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Chapter 1
Summary of linear algebra

This chapter contains a summary of linear algebra with special emphasis on its use in
statistics. The chapter is not intended to be an introduction to the subject. Ratheritis a
summary of an already known subject. Therefor we will not give very many examples
within the areas typically covered in algebra and geometry courses. However, we will
give more examples and sometimes proofs within areas which usually do not receive
much attention in all-round courses, but which do enjoy significant use within algebra
in statistics.

Inrecent years one has started to involve concepts like dual vector space in the theory of
multidimensional normal analysis. Despite the advantages this might bring the author
has chosen not to follow this line. Therefore the subject is not covered in this summary.

In the course of analysis of multidimensional statistical problems one often needs to
invert non-regular matrices. For instance this is the case if one considers a problem
given on a true sub-space of the consideredimensional vector-space. Instead of
just considering the relevant sub-space, many (= most) authors prefer giving partly
algebraic solutions by introducing the so-called pseudo-inverse of a non-regular matrix.
In order to ease the reading of other literature (e.g. journals) we will introduce this
concept and try to visualize it geometrically.

We note that use of pseudo-inverse matrices gives a very convenient way to solve many
matrix equations in an algorithmic form.

1.1 Vector space

We start by giving an overview of the definition and elementary properties in the fun-
damental concept of a linear vector space.

1



2 CHAPTER 1. SUMMARY OF LINEAR ALGEBRA

1.1.1 Definition of a vector space

A vector space (on the real numbersjs a setl” with a composition rule + in the set
V x V — V which is calledvector addition and a compositionrulein Rx V — V
calledscalar multiplication, which obey
i) Vu,v € V: wu+wv=v+ u(commutative law for vector addition)
i) Yu,v,z €V : wu+(v+z)= (utv)+x (associative law for vector addition)
i) 30 € VVu € V: wu+ 0= wu (existence of a neutral element)

V) Vu e V3—u € V: u+ (—u) = 0 (existence on an inverse element)

V) VA € RVu,v € V :  A(u+ v) = M + M ( distributive law for scalar
multiplication)

Vi) VAL, A € RVu € Vi (A1 + A2)u = Aju + Au (distributive law for scalar
multiplication)

Vi) VA1, € RVu € V @ (AMA2)u = A (A2u) (associative law for scalar
multiplication)

Vi) YueV: lu=wu

ExampLE 1.1. Itis readily shown that all orderedtuples
T

x n

of real numbers constitute a vector space, if the compositions are defined by element,
ie.

1 Y1 1+ Y
I e R e :
and
X1 )\1‘1
A = :
T ATy

This vector space is denotét!’ ¢
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A vector spacé/ which is subset of a vector spabeis called asubspacen V' . On
the other hand, if we consider vectars, ..., v, € V, we can define

span{vy,...,v;}

as the smallest subspacelof which containg vy, ..., v }. Itis easily shown that

k
span{vy,..., v} = {Zawﬁai €ER, i=1,...,k}
i=1

A vector of the form)_ a;v; is called a linear combination of the vectars i =

1,...,k. The above result can then be expressed suchsthat{v,,..., v} pre-
cisely consists of all linear combinations of the vectois. .., v;. Generally we
define

span(Uy, ..., Up)

whereU; C V, as the smallest subspacelofwhich contains all/;, i = 1,. .., p.

A side-subspace is a set of the form
v+ U ={v+ulucU},

whereU is a sub-space iir.
The situation is sketched in fig. 1.1.

Vectorsvy, ..., v, are said to be linearly independent if the relation
av1 + -+ apv, =0

implies that
ap = =a,=0

In the opposite case they are said to be linearly dependent and at least one of them can
be expressed as a linear combination of the other two.

A basis for the vector spadé is a set of linearly independent vectors which span all

of V. Any vector can be expressed unambiguously as a linear combination of vectors
in a basis. The number of elements in different basises of a vector space is always the
same. If this number is finite it is called the dimension of the vector space and it is
written dim(V').
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(2)

1<

o

e
t
G

Figure 1.1: Sub-space and corresponding side-subspdt® in

ExAMPLE 1.2. R™ has the basis

1 0 0
0 1 0
0 0 1

and is therefore-dimensional

In an expression like

n
v = E ;U
i=1

where{vy,...,v,} is a basis fol/, we call the sety, ..., «, v's coordinates with
respect to the basiws, ..., v, }.
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1.1.2 Direct sum of vector spaces

LetV be a vector space (of finite dimension) andlfet. . . , U, be sub-spaces 6f.
We then say thal” is the direct sum of the sub-spadés ..., Uy, and we write

k
V=U:0---0Uy= & U,
1=1

if an arbitrary vectow € V' in exactly one way can be expressed like
v=uy+---t+ug, u; €Up,...,up €U (1.1

This condition is equivalent to that for vectaus € U; the following holds true
u+--+u,=0 = wu;=---=up=0.

This is again equivalent to

k
dim(span(Uy, ..., Uy)) = Zdim Ui=dimV

=1

Finally, this is equivalent to that all unions of some of ttigs are0. Of course, it is

a general condition thapan(Uy, ..., Uy) = V, i.e. that it is at all possible to find an
expression like 1.1. It is the unambiguousity of 1.1 which implies that we may call the
"sum” direct.

We sketch some examples below in fig. 1.2

If V' is partitioned into a direct sum
V=U& - aU

then we call any arbitrary vecters component inlJ; for v’s projection ontal/; (by
the direction determined by, ...,U;—1,U;+1, - .., Ux) and we denote ib; (v)

The projectiorp; is idempotent, i.e.p; o p;(v) = p;(v), Vv wheref o g denotes the
combination of f and g.

1.2 Linear projections and matrices

We start with a section on linear projections.
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U U, ®dUs = R3 The sum
is direct because for instance
dimU; +dimUs +dim Uz = 3

°

R3? is not a direct sum ot/;
Us; becausdim U; +dim Uy =
4

HerU; ® U, = R® because
for instanceU;y and U, be-
sides spanning?® also satisfy
UiNU;=0

Figure 1.2:
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p, (v

v=p ¥} +p,(¥)

Figure 1.3: Projection of a vector.

1.2.1 Linear projections

A projectionA : U — V, whereU andV are vector spaces are said to be linear if

VA1, Ao € RVui,us € U : A()\lul + )\2’&2) =
)\1A(’U,1) + )\214(“2)

ExAmMPLE 1.3. A projectionA : R — R is linear if its graph is a straight line
through (0,0). If the graph is a straight line which does not pass through (0,0) we say
the projection is affine.

By the null-spaceV(A) of a linear projectio : U — V' we mean the sub-space
A7H0) = {u|A(u) = 0}

The following formula holds connecting the dimension of image space and null-space
dim N(A) +dim A(U) = dimU

In particular we have
dim A(U) < dimU

with equality if A is injective (i.e. unambiguous). K is bijective we readily see that
dimU = dimV. We say that such a projection is an isomorphism andhand
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A(x) B({x)

y

® v
» 9

Figure 1.4: Graphs for a linear and an affine projecfibr> R.

V' are isomorphic. It can be shown that amydimensional (real) vector space is iso-
morphic with R™. In the following we will therefore often identify an-dimensional
vector space withR™. ¢

It can be shown that the projections mentioned in the previous section are linear pro-
jections.

1.2.2 Matrices

By a matrix A we understand a rectangular table of numbers like

Am1 e Umn

We will often use the abbreviated notation

A = (CI,U)

More specifically we callA anm x n matrix because there are rows andn
columns. Ifm = 1 then the matrix can be called a row-vector and i 1 it can be
called column-vector.
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The matrix one gets by interchanging rows and columns is called the transposed matrix
of A and we denote it bA’, i.e.

a1 - Gmil
A =

A1ip  **° Omn

An m x n matrix is square ih = m. A square matrix for whiclA = A’ is call a
symmetric matrix. The elements;, i = 1,...,n are called the diagonal elements.

An especially important matrix is the identity matrix of order

1 --- 0
In:I:

A matrix which has zeroes off the diagonal is called a diagonal matrix. We use the
notation

5 - 0
A = diag(dy,...,0,) =
0 - I

For givenn x m matricesA andB one defines the matrix sum

air +bir - Gim +bim
A+B=

an1 + bnl e Apm + bnm

Scalar multiplication is defined by

’V cair - Caim
cA = : :

Can1 -+ Capm

i.e. element-wise multiplication.

Foranm xn matrixC and am x p matrixD we define the matrix produt = CD
by having thafP is am x p matrix with the(i, j)'th element

n
Pij = g Cikdpj
k=1
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We note that the matrix product is not commutative, i.e. tdidd generally does not
equalD C.

For transposition we have the following rules

(A+B) = A'+B
(cA) = cA’
(CD)Y = D'C

1.2.3 Linear projections using matrix-formulation

It can be shown that for any linear projectidn: R — R™ there is a corresponding
m X n matrix A, such that

Vre R": A(x)=Az

Conversely amM defined by this relation is a linear projectioA. is easily found as
the matrix which as columns has the coordinates of the projection of the unit vectors in
R™. E.g.we have

0
aiy a2 Gln 1 aiz
Aey = 0 = : = as
am1 Am?2 e Amn . am?2
0

If we also have a linear projectioB : R™ — R* with corresponding matriB
(k x m), then we havethaBo A — BA i.e.

Vz € R"(Bo A(z) = B(A(z)) = BAx)

Here we note, that am x n matrix A is said to be regular if the corresponding linear
projection is bijective. This is equivalent with the existence of an inverse matrix, i.e. a
matrix A~!, which satisfies

AATT=ATA=1

wherel is the identity matrix of orden.
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a1€1 + agey = [ el ez ] [ Zl }

G1€1 + Qoéy = [ €1 €9 ] [ zl :|

Figure 1.5: Sketch of the coordinate transformation problem.

A square matrix which corresponds to an idempotent projection is itself called idem-
potent. Itis readily seen that a matik is idempotent if and only if

AA=A

We note that if an idempotent matrix is regular, then is equals the identity matrix, i.e.
the corresponding projection is the identity.

1.2.4 Coordinate transformation

In this section we give formulas for the matrix formulation of a linear projection from
one basis-set to another.

We first consider the change of coordinates going from one coordinate system to an-
other. Normally, we choose not to distinguish between a vactand its set of coor-

dinates. This gives a simple notation and does not lead to confusion. However, when
several coordinate systems are involved we do need to be able to make this distinction.

In R™ we consider two coordinate systeifis,...,e,) and(éi,...,é,) Tre co-
ordinates of a vectot in each of the two coordinate systems is denoted respectively
(a1,...,a,) and(ay, ..., &), cf. figure 1.5.

Let the "new” systentéy,...,&,) be given by

(él,...,én):(el,...,en)s
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€; = s1;e1 + -+ sp;ey, =10

The columns in th&-matrix are thus equal to the "new” systems "old” coordinages.
is called the coordinate transformation matrix.

ReEMARK 1.1. However, many references use the expression coordinate transforma-
tion matrix about the matri$—!. It is therefore important to be sure which matrix
one is talking about.

Since

aTL an

(%} o aq aq
=S| : || : |=8"

an an an aTL

We now consider a linear projectioh : R* — R™, and letA’s matrix formulation
w.r.t. the basegey, ..., e,) and(f,,..., f,,) be

B=A«

and the formulation w.r.t. the basgs, ..., é,) = (e1,...,e,)S and

(F1r-osFm) = (F1,-- s fn)T be
B=A&

Then we have
A=S"'AT,

which is readily found by use of the rules of coordinate transformation on the coordi-
nates.
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If we are concerned with projectio’®” — R™ and we use the same coordinate
transformation, then we get the relation

A =S 'AS.

The matricesA andA = S—!A S are then called similar matrices.

1.2.5 Rank of a matrix

By rank of a linear projectiod : R — R™ we mean the dimension of the image
space, i.e.

rg(A) = dim A(R").

By rank of a matrixA we mean the rank of the corresponding linear projection.

We see thatg(A) exactly equals the number of linearly independent column vectors
in A. Trivially we therefore have

rg(A) <n.

If we introduce the transposed maté it is easily shown thatg(A) = rg(A')i.e.
we have

rg(A) < min(m,n).
If A andB are twom x n_matrices, then
rg(A + B) <r1g(A) +1g(B).
This relation is obvious when one remembers that for the corresponding projedtions
andB we have(A + B) (R™) C A(R™) U B(R").
If A isan(m x n)-matrix andB is an(k x m)-matrix we have
rg(BA) <rg(A).

If B is regular(m x m) we have

rg(BA) = rg(A).
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These relations are immediate consequences of the refiatioB(A(R™)) < dim(A(R"™)),
where we have equality B is injective. There are of course analogue relations for an
(n x p)-matrix C:

rg(A C) <rg(A)

with equality if C is a regulan x n)-matrix. From these we can deduce for regular
B andC that

rg(BAC) =rg(A).

Finally we mention that afn. x n)-matrix A is regular ifrg(A) = n.

1.2.6 Determinant of a matrix

The abstract definition of the determinant of a squarep matrix A is

det(A) = Z Fa16(1) - - - Apo(p);

alle O

whereo is a permutation of the numbets. .., p and where we use the + sign if the
permutation is even (i.e. it can be composed of an even number of neighbour swaps)
and - if it is odd.

We will not go into the background of this definition. We note that the determinant
represents the volume of the corresponding linear projection i.e. for am) -matrix
A

~vol(A(1))
|det(A)| = vol(D)

where! is ann -dimensional box andi(I) is the image ofl (being ann -
dimensional parallelepiped) found by the corresponding projection.

The situation is sketched in 2 dimensions in fig. 1.6. Far2 and3 x 3 matrices the
definition of the determinant becomes

a b
det( c d)—ad—bc

det =aei + bfg+ cdh — gec — hfa — idb.

Q Qe
o o
<. 0
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A(a)

1]

I A(b)

o

Figure 1.6: A rectangle and its image after a linear projection.

For determinants of higher order (herh order) we can develop the determinant by
thei'th row i.e.

det(A) = a;;(—1)" det(A;),
j=1

whereA,;; is the matrix we get after deleting ttigh row and the;j’th column of A.
The number

Ayy = (=1)" det(Ay)
is also called the element; s cofactor. Of course an analogue procedure exists for

development by columns.

When one explicitly must evaluate a determinant the following three rules are handy:

i) interchanging 2 rows (columns) iA multipliesdet(A) by —1.
ii) multiplying a row (column) by a scalar multipliekt(A) by the scalar.

iif) adding a multiplum of a row (column) to another row (column) leades(A)
unchanged.

When determining the rank of a matrix it can be useful to remember that the rank
is the largest number for which the matrix has a determinant of the minor which
different from 0 and ofr'th order. We find as a special case that is regular if

and only ifdet A # 0. This also seems intuitively obvious when one considers the
determinant being the volume. Ifit is O then the projection must in some sense "reduce
the dimension”.

For square matriceA andB we have

defA B) = defA) det(B)
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For a diagonal matriA = diag(\1,...,\,) we have
detA) = A ... A\,
For a triangular matrixC with diagonal elements, ..., ¢, we have
detC)=c1- ¢y
By means of determinants one can directly state the inverse of a regular matfife

have

1
-1 _ Y
A= det(A) (4is)'

i.e. the inverse of a regular matri is the transposed of the matrix we get by substi-
tuting each element iA by its complement divided bget A. However, note that
this formular is not directly applicable for the inversion of large matrices because of
the large number of computations involved in the calculation of determinants.

Something similar is true faEramérs theorem on solving a linear system of equations:

Consider the regular matrix = (A;,..., A,). Then the solution to the equation
Ax=b>
is given by
- det(ai,...,a;i—1,b,ai11,...,ay)
o det A

1.2.7 Block-matrices
By a block-matrix we mean a matrix of the form

Bii -+ B

B'rnl o an

where the block®;; are matrices of orden; x n;.

When adding and multiplying one can use the usual rules of calculation for matrices
and just consider the blocks as elements. For instance we find

o nll5]-[erins)
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under the obvious condition that the involved products exist etc.
First we give a result on determinants of the "triangular” matrix.

THEOREM 1.1. Let the square matriA be partitioned into block-matrices

(58]

whereB andD er kvadratiske og are square aldis a matrix only containing 0's.
Then we have

det(A) = det(B) det(D)

PROOF 1.1. We have that

B C| |I o B C

0O D| |0 D 0 I
where thd ’s are identity-matrices, not necessarily of same order. If one develops the
first matrix by its 1st row we see that it has the same determinant as the matrix one gets

by deleting the first row and column. By repeating this until the remaining mirlor is
we see that

I 0

det[0 D

| = der(m)

Analogously we find that the last matrix has the determirn®B and the result
follows. ]

The following theorem expands this result.

THEOREM 1.2. Let the matrix3 be partitioned into block matrices

Y11 X
>
{ o1 Yoo }

Then we have
det(2) = det(X1; — T12855 Bo1) det(BDaz),

under the condition that,, is regular. A
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PrRooOF 1.2. Since

Y X I 0 _ - 21222721221 Y2
o1 Yoo 5 Y YV | 0 Yoo |’
the result follows immediately from the previous theorem. ]

The last theorem gives a useful result on inversion of matrices which are partitioned
into block matrices.

THEOREM 1.3. For the symmetrical matrix

2|: 211 212 :|

o1 o
we have
51 [ B! —B 1A’
—~AB™! 2+ ABTIAY |
where
A = 25212511
B = 32553, %,
conditioned on the existence of the inverses involved. A
PROOF 1.3. The result follows immediately by multiplication & andX~!. [ |

1.3 Pseudoinverse or generalised inverse matrix
of a non-regular matrix
We consider a linear projection
A:E—F
whereE' is ann-dimensional and” anm-dimensional (euclidian) vector space. The
matrix corresponding tal is usually calledA and it has the dimensions x n. We

equal the null space of toU ,i.e.

U= Ail(())a
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and call its dimension. The image space
V =A(E)

has dimensiog =n —r , cf. p. 7.

We now consider an arbitrasy -dimensional spac€* C E, which is complementary
toU, and an arbitraryn — s dimensional subspadé* C F', which is complementary
toV.

An arbitrary vectoe € E can now be written as
r=u+u*, wueU og u*e€U"
sinceu andu* are given by

u = @ pue(a)

u* = py«(x)

Herepy« denotes the projection & ontoU™* along the sub-spadé. Similarly any
y € F' can be written

y=(y—pvy)) +pv(y) =v" +v
where
py: F—V

is the projection of" ontoV alongV*.

Since
Alz) = A(u+u*) = A(u"),

we see thatd is constant on the side-spaces
w4 U={u"+ulueclU}

and it follows thatA'’s restriction onU* is a bijective projection of/* ontoV. This
projection therefore has an inverse

B1:VHU*
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1-2 plane in E

Figure 1.7: Sketch showing pseudo-inverse projection.
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given by
Bi(v)=u" & A(u")=w

We are now able to formulate the definition of the pseudo-inverse projection.

DerFINITION 1.1. By a pseudoinverse or generalised inverse projection of the projec-
tion A we mean a projection

B=Biyopy:F — FE,

wherepy andB; are as mentioned previously. A

REMARK 1.2. The pseudo-inverse is thus the combined projection bntalongV*
and the inverse afl’s restriction toU *. v

REMARK 1.3. The pseudo-inverse is of course by no means unambiguous, because
we get one for each choice of the sub-spdéésandV*. v

We can now state some obvious properties of the pseudo-inverse in the following

THEOREM 1.4. The pseudo-inversB of A has the following properties

) rg(B) =rg(A4) = s
i)AoB=py:F—>V

i)y BoA=py-: E—U*

It can be shown that these properties also characterise pseudo-inverse projections, be-
cause we have

THEOREM 1.5. Let A : E — F be linear with ranks. Assume thaf3 also has
rank s, and thatA o B and B o A both are projections of rank ThenB is a
pseudo-inverse ofl as defined above. A

PROOF 1.4. Omitted (relatively simple exercise in linear algebra). [ |
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We now give a matrix formulation of the above mentioned definitions.

DEFINITION 1.2. Let A be an(m x n)-matrix of ranks. An (n x m)-matrixB of
ranks, which satisfies

i) A B idempotetn with rank

i) B A idempotent with rank,

is called a pseudo-inverse or a generalised inverge. of A

By means of the pseudo-inverse we can characterise the set of possible solutions of a
system of linear equations. This is due to the following

THEOREM 1.6. Let A andB be as in definition 1.2. The general solution of the
equation

Ax=0

(I-BA)z, z € R",
and the general solution of the equation (which is assumed to be consistent)

Ax =y,

By+(I-BA)z, z e R"

ProoOF 1.5. We first consider the homogeneous equation. A solutiois obviously

a point in the null-spacéV(4) = A~1(0) of the linear projection corresponding
to A. The matrixB A according to theorem 1.1 - corresponds precisely to the
projection ontaU*. Thereforel — B A corresponds to the projection onto the null-
space/ = N(A). Therefore, an arbitrary € N(A) can be written

z=(I-BA)z, zeR".

The statement regarding the homogeneous equation has now been proved.
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The equationA = = y only has a solution (i.e. is only consistentyyf lies in the
image space oA.. For such ay we have

ABy =y,

according to theorem 1.4.

The result for the complete solution follows readily. ]

In order to illustrate the concept we now give

EXAMPLE 1.4. We consider the matrix

A obviously has the rank 2.

We will consider the linear projection correspondingtowhich is
A:E—F

whereE andF' are 3-dimensional vector spaces with basases, es} 0g{f, 1, f5}-
The coordinates of these bases are denoted by srealhdy’s respectively, such that
A can be formulated in the coordinates

Y1 1 1 2 I
Y2 = 2 1 1 To
U3 2 1 1 T3

First we will determine the null-space

for A. We have

zelU & Ax=0
S r14+a0+23=0 AN 221 +z20+23=0
& =23 AN =311 =129
& o =x1(1,-3,1).
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The null-space is then
1
U={t-| =3 | |[t€e R} ={t us|t € R}
1

As complementary sub-space we choose to consider the orthogonal complément
This has the equation

(1,-3,1)x =0,
or
U* ={x|ry — 322+ 23 =0}

We now consider a new basis fé, namely{u;, u2,u3}. Coordinates in this are
denoted using small's. The conversion from-coordinates ta:-coordinates is given

by

I 1 3 1 zZ1
To | = 0 2 -3 29
or
x = Sz.

The columns of th& matrix are known to be the’s coordinates in the-system.

A’s image spacéd’ is 2-dimensional and is spanned Bys columns. We can for
instance choose the first two, i.e.

1 1
V1 = 2 5 Vg = 1
2 1

As complementary sub-spad& we choosel’s orthogonal complement. This is
produced by making the cross-productaf andwvs:

>—~
|

V1 X Vg = V3
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We now consider the new bas{®1,v2,v3} for F. The coordinates in this are
denoted using smaidl’s. The conversion fronw-coordinates tg-coordinates is given

by

1 1 1 0 w1
w =121 1 wy |,
Y3 2 1 -1 w3

or in compact notation
y=Tuw.

We will now find coordinate expressions fdr in z- andw-coordinates. Since

y=Ax
we have
Tw=ASz
or
w=T"'ASz.

Now we have

-1 1 1
T ! = o -1 _1
? T
0 2 —3
wherefore
[ —1 % % 1 1 2 1 3 1
T 'AS = 2—? 3 2 1 1 0 2 -3
| 0 3 -3 2 1 1 -1 3 1
[ 2 0 0
= -3 11 0
| 0 00

Since{u,us} spand/* and{wvy,v2} spansV/, we note that the condition

A:U" -V
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has the coordinate expression
w1 o 2 0 Z1
wy | | =3 11 z2 |’
It has the inverse projection
HEERI
=| 3 1 :
2 55 11 w2

If we consider the points as points i andF - and not just as points itr* andV
then we get

21 é 0 0 w1
z9 = 55 ﬁ 0 w2 (12)
23 0O 0 O w3

The projection off” ontoV alongV* has the formulation in coordinates

w1 w1
wy | — | w2 (1.3)

This is thez — w coordinate formulation for the pseudo-inverBeof the projection
A. However, we want a description in— y coordinates. Since

z=Sle=Cw=CT ly
we get
x=SCT 1y,

whereC is the matrix in formula 1.1.

We therefore have

B = scT!

N[00 [0 | =
DO [0 [0 | =

This matrix is a pseudo-inverse &f. ¢
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As it is seen from the previous example it is rather tedious just to use the definition in
order to calculate a pseudo-inverse. Often one may utilise the following

THEOREM 1.7. Letthem x n matrix A have ranks and let

C D
=[5 %)

whereC is regular with dimension x s. A (possible) pseudo-inverse &f is then

_ [cto
SRR

where the 0-matrices have dimensions such Avat has the dimension x m. A

PrROOF 1.6. We have

ana= |5 RI[6 0][E R]-[% rcn )

Sincerg(A) = s, then the lask — s columns can be written as linear combinations of
the firsts columns, i.e. there exists a matik, so

7)== ]m

D = CH
F = EH

or

From this we find
F=EC'D.

If we insert this in the top formula we have
AATA=A

By pre-multiplication withA~ and post-multiplication withA~ respectively, we see
thatA— A andAA~ are idempotent. The theorem is now derived from the definition
page 22. |
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We illustrate the use of the theorem in the following

ExamMPLE 1.5. We consider the matrix given in example 1.4

1 1 2
A=]2 11
2 11
Since

B

we can use as pseudo-inverse:

The advantage of using the procedure given in example 1.4 instead of the far more
simple one given in example 1.5, is that one obtains a precise geometrical description
of the situation.

REMARK 1.4. Finally, we note that the literature has a number of definitions of
pseudo-inverses and generalised inverses, so it is necessary to specify exactly what
the definition is. A case of special interest is the so-calledre-PenroseinverseA+

of a matrixA. It satisfies the following

)AATA =A
i) ATAAT = A+
i) (AATY = AAT
iv) (ATA) = ATA
It is obvious that a Moore-Penrose inverse really is a generalised inverse. The other
conditions guarantee that a least squares solution of an inconsistent equation find a so-

lution with minimal norm. We will not pursue this further here, only refer the interested
reader to the literature e.g. [19]. v
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1.4 Eigenvalue problems. Quadratic forms

We begin with the fundamental definitions and theorems in

1.4.1 Eigenvalues and eigenvectors for symmetric matrices

The definition of an eigenvector and an eigenvalue given below are valid for arbitrary
square matrices. However, in the sequel we will always assume the involved matrices
are symmetrical unless explicitly stated otherwise.

An eigenvalue\ of the symmetrie: x n matrix A is a solution to the equation
det(A — A\I) =0.

There aren (real-valued) eigenvalues (some may have equal values)idfan eigen-
value, then vectors # 0, exist such that

Ax = \x,

i.e. vector exist such that the linear projection correspondidyg teads to a multiplum
of its self. Such vectors are called eigenvectors corresponding to the eigehvalie
number of eigenvalues different from 0 equal§A). An eigenvalue is to be counted
as many times as its multiplicity indicates. A more interesting theorem is

THEOREM 1.8. If A; and); are different eigenvalues, andaf andx; are the
corresponding eigenvectors, then andxz; are orthogonal,i.ex;z; = 0. A

PrROOF 1.7. We have

Am]- = )\jm]-
Here we readily find

:L';»A T, = )\ngazz

T Az, = Nziz;.
We transpose the first relationship and get

I AT N ool
T A'z; = \izjx;.
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SinceA is symmetric this implies that

NI T = N,

and since\; # \; thenzjz; =0 i.e. =; L x;. n

The resultin theorem 1.8 can be supplemented with the following theorem given with-
out proof.

THEOREM 1.9. If A is an eigenvalue with multiplicityn, then the set of eigen-
vectors corresponding td forms anm-dimensional sub-space. This has the special
implication that there exists: orthogonal eigenvectors corresponding\to A

By combining these two theorems one readily sees the following

COROLLORY 1.1. For an arbitrary symmetric matriA a basis exists foR™ con-
sisting of mutually orthogonal eigenvectorsAf

If such a basis consisting of orthogonal eigenvectors is normed then one gets an or-
thonormal basi¢p,, ...,p, ). IfweletP equal then x n matrix whos columns are
the coordinates of these vectors, i.e.

P=(py,....,p,)

we get
PP=1

P is therefore an orthogonal matrix, and
AP=PA

whereA is a diagonal matrix with the eigenvalues f&r (repeated corresponding to
multiplicity) on the diagonal. By means of this we get the following

THEOREM 1.10. Let A be a symmetric matrix. Then an orthogonal makiexists,
such that

PAP=A
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whereA is a diagonal matrix withA ’s eigenvalues on the diagonal (repeated cor-
responding to the multiplicity). A®¥ one can choose a matrix, whos columns are
orthonormed eigenvectors &f. A

ProoF 1.8. Obvious from the above relation. [ |

THEOREM 1.11. Let A be a symmetric matrix with non-negative eigenvalues. Then
a regular matriXB exists such that

B'AB =E,

whereE is a diagonal matrix having 0's or 1's on the diagonal. The number of 1's
equalsrg(A). If A is of full rank thenE becomes an identity matrix. A

PROOF 1.9. By (post-) multiplication ofP with a diagonal matrixC which has the
following diagonal elements

1 ,
= vow AZ>O,
1 A =0

we readily find the theorem witB = P C. [ |

The relation in theorem 1.10 is equivalent to
A=PAP

or
A=(p...p,) | : R
i.e. we have the following partitioning of the matrix
A =\p, P+ + \up, D,

This partitioning of the symmetrical matrix is often called its spectral decomposi-
tion, since the eigenvaluds,, ..., \,} are called the spectrum of the matrix.
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With the obvious definition of\ 2 beingdiag(v/A1, ..., v\.), we note that we can
write

A=(PA2)(PA?) =GG.
Here we mention that i is positive definite, then there is a relation
A=LL,

whereL is a lower triangular matrix. This relation is called the Cholesky factorisation
of A (seee.g. [21)).

Finally we have

THEOREM 1.12. Let A be a regular symmetrical matrix. Thess andA~! have
the same eigenvectors corresponding to reciprocal eigenvalues. A

PrRoOOF 1.10. Let A be an eigenvalue oA andx be a corresponding eigenvector,
i.e.

Ax =)z

SinceA is regular then this is equivalent to
A le = —x,

which concludes the proof. ]

Finally, we note that

det A = HA

ExampPLE 1.6. Orthogonal transformations of the plane. In order to give a geometri-
cal understanding of the transformations which reduce a symmetrical matrix into diag-
onal form, we state the orthogonal transformations of the plane.

By utilising the orthogonality conditionBP’P = I we readily see, that the only or-
thogonak x 2-matrices are matrices of the form

cosa —sina o COS (v sin o
sin o COS (v sinoe —cosa
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I

 J

o4

Figure 1.8: Rotation and reflection as determined by the angle

We will now show that these correspond to rotations around the origin and reflections
in straight lines.

We do this by determining coordinate expressions for the linear projectiprmds,,
, which respectively represent a rotation of the plane of the angied a reflection in
the line having the angle with the 1.st axis.

The projections are illustrated in figure 1.8. Sinee= r(cosv,sinv)’, wherer is
equal to 1, we have

sin(a + v) sin acos v + cos asinv
. coso —sino cosv
o sina  cosa sinv |’
From this we findd, has the matrix representation
T cosa —sinao T
— . .
T2 sin o cos T2

Analogously we find

do(z) = [ cos(a +v) ] _ { COS LcOs v — sin asin v ]

sa(@) = cos(2a —v) | | cos2acosv + sin2asinv
« o sin(2a —v) | | sin2«acosv — cos2asinv

sin2a  — cos2a sinwv

B [ cos 2w sin 2« ] [ COS v ]
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so thats,, has the matrix representation
x| _ | cos 2« sin 2« T
To sin2a  — cos2a To |-

This concludes the proof of the introductory statement.

It is often useful to to have the following relations between rotations and reflektions of
the plane in mind

55 0da =555

= o .
Sa S% d%_ga

The first relation follows from

0 1 cosa —sina |
10 sin cosa |

sina cosa | _ | cos(§ —a) sin(§ — )
cosa —sina | | sin(f —a) —cos(f —a)
The last two relations are forund from the first by substitutingvith 7 — 2a. ¢

Part of the following section will be devoted to consider the problem of generalising
the spectral decomposition of an arbitrary matrix.

1.4.2 Singular value decomposition of an arbitrary matrix.
@- and R-mode analysis
We first state the main result, also known as Eckart-Young'’s theorem.

THEOREM 1.13. Letx be an arbitraryn x p matrix of rankr. Then orthogonal
matricesU (p x r) andV (n x r) exist, as do positive numbets, .. ., v,, such that

Y10+ 0] [y
t=VIU =[v;---v,] | : : C | = 4+ v,
wherel' = diag(v1,...,7-) andvs,...,v, arethe columnsoV andug,...,u,

are the columns ot. A
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PROOF 1.11. Omitted. See e.g. [9]. ]

The numbersy,...,~, are calledk’s singular values.

In the sequel we will investigate the relationship betweeis singular values and the
eigenvalue problems for the symmetrical matriges (n x n) andx’'x (p x p).

However, first we will state

THEOREM 1.14. For an arbitrary (real valued) matrix it holds thatx’x andx x’
have non-negative eigenvalues and

rg(x'x) = rg(xx’) = rg(x)

PrRooOF 1.12. It suffices to prove the results for'x. It is obvious thatx’x is
symmetric, so an orthogonal matii% exists such that

P'x'xP=A

(xP)' (xP) = A.

By lettingx P = B = (b;;), we findB'B = A, i.e.
2
J
i.e. x’x has non-negative eigenvectors. Furthermore we see that

rg(x'x) = card\; #0)
= card{columnsb; in B , which are£ 0}

Sinceb;b; = 0 fori # j (due to equation 1.1) we have
rg(x'x) = rg(B)
SinceP is regular, and using a result on page 13, we find

rg(B) = rg(xP) = rg(x).
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We state a small corollary to the theorem.

COROLLORY 1.2. Let¥ be symmetrical and positive definite. Then for an arbitrary
matrix x it holds that

rg(x'E7'x) = rg(x),

under the condition that the involved products exist.

PROOF 1.13. SinceX~! is also regular and positive definite, an orthogonal matrix
P exists, such that

PSP = A,
whereA is a diagonal matrix. This implies
S '=PAP =PA2A:P' =PA:(PA2) =BB.

HereAZ denotes the diagonal matrix, whos diagonal elements are the square roots
of the corresponding elements Af It is obvious thaB is regular. This relation is
inserted and we find

x'Y'x =x'BB'x = (B'x)'B'x,

rg(x'E""x) = rg(B'x) = rg(x),

which concludes the proof. ]

Using the notation from theorem 1.14 we have.
THEOREM 1.15.
i) the matrixx x’ (n x n) hasr positive eigenvalues and— r eigenvalues equal

to 0. The positive eigenvalues afg, . .., v2, whereyy, ... ,~, are the singular
values ofx. The corresponding eigenvectors ake. . ., v,..

ii) Similarly x'x (p x p) hasr positive and(p — r) 0-eigenvalues. The positive
eigenvalues are?, ..., 2 and the corresponding eigenvectorsae. . ., u,.
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iii) The positive eigenvalues af x' andx’x are therefore equal and the relation-
ship between the corresponding eigenvecto(sis=1,...,r)

Vpp = —XUy 0 Uy = —X VU,
’y’”’l/ ,)/7”

or in a more compact notation

V=xUI"'! og U=x'VI!

PrROOF 1.14. Follows by use of Eckart-Young’s theorem. ]

REMARK 1.5. Analysis of the matrix’x is calledR -mode analysis and the analysis
of xx’ is called@Q -mode analysis. These names originate from factor analysis, cf.
chapter 8. v

REMARK 1.6. The theorem implies that one can find the results for an R-mode anal-
ysis from a Q-mode analysis ad vice versa. For practical use one should therefore
consider which of the matricesx andx x’ has lowest order. v

1.4.3 Quadratic forms and positive semi-definite matrices

In this section we still consider symmetrical matrices only.

By the quadratic form corresponding to the symmetrical mairixve mean the pro-
jection

r—x'Ax = g aiim§+2g aijT;T;.

1<j

We say that a symmetrical matrix is positive definite respectively positive semi-
definite if the corresponding quadratic form is positive respectively non-negative for
vectors different from the O-vector, i.e. if

Ve#£0:x'Ax >0,
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respectively
Ve #0:x'Ax > 0.

We then also say the quadratic form is positive definite respectively positive semi-
definite.

We have the following

THEOREM 1.16. The symmetrical matriA is positive definite respectively semi-
definite, if all A 's eigenvalues are positive respectively non-negative. A

ProoOF 1.15. With P as in theorem 1.10 we have

Ar = Z’P'PAPP'z= (P'z)AP'z)
YAy =My + o Ay

Another useful result is

THEOREM 1.17. A symmetricaln x n matrix A is positive definite if all principal
minors

aixp -+ aig
d; = det : : , 1=1,...,n,
(275} (07793
are positive. A
ProoF 1.16. Omitted [ |

We now state a very important theorem on extrema of quadratic forms

THEOREM 1.18. If we let the eigenvalues for the symmetrical mattixequal; >
-+ > A\, Wwith corresponding eigenvectaps, . . ., p,,, and we define

!/
A
R(z) = T a:7

x'x
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and
My, = {z|z'p, = 0, i=1,....k—1},
Then it holds that

sgp R(z) = R(py) =\,
lgf R(l’) = R(pn) = )‘"7

sup R(x) = R(p;) = k.
TeM,

PrROOF 1.17. An arbitrary vectoer can be written
T=ai1p; + -+ anPy,.

Ifplx=0,i=1,...,k—1,wefinda; =- - = a1 =0, i.e.
T =app, + -+ app,.

Therefore we have
’Ax =i\, +-+aid,,

and

Riz) = ' Ax _ QN+ Az,
x'x 2+t

It is obvious that this expression is maximal for
(s ..oy an) = (g, 0,...,0),

where it takes the valuk,. The result with inf is proved analogously. ]

REMARK 1.7. The theorem say fok = 1, that the unit vector, i.e. the "direction”,

for which the quadratic form takes its maximal value, is the eigenvector corresponding
to the largest eigenvalue. If we only consider the quadratic form in unit vectors which
are orthogonal to eigenvectors corresponding tdithel largest eigenvalues, then the
theorem says that maximum is in the direction corresponding to the eigenvector which
corresponds to the'th largest eigenvalue. v
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Figure 1.9: Illustration showing change of basis

REMARK 1.8. R(x) is also called Rayleigh's coefficient. v

We will now describe the level curves for positive definite forms.

THEOREM 1.19. Let A be positive definite. Then the set of solutions for the equation
Az =c, c>0,

is an ellipsoid with principle axes in the directions of the eigenvectors. The first prin-
ciple axis corresponds with the smallest eigenvalue, the second to the second smallest
eigenvalue etc. A

PrRooF 1.18. We consider the matri = (p,,...,p,,), whos columns are the
coordinates of orthonormed eigenvectorsAaf Assumingy = P’ the following
holds

TAx = y'Ay
= Myi+-+ Ay
yi Y

BTV ERR Vv 4

The matrix equation
y=Pzx & zxz=Puy

corresponds to a change of basis from the original orthonormal besis. . ,e,,} to
the orthonormal basigp,, ..., p,, }



1.4. BGENVALUE PROBLEMS . QUADRATIC FORMS 41

This is seen by letting be a point whogey, ..., e, }-coordinates are called and
whos{p, ..., p, }-coordinates are callegl. Then it holds that

r1€1+ -+ Tpep =Y1P1 + -+ YnDp,

or

(e1---en)x = (P - P,)Y,

Ix=Puy,

wherel is a unit matrix.

