Stepwise-Regression procedure in stepwise regression
analysis.
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The analysis stops and we have the model

E(Y ) = α+ β3x3.

REMARK 4.8. The reason why we investigated the partial F-value under 2, but not
under 4 is thatx1 does not enter the equation at all since

0.43 < F(1, 2)0.50 = F1−α
ind
.

On the other handx2 was entered into the equation since

0.98 < F(1, 2)0.55 > F1−α
ind
.

H

REMARK 4.9. Like the section on the forward selection procedure we can note that
we are often forced to use fixed F-values instead of1 − α quantiles. If we do not use
the same level when determining if we want to include more variables as we do when
determining if some of the variables should be removed, we will often let the last value
be about half as big as the first one i.e.

F-out of equation=
1
2

F-into equation.

(This is the opposite of what we actually used in the example). H

4.3.6 Some existing programmes.

Since these programmes are very old we will skip this section and go directly to the

4.3.7 Numerical appendix.

In this appendix we will show the calculation of the numbers used in the previous
sections. It should not be necessary to go through all these computations but they are
shown, so we with the help of these should be able to check our understanding of the
different principles.

A. Data:
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y x1 x2 x3

4.9 0 0 2
3.0 1 0 1
0.2 1 1 0
2.9 1 2 2
6.4 2 1 2

B. Basic Model: E(Y ) = α+ β1x1 + β2x2 + β3x3 or

Y1

Y2

Y3

Y4

Y5


 =




1 0 0 2
1 1 0 1
1 1 1 0
1 1 2 2
1 2 1 2






α
β1

β2

β3


+



ε1
ε2
ε3
ε4
ε5




ε ∈ N(0, σ2I)

C. Estimators in sub-models

i) Model M: E(Y ) = α+ β1X1 + β2X2 + β3x3




α̂

β̂1

β̂2

β̂3


 =




−0.175
1.450

−1.400
2.375


 ; pM (y) =




4.575
3.650

−0.125
3.225
6.075


 ; y − pM (y) =




0.325
−0.650

0.325
−0.325

0.325




1
5 − 4

‖y − pM (y)‖2 =
0.845

1
= 0.845

R2 =
21.868− 0.633750

21.868
= 97.1%

ii) Model H12 : E(Y ) = α+ β1x1 + β2x2


 α̂

β̂1

β̂2


 =


 3.026

1.243
−0.987


 ; pH12(y) =




3.026
4.269
3.282
2.295
4.525


 ; y − pH12(y) =




1.874
−1.269
−3.082

0.605
−1.875




1
5 − 3

‖y − pH12(y)‖2 =
18.512611

2
= 9.2563

R2 =
21.868− 18.512611

21.868
= 15.3%
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iii) Model H13: E(Y ) = α+ β1x1 + β3x3


 α̂

β̂1

β̂2


 =


 −0.350

0.750
2.200


 ; pH13(y) =




4.05
2.60
0.40
4.80
5.55


 ; y − pH13(y) =




0.85
0.40

−1.20
−1.90

0.85




1
5 − 3

‖y − pH13(y)‖2 =
5.2250

2
= 2.6275

R2 =
21.868− 5.2550

21.868
= 76.0%

iv) Model H23: E(Y ) = α+ β2x2 + β3x3


 α̂

β̂2

β̂3


 =


 0.945

−0.872
2.309


 ; pH23(y) =




5.563
3.254
0.073
3.819
4.691


 ; y − pH23(y) =




−0.663
−0.254

0.127
−0.919

1.709




1
5 − 3

‖y − pH23(y)‖2 =
4.285456

2
= 2.1427

R2 =
21.868− 4.2855

21.868
= 80.4%

v) Model H1 : E(Y ) = α+ β1x1

[
α̂

β̂1

]
=
[

2.73
0.75

]
; pH1(y) =




2.73
3.48
3.48
3.48
4.23


 ; y − pH1(y) =




2.17
−0.48
−3.28
−0.58

2.17




1
5 − 2

‖y − pH1(y)‖2 =
20.7430

3
= 6.9143

R2 =
21.868− 20.743

21.868
= 5.1%
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vi) Model H2: E(Y ) = α+ β2x2

[
α̂

β̂2

]
=
[

3.914
−0.543

]
; pH2(y) =




3.914
3.914
3.371
2.828
3.371


 ; y − pH2(y) =




0.986
−0.914
−3.171

0.072
3.029




1
5 − 2

‖y − pH2(y)‖2 =
21.042858

3
= 7.0143

R2 =
21.868− 21.043

21.868
= 3.8%

vii) Model H3: E(Y ) = α+ β3x3

[
α̂

β̂3

]
=
[

0.4
2.2

]
; pH3(y) =




4.8
2.6
0.4
4.8
4.8


 ; y − pH3(y) =




0.1
0.4

−0.2
−1.9

1.6




1
5 − 2

‖y − pH3(y)‖2 =
6.38
3

= 2.1267

R2 =
21.868− 6.38

21.868
= 70.8%

viii) Model H0: E(Y ) = α

α̂ = 3.48

pH0(y) =




3.48
3.48
3.48
3.48
3.48


 ; y − pH0(y) =




1.42
−0.48
−3.28
−0.58

2.92




1
5 − 1

‖y − pH0(y)‖2 =
21.8680

4
= 5.4670

D. Successive testings
1)H ⊇ H12 ⊇ H1 ⊇ H0 i.e. : β3 = 0, β2 = 0, β1 = 0
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Variation SS d.o.f.
H0 −H1 (β1 = 0) 21.868− 20.7430 = 1.125 1
H1 −H12 (β2 = 0) 20.7430− 18.5126 = 2.230 1
H −H12 (β3 = 0) 18.5126− 0.6338 = 17.879 1
M − obs 0.6338 = 0.634 1
H0 − obs 21.868 4

2)M ⊇ H12 ⊇ H2 ⊇ H0 d.v.s. :β3 = 0, β1 = 0, β2 = 0

Variation SS d.o.f.
H0 −H2 (β2 = 0) 21.8680− 21.0429 = 0.825 1
H2 −H12 (β1 = 0) 21.0429− 18.5126 = 2.530 1
H12 −M (β3 = 0) 18.5126− 0.6338 = 17.879 1
M − obs 0.6338 = 0.634 1
H0 − obs 21.868 4

3)M ⊃ H13 ⊃ H1 ⊃ H0 d.v.s. :β2 = 0, β3 = 0, β1 = 0

Variation SS d.o.f.
H0 −H1 (β1 = 0) 21.8680− 20.7430 = 1.125 1
H1 −H13 (β3 = 0) 20.7430− 5.2550 = 15.488 1
H13 −M (β2 = 0) 5.2550− 0.6338 = 4.621 1
M − obs 0.6338 = 0.634 1
H0 − obs 21.868 4

4)M ⊇ H13 ⊇ H3 ⊇ H0 d.v.s. :β2 = 0, β1 = 0, β3 = 0

Variation SS d.o.f.
H0 −H3 (β3 = 0) 21.8680− 6.38 = 15.488 1
H3 −H13 (β1 = 0) 6.38 − 5.2550 = 1.125 1
H13 −M (β2 = 0) 5.2550− 0.6338 = 4.621 1
M − obs 0.6338 = 0.634 1
H0 − obs 21.868 4

5)M ⊇ H23 ⊇ H2 ⊇ H0 d.v.s. :β1 = 0, β3 = 0, β2 = 0

Variation SS d.o.f.
H0 −H2 (β2 = 0) 21.8680− 21.0429 = 0.825 1
H2 −H2 3 (β3 = 0) 21.0429− 4.2855 = 16.757 1
H2 3 −M (β1 = 0) 4.2855− 0.6338 = 3.652 1
M − obs 0.6338 = 0.634 1
H0 − obs 21.868 4
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6)M ⊃ H23 ⊃ H3 ⊃ H0 d.v.s. :β1 = 0, β2 = 0, β3 = 0

Variation SS d.o.f.
H0 −H3 (β3 = 0) 21.8680− 6.38 = 15.488 1
H3 −H23 (β2 = 0) 6.38 − 4.2855 = 2.095 1
H23 −M (β1 = 0) 4.2855− 0.6338 = 3.652 1
M − obs 0.6338 = 0.634 1
H0 − obs 21.868 4

E. Variance-covariance- and correlation- matrix for data.

Variance-covariance matrix=
1

5 − 1




2 1 0 1.50
1 2.8 0.4 −1.52
0 0.4 3.2 7.04

1.50 −1.52 7.04 21.868




x1

x2

x3

y
x1 x2 x3 y

correlation matrix=




1 0.4225 0 0.2268
0.4225 1 0.13393 −0.1942

0 0.1336 1 0.8416
0.2268 −0.1942 0.8416 1




x1

x2

x3

y
x1 x2 x3 y

F. Partial correlations for given x3:
 1 0.4225 0.2268

0.4225 1 −0.1942
0.2268 −0.1942 1


−


 0

0.1336
0.8416


 [1]−1[ 0 0.1336 0.8416 ]

=


 1 0.4225 0.2268

0.4225 0.9822 −0.3066
0.2268 −0.3066 0.2917


 ,

i.e. the correlation matrix is
 1 0.4263 0.4199

0.4263 1 −0.5728
0.4199 −0.5728 1


 x1

x2

y
x1 x2 y

First calculated using the above mentioned partial correlation matrix(
1 0.4199
0.4199 1

)
−
(

0.4263
0.5728

)
[1]−1[0.4263− 0.5728] =(

0.8183 0.6641
0.6641 0.6718

)
,
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which results in the following correlation matrix

(
1 0.8956
0.8956 1

)
x1

y

As a check we could compute it from the original covariance matrix

(
2 1.50
1.50 21.868

)
−
(

1 0
−1.52 7.04

)(
2.8 0.4
0.4 3.2

)−1(1 −1.52
0 7.04

)

=
(

2 1.50
1.50 21.868

)
−
(

1 0
−1.52 7.04

)(
0.3636 −0.0455

−0.0455 0.3182

)(
1 −1.52
0 7.04

)

=
(

1.6363 2.3727
2.3727 4.2855

)
,

and the partial correlation matrix is then

(
1 0.8960
0.8960 1

)
x1

y

The deviations in the elements off the diagonal are a result of truncation errors.

4.4 Other regression models and solutions

This section is omitted.
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Chapter 6

Tests in the
multidimensional normal
distribution

In this chapter we will give a number of generalisations to some of the well known
test statistics based on one dimensional normally distributed stochastic variables. In
most cases the test statistics will be analogues to the well known ones, except for
multiplication being substituted with matrix multiplication, numerical values by the
determinant of the matrix etc.

6.1 Test for mean value.

6.1.1 Hotelling’s T 2 in the One-Sample Situation

In this section we will consider independent stochastic variablesX1, . . . ,Xn, where

Xi ∈ Np(µ,Σ),

i.e. p-dimensionally normally distributed with mean vectorµ and variance-covariance
matrixΣ. We assume thatΣ is regular and unknown. We want to test a hypothesis
about the mean vectorµ being equal to a given vectorµ0 against all alternatives i.e.

H0 : µ = µ0 against H1 : µ 6= µ0

193
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We first repeat some results on the estimators. From theorem 2.27 p. 103 we have
the following results on the empirical mean vectorX̄ and the empirical variance-
covariance matrixS

X̄ = 1
n

n∑
i=1

Xi ∈ Np(µ, 1
nΣ)

S = 1
n−1

n∑
i=1

(Xi − X̄)(Xi − X̄)′ ∈ W(n− 1, 1
n−1Σ)

X̄ andS are stochastic independent.

In the following we will furthermore need the following results on the distribution of
certain functions of normally distributed and Wishart distributed stochastic variables.

L EMMA 6.1. Let Y be ap-dimensional stochastic variable and letU be ap × p
stochastic matrix with

Y ∈ Np(µ,Σ)
mU ∈ W(m,Σ),

furthermore letY andU be stochastically independent. We now let

T 2 = Y ′U−1Y .

Then the following holds

m− p+ 1
mp

T 2 ∈ F(p,m− p+ 1; µ′Σ−1µ),

i.e. the left hand side is non-centrally F-distributed with non-centrality parameter
µ′Σ−1µ and degrees of freedom equal to(p,m − p + 1). If µ = 0, then the
non-centrality parameter is 0 i.e. we then have the special case

m− p+ 1
mp

T 2 ∈ F(p,m− p+ 1).

PROOF 6.1. Omitted. See e.g. [2], p. 106. �

We now have the following main result

THEOREM 6.1. We will use the notation

T 2 = n(X̄ − µ0)
′S−1(X̄ − µ0),



6.1. TEST FOR MEAN VALUE . 195

whereX̄, µ0 andS are as stated in the introduction to this section. Then the critical
area for a ratio test ofH0 againstH1 at levelα is

C = {x1, . . . ,xn| n− p

(n− 1)p
t2 > F(p, n− p)1−α},

wheret2 is the observed value ofT 2. N

PROOF 6.2. From Lemma 6.1 we find that

n− p

(n− 1)p
T 2 ∈ F(p, n− p)

underH0. From this follows thatC is the critical region for a test ofH0 versusH1 at
levelα. That this corresponds to a ratio test follows from direct computation by using
theorem 1.2 among other things. �

REMARK 6.1. The quantityT 2 is often called Hotelling’sT 2 after Harold Hotelling,
who first considered this test statistic. H

REMARK 6.2. In the one dimensional case we use the test statistic

Z =
√
n(X̄ − µ0)

S
.

We now have thatZ2 can be written

Z2 = n(X̄ − µ0)[S2]−1(X̄ − µ0),

i.e. precisely the same asT 2 reduces to in the one-dimensional case. Furthermore
note that the square of a student distributed variablet(ν) is F(1, ν) distributed which
means that there (of course) also is a relation between the distribution of the two test
statistics. H

In order to compute the test statistic it is useful to remember the follow theorem where
it is seen that inversion of a matrix can be substituted by the calculation of some deter-
minants.

THEOREM 6.2. Let the notation be as above then the following holds true

T 2 =
det[S + n(X̄ − µ0)(X̄ − µ0)′]

det[S]
− 1
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N

PROOF 6.3. Omitted. Purely technical and follows by using theorem 1.2 p. 17 on the
matrix

[ −1
√
n(X̄ − µ0)′√

n(X̄ − µ0) S

]

�

We now give an illustrative

EXAMPLE 6.1. In the following table values for silicium and aluminium (in %) in 7
samples collected on the moon are given

Sample
1 2 3 4 5 6 7

Silicium 19.4 21.5 19.2 18.4 20.6 19.8 18.7
Aluminium 5.9 4.0 4.0 5.4 6.2 5.7 6.0

We are now very interested in testing if these samples can be assumed to come from a
population with the same mean values as basalt from our own planet earth. These are

µ0 =
(

22.10
7.40

)
.

It seems sensible to use Hotelling’sT 2 to help answer the above question. If we call
the observationsx1, . . . ,x7, we find

x̄ =
(

19.66
5.31

)
,

s =
(

1.1795 −0.3076
−0.3076 0.8681

)
.

Since

x̄ − µ0 =
( −2.44

−2.09

)
,



6.1. TEST FOR MEAN VALUE . 197

then

n(x̄ − µ0)(x̄ − µ0)
′ =

(
41.68 35.70
35.70 30.58

)
,

and

s + n(x̄ − µ0)(x̄ − µ0)
′ =

(
42.86 35.39
35.39 31.45

)
.

Then

t2 =
95.49
0.9293

− 1 = 101.75.

The F-test statistic is

7 − 2
6 · 2 t

2 = 42.8 > F(2, 5)0.999 = 37.1,

and the hypothesis is therefore rejected at least at all levelsα larger than 0.1%. It
therefore does not seem reasonable to assume that the 7 moon samples originate from
a population with the same mean value of silicium and aluminium as basalt from our
planet earth. �

From the result of theorem 6.1 we can easily construct a confidence region forµ. We
have with the usual notation

THEOREM 6.3. A (1 − α) -confidence region for the expectationE(X) is

{µ|n(x̄ − µ)′s−1(x̄ − µ) ≤ (n− 1)p
n− p

F(p, n− p)1−α},

i.e. an ellipsoid with centre in̄x and main axes determined by the eigenvectors in the
inverse empirical variance-covariance matrix. N

PROOF 6.4. Trivial from the definition of a confidence area and theorem 6.1. �

We now continue example 6.1 in the following
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EXAMPLE 6.2. We will now determine a 95% confidence area for the mean vector.
According to theorem 6.3 the confidence area is ordered by the ellipse

7(19.66− µ1, 5.31 − µ2)s−1

(
19.66 − µ1

5.31 − µ2

)
=

12
5

F(2, 5)0.95

or

(19.66− µ1, 5.31 − µ2)s−1

(
19.66 − µ1

5.31 − µ2

)
= 1.9851.

We find

s−1 =
(

0.9341 0.3310
0.3310 1.2692

)

with the eigenvalues 1.4727 and 0.7307 and the corresponding (normed) eigenvectors

(
0.5236
0.8520

)
and

( −0.8520
0.5236

)
.

In the coordinate system with origin in̄x and the above mentioned vectors as unity
vectors the ellipse has the equation

1.4727y2
1 + 0.7307y2

2 = 1.9851

or

y2
1

1.16102
+

y2
2

1.64822
= 1

In figure 6.1 the confidence region and the observations are shown. Furthermoreµ0 =
(22.10, 7.40)′ is given. It is seen that this observation lies outside the confidence
region corresponding to the hypothesisµ = µ0 againstµ 6= µ0 being rejected at all
levels greater than 0.01% and therefore especially forα = 5%. �

6.1.2 Hotelling’s T 2 in the two-sample situation.

Quite analogous to the t-test in the one dimensional case Hotelling’sT 2 can be used to
investigate if samples from two normal distributions (with the same variance-covariance
structure) can be assumed to have the same expected values. We consider independent
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Figure 6.1: Observations and confidence region.

stochastic variablesX1, . . . ,Xn andY 1, . . . ,Y m, where

Xi ∈ Np(µ,Σ)
Y i ∈ Np(ν,Σ),

and we wish to test

H0 : µ = ν against H1 : µ 6= ν.

We use the notation

X̄ =
1
n

n∑
i=1

Xi

Ȳ =
1
m

m∑
i=1

Y i

S1 =
1

n− 1

n∑
i=1

(Xi − X̄)(X i − X̄)′

S2 =
1

m− 1

m∑
i=1

(Y i − Ȳ )(Y i − Ȳ )′

S =
(n− 1)S1 + (m− 1)S2

n+m− 2
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From theorem 2.27 and theorem 2.26 we have

X̄ ∈ Np(µ,
1
n
Σ)

Ȳ ∈ Np(ν,
1
m

Σ)

S ∈ W(n+m− 2,
1

n+m− 2
Σ).

