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Abstract

In this thesis a number of wind noise reduction techniques have been reviewed,
implemented and evaluated. The focus is on reducing wind noise from speech
in single channel signals. More specifically a generalized version of a Spectral
Subtraction method is implemented along with a Non-Stationary version that
can estimate the noise even while speech is present. Also a Non-Negative Matrix
Factorization method is implemented. The PESQ measure, different variations
of the SNR and Noise Residual measure, and a subjective MUSHRA test is
used to evaluate the performance of the methods. The overall conclusion is
that the Non-Negative Matrix Factorization algorithm provides the best noise
reduction of the investigated methods. This is based on both the perceptual
and energy-based evaluation. An advantage of this method is that it does not
need a Voice Activity Detector (VAD) and only assumes a-priori information
about the wind noise. In fact, the method can be viewed solely as an advanced
noise estimator. The downside of the algorithm is that it has a relatively high
computational complexity. The Generalized Spectral Subtraction method is
shown to improve the speech quality, when used together with the Non-Negative
Matric Factorization.
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CHAPTER 1

Introduction

Noise reduction algorithms have been used for many decades to suppress unde-
sired components of a signal, but so far little attention has been directed towards
specializing these applications to wind noise reduction. The standard approach
to deal with this problem, has been to either use a general noise suppression
algorithm or to cover up the microphone with a hood to prevent the wind from
exciting the membrane of the microphone. This solution, however, is not very
eloquent and it is expected that more powerful signal processing techniques can
yield better results. Also with the rapid development of small high-technological
consumer products like headsets, mobiles, video cameras and hearing aids, it be-
comes very impractical to implement a cover for the microphone given the size
of the units.

The use of a communication device in stormy weather is an every-day expe-
rience for people around the world, but removal of the noise is often not so easy
because the issues are manifold. A basic characteristic of wind noise is that
it is highly non-stationary in time, sometimes even resembling transient noise.
This makes it very hard for an algorithm to estimate the noise from a noisy
speech signal and recently methods that incorporates premodeled estimates of
the noise has become more popular in general noise reduction schemes. These
methods often outperform methods that only estimate the noise based on the
noisy signal. Another issue is that of speaker- and signal-independence. Differ-
ent speakers have different pitch and timbre and an algorithm that is optimized
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for one speaker might not perform adequately for another speaker. If the method
has to be signal independent (i.e. not assume anything about the desired signal)
the estimation is even harder.

For this project it has been decided to focus on filtering wind noise from a
noisy speech signal. To keep the potential applications as general as possible
the dissertation focuses on methods that does not modeling individual speakers
and only operates on mono signals.

1.1 Noise Reduction Algorithms

Many different noise reduction algorithms exist, but a lot of them are not directly
applicable to speaker independent noise reduction in single channel signals. This
section contains an overview of the potential methods for this problem along
with a discussion of their relevance and advantages. The methods implemented
for this dissertation will be reviewed in greater detail in the following chapters.

Classic filtering algorithms like Wiener filtering [44] and Spectral Subtraction [5]
have been used for decades for general noise reduction. The Wiener filter is an
optimal filter in the least squares sense to remove noise from a signal, given
that the signal and noise are independent, stationary processes. It also assumes
that the second order statistics of the signal and noise processes are known and
works by attenuating frequencies where the noise is expected to be the most
dominant. The biggest problem with this method is that it assumes stationary
signals, which is obviously not a good approximation for speech and wind noise.
The Spectral Subtraction method subtracts an estimate of the noise magnitude
spectrum from the noisy speech magnitude spectrum and transforms it back to
the time domain using the phase of the original noisy speech signal. Often the
noise estimate is obtained during speech pauses, using a Vocal Activity Detector
(VAD). As the method is unable to obtain new noise estimates during speech,
this method also assumes that the noise is stationary at least for as long as the
person is talking. For both methods adaptive versions have been developed that
relaxes the assumption of stationarity a bit [3] [41]. The advantages of these
methods are that they are robust, easy to implement and that they have been
thoroughly studied and generalized through several decades. For this project
the stationary Spectral Subtraction algorithm is implemented and it is shown
that it can be generalized to the Wiener filter. Also a non-stationary version
where the noise can be estimated during speech is implemented.

With more microphones available, correlation between the desired signals in the
different microphones can be used to filter out the noise. This has been used in



1.1 Noise Reduction Algorithms 3

methods like Independent Component Analysis [30] and directivity based ap-
plications like beamforming [19] and sometimes even combined [33]. As only
one channel is assumed known for this thesis however, these methods are not
applicable here.

More recent methods involve modeling the sources in the noisy signal inde-
pendently and then using these models to find the best estimate of the speech-
and noise-signal. The individual signals can then be separated by for instance
refiltering the noisy signal or using binary masking [18]. Many different models
have been proposed, for instance Hidden Markov Models [36], Gaussian Mixture
Models [11], Vector Quantization [8] and Non-negative Sparse Coding [31]. The
problem with this approach is that they often model an individual speaker and
therefore are not speaker independent.

The general formulation of the wind reduction problem is what makes it hard.
The more information that can be put into the method about the sources, the
better the resulting separation is expected to be and in the speaker independent
single channel case, the only information available is the expected wind noise
and speaker independent models of speech.