The expressionin 1.4 therefore shows the equation of the set of solutigeeordinates
corresponding to the coordinate system consisting of orthonormed eigenvectors. This
shows that we are dealing with an ellipsoid. The rest of the theorem now follows by
noting that the 1.st principle axis corresponds togthefor which1/+/); is maximal,

i.e. for which)\; is minimal. [ |

REMARK 1.9. If the matrix is only positive semi-definite then the set of solutions to
the equation correspond to an elliptical cylinder. This can be seen by change of base to
the basqp,,...,p,} consisting of orthonormal eigenvectors, where we for simplicity
assume thap,,...,p, corresponds to the eigenvalues which are different form 0. We
then have

TAz=c & Myi+ - +ANyr+0yi ++0y2 =c
& Myt Nyi=c

This leads to the the statement. If we consider the restriction of the quadratic form to

the subspace spanned by the eigenvectors corresponding to eigenwegtatsen the
set of solutions becomes an ellipsoid. v

ExampPLE 1.7. We consider the symmetrical positive definite matrix

120

The quadratic form corresponding £ is

@' A x = 322 + 222 + 2V 2z, 29,
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81
Figure 1.10: Ellipse determined by the quadratic form given in example 1.7.

so the unit ellipse corresponding o is the set of solutions to the equation
31% + 2353 + 2\/5:19112 =1.
In order to determine the principle axes we determArte eigenvalues. We find

(A-AD)=0 < N -5 +4=0
& A=1 VvV A=4

Eigen vectors corresponding o= 1 respectively\ = 4 are seen to be of the form
t(1,—+/2) respectivelyt(1,1/2/2). We norm these and get

P = __jé ) b = __fg .
3 3

If we choose the basgp,,p-,}, then the coordinate representation of the quadratic
form becomes

y — yi +4y3,
The ellipse has the equation
2
2

+ 22—,

Sl
<
N

(SIS
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Itis illustrated in figure 1.10

Since

o - [ 3]0
cos(—54.7°)
sin(—54, 7°) } ’

Aok,

12

the new coordinate system corresponds to a rotation of the old one with the angle
—54.7°. ¢

1.4.4 The general eigenvalue problem for symmetrical ma-
trices

For use with the theory of canonical correlations and in discriminant analysis we will
need a slightly more general concept of eigenvalues than seen in the previous sections.
We introduce the conceptin

DEFINITION 1.3. Let A andB be real-valuedn x m symmetrical matrices and let
B be of full rank. A numben, for which

det(A — AB) = 0,

is termed an eigenvalue & w.r.t. B. For such a\ it is possible to find am: # 0
such that

Az =)\Bzx.

Such a vectox is called an eigenvector fok w.r.t. B. A

REMARK 1.10. The concepts given above can be traced back to eigenvalues and
eigenvectors for theon-symmetrical matriB 1 A. v

THEOREM 1.20. We consider again the situation in the definition 1.3 and further let
B be positive definite. There are then real eigenvalues oA w.r.t. B. If A is
positive semi-definite, then these will be non-negative aid i positive definite then
they will be positive. A
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PRrROOF 1.19. According to theorem 1.11 there is a matfixvhere
TBT=1

Let
D=T'AT

D is obviously symmetrical, and since
Dz = (Tz)A(Tx),

we see thaD and A are at the same time respectively positive semi-definite and
positive definite.
Now we have
D-MN)v=0 & (TAT-\T'BT)v=0
< (A-=)XB)(Tv)=0

From this we deduce th@’s eigenvalues equal’s eigenvalues w.r.t. B, and that
the eigenvectors oA w.r.t. B are found by using the transformatidh onD s
eigenvectors. The result regarding the sign of the eigenvalues follows trivially.m

THEOREM 1.21. Letthe situation be as above. Then a basis exist&forconsisting
of eigenvectors, ..., u,, of A w.r.t. B. These vectorscan be chosen as conjugated
vectors both w.r.t.A aswellasw.r.t.B ,i.e.

!/ _ !/ R
u;Au; = uw;Bu; =0.

PrRoOOF 1.20. Follows from the proof of the above theorem and of the corollary to
theorem 1.9, remembering that

0=vv; =TT T (Tv;) = uBu,,

wherewv;, ..., v,, isan orthonormal basis fa@™ consisting of eigenvectors @.

Finally we have

wAu; = \juBu; =0
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THEOREM 1.22. Let A be symmetrical and |d8 be positive definite. Then a regular
matrix R exists with

R'AR = A =diag(A\1,..., \n),
and
RBR =1,

where)\q, ..., A, are the eigenvalues & w.rt. B. If we term thei'th column in
R’~! s; then these relations can be written

A=X\is18]+ -+ AnsSms,,
and

/ !
B=si1s1+...+sns,.

PrRoOF 1.21. From the proof of theorem 1.20 we consideride= T'A T. SinceD
is symmetrical, according to theorem 1.10 there exists an orthogonal aatwith

C'DC = A,

because we have thBr's eigenvalues ard’s eigenvalues w.r.t B.

If we chooseR = T C, then we have that
RBR=CTBTC=C'C=I,
and

RAR=CTATC=CDC=A.

Finally we state an analogue of theorem 1.18 in the following
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THEOREM 1.23. Let A be positive semi-definite and I8 be positive definite. Let
A’s eigenvalues w.r.t.B beX; > --- > )\, and letvy,...,v,, denote a basis for
R™ consisting of the corresponding eigenvectorswifBv; =0 ¢ # j. We let

(x) = ’Ax
*)= ’Bx
and
My ={z|z'Bv; = - =2'Bv,_; = 0},

and we then obtain

supR(x) = R(vi)=X\

mf R(IB) = R('Um) = Am
sup R(x) = R(vi) = M.
e M

PrRoOF 1.22. Without loss of generality the;’s can be chosen so thafBv; = 1,
and since an arbitrary vectar can be written

T =01V + - U,

we find

Y aiviAv Y Na?

k(@) = Yo' Bv;, Y a?

From this the two first statements are easily sees. df M}, thenx can be written
=V, +---+ Ay Uim,

and

- )\kai + -+ )\7n0472n
- 2 2
a'm + e + a'm

)

R(x)

which leads to the desired result. [ |
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1.4.5 The trace of a matrix

By the term trace of the (symmetrical) mattx we mean the sum of the diagonal
elements. i.e.

tI‘(A) = zn: Qi -
i=1

For (square) matriceA andB the following holds
tr(AB) = tr(BA). (1.5)

Furthermore we have that the trace equals the sum of eigenvalues, i.e.

tI‘(A) = i >\z

This follows trivially from 1.5 and theorem 1.10
For positive semi-definite matrices the trace is therefore another measure of "size” of a
matrix. If the trace is large then at least some of the eigenvalues are large. On the other
hand this measure is not sensitive to if some eigenvalues might be 0, i.e. if the matrix
is degenerate. The determinant is sensitive to that, since we recall

det(A) = [ M.

=1

We note further that for an idempotent matAx we have that

tr(A) =rg(A).
Further we have

t(BB") = g(B),

whereB~ is an arbitrary pseudo-inverse Bf

Finally we note that for a regular matr8 we have that

tr(S"BS) = tr(B).
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1.4.6 Differentiation of linear form and quadratic form

Letf: R™ — R. We will use the following notation for the vector of partial derivatives

of(T)
of) ot | "
ox ox af(.m)

ox .,

The following theorem holds for differentiation of certain forms

THEOREM 1.24. For a symmetricaln x n)-matrix A and an arbitrary.-dimensional
vectorb it holds that

) 2 (bx)=0b
i) 2 (z'x) = 2

iii) %(az’A x) =2Azx.

PrRoOF 1.23. The proof of i) and ii) are trivial. iii) is (strangely) proved most easily
by means of the definition. For an arbitrary vedwomve have that

(x +h)A(x+h)=2’Ax+h'Ah+2h'Ax
By choosingh = (0,...,h,...,0) we see that

P h

9%, (x'Ax)=2 Z aijTj,
j=1
and the result follows readily. [ |

We will illustrate the use of the theorem in the following

ExAaMPLE 1.8. We want to find the minimum of the function

g(0)=(y—A0)B(y—-A¥),
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wherey, A andB are given an® is further positive semidefinite (and symmetrical).
Sinceg(0) is convex (a paraboloid, possibly degenerate), then the point corresponding
to the minimum is found by solving the equation

0

First we rewriteg. We have that

2(0) = yBy-60A'By+60A'BAO—_yBAG
yBy—-2yBAO+6'A'BAF.

Here we have used that
OA'By=yBA6
(both1 x 1 matrices, i.e. a scalar, and each others transposed). From this follows that

Jg
5 = 2A'By+2A'BA#
80 y + b

and it is seen that

98 _

-0 A'BAO=A'By.
00 - y

This equation has as mentioned always at least one roABfA is regular then we
have

Omin = (A’BA)"'A'By.
If the matrix is singular, then we can write
emin = (AIB A)_AIB Yy,

where(A’B A)~ denotes a pseudo-inverseAfB A. ¢

We are now able to find an alternative description of the principle axes in an ellipsoid,
due to

THEOREM 1.25. Let A be a positive definite symmetrical matrix. The principle
directions of the ellipsoidZ. with the equation

T’Ax =c, c>0
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are those directions whes€x, = € E., has stationary points. A

PROOF 1.24. We may assume that= 1. We then need to find the stationary points
for

with the condition that
TAzr=1

We apply a Lagrange multiplier technique and define
o(x,\) =’z — ANz'Axz —1).

Be differentiation we obtain

3_(,0 =2 — 2)\A x.
ox

If this quantity is to equal, then

r=MNAzx
or
1
Ax=—x,
A
i.e. x must be an eigenvector. [ |

1.5 Tensor- or Kronecker product of matrices

Itis an advantage to use this product when treating the multidimensional general linear
model.

DEFINITION 1.4. Let A be anm x n matrix and letB be ak x £ matrix. By the
term tensor - or Kronecker product Af andB we mean the matrix
a11B cee (llnB

amB - amnB
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This concept corresponds to the tensor product of linear projections, which can be
stated independently of coordinate system (see e.g. [3]). It this is introduced in coor-
dinate form then we can either use 1.6 or equivaledlyp B = (Ab;;). This only
corresponds to changing the order of the coordinates, i.e. to changing row and columns
in the respective matrices. A

We briefly give some rules of calculation for the tensor-product. These are proved tri-
ally by means of the definition.

ORA=AR0=0
(A1 +A2)B=A; 3B+ A;,®B
i) A(B1+B2) =A®B; +A®B;
V) A ® B =afA®B
V) AjA; ® BBz = (A1 ® B1)(A2 ® By)
vi) (A®B)~! = A~ ® B~} ifthe inverses exist
Vi) (A®B)" =A" @B~
vii) (A®B) =A'®B’

ix) Let A be symmetrical ang x p, have eigenvalues, ..., «, and eigenvectors
xz;, and letB, be symmetrical ang x ¢, have eigenvalues,,...,3, and
eigenvectory,,...,y,. ThenA ® B will have the eigenvalues;(;, i =
1,...,p,j =1,...,q, with corresponding eigenvectors.

T1iY;
(wi (24 Y; N)
Z;m'yj

X) det(A ® B) = (det A)?(det B)?

1.6 Inner products and norms

Forn-dimensional vectors we note that the inner product or scalar product or dot prod-
uct ofx andy is defined by

u1 n
w.y:w’y:(xl...In) :iny’h

i=n
Yn
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1%
+
I

2 +yl|®
=(z+y)(z+y)
rr+zx'y+yr+yy
=z'z+y'y

= [l2]* + [lyl1*.

[=]
1%

and we note that andy are orthogonal if and only if
z-y=x'y=0.

The corresponding norm is

N

We note that|x — y|| represents the euclidian distance between the psirdaady.

For orthogonal vectorgs andy (i.e. L y) we have the pythagorean theorem
lz +yl* = ll]* + [lyl*;

see figure 1.6. Further we note that the (orthogonal) projeptioh of a vectorz onto
the sub-spac® can be determined by means of the norm, since we havethatis
given by

|z —p(x)| = min |z — ||

Due to the Pythagorean theorem
we have that
Iz — p(a)]?

=z - 2|,

i.e. the minimal value of

= ||z — z||?, and therefore of
= || — z|| is achieved for

z = p(x).

= llz = p()]?

ProOF 1.25.
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It is now very easy to show that the validity of the above results only depend on 4
fundamental properties of the inner product. If we term the inner product ahdy
by (x]y) then they are

IP1: (z[y) = (y|x)

IP2: (z +ylz) = (z[z) + (yl2)
IP3:  (kz|y) = k(z|y)

IP4: x#0= (x|z)>0.

For an arbitrary bi-linear forn|-) , which satisfies the above one can define a concept
of orthogonality by

zly & (x]y) = 0.

For an arbitrary positive definite symmetrical mattixwe can define an inner product
by

(xly)a = z'Ay.

Itis trivial to prove that IP 1-4 are satisfied. for this inner product and the corresponding
norm given by

lza = V(zlz)a = Ve'Aw,
we will - whenever it does not lead to confusion - use the tefatg) and|z||.
We note that the set of points with constaat-norm equal to 1 is the set

{z| ||* =1} = {z|lz'Az = 1},

i.e. the points on an ellipsoid.

Conversely, to any non-degenerate ellipsoid there is a corresponding positive definite
matrix A, so

E={ale'Aw =1} = (o] |24 = 1).

In this way we have brought about a connection between the set of possible inner
products and the set of ellipsoids.

Two vectorse andy are orthogonal (with respect t), if

Ay =0,
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i.e.ifx andy are conjugate directions in the ellipsoid corresponding to

Itis also possible to introduce a concept of angle by means of the definition

e alb)
cos(<a,b) = Tl

We now give a lemma which we will need for the theorems of independence of projec-
tions of normally distributed stochastic variables.

LEMMA 1.1. Let R™ be partitioned in a direct sum
R'"=U,®--- 0 Uy

of n; dimensional sub-spaces. These are orthogonal w.r.t. the positive definite matrix
»-L e,

rlysr/S ly=0.

Fori=1,...,k we let the projectiomp; ontoU; be given by the matrixC;. Then
CiXC;=0

foralli # j. Furtmermore, we have

sl =0t = Oz

3
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PrROOF 1.26. Sincep; o p; = p;, we have

and since

pi(x) Lx —pi(x), X

. . x-p, (x)

(cf. the illustration) we have *

pi(@) T~ (@ — pi(x)) = 0,
i.e.

)

xC,X Hx — Ciz] = 0.

This holds for allz, and therefore
P, (x)

C/s(I-C;) =0,

or

cx'=cz'c,

(2

The right hand side of the equation is obviously symmetrical, so that

cxt=x"1C,.

7

By pre- and post-multiplication witl we get

C =C%,
o)

C,XC,=C,CX=0C3X.
This gives

C,=C, =C;EC/C,=C;T0=0.

The second-last equal sign follows from the fact that the sum is direct, so tor ill
holds that

pi(pi(z)) =0,
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Sincex - as was mentioned previously - is arbitrary, then this implies

or



Chapter 2
Multidimensional variables

In this chapter we start by supplementing the results on multidimensional stochastic
variables, given in chapter 0, volume 1. Then we discuss the multivariate normal dis-
tribution and distributions derived from it. Finally we shortly describe the special con-
siderations that estimation and testing give rise to.

2.1 Moments of multidimensional stochastic vari-
ables

We start with

2.1.1 The mean value

Let there be given a stochastic matrix, i.e. a matrix, where the single elements are
stochastic variables:

Xll Xln

Xk'l e an
We then define the mean value, or the expectation value, or the expected vl of

E(X11) -+ E(Xin) M1l o Hin
E(X) = : : = : : = H-
E(Xk1> ce E(an> Kkl e Hin

57
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THEOREM 2.1. Let A be ak x n matrix of constants. Then
E(A +X) = A + E(X).

This theorem follows trivially from the definition as does the following. A

THEOREM 2.2. Let A andB be constant stochastic matrices, so that andxB
exist. Then

E(AX) = AEX)
E(XB) = EX)B
A
Finally we have
THEOREM 2.3. Let X andY be stochastic matrices of the same rank. Then
EX+Y)=EX)+E(Y).
A

REMARK 2.1. We have not mentioned that we of course assume, that the involved
expected values exist. This is assumed here and in all the following, where these are
mentioned.

2.1.2 The variance-covariance matrix (dispersion matrix).

The generalisation of the variance of a stochastic variable is the variance-covariance
matrix (or dispersion matrix) for a stochastic vec¥r It is defined by

D(X) =2 = E{(X —p) (X — )},

where
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It should be noted, thay(X') also often is called the covariance-matrix and is then de-
notedCov(X). However, this is a bit misleading, since it could misunderstood as the
covariance between two (multidimensional) stochastic variables. Another commonly
used notation i8/(X). Furthermore, we note that

X1 —m
(X —p) (X —p) = (X1 —p1s s Xy — ) =
Xn — Hn
(X1 —m)? (X1 —p1)(Xo —p2) - (X1 — ) (X — pn)
(X2 — p2) (X1 — p1) (X2 — p2)? s (Xo = p2)(Xn — pin)
(X = ) (X1 — 1) (K= i) (Ko =)+ (X — )’

i.e. the variance-covariance matrixis j)'th element isCov(X;, X;), or

V(Xl) COV(Xl,XQ) e COV(Xl,Xn>
COV(XQ,Xl) V(XQ) s COV(XQ,Xn>
X =D(X) = : : . :
Cov(X,,X1) Cov(X,,X2) --- V(X))

We will often use the following notation

2
01 012 - Olin 011 012 - Oln
2
021 03 o O2p 021 022 -+ O2pn
Y= . . . = . . . ;
2
Onl On2 T (o Onl On2 T Onn

i.e. the variances can be denoted bothasind asr;;. We note, thak is symmetric.
More interesting is the following

THEOREM 2.4. The variance-covariance matr® for a stochastic vector (i.e. a
multidimensional stochastic vector) is positive semidefinite. A

PROOF 2.1. For any vectory we have

¥y = ¢y E{(X -w)(X -}y
E{y (X — p)(X — )y}

= E{[(X -yl (X — )y}
> 0;

since the expression in the curly bracket%is§. [ |
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Theorems exist which are analogous to the ones known from the one dimensional
stochastic variables.

THEOREM 2.5. Let X andY be independent. Then
D(X +Y)=D(X)+D(Y).
Letd be a constant. Then we have
D(b+ X) =D(X).
If A is a constant matrix, so tha&t X exists, then the following holds

D(AX)=AD(X)A"

PrRooOF 2.2. The first relation comes from

Cov(X; +Y;,X,+Y;) = Cov(X;,X;)+ Cov(X,,Y;) +
Cov(Y;, X;) + Cov(Y;, Y;)
= COV(Xian> + COV(Y;',Y}),

sinceCov(Y;, X;) = 0, becauseX; andY; are independent. The second relation is
trivial. The last one comes from

DAX) = B{(AX -Au(AX - Ap)}
E{A[X — u][X — ulA"}
AE{X — H)[X — ) }A’

= AD(X)A’

= AXA

If we let

1 1
V = diag (—,...,—) =
01 On
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and we "scale’X byV, we get

1 g12 Oin
01 02 01 0n
o112 1 ce. O
DIVX)=VEIV =| "7 72 on
Oin O2n 1
01 0n 02 0n

We note, that the elements are the correlation coefficients betXeercomponents,
which is why this matrix is also called the correlation matrix %¢r and we write

1 e Pin
R(X)=| e
Pin " 1
where
Cov(X;, X;)

pig = Cor(Xe. X)) = N

2.1.3 Covariance

Let there be given two stochastic variables

X, Y,
X = : and 'Y =
X

p Yy
with mean valueg. andv. We now define the covariance betweEnandY as

COV(Xl,Yl) COV(Xl,Y:]>
C(X,Y) = E[(X ~ w)(Y —v)] = ; ;
Cov(X,, V1) -+ Cov(X,,Y,)

Then
C(X,X) =D(X)
and
C(X,Y) = [c(Y, X))

Less trivial is
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THEOREM 2.6. Let X andY be as above, and lé&¢ andB ben x p andm x ¢
matrices of constants respectively. Then

C(AX,BY)=AC(X,Y)B.

If U is ap-dimensional and/ is ag-dimensional stochastic variable the following
holds

C(X + Uv Y) = C(Xa Y) + C(U’ Y)
C(X,Y+V)=Cc(X,Y)+C(X,V).
Finally

DIX+U)=DX)+DU)+C(X,U)+ (U, X).

PrROOF 2.3. According to the definition we have

C(AX,BY) = E[(AX—-Apu)(BY —Bv)|
E[A(X - p)(Y —v)'B/]
E[(X — p)(Y - v)|B’
C(X,Y)B'.

AE
A

This proves the first statement. Similarly - if we B{U) = 6 -

=

C(X+U,Y) (X4+U-p—-8)(Y —v)]
E(X —p)(Y —v) + (U - 0)(Y —v)]
E[(X —uw)(Y —v)]+E[(U - 8)(Y —v)

= C(Xa Y) + C(Ua Y)a

and the corresponding relation with + V' is shown analogously. Finally we have

D(X+U) = C(X+U,X+U)
C(X,X)+C(X,U)+cU,X)+c(U,U)
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If C(X,Y) =0 thenX andY are said to be uncorrelated. This corresponds to all
components oX being uncorrelated with all components¥of

Later, when we consider the multidimensional general linear model we will need the
following

THEOREM 2.7. Let X4,..., X,, beindependenp-dimensional stochastic variables
with the same variance-covariance mafilx= (o;;). We let
X’1 X1 o Xp
X=| =] : :
X;L Xln e Xpn

(Note, that the variable index is the first index and the repetition index is the second).
If we define

ve(X) =

i.e. as the vector consisting of the column&Xin(vc = vector of columns) we get
D(v¢(X)) =2 ®1,,

wherel,, is the identity matrix of n’th order. A

PrROOF 2.4. Follows trivially from the definition of a tensor-product and from the
definition of the variance-covariance matrix.

2.2 The multivariate normal distribution

The multivariate normal distribution plays the same important role in the theory of
multidimensional variables, as the normal distribution does in the univariate case. We
start with
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2.2.1 Definition and simple properties

Let Xy,...,X, be mutually independent, N(0,1) distributed variables. We then say
that

X1

are standardised (normegtdimensionally normally distributed, and we write
X € N(Oa I) = NP(07I)5

where the last notation is used, if there is any doubt about the dimension.We note, that

We define the multivariate normal distribution with general parameters in

DEFINITION 2.1. We say that the-dimensional stochastic variab is normally
distributed with parameteys and, if X has the same distribution as

nu+AU,

whereA satisfies
AA =3,

and wherdJ is standardisegd-dimensional normally distributed. We write
X € N(u, 2) = N, (1, %),

where the last notation again is used, if there is any doubt about the dimensioa.

REMARK 2.2. The definition is only valid, if one shows, thAt A’ = B B’ implies
E(u+AU) =£(p+BYV),

whereU andV are standardised normally distributed and not necessarily of the same
dimension. The relation is valid, but we will not pursue this further here. From theo-
rem 1.10 follows that for any positive semidefinite mat¥ix there exists a matriA
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with A A’ = X, so the expressioN(u, 33) makes sense for any positively semidefi-
nitep x p matrixX and anyp-dimensional vectop.

Trivially, we note that
XeNp,x = HEX)=p A i)DX)=X

i.e. the distribution is parametrised by its mean and variance-covariance matrix.

If 3 has full rank, then the distribution has the density given in

THEOREM 2.8. Let X € N, (u,X), and letrd>) = p. ThenX has the density

1 1 1 et
(@) = = o el 5@ — w0
1 1

where the norm used is the one definedby' , see p. 53. A

PROOF 2.5. LetU € N,,(0,I). ThenU has the density

hw) = [[ = ew(-3u0) = —en(-3 ) )

We then consider the transformation frati — RP given by
u—xr=p+Au

whereA A’ = X. From theorem 1.14 it follows thak is regular. We obtain
u=A"(z— p),

giving

wu = (x—p)A VA (- p)
(z —p)E "z — p).
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Furthermore, since

det(X) = det(A A’) = det(A)?,

i.e.
det(A™1) = !
vdet X2
the result follows from theorem 0.8 in volume 1. [ |

We note that the inverse variance-covariance maix is often called the precision
of the normal distribution.

If 32 is not regular, then the distribution is degenerate and has no density. We then
introduce the concept of the affine supportin

DEFINITION 2.2. Let X € N,(u,X). By the (affine) support foX we mean the
smallest (side-) sub-space Bf, whereX is defined with probability 1. A

REMARK 2.3. If we restrict the considerations to the affine support, t&eris regu-
larly distributed and has a density as shown in theorem 2.8. \/

We have different possibilities of determining the support pfdimensional normal
distribution. Firstly

THEOREM 2.9. Let X € N, (i, X), and letA be anp x m matrix, so thatA A’ =
3. We thenletV equal’s projection-space, i.e.

V={veRP|IFue R": :v=Au}.
Then the (affine) support foX is the (side-) sub-space

p+V={p+ojveV}

PROOF 2.6. Omitted. ]

Further, we have
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THEOREM 2.10. Let X be as in the previous theorem. Then the subspaequals
the direct sum of the eigen-spaces corresponding to those eigenvallewlrich are
different from 0. A

PrROOF 2.7. Omitted. [ |

Finally we have

THEOREM 2.11. Let X be as in the previous theorems. Then the subspace V equals
the orthogonal complement to the null-spaceXjri.e.

V={vZv=0}"

PrRoOOF 2.8. Omitted. [ |

The three theorems are illustrated in

EXAMPLE 2.1. We consider

1 1 2 2
XeN 21,12 5 3 = N(u, X).
4 2 3 5
Since
1 2 2
det 2 5 3 =0,
2 3 5

thenX is singularly distributed, and we will determine the affine support.

We first seek a matriA, soA A’ = 3. To dothat we first determing’s eigenvalues
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and (normed) eigenvectors. These are

ri
)\1:9 A p1: g 3
L 3
0
)\2:2 A P2 = % s
_V2
L~ 2 |
© o3 ]
3
Aa=0 A py3=| -2
_ V2
L 6
It now follows that
10 22779 0 0 : 3 5
n=]2 2 _2 02 0 0o 2
5 i o _villoool| |z B s
3 2 6 3 6 6
From this we see that we @-matrix can choose
1 00 L0 22 V9 0 0
A=|2 10| (=|2 £ _¥& 0 v2 0|
2 -1 0 % 7@ fg 0 0 0

If we regardA as the matrix for a linear projectiaR® — R> we then obtain that the
projection-space is

V = {AulucR*
= {uip; + uapy|ur € RAug € R}.

Itis immediately noted that this is also the direct sum of the eigen-spaces corresponding
to the eigenvalues which are different from 0.

The null-space foE is given by
Yu=0 & u=t-p;.

This again gives the same description of V.

The affine support fok” is then the (side-) sub-space

1 i 0
M+V: 2 —+ uq é —+ U9 \/75 |U1,U2€R
4 : _z
2
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REMARK 2.4. From the example the proofs of theorems 2.9-2.11 can nearly be de-
duced completely. v

We now formulate a trivial but useful theorem.
THEOREM 2.12. Let X € N(u,X). Then

AX+beNAp+b ASA),

where we implicitly require that the implied matrix-products etc. exist.

PrROOF 2.9. Trivial from the definition. [ |

2.2.2 Independence and contour ellipsoids.

In this section we will give the conditions for independence of the normally distributed
stochastic variables, and we will prove that the isocurves for the density functions are
ellipsoids. First we have

THEOREM 2.13. Let
X 1231 Y X
X = eN , .
[ Xo ] ({ Mo o1 Yo
Then
X € N(py, i),
and
X1, X, are stochastically independentss X5, = 3,5, =0,
where0 is the null matrix. A
PrROOF 2.10. The first statement follows from the previous theorem. The second

follows by proving that the conditiok;» = 0 assures, that the distribution becomes
a product distribution. ]
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Figure 2.1: Density functions for two-dimensional normal distributions with the
variance-covariance matrices

(05) (o) (o0 27 )ena( a5 37)
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From the theorem follows that the components in a ve&for N(u, X) are stochas-
tically independent it is a diagonal matrix. We will now show that independence is
just a question of choosing a suitable coordinate-system.

Let X € N(u,X) and letX have the ortho-normed eigenvectgrs ..., p,,. We
now consider a coordinate system, with origoin and the vectorp,,...,p, as
base-vectors. The coordinates in this system are cglled

If we let

P= (plv"'apn>a

we have the following correspondence between the original coordinasesl the new
coordinategy for any pointe R™.

y=Px-pn & z=Py+up,

cf. p. 12.

Note: The above relation is a relation between coordinates for a fixed vector viewed in
two coordinate-systems.

Using this, if we letY” be the new coordinates f& we have

THEOREM 2.14. Let X € N(u,X) and letY be as above. Then

Y € N(0,A),
whereA is a diagonal matrix witlE’s eigenvalues on the diagonal. A
PrROOF 2.11. Follows from theorem 2.12 and theorem 1.10. ]

REMARK 2.5. By translating and rotating (or reflection of) the original coordinate-
system we have obtained, that the variance-covariance matrix is a diagonal matrix. l.e.
that the components in the stochastic vector are uncorrelated and thereby also indepen-
dent. \/

By rescaling the axes we can even obtain that the variance-covariance matrix has zeros
or ones on the diagonal. Considering the base-vectors

CiP15--+CnPnp,
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where

1 if ).
= 7 !f>\2>0
1 If)\i:O ’

cf. p. 31, and calling the coordinates in this systemwve get the equation
z=C'P'(z—p)=PC)(z—p),

whereC = diag(cy, ..., cn).

If we let thez -coordinates folX equalZ we get
Z =N(0,E),

where
E=(PC)EXPC=CPXEZIPC=C'AC

has zeros or ones on the diagonal.

The transformation into the new bases is closely related to the isocurves for the density
function for the normal distribution.

As mentioned earlier the density for 8 € N(u, X) is
f(2) = k- exp(—y(@—p)'S (@ )
= k- ep(—5 (e - ul)).
Therefore we have
fx)=k & (@-p'S'(z-—p=c
wherek; andc are constants. Sinc8—!, is positive definite the isocurves
E. ={z|f(x) = k1}

will be ellipsoids, cf. p. 40. From theorem 1.19 is also seen that the major axes in these
ellipsoids are the eigenvectors far!, but from theorem 1.12 we note that they are
also eigenvectors faE. In the new coordinates the densities become

1.1
=k- B 3 iy
g(y) exp(—3 Aiyz)v
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where)\; is thei'th eigenvalue fox2, and
1 2
h(z) =k - exp(—gZzi )-

The ellipsoidsF; are often called contour-ellipsoids. From the above we get

THEOREM 2.15. LetP andC be as above. Then
(X — p)(PC)(PC)(X - p) € \*(1g ).
If X has full rankp then

(X —p)S X —p) =X —pl* € xX*(p).

PROOF 2.12. (X —p)(PCYPC) (X —p)=2'Z =%672,
whereo; = 1 if \; £ 0 and equal to 0 otherwise.

Since the non-degenerate componentg imre stochastically independent and N(0,1)-
distributed the result follows immediately. The last remark comes from

PC(PC)=PCCP =PA'P=%""

REMARK 2.6. The result of the theorem is that the probability of an outcome being
within the contour ellipsoid can be computed using?adistribution. v

Examples of these concepts will be given in example 2.3, where we consider the two-
dimensional normal distribution.

2.2.3 Conditional distributions

In this section we consider the partitioning of a stochastic variddle N,(u,X),
into

X1 ey Y Y2
X = ; = ;o M= .
BN
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We then have

THEOREM 2.16. If X5 is regularly distributed, i.e. i&5; has full rank, then the
distribution of X'; conditioned onX, = x5 is again a normal distribution, and the
following holds

E(X1[Xo=22) = py+ 1255 (22— py)
DX 1| X2s=22) = X1 — 21222721221-

If 39, does not have full rank then the conditional distribution is still normalgngd
in the above equations should be substituted by a generalised itvgyse A

PROOF 2.13. The proof is technical and is omitted, however cf. section 2.2.5.1

REMARK 2.7. Itis seen that the conditional variance is independemtof This result
is not valid for all distributions, but is special for the normal distribution. Also we see
the conditional mean is an affine functionof, cf.the discussion in section 2.3.3¥

We will not discuss the implications of the theorem here. Instead we refer to the exam-
ples in section 2.2.5.

2.2.4 Theorem of reproductivity and the central limit theo-
rem.

Analogous to the theorem of reproductivity for the univariate normal distribution we
have

THEOREM 2.17. (Theorem of reproductivity). LeX 1, ..., X beindependent, and
let X; € N(p;, %;).

Then
k

iz:XieN<Zui,zk:2,->.

i=1 i=1

PrRoOF 2.14. Omitted. [ |
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As in the univariate case, central limit theorems exist, i.e. sums of independent multidi-
mensional stochastic variables are under generel assumptions asymptotically normally
distributed. We state an analogue to Lindeberg-Levy's theorem.

THEOREM 2.18. (Central limit theorem). Let the independent and identically dis-
tributed variablesX 4, ..., X ,, ... have finite first and second moments

p=E(X;),3 =D(X;).

Then we have - withX,, = 2(X; + -+ + X,) - that

\/E(Xn - “’)

has arlN(0, X) -distribution as its limiting distribution, and we say th¥t, is asymp-
totically N(p, 1 30) distributed. A

PROOF 2.15. This and the previous theorem can be proved from the corresponding
univariate theorems by first using a theorem, which characterises the multivariate dis-
tribution (a multidimensional variable is normally distributed if and only if all linear
combinations of its components are (univariate normally distributed); and by using a
theorem which characterises a multivariate limiting distribution as limiting distribu-
tions of linear combinations of the components (coordinates). However, this is out
of the scope of this presentation and the interested reader is referred to the literature
e.g. [18], section 2c.5. ]

2.2.5 Estimation of the parameters in a multivariate normal
distribution.

We consider a number of observatioXs, ..., X,, which are assumed independent
and identicallyN, (u, X) distributed. We assume there are more observations than
the dimension indicates, i.e. that> p. In this section we will give estimates of the
parameterg. andX.
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We introduce the notation

X1
X, = |
Xpi
n Xl
X = %ZXZ: :
=1 Xp
1 - 1 «— R
—1§ J(Xi = X)'= 73 2 XXy o X X

If we consider the data-matrix
X'1 X1 - Xp
X, Xiw o Xpn

where thei'th row corresponds to théth observation, we can also write

(n-1)8=> (X;- X)(X; - X)) =X'X-nXX"
=1
With this we can now state

THEOREM 2.19. Let the situation be as stated above. Then the maximum likelihood
estimators fop, andX equal

p = X
$ - olgo lf:(x- ~ X)(X; - X)
N n  n P ! ! ’
fv is an unbiased estimate pf andS is an unbiased estimate BI. A

PrROOF 2.16. Proof. Omitted, see e.g. [2], chapter 3.

REMARK 2.8. Since the empirical variance-covariance ma$ixs an unbiased esti-
mateE and since it only differs from the maximum Iikelihood estimator by the factor

nl’

One should in each case be aware of what the expre3siprecisely means.
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The distribution oft: comes trivially from theorem 2.2.4. The following holds

=X eNy(p, EE)'
The distribution ofS is more complicated. It is stated in section 2.5.
We give an example of estimating the parameters in the following section

2.2.6 The two-dimensional normal distribution.

We now specialise the results from before to two dimensions.

] be normally distributed witliu, 33), where

Let X = { ﬁ;
w= ]
and
=[5 %]
Since
det(X) = 0?02 — 0,
is, if det () # 0,
AR
—o12 03 ’

1
= o202 — o2
103 12

Introducing the correlation coefficiept

012
o1 02’
we get
1 —p
»-1_ 1 o? o102
T 1= 2 —p 1 )
p 0102 o2
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(1)

Figure 2.2: The density of a two-dimensional normal distribution.

and the density becomes

f(xl,xg) =
1 1

2770’10'2 1—/)2

exp

1 1 3317#12
21—/)2 g1

2
T1 — M1 T2 — {2 L2 — K2
—2 .
P 01 g2 +[ 02 }}]

The graphis showninfig. 2.2 Itisimmediately seen that we have a product distribution
i.e. thatX; andX, are stochastically independentpif= 0, i.e. if ¥ is a diagonal
matrix.

The conditional distribution of{; conditioned onX, = x5 is proportional to the
intersecting curve between the plane thro(@h:,, 0) parallel to the (1)-(3) plane. If
we denote the density aswe have
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wherec is a normalisation constant. We have

[ 1 1 xl—mQ T1 — M1 T2 — M2
= k- = S WSt S ke B o)
g(x1) 1 exp 21_p2{[ o } s p
11 1 — [ wy—p2 ]’
= ko - _Z _
2 oxp 21—p2|: g1 P ()
i 11 71 ) 2
= ky-exp |-z |21 —p1 —p— (22—
3 p 20%(1—p2) 1~ M1 PUQ 2 — M2
1 2
= k‘5 - exXp -72—72(1'1 751) .

Note that no bookkeeping has been done with respeet to It has disappeared into
different constants. From the final result we note that the conditional distribution is
normal and that

1
k3 = ————,
V2mo14/1 — p?

and finally that

E(Xi|Xo =x2) =& = + Pz—;(xz = p2)
and

V(X1| Xz = 22) = 7% = 07 (1 — p?).

We have shown the result of theorem 2.16 for the ease2. Note, that the conditional
mean depends linearly (or more correctly: affinely) upen and that the conditional
variance is independent of. Further we have

V(X1 X2 = 22) < V(X1),

and the squared coefficient of correlation represents the reduction in variance. i.e. the
fraction of X;’s variance, which can be explained Ky, since

s V(X1) = V(X1]|Xp = 29)
a V(X1)

In the following example we consider a numerical example which also involves an
estimation problem.
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ExampPLE 2.2. In the following table corresponding values of the air's content of
flying dust measured i#%. is shown. Two different measuring principles were used,

a measure of grey-value (using a so-called OECD instrument) and a weighing principle
(using a so-called High Volume Sampler). Among other things the reason for the large
deviations is that the measurements using the grey value principle are sensitive to flying
dust’s deviation from "normal dust”. In this way, a large content of calcium dust in the
air could result in the measurements being systematically too small.

I 2 5 15 16 16 19 26 24 16 3
Method | I 2 12 4 21 41 14 31 29 31

I |39 42 44 40 42 42 50 51 58 6
1130 44 26 60 34 34 14 41 58 4

~ s O

We consider this data as being observations from independent identically distributed
stochastic variables

X1 X20

Yl B }/2() ’
We will examine whether we can assume the distribution is normal with parameters
(u, X). If the distribution is normal, we find the estimates

[ _[X]_]3235
P=1 i | T 1Y | 7| 2905 |
and
5 ot o2 | _ [ Sf S ] _[311 182
612 03 Si12  S32 182 279 |’
whereX is the unbiased estimate Bf. Specially we have

LS - X)),

i=1

512 =

n—1

We now want to check if the observations can be assumed to come from a normal
distribution with parameteri, 3). To do that we first estimate the contour ellipses.
The eigenvalues and eigenvectors¥brare
- . [ 0.736
A =477613 and p, = 0678 ]

and

Xo = 112,676 and p, = ’8%2 } :
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If we choose the coordinate system with origogin and withp,; andp, as base
vectors, the contour ellipsoids have equations of the form

or

2 2

z z

1 2
+

A77.613 112676

where the new coordinates are given by

Pz = (ppy)z=x—[i.