We now give the main result on testingH0 againstH1 in

THEOREM 6.4. We use the same notation as given above. Now, let

T 2 =
nm

n+m
(X̄ − Ȳ )′S−1(X̄ − Ȳ ).

Then the critical region for a test ofH0 againstH1 at levelα is equal to

C={x1, . . . ,xn,y1, . . . ,ym|n+m−p−1
(n+m−2)p

t2>F(p, n+m−p−1)1−α}

Heret2 is the observed value ofT 2. N

PROOF 6.5. From lemma 6.1 and from the above mentioned relationships we find that

n+m− p− 1
(n+m− 2)p

T 2 ∈ F(p, n+m− p− 1; (µ − ν)′Σ−1(µ − ν)),

and the result follows readily. �

Analogous to the one-sample situation we can use the results to determine a confidence
region for the difference between mean vectors. We have

THEOREM 6.5. We still consider the above mentioned situation and letµ − ν = δo.
Then a(1 − α) confidence region forδo is equal to

{δ| nm

n+m
(x̄ − ȳ − δ)′s−1(x̄ − ȳ − δ) ≤

(n+m− 2)p
n+m− p− 1

F(p, n+m− p− 1)1−α}.

N
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PROOF 6.6. Follows directly from the definition of a confidence region and from
theorem 6.4. �

REMARK 6.3. The confidence region is an ellipsoid with centre inx̄ − ȳ and main
axes determined by the eigenvectors ins−1. H

REMARK 6.4. As mentioned the test results and confidence intervals require that the
variance-covariance matrices for theX- and for theY -observations are equal. If
this is not the case the above mentioned results are not exact and a different procedure
should be used. We will not consider this here but refer to e.g.[2], p. 118. H

We will now consider an example on the use ofT 2 in the two-sample situation.

EXAMPLE 6.3. At the Laboratory of Heating- and Climate-technique, DTU, one has
measured the following in an experiment

i) the height in cm.

ii) evaporation loss in g/m2 skin during a 3 hour periode

iii) mean temperature in◦C. This temperature is found by measuring the skin tem-
perature at 14 different locations every minute for 5 minutes (same locations
every time). The mean temperature is then an average of all14 × 5 = 70 mea-
surements,

on 16 men and 16 women. The result of the experiment is given in the table p. 202.

We consider these numbers as realisations of stochastic variables

X1, . . . ,X16 and Y 1, . . . ,Y 16.

We furthermore assume, that the variables are stochastic independent and that

Xi ∈ N(µ,Σ)

and

Y i ∈ N(ν,Σ),

i.e. the variance-covariance matrices are assumed equal. Later we will discuss whether
this hypothesis is reasonable or not.
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Person No. Height Evaporation loss Mean temperature
in cm in g/m2skin in ◦C

1 177 18.1 33.9
2 189 18.8 33.2
3 181 20.4 33.9
4 184 19.5 33.8
5 183 30.5 33.3
6 178 22.2 33.6
7 162 19.4 39.2
8 176 26.7 33.2
9 190 16.6 33.2
10 180 45.4 33.5
11 179 24.0 33.9
12 175 34.6 33.8
13 183 21.3 33.5
14 177 33.3 33.9
15 185 22.9 33.8
16 176 18.6 33.5
1 160 14.6 32.9
2 171 27.0 33.5
3 168 27.6 32.3
4 171 20.2 33.1
5 169 30.8 33.4
6 169 17.4 33.5
7 167 21.1 33.0
8 170 19.3 34.1
9 162 21.5 33.8
10 160 15.2 33.0
11 168 15.4 33.7
12 157 25.2 33.9
13 161 13.9 34.8
14 164 20.2 31.9
15 161 25.3 39.0
16 180 12.6 33.5

Table 6.1: Data from indoor-climate experiments, laboratory for Heating- and Climate-
technique, DTU.
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The estimates forµ andν are the empirical mean vectors i.e.

µ̂ = x̄ =


 179.7

24.5
33.6




and

ν̂ = ȳ =


 166.1

20.5
33.4


 .

We will now check if the difference between̂µ andν̂ is significant, i.e. whetherµ
andν can be assumed equal.

With the notation chosen in theorem 6.4 we find

s =


 38.5 −4.3 −0.8

−4.3 45.5 −0.3
−0.8 −0.3 0.3


 ,

and

t2 =
16 · 16
16 + 16

(x̄ − ȳ)′s−1(x̄ − ȳ) = 52.4.

The test statistic then becomes

16 + 16 − 3 − 1
(16 + 16 − 2)3

52.4 = 16.3.

Since

F(3, 28)0.999 = 7.19

a hypothesis thatµ = ν will at least be rejected at all levels greater than 0.1%. We
will therefore conclude that there is a fairly large (simultaneous) difference in the three
variables for men and for women, a result which probably will not chock anyone when
it is remembered that the first variable gives the height.

If we instead only consider the second and third coordinates, i.e. the values for evapo-
ration loss and mean temperature we get the test statistic

16 · 16
16 + 16

16 + 16 − 2 − 1
(16 + 16 − 2)2

(4.0, 0.2)
(

45.5 −0.3
−0.3 0.3

)−1( 4.0
0.2

)
' 0.2.
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This quantity is to be compared with the quantiles in an F(2,29) -distribution and it
is readily seen that a hypothesis that the mean vectors are equal can be accepted at all
reasonable levels. �

6.2 The multidimensional general linear model.

In the previous section we have looked at the one- and two-sample situation for the
multidimensional normal distribution. We have seen that the multidimensional results
are quite analogous to the one dimensional ones. In this section and in the following
we will continue this analogy and derive the results regarding regression and analysis
of variance of multidimensional variables.

We consider independently distributed variablesY 1, . . . ,Y n,

Y i ∈ Np(µi,Σ).

The variance-covariance matrixΣ (and the mean vectorsµi) are assumed unknown.
We arrange the observations in ann× p data matrix

Y =


 Y ′

1
...

Y ′
n


 =


 Y11 · · · Y1p

...
...

Yn1 · · · Ynp


 .

Here the single rows represent e.g. repetitions of measurements of a p-dimensional
phenomena. In full analogy with the model which we considered in the univariate
general linear model we will assume that the mean parameterµi can be written as
known linear functions of other (and fewer) unknown parametersθ, i.e.

E(Y) = x θ =


 x11 · · · x1k

...
...

xn1 · · · xnk




 θ11 · · · θ1p

...
...

θk1 · · · θkp


 .

It is seen that we assumex known andθ unknown. This model can be viewed from
different angles. If we let thej’th column in theY matrix equal

Yj| =


 Y1j

...
Ynj


 ,
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then we can write

E(Yj|) =


 x11 · · · x1k

...
...

xn1 · · · xnk




 θ1j

...
θkj


 = x θj|.

Thenmeasurements on thej’th “property” (attribute/variable) will therefore follow an
ordinary one dimensional general linear model.

If we instead write the mean value of a single observationY i, we find

E(Y ′
i) = (xi1 · · ·xik)


 θ11 · · · θ1p

...
...

θk1 · · · θkp


 = x′

iθ,

wherex′
i = x−i is thei’th row in thex -matrix. This readily gives

E(Y i) = θ′xi,

which is an analogue to the one dimensional regression model.

If the observations are rearranged into a column vector

Y
e

= vc(Y) =


 Y1|

...
Yp|


 ,

we find from theorem 2.7, p. 63, that

D( Y
e

) = Σ ⊗ In,

whereΣ ⊗ In is the tensor product ofΣ andIn, cf. section 1.5.

The first problem is to estimateθ. We have

THEOREM 6.6. We consider the above mentioned situation. If the observationsY i

are normally distributed the maximum likelihood estimate ofθ is given by

θ̂ = (x′x)−1x′Y.

N

PROOF 6.7. Omitted. See e.g. [2]. �
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REMARK 6.5. We see that

θ̂j| = (x′x)−1x′Yj|,

i.e. the estimate for thej’th column inθ is simply equal to the result we get by only
considering the one dimensional general linear model for thej’th “property”. H

REMARK 6.6. If the observations are not normally distributed one will still be able
to use the estimatêθ, since this of course just like the one dimensional case has a
Gauss-Markov property. We will not go into details with this but just mention a couple
of results. The least squares properties are that

M = (Y − x θ)′(Y − x θ) − (Y − x θ̂)′(Y − x θ̂)

is positive semidefinite. From this follows that

chi(Y − x θ)′(Y − x θ) ≥ chi(Y − x θ̂)′(Y − x θ̂),

where chi corresponds to thei’th largest eigenvalue. From this follows again thatθ̂
minimises

det(Y − x θ)′(Y − x θ)

and

tr(Y − x θ)′(Y − x θ).

H

REMARK 6.7. Above we have silently assumed thatx′x has full rank i.e.rg(x) =
k < n. If this is not the case one can by analogy to the one dimensional (univariate)
results find solutions by means of pseudo inverse matrices. H

After these considerations on the estimation ofθ̂ we turn to the estimation ofΣ.

THEOREM 6.7. We consider the situation from theorem 6.6. Then the maximum
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likelihood estimate forΣ equals

Σ̂∗ =
1
n

n∑
i=1

(Y i − θ̂′xi)(Y i − θ̂′xi)′

=
1
n

(Y − xθ̂)′(Y − xθ̂)

=
1
n

[Y′Y − (xθ̂)′(xθ̂)].

The(i, j)’th element can also be written

σ̂∗
ij =

1
n

(Yi| − xθ̂i|)′(Yj| − xθ̂j|).

N

PROOF 6.8. The many identities between̂Σ ’s elements are found by simple matrix
manipulations. For the results we refer to [2]. �

The distribution of the estimators mentioned are given in

THEOREM 6.8. We consider the situation from theorems 6.6 and 6.7 and we introduce
the usual notations

θ̃ = vc(θ) =


 θ|1

...
θ|p




ˆ̃
θ = vc(θ̂) =


 θ̂|1

...
θ̂|p


 .

Then we have that̃̂θ is normally distributed

ˆ̃θ = vc(θ̂) ∈ Npk(θ̃,Σ⊗ (x′x)−1),

andnΣ̂∗ is Wishart distributed

nΣ̂∗ ∈ W(n− k,Σ).

Finally Σ̂∗ and ˆ̃
θ and therefore alsôΣ∗ andθ̂ are stochastically independent. N
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PROOF 6.9. It is trivial that

E(θ̂) = E[(x′x)−1x′Y] = (x′x)−1x′x θ = θ

and from this it follows thatE(ˆ̃θ) = θ̃. Furthermorễθ is of course normally dis-
tributed.

Finally we have that

D(θ̂|i) = σii(x′x)−1

and

C(θ̂|i, θ̂|j) = (x′x)−1x′C(Y|i,Y|j)x(x′x)−1 = σij(x′x)−1.

From this the result concerning the variance covariance matrix forˆ̃θ is readily seen.

The result concerning the distribution ofΣ̂∗ and concerning the independence ofθ̂
andΣ̂∗ are quite analogous to the corresponding one dimensional results but we will
not look further into these matters here. The reader is referred to e.g. [2]. �

From the theorem we readily find

COROLLORY 6.1. The unbiased estimate forΣ is equal to

Σ̂ =
n

n− k
Σ̂∗ =

1
n− k

(Y − x θ̂)′(Y − x θ̂).

PROOF 6.10. Trivial when you remember that

E(W(k,∆)) = k∆.

�

Q.E.D.

We now turn to testing the parameters in the model.

We have



6.2. THE MULTIDIMENSIONAL GENERAL LINEAR MODEL . 209

THEOREM 6.9. We consider the above mentioned situation including the assumption
of the normality of the observations. Furthermore we consider the hypothesis

H0 : A θB′ = C against H1 : A θB′ 6= C,

whereA(r × k), B(s× p) andC(r × s) are given (known) matrices. We introduce

∆ = A θ̂B′ − C

R = nΣ̂∗ = (Y − x θ̂)′(Y − x θ̂)

and

S = BRB′

H = ∆′[A(x′x)−1A′]−1∆.

Since the ratio test for testingH0 againstH1 is equivalent to the test given by the
critical region

{y| det(s)
det(s + h)

≤ U(s, r, n− k)α},

whereU(s, r, n − k)α is theα quantile in the null-hypothesis distribution of the test
statistic (see below). N

PROOF 6.11. Omitted. The essential part of the proof is that it can be shown thatS
andH are independent Wishart distributed variables ifH0 is true. For more detail we
refer to the literature. As it is seen indirectly from the formulation of the theorem the
null-hypothesis distribution of

u =
det(S)

det(S + H)

only depends ons, r andn − k. The quantity is termed in the literature asWilk’s
Λ or Anderson’s U . Since the distribution contains three parameters it is somewhat
difficult to use in practise and we therefore give an approximation to an F-distribution
in the following �

THEOREM 6.10. LetU be U(p,q,r)-distributed and let

t =

{
1 p2 + q2 = 5√

p2q2−4
p2+q2−5 p2 + q2 6= 5

v =
1
2
(2r + q − p− 1).
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Then

F =
1 − U

1
t

U
1
t

· vt+ 1 − 1
2pq

pq

is approximately distributed as

F(pq, vt+ 1 − 1
2
pq).

If eitherp or q are equal to 1 or 2, then the approximation is exact. N

PROOF 6.12. Omitted. �

We shall now illustrate the introduced concept in the following example.

EXAMPLE 6.4. In the period 1968-69 the Royal Veterinary and Agricultural Univer-
sity’s Experimental Farm for crop growing, Højbakkegård, conducted an experiment
concerning the growth of lucerne. They investigated the offsprings from 176 crossings.
In order to establish the “quality” of the single crossings 9 properties were measured
on each one. The 9 variables are given in the following table.

As mentioned, the 5 first variables are graded on a numerical scale. This method is cho-
sen since it is very difficult to measure the respective variables directly, and experience
shows that it gives satisfactory results.

Variable No. & name Unit of measure Explanation
1: Type of growth Grade1 − 9 1 = growth is lying down,

9 = growth is upright
2: Regrowth after winter ” 1 = worst,9 = best
3: Ability to creep ” 1 = no runners,

9 = most runners
4: Activity ” 1 = weakest,9 = strongest
5: Time of blooming ” 1 = latest blooming,

9 = earliest blooming
6: Plant height cm
7: Seed weight g per plant
8: Plant weight g per plant

after drying
9: Percent seed % Calculated per plant

by means of (7) and (8)

The following analyses are based on the average values for the 9 variables based on
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numbers from between 15 and 20 plants (most of the results are based on 20 plants).
In the following table a section of these numbers is shown.

Obs.No. Variable No. and name
= 1 2 3 4 5 6 7 8 9
No. of
cros-
sing

Type of
growth

Re-
growth

Ability
to
creep

Activity Bloom-
ing

Plant-
height

Seed
weight

Plant
weight

Per-
cent
seed

1 4.11 5.00 3.05 6.17 3.67 50.00 3.47 120.10 2.75
2 3.08 4.75 4.17 7.50 5.17 61.50 0.82 111.33 0.75
3 3.12 4.00 3.35 6.53 3.99 55.29 0.86 97.47 0.81
...

176 4.00 4.40 4.60 7.40 2.90 50.00 0.66 153.50 0.44

The main goal with the experiment was to examine the variation among the 9 vari-
ables. More specifically one was e.g. interested in how variable 3 (ability to creep)
and variable 4 (activity) varies together with the others. The two variables mentioned
are usually of great importance for the development of a plant and it is therefore of
importance what the relation is to the other variables.

As a first orientation we will compute the empirical correlation matrix. It is found to
be

1 2 3 4 5 6 7 8 9
1 1.000 −0.033 0.116 0.018 0.131 −0.207 0.035 −0.087 0.041
2 −0.033 1.000 0.711 0.515 0.125 0.199 −0.025 0.348 −0.066
3 0.116 0.711 1.000 0.440 0.022 0.039 −0.133 0.218 −0.157
4 0.018 0.515 0.440 1.000 0.201 0.517 0.071 0.689 −0.081
5 0.131 0.125 0.022 0.201 1.000 0.496 0.987 0.168 0.486
6 −0.207 0.199 0.039 0.517 0.496 1.000 0.453 0.559 0.367
7 0.035 −0.025 −0.133 0.071 0.487 0.453 1.000 0.360 0.947
8 −0.087 0.348 0.218 0.689 0.168 0.559 0.360 1.000 0.128
9 0.041 −0.066 −0.157 −0.081 0.486 0.367 0.947 0.128 1.000

We note that variable 1 (type of growth) is only vaguely correlated with the other vari-
ables. On the other hand e.g. variables 2 and 3 (re-growth and ability to creep) and (of
course) 7 and 9 (weight of seed and percentage of seed) are very strongly correlated.

As mentioned we are especially interested in variable 3’s and variable 4’s variation
with the other variables. We note that there are a number of fairly large correlations
but it is difficult to get an impression solely based on these. We will therefore try if it
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is possible to express these two variables as linear functions of the others i.e.

E(Y1) =
k∑

i=1

θi1xi

E(Y2) =
k∑

i=1

θi2xi

where we now have used the variable notations

Y1 = Ability to “creep”

Y2 = Activity

x1 = Type of growth

x2 = Re growth after winter

x3 = Time of blooming

x4 = Height of plant

x5 = Weight of seed

x6 = Weight of plant

x7 = Percentage of seed

We are obviously talking about a multidimensional general linear model. If we let
θ = (θij), we get

θ̂ =




0.28400 0.42731
0.79508 0.22230

−0.02573 0.02607
−0.01151 0.06290
−0.14467 −0.16756

0.00307 0.01103
0.10614 0.03463



.

If we assume(
Y1i

Y2i

)
∈ N(µi,Σ),

then the unbiased estimate ofΣ is

Σ̂ =
[

0.85897 0.07870
0.07870 0.29444

]
.

