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Abstract

In this paper we present a novel spatio-temporal inverse method for solv-
ing the inverse M/EEG problem. The contribution is two-folded; firstly,
the proposed model allows for a sparse spatial and temporal source rep-
resentation of the M/EEG by applying an automatic relevance determi-
nation type prior. The utility of a sparse spatio-temporal representation
is based on the assumption that the underlying source activity is indeed
sparse and smooth in time. Secondly, we seek to reduce the influence of
forward model errors on the source estimates, by applying a stochastic
forward model. Applying a stochastic forward model is motivated by the
random noise contributions such as the geometry of the cortical surface
and the electrode positions. Simulated data provide evidence that the
spatio-temporal model leads to improved source estimates, especially at
low signal-to-noise ratios, which is often the case in M/EEG.
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1 Introduction

In order to understand the human brain many experimental and modeling tech-
niques have been invoked, including brain imaging by functional magnetic res-
onance (fMRI), positron emission tomography (PET), electro- and magneto-
encephalography (EEG, MEG). EEG and MEG are both very promising modal-
ities with their excellent temporal resolution, since they measure the neural
current activity in the brain.

The relation between the measured M/EEG signal and the brain’s current
sources can be expressed as a linear instantaneous form in the sources. The
forward relation can be written as [1]

M = AS+ E , (1)

where the noise E is assumed additive and the measured M/EEG signal is de-
noted M ∈ ℜNc×Nt , the current sources S ∈ ℜNd×Nt , and with Nc, Nd, and
Nt being the number of channels, dipoles, and time samples, respectively. The
coupling of sensors and the current sources is expressed through the lead field
matrix/forward model A ∈ ℜNc×Nd with the rows referred to as the lead fields
for the sensors and the columns as the forward fields for the sources.

The existing inverse method algorithms face the challenge of the many
sources of noise that interfere with the true signals in the MEG/EEG data.
Electrical, thermal and biological noise as well as background room interference
can be present. As a consequence of the many noisy contributions and the
highly ill-posed nature of the electromagnetic source imaging (ESI) this leads
to high requirements on robust inverse methods. In this paper we pursue a
spatio-temporal method.

General approaches to the M/EEG inverse problem may be categorized as
parametric or imaging methods [1]. In a parametric setting, or sometimes re-
ferred to as scanning methods, the M/EEG is described by a small number of
dipoles [2]. The locations of these sources are found by scanning over all possible
locations in order to find the best set of sources to represent the data. Beam-
forming [3] and MUSIC [4] are examples of scanning methods. Choosing the
number of sources in the solution is the key problem for scanning methods, since
this needs to be specified a priori. In contrast, imaging methods reconstruct a
spatial distribution of the current sources.

The use of both spatial and temporal information to constrain the source
estimates have been applied for decades. In [5] they proposed temporal priors,
which operate on penalizing differences in neighboring time points. [6] incorpo-
rates temporal smoothness priors based on second derivatives.

To describe the temporal dynamics of the sources wavelet temporal basis
functions have received much attention in the M/EEG community. In [7] the
focus is to represent event related potential (ERPs) with the use of a small set of
wavelet bases. Additionally, [8] presented an Variational Bayes approach which
tries to represent the M/EEG signal by a sparse set of coefficients by applying
a wavelet shrinkage procedure.
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In [9] they apply event sparse penalty (ESP) regularization which is closely
related to l1 regularization. The ESP approach seeks a solution composed of
a small number of space-time events (STEs). Each STE is a spatio-temporal
signal defined in terms of a group of basis functions. Similarly, we pursue ESI
solutions with sparse spatio-temporal representation. In contrast to [9] approach
with we will apply an automatic relevance determination (ARD) like prior, see
Section 2.

This paper is divided two parts - firstly we present a model that takes the
spatio-temporal information into consideration when solving the electromag-
netic source imaging problem in order to obtain robust source estimates given a
fixed forward model. Secondly, we extend this spatio-temporal model to include
a stochastic forward model.

Applying a stochastic forward model is motivated by the many noise pro-
cesses that contribute to the forward model. These noise processes include the
conductivity distribution, electrode positions, the geometrical representation of
the cortical surface, and head movements when performing MEG scannings.
The geometry of the head model is influenced by the resolution and tissue
segmentation errors when ’realistic head models’ are constructed from tissue
segmentation based on an MRI.