In figure 2.2 we show the observations and 3 contour ellipses correspondingdo the
valuesc; = X2(2)()‘4() =1.02,¢c5 = X2(2)0‘80 =3.22 andcs = X2(2)()‘95 = 5.99.

This has the effect (see theorem 2.15) that in the normal distribution with parameters
(j1,%) we have the probabilitie$0%, 80% and 95% of having the observations
within the inner, the middel and the outer ellipse. For the areas between the ellipses
resp. outside these, we have the probabiliti#s, 40%, 15% and5%. These numbers

can be compared to the corresponding observed relative probabilifigs30%, 30%

and0%. The fitis - if not overwhelming - at least acceptable.

If one wants a more precise result, one can perforg? a-test. It would then be
reasonable to divide the plane further according to the eigenvectors. In the case shown,
this would result id x 4 areas with estimated probabilities 4%, 10%, 3.75% and

1.25%. One can then compute the usydl test-statistic:

Z (observed- expectedf
expected

and compare it with &%(n — 6) distribution (we have estimated 5 parameters). In the
present case there are not really enough observations to perform this analysis.
The correlation coefficient is estimated at

182
= 0.62

P= Bt 20

and the conditional variances are estimated at

(X|Y =y) = 311(1—p*) =192

\A/,
VY|X =2) = 279(1—p*) = 172.
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82

60+

50

Figure 2.3: Estimated contour ellipses and estimated density function corresponding to

the data in example 2.2
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We see, that the conditional variances have been reduced by 38% corresponding to
p? = 0.38. That the conditional variance of e.g. an OECD-measurement for given
High Volume Sampler measurement is substantially less than the unconditional vari-
ance seems rather reasonable. We know, that the amount of flying dust measured using
a High Volume Sampler is found as e.g.£%, so we would not expect to get results

from the OECD-instrument, which deviate grossly. This corresponds to a small condi-
tional variance. If the result from the High Volume Sampler is unknown, then we must
expect a measurement from the OECD-instrument can lie anywhere in its natural range

of variation - corresponding to a larger unconditional variance. ¢

2.3 Correlation and regression

In this section we will discuss the meaning of parameters in a multidimensional nor-
mal distribution in greater detail. First we will try to generalise the properties of the
correlation coefficient seen in the previous section.

2.3.1 The partial correlation coefficient.

The starting point is the formula for the conditional distributions in a multi-dimensional
normal distribution. LeiX € N, (p, X), and let the variables be partitioned as follows

X Hq Y Yo
X: M = M E:
B I B R

whereX ; consists of then first elements inX and likewise with the others. Then the
conditional dispersion oX; for given X, = x, is, as was shown in theorem 2.16,
equal to

D(X1|X2 = m2) - 211 - 21222_21221.

By the partial correlation coefficient betweéfy and X;, i,7 < m, conditioned
on (or: for given)X, = x> we will understand the correlation in the conditional
distribution of X'; given thatX, = x». Itis denoted by, q1,... p-

Let

2
0'1 e O—lp
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and

aix - Aim
—1 . .
- 212222 Yo = : : )

Aim - Amm

we now have

Qi

Pijlm+1,...,n = 7\/(1—“\/@

For the special case & being three dimensional we have with

2
ok} P120102 P130103
2
Y= pi120102 lop 230203 |,
2
P130103  P230203 o3

that

DI PP M

_ [ ot przoroy | 1 [ pisoiol P13p23010205
P120102 o3 02 | prap2so10203 330503
_ ot (1 - pis) o102(p12 — p13p23)
a102(p12 — p13p23) a5(1 */%3)

From this follows that the partial correlation coefficient betwéen and X, condi-
tioned onX3 is

prafs = P12 — P13P23
123 = .
\/(1 —pis)(1 — p33)

For ap-dimensional vectoX we therefore find

Pij — PikPjk
Pijlk = = > — > **)
NCE AR

Since itis possible to find conditional distributions for givEp,+1, . . ., X, by succes-
sive conditionings we can therefore determine partial correlation coefficients of higher
order by successive use of (**). E.g. we find

. Pijlk — Pillk * Pjllk
Pijlkl = > R
\/(1 - Pi”k) (11— le|k)
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C3S GA  BLAINE Strength 3  Strength 28
CsS 1 -0.309 0.091 0.158 0.344
CsA -0.309 1 0.192 0.120 -0.166
BLAINE 0.091 0.192 1 0.745 0.320
Strength 3 | 0.158 0.120 0.745 1 0.464
Strength 28| 0.344 -0.166 0.320 0.464 1

Table 2.1: The correlation matrix for 5 cement variables.

here we have first conditioned ofi, and then conditioned oX.

In section 2.2.6 we saw that the (squared) correlation coefficient is a measure of the
reduction in variance if we condition on one of the variables. Since the partial correla-
tion coefficients are just correlations in conditional distributions we can use the same
interpretation here. We have e.g. théjt‘ « 9ives the fraction ofX;’s variance for

given X, = z;, andX; = z; which is explained byX;. It should be emphasised

that these interpretations are strongly dependent on the assumption of normality. For
the general case the conditioned variances will depend on the values with which they
are conditioned (i.e. depend afp andx;).

When estimating the partial correlations one just estimates the variance-covariance ma-
trix and then computes the partial correlations as shown. If the estimate of the variance-
covariance matrix is a maximume-likelihood estimator then the estimates of the partial
correlations computed in this way will also be maximum likelihood estimates (cf. the-
orem 10 p. 2.28 in volume I).

We will now illustrate the concepts in
ExampPLE 2.3. (Data are from [17]).

In table 2.1 correlation coefficients between 3- and 28-day strengths for Portland Ce-
ment and the content of mineralg & (Alit, Tricalciumsilicat CaSiO;) and GA
(Aluminat, Tricalciumaluminat, GgAl,Og), and the degree of fine-grainedness (BLAINE)
are given. The correlations are estimated using 51 corresponding observations.

It should be noted that{S constitutes about 35-60% of normal portland clinkers and
C3A is about 5-18% of clinker. The BLAINE is a measure of the specific surface so
that a large BLAINE corresponds to a very fine-grained cement.

We will be especially interested in the relationship betwegA Gcontent in clinker
and the two strengths. It is commonly accepted cf. the following figure, that a large
content of GA gives a larger 3-day strength which is also in correspondence with
PCsA Strengths = 0.120.  The problem is that this larger 3-day strength for cement
with large content of @A only depends on §A ’s larger degree of hydratisation (the
faster the water reacts with the cement the faster it will have greater strenglis C

far greater hydratisation after 3 days as seen from figure 2.4(c) and the degree of
hydratisation and its influence on the strengths has been sketched in figure 2.4(d).



(a) Strength by pressure test at ordinary tem-
perature of paste of £5 and GA seasoned
for different amounts of time. (from [13]).

Hydratization depthu

Cja

Time

T T T T
3h 1day 3days 28days

(c) Degree of hydratisation for cement miner-
als and their dependence on time (from [13]).
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Pressure strength
in kp/cm? Pressure strength
in kp/cm?
600 J
C3S
400 400.] // 28 days
200 2004
C3A
T T BLAINE
7 days 28 days 1400 1700 2100 2400

(b) Pressure strengths for different fine-
grainedness of the cement. (from [13]).

Breaking strength

>

Degree of hydratization

(d) Relationship between degree of hydratisa-
tion and strength (from [13]).

Figure 2.4:
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CsS GA  Strength3  Strength 28
CsS 1 -0.333 0.137 0.333
Cs5A -0.333 1 -0.035 -0.246
Strength3 | 0.137 -0.035 1 0.358
Strength 28| 0.333 -0.246 0.358 1

Table 2.2: Correlation matrix for 4 cement variables conditioned on BLAINE.

If we look at the correlation matrix we also see that the content;@f & positively
correlated with the BLAINE i.e. cements with a very high content pAGwill usually

be very fine-grained and as it is seen in figure 2.4(b) this should also help increase the
strength.

Finally we see that the 28-day strength is slightly negatively correlated with the content
of C3A This does not seem strange if we consider the temporal dependeng&'sf C
and GAs as seen in e.g. in figure 2.4(a) even though the finer grain (for cement with
large content of €A ) should also be seen in the 28-day strength cf. figure 2.4(b).

In order to separate the different characteristics §A (rom the effects which arise
from a GA -rich cement seems to be easier to grind and therefore often is seen in
a bit more fine-grained form. Therefore, we will estimate the conditional correlations
for fixed value of BLAINE. These are seen in table 2.3. We see that the partial
correlation coefficient between 3-day strength agé Cfor given fine-grainedness is
negative (note the unconditioned correlation coefficient was positive). This implies
that we for fixed fine-grainedness must expect that cements with a high contey#t of C
will tend to have lower strengths. This might indicate that the large 3-day strength for
cements with high content ofs@ rather depends on these cements having a large
BLAINE (that they are crushed somewhat easier) than that 8ydrates quickly!

We see a corresponding effect on the correlation betweén @nd 28-day strength.
Here the unconditional correlation is -0.168 and the partial correlation for fixed BLAINE
has become -0.246. ¢

REMARK 2.9. The example above shows that one has to be very cautious in the in-
terpretation of correlation coefficients. It would be directly misleading e.g. to say that
a large content of €A assures a large 3-day strength. First of all it is not possible
to conclude anything about the relation between two variables just by looking at their
correlation. What you can conclude is that there seems to be a tendency that a high
content of GA and a high 3-day strength appear at the same time. The reason for this
could be that they both depend on a third but unknown factor without there having to
be any direct relation between the two variables. Secondly we also see that going from
unconditioned to partial correlations can even give a change of sign corresponding to
an effect which is the opposite of that we get by a direct analysis. The reason for this
is a correlation with a 3rd factor in this case BLAINE which disturbs the picturer
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In many situations we would like to test if the correlation coefficient can be assumed
to be 0. You can then use

THEOREM 2.20. Let R = R;jjm+1..., be the empirical partial correlation coefficient
betweenX; and.X; conditioned on (or: for givenk,,,1,... x,. Itis assumed to be

computed from the unbiased estimates of the variance-covariance matrix and from
observations. Then

R i 2 _metn—2—(p—m)),

Vv1—R2
|f p1]|m+1-,m,p =0 A
PrRooOF 2.17. Omitted. [ |

REMARK 2.10. The number(p — m) is the number of variables which are fixed
(conditioned upon). The degrees of freedom are therefore equal to the number of ob-
servations minus 2 minus the number of fixed variables. The theorem is also valid if
p—m = 0i.e. if we have the case of an unconditional correlation coefficient. ¥

We continue example 2.3 in

EXAMPLE 2.4. Let us investigate whether the valuerefs is significantly different
from 0. We find withry4 3 = R:

R —0.035
YT = e VA2t

= —0.243 = £(48)40%.

A hypothesis thapy, s is O will therefore be accepted using a test at levébr o <
80%. (Note: this is by nature a two-sided test.) ¢

If we wish to test other values @f or to determine confidence intervals we can use

THEOREM 2.21. Assume the situation is as in the previous theorem. We consider the
hypothesis

Ho : pijim+1,...p = PO

versus

Hy Pijlm+1,....p 7é £o-
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We let

7o Ly Rt
21— Rijjmst1,...p

and

1.1
zo:—lnﬂ.
2 1-po

UnderH, we will have

(Z —z9)-/n—(p—m)—3 approx.€ N(0,1).

PROOF 2.18. Omitted. [ ]

EXAMPLE 2.5. Let us determine a 95% confidence intervalfeys in example 2.4.
We have

P {-196<(Z—2)-4/51—(5—4)—3<1.96} ~95%
& P{-1.96 —6.86Z < —6.86z < 1.96 — 6.86Z} ~ 95%
& P{Z-029<2<Z+0.29} ~95%.

The relationship betweenandp,43 = p is

11 1+p e —1
=—Ih— & = -
S R P= a1

The observed value df is

1. 1-0.035

A i
2 150035

= —0.03501.

The limits forz become
[—0.3250, 0.2549].

The corresponding limits fa#,;, are

—0.6500 __ 1 60‘5098 -1

e
e—0.6500 + 1’ £0.5098 +1 = [_031’025]
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2.3.2 The multiple correlation coefficient

The partial correlation coefficient is one possible generalisation of the correlation be-
tween two variables. The partial correlations are mostly intended to describe the degree
of relationship (correlation, covariance) between two variables. Instead we will now
consider the formula on p. 79

o V(X1) = V(X1|Xo =x9)
p = V(Xl) )

This is the "degree of reduction in variation" interpretation of the (squared) correlation
coefficient. This we now seek to generalise. We again consider the partition of the
p-dimensionally normally distributed vectd i an m-dimensional vectoX; and a

(p — m)-dimensional vectoX o, and the resulting partitioning of the parameters i.e.

X1 My Y Y2
X = ; = ;o M= .
[XQ]’ # {#2}’ {221 222}

We now define the multiple correlation coefficient betweégn: = 1,...,m and X,
as the maximal correlation betwe&fn and a linear combination oX;’s elements. It

is denoted; |, 41,....p-

It can be shown that the optimal linear combinatiof’s elements is
BiXy = (21235,)i X2,

whereg; is thei'th row in the matrix21222_21. This matrix appears in the expression
for the conditional mean aX'; given X 5. As stated before this is

B
E(X1|Xo=22) = py + Z12505 (2 — pp) =y + | 1 | (@2 — o).
,6/
It can also be shown that

inf V(X; — &' X2) = V(X; — B/ X2),
(e}

i.e. the considered linear combination minimises the varian¢&of- o’ X5).
We now have the following important

THEOREM 2.22. We consider the situation above. leet be thei'th column inX,;,
i.e. o isthei'th rowin Xs.
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Then
-1
\/ o550
Pilm+1,..., = =
im P O
If we let

im+1,...,p O'iidemgg V(XL) )

PROOF 2.19. The proofs to the claims before the theorem are quite simple. One
just has to use a Lagrange multiplier and also use that the variance-covariance matrix
is positive semidefinite. What is claimed in the theorem then follows by using the
formula for the conditional variance-covariance structure (p. 74Xprby use of the
matrix formulas in section 1.2.7. ]

REMARK 2.11. In the theorem we have obtained a large number of characteristics for
the multiple correlation coefficient and since

2 V(Xi) — V(Xi|X?2)
pi\erl ..... p V(Xz> )

we note that we have generalised the property of reduction in variance. It is important
to note that we can see from the determinant formula that it is possible to compute the
multiple correlation coefficient from the correlation matrix by using the same formulas
valid when computing it from the variance-covariance matrix. v

With regard to the estimation of multiple correlation coefficients the same remark as
on p. 85 regarding the estimation of partial coefficients holds.

In the next example we continue example 2.4.

ExAMPLE 2.6. To get an impression of to which degree the contentyg @nd G S
in example 2.4 can explain the variation in e.g. 3-day strength we can compute the
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multiple correlation coefficient between strength day 3 angb(Cand GA). We find

1 0.158 0.120

det | 0158 1 —0.309
, 0120 —0.309 1
1 — =
Paji2 1 —0309
Ledet | 309 1

where the indices of the variables correspond to those used in example 2.3. We find
i1 =1 —0.9435 = 0.0565.

The data therefore indicate that only about 6% of the variation in the strength of the ce-
ment (from samples which have been collected the way these data have been collected)
can be explained by variations ip&- and GA- content alone. ¢

If the multiple correlation coefficientis O (i.e. ¢f; = 0) it is not difficult to determine

the distribution ofpﬁerl 7777 ,- We give the results in the slightly changed form in

THEOREM 2.23. Let R = pjj;41,..,, be the empirical multiple correlation coeffi-
cient betweerX; andX, = (X,,41,...,X,) based upom observations. Then

R* n—(p—-m)-1

eFlp—m,n—(p—m)—1),

1-R2 p—m
|f pilmJ’,l_’pr =0. A
ProoFr 2.20. Omitted [ |

This can be used in testing the hypotheses

Hy : Pilm+1,...p = 0 against Hy Pilm+1,....p 7& 0.

We reject the null hypothesis for large values of the test statistic. This is illustrated in

ExXAMPLE 2.7. Consider the situation in example 2.6. We now want to examine if it
can be assumed that the multiple correlation betwggnand (X;, X2) is 0. (Note
thatp = 3 andm = 1.) We find the statistic

R? 51—(3—1)—1 0.0565 §7144
1—R2 3—1 © 09435 2 7
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Since

F(2,48)0.00 = 2.42,
we will at least accept a hypothesis that;, = 0 for any levela: < 10%. With the
available data it cannot be rejected that, = 0. This does not mean that it is not

different from O (which it probably is), only that we cannot be sure using the available
data because the true (but unknown) valupgf, is probably rather small. ¢

We shall not consider tests for other valuepgf, ;1 ... -

2.3.3 Regression

We will not give any deep introduction to the so-called regression theory which must
not be confused with what we in the following section will call (linear) regression
analysis.

Let ; be a stochastic vector. By the term regressioyobn x we mean the

function given by
g(z) =E(Y|X =),
i.e. the conditional mean as a function of the conditioned variable.

Let { )}; } be normally distributed with parameters

M1 011 0"1
= and X = .
= e
Then theorem 2.16 shows that
glx)=E(Y|X =z)=m + 032521($ — ),

i.e. the regression is linear (affine).

We now specialise to two dimensions.

Let{ Y

Y } be normally distributed with parameters

Hy and o POz ”g
o POLOy o
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Then the regression &f on X is given by
Oy
EY|X =2)=py +p—=(2 — p2),
and the regression of onY is given by

.
EX|Y =y) = pta +p0—”(y— fhy)-
Yy

Let us assume that we have measurem%n% ] ey [ )};" }
1 n

The maximum likelihood estimates for the slopes are obtained by using the maximum
likelihood estimators for the parameters in the formula. Then

S -X)Vi-Y) _ SPy,
VR - XP (Y, - V) SAKSAK,

1 _
2 = = (Xi—X)?
Oy ~ 2 )

R 1 _
0—5 = EZ(Y;iyya

and we see e.g. that the estimates of the slope in the expression for the regregsion of
on X becomes

G,  SP,,

P, T SAK,

This gives the empirical regression equation

SP,,
SAK,

EY|X=z)=Y+ (z — X),

i.e. precisely the same result as we obtained in the one dimensional linear regression
analysis cf. section 5.2 in volume 1. However, there the assumptions were completely
different since then we assumed that the values of the independent variabl&(here

in volume 1t) were deterministic values. In the present text we assume that they are
observations of a normally distributed variable which is correlated with the dependent
variable. Concerning the estimation it is not important which of the two models one
works with but the interpretation of the results are of course dependent hereon. We
now continue with example 2.8.

ExampPLE 2.8. In this example we will determine the linear relations from a mea-
surement by one of the two methods stated in example 2.2 to the other measurement.
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0.65x +13.43

0.58x +10.14

50

30 +

20 4

10 4

=7 T T T T T T T T

10 20 30 40 S50 60 70 80 90

Figure 2.5:

We find the regressions
. .8 _
E(Xi|X2=122) = o0 +Pi(fﬂ2*fﬂ2)
= 0.65z2 +13.43

and

. .8 _
E(Xo|Xi=21) = f2+ﬂ§($1*$1)
= 0.58z; +10.14.
These lines are shown in figure 2.5. If we wish to check if there might be some sort of

relation betweerX; andX, we can examine the correlation coefficient. It has been
found to be

182
) = = 06177
P BIL. 219

i.e.
p% = 0.380.

The test statistic for a test of the hypothesis 0 is, cf. p. 88, withp = m = 2

0.617
t = —==v/20 — 2 = 3.32 > t(18)0.995.
- 0.380 (18)0.005
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Using a test at level > 1% we must reject the hypothesis and we assumeghan,

is different from 0. l.e. we now assume there exists a linear relationship between the
methods of measurements in the two cases and it is estimated by the two regressions.
We can then find estimates of the errors etc. in the usual fashion.

In the figure we have also shown a contour-ellipse and its main axes. It can be shown
that the first axis is the line which is obtained by minizing the orthogonal squared dis-
tance to the points. On the other hand the regression equations are found by minimizing
the vertical and horizontal distances respectively. The first main axis is therefore also
called the orthogonal regression. In chapter 4 we will return to this concept. ¢

2.4 The partition theorem

In this section we will consider a stochastic variable N(u, X)), whereX is regular
of ordern. We will consider the inner product defined By ! and the corresponding
normi.e.

(zly) =2'S" 'y

and

]| = (z]x) = Va's-1z
Now let the sub-spacds,, ..., U; be orthogonal (with respect to this inner product)
so that

R=U®...0 U

We letdim U; = n; and call the projection ont&/; for p;. The corresponding
projection matrix is called;.

Using the notation mentioned above the following is valid

THEOREM 2.24. (The partition theorem) If we let
Y, =pi(x—p), i=1,....k
and

K =|Yil]* = pi(z - p)I*,  i=1,....k
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then

k
-’L'*M:ZYi
i=1

and

k
lz —pl® =) Ki.
i=1

Furthermore&Y’y, ..., Y, are stochastically independent and normally distributed and
Ky, ..., K are stochastically independent apt{n;) -distributed variables. A

PROOF 2.21. We have thal’; = C;(x — p) therefore

Y, C,
Y=| ¢ |- |[X-nw
Y Cy

From this we obtain

C:
D(Y) = E(Cll,,C;C) = (C,-EC})(Z-J-).
Ci

Now fori #£ j it follows from the lemma on page 54 that
C;xC) =o0.

From this it follows that the componentsBf are stochastically independent (because
Y is normally distributed).

We must now determine the distribution |gf;(X — w)||>. We have thatX can be
written

X=p+AZ
whereZ € N(0,I) andA A’ = X. From this it follows that

Ipi(X —w)I> = [pi(AZ)|* = |C;AZ|
= Z'A'C/Z7'C,AZ = Z'D,Z.



98

CHAPTER 2. MULTIDIMENSIONAL VARIABLES

4

Here the theorem says that
Y, and¥; are independent and
that || v, [|* € x*(2) and

Ity 112 € x*() .

Figure 2.6:
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Now

D,D; = A'C/Z7!C,AA'C/EZ7'C,A
A'ClCz'ECZTIC A
A'C/Z7ICA

= D,

i.e. D; isidempotent. In the above we have used the lemma on p. 54 repeatedly. It is
obvious thatg(D;) = n;. Now, since

D; A'C/A'ATICA

= (ATIC,A)(ATICiA),

thenD; is positive semidefinite (cf. theorem 1.16 p. 38) therefore there exists an or-
thogonal (and even orthonormal) matk% (theorem 1.10) so that

P'D,P=A;, or D;,=PAP,
whereA; is a diagonal matrix with rank;. SinceD; is idempotent we obtain
PAP =PAPPAP =PAP,
orA; = A?. ThereforeA; hasn; 1's andn — n; 0’s on the diagonal. Therefore
Z'D;Z = Z'PAPZ=PZ)A(PZ)
= VAV

VitV
—_——
n; componentso.

SinceV € N(0,P’P) = N(0,I) itis seen that

Z'DiZ = |pi(X — p)lI* € x*(na).

EXAMPLE 2.9. Let X1, ..., X,, be independentamd(u,s?) -distributed. Then

X1
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We consider the subspate given by
xeclU & XL =...= Ty,

and the orthogonal subspacelfp (with respect too?I) calledU,. (This concept of
orthogonality corresponds to the usual one). Now the identity

S =) = Y — ) +n(@ —y)2,

shows that the projection onid, is given by

8 .-

which means
p2(z) =z —pi(z) =

SincedimU; = 1 anddim U; = n — 1 we find from the partition theorem that

pi(X —p) and [pa(X — p)|?

are stochastically independept.(X — u) is normally distributed anfips (X — p)||?
is x%(n — 1) distributed.

Since
p(X —p) = : ;

and

Ip2(X — ) = = 30X~ X,

we again find the results of the distribution®fand(n—1)5% = L > (X;— X)2. ¢
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Figure 2.7:

2.5 The Wishart distribution and the
generalised variance

In the one dimensional case a number of sample-distributions are derived from the
normal distribution. The most important of these is §fedistribution, which corre-
sponds to the sum of squared normally distributed data. Its multi-dimensional analog
is the Wishart distribution.

We give the definition by means of the density in

DEFINITION 2.3. Let'V be a continuously distributed randgmx p-matrix, which
is symmetrical and positive semi-definite with probability 1. TRénis said to be



102 CHAPTER 2. MULTIDIMENSIONAL VARIABLES

Wishart distributed with parameter$n, ), (n > p), if the density forV is
L(n—p-1) 1 -1
f(v) = ¢ [det(v)]2\"7P exp(fi tr(v-X7Y)),

for v positive definite and 0 otherwise. HeXeis a positive definite x p-matrix, and
c is the constant given by

]. 1,
722npﬂp(p 1)/4 d t 3N 1
- et X) | | I( n+ —1)).

Abbreviated we write
Ve W(n,X)=W,(n,X).

where the first version is used whenever there is doubt about the dimension.

We now give a remark about the mean and variance of the components in a Wishart
distribution

Let'V = (V;;) be Wishart distribute@V (n, ), whereX = (;;). Then it holds that
E(Vij) = noi

V(Vij) = n(03; + 0ii055)
Cov(Vij, Vin) = n(oioji + oiaoji).

PrRoOOF 2.22. Omitted. [ |

The analogy with the2-distribution is seen in

THEOREM 2.25. Let X; € N,(0,%),7 = 1,...,n, be independent and regularly
distributed. Then forn > p it holds that

Y =) X;X;eWnX).

=1

PROOF 2.23. Omitted. [ ]
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REMARK 2.12.If n < pthenY asitis defined in the theorem does not have a density
function. However, we still choose to say, théts Wishart distributed with parameters
(n, ).

Corresponding remarks holdX is singular. Using this convention the theorem holds
without the restrictiom < p. v

A nearly trivial implication of the above now is

THEOREM 2.26. LetVy,...,V be independent randomx p-matrices, which are
W(n;, ¥)-distributed. Then it holds

V=Vi+--4+V,eWny+- - +nX).

One of the main theorems in the theory of sampling functions of normally distributed
random variables is tha¥ and.S? are independent and thst is o2y 2/ f-distributed

with 1 degree of freedom less than the number of observations. This theorem has its
multidimensional analog in A

THEOREM 2.27. Let X; € N,(u, %), i = 1,...,n, be stochastically independent.
We let

_ 1<
X = - Xiv
1 n B B
= — (X - X)(X; - X)
=1
Then
_ 1
RIS NP(/"? _2)
and
SeWhn-1 L2)
‘n—-1"7"
Furthermore X andS are stochastically independent. A

PROOF 2.24. Omitted. [ |
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We will now consider some results on marginal distributions. We have that

THEOREM 2.28. Let V be Wishart distributed with parametédrs 3). We consider
the partitioning

V11 V12 E11 E12
V= and X = .
[ Vo Vi ] [ So1 Too }

It then holds that

Further, it holds that

THEOREM 2.29. We again consider the above situation. 3f, and 35, are 0-
matrices, theV; andV,, are stochastically independent. A

PrRoOF 2.25. for the theorems. They follow readily by considering the corresponding
partitions of normally distributed vectors, which produce the Wishart distributiolis.

Since the multidimensional normal distribution can be defined independent of the co-
ordinate system, then it is not surprising that something similar holds for the Wishart
distribution. Because change form coordinates in one coordinate system to coordinates
in another is performed by manipulating matrices we have the following

THEOREM 2.30. LetV € W, (n,X) and letA be an arbitrary fixed x p-matrix.
Then

AVA €W, (n,AZA).

PROOF 2.26. As indicated above one just has to consider the normally distributed
vectors which result i/ and then transform them. The resultat then follows readily.
|

We now conclude the chapter by introducing a different generalisation from the one-
dimensional variance to the multidimensional case than the variance-covariance matrix.
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DEFINITION 2.4. Let thep-dimensional vectoX have the variance-covariance ma-
trix 3. By the termthe generalised varianceof X we mean the determinant of the
variance-covariance matrix, i.e.

gen.varX) = det(X).

REMARK 2.13. In section 1.2.6 we established that the determinant of a matrix cor-
responds to the volume relationship of the corresponding linear projection, i.e. itis a
intuitively sensible measure of the "size” of a matrix. v

If we have observationX 4, ..., X,,, then we define thempirical generalised vari-
ancein a straight forward way from the empirical variance-covariance matrix

1 n B ~
= X, - X)(X; - X)
S nfl,;:l( i — X) (X - X),

i.e. as its determinant.

In the normal case we can establish the distribution of the empirical generalised vari-
ance., We have

THEOREM 2.31. Let X; € N, (i, X), 7 = 1,...,n, be stochastically independent.
Then the empirical generalised variance follows the same distribution as

det X
— ... 7
(n—1p ! P
whereZ, ..., Z, are stochastically independent afide x?(n — i). A
PROOF 2.27. Omitted. [ ]

Forp = 1 and 2 it is possible to find the density of the empirical generalised variance.
However, for larger values @fthis density involves integrals, which cannot readily be
written as known functions, but far — oo we do have

THEOREM 2.32. LetS be as above (in the normal case). Then it holds that

vn —1 (jee;ﬁ((;)) — 1) asymptotically € N(0, 2p).
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PrRooOF 2.28. Omitted.



Chapter 3
The general linear model

In this chapter we will formulate a model which is a natural generalisation of the
variance and regression analysis models known from introductory statistics. The
theorems and definitions will to a large extent be interpreted geometrically in order to
give a more intuitive understanding of problems.

3.1 Estimation in the general linear model

We first give a description of the model in

3.1.1 Formulation of the Model.

We consider ann -dimensional stochastic variabl& € N(u,0%X) where X is
assumed known. Consider the norm givenBy ! i.e.

|z||* = 'S .
The norm (62X)~! defined by the inverse variance-covariance matrix is given by

2 _
o2 —

1 /§v—1 1 2
le)2: = —a'S 2 = —|la|”.

The two norms are seen to be proportional and they result in the same concept of
orthogonality. We will now consider a number of problems in connection with the

107
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estimation and testing of the mean valug in cases whereu is a known linear
function of unknown parametersii.e.

n=x60
or
M1 i1 - T1k th
Hn m'r.zl m’r‘Lk 9.k

where x is assumed known.

Geometrically this can be expressed such that we assume the expected value of the
stochastic vecto®y” is contained in a subspack/ of R". M is the image of R*
corresponding to the linear projectian The dimension ofM is rg(x) < k. The
situation is depicted in the following figure.

E(Y)

=)=('go

Figure 3.1: Geometrical sketch of the general linear model.

We will call such a model, where the unknown mean value is a (known) linear
function of the parametef a (general) linear model. This is also valid without the
assumptionY has to be normally distributed.

ExamMpLE 3.1. Consider an ordinary one-dimensional regression analysis model i.e.
we have observations

Y, = a+ Bz; + €4, 1=1,...,n,
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where E(e;) = 0. This model can be written

Y; 1 x €1
- |[5]
. . B ’
Yn 1 I En
or
Y =x60 +¢,
i.e. the model is linear in the meaning stated above. ¢

Another example is

ExAMPLE 3.2. We now consider a situation, where
Yi=a+ Bz, +vlnz; + €4, 1=1,...,n

and still we haveE(e;) = 0. Evenin this case we have a linear model which is

y=a+pfx+y 1ln x

Y
/ X
Yl 1 T In I a €1
= 8|+
Y, 1 =z, Ilnz, v En

We note that the term linear has nothing to dowitf'| X') = a+ 8 x+~1n = being
linear in the independent variable, rather thatE(Y'|z) considered as a function of
the unknown paramete(o, 3,)" should be linear. If we had had a model such as

Y = a+ Bln(yx; + 9) + &,
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wherea, 5,7 and § are the unknown parameters it would not be possible to write

e
I
X
2 @R
+
[0)

with the known x -matrix and we would therefore not have a linear model. ¢

3.1.2 Estimation in the regular case

We will first formulate the result of estimating in
THEOREM 3.1. Let x and 8 be given as in the preceding section and ¥te

N,(x0,0°%), whereX is positive definite. Then the maximum likelihood estimator
6 for 6 isgivenbyx@ being the projection (with respectt® )onto M, 6 is
a solution to the so-called normal equation(s)
(xX'Z7'x)0 =x'D " 1y.
If x hasfullrankk, then

=3 'x)" X2y,

and since a linear combination of normally distributed variabless also normally
distributed with parameters

EB) = 6
D) = T 'x)7L
It is especially noted thaé is an unbiased estimate @f. A

PrROOF 3.1. If Y € N(x0,0%X), whereX is regular then the density foy’

1 1 1
n €xXp
V2r 0" y/detX

1 1 )
= k- FGXP[—FH?J —x0|].

f(y) = sy~ x6/S " (y ~ x6)]

We have the likelihood function

1 1 ,
L) =k —GXP[—FH?J - x0],

O—n
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taking the logarithm on each side gives

1 2
InL(0) = k1 — 55lly — xO||".

It is now evident that maximisation of the likelihood function is equivalent to min-
imisation of the squared distance between any poinflin and the observation i.e.
equivalent to minimisation of

ly —x0|” = (y —x60)E" (y — x0).

From the result p. 52 the value of8, giving the minimum is equal to the orthogonal
projection (with respectt®—!) of y on M. From example 1.8 p. 48 the optimal
6 is the solution to the equation

(x'27x)0 = X' 1y.
If x’3~!'x hasfullrankk, i.e.ifx has rankk (cf. p. 35) we therefore have
Oops. = (x'27 %) ISy,

We have now shown the first half of the theorem.

From theorem 2.2 we find that
E0) = (XX ') 'x¥'2"'x0 =0,
And from theorem 2.5 we find

D) = T X KET I e?T)ZIx(x'E7x)7!

X))

The situation is illustrated in the following figure 3.2.

REMARK 3.1. We note thatf is estimated by minimising the squared distance onto
M. 6 is therefore also a least squares estimat® ofIf we do not have the distribu-
tional assumption we will often be able to use the estimatorin theorem 3.1 as an
estimate of@. It can be shown that the least squares estimatdnas the least gen-
eralised variance among all the estimators that are linear functions of the observations
(the so-called Gauss-Markov theorem) cf. [12]. v
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| >

=]

E(Y)

Figure 3.2: Geometric sketch of the problem of estimation in the general linear model.

Since o2 is often unknown we will now find estimators for it. We have

THEOREM 3.2. Let the situation be as above. The maximum likelihood estimator of
o2 is

1 A
—Y —x8|>
n

The unbiased estimator af? is

1 .
6 = ——|Y —x0|?
n—rgx
1 - .
= ——(Y -x0)/271(Y —x0)
n—rgx

where x @ is the maximum likelihood estimator af,(Y'). The following holds
62 € a?x*(n —1gx)/(n — rgx)

and 62 is independent of the maximum likelihood estimator of the expected value
and is therefore independent 6f A

ProoF 3.2. The likelihood function is

1 11
L(0,0%) = k- —wexpl—5—lly - x|,
and
11
InL(6,0%) =k — " no? - —— |y —x0|*

2 202



3.1. ESTIMATION IN THE GENERAL LINEAR MODEL 113

now
0 n 1l 1
T mL = 2y —x6)?
Oo? " 202+204||y x|
n 1

1
= Dy —x6l),

After differentiating with respect t®® we get the ordinary system of normal equa-
tions. We therefore find that the maximum likelihood estimateg@os?) for (0, 02)
are solutions for

X2 1x0=x'27'Y
1 , 1 ; ;
7=~y —x0|*=—(Y —x0)="1(Y —x0).
n n

If we consider the partitioning o2 as the direct sum of\/ and M~*, whereM+
is the orthogonal component (with respect¥ ') of M, we get that

Pyu(Y —x0)=x0—x6
and
Y —x60
are stochastically independent and that

|Y — 20| € o®x*(dim M)

=o2x%(n — rgx).
From this we especially get

1
E(5%) = - (n ~ rgx)o*,

i.e. the likelihood estimator ob2 is not unbiased. If we want an unbiased estimate
we can obviously use

1 A
— Y —x0|2
n—rgx

Most often we will be using the unbiased estimate«df, and we will therefore use
the notatiors? for this. [ |
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REMARK 3.2. If 3 is the identity matrix then|y||?> = >"4?. So in this case we
have

1 .

A2 _ - - )2
4 *n_rgx;(” E(Y)?,

where E(Y;) = (x8);. The quantity Y; — E(i) is equal to the’'th observations
deviation from the estimated model, and it is calledittieresidual. Inthe cas& =1,

we have that the estimate of variances proportional to the sum of the squared residuals
called SS.s. We will generally use this notation for the squared distance between the
observation and the estimated model i.e.

SSres = |Y —x 0|2 = (Y —x0)'S" (Y —x6).

Before we will go on we will give a small example for the purpose of illustration.

ExampPLE 3.3. In the production of a certain synthetic product two raw materials A
and B are mainly used. The quality of the end product can be described by a stochastic
variable which is normally distributed with mean valye and variances?. The
mean-value is known to depend linearly on the added amount of A and B respectively
ie.

w=2xa0a+ 2508,

where z, is the added amount of A andg is the corresponding added amount of

B. ¢2 is assumed to be independent of the added amount of raw-materials. For the
determination of 5, and 6 three experiments were performed after the following
plan.

Experiment| Content of A| Content of B
1 100% 0%
2 0% 100%
3 50% 50%

The single experiments are assumed to be stochastically independent. The simultane-
ous distribution of the experimental resull;, Y5, Y3 is then a three dimensional
normal distribution with mean value

241 1 0 0
p=|p | =01 A =x6,
11 OB
M3 3 2
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and variance-covariance matriéI.

We have
5 1 5 _1
x'x:[i é] = (x'x)lz{_i g],
4 4 6 6
and

+ 1ys
X'y = 1
Y { Y2 + %ys ’

giving
|:9iA]:|: % —é][%—i—%%}:{ %yl—éyz—i—%%
0 ~% G —sY1 T Y2+ 3V3

In this case we observed

o 10.11
Y2 = 0.81 s

so that
0a ] [ 10.037
g | | 0735 |-
From this we easily find

) 10.037
BY)=x0=| 0735 |,

5.386

and

A 0.07
Y-REY)=Y -x0= 0.07 | .
—0.15

This gives the residual sum of squares

(Y —x8)' (Y —x8) = 0.072 + 0.07% + 0.15% = 0.0338,
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which means that an unbiased estimate dfis

1
——0.0338 = 0.0338.
3—-2

3.1.3 The case of x'3~!'x singular

If rg(x) =p <k thenx’E~x issingular and we cannot find an ordinary solution
to the equation.

(X'T'x)0 =x'2 " 1y.
If we can find a pseudo inverse fo X ~'x then we can write
0=x2"'x)" xSy

However, sometimes it is possible to use a little trick in the determination of the pseudo
inverse. The reason for the singularity is that we have too many parameters. It would
therefore be reasonable to restrigt to only vary freely in a (side-)subspace 6.