The matrix(x′x)−1 is found to be
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1 2 3 4 5 6 7
1.55920 −0.16549 −0.47258 −0.05010 0.41826 −0.00235 −0.42289

−0.16549 0.85139 −0.17981 −0.01327 0.63774 −0.01759 −0.69467
−0.47258 −0.17981 1.77862 −0.10728 −0.29340 0.01164 −0.02184
−0.05010 −0.01327 −0.10728 0.02253 0.12325 −0.00441 −0.17012

0.41826 0.63774 −0.29340 0.12325 5.25546 −0.08437 −7.04885
−0.00235 −0.01759 0.01164 −0.00441 −0.08437 0.00243 0.11182
−0.42289 −0.69467 −0.02184 −0.17012 −7.04885 0.11182 10.11541

From this we can easily compute the variance and covariance on the singleθ -values.
Because we have

D(ˆ̃θ) = Σ ⊗ (x′x)−1 =
(
σ11(x′x)−1 σ12(x′x)−1

σ21(x′x)−1 σ22(x′x)−1

)
,

and therefore e.g.

V̂(θ̂42) = 0.2944 · 0.02253 = 0.0066.

These results can be used in the construction of ordinary t-tests for the single coef-
ficients. We will, however, not consider this here. Instead we will give a couple of
examples of how to construct simultaneous tests. Let us e.g. consider the hypothesis

H0 : θ41 = θ42 = 0

against all alternatives. This hypotheses must be brought into the form given in theo-
rem 6.9. This can be done by choosing

A = ( 0 0 0 1 0 0 0 )

B =
(

1 0
0 1

)

and

C = ( 0 0 ).

Then we will have

A θB′ = ( θ41 θ42 ).

By the use of a standard programme (BDX63) we get the F-test statistic

F = 53.66
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with degrees of freedom

(f1, f2) = (2, 168).

The test statistic is in this case exact F-distributed, sinces = 2 andr = 1. It is seen
that the observed F-value is significant at all reasonable levels.

As another example consider the hypothesis

θ1 =


 θ51 θ52
θ61 θ62
θ71 θ72


 =


 0 0

0 0
0 0




against all alternatives. This hypothesis can be transformed into the form of theo-
rem 6.9 by choosing

A =


 0 0 0 0 1 0 0

0 0 0 0 0 1 0
0 0 0 0 0 0 1


 ,

B =
[

1 0
0 1

]

and

C =


 0 0

0 0
0 0


 ;

since then we obtain

A θB′ = θ1.

With the previously mentioned standard programme we find

F = 10.63 ; (f1, f2) = (6, 336).

Once again we have a clear significance.

As a last example consider the hypothesis

θ62 = θ72 = 0
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against all alternatives. This is brought into the standard form by choosing

A =
(

0 0 0 0 0 1 0
0 0 0 0 0 0 1

)
,

B = ( 0 1 )

and

C =
[

0
0

]
.

The F-test statistic has(2, 169) degrees of freedom and is found to be 27.4. The
values shown are therefore significant. �

We will now specialise the results from the previous section to generalisations of the
univariate one- and two-sided analysis of variance. First

6.2.1 One-sided multi-dimensional analysis of variance

We consider observations

Y 11, · · · , Y 1n1

...
...

Y k1, · · · , Y knk

.

These are assumed to be stochastically independent with

Y ij ∈ Np(µi,Σ), i = 1, . . . , k ; j = 1, . . . , ni,

i.e. p-dimensional normal distributed with the same variance-covariance matrix. We
wish to test hypothesis

H0 : µ1 = · · · = µk

against

H1 : ∃i, j(µi 6= µj).
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Analogously to the univariate one-sided analysis of variance we define sums of squares
deviation matrices

T =
k∑

i=1

ni∑
j=1

(Y ij − Ȳ )(Y ij − Ȳ )′

W =
k∑

i=1

ni∑
j=1

(Y ij − Ȳ i)(Y ij − Ȳ i)′

B =
k∑

i=1

ni(Ȳ i − Ȳ )(Ȳ i − Ȳ )′

Here we have withn =
∑

i ni

Ȳ i =
1
ni

ni∑
j=1

Y ij

Ȳ =
1
n

k∑
i=1

ni∑
j=1

Y ij .

After a bit of algebra we see that “total” matrixT is the sum of the “between groups”
matrixB and the “within groups” matrixW i.e.

T = W + B,

i.e. as in the one-dimensional case we have a partitioning of the total variation in the
variation between groups and the variation within groups.

It is trivial that we as an unbiased estimate of the variance-covariance matrixΣ can
use

Σ̂ =
1

n− k
W.

If the hypothesis is true thenT will also be proportional with such an estimate. If the
hypothesis is not true thenT will be “larger”. Therefore the following theorem seems
intuitively reasonable.

THEOREM 6.11. The ratio test for the test of the hypothesisH0 againstH1 is given
by the critical region

{y11, . . . ,yknk

∣∣∣∣det(w)
det(t)

≤ U(p, k − 1, n− k)α}.

N
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PROOF 6.13. Omitted. Is found by special choices ofA, B andC matrices in
theorem 6.9. �

Just as the case for the one-dimensional analysis of variance the results are displayed
using an analysis of variance table.

Source of variation SS − matrix Degrees of freedom
Deviation from hy-
pothesis = varia-
tion between groups

B =
∑
i

ni(Ȳ i − Ȳ )(Ȳ i − Ȳ )′ k − 1

Error = variation
within groups

W =
∑
i

∑
j

(Y ij − Ȳ i)(Y ij − Ȳ i)′ n− k

Total T =
∑
i

∑
i

(Y ij − Ȳ )(Y ij − Ȳ )′ n− 1

As it is done in univariate ANOVA it is of course possible to determine expected values
of theB andT matrices even withoutH0 being true. We will, however, not pursue
this further here.

6.2.2 Two-sided multidimensional analysis of variance

In this case we will only look at a two-sided analysis of variance with 1 observation
per cell. We will therefore assume that we have observations

Y 11, . . . , Y 1m

...
...

Y k1, . . . , Y km

,

which are assumed to bep-dimensional normal distributed with the same variance-
covariance matrixΣ and with mean values

E(Y ij) = µij = µ + αi + βj ,

where the parametersαi βj satisfy

∑
i

αi =
∑

j

βj = 0.

We now want to test the hypothesis

H0 : α1 = · · · = αk = 0
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against

H1 : ∃i(αi 6= 0)

and

K0 : β1 = · · · = βm = 0

against

K1 : ∃j(βj 6= 0).

Analogous to the sums of squares of the one-dimensional (univariate) analysis of vari-
ance we define the matrices

T =
k∑

i=1

m∑
j=1

(Y ij − Ȳ ..)(Y ij − Ȳ ..)′

Q1 =
k∑

i=1

m∑
j=1

(Y ij − Ȳ i. − Ȳ .j + Ȳ ..)(Y ij − Ȳ i. − Ȳ .j + Ȳ ..)′

Q2 = m

k∑
i=1

(Ȳ i. − Ȳ ..)(Ȳ i. − Ȳ ..)′

Q3 = k

m∑
j=1

(Ȳ .j − Ȳ ..)(Ȳ .j − Ȳ ..)′.

Here we have used the usual notation

Ȳ .. =
1
km

k∑
i=1

m∑
j=1

Y ij

Ȳ i. =
1
m

m∑
j=1

Y ij , i = 1, . . . , k

Ȳ .j =
1
k

k∑
i=1

Y ij , j = 1, . . . ,m.

We see in this case that we also have the usual partitioning of the total variation

T = Q1 + Q2 + Q3,
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i.e. the total variation(T) is partitioned in the variation between rows(Q2), and
the variation between columns(Q3) and the residual variation (interaction variation)
(Q1).

We now have

THEOREM 6.12. The ratio test at levelα for test ofH0 againstH1 is given by the
critical region

{y11, . . . ,ykm

∣∣∣∣ det(q1)
det(q1 + q2)

≤ U(p, k − 1, (k − 1)(m− 1))α}.

The ratio test at levelα for test ofK0 againstK1 is given by the critical region

{y11, . . . ,ykm

∣∣∣∣ det(q1)
det(q1 + q3)

≤ U(p,m− 1, (k − 1)(m− 1))α}.

N

PROOF 6.14. Omitted. Follows readily from theorem 6.9. See e.g. [2]. �

We collect the results in a usual analysis of variance table

Source of
variation

SS-matrix Degrees of freedomTest statistic

Differences
between
columns

Q3 = k
∑
j

(Ȳ .j − Ȳ ..)(Ȳ .j − Ȳ ..)′ m− 1 det(Q1)
det(Q1+Q3)

Differences
between
rows

Q2 = m
∑
i

(Ȳ i. − Ȳ ..)(Ȳ i. − Ȳ ..)′ k − 1 det(Q1)
det(Q1+Q2)

Residual
Q1 =

∑
i

∑
j

(Ȳ ij − Ȳ i. − Ȳ .j + Ȳ ..)×
(Ȳ ij − Ȳ i. − Ȳ .j + Ȳ ..)′

(k − 1)(m− 1)

Total T =
∑
i

∑
j

(Y ij − Ȳ ..)(Y ij − Ȳ ..)′ km− 1

The matrix 1
(k−1)(m−1)Q1 can be used as a unbiased estimate ofΣ.

We now give an illustrative example.

EXAMPLE 6.5. At the Royal Veterinary and Agricultural University’s experimental
farm, Højbakkegård, an experiment concerning the yield of crops was conducteded in
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the period 1956-58 as part of an international study. Experiments on 10 plant types
were performed. The kinds of yield which were of interest were the amounts of

dry matter
green matter
nitrogen.

Each type of plant was grown in 6 blocks (i.e. plots of soil with different quality). In
order to reduce the amount of data we will limit ourselves to three plants and to the
year 1957. The results of the experiment considered are given below.

Type of Type of Block No.
plant yield 1 2 3 4 5 6

Dry matter 9.170 10.683 10.063 8.104 10.018 9.570
Marchi-
giana

nitrogen 0.286 0.335 0.315 0.259 0.319 0.304
green matter 40.959 47.677 44.950 36.919 45.859 43.838

Dry matter 9.403 10.914 11.018 11.385 13.387 12.848
Kayseri nitrogen 0.285 0.330 0.333 0.339 0.400 0.383

green matter 42.475 49.546 50.152 51.718 60.758 58.334

Dry matter 11.349 10.971 9.794 8.944 11.715 11.903
Atlan-
tic

nitrogen 0.369 0.357 0.319 0.291 0.379 0.386
green matter 52.475 50.757 45.151 42.221 55.505 56.364

Yield in 1000 kg/ha

We wish to analyse how the yield varies with the blocks, the type of plants and the type
of yield.

We will first analyse each type of yield by itself. For this we base the analysis on a
two-sided analysis of variance. The model is

yij = µ+ αi + βj + εij (i = 1, 2, 3, j = 1, . . . , 6),

and we are therefore assuming that each observationyij can be written as a sum of
µ (level),αi (effect of plant),βj (effect of block) andεij (residual, being a small
randomly varying quantity).

If we first consider dry matter we get

y11 = 9.170, y12 = 10.683, . . . , y36 = 11.903.

The analysis of variance table was (found by means of SSP-ANOVA)
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Source of Sums of Degrees of Mean F-values
variation squares freedom squares
A 11.218244 5 2.243648 2.25
B 10.945597 2 5.472798 5.49
AB 9.970109 10 0.997010
Total 32.133936 17

The test statistic for the hypothesisβ1 = · · · = β6 = 0 is

F =
s23
s21

= 2.25 < 3.33 = F95%(5, 10)

i.e. we cannot reject that theβ s equal 0.
Correspondingly the test statistic for the hypothesisα1 = α2 = α3 = 0 equals

F =
s22
s21

= 5.49 > 4.10 = F95%(2, 10).

At a 5% level we therefore reject that theα s all equal 0. However, we note that

F97.5%(2, 10) = 5.46,

so there is no significance at the 2.5% level.

If we perform the corresponding computations on the nitrogen yield we get, using as
observations:y′ij = yij · 1000:

Source of Sums of Degrees of Mean F-values
variation squares freedom squares
A 10802.27734 5 2160.45532 2.60
B 8030.77734 2 4015.38867 4.83
AB 8310.55469 10 831.05542
Total 27143.60938 17

Here we again find that there is no difference between blocks but there is possibly a
difference between plants. This difference is, however, not significant at the 2.5% level.

The corresponding computations on yield of green matter was (again using coded ob-
servations:y′ij = 1000yij):

Source of Sums of Degrees of Mean F-values.
variation squares freedom squares
A 261702416 5 52340480 2.75
B 260173824 2 130086912 6.83
AB 190600448 10 19060032
Total 712476672 17
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Here we again have that there is no difference between blocks. We also find a difference
between plants at the 5% level but not at the 1% level since

F99%(2, 10) = 7.56.

We therefore see that the three types of yield show more or less the same sort of vari-
ation: There is no difference between blocks but there is difference between plants.
These are, however, not significant at a small levels ofα.

Now the three forms of yield are known to be strongly interdependent. Therefore we
will expect that the analysis of variance would give more or less similar results and it
would therefore be interesting to examine the variation and the yield when we take this
dependency into consideration. Such a type of analysis can be performed by a three
dimensional two-sided analysis of variance i.e. we use the model

Y ij = µ + αi + βj + εij , i = 1, 2, 3, j = 1, . . . , 6,

where

µ =


 µ1

µ2

µ3


 , αi =


 α1i

α2i

α3i


 , βj =


 β1j

β2j

β3j


 ,

and the observations are

Y ij =


 content of green matter in planti in blok j

content of nitrogen −′′−
content of dry matter −′′−


 .

The observed values are

y11 =


 40.959

0.286
9.170


 , . . . , y36 =


 56.364

0.386
11.903


 .

In this way we can aggregate the three analysis of variances shown above into one.
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With the notation from p. 218 the matricesQ1, Q2 andQ3 are found to be

q2 =


 260.18359

1.38547 0.00803
52.37032 0.26262 10.94564




q3 =


 261.70239

1.67129 0.01080
53.97473 0.34801 11.21827




q1 =


 190.59937

1.25512 0.00831
43.45444 0.28667 9.97013




The matrices have been found by means of the BMD-programme BMDX69. Still by
means of the programme mentioned we find

ln(Gen- U-stat- Degrees of Approx- Degrees of
Source eralized istic freedom imate F- freedom

variance) statistic
I −1.89908 0.003315 3 2 10 43.6455 6 16.00
J −4.84194 0.062894 3 5 10 2.5843 15 22.49
Full
model

−7.60824

Here I corresponds to the variation between plants andJ to the variation between
blocks.

The (in this case exact) F-test statistic for a test of the hypothesisα1 = α2 = α3 = 0,
(i.e.. the hypothesis that all plants are equal) is 43.6. The number of degrees of freedom
is (6,16). Since

F(6, 16)0.9995 = 7.74,

we therefore have a very strong rejection of the hypothesis.

Since

F(15, 22)0.975 = 2.50,

we see that now also the hypothesis of the blocks being equal is rejected at the level
α = 2.5%.

The conclusion on the multi-dimensional analysis of variance is therefore that there is
a clear difference in the yield for the three types of plants. It is on the other hand more
uncertain if there are differences between the blocks.
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We note a difference from three one-dimensional analyses. In these cases we only have
moderate or no significance for the hypothesis of the plant yields being equal. We
therefore have different results by considering the simultaneous analysis instead of the
three marginal ones. �

6.3 Tests regarding variance-covariance matrices

In this section we will briefly give some of the tests for hypothesis on variance covari-
ance matrices. On one hand corresponding to a hypothesis about the variance covari-
ance matrix having a given structure or is equal to a given matrix, or on the other hand
corresponding to a hypothesis that several variance covariance matrices are equal.

6.3.1 Tests regarding a single variance covariance matrix

First we will give a test that k-groups of normally distributed variables are independent.
We are considering aX ∈ Np(µ,Σ), and we divideX in k components we the
dimensionsp1, . . . , pk, i.e.

X =


 X1

...
Xk


 .

The corresponding partitioning of the parameters is

µ =


 µ1

...
µk




and

Σ =


 Σ11 · · · Σ1k

...
...

Σk1 · · · Σkk


 .

Our hypothesis is now thatX1, . . . ,Xk are independent i.e. that variance covariance
has the form

Σ = Σ0 =


 Σ11 · · · 0

...
...

0 · · · Σkk


 .



6.3. TESTS REGARDING VARIANCE -COVARIANCE MATRICES 225

If we defineΣ̂ computed on the basis of n realisations ofX in the usual way and if
we partitionΣ̂ analogously to the partitioning ofΣ, we have

THEOREM 6.13. We consider the above mentioned situation and let

V =
det(Σ̂)∏k

i=1 det(Σ̂ii)
.

Then the coefficient test for test of the hypothesisΣ = Σ0 is given by the critical
region

{V ≤ vα}.

When finding the boundary of the critical region we can use that

P{−m lnV ≤ v}
' P{χ2(f) ≤ v} +

γ2

m2
[P{χ2(f + 4) ≤ v} − P{χ2(f) ≤ v}],

where

m = n− 3
2
− p3 −∑ p3

i

3(p2 −∑ p2
i )

γ2 =
p4 −∑ p4

i

48
− 5(p2 −∑ p2

i )
96

− (p3 −∑ p3
i )

2

72(p2 −∑ p2
i )
.

f =
1
2
[p2 −

∑
p2

i ], p =
∑

pi

If k = 2, the V is distributed asU(p1, p2, n− 1 − p2). N

PROOF 6.15. Omitted. See e.g. [2]. �

In the above mention situation we looked at a test for a variance covariance matrix
having a certain structure. We will now turn around and look at a test for the hypothesis
that a variance covariance matrix is proportional with a given matrix. We briefly give
the result in

THEOREM 6.14. We consider independent observationsX1, . . . ,Xn with X i ∈
Np(µ,Σ), and we let

A =
∑

(Xi − X̄)(Xi − X̄)′.
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The quotient test statistic for a test ofH0 : Σ = σ2Σ0, whereΣ0 is known andσ2

unknown against all alternatives is

W =
[det(AΣ−1

0 )]
n
2

[trAΣ−1
0 /p]

pn
2
.

When determining the critical region we can use that

P{−(n− 1)ρ ln W ≤ z}
' P{χ2(f) ≤ z} + ω2[P{χ2[f + 4] ≤ z} − P{χ2(f) ≤ z}],

where

ρ = 1 − 2p2 + p+ 2
6p(n− 1)

f =
1
2
p(p+ 1) − 1

ω2 =
(p+ 2)(p− 1)(p− 2)(2p3 + 6p2 + 3p+ 2)

288p2n2ρ2
.

N

PROOF 6.16. Omitted. See e.g. [2]. �

Finally we will consider the situation where we wish to test that a variance covariance
matrix is equal to a given matrix. Then the following holds true

THEOREM 6.15. We consider independent observationsX1, . . . ,Xn with X i ∈
Np(µ,Σ), and we let

A =
n∑

i=1

(X i − X̄)(X i − X̄)′.