Several approaches have been proposed to model the forward process [10, 11,
12] yet from quite a different viewpoint than ours. In [10] the modeling of the
uncertainty associated with the forward model is performed by parametric model
which also includes estimation of the skull-brain conductivity ratio. Similarly,
[11] apply a probabilistic distributed model that also accounts for uncertainties
involved in the skull conductivity. In [12] they apply a stochastic forward model
where a standard forward model is used as a prior mean. In this paper we will
apply a similar stochastic forward model. However, none of these methods
explores the potential of applying spatio-temporal priors.

2 The Akvavit Algorithm

We here propose a spatio-temporal model for solving the ill-posed EEG/MEG
source localization problem and while also take the uncertainty of the forward
model into consideration. Our model has its origin in the Champagne algo-
rithm [13], in which each source has an associated hyperparameter to control
its relevance, better known as automatic relevance determination (ARD) type
prior. However, in contrast to [13], which assumes that a given current source
is independent over time, we here restrict the current sources to be correlated

over time by imposing a fixed temporal basis set Φ =
[

φ1, . . . ,φNk

]T
consisting

of Nk temporal basis functions of lengths Nt. These basis functions can either
be specified based on some prior expectation or learned directly from the data
[14], when pre-stimulus data is available. Similarly, we will assume the noise
covariance matrix as fixed, since this as well can be learned (such as e.g. a vari-
ational Bayesian factor model proposed in [15]) and effectively suppress noisy
factors.
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In terms of the stochastic forward model we apply a quite similar approach
taken in [12], i.e. the lead fields are modeled as independent multivariate Gaus-
sian distributions with the conventional forward propagation model A(0) used
as prior mean and a hyperparameter associated to each of the forward fields due
to an expectation that forward fields from different regions in the brain will be
corrupted differently. Given the temporal basis functions we reformulate Eq. (1)

Y = AGΦ+E (2)

with G being the spatio-temporal maps that we are interested to find. For
notation convencience we will make use of m = vec (Y), x = vec (G), B =
(

ΦT ⊗A
)

interchangeable. The Kronecker-product1 is denoted⊗. Specification
of model

p (Y |G ) =

Nt
∏

n=1

N (yn |AGϕn ) = p (m |x )

=

Nt
∏

n=1

N
(

yn

∣

∣

(

ϕT
n ⊗A

)

x ,Σε

)

= N
(

m
∣

∣

(

ΦT ⊗A
)

x , INt
⊗Σε

)

(3)

p (G |Γ ) = p (x |Γ ) =

Nk
∏

k=1

N
(

gk

∣

∣0,Γ−1
k

)

= N
(

x |0,Γ−1
)

(4)

p
(

Ã |λ,α
)

= p (z |λ,α ) = N
(

z

∣

∣

∣
z(0) ,Ω−1

)

. (5)

Here gk denotes the k’th column in G and Γ is as a blockdiagonal matrix given

by Γ = bdiag (Γ1, ...,ΓNk
) and Ã = Σ

−1/2
ε A. Additionally we have z = vec(Ã)

andΩ = diag(vec(λαT )). We split the derivation of the updates ofG andA into
two separate problems, such that we assume the forward model to be known and
fixed when calculating the posterior distribution of the spatio-temporal maps G
and vice versa when updating the forward model A. Alternatively, we can adopt
a Variational Bayesian (VB) approach [17, 18], in which we maximize a lower
bound of the log marginal likelihood. However, this may be very cumbersome
and memory intensive if the number of sources Nd and number of basis functions
Nk are quite large, since in a standard VB framework each variational posterior
distribution needs to be evaluated in turn with respect to the all others. In
contrast by assuming G and A for fixed and known when deriving A and G,
we obtain computationally easier update rules at the expense of an iterative
approximation. This basically forces the variational posterior distribution of
one the variables to be delta-functions centered at their mean values, when the
other variational posterior distribution is evaluated.

Estimation of G : When A is assumed fixed, maximization of the posterior

1A discussion of the vec-operator and Kronecker product can be found in e.g. [16].
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distribution for G leads to

q (x |Y ) ∝ exp

{

−
1

2

(

(m−Bx)
T (

INt
⊗Σ−1

ε

)

(m−Bx) + xTΓx
)

}

∝ exp

{

−
1

2

(

xT
(

BT
(

INt
⊗Σ−1

ε

)

B+ Γ
)

x− 2xTBT
(

INt
⊗Σ−1

ε

)

m
)

}

= N (x |µx,Σx ) (6)

where the covariance and mean is given by

Σx =
(

BT
(

INt
⊗Σ−1

ε

)

B+ Γ
)−1

=
(

(

ΦT ⊗A
)T (

INt
⊗Σ−1

ε

) (

ΦT ⊗A
)