One of those could e.g. be determined By satisfying the linear equations (restric-
tions)

bO=c
or

bir -+ bk 01 €1

b1 -0 bk O Cm

If there exist@ s that satisfy this equation system then they span a subspace of dimen-
sion k — rg(b).

Since

rg(x) = p, and we havek 6 -components it would be reasonable to remadve p
of these i.e. impose the restrictidh— rg(b) = p or k = p + rg(b).
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w

®
]
10

—

We will only consider parameter
values 8/ which lie in this
side-subspace in R¥.
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Now if
[ o x|
X - Tn1 Tnk o
rg[b}rg bin o bik =k,
L b'rnl te b'rnk i

we can now consider the model

HNEE

1 0, 1 o0
o-|o. nnl=[o ¥)

where the short notation should not cause confusion.

If we in the usual way compute

X

o | 3 | ¥ )y
= {X'¥ '+ bbb} Hx'T 'y +blc},

S
I

then we have a quantity which minimises

(2)- (5] )]

= e T
(y—x0)T ' (y—x0)

= |y -0

g(0)

Since this is exactly the same quantity we must determine in order to find the ML-
estimates, we therefore find that

0={x'Y 'x+b'b} H{x'T 'y +b'c}
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really is the maximum likelihood estimator fa#.  The only requirement is that we
must find a matrixb so { E } has full rank and this corresponds to restrictifg

region of variation.

The variance-covariance matrix & becomes

D) = X {xX'E'x + b'b} X' T x{x'E " 'x + b'b} L.
This expression is found immediately by using theorem 2.5.
As before the unbiased estimate @f is

1 N
———|ly — x6|*
n—rgx

Here we haven —rgx =n —k +rgb.
First we give a little theoretical

ExampPLE 3.4. Consider a very simple one-sided analysis of variance with two groups
with two observations in each group. We could imagine that we were examining the
effect of a catalyst on the results of some process. We therefore conduct four ex-
periments, two with the catalyst at level A and two with the catalyser at level B. We
therefore have the following observations

level A: Y11, Y12
level B: }/21, Yoo

If we assume that the observations are stochastically independent and have mean values

E(Y11) = E(Y12)=6,
E(Y21) = E(Ya2) =6y,

then we can express the model as

Y1 1 0

Y12 . 1 0 91 o

Yo | =10 1 [92}+6X0+€.
Yoo 0 1
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and

0 yuntyiz | _ | N
3 Y21 + Y22 2 |’

which are the usual estimators. If we instead use the (commonly used) parametrisation

D>
I
—
ON=

EY11) = EY2)=p+o
E(Y21) = E(Ya2)=p+ as

i.e. we express the effect of a catalyst as a level plus the specific effect of that catalyst.
Then we have

Yi1 1 1 0

Yig 110 H

Yoy = 10 1 (o7} +e=Xa-+e.
Yao 1 01 o2

Itis easily seen thatk has rank 2 (the sum of the last two columns equals the first).
We will therefore try to introduce a linear restriction between the parameters. We will
try with

o)
omta;=0 ie: (0 1 1)| g |=0.
Q2
We can now formally introduce the model

Y11 1 10

Y12 1 1 0 1% c

Yo | =1 0 1 o | + { 0 ] ;

Yoo 1 0 1 Qg

0 0 1 1

or

Lo ]| ] 5]

We now have that

[ < }/[ ] 0 0 O 4 2 2
=xx+|0 1 1|=]2 31
0 1 1 0 1 1 01 1 9 1 3



3.1. ESTIMATION IN THE GENERAL LINEAR MODEL 121

The inverse of this matrix is

O N[
NI ORI

s s [0 | =

Now, since

Y11
N y 11110 Y12 > Yij
{0 1 1}[0} 110 01 Yor | = | w11 +¥y12 |,
00111 Y22 Y21 + Y22
0
we have
/} % _% —i > Yij y
a =1 "3 2 0 yintyie | =| -9 |,
aia -7 0o 1 Y21 + Y22 Y2—y

i.e. exactly the same estimators we are used to from a balanced one-sided analysis of
variance (note: We know in beforehand that we will get these estimators. cf. p. 119).

¢

We will now give a more practical example of the estimation of parameters in the case
where x’3~1x is singular.

ExAMPLE 3.5. In the production of enzymes one can use two principally different
types of bacteria. Via its metabolism one type of bacterie liberates acid during the
production (acid producer). The other produces neutral metabolic products. In order to
regulate the pH-value in the substrate on which the bacterias are produced, one can add
a so-called pH-buffer. It is known, that the pH-buffer itself does not have any effect
on the production of the enzyme, rather it works through an interaction with the acid
content and the metabolic products of the bacteria.

For a "neutral” type of bacteria which lives on a substrate without pH-buffer the mean
production of enzyme (normal production) is known. In order to estimate the above
mentioned interactions one has measured the difference between the normal production
and the actual production of enzyme in 7 experiments as shown below.

First we will formulate a mathematical model that can describe the above mentioned
experiment.



122 CHAPTER 3. THE GENERAL LINEAR MODEL

pH-buffer
added | not added
bacteria| acid producer 0,-2 -19,-15
culture | neutral -6, 0,-2

Table 3.1: Differences between nominal yield and actual yield under different experi-
mental circumstances.

We have observations

Yiiv, v = 1,2
Y12v, v = 1,2
Ya1v, v = 172a3'

These are assumed to have the mean values

E(yllu) = u1+ 011
E(yi2v) = p1+612
E(y21,) = 621,

where p; is the effect of using acid producing bacteria afig is the interaction
between pH-buffer and bacteria culture.

Furthermore we assume that the observations are stochastically independent and we
have the same but unknown variancé.

We can now formulate the model as a general linear model. We have

Y111 1100

Yiio 1100

Yio1 1010 9“1

Y122 = 1 01 0 911 + &,
Yo11 00 0 1 912

Yo10 00 0 1 2

| Yoi3 | |0 0 0 1]

where the errore € N7(0, o°1).

We find

O NN
O O NN
SO N O N
w o OO
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and

XY= ’ )

where a dot as an index-value indicates that we have summed over the corresponding
index.

Sincex’x only has the rank 3, we are unable to invert it. Instead we can find a
pseudo-inverse. We use the theorem 1.7 p. 27 and get

—~

»

»

~—

I
o O O O
O ON= O
o= O O
wr O O O

so the estimates from the parameters become - with this special choice of pseudo-
inverse -

0
éz(x’x)*x’y: y11. ,
Y12.
Yo21.
where e.g.
1 3
Y21. = g Vz::lymu-
Now, since
1 0 0 O
AR -1 0 0 O
I-(x'x)"x'x= 100 0l
0O 0 0 O
we have
21
(I-(x'x)"x'x)z= A
-2

0
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From theorem 1.6 the complete solution to the normal equations is therefore all vectors
of the form

t t

A =t | _ | g —t

0+ 4 = 1o, ¢ , teR
0 Yo1.

An arbitrary maximum likelihood estimator fof is then of this form.

The observed value @f is

0

. -1
obs — —17
2

—22

>

Itis obvious that this estimator is not very satisfactory since ¢.g. always will be 0.

In order to get estimators which correspond to our expectations about physical reality
we must impose some constraints on the parameters. It seems reasonable to demand
that

011+ 012 =0,
i.e.
2
011
01 1 0 =0,
( )| 6y,
021
or
bo =0.

It is obvious that
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so we can use the result from p. 119. We find

4 2 2 0 0 0 0 O
, N 2 2 0 0 0110
Xx+bb =15 59 ol o110
|0 0 0 3 | 0 00O
[4 2 2 0]
B 2 3 10
- 21 3 0
10 0 0 3|
Since
42 277" 5o d
2 1 3 -3 0 3
we find
1 1 1
i1 19
IS S S S
(xXx+bb)t=| "1 2
-2 0 10
0O 0 0 %
We now get
Y1..
é: / b'b —lg oy ?{11.*?{1“
(XX+ ) *Y Y12. — Y1..
Yo1.
The observed value is
-9 acid producing effect
8 | buffer & acid interaction
-8 ~ | (-buffer) & acid interaction
—22 buffer & neutral interaction

3

We now find the variance-covariance matrix fér We have

»
+
o
o

D) = ) 'x'x(x'x + b'b) !

»

O RI=RI— O

o o okl
\

Okl I= O

w-o o O
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i.e. the estimators are not independent.

In order to estimater? we find the vector of residuals. Since

i1+ 9:11 [ -1
i+ Qn -1
A il + le —17
x0=| n+b2 | =| 17 |,
6121 *2§
021 23
A 2
921 3 J

the vector of residuals is

1

—1

. -2

y—x60 = 2

—31

23

3

L 3
We then find

0112 O\/ e 2 2.9 2
ly —x0|" = (y —x6)'(y —x8) =17+ -+ (3)" = 285

An unbiased estimate ofo? is therefore

3.1.4 Constrained estimation

This section is omitted.
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3.1.5 Confidence-intervals for estimated values.
Prediction-intervals

We consider the mode(n > k)

Yl 11 oo X1k 91 €1
= -+ ,
Yn Tnl Tnk 9k En
where
e € N(0,0°).

Here we will denote theY” ’s as dependent variables and the’s as the independent
variables.

As usualo? is (assumed) unknown an® is (assumed) known. We have the
estimator

0= (X’Eflx)flx’Ele
for@ ando? is estimated using

1 R
7?2 = = ——|Y —x0|?
& s° = — Y —x0|

_ (Y - x0) Y — x0).

n —

If we wish to predict the expected value of the new observationof the dependent
variable corresponding to the values of the independent variables:

(21500, 28) = 2’

it is obvious that we will use

as our "best” guess.
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We have thatg(Z) = E(Y) and that

V(Z) = 2'D(0)z
= T %)z
o?c,
where
Z1
c=(z1,...,2p) (X2 %)t
2k

We therefore immediately have

Z —E(Y)
— — 2 N(0,1
ay/c € N(0, 1),
and therefore also
Z—-E(Y)
——— 2 ct(n—k).

We are now able to formulate and prove

THEOREM 3.3. Letthe situation be as above. Then thle— «) -confidence interval
for the expected value of a new observatign will be

[z —t(n—k)1—asve, z4t(n—k)i_as/c].

A
PrRoOOF 3.3. From the above considerations we immediately have
l—a=P{Z-tn—k)_asve < BY) < Z+t(n—k)i_asVc},
and therefore also have the theorem. ]

Often one is more interested in a confidence interval for the new (or future) observa-
tions than for the expected value of the observations. We now consider the more general
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problem of determining the confidence interval for the aversigeof ¢ observations
taken at(z1,...,z2x). If Vi, € N(E(Y), c10?), then we have that

If we now assume that the new (or future) observations are independent of those we
already have then

Z —Y, € N(0,0%(c + %»7

Z-Y,
Syje+

From this we can as before derive

€ t(n — k).

THEOREM 3.4. Letus assume thag new observations taken ¢, ..., z;) each

have a variance;c? Furthermore, they are independent of each other and independent
of the earlier observations. In that caséla— o) confidence interval for the average

of the ¢ observations equals the interval

[z —t(n —k)1—gs /c+ C—l,z+t(nfk)17%5 e+ 2.
q q

REMARK 3.3. The above mentioned interval is a confidence interval for an obser-
vation and not for a parameter as we are used to. One therefore often speaks of a
prediction interval in order to distinguish between the two situations. \/

REMARK 3.4. We see that the correspondence to the intervalffpr instead of the

interval for E(Y;) = E(Y') just consists of the expression under the square root sign
being larger by an amount equalftqb which is the variance of%. \/

ExamPLE 3.6. We consider the following corresponding observations of an indepen-
dent variablex and a dependent variablg

x[ 0 1 2 3 4 5 6
y|04 03 15 13 19 42 8
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We assume that they 's originate from independent stochastic variablgs . . ., Y7
which are normally distributed with mean values

E(Y|z) = pa?
and variances
V(Y|0) =0? V(Y|z)= 2?07, x> 0.

We would now like to find a confidence interval for a new (or future) observation cor-
responding tox = 10. This observation is called”, and we have

E(Y) = 1008
v(Y) = 10007 .

We now reformulate the problem in matrix form:

Y 0 €1
Y, 1
Y3 4 )
Vi =] 9|8+ - |=xB+e
Y; 16 .
Ys 25
| Y7 | 36 | | €7 |
where
- o
1
4
D(e) = o? 9 — 2%
16
25
L 0 36 |
We have that
Is—1 . 1 1 1
xX¥'x = (0,1,4,9,16,25,36)diag(1,1,—,..., —)
477736 :
36
= 91.

T ly = 03+15+1.3+1.9+42+80=17.2.
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o)
A 17.2
= — =10.1890
B=5 :
and
0] "o -
1 0.1890
4 0.7560
Py(y) = 9 | -0.1890 = | 1.7010
16 3.0240
25 4.7250
| 36 | | 6.8040 |

The residuals are

0.4000
0.1110
0.7440
y— Py(y)=| —04010 |,
—1.1240
—0.5250

1.1960

SO

==

0.4000

==

ly — Py (y)||> = (0.4000---1.1960)

1.1960

gl

0.45829

. 1
02 =52 = ~—0.45820 = 0.07638 = 0.276372.

The constants: and ¢; are equal to

100 - — - 100 = 109.89

1
91
10% = 100.

o
I

1
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The prediction forz =10 is
z=1008 = 18.90
The confidence interval for the expected valuerat 10 is therefore given by

18.90 = t(6)0.0750.27641/109.89
18.90 = 2.447 - 0.27641/109.89
= 18.90 + 7.09.

The corresponding prediction interval for the next observation is

18.90 £ t(6)0.975 - 0.27641/109.89 + 100.
= 18.90 + 9.80,

i.e. a somewhat broader interval than for the expected value. The explanation is simply
that we have a variance df0?s? = 10002 in x=10. We depict the observations and
estimated polynomial in the following graph. Further the two confidence intervals are
given. ¢
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16 1

10 A

p Predicted value

Lower confidence
limit:

| _for expected
value

= for observation
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3.2 Tests in the general linear model

In this section we will check if the mean vector can be assumed to lie in a true sub-space
of the model space and also check if the mean vector successively can be assumed to
lie in sub-spaces of smaller and smaller dimensions. First

3.2.1 Test for a lower dimension of model space

LetY € N,,(u,02X), whereX is regular and known. We assume that M, is a
k-dimensional sub-space and we will test the hypothesis

Hy:p e H against Hy:pe M\H,

whereH is anr-dimensional sub-space éf. In the following we will consider the
norm given byX~! . The maximum likelihood estimator for is then the projection
pm(Y) onto M and ifHy is true then the maximum likelihood estimajay (Y'), is

Y s projection ontoH. The ML estimator for? in the two cases are respectively
I

%Hy —pm(y)? and%”y —pu(y)

The likelihood function is

1 1 1 . ( 1
n . Xp(—
V2r 0" y/detX P

1
— k‘ —-n o _ 2 )
0" exp(— 5 lly — nl)

L(p,0?) = 52— )2y —p)

With this notation we have
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THEOREM 3.5. Let the situation be as above. Then the ratio test at ke
Hy:p€e H versus Hy:pe M\H,

is equivalent to the test given by the critical region

pr@n—wndyHPﬂk—ﬂ

To— @I -k > Fk=rn=k)ial.

Ca:{(yh .. -ayn)

PrROOF 3.4. The ratio test statistic is

¢ = sup L(p, 0?) N L(pnm(y),02)

éppr@MT%_

ly — pu(y)l?

supg, L(p,0?)  L(pu(y),o?)
(

pWPM@

>P}%wm—%
ly — pu(y) 5

I

From this we see
ly — pu(y)|2

= < k.
ly —pu()l® =

Q<q

Since we reject the hypothesis for small valuegofve see that we reject when the
length of the legY” — pp/(Y') is much less than the length of the hypotenuse. From
Pythagoras we have that

ly —pa)1? = ly —pm (W)II* + lper(y) — pu(y)]%,

we see that we may just as well compare the two legsi.e. use

0<q & Ipac(y) = pu()?/(k=r) _ (3.1)

ly = pu(y)lI?/(n = k)

Under Hy both the numerator and denominator afe¢?(f)/f distributed with re-
spectivelyk — r andn — k degrees of freedom and they are furthermore independent
(follows from the partition theorem). The ratio will therefore be F-distributed under
Hy, and the theorem follows from this. The reason why we in (3.1) have divided
the respective norms with the dimension of the relevant sub-space is of course that we
want the test statistic to be F-distributed undgy, and not just proportional to an
F-distribution. ]
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Q.E.D.

One usually collects the calculations in an analysis of variance table.

Variation SS Degrees qf freedom
= dimension
Of model from
hypothesis Ipa (Y) = pu (Y)|? k—r
Of observations
from model 1Y = par (V) n—k
Of observations y
from hypothesis 1Y = pu(Y) n—r

ReEMARK 3.5. Often one will be in the situation that the sub-spaéésand H are
parameterised, i.e.

pw € M <& 30cRF(u=x0)
B € H & 3JyeR(p=x07),

wherex andxo_ aren x k respectivelyn x r (with r < k) matrices. We then have
thatpas(y) = x0 andpgy (y) = x¢% are computed by solving the equations

XL 7x)) = X2 7ly
(xf)E_lxo)ﬁl = xf)E_ly
with respect t&d and¥. v

Once again we consider the model from p. 114.
ExampPLE 3.7. We have the model

Yi 1 0 9
Y | =10 1 |:91]+€.
n) Lyl

We observe data whegé = (10.11, 0.81, 5.24). We wish to test the hypothesis
Hy:0,=0 versus H;:05#0.

We reformulate the hypothesis into

Hy: E(Y) = 01 =

= O =
N= O =
2
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The estimator fory is

1 ! 1 1 vL 4 2
y=[(1 0 3) (1) 770 0 5 )| v ]:gy1+gy3~
5 Y3

The observed value s = 10.184. From this we have

1 10.184
xoy=| 0 |10.184 = 01,
3 5.092

and

ly — %0711 = (¥ — x09)' (y — x0%) = 0.6835.
Since we had (p. 115)

ly — x08|1> = (y — x6)'(y — xA) = 0.0338,
we get

%0 — x0%||> = 0.6835 — 0.0338 = 0.6497.
From this the test statistic becomes

Ix6 xoy[*/(2 = 1)
ly —x0[2/(3-2)

=19.22 < F(1,1)0.90,

and we accept the hypothesis at least for any 10%.
Explanation of the degrees of freedom:

rgx =1g

N O =
N = O
I
[\

I
™

—
09
»
o
I
—

09
N O =
I
—

Il
<
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We will now look at the continuation of example 3.5 p. 121.

ExamPLE 3.8. From the formulation of the problem it seems reasonable to assume
that the parametékh; = 0. We will therefore test the hypothesis

Hy:0:1 =0 against Hy : 09 75 0.

The hypothesis-spadé is therefore given by

1 1 0 /L1+911
1 10 u1 + 011
1 01 75 1+ 012
EY)=|1 0 1 011 | = | p1+612
0 0 0 012 0
0 0 0 0
00 0 0|
We now find
1 1 0]
1 1 0
1 1.1 1 0 0 O 1 0 1 4 2 2
X’1X1: 1 1.0 0 0 0 O 1 0 1 = 2 2 0|,
0 1 1.0 0 0 0 0 0 2 0 2
0 0 0
(00 0
and
Yi.
xiY = | Y.
Yia.

We see thakx; is singular, and we add the linear restriction

%51
b0:(0 1 ].) 911 :911+912:0.
012
Since
0 0 O
bb=|0 1 1],
0 1 1
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we have
4 2 2
xXx+bb=1]2 3 1
2 1 3

This matrix is inverted on p. 121. We therefore find the estimator ufigeas

T r e an B
91 = —% 5 0 Yll. = ¥'11. - Xi
—7 0 % Yio. Yio. -1

The observed value (s-9, +8, —8)’. The new residual vector is
y—x10; = (1,-1,-2.42,-6,0,-2)".

The norm of this vector is 50, and the number of degrees of freedom is 7-2 = 5. We
therefore find that

1> = lly—paWI? = lly—pu )l
2 1
— 50—28% —21-.
3 3

Ipr(y) — pu(y)

We now collect the calculations in the following analysis of variance table.

Variation | SS f 52 | Test
M-H [213[3-2=1]213

2.97
O-—M | 282 |7-3=4]| 74
O-H 50[ 7-2=5

Since the observed value of the test statigtity < F(1,4)9.90 We will accept the
hypothesis, and therefore assume tHat s true. ¢

3.2.2 Successive testing in the general linear model.

In this section we will illustrate the test procedure one should follow, when one succes-

sively wants to investigate if the mean vector for ones observations lies in sub-spaces

Ho2H1 D2 Hy 2 -2 Hp, m < k.
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We will start by considering the following numbers from the yield of penicillin fer-
mentation using two different types of sugar namely: lactose and cane sugar, at the
concentrations 2%, 4%, 6% and 8% (in g./1200 ml.).

Factor B: concentration
2% 4% 6% 8%
Lactose 0.606 0.660 0.984 0.908

Factor A:

Cane sugar 0.761 0.933 1.072 0.97p

The numbers are from [5] p. 314. The yield has been expressed by the logarithm of the
weight of the mycelium after one week of growth.

We are now interested in investigating the two factors A's and B’s influence on the yield.
We assume that the observations are stochastic independent and normally distributed.
They are called

L:Y11,Y12,Y13, Y14
and
R :Ys1,Y52,Y03,Y2y
further we will assume that
E(Yyj) = o + Bz + v}

where:c;. gives thej’'th sugar concentration. We will perform change in scale of the
sugar concentration

2% -3
4% -1
6%

8% 3,

or more stringently define by

x}—S%
1%

LE]' =
We then get the following expression for the mean values

E(Yij) = a; + Biz; + vix.
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Yield
3

2
/—er + le + le
lactose

/—\ 2
a, + Bzx + Y,X

cane sugar

\

»>

-1 1 Concentration

We are assuming that the yield within the given limits can be expressed as polynomials
of second degree.

One could now e.g. successively investigate

1)if v1 = v2 = 0, i.e. if a description by affine functions is sufficient

2) if that is accepted then §; = 5, = 3, i.e. if the marginal effect by increasing
the concentration is the same for the two types of sugar

3) if that is accepted then if; = as = «, i.e. if the two types of sugar are equal
with respect to the yield and if this is accepted

4) then if 3 = 0, i.e. if the concentration has any influence at all

i) We first write the model in matrix form

[Yu ] [1 -39 0 0 0] [ &1 ]
Ylg 1 -1 1 0 0 0 aq E2
Y13 1 1 1 0 0 0 ﬂl €3
Yu| |1 390 00 n| | e
Yél 0 0 01 -3 9 9 €5 ’
Yao 0 00 1 -1 1 Bs €6
Yas 0 001 11 Yo 7
 Yoa | O 00 1 39| | es |

or
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We find
[1 =3 9 0 0 0]
[ 1 1 1 1 0 0 0 O 1 -1 1 0 0 0
-3 -1 1 3 0 0 0 O 1 1 1 0 0 0
x — 9 1 1 9 0 0 0 O 1 3 9 0 0 0
o 0 0 0 O 1 1 1 1 0 0O 01 -3 9
0 o o0 o0 -3 -1 1 3 0 O 01 -1 1
i 0 0 0 0 9 1 1 9 0 0 0 1 1 1
|0 00 1 3 9]
[ 4 0 20 0 O 0
0 20 0 0 O 0
_ 20 0 164 0 O 0
- 0 0 0 4 0 20
0 O 0 0 20 0
i 0 O 0 20 0 164
Since
-1 41 5
4 0 20 g0 —&
0 20 0 = 0 =5 01,
5 1
20 0 164 -5 0 &
then
41 5
&1 0 — 0 0 0
0 55 0 0 0 0
5 1
_ —= 0 = 0 0 0
')~ = 64 64
(') 0 0 0 4 o _&
0 0 0 0 35 0
0 0 0 - 0 &
From this we see that
*Tlgyn + %yu + 1%2/13 - %Gyu 0.830
*%yll - 2—10y12 + %ym + %yu 0.062
0 — 1_16y11 - %yu - %Gylfj + 1—161114 _ —0.008
*Tlgyﬂ + %yzz + %y23 - T16y24 1.019
s5Y21 — 55922 — 35423 + 5524 0.040
TeY21 — 1gY22 — TgY23 T 1gYe4 —0.017

The model corresponds to a 6-dimensional sub-spdde R® (rgx = 6), and
since we are using the norm correspondind tave have that the projection onto
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M is
(1 -3 9 0 0 0]
1 -1 10 00 0.830
1 110 00 0.062
. 1 390 00 ~0.008
pu(y)=z0="1 ., 5 1 _3 9 1.019
0 00 1 -1 1 0.040
0 00 1 11 —0.017
0 001 39|

We therefore have the residuals

0.034
—0.100
0.100
—0.036
—0.029
0.030

| —0.007

The squared length of this vector is
ly — par(m)]|? = 0.0342 + - - - + (—0.007)% = 0.024467.

As an estimate of? we can therefore use

1
652 = mo.024467 = (0.0122335.

ii) If the hypothesisu € Hy, i.e. v1 =2 =0, or

1 -3 0 0
1 -1 0 0
1 1 0 0 (5]
Yy = (1) ?) (1) 7(; g; +e=x101 + €1,
0 01 -1 Ba
0 0 1 1
0 0 1 3

is true, then we get the estimates

%yn + %ym + %913 + %ym
*;—Oyu - %yu + 2—10y13 + 2‘3—0%4
iym + iyzz + iyz:s + iyzzx

3 1 1 3
—35gY21 — 3pY22 + 55Y23 + 55Y24

61 = (xix1) x|y =

[ 0.572
0.760
0.884
0.944
0.746
0.962
1.042

| 0.986

0.790
0.062
0.936
0.040
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The residuals are

0.002
—0.068
0.132
y—pm(y) =y —x10 _8:822
0.037
0.096
| —0.077

The squared length of this vector is
ly — pa, ()]|2 = 0.0022 + - - - + (—0.077)% = 0.046215.

i) If u € Ho, d.v.s. 81 = 3 = 3, the model becomes

[1 0 —3]
1 0 -1
1 0 1 o
10 3 !
Yy = (0] + €9 = X909 + €9.
01 -3 3
0 1 -1
0 1 1
01 3|
The estimates become
R 0.790
02 = (xhx%o) 'xby = | 0.936 |,
0.051
and the residuals
[ —0.031 ]
-0.079
0.143
—0.035
Y — PH, (y) = —0.022
0.048
0.085
| —0.110 |

The squared norm of the residual vector is

Iy — pr, ()12 = (—0.031)% + - - + (—0.110)2 = 0.050989.
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iv) If uw € Hs, i.e. 1 = B2 = anda; = as = «, then the modelis

1 =3
1 -1
1 1
1 3
Y=11 _3 [g]+€3x353+€3
1 -1
1 1
- 1 3 -
We find
- _ 0.863
63 = (ng3) 1X§y = |: 0.051 :| )
and
[ —0.104 ]
—0.152
0.070
_ (y) = —0.108
0.121
0.158
| —0.037 |
giving

ly — pa, (y)||* = 0.094059.

v) Finally we consider the cage € Hy, i.e. 5 =0, or

o =x404 + 4.

<
I
= = e e e e
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giving
[ —0.250 ]
—0.203
0.121
0.045
Y- pH4(y) = —0.102 )
0.070
0.209
0.116

and

ly — pr, (y)||> = 0.196365.

Since we letg(x;) = r; andrg(x) = k we can summarise the testing procedure in an
analysis of variance table such as

Degrees of freedoms

Variation SS . .
dimension

Hy—Hy | pm,(y) —pu;()II° | r3—rma=2-1=1
Hy — Hy | |lps(y) —pr,(W)|? | m2—m3=3-2=1
Ho—Hi | pm,(y) —pu,(IP | 11—rm2=4-3=1
Hi—M | pm,(y) —pu@I? | k—rm=6-4=2
M —obs. | lpam(y) — yl? n—k=8-6=2

Hy —obs. | |lpa,(y) — yl? n—ry=8-1=7

This table is a simple extension of the table on p. 136. We can use the partition theorem
and get, under the different hypotheses, that the sum of squares are independent and
distributed ar?y? with the respective degrees of freedom.

If a hypothesigd; is accepted then the test statistic for the tesifpf; becomes

I, (Y) — Pt )P/ (ri — riga)
lpz, (y) — ylI2/(n — i)

Under the hypothesis this measur&is; —r;+1,n —r;) distributed (according to the
partition theorem) and - still following the theory from the previous section - we reject
for large values o i.e. for

Z > F(?‘i —Tir1, M — Ti)l—a-

Before we start testing it would be appropriate to give some computational formulas.
We consider the transition froli; to H; 1 C H;.
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Using Pythagoras’ theorem we now see that there are two alternative ways of compu-
tation for

z = HpHH»l(y> 7pHi(y>H27

they are

2= |lpa,(W)? = llpa. ()12 (3.2)
and

2=y —pra I~y — pas (Yl (3.3)

Of these the first must be preferred from numerical reasons but if one has computed the
residuals sum of squares anyhow it seems to be easier to use ( reffor:3.3)).

The analysis of variance table in our case becomes

Variation SS f | Test statistic
Hy— Hs | 0.102306| 1 | §ea0is = 5.44
Hs — H, | 0.043070] 1 % =4.22
Hy — Hy | 0.004774| 1 | 35l = 041
Hy—M |0.021748| 2 | g = 0.89
M —obs | 0.024467| 2

Obs — Hy | 0.196365] 7
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Since

4.22 ~ F(1,5)0.01,
and

5.44 ~ F(1,6)0.94,

we will not by testing at say, levelt = 5% - reject any of the hypothesig;, Hs, Hs
or Hy.

NoTe 1. We will of course not test e.g.H, if we had rejectedd?;, sinceH, is a
sub-hypothesis off; .

The conclusion is therefore that we (until new investigations reject this) will continue to
work with the model that the yield by penicillin fermentation is independent of type
of sugar and the concentration (2&concentratior< 8%) at which the fermentation
takes place. We have with

EY)=a and V()=o?

that

& = 0.863,
and

0.196365

6% = ————= =10.028052 ~ 0.17%.

Finally
0_2 (3'2
V(&) = — ~ — = 0.0035 ~ 0.059%.

)



Chapter 4
Regression analysis

In this chapter we will give an overview on regression analysis. Most of it is a special
case of the general linear model but since a number of uses are often concerned with
regression situations we will try to describe the results in this language.

There is a small section on orthogonal regression (not to be confused with regression
by orthogonal polynomials). From a statistical point of view this is more related to the
section on principle components and factor analysis and considering ways of computa-
tion we also refer to that chapter. However, from a curve-fitting point of view we have
found it sensible to mention the concept in the present chapter too.

4.1 Linear regression analysis
In this section linear regression analysis will be analysed by means of the theory for

the general linear model. We start with

4.1.1 Notation and model.

In the ordinary regression analysis we work with the model

E(Y)=a+ fiz1 + - + Bray,

149
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where ther’s are known variables and thigs (and«) are unknown parameters. If we
have givem observations of” we could more precisely write the model as

(07

f

Y; 1 211 - T

Y, 1 21 o T En

B
or

Y =x(B+e.
We assume as usual that

D(e) = 0*%,

whereX is known ands? is (usually) unknown.

The estimators are found in the usual way by solving the normal equations
XY xB=x'2"1Y,

orif ¥ =1

In the first case we talk of a weighted regression analysis.

Before we go on it is probably appropriate once again to stress what is meant by the
word linear in the term linear regression analysis.

As in the ordinary linear model the meaning is that we have linearity in the parameters.
We can easily do regression by e.g. time and the logarithm of the time. The model will
then just be

EY)=a+ pfit+ B21nt,

cf. example 3.2.
With n observations the model in matrix form becomes
Y1 1 tl In tl a €1

Sl = : B |+
Y, 1 t, Int, Ba En
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u(t)

uit) = a + Blt+ leog t

Figure 4.1:

Another banality that could be useful to stress is that one can force the regression
surface through 0 by deleting theand first column in th& -matrix i.e. use the model

Y T11 0 TRl B1 €1
=| : Lot

Yn Tin " Tkn 61@ En

It can be useful to note that you can use the following trick if you wish the regression
surface to go through 0. We assume that 1.

We consider the observations,...,Y,, and the corresponding values of the in-
dependent variablek, z;1, ..., x4, ¢ = 1,...,n. ifwe add—Y7,...,-Y,, and
1, —xi1,...,—xi, i =1,...,n and write down the usual model we get
R (1 2 o @ ]
. . . . a
Y, _ 1 Tin ce Tkn ﬁl +e
-7 1 -z - —zg ’
: : Br
L *Yn ] L 1 —Tin —Tkn |

or more compactly

IR P
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where we - compared to the notation on p. 150 - have used a slightly different definition
of thex matrix andg.

The normal equations become

i

[ aee] (5] [oev ]

If we write out the equations we get

or

2na = 0
2x'xpB = 2X'Y,
or
a = 0
xXxB = XY.

In other words in this way we have found the estimators of the coefficients to a regres-
sion surface which has been forced throigh

The reason why the above is useful is that a number of standard programmes cannot
force the surface through. Using the above mentioned trick the problem can be
circumvented.

The output from such a programme should be interpreted cautiously since all the sums
of squares are twice their correct size. E.g. the residual sums of squares will be com-
puted as

(-1 BD (][]
_y “xp y _x
— (Y- xBLLY x|
— oy xAY X,
i.e. twice the correct residual sum of squares. The mentioned degrees of freedom will

not be correct either. We have to write up the ordinary linear model and find the correct
degrees of freedom by considering the dimensions.
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4.1.2 Correlation and regression.

In theorem 2.23 p. 92 a result was stated, which can be used for a test if the multiple
correlation coefficient between normally distributed variables is 0. We will now show
that this result corresponds to a certain test in a regression model.

We will assume that we have the usual model p. 149 and we assuni thdt

Without any problems we can use the theory from chapter 3 to test different hypothesis
about the parameters (51, . . ., Bk.

By formal calculations we can estimate the multiple correlation coefficient betiWeen
andzxq, ...,z using expressions mentioned in section 2.3.2.

It can be shown that we get

Y = po(W)I* = Y = paur (V)

R? = ,
1Y — po(Y)]?
where
Y
po(Y)=] : (=x-P),
Y

and
pu(Y) =x8=5(Y).

These results are not very surprising. We remember that the multiple correlation coef-
ficient could be found as the linear combinationXf which minimises the variance

of (Y — o’ X) and this corresponds exactly to writing the condition for least squares
estimates.

If we let

SStor = ¥ —po(¥)[[* = Y (¥ ~ V)%
and

SSres = ||Y — x> = Z(YZ —B(Y))?,
we can write

SStot — SS
2 tot res
A
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i.e. the squared multiple correlation coefficient can also be expressed as the part of the
total variation in the¥”’s which are explained using the independent variables.

A corresponding re-interpretation of the partial correlations is of course also possible.

Furthermore, we see that if we formally write the test on p. 92fer,, . ., =0 we
get
B2 n—k-1 _ Y -pVIP-Y —pu(¥)|?n—k—1
1—-R? k 1Y = par (V)2 k

lpa (YY) *po(Y)Hz/k
Y — Pu(YV)IE/(n— k1)
(Sstot - SSres)/k
SSres/(n — k — 1)

From the normal theory (p. 135) this is exactly the test statistic for the hypothesis

« a
B1 0
B 0

and the distribution of the test statistic iF@k, n — k& — 1)-distribution - exactly the
same as we found on p. 135.

For testing it is from the numerical point of view therefore of no importance if we
choose to consider the's as observations of &-dimensional normally distributed
stochastic variable or as fixed deterministic variables.

This issue can therefore be separated from the assumptions we will consider in the next
section.

4.1.3 Analysis of assumptions.

If we for corresponding:-values
Tliy-+-yTpi

have more observations BT, it would be possible to compute the usual tests for distri-
butional type (histograms, quantile diagram@, -tests, etc.) and for the homogeneity

of variances (Bartlett's test and others). Finally we could also do run tests for random-
ness etc. etc.
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However, the situation is often that we very seldom have (more than maybe a couple) of
repetitions for different values of the independent variable. It is therefore not possible
to do these types of checks of the assumptions. Instead we consider the residuals

Ei =Y —B(Y:) =Y — & — fioy; — omai — = Brpi

If the model is valid these will be approximately independentlif@l o) distributed.

If one depicts the residuals in different ways and thereby sees something which does not
look (or could not be) observations of independedtly), o2) -distributed stochastic
variables then we have an indication that there is something wrong with the model.

Most often we would probably start with a usual analysis of the distribution of the
residuals i.e. do run-tests, draw histograms, quantile diagrams etc.

Afterwards we could depict the residuals against different quantities (time, independent
variables, etc.). We show the following 4 sketches to illustrate often seen residual plots.
We will now give a short description of what the reason for plots of this kind could

be. First we note that 1 always is acceptable (however, cf. p. 157).

i) Plot of residuals against time

2 The variance increases with time. Perform a weighted analysis.
3 Lack terms of the forng-time
4 Lack terms of the forn®; - time+ 3, - time?

ii) Plot of residuals againgt(Y;)
2 The variance increases wilt{(Y;). Perform a weighted analysis or trans-

form theY’s (e.g. with the logarithm or equivalent)

3 Lack constant term (the regression is possibly erroneously forced through
0). Error in the analysis.

4 Bad model. Try with a transformation of thés.
iii) Plot against independent variahig

2 The variance grows with;. Perform a weighted analysis or transform the
Y’s.
3 Error in the computations

4 Lacks quadratic term in;

The above is not meant to be an exhaustive description of how to analyse residual plots
but may be considered as an indication of how such an analysis could be done.
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@ t residual

@ residual

7
Z

@ residual

@ residual

7

V

/

Figure 4.2: Residual plots.
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REMARK 4.1. One often sees residual plots of the type residual versus dependent
variable i.e.

Y; —BE(Y;) against Y,

and people are often surprised that the picture is as displayed in 3). However, there is
nothing abnormal in this. It can be shown that

Cor(Y;,Y; — B(Y;)) =1 — R?,

i.e. they are positively correlated. If the multiple correlation coefficient is anything
less than 1 we would therefore get a picture as 3. Only if the regression surface goes
through all points i.e.R? = 1, then we will have a picture as in 1.

In practise we will often have our residual plot printed on printer listings. Then the
plots might look as shown on p. 158. The 4 plots have been taken from [20] p. 14-15
in appendix C.

When interpreting these plots we should remember that there are not always an equal
numbers of observations for each value of the independent variable.

This is e.g. the case in the plot which depicts the residual against variable 10.

There are 7 observations corresponding:te ~ 0.2704 E04 and 35 observations
corresponding tac;y ~ 0.7126 E03. The range of variation for the residuals is
approximately the same in the two cases. If the residuals corresponding to the 2 values
of 10 had the same variance we would, however, expect the range of variation for the
one with many observations to be the largest.

In other words if one has most observations around the centre of gravity for an in-
dependent variable a residual plot should rather be elliptical than of the form 1 to be
satisfactory. v

4.1.4 On “Influence Statistics”

When judging the quality of a regression analysis one often consider the following two
possibilities:

1) Check if deviations from the model look random.

2) Check the effect of single observations on the parameter estimates etc.

