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Introduction

During recent years, satellite measurements have indicated a trend of increasing melt-off of the Green-
land ice sheet. We will examine this apparent trend and the statistical significance of our findings.
We are using gravity data from the twin GRACE satellites. By continuously, and very accurately,
measuring the distance between the two satellites, one can infer the gravity for each location on Earth.
What we are considering are the equivalent water heights (EWH), i.e., the dynamic mass changes from
the reference geoid, expressed in the equivalent amount of water. Thus, assuming the changing masses
to be water or ice, we can estimate trends and seasonal variability in the ice sheet (and any other
global mass changes).
The data used are the CNES/GRGS 10-day solutions with XMASCEN correction [2], available from
the GRGS website [1].
We will create a regressive model to account for the various trends and seasonal variations in the data.
To identify the relevant oscillations, a spectral analysis using the discrete Fourier transform (DFT) is
used.
Any remaining phenomena in the residuals will be investigated using principal component analysis
(PCA) and a modified approach, sparse PCA.

Spectral analysis

The usual formulation of the DFT assumes that the input signal is periodical and has equidistant
samples. Neither criterion is true for the GRACE data; the implied periodicity is remedied using a
tapering function (in this case the Hann function). Though the data are mostly contiguous 10-day
averages, there are a number of missing solutions early in the dataset. To perform the spectral analysis
anyway, we are using the DFT matrix formulation with columns corresponding to the missing data
removed.
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Figure 1: EWH amplitude spectrum for Greenland. Note the strong low-frequency parts, which
appear to be a result of long-term trends in the time series. The second and third harmonics of
the 1-year oscillation are likely a result of a sawtooth-shaped waveform, rather than subannual
phenomena as such.

Regression model

Based on the results from the spectral analysis, the regressive model has been decided to consist of
second-degree polynomial terms and whole-, half- and one-third-year oscillations, as well as a step
function H to catch the effects of the 2004 Indian Ocean earthquake (a significant feature in the
dataset). Thus, we get the following predictor for the EWH values (t in years):
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Using the solution coefficients of the model, we then obtain the apparent melt-off rates and corre-
sponding acceleration, as well as amplitude and phase of any annual variation. Also, we can determine
a p-value for a test statistic for each parameter, expressing significant deviance (or not) from zero.

Mean EWH change rate (2002−2010)
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Figure 2: Mean EWH change rate over the time span observed.

Whole−year oscillation amplitude
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Figure 3: Amplitude of the one-year
oscillation. The amplitude generally de-
creases with higher latitude.

Phase of seasonal variation (time of whole−year oscillation peak)
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Figure 4: Phase (expressed as peak
month) of the one-year oscillation. Note
that the actual peak generally occurs
later, as the annual melt-off is more rapid
than the refreezing.

Best−fit EWH acceleration
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Figure 5: Acceleration term of the re-
gressive model.

p−value (for acceleration term being zero)
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Figure 6: Corresponding p-values (null
hypothesis being zero acceleration).

As we see, there is a clear downward trend (melting ice) in the EWH in Southeast and Northwest
Greenland, with significant negative acceleration (i.e, an increasing melt-off rate) in Northwest Green-
land, and even positive acceleration (slowing melt-off) in East Greenland. The results are perhaps
surprisingly significant; as an alternative, a long-term oscillation might be able to yield the same
quality of fit.

R2 value of regressive model
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Figure 7: R2 values for the regressions.
The fit seems to be good in areas of clear
trends and seasonal variation, which we
are interested in modelling.

Root mean square error of model
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Figure 8: Residuals of the model,
specifically root mean squared error.
Note the large errors in Northeast Green-
land, which also has low R2.

PCA/sparse PCA and further possibilities

Principal component analysis (PCA), first described by Hotelling in 1933 [3], is a very popular way of
orthogonalizing and compressing multi-temporal data. Because the principal components (PCs) are
weighted, linear combinations of all the original variables they are sometimes difficult to interpret.
Sparse PCA carries out the transformation in a way such that some or even many weights (also known
as loadings) are forced to zero. This potentially facilitates easier interpretation of the resulting sparse
PCs.
As an initial attempt to introduce sparsity into traditional empirical orthogonal function (EOF) ana-
lysis or principal component analysis, we have made a few tests with sparse PCA [5, 4]. Applied to the
GRACE data over Greenland only, these show tendencies of a drastic transition in inland ice melt-off
taking place in Greenland from mid-2004 to late 2006.
Further analysis of the GRACE data might include wavelet analysis to identify any time-limited phe-
nomena. Various models for the background noise of the data and significance levels in the power
spectra are being investigated. Also, the post-glacial rebound needs to be taken into account when
examining the trends, as the land uplift affects the EWH data.
For validation of the results, other satellite data should be involved later on. Useful examples may be
NOAA sea surface temperature data as well as altimetry from the now defunct ICESat satellite.

Conclusions

The spectral analysis has clearly identified annual variation in the data, as well as a number of har-
monics to be included in the model. A regression model has been established to test for the presence
of significant acceleration in the trends, with strongly significant results. Sparse PCA, while useful
for identifying outliers and similar short-term phenomena, has not yielded particularly useful results
when applied to the residuals of the regression model, as the residuals contain more or less continuous
trends and periodical oscillations.
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*) Abstract title: Spatio-temporal analysis of multi-sensor observations of the Greenland ice sheet mass loss. The project is a work in progress.