+ Γ
)−1

=
(

ΦΦT ⊗ATΣ−1
ε A+ Γ

)−1

(7)

µx = ΣxB
T
(

INt
⊗Σ−1

ε

)

m = Σx

(

ΦT ⊗A
)T (

INt
⊗Σ−1

ε

)

m

= Σx

(

Φ⊗ATΣ−1
ε

)

m. (8)

We note that by selecting the temporal basis functions to be orthonormal, the
estimation of the posterior distribution q (x |Y ) reduces significantly since the
covariance now becomes a block-diagonal matrix which can be inverted in sub-
blocks. With ΦΦT = INk

the covariance is given

Σx =
(

INk
⊗ATΣ−1

ε A+ Γ
)−1

= bdiag
(

Σg1
, ...,ΣgNk

)

(9)

where
Σgk

=
(

ATΣ−1
ε A+ Γk

)−1
. (10)

Thus, the posterior distribution is a product of Nk normal distributions such
that we have

q (x |Y ) = q (G |Y ) =

Nk
∏

k=1

N
(

gk

∣

∣µgk
,Σgk

)

(11)

µgk
= Σgk

(

φT
k ⊗ATΣ−1

ε

)

m = ΣgkA
TΣ−1

ε Yφk

= Γ−1
k AT

(

AΓ−1
k AT +Σε

)−1
Yφk. (12)

Since the model is specified given a set of hyperparameters Γ, we need to opti-
mize these as well in order to obtain the most likely posterior distribution. This
is performed by maximization of the marginal likelihood or sometimes referred
to as the model evidence. The marginal likelihood is given by

p (Y |Γ ) =

∫

p (Y |x ) p (x |Γ ) dx

= N
(

m

∣

∣

∣
0,

(

ΦT ⊗A
)

Γ−1
(

ΦT ⊗A
)T

+ INt
⊗Σe

)

= N (m |0,Σm ) ∝ |Σm|−
1

2 exp

(

−
1

2
mTΣ−1

m m

)

(13)
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Mathematically, maximizing the marginal likelihood is equivalent to minimizing

L (Γ) = −2 log p (Y |Γ ) = −
1

2
log |Σm| −mTΣ−1

m m (14)

Optimization of the hyperparameters can conviently be done in expected-
maximization (EM) framework [18], in which the hyperparameters is updated
by taking the derivative of the expected complete data log likelihood w.r.t. the
hyperparameters in the M-step.

∂

∂γi
〈log p (m,x)〉q(x) ⇒ γ−1

i = (Σx)ii + (µx)
2
i . (15)

However, the convergence can be extremely slow, and thus we apply the MacKay
update rule, which are significant faster to converge [19]. The updates are
obtained by taking the derivative of Eq. (14) and equate to zero, which leads to
the following fixed-point update

γi = (1− γi (Σx)ii)
/

(µx)
2
i (16)

From Eq. (16) it is noted that it is only the contribution from the statistics
for the i’th element in G that contributes to the update. In our formulation of
the model we specified a hyperparameter per element in G. In relation to the
approach proposed in [9], where they seek sparse sets of space-time subspaces,
the proposed model in this paper can find sparse representation of temporal
subspaces to the same extent. This situation is actually a special case of the
formulated model, since it would correspond to restricting a group of γ−1

i values

to their mean value, i.e. we have γ−1
i⊂W = N−1

w

Nw
∑

w=1
γ−1
w with W denoting the

group of spatio-temporal events with the same hyperparameter.
Estimation of A We now assume the spatio-temporal map G to be constant

when deriving the updates for the forward model. For notational convenience
we remove the noise covariance matrix by reformulating the likelihood in a
equivalent form

p
(

Ỹ

∣

∣

∣
G, Ã

)

=

Nt
∏

n=1

N
(

ỹn

∣

∣

∣
ÃGϕn, INc

)

(17)

p
(

m̃

∣

∣

∣
Ã,x

)

= N
(

m̃

∣

∣

∣

(

ΦT ⊗ Ã
)

x, INcNt

)

= N
(

m̃

∣

∣

∣

(

(GΦ)
T ⊗ INc

)

z, INcNt

)

, (18)

where we have made use of Ỹ = Σ
−1/2
ε Y, Ã = Σ

−1/2
ε A, Ẽ = Σ

−1/2
ε E, m̃ =

vec(Ỹ), x = vec (G), z = vec(Ã), and the vec-operator and Kronecker product2.
To obtain the posterior distribution of the forward model we now assume the