Considerations regarding 1) are given in section 4.1.3 above. Here we will briefly
consider 2).
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We consider the model:

Yn Tnl = Tnp 9;1) En

y=x0-+c¢€
For the i'th row we have:

01
Yi = (Ti1, -+, Tip) : + &
Op

or
yi = x;0 + €.

We assume that € N(0,0°I) and therefore have the LS estimate

0 = (x'x) %'y

The corresponding residual vector is

T1

r= :yf:i/:yfxé

r=[I-x(x'x)"'x]y

The dispersion matrices fégr andr are
D(@) = xD(0)x" = o?x(x'x) 1%/
D(r) =o?[I—x(x'x)" ][I — x(x'x)"1x/]

= [+ x(x'x)"1x" — 2x(x'x) " 'x']o?
= o2l — x(x'x)"1x']
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For the i'th row we find

Vi) = otx(xx)
Viry) =o%(1—x;(x

The deletion formula

Re-calculation of parameter estimates when discarding a single observation can be
done using the formula

Ay’ A1
NnN—1 __ —1
(A—uv' )" =A Jril—v’A—lu ,
where the involved matrices are assumed to exist. For thexAasedx andu = v =
x; we have

(x'x) " 1xix; (x'x) 71

4

1—nh;

(x'x —xix;) 7' = (x'x)"t +
If we denote thex -matrix where the i'th row is removexl(i) we have that

x(i)'x(i) = x'x — X}x;.

PROOF 4.1. Omitted. [ ]

We can now state the relevant expressions.

Cook's D
A confidence region for the parameters all the vector®*, which satisfy

1

po?

(6 —6%)x'x(0 — 0") < F(p,n —p)i—a-

We use the left hand side as a measure of the distance between the parameter vector
andf. We let@(i) be the estimate, which corresponds to the deletion of'the
observation

v(@) = W, Ve, Yitt 0 5 Yn)
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and therefore have

Cook’s D then equals

1

52

—2(0 - 00)/x'x(6 ~ 8(i).

If Cook’s D equals e.gFsqy, then this corresponds to the maximum likelihood esti-
mate moving to the 60 % confidence-ellipsoid or This is a relatively large change
when just removing a single observation. In the SAS-program REG one can find
Cook’s D together with other diagnostics statistics. Some are mentioned below.

RSTUDENT & STUDENT RESIDUAL

RSTUDENT is a so-called “studentised” residual, i.e.

’
RSTUDENT, = —
(VI s

wheres(i)? is the estimate of variance corresponding to deletion of theobserva-
tion.

SAS also computes a similar statistic, whereitieobservation is not excluded

STUDENT RESIDUAL= —
ov1— hz

Since both these types of residual are standardised a sensible rule of thumb is that they
should lie within£2 or £3.

COVRATIO

COVRATIO measures the change in the determinant of the dispersion matrix for the
parameter estimate when excluding thk observation. We find

det[6(4)2(x (i)' x(i)) ]
det[62(x/x)~1]

COVRATIO; =

This quantity "should" be close to 1. Ifit lies far from 1 then tftd observation has a
too large influence. As a rule of thumilCOVRATIO; — 1 |< 3p/n
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DFFITS

DFFITS is - like Cook’s distance - a measure of the total change when deleting one
single observation. As a rule of thumb they should lie within 42y A similar rule
adjusted for number of observations says withiy /p/(n — p).

_ Ji—9(i)i
DFFITS = 5 ()it

_ xi[0-00)]
cOVhi

DFBETAS

While DFFITS measures changes in the prediction of an observation corresponding
to changes in all parameter estimates, then DFBETAS simply measures the change in
each individual parameter estimate. As a rule of thumb they should lie withisg-8ay

A rule adjusted for number of observations says withity \/n.

We have

0; — 0(i);

ONC 2 e

DFBETAS; =

Call in SAS

All the mentioned statistics can be found using simple SAS statements e.g.

proc reg data = sundhed;
model ilt = maxpuls loebetid / r influence;

Model statements etc. are the same in REG as in GLM. The diagnostic tests come with
the options £ influence

4.2 Regression using orthogonal polynomials

When performing a regression analysis using polynomials one can often obtain rather
large computational savings and numerical stability by introducing the so-called or-
thogonal polynomials. In the end this will give the same expression for estimates of
the mean value as a function of the independent variable but with considerably smaller
computational load.
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4.2.1 Definition and formulation of the model.

We will assume that a polynomial regression model is given i.e. that

o

Y1 So(t) &(t) -+ &(t1) B €1
=] : ! R
Y, E()(tn) 51 (tn) t gk (tn) 6 En
k
Here¢;, i =0,1,...,k are known polynomials ofth degree int. We assume that

€ N(0,0°1)

En

In the usual fashion we can in this model estimate and test hypotheses regarding the
parameter$a, (1, . .., k).

As noted before it would be a great advantage to consider the so-called orthogonal poly-
nomials§; since the computational load will be reduced considerably. We introduce
these polynomialsin

DEFINITION 4.1. By a set of orthogonal polynomials corresponding to the values

t1,...,t, we mean polynomialgy, &1, ... whereg; is of i'th degree which satisfy
> o&Gt) =0,  i=1,2,...k (4.1)
j=1
Do Gut)E ) =0, u#E (4.2)
j=1
A

REMARK 4.2. Itis seen that, is a constant, so 4.1 is of course not usedfor For
notational reasons we I€f(¢;) = &;;,V; ;. Later we will return to the problem of
actually determining orthogonal polynomials. v
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If we now assume that the polynomials in the model are orthogonal we find using

o 0 b So(t1) &i(tr) -+ &k(t)
§=1| C = : : : ;

o - &kn Soltn) &i(tn) -+ &(tn)

that

n&d 0 0
, 0 Y&
55: : .. : ’

I )

i.e. £'¢ is adiagonal matrix. We therefore find

Y/g()
I > 65Y5/ 26,
B=(o ey =| 7]
PRI IOM
and
1/n€ 0 - 0
0 1 2.
p@=ct| | ET
0 1/ 362,

We now have that the estimators for the parameters are uncorrelated and since we are
working in a normal model they are therefore also stochastic independent.

We find that the residual sum of squares is

SSres = HY_gBHQ
= (Y -¢B)(Y —¢B)
Y'Y - B¢ep

= Y VP {aM@+ B &+ + 8> &)
= DW=V B &+ + B &)

From this we immediately have
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THEOREM 4.1. We have the following partitioning of the total variation
DY —¥)! =
BEY G A B A (Y=Y =B (ty) — = B (t)},
or with an easily understood notation
SStot = SS1.grad + - - - + SSk.grad + SSres;

i.e. the total sum of squares has been patrtitioned in terms corresponding to each poly-
nomial plus the residual sum of squares. The degrees of freedom-areespectively
1,...,1andn — k — 1. A

PROOF 4.2. Follows trivially from the above mentioned. ]

Using the partition theorem we furthermore have

THEOREM 4.2. The sums of squares which have been stated in the previous theorem
are stochastic independent with expected values

E(Ssi.deg) = E(B?Z&@J)Q)

J
o+ BY &) i=1,.. k.
J

and
E(SSres) = E[Y_(V; =V =+ = Bu&(t5))%] = (n — k — 1)o>.
J
Finally
1 2
ﬁssres S X (TL - k - 1)7
andif3;, =0-

1
;SSi.deg S X2(1)
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PrRooF 4.3. Obvious. [ |

The theorems contain the necessary results to be able to establish tests for the hypothe-
ses

Hy; : 61 =0 against Hy; - ﬂz 7& 0.

We collect the results in a analysis of variance table

Variation | SS f E(SS/f)

Linear | S5 deg 1 o+ BF 3o & (t5)?

Quadratic| SS2.eg 1 0?4 03 XJ: &a(t;)?

Cubic | 555.qeg 1 o® + 33 i &(t;)?
J

k'th order | SSk. qeg 1 o + B 3 &k(ty)?

Residual | SSies |n—k—1]| 0> ’

Total S Stot n—1

REMARK 4.3. The big advantage of using orthogonal polynomials in the regression
analysis is that one without changing any of the previous computations can introduce
polynomials of degreép + 1) and degreép + 2) etc. When establishing the order

for the describing polynomial we will usually continue (estimation and) testing until 2
successivey; 's = 0 since contributions which are caused by terms of even degree and
terms of odd degree are different in nature. This is, however, a rule of thumb which
should be used with caution. If we e.g. have an idea which is based on physical con-
siderations that terms of 5th order are important, then we would not stop the analysis
just because the 3rd and 4th degree coefficients do not differ significantly fronvO.

4.2.2 Determination of orthogonal polynomials.

It is readily seen, that multiplication with a constant does not change the orthogonality
conditions 4.1 and 4.2. We therefore choose to let

) =& =1.
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The polynomial of 1st degree is
51 (t) =t+ a,

since we can choose the coefficientfas 1. From 4.1 we have

n n

0= &(t;)=> (tj+a)= Zt]- + na,

j=1 j=1
or
1 < _
a=-= th =,
j=1
i.e.
&LHt)=t—t

We can then choosg as a linear combination of §; ¢2, i.e.
&(t) = age + ara(t — ) + ax(t — )%
From 4.1 we have
n
0= &l(t;) =nags +aiz y (t;— 1) +asn Yy (t; —1)°
j=1 J j
ag2 1
— == (-0
J

a9 n

From 4.2 we have
0 = zn;fl(tj)fz(tj)
j=
= an Y (i —0+a ) (-0 +and (t—1)°
j j j
= an) (=D +an ) (t; -1
j j

From this we get

a1 Zj(tj - 55

asz Yty =)
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&3, &, etc. are found analogously.

The computations are especially simple if the's are equidistant. Then we let

_t]-—(tl—w)
YETTTy

wherew = to — t; = t;41 — t;. We then have
w; =i, i=1,...,n.

Corresponding to the valuaés. .., n we then have the polynomials given by

&) =1 (4.3)

Gl =1- "1 (4.9
2(n2 _ 2

Cir1(t) = &(0)&(t) — %fi—l(ﬁ)- (4.5)

Inthe table on p. 169 we have given some values of orthogonal polynagnials , &,
kE<5,witht=1,...,nforn=1,...,8.

In order to avoid fractional numbers and large values we have chosen to give polyno-
mials where the coefficient to the term of largest degree is a nummbehich is also
seen in the table. Furthermore we have stated the terms

D= &G =) ¢
j=1 j=1

We now give an illustrative

ExAMPLE 4.1. In the following table corresponding values of reaction temperature
and yield of a process (in a fixed time) have been given.

Temperature Yield
200°F 0.75 oz.
210°F 1.00 oz.
220°F 1.35 oz.
230°F 1.80 oz.
240°F 2.60 oz.
250°F 3.60 oz.
260°F 5.45 0z.

We will try to describe the yield as a function of temperature using a polynomial. We
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Table 4.1: Values of orthogonal polynomials.



170 CHAPTER 4. REGRESSION ANALYSIS

will assume that the assumptions in order to perform a regression analysis are fulfilled.
First we transform the temperaturgsi = 1, ...,7 by means of the following relation

,_ T (200-10) 7190

10 10

We then get the values, ..., t7 =1,...,7.

We give the computations in the following table

t; & &o &3 &4 &s Yi
1 —3 5] —1 3] -1 0.75
2 -2 0 1| -7| 4 1.00
3 -1 -3 1 1| -5 1.35
4 ol —-4| ol 6| o0 1.80
5 1| -3| -1 1 5 2.60
6 2 0| -1 -7| -4 3.60
7 3 5 1 3 1 5.45
S 28| 84| 6| 154| 84| 1655=13y;
S &y | 20.55 | 11.95 | 0.85 | 1.15 | 0.55 | 56.0475 = 3" ¢?
A 1 1 3| 5| ®
o 16.55%
> (wi—p)? = 56.0475 - =
= 56.0475 — 39.1289
= 16.9186

a =165 =236

Bi = 2855 — 0.7339  SS) graa = 2532 — 15.0822

By = L9 = 01423 S8y graq = L2 = 1.7000

84,
Gy = 085 = 01417 SS34raa = 28 = 0.1204

By=442 =0.0075 SSygaa = 1 = 0.0086

fBs =035 = 0.0065 SS5eraa = 222 = 0.0036

[=2]

We summarise the result in the following table.

We see that the terms of 1st, 2nd and 3rd degree are significant and the two following
are not significant, so we will choose a polynomial of 3rd degree for the description.
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Variation SS f S? Test | F-percentile
Total 16.9186 | 6

1. degree | 15.0822 | 1 | 15.0822

Residuall | 1.8364 | 5| 0.3673 | 41.06 99.8%
2.degree | 1.7000 | 1 | 1.7000

ResiduaR | 0.1364 | 4 | 0.0341 | 49.85 99.7%
3.degree | 0.1204 | 1| 0.1204

ResiduaB | 0.0160 | 3 | 0.0053 | 22.72 98.0%
4.degree | 0.0086 | 1 | 0.0086

Residualt | 0.0074 | 2| 0.0037 | 2.32 75.0%
5.degree | 0.0036 | 1| 0.0036

Residuab | 0.0038 | 1| 0.0038 | 0.95 < 50.0%

From the recursion formulas 4.3, 4.4 and 4.5 we get - sinee7

@) = t—4
48
&) = (-4 -5
= 2 -8t+12
4-45
&(t) = (t—4)(t2—8t+12)—m(t—4)

3 — 12¢% + 41t — 36.

Sincer; =1, A2 =1 and\3 = 1/6 we get the following estimated polynomial

. . 5 1
at) = 2364+1-0:1&(t) + 1 Pa82(t) + 663§3(t)
= 0.0236t3 — 0.1409¢2 + 0.5631t + 0.2818.

we can get an expression where the original temperatures are given by entering this
relationship in the expression faft). We find

g(7) = 0.00002473 — 0.01486172 + 3.1476107 — 223.15440.

The estimated polynomial is shown together with the original data in the following
figure. ¢
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Figure 4.4: The correspondence between temperature and yield by the process given in
example 4.1.

4.3 Choice of the "best” regression equation

In this section we will consider the problem of choosing a suitable (small) number of
independent variables giving a reasonable description of our data.

4.3.1 The Problem.

If we are in the (unpleasant) situation of not being able to formulate a model based
upon physical relationships for the phenomena we are studying, we will often simply
register all the variables we think could have some effect on our observed values. If we
then compute a regression by e.g. polynomials in these independent variables (from a
Taylor-approximation point of view) we will very quickly have an enormous number

of terms in our regression. If we start off with 10 basic-variahles .., z19, then

an ordinary second order polynomial in these variables will contain 66 terms. If we
include 3rd degree we have on the order of 150 terms. Expressions containing so many
terms will (if it is at all possible to estimate all the parameters) be very tedious to
work with. If we e.g. wish to determine optimal production conditions for a chemical
process we could estimate the response surface and find the maximum for this. This
will be extremely difficult if there are many variables involved. We would therefore
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seek to find a considerably smaller number of terms which will give a reasonably good
description of the variation in the material (cf. the section on ridge regression).

Itis important, however, to note that an expression found by applying the methods dis-
cussed in the following should be used with caution. It will (probably) be an expression
which describes the data at hand very well. Whether or not the method is adequate to
predict future observations depends upon if the expression also describes the physical
conditions well enough. One way of determining this is in the first instance only to base
the estimation on half of the data and then compare the other half with the estimated
model. If the degree of agreement is reasonable we have the indication that the model
is not completely inadequate as a prediction model.

We will use a single illustrative example for all the methods we will describe. In order

for it to be possible to overlook (and maybe check) the individual calculations we
have only taken a very small part of the original data material. We should therefore
not evaluate the suitability of the methods by means of the example, but only use it
as an illustration of the principals and the way of going about these. The data are
some corresponding measurements of the quElitf a food additive (measured using
viscosity) and some some production parameters. x3 (pressure, temperature and
degree of neutralisation). In order to simplify the calculations the data are coded, i.e.
the variables have had some constants subtracted and been divided by others. We have
the following measurements

Yy 1 T2 T3
49 0 0 2
3.0 1 0 1
0.2 1 1 0
29 1 2 2
6.4 2 1 2

Experience shows that within a suitably small region of variation of the production
parameters it is reasonable to assume that the quality shows a linear dependency on
these. We will therefore use the following model

EY|x) = a+ fiz1 + Boxa + Psas,

or in matrix form

Y, 1 00 2 £1
Yy 110 1 o &5
Vs =111 0 ﬁ1+53,
Ya 1 1 2 2 Ba €4
Ys 1 21 2 Bs €5

e € N(0,0°T).
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In the numerical appendix (p. 183) all té regression analysis with as depen-
dent variable and one of the more of th's as independent variables are shown. The
following models are possible

M : EY) = a + fizi + [z + [ars
Hyo EY) = a + Birr + [oxs

His EY) = a + p[fizi + B33
H23 E(Y) = o —+ 521'2 + 5515
H,y EY) = a + fin '
Hy EY) = o + Bazo

Hs EY) = a + B33
H() : E(Y) = «

For each of these 8 models the estimatorsofoand thes ’s are shown, we find the
projection of the observation vector onto the sub-space corresponding to the model we
determine the residual vector, the squared length of the residual vector (the residual
sum of squares), the estimate of variance, and the (squared) multiple correlation coef-
ficient. After that we show the analysis of variance tables for the possible sequences
of successive testings of hypotheses: that the mean vector is a member of successively
smaller (lower dimension) sub-spaces in sequences like

M D Hyi3 2 Hy O Hy.

The above mentioned sequence of sub-spaces corresponds to successive testing of the
hypothesis

There are 6 (= 3!) possible tables of this type. Finally we show some partial correlation
matrices. If we lety = z, the empirical variance-covariance matrix is (as usual)
defined by thé, j)'th element being

1

Sii =3 D (@i — T (@5 — ;).
1
The (i, j)'th element in the correlation matrix is then
Sij
T‘ij = .

Using the formula on p. 84 in section 2 we then compute the partial correlations for
givenxz and for givenzs, x3.

We now have enough background material to mention some of the most popular ways
of selecting single independent variables to describe the variation of the dependent
variable.
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4.3.2 Examination of all regressions.

This method can of course only be used if there are reasonably few variables. We
summarise the result from the appendix in the following table

Model Multiple | Residual variancg Average
R? S? of S2
Hy :EY)=« 0 5.47 5.47
H1 : E(Y) =+ 61%1 51% 6.91
Hy :E(Y)=a+ foxs 3.8% 7.01 5.35
Hs :E(Y)=oa+ (3 70.8% 2.13
His : E(Y) =a+ fi1x1 + Boxs 15.3% 9.26
Hys :E(Y)=a+ pfix1 + Psxs 76.0% 2.63 4.68
H23 : E(Y) = o+ 6212 + 6515 804% 2.14

Looking at the multiple correlation coefficient quickly indicates that we do not gain so
much by going from one variablers) up to 2 variables. The crucial jump happens
when including all 3 variables. Considerations of this type lead us rather to just use

i.e. the modeE(Y|x) = a + fB3x3. This decision is strengthened by looking at the
residual varianc&?. We then see tha? for the best equation in one variable is less
than for the best equation in two variables which strongly indicates that we should just
look at one variable (or use all three). If we besides looking at the smalfestlso

look at the average values and depict them by number of included variables we have
graphs like

Smallest Si Average
ﬁ SZ
r
T T > T T ™
0 1 2 3No. of 0 1 2 3No. of
vars in vars in
equation equation

This also indicates that the number of variables in an equation should be either 1 or 3
(there is no significant improvement by going from 1 to 2).



176 CHAPTER 4. REGRESSION ANALYSIS

If we only look at the graph with the average values it is not obvious that we should
include any independent variable at all. We could therefore tgt# 0 in the model

Hy  (E(ylr) = a+ B373)

o (y) — i (9)[2/1 _ 21868 — 6.38
PESTALE 6.33/3

~ 7.28.

Therefore we will rejecls = 0 at all levels greater thasf.

As a conclusion of these (rather loose) considerations we will use the Hgdel

E(Y|z) = a+ f3xs ~ 0.4 4 2.2x3.

Here~ means estimated at). The estimate of the error (the variance) on the measure-
ments is (estimated with 3 degrees of freedom):

s =12.13.

REMARK 4.4. It should be added here that the idea of looking at the averages of the
residual variances does seem a bit dubious. It has been included merely because the
method seems to enjoy widespread use - at least in some parts of the literature.

4.3.3 Backwards elimination.

This method is far more economical with respect to computational time than the pre-
vious one. Here we start with the full mod&l and then investigate which of the
coefficients which has the smallest F-value for a test of the hypothesis that the coeffi-
cient might be 0.

This variable is then excluded and the procedure is repeated with-the remaining
variables etc.

We can then stop the procedure when none of the remaining variables have an F-value
less than thé — o quantile in the relevant F-distribution.

We can illustrate the procedure using our example. We collect the data in the following
table.

From the table can be seen that this procedure also will end with the Hgdgl(y) =
a + (3x3 when we use an , greater thag%.
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Figure 4.5: Flow diagram for Backwards-elimination procedure in stepwise regression

analysis.

The disadvantage with this method is, that we have to solve the full regression model

Start with full

model

Find F-values
for all wvariables
in equation

smallest
F-value<F-out

Remove the
corresponding
variable

Step

F-value fortestof; = 0

/ Quantile in F-distribution

Model: E(Y) = o+ fiz1 + faxa + B33

3.625/1
0.634/1
4.621/1
0.634/1
17.879/1 _
0.634/1

Br:
1 ﬂg:
Bs :

5.76
7.29

28.20

= F(17 1)0.71
= F(17 1)0.72

= F(1,1)0.86

Remover; : Model is now: E(Y) = a + fa2 + (B33

2.095/1 _
4.285/2 —

16.757/1
1285/2

2 622
Bs :

0.98
7.82

F(1,2)0.55
F(1,2)0.88

Remover, : Model is now: E(Y) = a + (373

15.488/1
6.38/3 —

3 ﬂd

7.28

= F(lv 3)0.92

which can be a problem if there many independent variables.

This problem is circumvented by using the following procedure.
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Start with
constant

| v2m.

¥
Choose the wvariable
with the largest _
partial correlation
with dependent wvariable

v

Find F-value
for the
variable

Include the wvariable
| in the equation

Figure 4.6: Flow diagram for Forward-selection procedure in stepwise regression anal-
ysis

4.3.4 Forward selection

In this procedure we start with the constant term in the equation only. Then we choose
the independent variable which shows the greatest correlation with the dependent vari-
able. We then perform an F-test to check if this coefficient is significantly different
from 0. If so, then it is included in the model.

Among the independent variables not yet included we now choose the one that has the
greatest (absolute) partial correlation coefficient with the dependent variable given the
variables already in the equation. We perform an F-test to check if the new variable
has contributed to the reduction of the residual variance, i.e. if the coefficient for it is
different from 0. If so, continue as before if not stop the analysis.

In our example the steps will be the following

1) From the correlation matrix (p. 188) we see thgt has the greatest correlation
coefficient with y, viz. 0.8416. We test i3 in the modelE(Y) = o + 323 can be
assumed to be 0 we have the test statistic (see p. 187).

15.488/1
6.38/3
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If we usea = 10% we continue (since we then rejggt= 0).

2) From the partial correlation matrix givan (p. 188) we see that the variable which
has the greatest partial correlation coefficient with #fe(given thatzs is in the
equation) isr (pz,y|2, = —0.5728). We includer; and check if3; in the model

E(y) = a+ fax2 + G323
can be assumed to be 0. We have the test statistic (see p. 188)

2.095/1
2T 0,98 ~ F(1,2)0 .55
4.2855/2 0.98 = F(1, 2)o.ss

Since we were using = 10%, then this statistic is not significantly different from 0,
and we stop the analysis here without including. The resulting model is

E(Y) =a+ ﬁ?}m?n

wherea andj3 are estimated as earlier. We especially note thathas not been
included in the equation at all.

REMARK 4.5. If we had usedv = 50% we would have continued the analysis and
considered the partial correlations given andxs. According to the matrix p. 189
the partial correlation coefficient betwegandz; given thatz, andzs are included

in the equation

Paryleazs = 0.8956.

Now z; is the only variable not included so it is trivially the one which has the greatest
partial correlation withy. We now includer; in the equation and investigatedf in

the modelE(y) = a + B1x1 + B222 + Bsxs is significantly different from 0. The test
statistic is (p. 187)

3.652/1
0.634/1

=576 ~F(1,1)0.71.

In the case we have seen that the equation was extended considerably just by changing
«. Itis important to note that changesdn can have drastic consequences for the
resulting model. v

REMARK 4.6. The procedure of choosing the variable which has the greatest partial
correlation with the dependent variable at every step, is equivalent to choosing the
variable which has the greatest F-value in the partial F-test. This result comes from
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the relation between the partial correlation coefficient and the F-statistic.This is of the
form
7.2

F=g()= "0

'fv

where f is the number of degrees of freedom for the denominator (cf p. 154). This
relation is monotonously increasing

If we e.g. in step 2 want to compute the F-test statistic from the correlation matrix we
would get

(—0.5728)2

F=_ "=/
1— (—0.5728)2

-2 =0.98.

Itis further seen that the mentioned criterion is equivalent to at each step always taking
the variable which gives the greatest reduction in residual sum of squares. v

REMARK 4.7. In many of the existing standard regression programmes it is not possi-
ble to specify amv-value. We must then instead give a fixed number as the limit for the
F-test statistics we will accept respectively reject. We must then by looking at a table
over F-quantile find a suitable value. If we e.g. wish to have 5%, we see that we
should use the value 4 since

F(1,n)0.095 ~ 4,
for reasonably large values of \/
The ‘forward selection’ method has its merits compared to the backward elimination

method in that we do not have to compute the total equation. The greatest drawback
with the method is probably that we do not take into account that some of the variables
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could be redundant if others enter at a later stage. If we e.g. havethatizs + bxs
(approximately) and that; has been chosen as the most important variable. If we
then at a later stage in the analysis also inclugleandx3 then it is obvious that we

no longer need:;. It should therefore be removed. This happens in the last method
we mention.

4.3.5 Stepwise regression.

The name is badly chosen since we could equally well call the last two methods by this
name. There are also many authors who use the name stepwise regression as a common
name for a number of different procedures. In this text we will specifically have the
following method in mind. Choice of the variable to enter the equation is performed
like in the forward selection procedure, but at every single step we check each of the
variables in the equation as if they were the last included variable. We then compute an
F-test statistic for all the variables in the equation. If some of these are smaller than the

1 — « quantile in the relevant F-distribution then the respective variable is removed. If

we look at our standard example we get the following steps = 50%, aous = 40%).

1) x5 isincluded as in the forward selection procedure and we tght i signifi-
cantly different from 0. The test statistic and the conclusion are as before.

2) We now includers . We compute the partial F-test {85 (in the modeE(Y) =
a+ [axa + PB3w3):

2.095/1
: F-value=
2 1.285/2

=0.98 ~ F(l, 2)0_55.

Then we compute a partial F-test féy (in the modeE(Y) = a+ faxa+ G323).
Using the table p. 187 we find that

16.757/1
: F-value= ———
s 1.285/2

=7.82 ~ F(l, 2)0.88-

3) We now again remove, from the equation since 0.55 0.60. The difference
at this step between the forward selection procedure and the stepwise procedure
is that we also compute an F-value fgy and thereby have a possibility thaf
again will be eliminated from the equation. This was not possible by the ordinary
forward selection procedure.

4) The only remaining variable is,. It has a partial F-value of

1.125/1
5.255/2

X7 F_Va|ue: =043 < F(17 2)0.507

so it does not enter the equation at all.
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Figure 4.7: Flow diagram for Stepwise-Regression procedure in stepwise regression
analysis.
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The analysis stops and we have the model

E(Y) = a+ fBs3z3.

REMARK 4.8. The reason why we investigated the partial F-value under 2, but not
under 4 is that;; does not enter the equation at all since

0.43 < F(l, 2)0.50 = Fl_o‘q,

nd

On the other hand, was entered into the equation since

0.98 < F(1,2)0.55 > F1-q,

ind

REMARK 4.9. Like the section on the forward selection procedure we can note that

we are often forced to use fixed F-values insteatl efa: quantiles. If we do not use

the same level when determining if we want to include more variables as we do when
determining if some of the variables should be removed, we will often let the last value
be about half as big as the first one i.e.

. 1_. .
F-out of equation= §F-|nto equation

(This is the opposite of what we actually used in the example). v

4.3.6 Some existing programmes.

Since these programmes are very old we will skip this section and go directly to the

4.3.7 Numerical appendix.

In this appendix we will show the calculation of the numbers used in the previous
sections. It should not be necessary to go through all these computations but they are
shown, so we with the help of these should be able to check our understanding of the
different principles.

A. Data:
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Yy T1 T2 X3
49 0 0 2
30 1 0 1
02 1 1 0
29 1 2 2
64 2 1 2

B. Basic Model: E(Y) = o+ ﬂllﬂl + 62%2 + 65%5 or

Yi 100 2 €1
Yy 110 1 g‘ €2
Ys =111 0 ﬂl + | e3
Yy 112 2 ﬂ? €4
Ys 1 21 2 3 €5
e € N(0,0°I)
C. Estimators in sub-models
i) Model M: E(Y) = a+ £1X1 + B2 X2 + B3z
R 4.575 0.325
o _
b, ?'}ng 3.650 —0.650
A =1 4 spm(y) = | —0.125 | sy —pu(y)=| 0.325
By 1.400
2 5375 3.225 —0.325
Bs ' 6.075 0.325
1 0.845
=y —pu)|* = ——=0845
21.868 — 0.633750
R* = =97.1
21.868 %
ii) Model Hi5 : E(Y) = a+ f1z1 + Paxa
3.026 1.874
a 3.026 4.269 —1.269
A | = 1.243 | ;pmy,(y) = | 3282 |y —pu,,(y) = | —3.082
Bo —0.987 2.295 0.605
4.525 ~1.875
1 , 18512611
=5y —Pm.(WI" = ———— =9.2563

R 21.868 — 18.512611
o 21.868

=15.3%



4.3. CHOICE OF THE "BEST” REGRESSION EQUATION 185

iii) Model Hys: BE(Y) = o+ Bra1 + B33

4.05 0.85
EAY —0.350 2.60 0.40
pr| = 0.750 | ;pm,s(y)=| 040 | ;y —pm,,(y)=| —1.20
B2 2.200 4.80 —1.90
5.55 0.85
1 ,  5.2250
F3 v —pma ()] 5
21.868 — 5.2550
iV) Model Hos: E(Y) =+ 6212 + 6515
5.563 —0.663
?é 0.945 3.254 —0.254
O2 | = | —0872 | ipuy,(y) = | 0.073 |3y —puy,(y) = | 0.127
B3 2.309 3.819 —0.919
4.691 1.709
1 ., 4.285456
_ = =2.142
o ly - ) = 22 7
21.868 — 4.2855
V) Model H; : E(Y) = o+ 611'1
2.73 2.17
A 3.48 —0.48
a 2.73
[ 5 ] = [ 075 } o, (y) = | 348 |y —pm,(y) = | —3.28
) ~ 3.48 ~0.58
4.23 2.17
1 ,  20.7430
— ||y — = — =6.914
ol o )17 = 22T — o143
21. —20.743
gr o 2880 g

21.868
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vi) Model Ho: E(Y) = a + [axso

3.914 0.986
A 3.914 —0.914
@ 3.914
[ 3 ] = [ 0543 } oy (y) = | 3371 | sy —pm,(y) = | —3.171
2 ' 2.828 0.072
3.371 3.029
1 ,  21.042858
=5lly — ()" = ———— =7.0143
21.868 — 21.043
2 _ 21.006 — 21040
R = 21.868 Rl
4.8 0.1
R 2.6 0.4
& 0.4
{ 3 ] = [ 99 } sps(y) = | 04 |5y —pu,(y) = | —0.2
’ ' 4.8 ~1.9
4.8 1.6
1 , 6.38
—=lly - =" =212
sy —pm(y)ll 3 67
21.868 — 6.38
R?=2""___"" —70.8%
21.868 ¢
viii) Model Hy: E(Y) = a
& = 3.48
3.48 1.42
3.48 —0.48
pr,(y) = | 348 |y —pm,(y) = | —3.28
3.48 —0.58
3.48 2.92
1 ,  21.8680
—ly - = —54
7y P ()] 1 5.4670

D. Successive testings
1)H 2 Hi2 2 Hy 2 Hpie.:33=0,62=0,61=0
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Variation SS d.o.f.
Hy—H; (/1 =0)]21.868—20.7430 = 1.125 1
Hy— Hio (B2=0)|20.7430 — 18.5126 = 2.230 1
H—-His (f35=0)|18.5126 —0.6338 =17.879 1
M — obs 0.6338 = 0.634 1
Hy — obs 21.868 4

2)M D Hi,DH; D Hj d.v.s. :63 = 0,61 = 0,62 =0

Variation SS d.o.f.
Hy — Ho (62 = O) 21.8680 — 21.0429 = 0.825 1
Hy — Hyo (61 = O) 21.0429 — 18.5126 = 2.530 1
Hy;— M (B5=0)|18.5126 — 0.6338 = 17.879 1
M — obs 0.6338 = 0.634 1
Hy — obs 21.868 4

3)M D Hy3 D Hy D Hyd.v.s. B2=0,03=0,08,=0

Variation SS d.o.f.
Hy—H; (/1 =0)]|21.8680—20.7430 = 1.125 1
Hy — Hi3 (83 =0) | 20.7430 — 5.2550 = 15.488 1
His— M (62=0)|5.2550—0.6338 = 4.621 1
M — obs 0.6338 = 0.634 1
Hy — obs 21.868 4

4M DO Hi3s2DHs D Hpdvs. (32 =0,6=0,083=0

Variation SS .0.f.
Hy— Hs (B#35=0)|21.8680—6.38 = 15.488 1
Hs— Hi3 (f1=0)|6.38—-5.2550 = 1.125 1
His—M (62=0)|5.2550 — 0.6338 = 4.621 1
M — obs 0.6338 = 0.634 1
Hy — obs 21.868 4
5)M D Hy3 D Hy D Hy d.v.s. :61 = 0,63 = 0,62 =0
Variation SS d.o.f.
Hy — Ho (Bg = O) 21.8680 — 21.0429 = 0.825 1
Hy — Hyz (B3 =0) | 21.0429 — 4.2855 =16.757 | 1
Hys— M (81 =0)|4.2855—0.6338 = 3.652 1
M — obs 0.6338 = 0.634 1
Hy — obs 21.868 4
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6)M D Hy3 D Hy D Hpd.v.s. 61=0,6=0,083=0

Variation SS d.o.f.
Hy—Hs (#3=0)|21.8680—6.38 = 15.488 1
Hs; — Hoz (B2=0) | 6.38—4.2855 = 2.095 1
Hys — M (1 =0) | 4.2855 —0.6338 = 3.652 1
M — obs 0.6338 = 0.634 1
H, — obs 21.868 4
E. Variance-covariance- and correlation- matrix for data.
2 1 0 1.50 T
1 1 2.8 04 —1.52 To
Variance-covariance matrix ) 0 0.4 3.2 7.04 T3
- 1.50 —1.52 7.04 21.868 Y
x1 x2 xr3 Yy
1 0.4225 0 0.2268 T
0.4225 1 0.13393 —0.1942 To
correlation matrix= 0 0.1336 1 0.8416 T3
0.2268 —0.1942 0.8416 1 Y
T Z2 x3 Y
F. Partial correlations for given x3:
1 0.4225 0.2268 0
0.4225 1 —0.1942 | — [ 0.1336 | [1]7'[ 0 0.1336 0.8416 ]
0.2268 —0.1942 1 0.8416
1 0.4225 0.2268

= | 04225 0.9822 -0.3066 |,
0.2268 —0.3066  0.2917

i.e. the correlation matrix is

1 0.4263 0.4199 T
0.4263 1 —0.5728 Ta
0.4199 —0.5728 1 Y

T T2 Y

First calculated using the above mentioned partial correlation matrix

1 0.4199 0.4263 \ ;1 -
< 0.4199 1 ) - ( 05798 > [1]71[0.4263 — 0.5728] =

0.8183 0.6641
0.6641 0.6718 )’
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which results in the following correlation matrix

1 0.8956 \ a1
0.8956 1 y

As a check we could compute it from the original covariance matrix
2 1.50 - 1 0 28 04\ /1 -1.52
1.50 21.868 —1.52 7.04 04 3.2 0 7.04
(2 1.50 \ 1 0 0.3636 —0.0455) (1 —1.52
~ \1.5021.868 —1.527.04)\—0.0455 0.3182/\0 7.04

_(1.6363 2.3727
~\2.3727 4.2855)"

and the partial correlation matrix is then

1 0.8960 \
0.8960 1 y

The deviations in the elements off the diagonal are a result of truncation errors.

4.4 Other regression models and solutions

This section is omitted.
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Chapter 6

Tests In the
multidimensional normal
distribution

In this chapter we will give a number of generalisations to some of the well known
test statistics based on one dimensional normally distributed stochastic variables. In
most cases the test statistics will be analogues to the well known ones, except for
multiplication being substituted with matrix multiplication, numerical values by the
determinant of the matrix etc.

6.1 Test for mean value.

6.1.1 Hotelling’'s 72 in the One-Sample Situation
In this section we will consider independent stochastic variaKles .., X,,, where
X, eN,(1, 2),

i.e. p-dimensionally normally distributed with mean veqtoand variance-covariance
matrix X. We assume thaX is regular and unknown. We want to test a hypothesis
about the mean vect@r being equal to a given vectgs, against all alternativesi.e.

Ho:p=p, against Hi:p# pg

193
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We first repeat some results on the estimators. From theorem 2.27 p. 103 we have
the following results on the empirical mean veci&r and the empirical variance-
covariance matris

X-1yx, € Ny (. 1)
i=1
S = 112(X17X)(X17X)/ EW(TL*l L 2)

n—1 : ' n—1
=1

X andS are stochastic independent.

In the following we will furthermore need the following results on the distribution of
certain functions of normally distributed and Wishart distributed stochastic variables.

LEMMA 6.1. LetY be ap-dimensional stochastic variable and (&t be ap x p
stochastic matrix with

Y € N
mU € W(m,X),

furthermore lefy” andU be stochastically independent. We now let
T’=Y'U'Y.
Then the following holds

— 1
MoPT g2 F(p,m —p+1L;u/'S '),
mp
i.e. the left hand side is non-centrally F-distributed with non-centrality parameter
w'E"1u and degrees of freedom equal@m — p + 1). If u = 0, then the
non-centrality parameter is O i.e. we then have the special case

— 1
MTQ eF(p,m—p+1).
mp
PROOF 6.1. Omitted. See e.g. [2], p. 106. ]

We now have the following main result

THEOREM 6.1. We will use the notation

T? = n(X - Ho)lsil(x — Hg),
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whereX, u, andS are as stated in the introduction to this section. Then the critical
area for a ratio test off; againstd; atlevela is

n—p 9
C= mlv"';mnit >Fp7n7p17aa
{ ! > Fom = pha}
wheret? is the observed value @f2. A

PROOF 6.2. From Lemma 6.1 we find that

n—p

MTQ € F(p,n—p)

underH,. From this follows that” is the critical region for a test aff, versusH; at
level . That this corresponds to a ratio test follows from direct computation by using
theorem 1.2 among other things. ]

REMARK 6.1. The quantityl? is often called Hotelling’d™ after Harold Hotelling,
who first considered this test statistic. v

REMARK 6.2. In the one dimensional case we use the test statistic

_ V(X = po)
z =

We now have thaZ? can be written
Z% = n(X — po)[S? (X — po),

i.e. precisely the same &% reduces to in the one-dimensional case. Furthermore
note that the square of a student distributed varigble is F(1,v) distributed which
means that there (of course) also is a relation between the distribution of the two test
statistics. \

In order to compute the test statistic it is useful to remember the follow theorem where
it is seen that inversion of a matrix can be substituted by the calculation of some deter-
minants.