The quotient test statistic for a test ofH0 : Σ = Σ0, whereΣ0 is known against all
alternatives is

λ1 = (
e

n
)pn/2[det(AΣ−1

0 )]
n
2 exp(−1

2
tr(AΣ−1

0 )).
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When determining the critical region we can use that

P{−2 lnλ1 ≤ v} ' P{χ2(
1
2
p(p+ 1)) ≤ v}.

N

PROOF 6.17. Omitted. See e.g. [2]. �

6.4 Test for equality of several variance-covariance
matrices

We will in this section consider the problem of testing the assumption of equal variance
covariance matrices in Hotelling’s two sample situation and in the multidimensional
analysis of variance.

We will assume that there are independent observations

X11, . . . , X1n1 , X1j ∈ Np(µ1,Σ1)
...

...
Xk1, . . . , Xknk

, Xkj ∈ Np(µk,Σk)
,

and we wish to test the hypothesis

H0 : Σ1 = · · · = Σk against H1 : ∃i, j : Σi 6= Σj.

We let

n =
∑

ni,

Ai =
ni∑

j=1

(Xij − X̄i)(Xij − X̄i)′,

and

A =
k∑

i=1

Ai,

cf. section 6.2.1, where the notationW is used instead ofA.

We then have
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THEOREM 6.16. As a test statistic for the test ofH0 againstH1 we can use

W1 =
∏k

i=1[det(Ai)]
(ni−1)

2

[detA]
(n−k)

2

· (n− k)
p(n−k)

2∏k
i=1(ni − 1)

p(ni−1)
2

.

The critical region is of the form

{W1 ≤ wα}

and in the determination of this we can use that

P{−2ρ lnW1 ≤ z} ≈
P{χ2(f) ≤ z} + ω2[P{χ2(f + 4) ≤ z} − P{χ2(f) ≤ z}],

where

f =
1
2
(k − 1)p(p+ 1),

ρ = 1 − (
∑

i

1
ni

− 1
n

)
2p2 + 3p− 1

6(p+ 1)(k − 1)
,

ω2 =
1

48ρ2
p(p+ 1)[(p− 1)(p+ 2)(

∑
i

1
n2

i

− 1
n2

) − 6(k − 1)(1 − ρ)2].

N

PROOF 6.18. Omitted. See e.g. [2]. �



Chapter 7

Discriminant analysis

In this section we will address the problem of classifying an individual in one of two
(or more) known populations based on measurements of some characteristics of the
individual.

We first consider the problem of discriminating between two groups (classes).

7.1 Discrimination between two populations

7.1.1 Bayes and minimax solutions

We consider thepopulationsπ1 andπ2 and wish to conclude whether a given individ-
ual is a member of group one or group two. We perform measurements ofp different
characteristics of the individual and hereby get the result

X =


 X1

...
Xp


 .

If the individual comes fromπ1 the frequency function ofX is f1(x) and if it comes
from π2 it is f2(x).

Let us furthermore assume that we have given aloss functionL:

229
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Choise:
π1 π2

π1 0 L(1, 2)
Truth

π2 L(2, 1) 0

We will assume that there is no loss if we take the correct decision.

In certain situations one also knows approximately what theprior probability is to
have an individual from each of the groups i.e. we haven given a prior distribution g:

g(π1) = p1, g(π2) = p2.

We now seek adecision functiond: Rp → {π1, π2}. d is defined by

d(x) = dR1(x) =
{
π1 if x ∈ R1

π2 if x ∈ R2 = {R1.

We divideRp in two regionsR1 andR2. If our observation lies inR1 we will choose
π1 and if our observation lies inR2 we will chooseπ2.

If we have aprior distribution we define the posterior distribution k by

k(πi|x) =
fi(x)g(πi)

p1f1(x) + p2f2(x)
=

pifi(x)
p1f1(x) + p2f2(x)

,

cf. p. 6.6 in Vol. 1.

The expected loss in this distribution is

Ex(L(πi, dR1(x))) = L(π1, dR1(x))k(π1|x) + L(π2, dR1(x))k(π2|x)

=
{

L(π2, π1)k(π2|x), x ∈ R1

L(π1, π2)k(π1|x), x ∈ R2
.

The Bayes solution is defined by minimising this quantity for anyx (p. 6.9 in Vol. 1),
i.e. we defineR1 by

x ∈ R1 ⇔ L(2, 1)k(π2|x) ≤ L(1, 2)k(π1|x)

⇔ L(1, 2)f1(x)p1

L(2, 1)f2(x)p2
≥ 1

⇔ f1(x)
f2(x)

≥ L(2, 1)
L(1, 2)

p2

p1
.

These considerations are collected in
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THEOREM 7.1. The Bayes solution to the classification problem is given by the re-
gion

R1 = {x| f1(x)
f2(x)

≥ L(2, 1)
L(1, 2)

p2

p1
}.

N

REMARK 7.1. This result is exactly the same as the one given in theorem 5, chapter 6
in Vol. 1. H

If we do not have a prior distribution we can instead determine a minimax strategy i.e.
determineR1 so that the maximal risk is minimised. The risk is (cf. p. 6.3, Vol 1)

R(π1, dR1) = Eπ1 L(π1, dR1(X)) = L(1, 2)P{X ∈ R2|π1}.
R(π2, dR1) = Eπ2 L(π2, dR1(X)) = L(2, 1)P{X ∈ R1|π2}.

One can now show (see e.g. the proof for theorem 4, chapter 6 in Vol. 1)

THEOREM 7.2. The minimax solution for the classification problem is given by the
region

R1 = {x| f1(x)
f2(x)

≥ c},

wherec is determined by

L(1, 2)P{ f1(x)
f2(x)

< c|π1} = L(2, 1)P{ f1(x)
f2(x)

≥ c|π2}.

N

REMARK 7.2. The relation for determinatingc can be written

L(1, 2) · (the probability of misclassification ifπ1 is true)

= L(2, 1) · (the probability of misclassification ifπ2 is true)

Since the first is an increasing and the second is a decreasing function ofc it is obvious
that we will minimise the maximal risk when we have equality. If we do not have any
idea about the size of the losses we can let them both equal one. The minimax solution
gives us the region which minimises the maximal probability of misclassification.H
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We will now consider the important special case wheref1 andf2 are normal distribu-
tions.

7.1.2 Discrimination between two normal populations

If f1 andf2 are normal with the same variance-covariance matrix we have

THEOREM 7.3. Let π1 ' N(µ1,Σ) andπ2 ' N(µ2,Σ). Then we have

f1(x)
f2(x)

≥ c⇔ x′Σ−1(µ1 − µ2) −
1
2
µ′

1Σ
−1µ1 +

1
2
µ′

2Σ
−1µ2 ≥ ln c.

N

PROOF 7.1. We introduce the inner product(·|·) and the norm‖ ‖ by

(x|y) = x′Σ−1y

and

‖x‖2 = (x|x).

We then have

fi(x) =
1√

2π
p√

detΣ
exp(−1

2
‖x − µi‖2).

From this we readily get

f1(x)
f2(x)

≥ c⇔ ln
f1(x)
f2(x)

≥ ln c

⇔ −‖x − µ1‖2 + ‖x − µ2‖2 ≥ 2 ln c
⇔ −(x − µ1|x − µ1) + (x − µ2|x − µ2) ≥ 2 ln c
⇔ 2(x|µ1) − 2(x|µ2) − (µ1|µ1) + (µ2|µ2) ≥ 2 ln c
⇔ 2(x|µ1 − µ2) − (µ1|µ1) + (µ2|µ2) ≥ 2 ln c.

By using the connexion between(|) andΣ−1 we find that the theorem readily follows.

�
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REMARK 7.3. The expressionf1(x)
f2(x) ≥ c is seen to define a subset ofRp which is

delimited by a hyper-plane (forp = 2 a straight line and forp = 3 a plane).

The vector ~p1p2 is the orthogonal projection (NB! The orthogonal projection with re-
spect toΣ−1) of x onto the line which connectsµ1 andµ2. (It can be shown that
the slope of the projection lines etc. are equal to the slope of the ellipse- (ellipsoid-)
tangents in the at the points where they intersect the line(µ1,µ2)). Since the length
of a projection of a vector is equal to the inner product between the vector and a unit
vector on the line we see that we have classified the observation as coming fromπ1 iff
the projection ofx is large enough (computed with sign). Otherwise we will classify
the observation as coming fromπ2.

The function

x′Σ−1(µ1 − µ2) −
1
2
µ′

1Σ
−1µ1 +

1
2
µ′

2Σ
−1µ2 − ln c

is called the discriminator or the discriminant function.

We then have that the discriminator is the linear projection which - after the addition of
suitable constants - minimises the expected loss (the Bayes situation) or the probability
of misclassification (the minimax situation). H
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In order to make the reader more confident with the content - we will now give a slightly
different interpretation of a discriminator. If we let

δ = Σ−1(µ1 − µ2),

we have the following

THEOREM 7.4. The vectorδ has the property that it maximises the function

ϕ(d) =
[E1(X ′d) − E2(X ′d)]2

V(X ′d)
=

[(µ1 − µ2)
′d]2

d′Σd
.

N

PROOF 7.2. The proof is not very interesting but fairly simple. Since we readily have
thatϕ(k ·d) = ϕ(d) we can determine extremes forϕ by determining extremes for the
numerator under the following constraint

d′Σd = 1.

We introduce a Lagrange multiplierλ and seek the maximum of

ψ(d) = [(µ1 − µ2)
′d]2 − λ(d′Σd − 1).

Now we have that

∂ψ

∂d
= 2(µ1 − µ2)(µ1 − µ2)

′d − 2λΣd.

If we let this equal 0, we have

(µ1 − µ2)(µ1 − µ2)
′d = λΣd,

i.e.

d =
(µ1 − µ2)

′d
λ

Σ−1(µ1 − µ2) = k · δ,

wherek is a scalar. �

REMARK 7.4. The content of the theorem is that the linear function determined byδ

X ′δ = δ1X1 + · · · + δpXp,
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is the projection that “moves”π1 furthest possible away fromπ2 or - in analysis of vari-
ance terms - the projection which maximises the variance between populations divided
by the total variance.

The geometrical content of the theorem is indicated in the above figure where

b: is the projection of the ellipse onto the lineµ1, µ2 in the direction determined
by x′δ = 0

a: is the projection of the ellipse onto the lineµ1, µ2 in a different direction.

It is seen that the projection determined byδ onto the line which connectsµ1 andµ2 is
the one which “moves” the projection of the contour ellipsoids of the two populations
distribution furthest possible away from each other. H

We now give a theorem which is very useful in the determination of misclassification
probabilities.

THEOREM 7.5. We consider the criterion in theorem 7.3

Z = X ′Σ−1(µ1 − µ2) −
1
2
µ′

1Σ
−1µ1 +

1
2
µ′

2Σ
−1µ2.



236 CHAPTER 7. DISCRIMINANT ANALYSIS

It can be proved that

Z ∈
{

N(+ 1
2‖µ1 − µ2‖2, ‖µ1 − µ2‖2), if π1 is true

N(− 1
2‖µ1 − µ2‖2, ‖µ1 − µ2‖2), if π2 is true

.

N

PROOF 7.3. The proof is straight forward. Let us e.g. consider the caseπ1 true. We
then have thatE(X) = µ1 and then

E(Z) = µ′
1Σ

−1(µ1 − µ2) −
1
2
µ′

1Σ
−1µ1 +

1
2
µ′

2Σ
−1µ2

=
1
2
(µ1 − µ2)

′Σ−1(µ1 − µ2)

=
1
2
‖µ1 − µ2‖2.

V(Z) = (µ1 − µ2)
′Σ−1ΣΣ−1(µ1 − µ2)

= (µ1 − µ2)
′Σ−1(µ1 − µ2)

= ‖µ1 − µ2‖2.

The result regardingπ2 is shown analogously. �

We will now consider some examples.

EXAMPLE 7.1. We consider the case where

π1 ↔ N(
(

4
2

)
,

(
1 1
1 2

)
)

π2 ↔ N(
(

1
1

)
,

(
1 1
1 2

)
),

and we want to determine a “best” discriminator function. Since we know nothing
about the prior probabilities and so on, we will use the function which corresponds to
the constantc in theorem 7.3 being 1. Since

(
1 1
1 2

)−1

=
(

2 −1
−1 1

)
,
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we get the following function

(x1x2)
(

2 −1
−1 1

)(
3
1

)
− 1

2
(2 · 16 + 1 · 4 − 2 · 8) +

1
2
(2 · 1 + 1 · 1 − 2 · 1) = 0

or

5x1 − 2x2 − 9
1
2

= 0.

If we enter an arbitrary point, e.g.

(
5
6

)
we get

5 · 5 − 2 · 6 − 9
1
2

= 3
1
2
> 0.

This point is therefore classified as coming fromπ1.

We have indicated the situation in the following figure

�

If we have a loss function, the procedure is a bit different which is seen from

EXAMPLE 7.2. Let us assume that we have losses assigned to the different decisions:
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Choise:
π1 π2

π1 0 2
Truth:

π2 1 0

Since we have no prior probabilities we will determine the minimax solution. We will
need

‖µ1 − µ2‖2 = 2 · 9 + 1 · 1 − 2 · 3 · 1 = 13.

From theorem 7.2 follows that we must determinec so

2 · P
{

f1(X)
f2(X)

< c|π1

}
= P

{
f1(X)
f2(X)

≥ c|π2

}
⇔ 2 · P{Z < ln c|π1} = P{Z ≥ ln c|π2}
⇔ 2 · P{N(

1
2
13, 13) < ln c} = P{N(−1

2
13, 13) ≥ ln c}

⇔ 2 · P
{

N(0, 1) <
ln c− 6.5√

13

}
= P

{
N(0, 1) ≥ ln c+ 6.5√

13

}
.

By trying with different values ofc we see that

c ' 0.5617.

Using this value the misclassification probabilities are

If π1 is true: P{N(0, 1) < ln 0.5617−6.5√
13

} ' 0.025.

If π2 is true: P{N(0, 1) < ln 0.5617+6.5√
13

} ' 0.050.

The discriminating line is now determined by

5x1 − 2x2 − 9
1
2

= ln 0.5617,

or

5x1 − 2x2 − 8.92 = 0.

This line intersects the line connectingµ1 andµ2 in (2.36, 1.46) i.e. it is moved to-
wardsµ2 compared to the mid-point(2.5, 1.5). It is also obvious that the line is moved
parallelly in this direction since we see from the loss matrix that it is more serious to
be wrong ifπ1 is true than ifπ2 is true. We must therefore expandR1 i.e. move the
limiting line towardsµ2. �
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We must stress that it is of importance that the variance-covariance matrices for the two
populations are equal. If this is not the case we will get a completely different result
which will be seen from the following example.

EXAMPLE 7.3. Let us assume that the variance-covariance matrix for population 2 is
changed to an identity matrix i.e.

π1 ↔ N
((

4
2

)
,

(
1 1
1 2

))

π2 ↔ N
((

1
1

)
,

(
1 0
0 1

))

Again we want to classify an observationX which comes from one of the above men-
tioned distributions. Since the variance covariance matrices are not equal we cannot
use the result in theorem 7.3 but have to start from the beginning with theorem 7.2.

For c > 0 we have

f1(x)
f2(x)

≥ c ⇔

−(x − µ1)
′Σ−1

1 (x − µ1) + (x − µ2)
′Σ−1

2 (x − µ2) ≥ 2 ln c.

Since

(x − µ1)
′Σ−1

1 (x − µ1) = 2(x1 − 4)2 + (x2 − 2)2 − 2(x1 − 4)(x2 − 2)
= 2x2

1 + x2
2 − 2x1x2 − 12x1 + 4x2 + 20,

and

(x − µ2)
′Σ−1

2 (x − µ2) = (x1 − 1)2 + (x2 − 1)2

= x2
1 + x2

2 − 2x1 − 2x2 + 2,

then

f1(x)
f2(x)

≥ c⇔ −x2
1 + 2x1x2 + 10x1 − 6x2 − 18 ≥ 2 ln c.

If we choosec = 1, we note that the curve which separatesR1 andR2 is the hyperbola

{x| − x2
1 + 2x1x2 + 10x1 − 6x2 − 18 = 0}.
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It has centre in(3,−2) and asymptotes

x1 − 3 = 0,

x1 − 2x2 − 7 = 0.

These curves are shown in the above figure together with the contour ellipses for the
two normal distributions. Note e.g. that a point such as(9, 0) is in R2 and therefore
will be classified as coming from the distribution with centre in(1, 1). Furthermore the
frequency functions are shown.

�

We will not consider the problem of misclassification probabilities in cases as the above
mentioned where we have quadratic discriminators.
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7.1.3 Discrimination with unknown parameters

If one does not know the two distributionsf1 andf2 one must estimate them based on
some observations and then construct discriminators from the estimated distributions
the same way we did for the exact distributions.

Let us consider the normal case

π1 ↔ N(µ1,Σ)
π2 ↔ N(µ2,Σ),

where the parameters are unknown. If we have observationsX1, . . . ,Xn1 which we
know come fromπ1 and observationsY 1, . . . ,Y n2 which we know come fromπ2 we
can estimate the parameters as follows

µ̂1 =
1
n1

∑
i

Xi = X̄

µ̂2 =
1
n2

∑
i

Y i = Ȳ

Σ̂ =
1

n1 + n2 − 2
(
∑

i

(Xi − X̄)(X i − X̄)′ +
∑

i

(Y i − Ȳ )(Y i − Ȳ )′)

In complete analogy to the theorem on p. 232 we have the discriminator

x′Σ̂−1(µ̂1 − µ̂2) −
1
2
µ̂′

1Σ̂
−1µ̂1 +

1
2
µ̂′

2Σ̂
−1µ̂2 .

The exact distribution of this quantity if we substitutex with a stochastic variable
X ∈ N(µi,Σ) is fairly complicated but for large sample sizes it is asymptotically
equal to the distribution ofZ in theorem 7.5 so for reasonable sample sizes we can use
the theory we have derived.

The estimated norm between the expected values is

‖µ̂1 − µ̂2‖2 ' D2 = (µ̂1 − µ̂2)
′Σ̂−1(µ̂1 − µ̂2) = ‖µ̂1 − µ̂2‖2

Σ̂−1 .