2A discussion of the vec-operator and Kronecker product can be found in e.g. [16].
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source-temporal maps G for known and thus the posterior distribution is given
by

q (z |m̃ ) = exp

{

−
1

2

∥

∥

∥
m̃−

(

(GΦ)
T ⊗ INc

)

z

∥

∥

∥

2

2
−

1

2

∥

∥zTΩz
∥

∥

2

2

}

= exp

{

−
1

2

(

zT
(

GΦΦTGT ⊗ INc
+Ω

)

z− 2zT
(

(GΦ)
T ⊗ INc

)T

m̃

)}

= N (z |µz,Σz ) (19)

in which

µz = Σz

(

(GΦ)
T ⊗ INc

)T

m̃ and Σz =
(

GΦΦTGT ⊗ INc
+Ω

)−1

. (20)

Given the posterior distribution of the forward modelA and the source-temporal
maps G, we can perform an iterative update of each of the variable with the
assumption that the other variable is fixed and known. Since we assume A

is fixed and known when updating the source-temporal maps G the posterior
distribution is given in Eq. 6-7. Similar to the Akvavit algorithm the expression
for the mean and covariance for the forward model simplifies significantly when
the temporal basis functions are chosen to be orthonormal. For orthonormal
temporal basis functions the mean and covariance of G is given by Eq. 9-12 and
for A we have

Σz =
(

GGT ⊗ INc
+Ω

)−1

= bdiag
(

Σ
l̃1
,Σ

l̃2
, ...,Σ

l̃Nc

)

(21)

Σ
l̃j

=
(

GGT +Ωj

)−1

(22)

µ̃
lj

= ΣljGΦYT
j· =

(

GGT +Ωj

)−1

GΦỸ
T

j·

= Ω−1
j G

(

GTΩ−1
j G+ INk

)−1
ΦỸ

T

j· (23)

Similar to the hyperparameters associated with G we also need to the hy-
perparameters associated with A. The MacKay update is given by Ωii =

(1− Ωii (Σz)ii)
/

(µz)
2
i .

3 Empirical Evaluation

In this section we test the performance of our algorithm on simulated data and a
fixed forward model. For validation purposes we use three widely used metrics:
mean square error (MSE) between the simulated and estimated source distribu-
tion, variance explained (VE) of data, and area under the receiver-characteristic
curve (AUC). More comprehensive experiments with focus on the forward mod-
eling as well as performance on real M/EEG data will be presented in forthcom-
ing papers. In our tests we evaluate two extremes of the Akvavit algorithm in
terms of number of hyperparameters associated to the temporal basis. We will

Stahlhut et al., 2010 7
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refer to the two situations as Akvavit1 and Akvavit2. Akvavit1 includes a hy-
perparameter per source candidate in (i.e. a parameter per row in G), whereas
Akvavit2 includes a hyperparameter per source candidate per temporal basis
function.

For the sake of simulation, we apply the models to a relatively low cortical
resolution (∼500 vertices) obtained by subsampling a more dense set. However,
such low resolution or even lower resolution, might actually be the case if applied
in a context similar to [9], in which vertices are clustered such that they form
a number of patches based on anatomical and functional information. As head
model we use a Boundary Element Method (BEM) forward model from SPM83.

With simulated data evaluate how well the different methods reconstruct two
simulated current source generated from a mixture of two sines-functions with
different frequencies. We examine the performance of the methods at different
signal-to-noise ratios (SNR). We inspect two scenarios: the simulated sources
time series are within the temporal subspaces that are used by the our algorithm
or outside the subspace. However, note that even though the sources time series
are within the temporal subspaces this does not mean that a temporal basis
directly represents a source time series but in stead that simulated time series
can be constructed from the temporal basis set. We compare our algorithm
with the champagne (CH) algorithm [20] and model proposed in [9] for finding
sparse representation of small number of space-time events. The latter one we
will denote ESP.

Due to the limited space in the paper we only include the results with the
simulated sources lying within the temporal subspace Φ, since the Φ may be
directly learned from the data as in [14]. However, not surprisingly the per-
formance with source time course outside the subspace deteriorate the ESI es-
timates of the methods relying on the temporal prior to perform equal and
sometimes even worse than methods not incorporating the temporal informa-
tion. Thus, the learning or specifying the temporal dictionary is crucial in order
to obtain robust ESI methods.