THEOREM 6.2. Let the notation be as above then the following holds true

2 _ det[S 4+ n(X — po) (X — po)']
det[S]

T -1
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PROOF 6.3. Omitted. Purely technical and follows by using theorem 1.2 p. 17 on the
matrix

1 VaX - )
V(X = po) S

We now give an illustrative

ExamMPLE 6.1. In the following table values for silicium and aluminium (in %) in 7
samples collected on the moon are given

Sample
1 2 3 4 5 6 7
Silicium 19.4 21.5 19.2 184 20.6 19.8 18.7
Aluminium| 59 40 40 54 6.2 57 6.0

We are now very interested in testing if these samples can be assumed to come from a
population with the same mean values as basalt from our own planet earth. These are

922.10
Fo=1\ 740 )

It seems sensible to use Hotellin@? to help answer the above question. If we call
the observations, ..., x7, we find

o _ (1966

- 531 )°
. 1.1795  —0.3076
=\ -03076 0.8681 /-

Since

_ 9244
T=Ho=1\ _909 )
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then
n(& — po) (2 — po)' = < 3570 3058 > 7
35.70 30.58
and
sonte e - (235 28,
Then
2 949 s

©0.9293
The F-test statistic is

7-2
WtQ =42.8 > F(2,5)0.990 = 37.1,

and the hypothesis is therefore rejected at least at all levelarger than 0.1%. It
therefore does not seem reasonable to assume that the 7 moon samples originate from

a population with the same mean value of silicium and aluminium as basalt from our
planet earth. ¢

From the result of theorem 6.1 we can easily construct a confidence regian fdfe
have with the usual notation

THEOREM 6.3. A (1 — «) -confidence region for the expectatiBiX ) is

(i@~ s~ @ — ) < = rn - )1

i.e. an ellipsoid with centre im and main axes determined by the eigenvectors in the

inverse empirical variance-covariance matrix. A

PROOF 6.4. Trivial from the definition of a confidence area and theorem 6.1. B

We now continue example 6.1 in the following
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ExAMPLE 6.2. We will now determine a 95% confidence area for the mean vector.
According to theorem 6.3 the confidence area is ordered by the ellipse

_ 19.66 — 12
7(19.66 — p1,5.31 — pg)s™* ( 531 Z; > = EF(2’5>0‘95
or
o . 1 19.66 — M1 _
(19.66 — p11,5.31 — pio)s ( S5l by ) = 19851
We find

—1 _ ( 0.9341 0.3310
0.3310 1.2692

with the eigenvalues 1.4727 and 0.7307 and the corresponding (normed) eigenvectors
0.5236 and —0.8520
0.8520 0.5236 /-

In the coordinate system with origin ia and the above mentioned vectors as unity
vectors the ellipse has the equation

1.4727y? 4+ 0.7307y5 = 1.9851
or
yi Y5

=1
1.16102 + 1.64822

In figure 6.1 the confidence region and the observations are shown. Furthermere
(22.10, 7.40) is given. It is seen that this observation lies outside the confidence
region corresponding to the hypothegis= 1, againsiu # p, being rejected at all
levels greater than 0.01% and therefore especiallyfer 5%. ¢

6.1.2 Hotelling’s T2 in the two-sample situation.

Quite analogous to the t-test in the one dimensional case Hotelliifgsan be used to
investigate if samples from two normal distributions (with the same variance-covariance
structure) can be assumed to have the same expected values. We consider independent
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A% Al o Yo
74
6 -
5
4
3 T 7 v ¥ T 7 & si
17 18 19 20 21 22
Figure 6.1: Observations and confidence region.
stochastic variableX ¢, ..., X, andY,...,Y,,, where

and we wish to test

Hy:p=v against Hy : p#v.

We use the notation

!
I
3=
]
=

_ 1 < X . _xV
S = —— ?zl(x, X)(X; - X)
_ 1 S R ¥ VY
S; = —— ;:1(}@ Y)Y, -Y)




200 CHAPTER 6. TESTS IN THE MULTIDIMENSIONAL NORMAL DISTRIBUTION

From theorem 2.27 and theorem 2.26 we have

< 1
X € NP(/"?EZD

_ 1
Y € Ny %)
1

S € Wh+m-2,——
n+m—2

3).
We now give the main result on testiif, againstH; in

THEOREM 6.4. We use the same notation as given above. Now, let

nm - _ - _

(X -Y)SHX-Y).

T? =
n—+m

Then the critical region for a test éf, againstd; at levela is equal to

n+m—p—1

— T > F(p, —p—1)1_

C:{wla---;w'myla-"ayml

Heret? is the observed value af2. A

PROOF 6.5. From lemma 6.1 and from the above mentioned relationships we find that

n+m-—p—1

- T __T?¢F —p—1; (u—v)S Y —
mim—2p L © (pn+m—p—1 (p—v)T" (n—v)),

and the result follows readily. [ |

Analogous to the one-sample situation we can use the results to determine a confidence
region for the difference between mean vectors. We have

THEOREM 6.5. We still consider the above mentioned situation angulet v = §,,.
Then a(l — ) confidence region fof,, is equal to

nm Ay la—1l(m  ~ <
(8- @ — g —0)'s ™ (@~ — ) <

(n+m—2)p

n+m7p71F(pvn+m p 1)1704}-
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ProoF 6.6. Follows directly from the definition of a confidence region and from
theorem 6.4. ]

REMARK 6.3. The confidence region is an ellipsoid with centrezin- y and main
axes determined by the eigenvectorsid. v

REMARK 6.4. As mentioned the test results and confidence intervals require that the
variance-covariance matrices for thé- and for theY -observations are equal. If

this is not the case the above mentioned results are not exact and a different procedure
should be used. We will not consider this here but refer to e.g.[2], p. 118. \/

We will now consider an example on the useldf in the two-sample situation.

EXAMPLE 6.3. At the Laboratory of Heating- and Climate-technique, DTU, one has
measured the following in an experiment

i) the heightin cm.
ii) evaporation loss in g/fh skin during a 3 hour periode

iii) mean temperature iAC. This temperature is found by measuring the skin tem-
perature at 14 different locations every minute for 5 minutes (same locations
every time). The mean temperature is then an average 8t all5 = 70 mea-
surements,

on 16 men and 16 women. The result of the experiment is given in the table p. 202.

We consider these numbers as realisations of stochastic variables
X1,...,X16 and Yq,...,Yq5.

We furthermore assume, that the variables are stochastic independent and that
X,; e N(p, %)

and
Y e N, %),

i.e. the variance-covariance matrices are assumed equal. Later we will discuss whether
this hypothesis is reasonable or not.
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Person No,| Height| Evaporation losg Mean temperature

incm in g/m?skin in°C
1 177 18.1 33.9
2 189 18.8 33.2
3 181 20.4 33.9
4 184 19.5 33.8
5 183 30.5 33.3
6 178 22.2 33.6
7 162 19.4 39.2
8 176 26.7 33.2
9 190 16.6 33.2
10 180 45.4 335
11 179 24.0 33.9
12 175 34.6 33.8
13 183 21.3 33.5
14 177 33.3 33.9
15 185 22.9 33.8
16 176 18.6 335
1 160 14.6 32.9
2 171 27.0 33.5
3 168 27.6 32.3
4 171 20.2 33.1
5 169 30.8 33.4
6 169 17.4 33.5
7 167 21.1 33.0
8 170 19.3 34.1
9 162 21.5 33.8
10 160 15.2 33.0
11 168 15.4 33.7
12 157 25.2 33.9
13 161 13.9 34.8
14 164 20.2 31.9
15 161 25.3 39.0
16 180 12.6 33.5

Table 6.1: Data from indoor-climate experiments, laboratory for Heating- and Climate-
technique, DTU.
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The estimates forr andv are the empirical mean vectorsii.e.

179.7
pL=x= 24.5
33.6

and

166.1
v=g=| 205
33.4

We will now check if the difference betwegih andz is significant, i.e. whetheg
andv can be assumed equal.

With the notation chosen in theorem 6.4 we find

385 —4.3 —0.8
s=| -43 455 -03 |,
—08 —03 03

and

16-16 ,_ _, ., _ _
t? = 16_}_16(31873/)’5 Yz —y) =52.4.

The test statistic then becomes

16+16 -3 -1
% _524=16.3.
(16 + 16 — 2)3

Since

F(3,28)0.000 = 7.19

a hypothesis thatr = v will at least be rejected at all levels greater than 0.1%. We
will therefore conclude that there is a fairly large (simultaneous) difference in the three
variables for men and for women, a result which probably will not chock anyone when

it is remembered that the first variable gives the height.

If we instead only consider the second and third coordinates, i.e. the values for evapo-

ration loss and mean temperature we get the test statistic

-1

16-16 16+ 16 — 2 — 1 45.5 —0.3 4.0
4.0,0.2 ~0.2.

16716 (1671622 " )( 0.3 0.3 ) ( 0.2 )
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This quantity is to be compared with the quantiles in an F(2,29) -distribution and it
is readily seen that a hypothesis that the mean vectors are equal can be accepted at all
reasonable levels. ¢

6.2 The multidimensional general linear model.

In the previous section we have looked at the one- and two-sample situation for the
multidimensional normal distribution. We have seen that the multidimensional results

are quite analogous to the one dimensional ones. In this section and in the following
we will continue this analogy and derive the results regarding regression and analysis
of variance of multidimensional variables.

We consider independently distributed varial¥és ..., Y ,,
Y, € Np(p;, X).

The variance-covariance matf® (and the mean vectogs;) are assumed unknown.
We arrange the observations in@arx p data matrix

Y Vi - Y3,
Y’ Yo - Yo,

Here the single rows represent e.g. repetitions of measurements of a p-dimensional
phenomena. In full analogy with the model which we considered in the univariate
general linear model we will assume that the mean parametecan be written as
known linear functions of other (and fewer) unknown parameitglise.

11 o Tk 011 - 911)
E(Y)=x0=

Tnl " Tnk 9k1 e Hkp

It is seen that we assume known and? unknown. This model can be viewed from
different angles. If we let th¢'th column in theY matrix equal
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then we can write

r11 o Tik 91]’
E(Y})

Tn1 - Tnk okj

Then measurements on th&h “property” (attribute/variable) will therefore follow an
ordinary one dimensional general linear model.

If we instead write the mean value of a single observalign we find

O -+ 0,
E(Y]) = (za---ai) [ : = x;0),

Ok1 - Okp

wherez!, = x_; is thed'th row in thex -matrix. This readily gives
E(Y;) = 0'x,

which is an analogue to the one dimensional regression model.

If the observations are rearranged into a column vector

Y

Ylpl

we find from theorem 2.7, p. 63, that
whereX ® I,, is the tensor product & andI,,, cf. section 1.5.

The first problem is to estimate We have

THEOREM 6.6. We consider the above mentioned situation. If the observaldns
are normally distributed the maximum likelihood estimaté aé given by

6= (x'x)"'xY.

PROOF 6.7. Omitted. See e.g. [2]. ]
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REMARK 6.5. We see that

05 = (x'x)_lleﬂ7

i.e. the estimate for th¢th column iné is simply equal to the result we get by only
considering the one dimensional general linear model foyi the'property”. v

REMARK 6.6. If the observations are not normally distributed one will still be able
to use the estimaté, since this of course just like the one dimensional case has a
Gauss-Markov property. We will not go into details with this but just mention a couple
of results. The least squares properties are that

M= (Y —x0)(Y —x0) — (Y —x0)' (Y —x0)
is positive semidefinite. From this follows that

chi(Y —x60)' (Y —x0) > ch(Y —x0) (Y — x0),

where cl) corresponds to théth largest eigenvalue. From this follows again that
minimises

det(Y — x0)' (Y —x0)
and

tr(Y —x6) (Y —x0).

REMARK 6.7. Above we have silently assumed thdk has full rank i.e.rg(x) =
k < n. Ifthis is not the case one can by analogy to the one dimensional (univariate)
results find solutions by means of pseudo inverse matrices. v

After these considerations on the estimatio afe turn to the estimation dx.

THEOREM 6.7. We consider the situation from theorem 6.6. Then the maximum
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likelihood estimate foB. equals

1 n . .
3 = =N (V- O (Y -z
- izl( i —0x) (Y —0x;)

= %(Y —x0)' (Y — x6)

_ %[Y’Y — (%) (xB)].

The (i, j)'th element can also be written

()

| A 5

PROOF 6.8. The many identities between 's elements are found by simple matrix
manipulations. For the results we refer to [2]. ]

The distribution of the estimators mentioned are given in

THEOREM 6.8. We consider the situation from theorems 6.6 and 6.7 and we introduce
the usual notations

0
0 = ve)=| :

L Op
. O]
0 = ve(d)=| :

L Hlp J

Then we have tha€:t is normally distributed
6 =vc(d) € N0, 2 @ (x'x)~L),
andn3* is Wishart distributed
n¥* e W(n —k, ).

Finally * and92 and therefore als&* andf are stochastically independent. A
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PrROOF 6.9. ltis trivial that
E(f) = Bl(x'x)"'XY] = (x'x) " 'x'x0 = 0

and from this it follows thalE(é) — §. Furthermord is of course normally dis-
tributed.

Finally we have that
D(0);) = oi(x'x) 7"
and

C(0):,0);) = (x'x) ' X'C(Y};, Y);)x(x'x) " = 0y (x'x) .

From this the result concerning the variance covariance matri fsreadily seen.

The result concerning the distribution B and concerning the independencedof
andX* are quite analogous to the corresponding one dimensional results but we will
not look further into these matters here. The reader is referred to e.qg. [2]. ]

From the theorem we readily find

COROLLORY 6.1. The unbiased estimate f& is equal to

& no&e 1 v o
= B = —— (Y —x0)/(Y —x0).

PROOF 6.10. Trivial when you remember that

E(W(k,A)) = kA.

Q.E.D.

We now turn to testing the parameters in the model.

We have
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THEOREM 6.9. We consider the above mentioned situation including the assumption
of the normality of the observations. Furthermore we consider the hypothesis

Hy:A9B' =C against H,: A0B' #C,
whereA(r x k), B(s x p) andC(r x s) are given (known) matrices. We introduce

A = AAIB -C
R = n¥" =(Y -x0)(Y —x6)

and

S = BRPB
H = A[AXx) A 'A.

Since the ratio test for testinffy againstH; is equivalent to the test given by the
critical region

det(s)
< _
{yldet(s+h) —U(S7T7n k)a}7
whereU(s,r,n — k)o is thea quantile in the null-hypothesis distribution of the test
statistic (see below). A

PROOF 6.11. Omitted. The essential part of the proof is that it can be shownShat
andH are independent Wishart distributed variable&if is true. For more detail we
refer to the literature. As it is seen indirectly from the formulation of the theorem the
null-hypothesis distribution of

_ det(S)
U7 Qet(S + H)

only depends o, r andn — k. The quantity is termed in the literature @slk’s
A orAnderson’'sU. Since the distribution contains three parameters it is somewhat
difficult to use in practise and we therefore give an approximation to an F-distribution
in the following ]

THEOREM 6.10. LetU be U(p,q,r)-distributed and let

1 P +q* =5
t = 2.2
L PP #5
1
v = =(2r4+qg—p-1).

2
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Then

_1—U% thrlf%pq
= .

Ut pq

F

is approximately distributed as

1
F(pg, vt + 1 — =pq).

2
If eitherp or ¢ are equal to 1 or 2, then the approximation is exact. A
PROOF 6.12. Omitted. ]

We shall now illustrate the introduced concept in the following example.

ExaMPLE 6.4. In the period 1968-69 the Royal Veterinary and Agricultural Univer-
sity’s Experimental Farm for crop growing, Hajbakkegéard, conducted an experiment
concerning the growth of lucerne. They investigated the offsprings from 176 crossings.
In order to establish the “quality” of the single crossings 9 properties were measured
on each one. The 9 variables are given in the following table.

As mentioned, the 5 first variables are graded on a numerical scale. This method is cho-
sen since it is very difficult to measure the respective variables directly, and experience
shows that it gives satisfactory results.

Variable No. & name | Unit of measure Explanation
1: Type of growth Gradel — 9 1 = growth is lying down,
9 = growth is upright
2: Regrowth after wintef ” 1 = worst,9 = best
3: Ability to creep " 1 = no runners,
9 = most runners
4: Activity " 1 = weakest9 = strongest

5: Time of blooming 1 = latest blooming,

9 = earliest blooming

6: Plant height cm
7: Seed weight g per plant
8: Plant weight g per plant
after drying
9: Percent seed % Calculated per plant

by means of (7) and (8)

The following analyses are based on the average values for the 9 variables based on
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numbers from between 15 and 20 plants (most of the results are based on 20 plants).
In the following table a section of these numbers is shown.

Obs.No. Variable No. and name

= 1 2 3 4 ) 6 7 8 9

No. of | Type of | Re- Ability | Activity | Bloom- | Plant- | Seed | Plant | Per-

cros- | growth | growth| to ing height| weight | weight | cent

sing creep seed
1 4.11 5.00 3.05 6.17 3.67 | 50.00 | 3.47 | 120.10 | 2.75
2 3.08 4.75 4.17 7.50 517 | 61.50 | 0.82 | 111.33 | 0.75
3 3.12 4.00 3.35 6.53 3.99 | 55.29 | 0.86 97.47 | 0.81
176 4.00 4.40 4.60 7.40 2.90 | 50.00 | 0.66 | 153.50 | 0.44

The main goal with the experiment was to examine the variation among the 9 vari-
ables. More specifically one was e.g. interested in how variable 3 (ability to creep)
and variable 4 (activity) varies together with the others. The two variables mentioned
are usually of great importance for the development of a plant and it is therefore of
importance what the relation is to the other variables.

As a first orientation we will compute the empirical correlation matrix. It is found to
be

1 2 3 4 5 6 7 8 9
1.000 —-0.033 0.116 0.018 0.131 —0.207 0.035 —0.087 0.041
—-0.033 1.000 0.711 0.515 0.125 0.199 —0.025 0.348 —0.066
0.116 0.711 1.000 0.440 0.022 0.039 —0.133 0.218 —0.157
0.018 0.515 0.440 1.000 0.201 0.517 0.071 0.689 —0.081
0.131 0.125 0.022 0.201 1.000 0.496 0.987 0.168 0.486
—-0.207 0.199 0.039 0.517 0.496 1.000 0.453 0.559 0.367
0.035 —0.025 —0.133 0.071 0.487 0.453 1.000 0.360 0.947
—-0.087 0.348 0.218 0.689 0.168 0.559 0.360 1.000 0.128
0.041 —0.066 —0.157 —0.081 0.486 0.367 0.947 0.128 1.000

© 00 O UL W N+

We note that variable 1 (type of growth) is only vaguely correlated with the other vari-
ables. On the other hand e.g. variables 2 and 3 (re-growth and ability to creep) and (of
course) 7 and 9 (weight of seed and percentage of seed) are very strongly correlated.

As mentioned we are especially interested in variable 3's and variable 4’s variation
with the other variables. We note that there are a number of fairly large correlations
but it is difficult to get an impression solely based on these. We will therefore try if it
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is possible to express these two variables as linear functions of the othersii.e.
k
E(Yl) = Z 91'13;‘,'
i=1

k
EY2) = Z Oiox;
i=1

where we now have used the variable notations

Yy = Ability to “creep”

Y, = Activity

x1 = Type of growth

o = Re growth after winter
x3 = Time of blooming

x4 = Heightof plant

x5 = Weight of seed

xg = Weight of plant

xr7 = Percentage of seed

We are obviously talking about a multidimensional general linear model. If we let
0= (eij)i we get

0.28400  0.42731
0.79508  0.22230
—0.02573  0.02607
6= —0.01151  0.06290
—0.14467 —0.16756
0.00307  0.01103
0.10614  0.03463

If we assume
Y1
< }/21, > € N(H’mz)v
then the unbiased estimateXf is

$ [ 0.85897 0.07870

0.07870 0.29444 |~

The matrix(x’x)~! is found to be
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1 2 3 4 ) 6 7
1.55920 —0.16549 —0.47258 —0.05010  0.41826 —0.00235 —0.42289
—-0.16549  0.85139 —0.17981 -—0.01327  0.63774 —0.01759 —0.69467
—0.47258 —0.17981 1.77862 —0.10728 —0.29340  0.01164 —0.02184
—0.05010 —-0.01327 -0.10728  0.02253  0.12325 —0.00441 —0.17012
0.41826  0.63774 —0.29340  0.12325  5.25546 —0.08437 —7.04885
—0.00235 —-0.01759  0.01164 —0.00441 —0.08437  0.00243  0.11182
—0.42289 —0.69467 —0.02184 —0.17012 —-7.04885  0.11182 10.11541

From this we can easily compute the variance and covariance on the gingédues.
Because we have

i - v (L )

and therefore e.g.

V(042) = 0.2944 - 0.02253 = 0.0066.
These results can be used in the construction of ordinary t-tests for the single coef-
ficients. We will, however, not consider this here. Instead we will give a couple of
examples of how to construct simultaneous tests. Let us e.g. consider the hypothesis

Hy:04 =0,0=0

against all alternatives. This hypotheses must be brought into the form given in theo-
rem 6.9. This can be done by choosing

A = (000100 0)
5 - (o1)

and
C=(0 0).

Then we will have
AOB = ( 041 042 ).
By the use of a standard programme (BDX63) we get the F-test statistic

F =53.66
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with degrees of freedom

(f17 f2) = (25 168)
The test statistic is in this case exact F-distributed, sinee2 andr = 1. Itis seen
that the observed F-value is significant at all reasonable levels.
As another example consider the hypothesis
051 Os2

0 0
01=| 061 O | =] 0 O
071 Or2 0 0

against all alternatives. This hypothesis can be transformed into the form of theo-
rem 6.9 by choosing

o= oo o
o oo o
o oo
o oo
o O =
o = o
—_ o O

and

since then we obtain
AOB =0,.

With the previously mentioned standard programme we find
F=10.63; (f1,f2) = (6,336).

Once again we have a clear significance.

As a last example consider the hypothesis

02 = 072 =0
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against all alternatives. This is brought into the standard form by choosing
B 0000010
o 000 0 O0O0 1)
B = (0 1)
and
0
c-[9].

The F-test statistic ha®,169) degrees of freedom and is found to be 27.4. The
values shown are therefore significant. ¢

We will now specialise the results from the previous section to generalisations of the
univariate one- and two-sided analysis of variance. First

6.2.1 One-sided multi-dimensional analysis of variance
We consider observations
Yll; cee Y1n1
Yo . Yin
These are assumed to be stochastically independent with
Y. € Ny(u;, %), 1=1,...,k; j=1,...,n;

i.e. p-dimensional normal distributed with the same variance-covariance matrix. We
wish to test hypothesis

H();le...:uk
against

Hy : 3, j(p; # 1y)-
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Analogously to the univariate one-sided analysis of variance we define sums of squares
deviation matrices

k n;
T = Y ) (Yy-Y)(Yy-Y)

i=1 j=1
k n;
W = Y3 (Y, -Y)(Yy;-Y)
i=1 j=1
k
B = Z nl(l_’t - Y)(YL - Y)I
i=1

Here we have witm = >, n;

ng

_ 1 &

Y, = E;?%

B 1 k  n;

R » Nt
i=1 j=1

After a bit of algebra we see that “total” matrK is the sum of the “between groups”
matrix B and the “within groups” matri’W i.e.

T =W +B,

i.e. as in the one-dimensional case we have a partitioning of the total variation in the
variation between groups and the variation within groups.

It is trivial that we as an unbiased estimate of the variance-covariance matgan
use

- 1
Y= W.
n—=k

If the hypothesis is true thel' will also be proportional with such an estimate. If the
hypothesis is not true théR will be “larger”. Therefore the following theorem seems
intuitively reasonable.

THEOREM 6.11. The ratio test for the test of the hypothe&is againstH; is given
by the critical region

det(w)

Wi Yrn, W <U(p,k—1,n—k)o}
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PROOF 6.13. Omitted. Is found by special choices &f, B andC matrices in
theorem 6.9. n

Just as the case for the one-dimensional analysis of variance the results are displayed
using an analysis of variance table.

Source of variation SS — matrix Degrees of freedom
Deviation from hy- - o -
pothesis = varia- B=>nY,-Y)Y,-Y) k—1

tion between groups

Error = variation B _ .
within groups W= ;(YU Y)Y, - Y "k

Total T = Z Z(YU — ?)(YU — Y)I n—1

As itis done in univariate ANOVA it is of course possible to determine expected values
of theB andT matrices even withoull, being true. We will, however, not pursue
this further here.

6.2.2 Two-sided multidimensional analysis of variance

In this case we will only look at a two-sided analysis of variance with 1 observation
per cell. We will therefore assume that we have observations

Yll; EERE Ylm

)

Yi, -y Yim

which are assumed to hedimensional normal distributed with the same variance-
covariance matri®: and with mean values

E(Yi;) = My = B+ +/6ja

where the parametecs; 3; satisfy
i J

We now want to test the hypothesis

Hy:a1=---=ap=0
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against

H; : Ji(a; # 0)
and

Ko:By=-=8,=0
against

K1 :3j(B; #0).

Analogous to the sums of squares of the one-dimensional (univariate) analysis of vari-
ance we define the matrices

m

Z Y )(Yy-Y.)

j=1

Q =

s

> Y, +Y )Yy Y, -Y,;+Y.)
]:

k
Q: = mZ(Yi. -Y )Y, -Y)

i=1

Qs = kY (Y=Y )(Y,;-Y).

j=1
Here we have used the usual notation

m

Y.. = kaZYU
i=1 j=1

m

Y, = ZYU, i=1,....k
1 k
ij = E;Y”’ j:].,...,T)’L.

We see in this case that we also have the usual partitioning of the total variation

T=Q:+Q2+Qs3,
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i.e. the total variation(T) is partitioned in the variation between roQ.), and
the variation between columr€)s3) and the residual variation (interaction variation)

(Qu).
We now have
THEOREM 6.12. The ratio test at levek for test of Hy againstd; is given by the

critical region

det(q1)
det(q1 + q2)

<Ulp,k—1,(k—1)(m—1))a}.

{y117 9 Yrem

The ratio test at level for test of Ky againsti; is given by the critical region

det(q1)
s Yo | < U(p,m — 1, (k — 1)(m — 1))4}.
Wi Yo | qoiiar 4 ) = U (k= 1)(m = 1))a}
A
PROOF 6.14. Omitted. Follows readily from theorem 6.9. See e.g. [2]. ]
We collect the results in a usual analysis of variance table
Sogrc_e of SS-matrix Degrees of freedom Test statistic|
variation
Differencep B - - B
between | Qs =k> (Y, Y )(Y,;-Y ) m—1 %
columns J
Differences B o B
between | Qu=m > (Y, - Y (Y, -Y Y k-1 Tl
rows i B B B
, Qi=>>(Y; Y, -Y;+Y )x
Residual i - _ B (k—1(m-1)
Yij Y, =Y ,;+Y )
Total T = ZZ(YU — Y)(YU — i/)/ km—1
i j

The matrixm Q; can be used as a unbiased estimat® of
We now give an illustrative example.

ExaMPLE 6.5. At the Royal Veterinary and Agricultural University’s experimental
farm, Hajbakkegard, an experiment concerning the yield of crops was conducteded in
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the period 1956-58 as part of an international study. Experiments on 10 plant types
were performed. The kinds of yield which were of interest were the amounts of

dry matter
green matter
nitrogen.

Each type of plant was grown in 6 blocks (i.e. plots of soil with different quality). In
order to reduce the amount of data we will limit ourselves to three plants and to the
year 1957. The results of the experiment considered are given below.

Type of | Type of Block No.

plant yield 1 2 3 4 5 6
Marchi- er matter 9.170 10.683 10.063 8.104 10.018 9.570
giana nitrogen 0.286 0.335 0.315 0.259 0.319 0.304

green matter 40.959 47.677 44.950 36.919 45.859 43.838

Dry matter 9.403 10.914 11.018 11.385 13.387 12.848
Kayseri | nitrogen 0.285 0.330 0.333 0.339 0.400 0.383
green matter 42.475 49.546 50.152 51.718 60.758 58.334

Dry matter | 11.349 10.971 9.794 8.944 11.715 11.903

nitrogen 0.369 0.357 0.319 0.291 0.379 0.386

green matter 52.475 50.757 45.151 42.221 55.505 56.364
Yield in 1000 kg/ha

Atlan-
tic

We wish to analyse how the yield varies with the blocks, the type of plants and the type
of yield.

We will first analyse each type of yield by itself. For this we base the analysis on a
two-sided analysis of variance. The model is

yij:u+ai+ﬂj+5ij (111,2,3, j:].,...,6),

and we are therefore assuming that each observatiortan be written as a sum of
w (level), «; (effect of plant),5; (effect of block) and:;; (residual, being a small
randomly varying quantity).

If we first consider dry matter we get

Y11 =9.170, y12 = 10.683,..., 36 = 11.903.

The analysis of variance table was (found by means of SSP-ANOVA)
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Source of|l Sums of | Degrees off Mean F-values
variation | squares | freedom | squares
A 11.218244 5 2.243648 2.25
B 10.945597 2 5.472798 | 5.49
AB 9.970109 10 0.997010
Total 32.133936 17

The test statistic for the hypothegis=--- = 3 =0 is

F=

51

3 — 2,95 < 3.33 = Fys0,(5, 10)

i.e. we cannot reject that the s equal O.

Correspondingly the test statistic for the hypothesis= a; = a3 = 0 equals

2
F= z_g = 5.49 > 4.10 = Fy50,(2, 10).
1

At a 5% level we therefore reject that thes all equal 0. However, we note that

Fo7.5%(2,10) =

5.46,

so there is no significance at the 2.5% level.

If we perform the corresponding computations on the nitrogen yield we get, using as
observationsy;; = y;; - 1000:

Source of| Sums of Degrees of Mean F-values
variation | squares freedom | squares

A 10802.27734 5 2160.45532 |  2.60
B 8030.77734 2 4015.38867 | 4.83
AB 8310.55469 10 831.05542

Total 27143.60938 17

Here we again find that there is no difference between blocks but there is possibly a
difference between plants. This difference is, however, not significant at the 2.5% level.

The corresponding computations on yield of green matter was (again using coded ob-

servationsy;; = 1000y;;):

Source of| Sums of Degrees of Mean F-values.
variation | squares freedom | squares

A 261702416 5 52340480 2.75

B 260173824 2 130086912 6.83
AB 190600448 10 19060032

Total 712476672 17
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Here we again have that there is no difference between blocks. We also find a difference
between plants at the 5% level but not at the 1% level since

We therefore see that the three types of yield show more or less the same sort of vari-
ation: There is no difference between blocks but there is difference between plants.
These are, however, not significant at a small levels.of

Now the three forms of yield are known to be strongly interdependent. Therefore we
will expect that the analysis of variance would give more or less similar results and it
would therefore be interesting to examine the variation and the yield when we take this
dependency into consideration. Such a type of analysis can be performed by a three
dimensional two-sided analysis of variance i.e. we use the model

Yij:y'+ai+ﬁj+€ija i:1a273a j:]-a"'76a

where
H1 5T 51;’
p=1\ p2 |, ai=| ax |, Bj=| By [,
43 o3 Ba;j

and the observations are

content of green matter in plahin blok j
Y,; = | content of nitrogen "
content of dry matter ——

The observed values are

40.959 56.364
y,=| 0286 |,.... yys=| 0.386
9.170 11.903

In this way we can aggregate the three analysis of variances shown above into one.
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With the notation from p. 218 the matric€y, Q2 andQs are found to be

[ 260.18359
dq2 = 1.38547 0.00803
52.37032  0.26262 10.94564 |

261.70239
a3 = 1.67129 0.01080
53.97473 0.34801 11.21827 |

190.59937
a = 1.25512  0.00831
43.45444 0.28667 9.97013

The matrices have been found by means of the BMD-programme BMDX69. Still by
means of the programme mentioned we find

In(Gen- | U-stat- | Degrees off Approx- | Degrees of
Source | eralized | istic freedom | imate F-| freedom
variance) statistic
I —1.89908 | 0.003315 |3 2 10| 43.6455| 6 16.00
J —4.84194 | 0.062894 |3 5 10 2.5843 | 15 22.49
Full | 7 60824
model

Here I corresponds to the variation between plants dni the variation between
blocks.

The (in this case exact) F-test statistic for a test of the hypothesis as = a3 = 0,
(i.e.. the hypothesis that all plants are equal) is 43.6. The number of degrees of freedom
is (6,16). Since

F(6,16)0.9905 = 7.74,

we therefore have a very strong rejection of the hypothesis.

Since
F(15,22)0.975 = 2.50,
we see that now also the hypothesis of the blocks being equal is rejected at the level

oa=2.5%.

The conclusion on the multi-dimensional analysis of variance is therefore that there is
a clear difference in the yield for the three types of plants. It is on the other hand more
uncertain if there are differences between the blocks.
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We note a difference from three one-dimensional analyses. In these cases we only have
moderate or no significance for the hypothesis of the plant yields being equal. We
therefore have different results by considering the simultaneous analysis instead of the
three marginal ones. ¢

6.3 Tests regarding variance-covariance matrices

In this section we will briefly give some of the tests for hypothesis on variance covari-
ance matrices. On one hand corresponding to a hypothesis about the variance covari-
ance matrix having a given structure or is equal to a given matrix, or on the other hand
corresponding to a hypothesis that several variance covariance matrices are equal.

6.3.1 Tests regarding a single variance covariance matrix

First we will give a test that k-groups of normally distributed variables are independent.
We are considering & € N,(u,X), and we divideX in k components we the
dimensiongy, ..., pk, i.e.

X
X = :
Xy

The corresponding partitioning of the parameters is

’7“1

[

and
[ Y10 Xk
=] 5
Yp1o o0 Mgk
Our hypothesis is now thaX 4, ..., X are independenti.e. that variance covariance

has the form

) I PH 0
T=%=| :
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If we defineﬁ] computed on the basis of n realisationsXf in the usual way and if
we partition3 analogously to the partitioning &, we have

THEOREM 6.13. We consider the above mentioned situation and let

det(3)

[Tiz; det(X4)

Then the coefficient test for test of the hypothesis= X, is given by the critical
region

{V <wu}.
When finding the boundary of the critical region we can use that

P{—mInV < v}
~ P{C(f) <o} + PO +4) < o} = POC() < o)),

where
3. -}
m = N— < — 5 w57
2 30— 2p)
I D D) SR 1V ) ) B ol DY U O
” 48 96 72(p? = X p7)
1 2 2
f=3lp >0 p=)_pi
If k = 2, the V is distributed a¥ (p1, p2,n — 1 — p2). A
PROOF 6.15. Omitted. See e.g. [2]. ]

In the above mention situation we looked at a test for a variance covariance matrix
having a certain structure. We will now turn around and look at a test for the hypothesis
that a variance covariance matrix is proportional with a given matrix. We briefly give
the result in

THEOREM 6.14. We consider independent observatioNs, ..., X, with X; €
N,(p, %), and we let

A=) (X - X)(X; - X).
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The quotient test statistic for a test Hf : ¥ = 02X, whereX, is known and»?
unknown against all alternatives is

When determining the critical region we can use that

P{—(n—1)pInW < z}
~ P{x*(f) < 2} + wo[ P{X’[f + 4] < 2} — P{X2(f) < 2},

where
22 +p+2
po= 1-——
6p(n —1)
1
fo= gsplp+1)-1
oo = E2)(p—1)(p—2)(2p* +6p* +3p +2)
2 288p2n2p? '
A
PROOF 6.16. Omitted. See e.qg. [2]. ]

Finally we will consider the situation where we wish to test that a variance covariance
matrix is equal to a given matrix. Then the following holds true

THEOREM 6.15. We consider independent observatioXs, ..., X, with X; €
N,(p,3), and we let

A= zn:(xi ~ X)(X, - X).

The quotient test statistic for a test8f : ¥ = ¥, whereX, is known against all
alternatives is

M = ()7 /2[det(A £51)] expl(— 5 (A 557).
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When determining the critical region we can use that

P{-2InA; < v} = P{¢(5p(p +1)) < v).

PROOF 6.17. Omitted. See e.g. [2]. [ ]

6.4 Test for equality of several variance-covariance
matrices

We will in this section consider the problem of testing the assumption of equal variance
covariance matrices in Hotelling’s two sample situation and in the multidimensional
analysis of variance.

We will assume that there are independent observations
X111, oy, Xing, X1j € Np(py, X1)
X.kla e Xk.nk; Xrj € Np(py, Bie)
and we wish to test the hypothesis
Hy:¥y=---=%, against Hy:3i,j:3; #3X;.
We let
n = Zni,

A = ) (X - X)Xy - X)),

and

cf. section 6.2.1, where the notati® is used instead oA.

We then have
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THEOREM 6.16. As a test statistic for the test éf, againstH; we can use

(n;—1)
[17_,[det(A;)] > (n — k)
W; = (n—k) ’ p(n;—1) °

[det A] % [T (s — 1)

i=1

p(n—k)
2

The critical region is of the form
{Wl < wa}
and in the determination of this we can use that

P{-2pInW; <z} =
P{OC(f) < 2} +wa PLOC(f +4) < 2} = PE(S) < 2,

where

f = %(k —Lpp+1),

1 1. 2p2+3p—1
= 1- — )= £ -
P Q. ni  n6(p+)k—1)

%

0+ Dl - D+2(Y 2 -

4

)= 6(k— 1)1~ p)?]

1
w =
2 48p2p

%

PROOF 6.18. Omitted. See e.qg. [2].



Chapter 7
Discriminant analysis

In this section we will address the problem of classifying an individual in one of two
(or more) known populations based on measurements of some characteristics of the
individual.

We first consider the problem of discriminating between two groups (classes).

7.1 Discrimination between two populations

7.1.1 Bayes and minimax solutions

We consider th@opulations 7, andms and wish to conclude whether a given individ-
ual is a member of group one or group two. We perform measurementdiffiérent
characteristics of the individual and hereby get the result

Xy

If the individual comes fromr; the frequency function oX is f; () and if it comes
from 7y itis fo ().

Let us furthermore assume that we have givéosa functionL:

229
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Choise:
T 9
1 0 L(1,2)

Truth

T2 L(2, 1) 0

We will assume that there is no loss if we take the correct decision.

In certain situations one also knows approximately whatpitier probability is to
have an individual from each of the groups i.e. we haven given a prior distribution g:

g(m) =p1, g(m2)=p2.
We now seek aecision functiond: R? — {m,m2}. d is defined by

_ m if x € Ry
d(w)de(m>{ T ifZBERQZCRl.