This is calledMahalanobis’ distance. It should here be noted that a number of authors
use the expression Mahalanobis’ distance also about the quantity‖µ1 − µ2‖2. This is
after the Indian statistician P.C. Mahalanobis who developed discriminant analysis at
the same time as the English statistician R.A. Fisher in the 1930’s.

By means ofD2 we can test ifµ1 = µ2 since

Z =
n1 + n2 − p− 1
p(n1 + n2 − 2)

· n1n2

n1 + n2
D2
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is F(p, n1 + n2 − p− 1)-distributed ifµ1 = µ2. If µ1 6= µ2 thenZ has a larger mean
value so the critical region corresponds to large values ofZ. This test is of course
equivalent to Hotelling’sT 2-test in section 6.1.2.

We give an example (data come from K.R. Nair: A biometric study of the desert locust,
Bull. Int. Stat. Inst. 1951).

EXAMPLE 7.4. In a study of desert locusts one measured the following biometric
characteristics they were

x1: length of hind femur
x2: maximum width of the head in the genal region
x3: length of pronotum at the scull

The two species which were examined are gregaria and an intermediate phase between
gregaria and solotaria.

The following mean values were found.

Mean values
Gregaria Intermediate phase
n1 = 20 n2 = 72

x1 25.80 28.35
x2 7.81 7.41
x3 10.77 10.75

The estimated variance-covariance matrix is

x1 x2 x3

x1 4.7350 0.5622 1.4685
x2 0.5622 0.1413 0.2174
x3 1.4685 0.2174 0.5702

We are now interested in determining a discrimination function for classification of
future locusts by means of measurements ofx1, x2, x3.

However, first it would be reasonable to check if the three measurements from the
two populations are different at all i.e. we must investigate if it can be assumed that
µ1 = µ2. We have

D2 = (µ̂1 − µ̂2)
′Σ̂−1(µ̂1 − µ̂2) = 9.7421.

This value is inserted in the test statistic p. 241 and we get

Z =
20 + 72 − 3 − 1
3(20 + 72 − 2)

· 20 · 72
20 + 72

· 9.7421 = 49.70.
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Since

F(3, 88)0.999 ' 6,

we will reject the hypothesis of the two mean values being equal. It is therefore rea-
sonable to try constructing a discriminator.

We have

x′Σ̂−1(µ̂1 − µ̂2) = −2.7458x1 + 6.6217x2 + 4.5820x3

and

1
2
(µ̂′

1Σ̂
−1µ̂1 − µ̂′

2Σ̂
−1µ̂2) = 25.3506.

Since there is no information on prior probabilities we will usec = 1, i.e. : ln c = 0,
and we will therefore use the function

d(x) = −2.7458x1 + 6.6217x2 + 4.582x3 − 25.3506

in classifying the two possible locust species.

If we for instance have caught a specimen and measured the characteristics

x =


 27.06

8.03
11.36




we getd(x) = 5.5715 > 0 meaning we will classify the individual as being a gregaria.

�

7.1.4 Test for best discrimination function

We remind ourselves that the best discriminator

δ̂ = Σ̂−1(µ̂1 − µ̂2),

can be found by maximising the function

ϕ̂(d) =
[(µ̂1 − µ̂2)′d]2

d′Σ̂d
.
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The maximum value is

ϕ̂(δ̂) =
[(µ̂1 − µ̂2)′Σ̂−1(µ̂1 − µ̂2)]2

(µ̂1 − µ̂2)′Σ̂−1(µ̂1 − µ̂2)
= D2,

i.e. Mahalanobis’D2 is the maximum value of̂ϕ(d). For an arbitrary (fixed)d we now
let

D2
1 = ϕ̂(d) =

[(µ̂1 − µ̂2)
′d]2

d′Σ̂d
.

We can then test the hypothesis that the linear projection determined byd is the best
discriminator by means of the test statistic

Z =
n1 + n2 − p− 1

p− 1
· n1n2(D2 −D2

1)
(n1 + n2)(n1 + n2 − 2) + n1n2 D2

1

,

which isF(p− 1, n1 + n2 − p− 1)-distributed under the hypothesis. Large values of
Z are critical.

We will not consider the reason why the distribution for the null-hypothesis looks the
way it does but just note thatZ gives a measure of how much the “distance” between
the two populations is reduced by usingd instead of̂δ. If this reduction is too big i.e. if
Z is large we will not be able to assume thatd gives essentially as good a discrimination
between the two populations asδ̂.

EXAMPLE 7.5. In the following table we give averages of 50 measurements of dif-
ferent characteristics of two different types of Iris, Iris versicolor and Iris setosa. (The
data come from Fisher’s investigations in 1936.)

Versicolor Setosa Difference
Sepal length 5.936 5.006 0.930
Sepal width 2.770 3.428 −0.658
Petal length 4.260 1.462 2.789
Petal width 1.326 0.246 1.080

The estimated variance-covariance matrix (based on 98 degrees of freedom) is

Σ̂ =




0.19534 0.09220 0.099626 0.03306
0.12108 0.04718 0.02525

0.12549 0.039586
0.02511



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From this it readily follows that

δ̂ = Σ̂−1(µ̂1 − µ̂2) =




−3.0692
−18.0006

21.7641
30.7549


 .

Mahalanobis’ distance between the mean values is

D2 = [0.930,−0.658, 2.789, 1.080]




−3.0692
−18.0006

21.7641
30.7549


 = 103.2119.

We first test if we can assume thatµ1 = µ2. The test statistic is

50 + 50 − 4 − 1
4(50 + 50 − 2)

50 · 50
50 + 50

· 103.2119 = 625.3256

> F(4, 95)0.9995 ' 5.5.

It is therefore not reasonable to assumeµ1 = µ2.

By looking at the differences between the components inµ1 andµ2 we note that the
number for versicolor is largest except forx2 (the sepal width). Since we are looking
for a linear projection which takes a large value forµ1 − µ2 we could try with the
projection

x′d0 = x1 − x2 + x3 + x4,

whered0 here is the vector




1
−1

1
1


.

We will now test if it can be assumed that the best discriminator has the form

δ = constant·




1
−1

1
1


 = constant· d0.

We determine the value ofϕ corresponding tod0:

[(µ̂1 − µ̂2)′d0]2

d′
0Σ̂d0

= 61.9479.
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The test statistic becomes

50 + 50 − 4 − 1
4 − 1

· 50 · 50(103.2119− 61.9479)
(50 + 50)(50 + 50 − 2) + 50 · 50 · 61.9479

= 1984 > F(3, 95)0.9995 ' 6.5.

We must therefore reject the hypothesis and note that we cannot assume that the best
discriminator is of the formx1 − x2 + x3 + x4. �

7.1.5 Test for further information

Given one has obtained measurements of a number of variables for some individuals
with the objective of determining a discriminant function. Often the question arises if
it is really necessary with all the measurements, or if one can do with fewer variables
in order to separate the populations from each other. One could e.g. think it might be
sufficient just to measure the length of sepal and petal in order to discriminate between
Iris versicolor and Iris setosa.

We will formulate these thoughts a bit more precisely. In order to perform a discrim-
ination we measure the variablesX1, . . . , Xp. We now will formulate a test in order
to investigate if it might be possible that the lastq variables are unnecessary for the
discrimination.

We still assume that there aren1 observations fromπ1 andn2 observations from pop-
ulationπ2. We let


 X1

...
Xp−q


 = X1 and


 Xp−q+1

...
Xp


 = X2,

and we perform the same partitioning of mean vectors and variance-covariance matrix

µi =

[
µ

(1)
i

µ
(2)
i

]

Σ =
[

Σ11 Σ12

Σ21 Σ22

]
.

We now compute Mahalanobis’ distance between the populations, first using full
information i.e. allp variables and then using the reduced information i.e. only the first
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p− q variables. We then have

D2
p = (µ̂1 − µ̂2)

′Σ̂−1(µ̂1 − µ̂2)

and

D2
p−q = (µ̂(1)

1 − µ̂
(1)
2 )′Σ̂−1

11 (µ̂(1)
1 − µ̂

(1)
2 ).

A test for the hypothesis that the lastq variables do not contribute to a better discrimi-
nation is based on

Z =
n1 + n2 − p− 1

q

n1n2(D2
p −D2

p−q)
(n1 + n2)(n1 + n2 − 2) + n1n2D2

p−q

.

It can be shown thatZ ∈ F(q, n1 + n2 − p − 1) if H0 is true. We omit the proof, but
just state thatZ “measures” relatively the larger distance there is between populations
when going fromp−q variables top variables. It is therefore also intuitively reasonable
that we reject the hypothesis that it is sufficient withp− q variables ifZ is large.

We now give an illustrative

EXAMPLE 7.6. We will investigate if it is sufficient only to measure the length of
sepal and petal in order to discriminate the types of Iris given in example 7.5.

We now perform an ordinary discriminant analysis on the data given that we disregard
the width measurements. The resulting Mahalanobis’ distance is

D2
2 = 76.7082,

so the test statistic for the hypothesis is

50 + 50 − 4 − 1
2

50 · 50(103.2119− 76.7082)
(50 + 50)(50 + 50 − 2) + 50 · 50 · 76.7082

= 15.6132 > F(2, 95)0.9995 ' 8.25.

We must therefore conclude that there is actually extra information in the width mea-
surements which can help us in discriminating setosa from versicolor. �



248 CHAPTER 7. DISCRIMINANT ANALYSIS

7.2 Discrimination between several populations

7.2.1 The Bayes solution

The main idea of the generalisation in this section is that one compares the populations
pairwise as in the previous section to finally choose the most probable population.

We consider the populations

π1, . . . , πk

Based on measurements ofp characteristics (or variables) of a given individual we wish
to classify it as coming from one of the populationsπ1, . . . , πk.

The observed measurement is

X =


 X1

...
Xp


 .

If the individual comes fromπi then the frequency function forX is fi(x).

We assume that a loss function L is given as shown in the following table.

Choise
π1 π2 · · · πk

π1 0 L(1, 2) · · · L(1, k)
π2 L(2, 1) 0 · · · L(2, k)

Truth
...

...
...

...
πk L(k, 1) L(k, 2) · · · 0

Finally we assume we have a prior distribution

g(πi) = pi, i = 1, . . . , k.

For an individual with the observationx we define the discriminant value or discrimi-
nant score for thei’th population as

S∗
i (x) = S∗

i = −[p1f1(x)L(1, i) + · · · + pkfk(x)L(k, i)]

(note thatL(i, i) = 0 so the sum has no termpifi(x)). Since the posterior probability
for πν is
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k(πν |x) =
pν fν(x)

p1f1(x) + · · · + pkfk(x)

=
pν fν(x)
h(x)

,

we note that by choosing thei’th population thenS∗
i is a constant(−h(x)) times the

expected loss with respect to the posterior distribution ofπ. Since the proportionality
factor−h(x) is negative we note that the Bayes’ solution to the decision problem is to
choose the population which has the largest discriminant value (discriminant score) i.e.
chooseπν if

S∗
ν ≥ S∗

i , ∀i.

If all lossesL(i, j) (i 6= j) are equal we can simplify the expression for the discriminant
score. We preferπi compared toπj if

S∗
i > S∗

j ,

i.e. if

−(
∑

ν

pν fν(x) − pifi(x)) > −(
∑

ν

pν fν(x) − pjfj(x))

⇔ pifi(x) > pjfj(x).

In this case we can therefore choose the discriminant score

S′
i = pifi(x).

In this case theBayes’ rule is that we choose the population which has the largest
posterior distribution i.e. choose groupi, if S′

i > S′
j , ∀j 6= i. This rule is not only used

where the losses are equal but also where it has not been possible to determine such
losses. If thepi’s are unknown and it is not possible to estimate them one usually uses
the discriminant score

S′′
i = fi(x),

i.e. choose the population where the observed probability is the largest.

The minimax solutions are determined by choosing the strategy which makes all the
misclassification probabilities equally large. (Still assuming that all losses are equal.)
However, we will not go into more detail about this here.
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7.2.2 The Bayes’ solution in the case with several normal
distributions

We will now consider the case where

πi ↔ N(µi,Σi),

i.e.

fi(x) =
1√
2π

p
1√

detΣi

exp(−1
2
(x − µi)

′Σ−1
i (x − µi)),

for i = 1, . . . , k.

Since we get the same decision rule by choosing monotone transformations of our
discriminant scores we will take the logarithm of thefi’s and disregard the common
factor(2π)−

p
2 . This gives (assuming that the losses are equal)

S′
i = −1

2
ln(detΣi) − 1

2
(x − µi)

′Σ−1
i (x − µi) + ln pi.

This function is quadratic inx and is called a quadratic discriminant function. If all the
Σi are equal then the terms

−1
2

ln detΣ− 1
2
x′Σ−1x

are common for allSi’s and can therefore be omitted. We then get

Si = x′Σ−1µi −
1
2
µ′

iΣ
−1µi + ln pi.

This is seen to be a linear (affine) function inx and is called a linear discriminant
function. If there are only two groups we note that we choose group 1 if

S′
1 > S′

2 ⇔ S1 − S2 > 0

⇔ x′Σ−1(µ1 − µ2) −
1
2
µ′

1Σ
−1µ1 +

1
2
µ′

2Σ
−1µ2 ≥ ln

p2

p1
,

i.e. the same result as p. 232.

The posterior probability for theν’th group becomes

k(πν |x) =
exp(Sν)∑k
i=1 exp(Si)
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It is of course possible to describe the decision rules by dividingRp into setsR1, . . . , Rk

so that we chooseπi exactly whenx ∈ Ri. Among other things this can be seen from
the following

EXAMPLE 7.7. We consider populationsπ1, π2 andπ3 given by normal distributions
with expected values

µ1 =
(

4
2

)
, µ2 =

(
1
1

)
, and µ3 =

(
2
6

)
,

and common variance-covariance matrix

Σ =
(

1 1
1 2

)

cf. the example p. 236. Assuming that allpi are equal so that we may disregard them
in the discriminant scores - we then have

S′
1 = (x1x2)

(
2 −1

−1 1

)(
4
2

)
− 1

2
(4, 2)

(
2 −1

−1 1

)(
4
2

)
= 6x1 − 2x2 − 10

S′
2 = (x1x2)

(
2 −1

−1 1

)(
1
1

)
− 1

2
(1, 1)

(
2 −1

−1 1

)(
1
1

)
= x1 − 1

2

S′
3 = (x1x2)

(
2 −1

−1 1

)(
2
6

)
− 1

2
(2, 6)

(
2 −1

−1 1

)(
2
6

)
= −2x1 + 4x2 − 10.

We now choose to preferπ1 to π2 if

u12(x) = (6x1 − 2x2 − 10)− (x1 − 1
2
)

= 5x1 − 2x2 − 9
1
2

> 0.

We choose to preferπ1 to π3 if

u13(x) = (6x1 − 2x2 − 10)− (−2x1 + 4x2 − 10)
= 8x1 − 6x2

> 0,
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and finally we will choose to preferπ2 to π3 if

u23(x) = (x1 − 1
2
) − (−2x1 + 4x2 − 10)

= 3x1 − 4x2 + 9
1
2

> 0.

It is now evident that we will chooseπ1 if both u12(x) > 0 andu13(x) > 0 and
analogously with the others.

We can therefore define the regions

R1 = {x|u12(x) > 0 ∧ u13(x) > 0}
R2 = {x|u12(x) < 0 ∧ u23(x) > 0}
R3 = {x|u13(x) < 0 ∧ u23(x) < 0},

and we have that we will chooseπi exactly whenx ∈ Ri.

We have sketched the situation in the following figure.

One can easily prove that the lines will intersect in a point. It is, however, also possible
to make a simple reasoning for this. Let us assume that the situation is as in figure 7.1.

We now note that

uij > 0 ⇔ S′
i > S′

j ⇔ fi > fj .

For the pointx we have

u23(x) < 0 i.e. f2(x) < f3(x)
u13(x) > 0 i.e. f1(x) > f3(x)

}
⇒ f1(x) > f2(x)

u12(x) < 0 i.e. f1(x) < f2(x)

We have now established a contradiction i.e. the three lines determined byu12, u13 and
u23 must intersect each other in one single point. �

If the parameters are unknown and instead are estimated they are normally substituted
in the estimating expressions in the above mentioned relations cf. the procedure in
section 7.1.3.
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7.2.3 Alternative discrimination procedure for the case of
several populations.

In the previous section we have given one form of the generalisation of discriminant
analysis from 2 to several populations. We will now describe another procedure which
instead generalises theorem 7.4.

We still considerk groups withn1, . . . , nk observations in each. The group averages
are calledX̄1, . . . , X̄k. We define an “among groups” (or between groups) matrix

A =
k∑

i=1

ni(X̄ i − X̄)(X̄ i − X̄)′,

a ”within groups” matrix

W =
k∑

i=1

ni∑
j=1

(Xij − X̄i)(Xij − X̄i)′
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Figure 7.1:

and a “total” matrix

T =
k∑

i=1

ni∑
j=1

(X ij − X̄)(Xij − X̄)′.

A fundamental equation is that

T = A + W.

We can now go ahead with the discrimination. We seek a best discriminator function
where best means that the function should maximise the ratio between variation among
groups and variation within groups. I.e. we seek a functiony = d′x so

ϕ(d) =
d′Ad

d′Wd
(d is chosen sod′d = 1)

is maximised. We note from theorem 1.23 that the maximum value is the largest eigen-
valueλ1 and the corresponding eigenvectord1 to

det(A − λW) = 0
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or

det(W−1A − λI) = 0.

We then seek a new discriminant functiond2 so

ϕ(d2) =
d2Ad2

d2Wd2

is maximised under the constraint that

d′
2d1 = 0 or d1 ⊥ d2 and d′

2d2 = 1.

This corresponds to the second largest eigenvalue forW−1A and the corresponding
eigenvector.

In this way one can continue until one gets an eigenvalue forW−1A which is 0 (or
until W−1A is exhausted).

A plot of the projections of the single observations (centered by the total mean) onto
the d1,d2 plane is very useful as a means of visualisation. This plan separates the
points best in the sense described above.

The coordinates of the projections are

[d′
1(xij − x̄), d′

2(xij − x̄)].

Another useful plot consists of the vectors

(
d11

d21

)
, . . . ,

(
d1p

d2p

)
.

These show with which weight the value of each single variable contributes to the plot
on the(d1,d2)-plane.

E.g. in the programme BMD07M - STEPWISE DISCRIMINANT ANALYSIS - the
plane(d1,d2) is denoted the first two canonical variables.