In Fig. 1(a) an example of two simulated sources and their associated time
courses are given with the white brain illustrating the source activity at time
point t = X. On the black brain we have added colored spheres, such that
it is possible to see which source is associated with the time courses given in
the subfigure to the right. Figure 1(c) illustrates the source estimates obtained
using the champagne algorithm. It is noted that the algorithm leads to a relative
sparse solution only with 4 remaining source in the estimate. Of the estimated
sources the position of both source #1 and #2 are correctly reconstructed.
However, their time courses on the other hand are highly corrupted by noise.
Especially the time series for source #2 is very difficult to recognize. Source
reconstruction using the [9] approach with event sparse penalty (ESP) are given
in Fig. 2(a) and Fig. 2(c) corresponding to ESP1 and ESP2, respectively. In
ESP1 we use the same approach as we do with our Akvavit1 approach, i.e. we

3The forward model was constructed using the SPM8 academic software (http://www.fil.
ion.ucl.ac.uk/spm/) based on routines from FieldTrip (http://fieldtrip.fcdonders.nl/).
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only seek a sparse solution in the spatial domain. In contrast ESP2 will favor
sparsity in both space and temporal basis functions. Unfortunately both models
are only able to localize the position of the simulated source #1 correctly and
with ESP1 slightly better in capturing the overall temporal evolution of the
source. Note that source that correspond most best to the simulated source
#1 in ESP1 appears as source #3 (red). However, all the source estimates are
very small, which may indicate too much regularization found by the heuristic
approach for selecting the regularization parameter in [9]. Indeed the source
reconstruction with Akvavit algorith leads to improved source estimates for
both Akvavit1 and Akvavit2 (see Fig. 2(e) and 2(g)), with Akvavit1 as the
winner. The reconstructed time courses for Akvavit1 are very similar to the
simulated once and more importantly also correctly associated the location in
the brain. Slightly reduced estimation of time series of source #2 is obtained
with Akvavit2.

(a) True
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#1

0 0.1 0.2 0.3 0.4 0.5
−20

0

20

Time [s]

 

 
#2

(b) True sources - time series

(c) Champagne
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−10
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−5

0
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0 0.1 0.2 0.3 0.4 0.5
−4

−2

0

Time [s]

 

 
#4

(d) Champagne - time series

Figure 1: White brain: Activity at a snap shot. Black brain: illustrates the five
sources with the largest variances. The sources are color-coded such that their
corresponding time courses can be seen in the right most plot.

In Fig. 3 we examine the models performance on the validation metrics
(MSE, VE, and AUC) as function of different SNRs. A similar overall picture as
the results reported in Fig. 1 and Fig. 2 are found here, i.e. with the Akvavit1
as the best model and Akvavit2 as the runner up. The champagne is also
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performing quite well especially a higher SNRs. Due to the down weighting
of the source estimates found by ESP1 and ESP2 these models both perform
relative poorly in the metrics.

4 Discussion

This paper presented a novel spatio-temporal model, which describes the un-
derlying current activity by a spatially and temporally sparse representation.
Moreover, we derived the model to be able to model noisy contributions in the
forward model that may corrupt the source estimates. It should be noted that
we applied a stochastic forward model, and thus deterministic errors which are
likely to occur as well will not be modeled in present algorithm.

We presented the model in the extreme case in which a hyperparameter is
assigned per spatial-temporal component and similarly for the forward model.
This way we can easily reduce the model to a simpler one (in terms of a reduc-
tion in number of parameters), if e.g. one believes that the sources are better
described by a group of spatio-temporal subspaces. In such a setting one can
group the hyperparameters that are part of that specific group and assign them
to one common value for the subspace. A serious concern when modeling the
forward model is the risk of overfitting the data. By applying an ARD type
prior on both the forward model and the matrix including the spatio-temporal
maps, we sought solutions that prune most of the parameters according to their
relevance or not.

Simulations with a fixed forward model demonstrated that the proposed
model lead to improved sources estimates at low SNR compared to some of the
state-of-the-art methods; the event sparse penalty model proposed by [9] and
the champagne algorithm, which does not include temporal information. In the
derivation of the model we applied an iterative approximation when calculating
the posterior distribution of the spatio-temporal matrix G and the posterior
distribution of the forward model A in order to minimize the computational
complexity of the updates by basically discarding the second moment.

Stahlhut et al., 2010 10
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(f) Akvavit1 - time series

(g) Akvavit2
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Figure 2: White brain: Activity at a snap shot. Black brain: illustrates the five
sources with the largest variances. The sources are color-coded such that their
corresponding time courses can be seen in the right most plot.Stahlhut et al., 2010 11
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Figure 3: Mean square error, degree of focality, variance explained, area under
ROC-curve, correlaiton coefficient, A-prime. The graphs are the mean of 5
repetitions at each SNR.
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