We divide RP in two regionsR; and R,. If our observation lies ik, we will choose
w1 and if our observation lies iR, we will chooser,.
If we have aprior distribution we define the posterior distribution k by

fi(x)g(m;) _ pifi(x)
pifi(x) +pafa(x)  pafi(x) + pofa(x)’

k(mi|z) =

cf. p. 6.6in\ol. 1.

The expected loss in this distribution is

Ez(L(mi,dg, (z))) = L(m,dg, (@))k(m|z) + L7z, dg, (2))k(m2|z)
_ { L(7T2,7T1)k(71’2|13), x e Ry
L(7T1,7T2)k(71’1|13), x € Ry

The Bayes solution is defined by minimising this quantity for anfp. 6.9 in Vol. 1),
i.e. we defineR, by

reR < L

=4

These considerations are collected in
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THEOREM 7.1. The Bayes solution to the classification problem is given by the re-
gion

Ry = {z|

fy
f2($) L(1,2) P1 '

REMARK 7.1. This result is exactly the same as the one given in theorem 5, chapter 6
in\ol. 1. v

If we do not have a prior distribution we can instead determine a minimax strategy i.e.
determineR; so that the maximal risk is minimised. The risk is (cf. p. 6.3, Vol 1)

R(’”ladl‘h) = Em L(Trlvde (X)) = L(172)P{X € R2|7T1}'
R(’”2adR1) = En, L(Tr%de (X)) = L(Qv 1)P{X € R1|7T2}'
One can now show (see e.g. the proof for theorem 4, chapter 6 in Vol. 1)

THEOREM 7.2. The minimax solution for the classification problem is given by the
region

~—

fl ($
fo(x)

Ry = {z| > c},

wherec is determined by

f1 ($)
fQ(IE)

L(1,2)P{Egz; <¢m} =L(2,1)P{

> c|ma}.

REMARK 7.2. The relation for determinatingcan be written

L(1,2) - (the probability of misclassification if; is true)
= L(2,1) - (the probability of misclassification ifs is true)

Since the first is an increasing and the second is a decreasing functid@rnobbvious

that we will minimise the maximal risk when we have equality. If we do not have any
idea about the size of the losses we can let them both equal one. The minimax solution
gives us the region which minimises the maximal probability of misclassification.
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We will now consider the important special case whigrandf, are normal distribu-
tions.

7.1.2 Discrimination between two normal populations

If f; andf, are normal with the same variance-covariance matrix we have

THEOREM 7.3. Letm; ~ N(u,,X) andws ~ N(u,, X). Then we have

1
2

1
>ce xS (1 —py) — S STy + SusE > Ine.

2

PROOF 7.1. We introduce the inner produ@{-) and the normi| || by
(z]y) = 2'=""y

and
lz]|* = (z|).

We then have

£ (@) ! (— 2l — ll?)
() = ——=exp(—=|lx — ;||7).
Vor'Vdet S P H

From this we readily get

=~
~—
=

1z 1()
f2($ fg (33)

—llz = p[* + [l = p]* > 2Ine

—(x — | — py) + (& — polz — py) > 2Inc
2(z|py) — 2(z|pg) — (1 |p1) + (B2]p2) > 2Inc
2(z|py — pa) — (Hy|py) + (H2lpg) = 21nc.

>c<In >1Inc

~—

to o

By using the connexion betweép) andX~! we find that the theorem readily follows.
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K Hx-p, I =1

(.

1 .- .
Tluytey) - o3w, 2 1}11+%£2£ ', - Inc=0.

REMARK 7.3. The expressio ;E%; > cis seen to define a subset Bf which is
delimited by a hyper-plane (for = 2 a straight line and fop = 3 a plane).

The vectorpp; is the orthogonal projection (NB! The orthogonal projection with re-
spect toX~!) of = onto the line which connecig, andu,. (It can be shown that

the slope of the projection lines etc. are equal to the slope of the ellipse- (ellipsoid-)
tangents in the at the points where they intersect the(line,)). Since the length

of a projection of a vector is equal to the inner product between the vector and a unit
vector on the line we see that we have classified the observation as coming;fitim

the projection ofr is large enough (computed with sign). Otherwise we will classify
the observation as coming from.

The function
/271 o o 1 /271 l /271 —lne
z (11 — po) g1 THy T G Hp2 Ty — N

is called the discriminator or the discriminant function.

We then have that the discriminator is the linear projection which - after the addition of
suitable constants - minimises the expected loss (the Bayes situation) or the probability
of misclassification (the minimax situation). v
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In order to make the reader more confident with the content - we will now give a slightly
different interpretation of a discriminator. If we let

6 =3 (g — py),

we have the following

THEOREM 7.4. The vectord has the property that it maximises the function

[Er(X'd) — Eo(X'd)]?  [(1y — pp)'d]”
V(X'd) dsd

p(d) =

PROOF 7.2. The proof is not very interesting but fairly simple. Since we readily have
thatp(k - d) = ¢(d) we can determine extremes folby determining extremes for the
numerator under the following constraint

d'¥d=1.
We introduce a Lagrange multiplierand seek the maximum of

o(d) = [(py — po)'d]* = AN(d'=d - 1).
Now we have that

oY
== = 2(py — M) (B — H)'d — 2)Xd.
od

If we let this equal 0, we have

(H1 — o) (1 — Ng)ld = A\3d,

i.e.
(B —py)d
d= %2 Ny —pg) = k-6,
wherek is a scalar. [ |

REMARK 7.4. The content of the theorem is that the linear function determineil by

X'§=0X1+ - +6X,,
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is the projection that “movest; furthest possible away from, or - in analysis of vari-
ance terms - the projection which maximises the variance between populations divided
by the total variance.

rx

1>

jo»
]
o

The geometrical content of the theorem is indicated in the above figure where

b: is the projection of the ellipse onto the lipg, p, in the direction determined
byx'd =0

a: is the projection of the ellipse onto the lipg, p, in a different direction.

Itis seen that the projection determineddgnto the line which connecjs, andp, is
the one which “moves” the projection of the contour ellipsoids of the two populations
distribution furthest possible away from each other. v

We now give a theorem which is very useful in the determination of misclassification
probabilities.

THEOREM 7.5. We consider the criterion in theorem 7.3

- 1, 1,
Z=X'5" iy — po) = DT o+ ST ey,
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It can be proved that

ZG:{ NCtgllin = poll® NIy = pol), - if s true
N(=3lly = pal? g — pol?),  if w2 is true

PROOF 7.3. The proof is straight forward. Let us e.g. consider the egseue. We
then have thag(X ) = p, and then

_ 1 _ 1 _
E(Z) = m27 (= o) = B i+ Spe3
1 _
= 5(/‘1 - M2>/2 1(#1 — Hy)
1
= 5”#1 - H2||2~
V(Z) = (u—py)S7'EE gy — py)
= (u — Mz)lz_l(lh — M)
= |l - H2||2~
The result regardings is shown analogously. ]

We will now consider some examples.

ExAMPLE 7.1. We consider the case where

w e (1) (1 1)
w1

and we want to determine a “best” discriminator function. Since we know nothing
about the prior probabilities and so on, we will use the function which corresponds to
the constant in theorem 7.3 being 1. Since

(12) (4 7)
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we get the following function

2 -1 3 1 1
(7172) (1 1) (1)—5(2-16+1-4—2-8)+§(2-1+1-1—2-1)—0

or

1
5561 - 2£E2 - 95 =0.
. . 5
If we enter an arbitrary point, e.g. 6 we get

5-5—2-6 91 = 31 >0
2 277
This point is therefore classified as coming fram
We have indicated the situation in the following figure
X, 5xl—2x2-9%= 0

R, Ry

Contour-ellipse belong-

ing to w,'s distribution

If we have a loss function, the procedure is a bit different which is seen from

EXAMPLE 7.2. Let us assume that we have losses assigned to the different decisions:
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Choise:
T T2
1 0 2
Truth:
) 1 0

Since we have no prior probabilities we will determine the minimax solution. We will
need

gy — pol>=2-9+1-1-2-3-1=13.

From theorem 7.2 follows that we must determirs®
f1(X) f1(X)
2-P =P >
{f2<X> < 0'7“} {f2<X> > i
& 2-P{Z<Ilndm}=P{Z >1Incm}

1 1
& 2 P{N(513,13) <Inc} = P{N(~313,13) > Inc}

& 2~P{N(0,1)<IHC%}P{N(O,l)zlnc%}.

By trying with different values o€ we see that
c~0.5617.
Using this value the misclassification probabilities are

If 7, is true: P{N(0,1) < ®0-501=05} ~ 0.025.

If 72 is true: P{N(0,1) < ®O50IE05} ~ 0.050.

The discriminating line is now determined by
1

bxy — 2xe — 95 =1n0.5617,
or

51‘1 — 2352 —8.92=0.
This line intersects the line connectipg and i, in (2.36,1.46) i.e. it is moved to-
wardspu., compared to the mid-poiri2.5, 1.5). Itis also obvious that the line is moved
parallelly in this direction since we see from the loss matrix that it is more serious to

be wrong ifm is true than ifry is true. We must therefore expafit] i.e. move the
limiting line towardsgs,. ¢



7.1. DISCRIMINATION BETWEEN TWO POPULATIONS 239

We must stress that it is of importance that the variance-covariance matrices for the two
populations are equal. If this is not the case we will get a completely different result
which will be seen from the following example.

EXAMPLE 7.3. Let us assume that the variance-covariance matrix for population 2 is
changed to an identity matrix i.e.

e () (h2))
w5 () )

Again we want to classify an observatidh which comes from one of the above men-
tioned distributions. Since the variance covariance matrices are not equal we cannot
use the result in theorem 7.3 but have to start from the beginning with theorem 7.2.

Forc > 0 we have

Since

(@ — )7 @ —py) = 201 =47+ (32— 2)° — 2(z1 — 4) (2 — 2)
= 230% + x% — 2x129 — 1221 4 429 + 20,

and

(z1 —1)* 4 (22 — 1)

= 2?4222 — 220y +2,

(x — N2)I251($ — pa)

then

>cs —x% + 22129 + 1027 — 629 — 18 > 21nec.

If we choose: = 1, we note that the curve which separafgsand R; is the hyperbola

{x| — 27 + 22129 + 1021 — 622 — 18 = 0}.
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It has centre i3, —2) and asymptotes
T, — 3= 0,

$1—2$2—7:0.

These curves are shown in the above figure together with the contour ellipses for the
two normal distributions. Note e.g. that a point such(@9) is in R, and therefore

will be classified as coming from the distribution with centr¢inl). Furthermore the
frequency functions are shown.

¢

We will not consider the problem of misclassification probabilities in cases as the above
mentioned where we have quadratic discriminators.
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7.1.3 Discrimination with unknown parameters

If one does not know the two distributiofisandf, one must estimate them based on
some observations and then construct discriminators from the estimated distributions
the same way we did for the exact distributions.

Let us consider the normal case

m < N(pg, %)
m < N(py, %),

where the parameters are unknown. If we have observaions. ., X, which we

know come fromr; and observation¥ 'y, ..., Y ,, which we know come fromr, we
can estimate the parameters as follows

no= Y X=X

1231 - ny - 1

b = LTV

Koy = ng & i =

. 1 _ _ _ _

> = — X, - X)(X;-X) Y. -Y)Y,-Y)

s (O )( )+ =) =T

In complete analogy to the theorem on p. 232 we have the discriminator

1. 1., a1 1 e 1
227y = fog) — BT i + SR iy

The exact distribution of this quantity if we substitutewith a stochastic variable

X € N(u,;,X) is fairly complicated but for large sample sizes it is asymptotically
equal to the distribution of in theorem 7.5 so for reasonable sample sizes we can use
the theory we have derived.

The estimated norm between the expected values is
11 = fol|® >~ D? = (g — 1) S (g — fag) = [l i1 — 112H22—1-

This is calledVahalanobis’ distance. It should here be noted that a number of authors
use the expression Mahalanobis’ distance also about the quigatity p,||%. This is

after the Indian statistician P.C. Mahalanobis who developed discriminant analysis at
the same time as the English statistician R.A. Fisher in the 1930’s.

By means ofD? we can test ifu; = u, since

ny+ng—p—1 ning 9

p(n1 +ng —2) n1 + na
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isF(p,n1 +na —p — 1)-distributed ifu; = po. If py # p,, thenZ has a larger mean
value so the critical region corresponds to large valueg.ofThis test is of course
equivalent to Hotelling’d 2-test in section 6.1.2.

We give an example (data come from K.R. Nair: A biometric study of the desert locust,
Bull. Int. Stat. Inst. 1951).

EXAMPLE 7.4. In a study of desert locusts one measured the following biometric
characteristics they were

x1: length of hind femur
2.  maximum width of the head in the genal region
x3: length of pronotum at the scull

The two species which were examined are gregaria and an intermediate phase between
gregaria and solotaria.

The following mean values were found.

Mean values
Gregaria| Intermediate phasg
ny = 20 Ng = 72
x1 25.80 28.35
) 7.81 7.41
x3 10.77 10.75

The estimated variance-covariance matrix is

| T T2 T3
x1 | 4.7350 0.5622 1.4685
x2 | 0.5622 0.1413 0.2174
3 | 1.4685 0.2174 0.5702

We are now interested in determining a discrimination function for classification of
future locusts by means of measurementsQfrs, x3.

However, first it would be reasonable to check if the three measurements from the
two populations are different at all i.e. we must investigate if it can be assumed that
uy = py. We have

D? = (ft; — fo)' 27 (f11 — f1p) = 9.7421.
This value is inserted in the test statistic p. 241 and we get

20+72-3—-1 20-72
©3(204+72-2) 20+ 72

-9.7421 = 49.70.
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Since
F(3,88)0.999 ~ 6,

we will reject the hypothesis of the two mean values being equal. It is therefore rea-
sonable to try constructing a discriminator.

We have

'3 (1, — fuy) = —2.7458x1 + 6.621 7y + 4.5820x3

and
Al &—1 A 7A/A_1A _
(137 1y — 137 1) = 25.3506.

Since there is no information on prior probabilities we will use- 1, i.e. :lnc = 0,
and we will therefore use the function

d(x) = —2.7458x1 + 6.6217x9 + 4.582x3 — 25.3506

in classifying the two possible locust species.

If we for instance have caught a specimen and measured the characteristics

27.06
T = 8.03
11.36

we getd(x) = 5.5715 > 0 meaning we will classify the individual as being a gregaria.

¢

7.1.4 Test for best discrimination function

We remind ourselves that the best discriminator

0 =371 (it — fay),
can be found by maximising the function

[(foy — frp)'d]?
dxd
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The maximum value is

[(fy — fug)' 271 (g — fag)]?

- - = - - = D27
By — fag) 371 (g — fug)

$(8) =

i.e. MahalanobisD? is the maximum value af(d). For an arbitrary (fixedyl we now
let

We can then test the hypothesis that the linear projection determinddsbthe best
discriminator by means of the test statistic

ny+mng—p—1 . nine(D? — D?)

7 = ,
p—1 (n1+n2)(n1 +na — 2) + nina D?

which isF(p — 1,n1 + no — p — 1)-distributed under the hypothesis. Large values of
Z are critical.

We will not consider the reason why the distribution for the null-hypothesis looks the
way it does but just note that gives a measure of how much the “distance” between
the two populations is reduced by usidinstead of. If this reduction is too bigi.e. if

Zis large we will not be able to assume tllagives essentially as good a discrimination
between the two populations as

ExampLE 7.5. In the following table we give averages of 50 measurements of dif-
ferent characteristics of two different types of Iris, Iris versicolor and Iris setosa. (The
data come from Fisher’s investigations in 1936.)

Versicolor| Setosal Difference
Sepal length  5.936 5.006 0.930
Sepal width | 2.770 3.428 —0.658
Petal length| 4.260 1.462 2.789
Petal width 1.326 0.246 1.080

The estimated variance-covariance matrix (based on 98 degrees of freedom) is

0.19534 0.09220 0.099626 0.03306
0.12108 0.04718 0.02525
0.12549  0.039586

0.02511

[
|
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From this it readily follows that

—3.0692

c a1 o | —18.0006
0=3" (1 — fp) = 21.7641

30.7549

Mahalanobis’ distance between the mean values is

—3.0692
D? = [0.930, —0.658, 2.789, 1.080] *S'gggg" — 103.2119.

30.7549

We first test if we can assume thaf = u,. The test statistic is

50 +50—4—1 5050
4(50 + 50 — 2) 50 + 50

-103.2119 = 625.3256

> F(47 95)0_9995 ~ 5.5.

It is therefore not reasonable to assume= ..

By looking at the differences between the componenisg,irand i, we note that the
number for versicolor is largest except for (the sepal width). Since we are looking
for a linear projection which takes a large value for — p, we could try with the
projection

A
x'dy =x1 — 22 + T3 + T4,

1
whered,, here is the vecto 71
1

We will now test if it can be assumed that the best discriminator has the form

1
& = constant 71 = constant d.
1

We determine the value of corresponding tal:

S Id 2
[ = o) dol”_ ) o479,
dySd,
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The test statistic becomes

50+50—-4-1 50 - 50(103.2119 — 61.9479)
4-1 (50 + 50)(50 4+ 50 — 2) + 50 - 50 - 61.9479

= 1984 > F(3, 95)()‘9995 ~ 6.5.

We must therefore reject the hypothesis and note that we cannot assume that the best
discriminator is of the formx; — z2 + 23 + z4. ¢

7.1.5 Test for further information

Given one has obtained measurements of a number of variables for some individuals
with the objective of determining a discriminant function. Often the question arises if
it is really necessary with all the measurements, or if one can do with fewer variables
in order to separate the populations from each other. One could e.g. think it might be
sufficient just to measure the length of sepal and petal in order to discriminate between
Iris versicolor and Iris setosa.

We will formulate these thoughts a bit more precisely. In order to perform a discrim-
ination we measure the variablés, ..., X,,. We now will formulate a test in order

to investigate if it might be possible that the lgstariables are unnecessary for the
discrimination.

We still assume that there ang observations fromr; andn. observations from pop-
ulationmy. We let

X1 Xp—q+1
: =X; and : = X,
Xp*q Xp

and we perform the same partitioning of mean vectors and variance-covariance matrix

W= |
wi”

Y11 X
X = .
[ Yo1 Yoo ]

We now compute Mahalanobis’ distance between the populations, first using full
information i.e. allp variables and then using the reduced information i.e. only the first
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p — ¢ variables. We then have
D;Q; = (ﬂl - ﬂ2)/271(ﬂ1 - llQ)
and

~ (1 ~(1 Sy — ~ (1 ~ (1
D2, = (@Y — pysitatt - as?).

A test for the hypothesis that the lagvariables do not contribute to a better discrimi-
nation is based on

ny+ng—p—1 n1n2(D,2) - Dlz,_q)

q (n1 4 n2)(n1 4+ ng —2) +ninaDZ_ -

7 =

It can be shown tha¥ € F(q,n1 + ne —p — 1) if Hy is true. We omit the proof, but
just state that “measures” relatively the larger distance there is between populations
when going fronp—q variables tg variables. Itis therefore also intuitively reasonable
that we reject the hypothesis that it is sufficient with- ¢ variables ifZ is large.

We now give an illustrative

EXAMPLE 7.6. We will investigate if it is sufficient only to measure the length of
sepal and petal in order to discriminate the types of Iris given in example 7.5.

We now perform an ordinary discriminant analysis on the data given that we disregard
the width measurements. The resulting Mahalanobis’ distance is
D2 = 76.7082,

so the test statistic for the hypothesis is

50 450 —4 —1 50 - 50(103.2119 — 76.7082)
2 (50 + 50)(50 + 50 — 2) + 50 - 50 - 76.7082

= 15.6132 > F(2, 95)0.9995 ~ 8.25.

We must therefore conclude that there is actually extra information in the width mea-
surements which can help us in discriminating setosa from versicolor. ¢
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7.2 Discrimination between several populations

7.2.1 The Bayes solution

The main idea of the generalisation in this section is that one compares the populations
pairwise as in the previous section to finally choose the most probable population.

We consider the populations
Tlyeoey T

Based on measurementgatharacteristics (or variables) of a given individual we wish
to classify it as coming from one of the populations. . . , 7.

The observed measurement is
X1
XI)

If the individual comes fromr; then the frequency function foX is f;(x).

We assume that a loss function L is given as shown in the following table.

Choise
T 2 Tk
m 0 L(1,2) --- L(1,k)
m | L(2,1) 0 o L(2,k)
Truth : : :
7 | L(k,1) L(k,2) --- 0

Finally we assume we have a prior distribution

g(’/Ti):pi, Z:].,,k

For an individual with the observatiannwe define the discriminant value or discrimi-
nant score for théth population as

Si(x) = 57 = —[pifi(x)L(1,4) + - - - + prfe(x)L(k, 1)]

(note thafl.(¢,7) = 0 so the sum has no termf;(x)). Since the posterior probability
for o, is
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_ pl,fl,($)
k(m|@) = pifi(x) + - - + prfi(x)
_ pl,fl,($)
h(z)

we note that by choosing thi&h population thenS; is a constanf—h(x)) times the
expected loss with respect to the posterior distribution.oSince the proportionality
factor—h(x) is negative we note that the Bayes’ solution to the decision problem is to
choose the population which has the largest discriminant value (discriminant score) i.e.
chooser, if

S >SF Vi

If all lossesL (4, j) (i # j) are equal we can simplify the expression for the discriminant
score. We prefer; compared tor; if

S; > 57,

i.e. if
- _pbo(@) - piti(®) > O puf (@) — pst;(x))
& p,-fi(yzc) > pit;(x). ’

In this case we can therefore choose the discriminant score

S! = pifi(x).
In this case thBayes' rule is that we choose the population which has the largest
posterior distribution i.e. choose groupf S; > S%, Vj # 4. This rule is not only used
where the losses are equal but also where it has not been possible to determine such

losses. If thep;’s are unknown and it is not possible to estimate them one usually uses
the discriminant score

Si = fi(x),

i.e. choose the population where the observed probability is the largest.

The minimax solutions are determined by choosing the strategy which makes all the
misclassification probabilities equally large. (Still assuming that all losses are equal.)
However, we will not go into more detail about this here.
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7.2.2 The Bayes’ solution in the case with several normal
distributions

We will now consider the case where

T = N(Hiazi)7

i.e.
1 1 1
fi(x) = — —— ——(x— ) —p)),
($) \/%p \/m exp( 2 ('1: l’l’z) 1 ('1: l‘l’z))
fori=1,... k.

Since we get the same decision rule by choosing monotone transformations of our
discriminant scores we will take the logarithm of this and disregard the common
factor(27)~%. This gives (assuming that the losses are equal)

1 1
S; = —5In(det ) — 3 (@ — ), (@ — i) + .

K2

This function is quadratic in: and is called a quadratic discriminant function. If all the
33, are equal then the terms

1 1
-3 Indet X — §$/E_1$

are common for alb;'s and can therefore be omitted. We then get

1

S; = 'Sy, —
r IJ’Z 2

ng_lﬂi + Inp;.

This is seen to be a linear (affine) functiondnand is called a linear discriminant
function. If there are only two groups we note that we choose group 1 if
S >8<8—5>0

_ 1 _ 1 _ D2
& @B (= ) — SD T S ey > In %,

i.e. the same result as p. 232.

The posterior probability for the'th group becomes

exp(S,)

k(m,|l) = —/——————
(vl) S exp(Sy)
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Itis of course possible to describe the decision rules by dividihinto setsR;, . . ., Ry
so that we choosg; exactly whenx € R;. Among other things this can be seen from
the following

ExaMPLE 7.7. We consider populations;, 7, andms given by normal distributions
with expected values

4 1 2
y’l = 2 ) HZ = 1 ) and y’d = 6 9
and common variance-covariance matrix
1 1
=1 )

cf. the example p. 236. Assuming that ajlare equal so that we may disregard them
in the discriminant scores - we then have

% = w3 1)(8)4en( 3 1)(2)

= 61 — 229 —10

s, = (x112)<_f f)(})%(l,l)(_f f)(i)
ol

e 2 1) () (2 ()
= —2z; +day — 10.

We now choose to prefer; to ms if

1
ulg(il?) = (61‘1 — 21‘2 — 10) — (1‘1 — 5)
1
= 5331 — 21‘2 — 95
> 0.
We choose to prefer; to ms if
ulg(il?) = (61‘1 — 229 — 10) — (—2351 + 4x9 — 10)

= 81176%2
> 0,
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and finally we will choose to prefet, to rs if

’U,Qd(ﬂl‘) = (1'1 - %) - (72%1 + 41‘2 - 10)

1
= 31‘1 741‘2 +9§

> 0.

It is now evident that we will choose; if both ui2(x) > 0 andui3(x) > 0 and
analogously with the others.

We can therefore define the regions

R, = {ZBl’U,lQ(ZB) >0 A U13($) > 0}
Ry, = {m|u12(m) <0 A U23($) > 0}
Rs; = {m|u15(m) <0 A U23($) < 0},

and we have that we will choosg exactly whene € R;.
We have sketched the situation in the following figure.

One can easily prove that the lines will intersect in a point. It is, however, also possible
to make a simple reasoning for this. Let us assume that the situation is as in figure 7.1.

We now note that
ui; >0 S; > 8; & f; > f;.
For the pointe we have
ugs(x) <0 ie. fo(x) < f3(x)

U13(:B) >0 i.e. fl(ﬂl‘) > fd(ﬂl‘)
ulg(ﬂl‘) <0 i.e. fl(ﬂl‘) < fQ(IE)

} = fi(z) > fo(x)

We have now established a contradiction i.e. the three lines determinad,hy ; and
ug3 Must intersect each other in one single point. ¢

If the parameters are unknown and instead are estimated they are normally substituted
in the estimating expressions in the above mentioned relations cf. the procedure in
section 7.1.3.
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7.2.3 Alternative discrimination procedure for the case of
several populations.

In the previous section we have given one form of the generalisation of discriminant
analysis from 2 to several populations. We will now describe another procedure which
instead generalises theorem 7.4.

We still considerk groups withn,, ..., ny observations in each. The group averages
are calledX, ..., X . We define an “among groups” (or between groups) matrix

A=Y (X X)X, - X,

a "within groups” matrix
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Figure 7.1:

and a “total” matrix
k  n; B B
T=> > (Xi—X)(X; - X)'.
i=1 j=1
A fundamental equation is that

T=A+W.

We can now go ahead with the discrimination. We seek a best discriminator function
where best means that the function should maximise the ratio between variation among
groups and variation within groups. |.e. we seek a funcijoa d'x so

~ dAd

= Wd (dis chosensa'd = 1)

p(d)

is maximised. We note from theorem 1.23 that the maximum value is the largest eigen-
value\; and the corresponding eigenvecihrto

det(A — AW) =0
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or
det(W™'A — \I) = 0.
We then seek a new discriminant functidsn so

 dyAds
T W,

p(ds)
is maximised under the constraint that

dyd; =0 or dy Ldy, and dydy =1.
This corresponds to the second largest eigenvalud¥or' A and the corresponding

eigenvector.

In this way one can continue until one gets an eigenvalud¥or! A which is 0O (or
until W—1A is exhausted).

A plot of the projections of the single observations (centered by the total mean) onto
the d;, ds plane is very useful as a means of visualisation. This plan separates the
points best in the sense described above.

The coordinates of the projections are
[di(zi; — @), dy(xij — )]

Another useful plot consists of the vectors

di1 dip

dn )\ dyy )
These show with which weight the value of each single variable contributes to the plot
on the(dy, d2)-plane.

E.g. in the programme BMDO7M - STEPWISE DISCRIMINANT ANALYSIS - the
plane(d;, d2) is denoted the first two canonical variables.

As the name indicates variables can in this programme be included or removed from
the analysis in a way which is completely analogous to a stepwise regression analysis
(The version which is called STEPWISE REGRESSION). Apart from controlling the
inclusion and removal of variables by means of F-tests there are a number of intuitive
criteria which are very well described in the BMD manual p. 243.

It should also be mentioned here that Wilk'Sor the test of the hypothesis

Ho:py=---=p, against Hy:3i,j:p; # p;,
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det W
" detT

s,

The distribution of this quantity can be approximated by?a or F-distribution. The
latter is probably the numerically best approximation. These are given in the BMD
manual p. 242. Cf. with section 6.2.1.

ExamMPLE 7.8. In the following table we give mean values and standard deviations
for the content of different elements of 208 washed soil samples collected in Jameson
Land. The variable Sum gives the sum of the content of Y and La.

Variable | Mean Value| Standard deviation
B 73 141
Ti 40563 22279
V 678 491
Cr 1135 1216
Mn 2562 2081
Fe 225817 122302
Co 62 26
Ni 116 54
Cu 69 56
Ga 21 10
Zr 14752 14771
Mo 29 20
Sn 56 99
Pb 351 786
Sum

A distributional analysis showed that the data were best approximated by LN-distributions.
Therefore all numbers were logarithmically transformed and were furthermore stan-
dardised in order to obtain a mean of 0 and a variance of 1. The problem is to how
great an extent the content of the elements characterises the different geologic periods
involved in the area. The number of measurements from the different periods are given
below.

Period Number
Jura 17
Trias 80
Perm 30
Carbon 9
Devon 31
Tertieere intrusives 35
Caledonsk crystallic 4
Eleonora Bay Formation 2
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In order to examine this some discriminant analyses were performed. We will not
pursue this further here. We will simply illustrate the use of the previously mentioned
plot, see figure 7.2.
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Figure 7.2:

Figure 7.3:

In figure 7.3 the coefficients for the ordinary variables on the two "canonical” variables
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are given.

By comparing the two figures one can e.g. see that Cu is fairly specific for Devon, and
overall the figures give quite a good impression of what the distribution of elements is
for the different periods. ¢



Chapter 8

Principal components
canonical variables and
correlations and factor
analysis

In this chapter we will give a first overview of some of the methods which can be used
to show the underlying structure in a multidimensional data material.

Principal components simply correspond to the results of an eigenvalue analysis of the
variance covariance matrix for a multi-dimensional stochastic variable. The method
has its origin from around the turn of the century (Karl Pearson), but it was not until
the thirties it got its precise formulation by Harold Hotelling.

Factor analysis was originally developed by psychologists - Spearman (1904) and Thur-
stone at the beginning of the previous century. Because of this the terminology has un-
fortunately largely been determined by the terminology of the psychologists. Around
1940 Lawley developed the maximum likelihood solutions to the problems in factor
analysis - developments which later have been refined by Jéreskog and who in this
period introduced factor analysis as a “statistical method”.

The canonical variables and correlations also date back to Harold Hotelling. The con-
cept resembles principal components a lot, however, we are now considering at the
correlation between two variables instead of just transforming a single one.

259
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8.1 Principal components

8.1.1 Definition and simple characteristics
We consider a multi-dimensional, stochastic variable

Xy

and without loss of generality we can assume it has the mean ®alue

We will sort the eigenvalues iE descending order and will denote them
AL 2> 2 A
The corresponding orthonormal eigenvectors are denoted

pla e 7pk7
and we define the orthogonal mati?xby

P =(p,---py).

We then have the following

DerINITION 8.1. By thes'th principal axis of X we mean the direction of the eigen-
vectorp, corresponding to théth largest eigenvalue. A

DEFINITION 8.2. By the i'th principal component ofX we will understandX'’s
projectionY; = p, X on thei'th principal axis.

The vector
Y

Yi
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\ X
' A
\\ g - \ P
5 - 4 X P 1l.st
B, g P Principal
T~ B, -~ g axis

is called thevector of principal components

The situation has been sketched geometrically in the figure above where we have drawn
the unit ellipsoid corresponding to the variance-covariance structure i.e. the ellipsoid
with the equation

2y le =1.

It is seen that the principal axes are the main axes in this ellipsoid. A

A number of theorems hold about the characteristics of the principal components. Most
of these theorems are statistical reformulations of a number of the results corresponding
to symmetrical positive semidefinite matrices which are given in chapter 1.

THEOREM 8.1. The principal components are uncorrelated and the variance of the
i'th component is\; i.e. thei'th largest eigenvalue.

PrRooF 8.1. From the theorems 2.5 and 1.10 we have

D(Y)=DP'X)=P'SP=A=
N oo 0

0 - M
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and the result follows readily. [ |

Further we have

THEOREM 8.2. The generalised variance of the principal components is equal to the
generalised variance of the original observations. A

PrROOF 8.2. From the definition p. 105 we have
GV(X)=detX
and

GV(Y) =det A =\ -+ A,

A similar result is the following

THEOREM 8.3. The total variance i.e. the sum of variance of the original variables is
equal to the sum of the variance of the principal components i.e.

ZV(XZ‘) = ZV(Yi)

A
PROOF 8.3. Since
D V(X)) =trE
and
> V() =trA
the result follows from the note above. ]

Finally we have
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THEOREM 8.4. The first principal component is the linear combination (with normed
coefficients) of the original variables which has the largest variance.nTtieprin-

cipal components is the linear combination (with normed coefficients) of the original
variables which is uncorrelated with the firat— 1 principal components and then has
the largest variance. Formally expressed:

sup V(b'X) = Ay,
llbll=1

and the supremum is given whén= p, . Further we have
sup V(b'X) = A\,
blpy,....Dm_1
6] =1

and the supremum is given lby= p,, A

PROOF 8.4. Since

V(b'X) = b'Sb,

and
Cov(Y;,b'X) = Cov(p,X,b'X)=p/Zb
= \ipib,
so that
Cov(Y;,b'X)=0<p, L b,
the theorem is just a reformulation of theorem 1.15 p. 36. ]

REMARK 8.1. From the theorem we have that if we seek the linear combination of
the original variables which explains most of the variation in these, then the first prin-
cipal component is the solution. If we seek thevariables which explain most of the
original variation, then the solution is the first principal components. A measure of
how well these describe the original variation is found by means of theorems 8.1 and
8.3 which show that the: first principal components describe the fraction

A+ Ay
Mo+ A+ A
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of the original variation.

A better and more qualified measure of how good the “recreation ability”: is found by
trying to reconstruct the origingX’ from the vector

Y =(Y,...,Y,0,...,0).
Since
Y =P X & X=PY,

Itis tempting to try with

X*=PY".
We find
D(X*) = PDY")P
A1 0
Pl
= (p1 - Pr) Ain :
P,
0 0

MPiPy + A+ AP P
The spectral decomposition &F is (p. 31)
B =MpiPy + o APy + Amt 1P 1 P 0 AkPyPls
which means that
2 —D(X") = At 1P 1 P10+ MDD
If there is a large difference between the eigenvalues then the smallest ones will be

negligible and the difference between the original variance-covariance matrix and the
one “reconstructed” from the first principal components is therefore small. v

8.1.2 Estimation and Testing

If the variance covariance matrix is unknown but is estimated on the basislidferva-
tions, then one estimates the principal components and their variances simply by using
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the estimated variance covariance matrix as if it were known. If all the eigenvalues in
3 are different it can be shown that the eigenvalue and eigenvectors we get in this way
are maximum likelihood estimates of the true parameters (see e.qg. [2]).

There is, however, a very common problem here since it can be shown that the principal
components are dependent of the scales of measurements our original variables have
been measured in. Therefore one often chooses only to consider the normed (standard-
ised) variables i.e.

Xpu— X
YM— = b = £ ’
V(X — X2/ (n—1)
where
Xli
Xi: s Z:].,,TL
Xki

This transformation corresponds to analysing the empirical correlation matrix instead
of analysing the empirical variance covariance matrix.

If one decides to use only some of the principal components in the further analysis one
could e.g. choose a strategy such as to retain as many of the components needed to
account for at least e.§0% of the total variation.

Another criterion would be to test a hypothesis like
Ho: M > > A0 > g1 == Ak

against the alternative that we have a distinct "greater thapafnong the: — m last
eigenvalues.

If we are using the estimated variance covariance mairithe test statistic becomes

Zi— By A e
>\1 .. >\m . Akfm Akfm
where
n' n_m__(Q(k_m)+1+_k— ),

and
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The critical region using a test at lewelis approximately
9,1
(@1, @)l > X (G (k= m+2)(k —m—1))i-a}.

If we instead are using the estimateatrelation matrix R we get the criterion

Zy = —nin— SR g A A
)\1 . )‘m . )\k—m )\k—m
where
A=(k=A— =)/ (k=m) = (Amy1 + -+ M)/ (k —m).

The critical region for a test at level becomes approximately equal to
9,1
{Z1,...,@xplz2 > x (§(k —m+2)(k—m—1))1-4}

However, it should be noted that this approximation is far worse than the corresponding
approximation for the variance covariance matrix.

A discussion of the above mentioned tests can be found in [15].
We now give an example.

ExamPLE 8.1. The example is based on an example from [6] p. 486. The background
material is measurements of seven variables on 25 boxes with randomly generated
sides. The seven variables are

X, : longestside

X5 : second longest side

X3 : smallestside

X4 : longestdiagonal

X5 : radiusin the circumscribed sphere divided by radius in the inscribed sphere
Xg : longest side + second longest side)/shortest side

X7 : surface area/volume.

In the following table we have shown some of the observations of the seven variables.

Box X, Xo X3 X4 X5 X X7
113760 3.660 0.540 5.275 9.768 13.741 4.782
218590 4.990 1.340 10.022 7.500 10.162 2.130

241 8.210 3.080 2.420 9.097 3.753 4.657 1.719
2519410 6.440 5.110 12495 2.446 3.103 0.914
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We will now consider the question: Which things about a box determine how we per-
ceive its size?

In order to answer this question we will perform a principal component analysis of the
above mentioned data. By such an analysis we hope to find out if the above mentioned
7 variables, which all in one way or another are related to “size” or “form” vary freely

in the 7 dimensional space or if they are more or less concentrated in some subspaces.

We first give the empirical-variance covariance matrix for the variables. Itis

5.400  3.260 0.779  6.391 2.155 3.035 —1.996
3.260 5.846 1.465 6.083 1.312 2.877 —2.370
0.779 1.465 2,774 2204 -3.839 -5.167 —1.740
6.391 6.083 2.204  9.107 1.610 2.782 —3.283
2.155 1.312 —3.839 1.610 10.710 14.770 2.252
3.035 2877 —=5.167 2782 14.770 20.780 2.622
| —1.996 -2370 -—-1.740 —3.283 2.252 2.622 2.594

M)
|

Then we determine the eigenvectors and eigenvalues fdihe eigenvectors are given
in descending order together with the fraction and the cumulated fraction of the total
variance that the eigenvalues contribute:

Eigenvalue Percentage of Cumulated percent
M\i,i=1,---,7 | total variance| age of total variance
34.490 60.290 60.290
19.000 33.210 93.500
2.540 4.440 97.940
0.810 1.410 99.350
0.340 0.600 99.950
0.033 0.060 100.010
0.003 0.004 100.014

Computational errors in the determination of the eigenvalues lead to deviations like the
cumulated sum being more tha60%.

The corresponding coordinates of the eigenvectors are shown in the following table.