As the name indicates variables can in this programme be included or removed from
the analysis in a way which is completely analogous to a stepwise regression analysis
(The version which is called STEPWISE REGRESSION). Apart from controlling the
inclusion and removal of variables by means of F-tests there are a number of intuitive
criteria which are very well described in the BMD manual p. 243.

It should also be mentioned here that Wilk’sΛ for the test of the hypothesis

H0 : µ1 = · · · = µk against H1 : ∃i, j : µi 6= µj ,
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is

Λ =
detW
detT

=
p∏

j=1

1
1 + λj

.

The distribution of this quantity can be approximated by aχ2- or F-distribution. The
latter is probably the numerically best approximation. These are given in the BMD
manual p. 242. Cf. with section 6.2.1.

EXAMPLE 7.8. In the following table we give mean values and standard deviations
for the content of different elements of 208 washed soil samples collected in Jameson
Land. The variable Sum gives the sum of the content of Y and La.

Variable Mean Value Standard deviation
B 73 141
Ti 40563 22279
V 678 491
Cr 1135 1216
Mn 2562 2081
Fe 225817 122302
Co 62 26
Ni 116 54
Cu 69 56
Ga 21 10
Zr 14752 14771
Mo 29 20
Sn 56 99
Pb 351 786
Sum − −

A distributional analysis showed that the data were best approximated by LN-distributions.
Therefore all numbers were logarithmically transformed and were furthermore stan-
dardised in order to obtain a mean of 0 and a variance of 1. The problem is to how
great an extent the content of the elements characterises the different geologic periods
involved in the area. The number of measurements from the different periods are given
below.

Period Number
Jura 17
Trias 80
Perm 30
Carbon 9
Devon 31
Tertiære intrusives 35
Caledonsk crystallic 4
Eleonora Bay Formation 2
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In order to examine this some discriminant analyses were performed. We will not
pursue this further here. We will simply illustrate the use of the previously mentioned
plot, see figure 7.2.

Figure 7.2:

Figure 7.3:

In figure 7.3 the coefficients for the ordinary variables on the two "canonical" variables
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are given.

By comparing the two figures one can e.g. see that Cu is fairly specific for Devon, and
overall the figures give quite a good impression of what the distribution of elements is
for the different periods. �



Chapter 8

Principal components
canonical variables and
correlations and factor
analysis

In this chapter we will give a first overview of some of the methods which can be used
to show the underlying structure in a multidimensional data material.

Principal components simply correspond to the results of an eigenvalue analysis of the
variance covariance matrix for a multi-dimensional stochastic variable. The method
has its origin from around the turn of the century (Karl Pearson), but it was not until
the thirties it got its precise formulation by Harold Hotelling.

Factor analysis was originally developed by psychologists - Spearman (1904) and Thur-
stone at the beginning of the previous century. Because of this the terminology has un-
fortunately largely been determined by the terminology of the psychologists. Around
1940 Lawley developed the maximum likelihood solutions to the problems in factor
analysis - developments which later have been refined by Jöreskog and who in this
period introduced factor analysis as a “statistical method”.

The canonical variables and correlations also date back to Harold Hotelling. The con-
cept resembles principal components a lot, however, we are now considering at the
correlation between two variables instead of just transforming a single one.

259
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8.1 Principal components

8.1.1 Definition and simple characteristics

We consider a multi-dimensional, stochastic variable

X =


 X1

...
Xk


 ,

which has the variance-covariance (dispersion-) matrix

D(X) = Σ,

and without loss of generality we can assume it has the mean value0.

We will sort the eigenvalues inΣ descending order and will denote them

λ1 ≥ · · · ≥ λk.

The corresponding orthonormal eigenvectors are denoted

p1, . . . ,pk,

and we define the orthogonal matrixP by

P = (p1 · · ·pk).

We then have the following

DEFINITION 8.1. By thei’th principal axis ofX we mean the direction of the eigen-
vectorpi corresponding to thei’th largest eigenvalue. N

DEFINITION 8.2. By the i’th principal component ofX we will understandX ’s
projectionYi = p′

iX on thei’th principal axis.

The vector

Y =


 Y1

...
Yk


 = P′X
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is called thevector of principal components.

The situation has been sketched geometrically in the figure above where we have drawn
the unit ellipsoid corresponding to the variance-covariance structure i.e. the ellipsoid
with the equation

x′Σ−1x = 1.

It is seen that the principal axes are the main axes in this ellipsoid. N

A number of theorems hold about the characteristics of the principal components. Most
of these theorems are statistical reformulations of a number of the results corresponding
to symmetrical positive semidefinite matrices which are given in chapter 1.

THEOREM 8.1. The principal components are uncorrelated and the variance of the
i’th component isλi i.e. thei’th largest eigenvalue.

N

PROOF 8.1. From the theorems 2.5 and 1.10 we have

D(Y ) = D(P′X) = P′ΣP = Λ =
 λ1 · · · 0

...
...

0 · · · λk


 ,
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and the result follows readily. �

Further we have

THEOREM 8.2. The generalised variance of the principal components is equal to the
generalised variance of the original observations. N

PROOF 8.2. From the definition p. 105 we have

GV(X) = detΣ

and

GV(Y ) = detΛ = λ1 · · ·λk,

�

A similar result is the following

THEOREM 8.3. The total variance i.e. the sum of variance of the original variables is
equal to the sum of the variance of the principal components i.e.

∑
i

V(Xi) =
∑

i

V(Yi)

N

PROOF 8.3. Since

∑
V(Xi) = trΣ

and

∑
V(Yi) = trΛ

the result follows from the note above. �

Finally we have
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THEOREM 8.4. The first principal component is the linear combination (with normed
coefficients) of the original variables which has the largest variance. Them’th prin-
cipal components is the linear combination (with normed coefficients) of the original
variables which is uncorrelated with the firstm− 1 principal components and then has
the largest variance. Formally expressed:

sup
‖b‖=1

V(b′X) = λ1,

and the supremum is given whenb = p1. Further we have

sup
b ⊥ p1, . . . ,pm−1

‖b‖ = 1

V(b′X) = λm,

and the supremum is given byb = pm N

PROOF 8.4. Since

V(b′X) = b′Σ b,

and

Cov(Yi, b
′X) = Cov(p′

iX, b′X) = p′
iΣ b

= λip
′
ib,

so that

Cov(Yi, b
′X) = 0 ⇔ pi ⊥ b,

the theorem is just a reformulation of theorem 1.15 p. 36. �

REMARK 8.1. From the theorem we have that if we seek the linear combination of
the original variables which explains most of the variation in these, then the first prin-
cipal component is the solution. If we seek them variables which explain most of the
original variation, then the solution is them first principal components. A measure of
how well these describe the original variation is found by means of theorems 8.1 and
8.3 which show that them first principal components describe the fraction

λ1 + · · · + λm

λ1 + · · · + λm + · · · + λk
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of the original variation.

A better and more qualified measure of how good the “recreation ability”: is found by
trying to reconstruct the originalX from the vector

Y ∗ = (Y1, . . . , Ym, 0, . . . , 0)′.

Since

Y = P′X ⇔ X = PY ,

It is tempting to try with

X∗ = PY ∗ .

We find

D(X∗) = PD(Y ∗)P′

= (p1 · · ·pk)




λ1 · · · 0
. . .

... λm

...
. . .

0 · · · 0





 p′

1
...

p′
k




= λ1p1p
′
1 + · · · + λmpmp′

m.

The spectral decomposition ofΣ is (p. 31)

Σ = λ1p1p
′
1 + · · · + λmpmp′

m + λm+1pm+1p
′
m+1 + · · · + λkpkp′

k,

which means that

Σ− D(X∗) = λm+1pm+1p
′
m+1 + · · · + λkpkp′

k.

If there is a large difference between the eigenvalues then the smallest ones will be
negligible and the difference between the original variance-covariance matrix and the
one “reconstructed” from the firstm principal components is therefore small. H

8.1.2 Estimation and Testing

If the variance covariance matrix is unknown but is estimated on the basis ofn observa-
tions, then one estimates the principal components and their variances simply by using
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the estimated variance covariance matrix as if it were known. If all the eigenvalues in
Σ are different it can be shown that the eigenvalue and eigenvectors we get in this way
are maximum likelihood estimates of the true parameters (see e.g. [2]).

There is, however, a very common problem here since it can be shown that the principal
components are dependent of the scales of measurements our original variables have
been measured in. Therefore one often chooses only to consider the normed (standard-
ised) variables i.e.

Y` i =
X`i − X̄`√∑

i(X̄` i − X̄`)2/(n− 1)
,

where

Xi =


 X1 i

...
Xk i


 , i = 1, . . . , n.

This transformation corresponds to analysing the empirical correlation matrix instead
of analysing the empirical variance covariance matrix.

If one decides to use only some of the principal components in the further analysis one
could e.g. choose a strategy such as to retain as many of the components needed to
account for at least e.g.90% of the total variation.

Another criterion would be to test a hypothesis like

H0 : λ1 ≥ · · · ≥ λm ≥ λm+1 = · · · = λk

against the alternative that we have a distinct "greater than" (>) among thek −m last
eigenvalues.

If we are using the estimated variance covariance matrixΣ̂, the test statistic becomes

Z1 = −n′ ln
det Σ̂

λ̂1 · · · λ̂m · λ̂k−m
= −n′ ln

λ̂m+1 · · · λ̂k

λ̂k−m
,

where

n′ = n−m− 1
6
(2(k −m) + 1 +

2
k −m

),

and

λ̂ = (tr Σ̂ − λ̂1 − · · · − λ̂m)/(k −m) = (λ̂m+1 + · · · + λ̂k)/(k −m).
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The critical region using a test at levelα is approximately

{(x1, · · · ,xn)|z1 > χ2(
1
2
(k −m+ 2)(k −m− 1))1−α}.

If we instead are using the estimatedcorrelation matrix R̂ we get the criterion

Z2 = −n ln
det R̂

λ̂1 · · · λ̂m · λ̂k−m
= −n ln

λ̂m+1 · · · λ̂k

λ̂k−m
,

where

λ̂ = (k − λ̂1 − · · · − λ̂m)/(k −m) = (λ̂m+1 + · · · + λ̂k)/(k −m).

The critical region for a test at levelα becomes approximately equal to

{x1, . . . ,xn|z2 > χ2(
1
2
(k −m+ 2)(k −m− 1))1−α}.

However, it should be noted that this approximation is far worse than the corresponding
approximation for the variance covariance matrix.

A discussion of the above mentioned tests can be found in [15].

We now give an example.

EXAMPLE 8.1. The example is based on an example from [6] p. 486. The background
material is measurements of seven variables on 25 boxes with randomly generated
sides. The seven variables are

X1 : longest side
X2 : second longest side
X3 : smallest side
X4 : longest diagonal
X5 : radius in the circumscribed sphere divided by radius in the inscribed sphere
X6 : longest side + second longest side)/shortest side
X7 : surface area/volume.

In the following table we have shown some of the observations of the seven variables.

Box X1 X2 X3 X4 X5 X6 X7

1 3.760 3.660 0.540 5.275 9.768 13.741 4.782
2 8.590 4.990 1.340 10.022 7.500 10.162 2.130
...

...
...

...
...

...
...

...
24 8.210 3.080 2.420 9.097 3.753 4.657 1.719
25 9.410 6.440 5.110 12.495 2.446 3.103 0.914
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We will now consider the question: Which things about a box determine how we per-
ceive its size?

In order to answer this question we will perform a principal component analysis of the
above mentioned data. By such an analysis we hope to find out if the above mentioned
7 variables, which all in one way or another are related to “size” or “form” vary freely
in the 7 dimensional space or if they are more or less concentrated in some subspaces.

We first give the empirical-variance covariance matrix for the variables. It is

Σ̂ =




5.400 3.260 0.779 6.391 2.155 3.035 −1.996
3.260 5.846 1.465 6.083 1.312 2.877 −2.370
0.779 1.465 2.774 2.204 −3.839 −5.167 −1.740
6.391 6.083 2.204 9.107 1.610 2.782 −3.283
2.155 1.312 −3.839 1.610 10.710 14.770 2.252
3.035 2.877 −5.167 2.782 14.770 20.780 2.622

−1.996 −2.370 −1.740 −3.283 2.252 2.622 2.594




Then we determine the eigenvectors and eigenvalues forΣ̂. The eigenvectors are given
in descending order together with the fraction and the cumulated fraction of the total
variance that the eigenvalues contribute:

Eigenvalue Percentage of Cumulated percent-
λ̂i, i = 1, · · · , 7 total variance age of total variance

34.490 60.290 60.290
19.000 33.210 93.500
2.540 4.440 97.940
0.810 1.410 99.350
0.340 0.600 99.950
0.033 0.060 100.010
0.003 0.004 100.014

Computational errors in the determination of the eigenvalues lead to deviations like the
cumulated sum being more than100%.

The corresponding coordinates of the eigenvectors are shown in the following table.

Variable p̂1 p̂2 p̂3 p̂4 p̂5 p̂6 p̂7

X1 0.164 0.422 0.645 −0.090 0.225 0.415 −0.385
X2 0.142 0.447 −0.713 −0.050 0.395 0.066 −0.329
X3 −0.173 0.257 −0.130 0.629 −0.607 0.280 −0.211
X4 0.170 0.650 0.146 0.212 0.033 −0.403 0.565
X5 0.546 −0.135 0.105 0.165 −0.161 −0.596 −0.513
X6 0.768 −0.133 −0.149 −0.062 −0.207 0.465 0.327
X7 0.073 −0.313 0.065 0.719 0.596 0.107 0.092
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It is seen that the first eigenvector is the direction which corresponds to more than60%
of the total variation, has especially numerically large 5th and 6th coordinates. This
means that the first principal component

Y1 = 0.164X1 + . . .+ 0.546X5 + 0.768X6 + 0.073X7

is especially sensitive to variations inX5 andX6. These two variables: The ratio
between the radius in the circumscribed sphere and the radius in the inscribed sphere
and the ratio between the sum of the two longest sides and the shortest side both have
something to do with how “flat” a box is. The larger these two variables, the flatter
the box. Therefore, the first principal component measures the difference in “flatness”
of the boxes. The second eigenvector has large positive coordinates for the first 4
variables and a fairly large negative coordinate for the last variable. If the second
principle component

Y2 = 0.422X1 + 0.447X2 + 0.257X3 + 0.650X4 + · · · − 0.313X7,

is large then one or more of the variablesX1, . . . , X4 must be large whileX7 is small.
Now we know that a cube is the box which for a given volume has the smallest surface.
Therefore we also know that if a box deviates a lot from a cube then it will have a large
X7- value, and this corresponds to a very strong reduction ofY2. A largeY2- value
therefore indicates that most of the sides are large - and furthermore - more or less
equal. We therefore conclude thatY2 measures a more general perception of size.

In the following figure we have depicted the boxes in a coordinate system where the
axes are the first two principal axes. The coordinates for a single box then become the
values of the first and the second principal component for that specific box.

For the first box we e.g. find

Y1 = 0.164 · 3.760 + · · · + 0.073 · 4.782 = 18.18
Y2 = 0.422 · 3.760 + · · · − 0.313 · 4.782 = 2.15.

At the coordinate(18.18, 2.15) we have then drawn a picture of box No. 1, etc..

From this graph we also very clearly see the interpretation we have given the principal
components. To the left in the graph corresponding to small values of component No.1
we have shown the “fattest” boxes and to the right the “flattest”. At the top of the graph
corresponding to big values of component No. 2 we have the big boxes and at the
bottom we have the small ones.

On the other hand we do not seem to have any precise discrimination between the
oblong boxes and the more flat boxes. This discrimination is first seen when we also
consider the third principal component. It is

Y3 = 0.645X1 − 0.713X2 + · · · + 0.065X7.
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Figure 8.1:

This component puts a large positive weight on variable No. 1 the length of the largest
side and a large negative weight on the length of the second largest side. An oblong
box will haveX1 >> X2 and thereforeY3 will be relatively large for such a box. If
the base of the box corresponding to the two largest sizes is close to a square thenY3

will be close to 0 for the respective box.

The three first principal components then take care of about98% of the total vari-
ation and by means of these we can partition a box’s “size characteristics” in three
uncorrelated components: one corresponding to the flatness of the box(Y1), one which
corresponds to a more general concept of size(Y2), and one which corresponds to “the
degree of oblong-ness”(Y3). Now the initial question of: What is “the size of a box”
should at least be partly illustrated. �

The next example is based on some investigations by Agterberg et al. (see [1] p. 128).

EXAMPLE 8.2. The Mount Albert peridotit intrusion is part of the Appalachtic ultra-
mafic belt in the Quebec province. A number of mineral samples were collected and
the values of the 4 following variables were determined:

X1 : mol% forsterit (= Mg-olivin)
X2 : mol% enstatit (= Mg-ortopyroxen)
X3 : dimension of unit-cell of chrome-spinal
X4 : specific density of mineral sample.
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Using between 99 and 156 observations the following correlation matrix between the
variables was estimated:

R̂ =




1.00 0.32 0.41 −0.31
0.32 1.00 0.68 −0.38
0.41 0.68 1.00 −0.36

−0.31 −0.38 −0.36 1.00


 .

It is quite obvious that we should analyse the correlation matrix rather than the variance-
covariance matrix. Because we are analysing variables which are measured in non-
comparable units we must standardise the numbers.

The eigenvalues and the corresponding eigenvectors are

λ̂1 = 2.25; p̂1 =




0.43
0.55
0.57

−0.44




λ̂2 = 0.74; p̂2 =




−0.66
0.49
0.37
0.44




λ̂3 = 0.70; p̂3 =




0.60
−0.02

0.16
0.78




λ̂4 = 0.31; p̂4 =




−0.14
−0.68

0.72
−0.06




All the eigenvectors have fairly large coordinates in most places so there does not
seem to be any obvious possibility of giving an intuitive interpretation of the principal
components.

The first principal component corresponds to 2.25/4 = 56.25% of the total variation.

It would be interesting to know if the three smallest eigenvectors of the correlation
matrix can be considered as being of the same magnitude.

The test statistic we will use is

Z = −n ln
0.74 · 0.70 · 0.31

[(0.74 + 0.70 + 0.31)/3]3
= 0.2120n,

wheren is the number of observations on which we have based the correlation matrix
on. Since this number is not the same for all the different correlation coefficients the
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theoretical background for the test disappears so to speak. However, if we disregard
that problem, then the number of degrees of freedom in theχ2-distribution with which
to compare the test statistic becomes

f =
1
2
(4 − 1 + 2)(4 − 1 − 1) = 5.

Since

χ2(5)0.995 = 16.7,

and since0.21n for n approximately equal to 100 is quite a lot larger than this value
it would be reasonable to conclude that the three smallest eigenvectors in the (true)
correlation matrix are not of the same order of magnitude. �

8.2 Canonical variables and canonical correlations

In the following we will discuss dependency between groups of variables where we
in the last section only looked at dependency (correlation structure) between single
variables.

We consider a stochastic variableX

X ∈ Np+q(µ,Σ),

wherep ≤ q andX and the parameters have been partitioned as follows:

X =
(

X1

X2

)
, µ =

(
µ1

µ2

)
, Σ =

(
Σ11 Σ12

Σ21 Σ22

)
.

If we on the basis ofn observations ofX wish to investigate ifX1 andX2 are inde-
pendent this could be done as shown in chapter 6 by investigating

det(S)
det(S11) det(S22)

,

which isUp,q,n−l−q distributed forH0. We will now try to consider the problem for
another point of view. We will consider two one-dimensional variablesU andV given
by

U = a′X1 and V = b′X2.
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Then we have

D

(
U
V

)
=
(

a′

b′

)
Σ(a, b) =

[
a′Σ11a a′Σ12b
b′Σ21a b′Σ22b

]
,

and the correlation betweenU andV is

ρ(U ,V ) =
a′Σ12b√

a′Σ11a b′Σ22b
.

Now we have

Σ12 = 0 ⇔ ∀a, b : ρ(a, b) = 0.

The accept region for the hypothesisρ(a, b) = 0 is of the form (cf. chapter 2)

r2(a, b) ≤ r2β ,

wherer(a, b) is the empirical correlation coefficient andr2β is a suitable quantile in the
distribution of the 0 hypothesis. We therefore have an accept ofΣ12 = 0 if

∀a, b : r2(a, b) ≤ r2β ,

which is obviously equivalent to

max
a,b

r2(a, b) ≤ r2β .

We now have that the 2 groups are independent if the maximal (empirical) correlation
coefficient between a linear combination of the first group and a linear combination
from the second group is suitable small. This maximum correlation coefficient is called
the first (empirical) canonical correlation coefficient and the corresponding variables
the first (empirical) canonical variables.

It is now obvious as in the case of the principal components can continue the definition.
We can define the second canonical correlation coefficient as the maximum correlation
between the linear combination ofX1’s andX2’s so that these combinations are inde-
pendent of the previous ones etc.. Formerly we have

DEFINITION 8.3. Let X =
(

X1

X2

)
be a stochastic variable whereX1 hasp com-

ponents andX2 q components(p ≤ q). The r’th pair of canonical variables is the
pair of linear combinations linearkombinationerUr = α′

rX1 andVr = β′
rX2 which

each has the variance 1 and which are uncorrelated with the previousr − 1 pairs of
canonical variables and which have maximum correlation. The correlation is ther’th
canonical correlation. N
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Now we have the problem of determining the canonical variables and correlations. We
have the following theorem:

THEOREM 8.5. Let the situation be given in the above mentioned definition and let
ladD(X) = Σ be partitioned analogously

Σ =
(

Σ11 Σ12

Σ21 Σ22

)
.

Then ther’th canonical correlation is equal to ther’th largest rootλr of

det
( −λΣ11 Σ12

Σ21 −λΣ22

)
= 0,

and the coefficients in ther’th pair of canonical variables satisfies

(i)

( −λΣ11 Σ12

Σ21 −λΣ22

)(
αr

βr

)
= 0

(ii) α′
rΣ11αr = 1

(iii) β′
rΣ22βr = 1.

N

PROOF 8.5. We are talking of a maximisation problem with restrictions and one can
solve the problem by using a Lagrange multiplier technique see e.g. [2]p. 289.�

One can also determine the correlations and the coefficients by solving an eigenvalue
problem since we have

THEOREM 8.6. Let the situation be as in the previous theorem then we have

(Σ12Σ−1
22 Σ21 − λ2

rΣ11)αr = 0

det(Σ12Σ−1
22 Σ21 − λ2

rΣ11) = 0

respectively

(Σ21Σ−1
11 Σ12 − λ2

rΣ22)βr = 0

det(Σ21Σ−1
11 Σ12 − λ2

rΣ22) = 0

N
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PROOF 8.6. Omitted see e.g. [2]. �

Corresponding to the estimation we have nothing special to add to the previous. If
we insert the maximum likelihood estimates forΣ in the previous theorems we get
the maximum likelihood estimates of the parameters. Most often one will probably
insert the unbiased estimateS and one then gets what one can call the empirical values
(English: Sample values) for the parameters involved.

In most kinds of canned software there exists programmes for the evaluation of canon-
ical correlations and variables. E.g. we can mention BMDP6M: Canonical Correlation
Analysis from the BMDP-package.

8.3 Factor analysis

Once again we will consider the analysis of the correlation structure for a single mul-
tidimensional variable but contrary to the case in the section on principal components
we here assume an underlying model of the structure.

8.3.1 Model and assumptions

It is assumed that we have an observation

X =


 X1

...
Xk


 ,

which - considering the situation historically - can be thought of as a single person’s
scores in e.g.k different types of intelligence tests or the reactions of a person tok
different stimuli.

One then has a model for how one thinks that these reactions (scores) depend on some
underlying factors or more specifically that

X = AF + G,

or in more detail


 X1

...
Xk


 =


 a11 · · · a1m

...
...

ak1 · · · akm


 ·


 F1

...
Fm


+


 G1

...
Gk


 .
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Here we callF the vector ofcommon factors, they are also calledfactor scores.
These are not observable. Examples of these are characteristics like three dimensional
intelligence, verbal intelligence etc.

The elements of theA matrix are called factor loadings and they give the weights of
how the single factors enter the description of the different variables. If one e.g. as-
sumes thatA describes 3-dimensional intelligence and verbal intelligence and thatF1

is the result of a test of a 3-dimensional kind andFm the result of a reading test, well
then one will obviously have thatX1 is large andXk is small and vice-versa thatak1

is small andakm is large corresponding to the 3-dimensional intelligence being deter-
ministic of a person’s scores in the solving of 3-dimensional problems and analogously
for the verbal intelligence.

The vectorG is called the vector of unique factors and can be thought of as composed
of some specific factors i.e. factors which are special for these specific tests and of er-
rors i.e. non-describable deviations. Obviously these factors are not observable either.

Here we must stipulate that bothX andF andG are assumed to be stochastic. There-
fore we are not considering a general linear model with the parametersF1, . . . , Fm.

In order to make this difference quite clear we therefore give the model in the case
where we have several observationsX1, . . . ,Xn. We then have then models


 X1i

...
Xki


 =


 a11 · · · a1m

...
...

ak1 · · · akm




 F1i

...
Fmi


+


 G1i

...
Gki


 ,

Here we note thatF i andGi change value when the observationsXi change value.
We can aggregate the above models into


X11· · ·X1n

...
...

Xk1· · ·Xkn


 =


a11· · · a1m

...
...

ak1· · · akm




F11 · · · F1n

...
...

Fm1· · ·Fmn


+


G11· · ·G1n

...
...

Gk1· · ·Gkn


 .

It is assumed thatF andG are uncorrelated and that

D(F ) =


 1 · · · 0

...
...

0 · · · 1


 = I = Im,

and

D(G) =


 δ1 · · · 0

...
...

0 · · · δk


 = ∆.
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Furthermore, we assume that the observations are standardised in such a way that
V(Xi) = 1, ∀i i.e. that the variance-covariance matrix forX is equal to its corre-
lation matrix which is denoted

D(X) = R =


 1 · · · r1k

...
...

rk1 · · · 1


 .

From the original factor equation we find by means of theorem 2.5 p. 60, that

R = AA′ + ∆.

From this we especially find that forj = 1, . . . , k we have

V(Xj) = a2
j1 + · · · + a2

jm + δj = 1.

Here we introduce the notation

h2
j = a2

j1 + · · · + a2
jm, j = 1, . . . , k.

These quantities are calledcommunalities andh2
j describes how large a proportion

of Xj ’s variance is due to them common factors. Correspondinglyδj gives the
uniqueness inXj ’s variance. I.e. the proportion ofXj ’s variance which is not due to
them common factors.

Finally the(i, j)’th factor weight gives the correlation between thei’th variable and the
j’th factor i.e.

Cov(Xi, Fj) = Cov(
∑

ν

aiνFν +Gi, Fj) = aij .

It can be shown [7] that

h2
j = a2

j1 + · · · + a2
jm ≥ r2j|1...k,

i.e. that thej’th communality is always larger than or equal to the square of the multiple
correlation coefficient betweenXj and the rest of the variables. This is not strange
when remembering that this quantity exactly equals the proportion ofXj ’s variance
which is described by the variance in the otherXi’s.

We now turn to the more basic problem of estimating the factors. What we are inter-
ested in determining isA. We find

AA′ = R − ∆.
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The diagonal elements in this matrix are

1 − δj = h2
j , j = 1, . . . , k.

We do not know these but we could estimate them e.g. by inserting the squares of the
multiple correlation coefficient. If we insert these we get a matrix

V =



r21|2···k · · · r1k

...
...

rk1 · · · r2k|1···k−1


 ,

in which the elements outside the diagonal are equal to the original correlation matrix
R’s elements. This matrix is still symmetric but not necessarily positive semidefinite.
However, since it is still an estimate of one, we will (silently) assume that it still is
positive semidefinite.

Independently of how the communalities have been estimated the resulting “correlation
matrix” is calledV. V could e.g. be the above mentioned.

We will call the eigenvalues ofV and the corresponding normed orthogonal eigenvec-
tors respectively

λ1 ≥ · · · ≥ λk,

and

p1, . . . ,pk.

If we let

P = (p1, . . . ,pk),

we then have from theorem 1.10 p. 30, that

P′VP = Λ =


 λ1 · · · 0

...
...

0 · · · λk


 .

SinceP is orthogonal (as a consequence of being orthonormal) we get

V = PΛP′ = (PΛ
1
2 )(PΛ

1
2 )′,
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where

Λ
1
2 =




√
λ1 · · · 0
...

...
0 · · · √

λk


 .

We now define

Λ
1
2∗ =




√
λ1 · · · 0

...
...

√
λm

...
0 · · · 0



.

I.e. Λ
1
2∗ consists of the firstm columns in iΛ

1
2 corresponding to them largest eigen-

values. We then see that

(PΛ
1
2∗ )(PΛ

1
2∗ )′ = PΛ

1
2∗ Λ

1
2∗ ′P′

= P


 λ1 · · · 0

... λm

...
0 · · · 0


P′

' V,

cf. the analogous considerations p. 264.

SinceV is an estimate ofAA′, we then have

AA′ ' (PΛ
1
2∗ )(PΛ

1
2∗ )′,

so it would be natural to choosePΛ
1
2∗ as an estimate ofA. This solution is called the

principle factor solution for our estimation problem.

We will gather our considerations in the following

THEOREM 8.7. We consider the factor modelX = AF+G whereX isk-dimensional
andF m-dimensional. The correlation matrix ofX is denotedR, andV is the ma-
trix which we find by substituting the ones in the diagonal ofR with estimates of the
communalities. These should be chosen in the interval[r2, 1] wherer2 is the multiple
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correlation coefficient between the relevant variable and the rest of the variables. Usu-
ally one chooses eitherr2 or 1. The principle factor solution to the estimation problem
is then

PΛ
1
2∗ = (

√
λ1p1, . . . ,

√
λmpm),

whereλi, i = 1, . . . ,m are them largest eigenvalues ofV and wherepi, i = 1, . . . ,m
are the corresponding normed eigenvectors. N

REMARK 8.2. In the theorem we assume that the number of factorsm is known. If
this is not the case it is common to retain those which correspond to eigenvalues larger
than 1. Other authors recommend that one retains one, two or three because that will
usually be the upper limit to how many factors one can give a reasonable interpretation.

H

8.3.2 Factor rotation

Once again we consider the expression

AA′ ' (PΛ
1
2∗ )(PΛ

1
2∗ )′

If Q is an arbitrarym×m orthonormal matrix i.e.QQ′ = I then we have

(PΛ
1
2∗ Q)(PΛ

1
2∗ Q)′ = (PΛ

1
2∗ )QQ′(PΛ

1
2∗ )′

= (PΛ
1
2∗ )(PΛ

1
2∗ )′

= AA′.

This means that we can have as many estimates of theA-matrix as we want by
multiplying the principle factor solution by an orthonormal matrix.

The problem is then how to choose theQ-matrix in a reasonable way. The main prin-
ciple is that one wants theA-matrix to become “simple” (without explaining what this
means).

One of the most often used criterions is the one introduced by Kaiser, the Varimax
criterion. It says that we must chooseQ in such a way that the quantity

∑
j

m


∑

i

(
a2

ij

h2
i

)2

− 1
m

[∑
i

(
a2

ij

h2
i

)]2


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is maximised. It is seen that the expression is the empirical variance of the terms
a2

ij/h
2
i . The maximisation will therefore mean that many of theaij ’s become 0 (ap-

proximately) and many become large (close to±1). This corresponds to a simple
structure which will be easy to interpret.

Another rotation principle is the so-called quartimax principle. Here we try to make
the rows in the factor matrix simple so that the single variables have a simple relation
with the factors.

Contrary to this the Varimax criterion tries to make the columns simple corresponding
to easily interpretable factors.

Before we continue with the theory we give an example.

EXAMPLE 8.3. We will now try to perform a factor analysis on the data given in
example 8.1.

First we determine the correlation matrix. From the estimate of the variance-covariance
matrix p. 267 we find

R̂ =




1.000 0.580 0.201 0.911 0.283 0.287 −0.533
0.580 1.000 0.364 0.834 0.166 0.261 −0.609
0.201 0.364 1.000 0.439 −0.704 −0.681 −0.649
0.911 0.834 0.439 1.000 0.163 0.202 −0.676
0.283 0.166 −0.704 0.163 1.000 0.990 0.427
0.287 0.261 −0.681 0.202 0.990 1.000 0.357

−0.533 −0.609 −0.649 −0.676 0.427 0.357 1.000




Completely analogously with the procedure in example 8.1 we then determine the
eigenvalues and vectors for̂R (note that in this case our choice ofV is simply R̂).
We find

Eigenvalue Percentage of Cumulated percent-
λ̂i, 1, . . . , 7 total variance age of total variance

3.3946 48.495 48.495
2.8055 40.078 88.573
0.4373 6.247 94.820
0.2779 3.971 98.791
0.0810 1.157 99.948
0.0034 0.049 99.996
0.0003 0.004 100.000

The coordinates of the corresponding eigenvectors are shown in the following table.
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Variable p̂1 p̂2 p̂3 p̂4 p̂5 p̂6 p̂7

X1 0.405 0.293 −0.667 0.089 −0.227 0.410 −0.278
X2 0.432 0.222 0.698 −0.034 −0.437 0.144 −0.254
X3 0.385 −0.356 0.148 0.628 0.512 0.188 −0.108
X4 0.494 0.232 −0.119 0.210 −0.105 −0.588 5.536
X5 −0.128 0.575 0.209 0.111 0.389 −0.423 −0.556
X6 −0.097 0.580 0.174 −0.006 0.355 0.500 0.498
X7 −0.481 0.130 0.018 0.735 −0.455 0.033 0.049

We now assume that the number of factors is 2 (the assumption is not based on any
deep consideration of the structure of the problem. The number 2 is chosen because
there are only two eigenvalues larger than 1).

From theorem 8.7 the estimated principal factor solution to the problem is(
√
λ̂1p̂1,

√
λ̂2p̂2),

where

(√
λ̂1p̂

′
1√

λ̂2p̂
′
2

)
=
(

0.747 0.795 0.710 0.910 −0.235 −0.178 −0.886
0.491 0.373 −0.596 0.389 0.963 0.971 0.218

)
.

E.g. we find

ĥ2
7 = (−0.886)2 + 0.2182 = 0.833

The vector of estimated communalities is

ĥ
2′ = [ 0.798 0.771 0.860 0.979 0.983 0.976 0.833 ],

and we see that e.g. the variation in variable 4 (the length of the longest diagonal) is
described by the variation of the two factors by a proportion of 97.9%.

On the other hand the quantitiesδ̂j = 1− ĥ2
j give the uniqueness value i.e. the fraction

of the variance ofXj ’s which is not explained by the two common factors but which is
assigned to thej’th unique factor (cf. p. 275). We find

δ′ = [ 0.202 0.229 0.140 0.021 0.017 0.024 0.167 ].

A more qualified measure of the ability to describe the variation in the data material of
the two factors is found by recomputing the correlation matrix only from the factors.

We therefore compute the so-called residual correlation matrix

Ẑ = R̂ − ÂÂ′,
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as a more detailed measure of the factors ability to describe the original variability in
the material. We get

Ẑ =




0.202 −0.196 −0.037 0.041 −0.914 −0.057 0.021
−0.196 0.229 0.071 −0.035 −0.006 0.041 0.015
−0.037 0.021 0.140 0.024 0.037 0.025 0.111

0.041 −0.035 0.024 0.021 0.002 −0.013 0.046
−0.014 −0.006 0.037 0.002 0.017 0.012 0.009
−0.057 0.041 0.025 −0.013 0.012 0.024 −0.013

0.021 0.015 0.111 0.046 0.009 −0.013 0.167



.

The moreẐ deviates from the0-matrix the poorer the factors describe the original
material.

Apart from using the variance-covariance matrix in example 8.1 while we use the cor-
relation matrix here, then the biggest difference in the analysis is that we have multi-
plied the factors by the square root of the eigenvalues corresponding to each factor. In
this way the length of each factor becomes proportional to the proportion of the total
variance which it explains.

We will now see if we can obtain factors which are easier to interpret by rotating the
factors.

First we depict the factor weights (given on p. 281)âij in a two-dimensional coordinate
system. We find

It is noted that most of the variables have large first and second coordinates.

It seems to be possible to obtain a simple structure by rotating the coordinate system
aboutπ8 (= 22 1

2

◦) anti-clockwise (dashed coordinate system).
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This corresponds to multiplication by the matrix

(
cos π

8 − sin π
8

sin π
8 cos π

8

)
=
(

0.9239 −0.3827
0.3827 0.9239

)
,

cf. section 1.4.1.