Variable|  p, Dy Ps Dy Ds P D7
X1 0.164 0.422 0.645 | —0.090 0.225 0.415 | —0.385
Xo 0.142 | 0.447 | —0.713 | —0.050 | 0.395 | 0.066 | —0.329
X3 —0.173 | 0.257 | —0.130 | 0.629 | —0.607 | 0.280 | —0.211
Xy 0.170 | 0.650 | 0.146 | 0.212| 0.033 | —0.403 | 0.565
Xs 0.546 | —0.135 0.105 0.165 | —0.161 | —0.596 | —0.513
X 0.768 | —0.133 | —0.149 | —0.062 | —0.207 0.465 0.327
X7 0.073 | —0.313 | 0.065| 0.719 | 0.596 | 0.107 | 0.092
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Itis seen that the first eigenvector is the direction which corresponds to moréi¥tan
of the total variation, has especially numerically large 5th and 6th coordinates. This
means that the first principal component

Y1 =0.164X; + ...+ 0.546 X5 + 0.768 X6 4+ 0.073 X7

is especially sensitive to variations iXi; and X4. These two variables: The ratio
between the radius in the circumscribed sphere and the radius in the inscribed sphere
and the ratio between the sum of the two longest sides and the shortest side both have
something to do with how “flat” a box is. The larger these two variables, the flatter
the box. Therefore, the first principal component measures the difference in “flatness”
of the boxes. The second eigenvector has large positive coordinates for the first 4
variables and a fairly large negative coordinate for the last variable. If the second
principle component

Yo =0.422X, 4 0.447X5 + 0.257X3 4+ 0.650X4 4 - - - — 0.313 X7,

is large then one or more of the variabl€s, . . . , X, must be large whileX; is small.

Now we know that a cube is the box which for a given volume has the smallest surface.
Therefore we also know that if a box deviates a lot from a cube then it will have a large
X7~ value, and this corresponds to a very strong reductior,ofA large Y>- value
therefore indicates that most of the sides are large - and furthermore - more or less
equal. We therefore conclude that measures a more general perception of size.

In the following figure we have depicted the boxes in a coordinate system where the
axes are the first two principal axes. The coordinates for a single box then become the
values of the first and the second principal component for that specific box.

For the first box we e.g. find

Y1 = 0.164-3.760+---+0.073-4.782 = 18.18
Y, = 0422-3.760+---—0.313-4.782 = 2.15.

At the coordinat€18.18,2.15) we have then drawn a picture of box No. 1, etc..

From this graph we also very clearly see the interpretation we have given the principal
components. To the left in the graph corresponding to small values of component No.1
we have shown the “fattest” boxes and to the right the “flattest”. Atthe top of the graph
corresponding to big values of component No. 2 we have the big boxes and at the
bottom we have the small ones.

On the other hand we do not seem to have any precise discrimination between the
oblong boxes and the more flat boxes. This discrimination is first seen when we also
consider the third principal component. It is

Y3 =0.645X; — 0.713X2 + - - - 4+ 0.065X7.
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Figure 8.1:

This component puts a large positive weight on variable No. 1 the length of the largest
side and a large negative weight on the length of the second largest side. An oblong
box will have X; >> X, and therefor&’; will be relatively large for such a box. If

the base of the box corresponding to the two largest sizes is close to a squatg then
will be close to 0 for the respective box.

The three first principal components then take care of ab8it of the total vari-

ation and by means of these we can partition a box’s “size characteristics” in three
uncorrelated components: one corresponding to the flatness of tl{g'horne which
corresponds to a more general concept of £¥z¢, and one which corresponds to “the
degree of oblong-nesgYs). Now the initial question of: What is “the size of a box”
should at least be partly illustrated. ¢

The next example is based on some investigations by Agterberg et al. (see [1] p. 128).

ExampPLE 8.2. The Mount Albert peridotit intrusion is part of the Appalachtic ultra-
mafic belt in the Quebec province. A number of mineral samples were collected and
the values of the 4 following variables were determined:

X1: mol% forsterit (= Mg-olivin)

X5 :  mol% enstatit (= Mg-ortopyroxen)

X3 : dimension of unit-cell of chrome-spinal
X4 : specific density of mineral sample.



CHAPTER 8. PRINCIPAL COMPONENTS CANONICAL VARIABLES AND
270 CORRELATIONS AND FACTOR ANALYSIS

Using between 99 and 156 observations the following correlation matrix between the
variables was estimated:

1.00 0.32 0.41 -0.31
0.32 1.00 0.68 —0.38
0.41 0.68 1.00 —0.36
—-0.31 —-0.38 —-0.36 1.00

R=

Itis quite obvious that we should analyse the correlation matrix rather than the variance-
covariance matrix. Because we are analysing variables which are measured in non-
comparable units we must standardise the numbers.

The eigenvalues and the corresponding eigenvectors are
0.43 ]
Q L 0.55
A= 225 p= 0.57

—0.44

[ —0.66
5 . 0.49
0.44

0.60
Q . —0.02
Az = 0.70; ps= 0.16
0.78

[ —0.14 ]
2 . —0.68
A o= 031, py= 0.72

—0.06

All the eigenvectors have fairly large coordinates in most places so there does not
seem to be any obvious possibility of giving an intuitive interpretation of the principal
components.

The first principal component corresponds to 2.25/4 = 56.25% of the total variation.

It would be interesting to know if the three smallest eigenvectors of the correlation
matrix can be considered as being of the same magnitude.

The test statistic we will use is

0.74-0.70 - 0.31
Z=-nl —0.2120
" T074+0.70 + 0.31) /3] "

wheren is the number of observations on which we have based the correlation matrix
on. Since this number is not the same for all the different correlation coefficients the



8.2. CANONICAL VARIABLES AND CANONICAL CORRELATIONS 271

theoretical background for the test disappears so to speak. However, if we disregard
that problem, then the number of degrees of freedom iryBdistribution with which
to compare the test statistic becomes

f=gl-142)4-1-1)=5
Since

X2 (5)0‘995 =16.7,

and sinced.21n for n approximately equal to 100 is quite a lot larger than this value
it would be reasonable to conclude that the three smallest eigenvectors in the (true)
correlation matrix are not of the same order of magnitude. ¢

8.2 Canonical variables and canonical correlations

In the following we will discuss dependency between groups of variables where we
in the last section only looked at dependency (correlation structure) between single
variables.

We consider a stochastic variate
X e NP-‘rq(p’v 2)7
wherep < ¢ andX and the parameters have been partitioned as follows:
X, I Y11 B
X = = , X = .
<X2>7 H (Hg Yo1 Yoo

If we on the basis ofi observations ofX wish to investigate ifX; and X ; are inde-
pendent this could be done as shown in chapter 6 by investigating

det(S)
det(S11) det(Sy,)’

which isUp, 4,n—1—4 distributed forH,. We will now try to consider the problem for
another point of view. We will consider two one-dimensional variablendV given

by

U:a’Xl and V:bIXQ.
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Then we have
U . a' o a’Ena a’Elgb
D< 1% > - ( v >2(a’b) - [ b'Soia b'Tosb |
and the correlation betwednandV is

a’Elgb

\ 0/2110, blzggb.

p(U, V) =

Now we have
¥12=0&Va,b: p(a,b)=0.

The accept region for the hypothepig, b) = 0 is of the form (cf. chapter 2)
r(a,b) < rg,

wherer(a, b) is the empirical correlation coefficient angj is a suitable quantile in the
distribution of the 0 hypothesis. We therefore have an accebyof= 0 if

Ya,b: 7r?(a,b) < r%,
which is obviously equivalent to

max 2 (a, b) < 7“?,.
a,b

We now have that the 2 groups are independent if the maximal (empirical) correlation
coefficient between a linear combination of the first group and a linear combination
from the second group is suitable small. This maximum correlation coefficientis called
the first (empirical) canonical correlation coefficient and the corresponding variables
the first (empirical) canonical variables.

Itis now obvious as in the case of the principal components can continue the definition.
We can define the second canonical correlation coefficient as the maximum correlation
between the linear combination &F;’s and X »’s so that these combinations are inde-
pendent of the previous ones etc.. Formerly we have

X1
X
ponents andX, ¢ componentgp < ¢). The r'th pair of canonical variables is the
pair of linear combinations linearkombinatiorér = a/. X'; andV,. = 3. X » which
each has the variance 1 and which are uncorrelated with the previeus pairs of
canonical variables and which have maximum correlation. The correlation istthe
canonical correlation. A

DEFINITION 8.3. Let X = ( be a stochastic variable whek, hasp com-
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Now we have the problem of determining the canonical variables and correlations. We
have the following theorem:

THEOREM 8.5. Let the situation be given in the above mentioned definition and let
lad D(X) = X be partitioned analogously

211 212
3= .
( o1 X )
Then ther’th canonical correlation is equal to ti&h largest rooth,. of

—AXq Y2 ) _
det( ¥o1 —A¥g > =0

and the coefficients in théth pair of canonical variables satisfies
. 7)\211 212 (679
I =0
U < Yo1 —AXa ) ( B, >
(ll) a;Euar =1

(iii) 3,328, = 1.

PROOF 8.5. We are talking of a maximisation problem with restrictions and one can
solve the problem by using a Lagrange multiplier technigue see e.g. [2]p. 2891

One can also determine the correlations and the coefficients by solving an eigenvalue
problem since we have

THEOREM 8.6. Let the situation be as in the previous theorem then we have

(21222_21221 — )\2211>C¥r = 0
det(21222_21221 — )\2211) =0

respectively

(1T B — AP Z)B,
det(Z 2! S0 — A289) = 0
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PROOF 8.6. Omitted see e.g. [2]. ]

Corresponding to the estimation we have nothing special to add to the previous. If
we insert the maximum likelihood estimates fBrin the previous theorems we get
the maximum likelihood estimates of the parameters. Most often one will probably
insert the unbiased estimdeand one then gets what one can call the empirical values
(English: Sample values) for the parameters involved.

In most kinds of canned software there exists programmes for the evaluation of canon-
ical correlations and variables. E.g. we can mention BMDP6M: Canonical Correlation
Analysis from the BMDP-package.

8.3 Factor analysis

Once again we will consider the analysis of the correlation structure for a single mul-
tidimensional variable but contrary to the case in the section on principal components
we here assume an underlying model of the structure.

8.3.1 Model and assumptions
It is assumed that we have an observation

X1
Xk

which - considering the situation historically - can be thought of as a single person’s
scores in e.gk different types of intelligence tests or the reactions of a persdn to
different stimuli.

One then has a model for how one thinks that these reactions (scores) depend on some
underlying factors or more specifically that

X=AF+G,
or in more detail
X1 a1 v Qim Fy Gy

Xk [0S Akm Fm Gk
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Here we callF' the vector ofcommon factors, they are also callgdctor scores
These are not observable. Examples of these are characteristics like three dimensional
intelligence, verbal intelligence etc.

The elements of thé matrix are called factor loadings and they give the weights of
how the single factors enter the description of the different variables. If one e.g. as-
sumes thatA describes 3-dimensional intelligence and verbal intelligence and-that

is the result of a test of a 3-dimensional kind afid the result of a reading test, well
then one will obviously have thaY; is large andX}, is small and vice-versa thag;;

is small anduy,,, is large corresponding to the 3-dimensional intelligence being deter-
ministic of a person’s scores in the solving of 3-dimensional problems and analogously
for the verbal intelligence.

The vectorG is called the vector of unique factors and can be thought of as composed
of some specific factors i.e. factors which are special for these specific tests and of er-
rors i.e. non-describable deviations. Obviously these factors are not observable either.

Here we must stipulate that baXi and F' andG are assumed to be stochastic. There-
fore we are not considering a general linear model with the param@éters. , F,,,.

In order to make this difference quite clear we therefore give the model in the case
where we have several observatiosis, . . ., X,,. We then have the models

X air - QAim Fy; G1s

X arr - Okm Fr Gri

Here we note thaF'; andG; change value when the observatioXi$ change value.
We can aggregate the above models into

X1 Xin air- - aim | | Fir- Fin Gii---Gip
: N : : S el :
Xr1 - Xin k1 Okm | | Fmi - Fimn Gr1 - Gin

It is assumed thaF' andG are uncorrelated and that

1 ... 0
D(F) = :I:I'rru
0 1
and
01 0
D@ =| : N
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Furthermore, we assume that the observations are standardised in such a way that
V(X;) = 1, Vi i.e. that the variance-covariance matrix f&r is equal to its corre-
lation matrix which is denoted

1 TR
D(X)=R=

T |
From the original factor equation we find by means of theorem 2.5 p. 60, that
R=AA"+A.
From this we especially find that fgr= 1, ..., k we have
V(X;)=a} +-- +aj, +6 =1
Here we introduce the notation

h?:a?+~~~+a?m, j=1,... k.
These quantities are calledmmunalities and h? describes how large a proportion
of X;’s variance is due to the: common factors. Correspondingly gives the
uniqueness ik ;'s variance. |.e. the proportion of;’s variance which is not due to
them common factors.

Finally the(i, j)'th factor weight gives the correlation between thk variable and the
j'th factor i.e.

Cov(X;, Fj) = COV(Z aiFy + Gi, Fy) = aij.

It can be shown [7] that

hj = @G+ @ 2 e
i.e. that thej'th communality is always larger than or equal to the square of the multiple
correlation coefficient betweel; and the rest of the variables. This is not strange
when remembering that this quantity exactly equals the proportioki;&f variance
which is described by the variance in the othgis.

We now turn to the more basic problem of estimating the factors. What we are inter-
ested in determining iA. We find

AA'=R-A.
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The diagonal elements in this matrix are
2 .
1—(5j:hj, jZl,...,k.

We do not know these but we could estimate them e.g. by inserting the squares of the
multiple correlation coefficient. If we insert these we get a matrix

2
™2k T1k
V = : : ,

2
Tk1 U TRLk—1

in which the elements outside the diagonal are equal to the original correlation matrix
R’s elements. This matrix is still symmetric but not necessarily positive semidefinite.
However, since it is still an estimate of one, we will (silently) assume that it still is
positive semidefinite.

Independently of how the communalities have been estimated the resulting “correlation
matrix” is calledV. V could e.g. be the above mentioned.

We will call the eigenvalues ¥ and the corresponding normed orthogonal eigenvec-
tors respectively

AL 2> 2 Mgy
and

pla"'apk'
If we let

P = (plv"'apk>a

we then have from theorem 1.10 p. 30, that
AN - 0
PVP=A= _ :
0 - A

SinceP is orthogonal (as a consequence of being orthonormal) we get

V=PAP = (PA?)(PA:z),
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where

We now define

Vo 0
Az - : \/XTTL
0 0

1
l.e. A2 consists of the firstx columns in iA 2 corresponding to the: largest eigen-
values. We then see that

(PAZ)(PAZ) = PAZAZ'P
A - 0
= Pl o |
0O --- 0
~ V,

cf. the analogous considerations p. 264.

SinceV is an estimate oA A’, we then have
AA =~ (PAZ)PAZY,
so it would be natural to chooieA*% as an estimate oA. This solution is called the

principle factor solution for our estimation problem.

We will gather our considerations in the following

THEOREM 8.7. We consider the factor mod& = A F+G whereX is k-dimensional
and F' m-dimensional. The correlation matrix & is denotedR, andV is the ma-
trix which we find by substituting the ones in the diagonaRofvith estimates of the
communalities. These should be chosen in the intdrall ] wherer? is the multiple



8.3. FACTOR ANALYSIS 279

correlation coefficient between the relevant variable and the rest of the variables. Usu-
ally one chooses eithef or 1. The principle factor solution to the estimation problem
is then

PA? = (\/>\_1P1;---; \% )‘mp'rn)’

where);, i = 1,...,m are them largest eigenvalues &f and wherep,,i =1,...,m
are the corresponding normed eigenvectors. A

REMARK 8.2. In the theorem we assume that the number of factois known. If

this is not the case it is common to retain those which correspond to eigenvalues larger
than 1. Other authors recommend that one retains one, two or three because that will
usually be the upper limit to how many factors one can give a reasonable interpretation.

v

8.3.2 Factor rotation
Once again we consider the expression
AA =~ (PAZ)PAZY

If Q is an arbitraryn x m orthonormal matrix i.eQ Q' = I then we have

(PA})QQ/(PA?Y
(PA?)(PAZ)
= AA’.

(PAZQ)(PAZQ)

This means that we can have as many estimates ofAtmeatrix as we want by
multiplying the principle factor solution by an orthonormal matrix.

The problem is then how to choose @ematrix in a reasonable way. The main prin-
ciple is that one wants th&-matrix to become “simple” (without explaining what this
means).

One of the most often used criterions is the one introduced by Kaiser, the Varimax
criterion. It says that we must choo&ein such a way that the quantity

e {n (@) )]

%
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is maximised. It is seen that the expression is the empirical variance of the terms
aj;/hi. The maximisation will therefore mean that many of thg's become 0 (ap-
proximately) and many become large (closedtd). This corresponds to a simple
structure which will be easy to interpret.

Another rotation principle is the so-called quartimax principle. Here we try to make
the rows in the factor matrix simple so that the single variables have a simple relation
with the factors.

Contrary to this the Varimax criterion tries to make the columns simple corresponding
to easily interpretable factors.

Before we continue with the theory we give an example.

ExampLE 8.3. We will now try to perform a factor analysis on the data given in
example 8.1.

First we determine the correlation matrix. From the estimate of the variance-covariance
matrix p. 267 we find

[ 1.000 0.580 0.201 0.911 0.283 0.287 —0.533]
0.580 1.000 0.364 0.834 0.166 0.261 —0.609
0.201 0.364 1.000 0.439 —0.704 —0.681 —0.649

R=| 0911 0.834 0439 1.000 0.163 0.202 —0.676
0.283 0.166 —0.704 0.163 1.000 0.990 0.427
0.287 0.261 —0.681 0.202 0.990 1.000 0.357

| —0.533 —0.609 —0.649 —0.676 0.427 0.357 1.000

Completely analogously with the procedure in example 8.1 we then determine the
eigenvalues and vectors f&t (note that in this case our choice ¥f is simply R).
We find

Eigenvalue| Percentage of Cumulated percent
M\i,1,...,7 | total variance age of total variance

3.3946 48.495 48.495

2.8055 40.078 88.573

0.4373 6.247 94.820

0.2779 3.971 98.791

0.0810 1.157 99.948

0.0034 0.049 99.996

0.0003 0.004 100.000

The coordinates of the corresponding eigenvectors are shown in the following table.
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Variable|  p, D2 Ps3 P4 Ps Ps Pr
X1 0.405 0.293 —0.667 0.089 —0.227 0.410 —0.278
X9 0.432 0.222 0.698 —0.034 —-0.437 0.144 —-0.254
X3 0.385 —0.356 0.148 0.628 0.512 0.188 —0.108
X4 0.494 0.232 —-0.119 0.210 —0.105 —0.588 5.536
X5 —0.128 0.575 0.209 0.111 0.389 —0.423 —0.556
X —0.097 0.580 0.174 —0.006 0.355 0.500 0.498
X7 —0.481 0.130 0.018 0.735 —0.455 0.033 0.049

We now assume that the number of factors is 2 (the assumption is not based on any
deep consideration of the structure of the problem. The number 2 is chosen because
there are only two eigenvalues larger than 1).

Fromtheorem 8.7 the estimated principal factor solution to the problém(gﬁl, V4 5\212)2),
where

Mp,\ (0747 0.795  0.710 0.910 —0.235 —0.178 —0.886
Sop,)  \0491 0.373 —0.596 0.389 0.963 0.971 0.218)°

E.g. we find
h2 = (—0.886)% + 0.2182 = 0.833
The vector of estimated communalities is
A° =1 0.798 0771 0.860 0.979 0.983 0.976 0.833 ],

and we see that e.g. the variation in variable 4 (the length of the longest diagonal) is
described by the variation of the two factors by a proportion of 97.9%.

On the other hand the quantiti@s: 1-— ﬂ? give the unigueness value i.e. the fraction
of the variance ofX;'s which is not explained by the two common factors but which is
assigned to thg'th unique factor (cf. p. 275). We find

6 =10202 0229 0.140 0.021 0.017 0.024 0.167 ].

A more qualified measure of the ability to describe the variation in the data material of
the two factors is found by recomputing the correlation matrix only from the factors.

We therefore compute the so-called residual correlation matrix

Z=R-AA’,
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as a more detailed measure of the factors ability to describe the original variability in
the material. We get

[ 0.202 —0.196 —0.037 0.041 —0.914 —0.057

—-0.196 0.229
—-0.037 0.021

0.041 —0.035
—0.014 —0.006
—0.057 0.041

N>
I

0.071 —0.035 —0.006 0.041

0.140 0.024
0.024 0.021
0.037 0.002
0.025 —-0.013

0.037 0.025
0.002 —0.013
0.017 0.012

0.021]
0.015
0.111
0.046
0.009

0.012 0.024 —0.013

0.021 0.015 0.111 0.046

0.009 —0.013  0.167 |

The moreZ deviates from theé-matrix the poorer the factors describe the original
material.

Apart from using the variance-covariance matrix in example 8.1 while we use the cor-
relation matrix here, then the biggest difference in the analysis is that we have multi-
plied the factors by the square root of the eigenvalues corresponding to each factor. In
this way the length of each factor becomes proportional to the proportion of the total
variance which it explains.

We will now see if we can obtain factors which are easier to interpret by rotating the
factors.

First we depict the factor weights (given on p. 28;)in a two-dimensional coordinate
system. We find

3 3
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\
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\ k §
v i
7 \ B
Al
[ | L 1 >
-10 -05 - 05 [
- A
- - \
- \
o7 \
P - 05
- \ 3
AY
\
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It is noted that most of the variables have large first and second coordinates.

It seems to be possible to obtain a simple structure by rotating the coordinate system
aboutg (= 22%") anti-clockwise (dashed coordinate system).
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This corresponds to multiplication by the matrix
cosg —sing \ _ [ 09239 -—0.3827
sin & cos¥ )\ 0.3827  0.9239 )’

cf. section 1.4.1.

The new factors or rather factor weights then become

0.747  0.491 0.878  0.168
0.795  0.373 0.877  0.040
0.710 —~0.596 | r 0030 (3897 0.428 —0.822
0910 0389 | | "or  gome | = | 0990 0011

~0.235  0.963 ' ' 0.151  0.980
~0.178  0.971 0.207  0.965
| —0.886  0.218 | | —0.735  0.540 |

These new factor weights are simpler than the original ones in the sense that we have
more values close ta-1 and close to 0. Later we will see that this solution found
visually is quite close to the Varimax-solution. ¢

Apart from the Varimax-principle there are as mentioned a large number of other meth-
ods for orthogonal rotation of factors which are not within the scope of this description.
The interested reader is referred to the literature (e.g. [8] and [4]).

There also exists a number of rotation methods which allow relaxation of the assump-
tion of orthogonality. These rotation methods are called "oblique rotations". The phi-
losophy behind these is that the factors are not necessarily independent but may be
correlated. Use of these methods demands thorough knowledge of the subject. We
again refer to [8] and [4].

8.3.3 Computation of the factor scores

If we in the above mentioned example 8.3 wish to make a diagram analogous to the one
mentioned on p. 269 then we must compute the factor scores for the single boxes. This
is a bit more complicated than it was when we did the principal component analysis.
Then we just had to compute the values of the principal components on the different
axes. The reason that we cannot just perform the analogue operation is the existence of
the specific factors.

We have the model (cf p. 274)

X=AF+G,
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where

DF) =1

D(G) = A,

and whereF' andG are uncorrelated.

Therefore we have
b X\ [ AA+A A
F | A’ |

As previously mentioned, since we have that
COV()(,‘7 Fj) = Q45,

we now have that the matrices outside the diagonal ard theatrix and its transposed
respectively.
The estimate of this variance-covariance matrix is
AA'+A A
A’ I

Assuming that the underlying distributions are normal, the conditional distribution of
F given X has the mean value

ppt AAA +A) (@ - )

(cf. section 2.2.3).

Since our computations are performed on the standardised x-values it is reasonable to
assume that, = 0. The level for the factor scale is arbitrary but it is usually set equal
to 0 so that we have the expression

AAA +A) 'z

for the conditional mean value d@f.

As an estimate of théth observation of the factor score & ; we then have

F,=A'(AA'+A)'X,. (8.1)
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Now the A-matrix will often have a large number of rows which means we have to
invert a fairly large matrix. This can be circumvented by the following identity

(AA'+A)TTA=ATTAT+A'ATTA)Y
which gives
Fi=(1+AATA)TAATIX. (8.2)

The validity of the identity is found by the following relationships

(AA’ + A)~1A ATAT+A'ATIA)!
& A = (AA+A)AIA(T+AAIA)?
AAATIA +T)(I+A'ATA) L,

and the last relationship is trivially fulfilled.

NowI+ A’A~1A is anm x m matrix wherem is the number of factors i.e. often not
more than 2-3-4 so the inversion problem is not overwhelming. On the other hand as
mentioned A A’ + A) is ak x k matrix wherek is the number of variables i.e. often

far larger tharm.

If & is only of moderate size we can use the first expression for

F; directly. Here one should utilise that
R=AA"+ A

(cf. p. 276). This gives the expression which is equivalentto (8.1)
F,=AR'X; (8.3)

Finally we must stipulate that there are a number of other methods of determining the
factor scores see e.g. [8] or [16]. It must also be noted that the problem is treated
rather weakly in the main part of the literature. The main reason is probably that
this problem does not have great interest for psychologists and sociologists who for
many years have been the main users of factor analysis. Howeverm in a number of
technical/natural science (and sociological) uses one is often interested in classifying
single measurements by the size of the factor scores. We will see a use of this in section
8.3.4.

We will now illustrate the computation of factor scores on our box example.
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ExampPLE 8.4. In example 8.3, p. 280 we found a rotated factor solution with two
factors. The rotated factor weights were

0.878  0.168
0.877  0.040
0.428 —0.828
A= 0.990  0.011
0.151  0.980
0.207  0.965
| —0.735  0.540 |

In order to determine the factor scores for the single boxes we must first find the com-
munalities and the uniqueness values. We find

j 1 2 3 1 5 6 7

h2 [ 0.7991 0.7707 0.8589 0.9802 0.9832 0.9741 0.8318
5; |0.2009 0.2293 0.1411  0.0198 0.0168 0.0259 0.1682
1/6; | 49776 4.3611 7.0872 50.5051 59.5238 38.6100 5.9453

Here we have (cf. p. 276)

h? =a3 +ajy =1-0;.

We note that the given communalities are equal to those we found on p. 281 for the
unrotated factors. This always holds and can be used as a check in the computation of
the rotated factors.

Since we have

A = diag(d;),

Al = diag( )a

J

S| =

we then have

I+A'ATA)TAA =
0.0669 0.0597 0.0593 0.7839 0.0244 0.0510 —0.0750
—0.0002 —0.0059 0.0655 —0.0943 0.5770 0.3641 0.0415

Equation (8.2) assumes that the variabt¥eare standardised. We must therefore first
determine the mean value and the standard deviation for each of the 7 variables. These
are
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j 1 2 3 4 5 6 7
X, [7.1000 4.7730 2.3488 9.1338 5.4582 7.1674 2.3462
s; |2.3238 24178 1.6656 3.0178 3.2733 4.5581 1.6105

The standardised values for e.g. the first box becomes
z=(—1.4373 —0.4603 —1.0860 —1.2787 1.3167 1.4422 1.5124),

where e.g. the second value is found as

3.660 — 4.773
_ 2O R0 () 4603,
=2 2.4178 04603

We now easily find the factor scores corresponding to the first box as

Fre I+ AATA) TAA 12 = ( 1 ) .

The others are found analogously.

In the following figure we have shown the 25 boxes in a 2-dimensional coordinate
system so that each box is placed at the coordinates corresponding to its factor scores
(cf. p. 269).

We note (cf. example 8.3) that the two factors describe "thickness" and "size". How-
ever, we also note that the "importance" of the two concepts has been switched com-
pared to example 8.1.

¢

8.3.4 A case study

This section is omitted

8.3.5 Briefly on maximum likelihood factor analysis

After the appearance of efficient maximisation methods (e.g. Davison-Fletcher-Powell’s
method) it has become possible to perform maximum likelihood estimation of the fac-
tor scores. This is from a statistical point of view somewhat more satisfactory than
e.g. the principal factor method. Furthermore, the maximum likelihood solution has a
scale-invariance property which is very satisfactory.

We will not concern ourselves with the important numerical and technical problems in
determining the maximum likelihood solution but more consider the scale-invariance.
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We denote the empirical variance-covariance ma#iand if we assume normality
of the observations we have thétis Wishart distributed with the parametdrs —
1, -1-3) whereX equalsD(X;) i.e. the density is

1 1 1
c1(det 8)2 (k=2 (det 1)~z (D) exp(—§(n ~1)tr(SZ7h),

wherec; is an integration constant which only dependswoandk. The logarithm of
the likelihood function is therefore (disregarding the terms which do not depeBj:on

1 1
InL(¥) = —§(n —1)In(det X) — §(n —Dtr(SZ7h.
Here we now introduce the usual factor model
D(X)=X=AA"+ A,

whereA andA are as in section 8.3.3. Note that we are not assumingihns ones
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on the diagonal. This gives

InL(A,A) = *%(ﬂ*l)ln(det(AA/+A))
f%(n — 1) tr(S(AA’ +A)™).

Maximisation of this function with respect t& and A gives the ML-solution to our
factor analysis. Concerning the technical problems which remain, we refer to [10].

By partial differentiation of the logarithm of the likelihood function, and after long and
tedious algebraic manipulations, one obtains the equation:

A=(A+AA)ST'A, (8.4)
see e.g. [16].
If we perform a scale-transformation of tB€’s i.e. we introduce

Z;=CX,,
we then have

S.=CS,C

wherez andx as subscripts shows whether the different quantities have been computed
on the base of th&;'s or the X;’s. With the same convention of notation we then have

A, = (A, +A.A)C'S;ICTA,.
If we pre-multiply byC—! we get

C A, =[C'A.C'"'+C'A(C'A,)|S;IC A, (8.5)
By comparing (8.4) and (8.5) we find thatAf is a solution to (8.4) then

A.=C'A

will be a solution to (8.5). This means that a scaling of Kie (the observations) with
the matrixC implies that the factor weights are scaled®y*.

If we retain the assumption of normality we can test if the factor model is valid i.e. test

Hy:X=A+AA’ against H,:X arbitrary.
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The ratio test will then be equivalent to the test given by the test statistic

2 A +AA/|
—m) In T

1
Z=Mm—-1—=(2k+5)—
(n—1-5(@k+5) -3

and we will reject for
2 1 2
Z > ¥ (G{(k=m)* — k —m}).

Finally we will draw the attention to certain standard programmes e.g. in the BMDP
package which give possibilities of performing maximum likelihood factor analysis.

ExAamMPLE 8.5. In the following table we have shown the result of a principle fac-
tor solution (PCA), and a maximum likelihood solution (ML) and finally a little Jiffy
solution (see [11]).

The data material consists of 198 samples of Portland cement where each sample is
analysed for 15 variables (contents of different cement minerals, fine grainedness etc.).
The 15 variables have only been given by their respective numbers because we do not
consider the interpretation here but only the comparison of the three methods. In the

table, weights, which are numerically less than 0.25, have been set equal to 0 to ease
the interpretation.

We note that the three methods give remarkably similar results. For factor three we
note that the PCA solution differs somewhat from the ML and the LJIF solutions.

Variable Factorl Factor2 Factor3

PCA ML LJIF | PCA ML LJIF | PCA ML LJIF
1 —0.26 0 0 0.95 0.91 0.95 0 0.36 0
2 0 0 0 | —0.98 —1.00 —0.99 0 0 0
3 —0.50 0.93 1.08 0 0 0 | -040 -0.34 -0.72
4 0.94 —-0.78 —0.80 0 0 0 0 -0.62 -0.32
5 0 0.29 0.34 0 0 0 | —0.48 0 0
6 0 0 0 0 0 0 0 0 —-0.25
7 0 0 0 0 0 0 0 0 0
8 0.53 —0.32 —-0.32 0 0 0 0.27 —-0.31 0
9 0.90 —-0.72 -0.76 0 0 0 0 —-045 0
10 0 0 0 0 0 0 0.72 0 0
11 0 -0.28 -0.31 0 0 0 0.82 0 0
12 0 0 0 0 0 0 | —0.78 0 0
13 —0.73 0 0 0 0 0 0 0.98 0.95
14 —0.86 0.97 1.05 0 0 0 | —-0.31 0 0
15 0 0.25 0 0.93 0.93 0.92 0 0 -0.35
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8.3.6 Q-mode analysis

In the form of factor analysis we have regarded up till now - the so-called R-modus
analysis - one investigates the correlations between the different variables. The samples
of the individuals etc. are used as repetitions and these are used to estimate the different

correlations. If we call the observatios,, ..., X,, and let
Xll e Xln
X'=| S
X1 0 Xin

where the rows corresponds to the single variables and the columns to the individuals.
If we assume that the observations have been normalised so they have mean value 0
and variance 1 we get the correlation matrix as

R = X'X,

cf. theorem 2.19. In dual way we could of course define

Q=XX/,

and then interpret it as an expression for the correlation between individuals and then
perform a factor analysis on these. The results of such a procedure will be a classifica-
tion of individuals into groups which are close to each other.

We give a small example which comes from [14].

EXAMPLE 8.6. We consider 12 stream sediment samples collected in Jameson Land
in East Greenland. They are analysed for 7 elements which are Cu, Ni, V, Pb, Zr,
Ca and Ba. An ordinary R-modus analysis showed that the two first factors described
42% + 37% = 79% of the variation. In the following figure we have shown the rotated
factor weights.

Then a@-modus analysis was performed as mentioned above. This gave a first factor
which describe®8% of the total variation and a second factor which describ&d
of the total variation.

From the figure with the factor weights we now get a direct comparison of the different
samples. This could also be obtained throug#modus analysis but we would then
have to go via the factor scores.

Analysis of this kind is used in mineral prospecting in the attempt to determine which
samples are to be declared non-normal and thereby interesting. ¢
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Figure 8.2: Factor weights in R-modus analysis.
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Figure 8.3: Factor weights in Q-modus analysis.

When performing a&)-modus analysis one will often end up with a large amount of
computations since th@-matrix is of the ordem x n, wheren is the number of
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individuals. One can then draw advantage of the theorems in section 1.4.2. From these
we see that the eigenvalues which are different from 0 in R and Q are equal and there
is a simple relationship between the eigenvectors. SRéeonly of the ordek x k

and the number of variables usually is considerably less than the number of individuals
it is possible to save a lot of numerical work.

Finally we remark tha©)-modus analysis often is not performed XrX’ but on an-

other matrix containing some more or less arbitrarily chosen similarity measures. The
technique is, however, unchanged and one can still obtain computational savings by us-
ing the above mentioned relation betwd@modus and)-modus analysis. For special
choices of similarity measures one often calls this a principal coordinate analysis.

An attempt to do both analyses at one time is found in the so-called correspondence
analysis which is due to the Frenchman Benzécri (1973).

8.3.7 Some standard programmes

Principal component analysis is merely an eigenvalue analysis of the variance-covariance
matrix or of an estimated variance covariance matrix. Such an analysis is therefore per-
formed by means of a standard programme for the solution of the eigenvalue problem
for an symmetric positive semidefinite matrix.

There are, however, also a number of standard programmes for the computation of prin-
cipal components. Here we can e.g. mention the programmes BMD01M nd BMD02M
from the BMD system.

BMDO1M, PRINCIPAL COMPONENT ANALYSIS, computes a principal component
solution on the standardised data i.e. we are analysing the empirical correlation matrix.
Output from this programme includes correlation coefficients and eigenvalues includ-
ing the cumulated fractions of the total variance and the eigenvectorsi.e. the principal
axes. Finally the rank of each observation (standardised) is given by size of the single
principal components.

BMDO02M, REGRESSION ON PRINCIPAL COMPONENTS, computes the same quan-
tities as BMDO1M and furthermore computes regressions of each of the dependent
variables on the first, the first two, the first three and all principal components.

Most standard programmes for the computation of factor solutions use the principal
factor solution mentioned in this book followed by rotation.

One of the largest systems is the programme complex which is given in the SPSS man-
ual (Statistical Package for the Social Sciences). In this system we find a number of
factorisation routines. The most often used are probably the principal factor methods.
These are found in two versions. One where one just uses the ordinary principal fac-
tor solution and one where one iteratively estimates the communalities by means of
the squared multiple correlation coefficient estimate the number of necessary factors
maybe exclude certain of these reestimate the communalities etc. until the difference
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between two sets of estimated communalities is less than a certain limit.

Among a number of other methods there is also a method by Rao which was developed
in a more classical statistical sense (see Rao (1955)[18]). Here the more usual estimates
of and test of the number of necessary factors etc. are performed.

Of the orthogonal rotation principles there are three, they are quartimax, Varimax (see
p. 279) and equimax. Furthermore there is a procedure which performs the so-called
oblique rotation (by the oblimin principle).

Computation of factor scores is performed by a principle which is in relationship to the
one mentioned in section 8.3.6.

The BMD-programme BMDO0O8M, FACTOR ANALYSIS, is also very large. The fac-
torisation routines are, however, all of the principal factor type. They operate on both
the correlation and the variance covariance matrices. Possibilities exist for different
types of communality estimates and the above mentioned iterative estimation proce-
dure can be utilised.

There are a number of rotational principles including the orthogonal (among other quar-
timax and Varimax) and as "oblique" (oblimin-types).

Computation of factor scores is performed by the same principles as mentioned in
section 8.3.6.

In the BMDP packages factor analysis programme one can also perform a maximum
likelihood estimation.

The SSP sample programme FACTO performs a principle factor solution and rotates
the factors by the Varimax-method. The programme is more or less identical to the old
factor analysis programme from the BMD system i.e. BMDO3M. The output includes

the usual quantities, however, not the factor scores. Some of the users will be shown
below. The rest of this chapter is neglected because the programme etc. are obsolete.
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assumptionsinregr. analysis, 154 f

best discriminant function, 243

tr, 47

trace of a matrix47
transpose, 10
transposed matrix, 9

U, 209
U(p,q,7), 209
uncorrelated, 63

variance-covariance matrisg

variation
among groups, 253
between groups, 216, 253
partitioning of total, 216
partitioning total, 166, 218
within groups, 216, 253

varimax rotation, 279, 294

VC, 63

vektor addition, 2

W(n, ), 102

weighted regression, 150
Wilk's A, 255

Wilk's A, 209

Wishart distribution]101

diagonal structure of variance-covariance

matrix, 224

eigenvalue of variance-covariance

matrix, 266

equal variance-covariance matrices,

227
factor model, 289

further informationin discr.an., 246

independence, 224, 271
mean value, 193 f, 198 f

multidimensional general linear model,

209 f

proportional variance-covariance,

225
total variance, 262



Appendix A

The Greek alphabet

A«
B3

Ad
Ee

Z¢

O4J0
e

Kk
A X
M u

—

Oo
II 7
Pp
Yog
T
Y v
Qo
X x
v
Quw

Letter name

alfa
beta
gamma
delta
epsilon
zeta
eta
theta
iota
kappa
lambda
my

ny

ksi
omikron
pi

ro
sigma
tau
ypsilon
fi

khi

psi
omega

Pronounciation

[al[a]
[b]
[d]
[d]
(e]
[ts,s]
[ee:]
p.th.t]
(ifi]
(K]

(1
[m]
[n]
[ks]
[0]
[p]

[r]

[s]

[t]
vlly:]
[f]
[x,¢,kh,K]
[ps]
[&]

301

Equivalent to

_'_5*-CDINcDQ_@ oo

T " P ozc23—~x
—~
=
Nt

y
f(ph)
ch(kh)
ps
o