The new factors or rather factor weights then become




0.747 0.491
0.795 0.373
0.710 −0.596
0.910 0.389

−0.235 0.963
−0.178 0.971
−0.886 0.218



[

0.9239 −0.3827
0.3827 0.9239

]
=




0.878 0.168
0.877 0.040
0.428 −0.822
0.990 0.011
0.151 0.980
0.207 0.965

−0.735 0.540



.

These new factor weights are simpler than the original ones in the sense that we have
more values close to±1 and close to 0. Later we will see that this solution found
visually is quite close to the Varimax-solution. �

Apart from the Varimax-principle there are as mentioned a large number of other meth-
ods for orthogonal rotation of factors which are not within the scope of this description.
The interested reader is referred to the literature (e.g. [8] and [4]).

There also exists a number of rotation methods which allow relaxation of the assump-
tion of orthogonality. These rotation methods are called "oblique rotations". The phi-
losophy behind these is that the factors are not necessarily independent but may be
correlated. Use of these methods demands thorough knowledge of the subject. We
again refer to [8] and [4].

8.3.3 Computation of the factor scores

If we in the above mentioned example 8.3 wish to make a diagram analogous to the one
mentioned on p. 269 then we must compute the factor scores for the single boxes. This
is a bit more complicated than it was when we did the principal component analysis.
Then we just had to compute the values of the principal components on the different
axes. The reason that we cannot just perform the analogue operation is the existence of
the specific factors.

We have the model (cf p. 274)

X = AF + G,
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where

D(F ) = I

D(G) = ∆,

and whereF andG are uncorrelated.

Therefore we have

D
(

X
F

)
=
(

AA′ + ∆ A
A′ I

)
.

As previously mentioned, since we have that

Cov(Xi, Fj) = aij ,

we now have that the matrices outside the diagonal are theA-matrix and its transposed
respectively.

The estimate of this variance-covariance matrix is

[
Â Â′ + ∆̂ Â

Â′ I

]
.

Assuming that the underlying distributions are normal, the conditional distribution of
F givenX has the mean value

µF + A′(AA′ + ∆)−1(x − µx)

(cf. section 2.2.3).

Since our computations are performed on the standardised x-values it is reasonable to
assume thatµx = 0. The level for the factor scale is arbitrary but it is usually set equal
to 0 so that we have the expression

A′(AA′ + ∆)−1x

for the conditional mean value ofF .

As an estimate of thei’th observation of the factor score ofXi we then have

F̂ i = Â′(Â Â′ + ∆̂)−1Xi. (8.1)
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Now theA-matrix will often have a large number of rows which means we have to
invert a fairly large matrix. This can be circumvented by the following identity

(AA′ + ∆)−1A = ∆−1A(I + A′∆−1A)−1,

which gives

F̂ i = (I + Â′∆̂−1Â)−1Â′∆̂−1Xi. (8.2)

The validity of the identity is found by the following relationships

(AA′ + ∆)−1A = ∆−1A(I + A′∆−1A)−1

⇔ A = (AA′ + ∆)∆−1A(I + A′∆−1A)−1

= A(A′∆−1A + I)(I + A′∆−1A)−1,

and the last relationship is trivially fulfilled.

Now I+A′∆−1A is anm×mmatrix wherem is the number of factors i.e. often not
more than 2-3-4 so the inversion problem is not overwhelming. On the other hand as
mentioned(AA′ + ∆) is ak × k matrix wherek is the number of variables i.e. often
far larger thanm.

If k is only of moderate size we can use the first expression for

Fi directly. Here one should utilise that

R = AA′ + ∆

(cf. p. 276). This gives the expression which is equivalent to (8.1)

F̂ i = Â′R̂−1Xi (8.3)

Finally we must stipulate that there are a number of other methods of determining the
factor scores see e.g. [8] or [16]. It must also be noted that the problem is treated
rather weakly in the main part of the literature. The main reason is probably that
this problem does not have great interest for psychologists and sociologists who for
many years have been the main users of factor analysis. Howeverm in a number of
technical/natural science (and sociological) uses one is often interested in classifying
single measurements by the size of the factor scores. We will see a use of this in section
8.3.4.

We will now illustrate the computation of factor scores on our box example.
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EXAMPLE 8.4. In example 8.3, p. 280 we found a rotated factor solution with two
factors. The rotated factor weights were

Â =




0.878 0.168
0.877 0.040
0.428 −0.828
0.990 0.011
0.151 0.980
0.207 0.965

−0.735 0.540



.

In order to determine the factor scores for the single boxes we must first find the com-
munalities and the uniqueness values. We find

j 1 2 3 4 5 6 7
ĥ2

j 0.7991 0.7707 0.8589 0.9802 0.9832 0.9741 0.8318
δ̂j 0.2009 0.2293 0.1411 0.0198 0.0168 0.0259 0.1682

1/δ̂j 4.9776 4.3611 7.0872 50.5051 59.5238 38.6100 5.9453

Here we have (cf. p. 276)

ĥ2
j = â2

j1 + â2
j2 = 1 − δ̂j .

We note that the given communalities are equal to those we found on p. 281 for the
unrotated factors. This always holds and can be used as a check in the computation of
the rotated factors.

Since we have

∆̂ = diag(δ̂j),

i.e.

∆̂−1 = diag(
1
δ̂ j

),

we then have

(I + Â′∆̂−1Â)−1Â′∆̂−1 =[
0.0669 0.0597 0.0593 0.7839 0.0244 0.0510 −0.0750

−0.0002 −0.0059 0.0655 −0.0943 0.5770 0.3641 0.0415

]

Equation (8.2) assumes that the variablesX are standardised. We must therefore first
determine the mean value and the standard deviation for each of the 7 variables. These
are
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j 1 2 3 4 5 6 7
X̄j 7.1000 4.7730 2.3488 9.1338 5.4582 7.1674 2.3462
sj 2.3238 2.4178 1.6656 3.0178 3.2733 4.5581 1.6105

The standardised values for e.g. the first box becomes

z = (−1.4373 −0.4603 −1.0860 −1.2787 1.3167 1.4422 1.5124)′,

where e.g. the second value is found as

z2 =
3.660− 4.773

2.4178
= −0.4603.

We now easily find the factor scores corresponding to the first box as

F̂ 1 = (I + Â′∆̂−1Â)−1Â′∆̂−1z =
( −1.20

1.40

)
.

The others are found analogously.

In the following figure we have shown the 25 boxes in a 2-dimensional coordinate
system so that each box is placed at the coordinates corresponding to its factor scores
(cf. p. 269).

We note (cf. example 8.3) that the two factors describe "thickness" and "size". How-
ever, we also note that the "importance" of the two concepts has been switched com-
pared to example 8.1.

�

8.3.4 A case study

This section is omitted

8.3.5 Briefly on maximum likelihood factor analysis

After the appearance of efficient maximisation methods (e.g. Davison-Fletcher-Powell’s
method) it has become possible to perform maximum likelihood estimation of the fac-
tor scores. This is from a statistical point of view somewhat more satisfactory than
e.g. the principal factor method. Furthermore, the maximum likelihood solution has a
scale-invariance property which is very satisfactory.

We will not concern ourselves with the important numerical and technical problems in
determining the maximum likelihood solution but more consider the scale-invariance.
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We denote the empirical variance-covariance matrixS and if we assume normality
of the observations we have thatS is Wishart distributed with the parameters(n −
1, 1

n−1Σ) whereΣ equalsD(Xi) i.e. the density is

c1(detS)
1
2 (n−k−2)(detΣ)−

1
2 (n−1) exp(−1

2
(n− 1) tr(SΣ−1)),

wherec1 is an integration constant which only depends onn andk. The logarithm of
the likelihood function is therefore (disregarding the terms which do not depend onΣ):

ln L(Σ) = −1
2
(n− 1) ln(detΣ) − 1

2
(n− 1) tr(SΣ−1).

Here we now introduce the usualm factor model

D(X) = Σ = AA′ + ∆,

whereA and∆ are as in section 8.3.3. Note that we are not assuming thatΣ has ones
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on the diagonal. This gives

ln L(A,∆) = −1
2
(n− 1) ln(det(AA′ + ∆))

−1
2
(n− 1) tr(S(AA′ + ∆)−1).

Maximisation of this function with respect toA and∆ gives the ML-solution to our
factor analysis. Concerning the technical problems which remain, we refer to [10].

By partial differentiation of the logarithm of the likelihood function, and after long and
tedious algebraic manipulations, one obtains the equation:

Â = (∆̂ + ÂÂ′)S−1Â, (8.4)

see e.g. [16].

If we perform a scale-transformation of theX ’s i.e. we introduce

Zi = CXi,

we then have

Sz = CSxC′

wherez andx as subscripts shows whether the different quantities have been computed
on the base of theZi’s or theXi’s. With the same convention of notation we then have

Âz = (∆̂z + ÂzÂ′
z)C

′−1S−1
x C−1Âz.

If we pre-multiply byC−1 we get

C−1Âz = [C−1∆̂zC′−1 + C−1Âz(C−1Âz)′]S−1
x C−1Âz. (8.5)

By comparing (8.4) and (8.5) we find that ifA is a solution to (8.4) then

Az = C−1A

will be a solution to (8.5). This means that a scaling of theXs (the observations) with
the matrixC implies that the factor weights are scaled byC−1.

If we retain the assumption of normality we can test if the factor model is valid i.e. test

H0 : Σ = ∆ + AA′ against H1 : Σ arbitrary.
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The ratio test will then be equivalent to the test given by the test statistic

Z = (n− 1 − 1
6
(2k + 5) − 2

3
m) ln

|∆̂ + ÂÂ′|
|S|

and we will reject for

Z > χ2(
1
2
{(k −m)2 − k −m}).

Finally we will draw the attention to certain standard programmes e.g. in the BMDP
package which give possibilities of performing maximum likelihood factor analysis.

EXAMPLE 8.5. In the following table we have shown the result of a principle fac-
tor solution (PCA), and a maximum likelihood solution (ML) and finally a little Jiffy
solution (see [11]).

The data material consists of 198 samples of Portland cement where each sample is
analysed for 15 variables (contents of different cement minerals, fine grainedness etc.).
The 15 variables have only been given by their respective numbers because we do not
consider the interpretation here but only the comparison of the three methods. In the
table, weights, which are numerically less than 0.25, have been set equal to 0 to ease
the interpretation.

We note that the three methods give remarkably similar results. For factor three we
note that the PCA solution differs somewhat from the ML and the LJIF solutions.

Variable Factor1 Factor2 Factor3
PCA ML LJIF PCA ML LJIF PCA ML LJIF

1 −0.26 0 0 0.95 0.91 0.95 0 0.36 0
2 0 0 0 −0.98 −1.00 −0.99 0 0 0
3 −0.50 0.93 1.08 0 0 0 −0.40 −0.34 −0.72
4 0.94 −0.78 −0.80 0 0 0 0 −0.62 −0.32
5 0 0.29 0.34 0 0 0 −0.48 0 0
6 0 0 0 0 0 0 0 0 −0.25
7 0 0 0 0 0 0 0 0 0
8 0.53 −0.32 −0.32 0 0 0 0.27 −0.31 0
9 0.90 −0.72 −0.76 0 0 0 0 −0.45 0

10 0 0 0 0 0 0 0.72 0 0
11 0 −0.28 −0.31 0 0 0 0.82 0 0
12 0 0 0 0 0 0 −0.78 0 0
13 −0.73 0 0 0 0 0 0 0.98 0.95
14 −0.86 0.97 1.05 0 0 0 −0.31 0 0
15 0 0.25 0 0.93 0.93 0.92 0 0 −0.35

�
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8.3.6 Q-mode analysis

In the form of factor analysis we have regarded up till now - the so-called R-modus
analysis - one investigates the correlations between the different variables. The samples
of the individuals etc. are used as repetitions and these are used to estimate the different
correlations. If we call the observationsX1, . . . ,Xn and let

X′ =


 X11 · · · X1n

...
...

Xk1 · · · Xkn


 ,

where the rows corresponds to the single variables and the columns to the individuals.
If we assume that the observations have been normalised so they have mean value 0
and variance 1 we get the correlation matrix as

R = X′X,

cf. theorem 2.19. In adual way we could of course define

Q = XX′,

and then interpret it as an expression for the correlation between individuals and then
perform a factor analysis on these. The results of such a procedure will be a classifica-
tion of individuals into groups which are close to each other.

We give a small example which comes from [14].

EXAMPLE 8.6. We consider 12 stream sediment samples collected in Jameson Land
in East Greenland. They are analysed for 7 elements which are Cu, Ni, V, Pb, Zr,
Ca and Ba. An ordinary R-modus analysis showed that the two first factors described
42%+ 37% = 79% of the variation. In the following figure we have shown the rotated
factor weights.

Then aQ-modus analysis was performed as mentioned above. This gave a first factor
which described38% of the total variation and a second factor which described26%
of the total variation.

From the figure with the factor weights we now get a direct comparison of the different
samples. This could also be obtained throughR-modus analysis but we would then
have to go via the factor scores.

Analysis of this kind is used in mineral prospecting in the attempt to determine which
samples are to be declared non-normal and thereby interesting. �
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Figure 8.2: Factor weights in R-modus analysis.

Figure 8.3: Factor weights in Q-modus analysis.

When performing aQ-modus analysis one will often end up with a large amount of
computations since theQ-matrix is of the ordern × n, wheren is the number of
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individuals. One can then draw advantage of the theorems in section 1.4.2. From these
we see that the eigenvalues which are different from 0 in R and Q are equal and there
is a simple relationship between the eigenvectors. SinceR is only of the orderk × k
and the number of variables usually is considerably less than the number of individuals
it is possible to save a lot of numerical work.

Finally we remark thatQ-modus analysis often is not performed onXX′ but on an-
other matrix containing some more or less arbitrarily chosen similarity measures. The
technique is, however, unchanged and one can still obtain computational savings by us-
ing the above mentioned relation betweenR-modus andQ-modus analysis. For special
choices of similarity measures one often calls this a principal coordinate analysis.

An attempt to do both analyses at one time is found in the so-called correspondence
analysis which is due to the Frenchman Benzécri (1973).

8.3.7 Some standard programmes

Principal component analysis is merely an eigenvalue analysis of the variance-covariance
matrix or of an estimated variance covariance matrix. Such an analysis is therefore per-
formed by means of a standard programme for the solution of the eigenvalue problem
for an symmetric positive semidefinite matrix.

There are, however, also a number of standard programmes for the computation of prin-
cipal components. Here we can e.g. mention the programmes BMD01M nd BMD02M
from the BMD system.

BMD01M, PRINCIPAL COMPONENT ANALYSIS, computes a principal component
solution on the standardised data i.e. we are analysing the empirical correlation matrix.
Output from this programme includes correlation coefficients and eigenvalues includ-
ing the cumulated fractions of the total variance and the eigenvectors i.e. the principal
axes. Finally the rank of each observation (standardised) is given by size of the single
principal components.

BMD02M, REGRESSION ON PRINCIPAL COMPONENTS, computes the same quan-
tities as BMD01M and furthermore computes regressions of each of the dependent
variables on the first, the first two, the first three and all principal components.

Most standard programmes for the computation of factor solutions use the principal
factor solution mentioned in this book followed by rotation.

One of the largest systems is the programme complex which is given in the SPSS man-
ual (Statistical Package for the Social Sciences). In this system we find a number of
factorisation routines. The most often used are probably the principal factor methods.
These are found in two versions. One where one just uses the ordinary principal fac-
tor solution and one where one iteratively estimates the communalities by means of
the squared multiple correlation coefficient estimate the number of necessary factors
maybe exclude certain of these reestimate the communalities etc. until the difference
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between two sets of estimated communalities is less than a certain limit.

Among a number of other methods there is also a method by Rao which was developed
in a more classical statistical sense (see Rao (1955)[18]). Here the more usual estimates
of and test of the number of necessary factors etc. are performed.

Of the orthogonal rotation principles there are three, they are quartimax, Varimax (see
p. 279) and equimax. Furthermore there is a procedure which performs the so-called
oblique rotation (by the oblimin principle).

Computation of factor scores is performed by a principle which is in relationship to the
one mentioned in section 8.3.6.

The BMD-programme BMD08M, FACTOR ANALYSIS, is also very large. The fac-
torisation routines are, however, all of the principal factor type. They operate on both
the correlation and the variance covariance matrices. Possibilities exist for different
types of communality estimates and the above mentioned iterative estimation proce-
dure can be utilised.

There are a number of rotational principles including the orthogonal (among other quar-
timax and Varimax) and as "oblique" (oblimin-types).

Computation of factor scores is performed by the same principles as mentioned in
section 8.3.6.

In the BMDP packages factor analysis programme one can also perform a maximum
likelihood estimation.

The SSP sample programme FACTO performs a principle factor solution and rotates
the factors by the Varimax-method. The programme is more or less identical to the old
factor analysis programme from the BMD system i.e. BMD03M. The output includes
the usual quantities, however, not the factor scores. Some of the users will be shown
below. The rest of this chapter is neglected because the programme etc. are obsolete.
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pseudo-inverse matrix, 47
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transpose, 51
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a posteriori distribution, 230
a priori distribution, 230
affine projection, 7
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algebra,1
analysis of variance, 215 f

two-sided, multidimensional, 217 f
two-way, multidimensional, 217 f
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angle, 54
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canonical correlation, 271 f
canonical correlation coefficient, 272 f
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canonical variable, 271 f
canonical variables, 274
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Cholesky factorisation, 32
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conditional distribution,73, 93
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coordinate transformation,11
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correlation matrix, 61
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covariance,61
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Cramér’s theorem, 16
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total variance, 262
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trace of a matrix,47
transpose, 10
transposed matrix, 9
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Appendix A

The Greek alphabet

Letter name Pronounciation Equivalent to
A α alfa [a][a:] a
B β bēta [b] b
Γ γ gamma [g] g
∆ δ delta [d] d
E ε epsilon [e] e
Z ζ zēta [ts,s] z
H η ēta [æ:] ē
Θ ϑ θ thēta [θ,th,t] th,t
I ι iōta [i][i:] i
K κ kappa [k] k
Λ λ lambda [l] l
M µ my [m] m
N ν ny [n] n
Ξ ξ ksi [ks] ks(x)
O o omikron [o] o
Π π pi [p] p
Pρ ro [r] r
Σ σ ς sigma [s] s
T τ tau [t] t
Y υ ypsilon [y][y:] y
Φ φ fi [f] f(ph)
X χ khi [x,ç,kh,k] ch(kh)
Ψ ψ psi [ps] ps
Ω ω ōmega [å:] ō
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