For this thesis a modified Non-Negative Matrix Factorization algorithm is sug-
gested as a good way to filter wind noise. The algorithm factorizes the magni-
tude spectrogram of the noisy signal into a dictionary matrix and a code matrix
that contains activations of the dictionary in the respective positions of the
noisy magnitude spectrogram. In the modified version, wind noise spectrums
are trained and put into the dictionary matrix beforehand. First of all this
incorporates wind noise information into the method and subsequently leads
to an expected better factorization, but it also makes it possible to determine
which part of the code- and dictionary matrix belongs to the estimated clean
filtered signal. Based on this factorization, the clean signal can be resynthesized.

Evaluations of noise reduction methods are usually only based on Signal-to-
Noise (SNR) measures, like in [21]. This measure, however, does not evaluate
how a person perceives sound and a better way to compare methods, would be
to implement measures that takes that into consideration. For this purpose the
PESQ [16] measure is implemented.

All method implementations, figures and data analysis for this thesis has been
done in Matlab.



4 Introduction

1.2 Overview of Thesis

The thesis is divided up into the following chapters:

Chapter 1 is the current chapter and forms the introduction to the thesis. In
this chapter the problem is defined and a discussion of possible solutions
to the problem is given.

Chapter 2 contains the theory behind the Generalized Spectral Subtraction
algorithm. This is a basic noise reduction algorithm that is implemented
for comparison and as a backend addition to the other two methods.

Chapter 3 contains the theory behind the Non-Stationary Spectral Subtrac-
tion algorithm, which is an adaptive version of the normal Spectral Sub-
traction algorithm. This method allows noise to be estimated, while speech
is present, by introducing speech and noise codebooks.

Chapter 4 contains the theory behind the Non-Negative Matrix Factorization
algorithm.

Chapter 5 reviews objective, subjective and perceptual-objective measures to
evaluate the performance of the noise reduction algorithms.

Chapter 6 describes the data that is used to evaluate the noise reduction al-
gorithms. A part of the sound data has been recorded specifically for this
project and this chapter describes how it is obtained and processed.

Chapter 7 is the experimental analysis part of the thesis. In this chapter the
parameters of the noise reduction algorithms are optimized to filter wind
noise from speech.

Chapter 8 contains the results of the thesis, which is based on the analysis
and application of the theory in the previous chapters.

Chapter 9 contains the conclusion of the thesis along with future work.



CHAPTER 2

Generalized Spectral
Subtraction

One of the most widely used methods to attenuate noise from a signal is Spec-
tral Subtraction. In its basic form it is a simple method that operates in the
frequency domain to obtain a magnitude spectrum estimate of the noise and
then use that estimate to filter the noisy signal. Due to its popularity, many
different variations of it have been developed, which will also be reviewed in
this section. First the basic version of the method will be given, followed by
noise estimation considerations and generalizations to the algorithm. Finally
other known methods will be compared to the generalized Spectral Subtraction
method.

The basic assumptions of the Spectral Subtraction algorithm are that:

e The noise is additive. This means that the noisy signal consists of a sum
of the desired- and noise-signal: y(n) = s(n) + w(n), where y(n) is the
noisy signal, s(n) is the desired signal and w(n) is the noise signal.

e The human hearing is insensitive to small phase distortions.

The first assumption means that the noisy signal can be filtered, by simply
subtracting the noise estimate from the noisy signal. In the frequency domain
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this equation becomes: Y(w) = S(w) + W(w). As the phase is very hard to
estimate however, usually only the magnitude spectrum of the noise can be
obtained. This leads to the following filtering equation:

) o) _ (1 W@ _
S(w) = (V@I = W)l = (1= 1550 ) Y (@) = Hw)- V() (21)
with | R W)
Wi(w
HE =1 )

¢y (w) is the phase of Y (w). In (2.1) the phase of the noise is approximated by
the phase of the noisy signal. This is what the second assumption means. Any
negative values in the filter H(w) is due to estimation errors in W (w), where the
noise is estimated to be larger than the noisy signal and should be set to zero.
Finally the speech estimate 3(n) is obtained by transforming the spectrum $(w)
back to the time domain with an inverse Fourier transform.

To ensure that the signal is stationary, these calculations are performed on

Time domain Frequency domain
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Figure 2.1: Top: Rectangular window. Bottom: Hamming window.

small overlapping frames of y(n) (<100ms). Extracting a frame from a signal
equates to multiplying it with a rectangular window, but as a rectangular win-
dow has very bad spectral properties, the frame is usually instead multiplied
with a more smooth window, for instance a Hamming window. This approach
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causes less spectral smearing of the signal [35], as can be seen in figure 2.1.
Then the FFT of the frame is taken and combining all frames into a matrix
yields the spectrogram. This procedure is known as Short Time Fourier Trans-
form (STFT). In the following S(w;, m) will mean the spectrogram of a signal
s(n), where i is the frequency point and m is the frame number.

There are basically two ways in which a spectral subtraction algorithm can
vary: How to estimate the magnitude spectrum of the noise and different gener-
alizations to the filtering operation in (2.1). The two variations will be explained
in separate subsections.

2.1 Noise Estimation

A proper noise estimation technique is essential for achieving good results. A
popular way to acquire the noise estimate from the noisy signal is during speech
pauses [5]:

|[W(wi,m)| = E(]Y (w;, m)]) , during speech pauses

where FE() is the expectation operator. In practice it can implemented as a
window of length K over an STFT, where all frames within the window are
averaged to obtain the noise estimate:

I+K—1
1
E(|Y (w;, m)|) = 7 Z Y (ws, k)| , during speech pauses
k=1

In order to know when speech is present, a Voice Activity Detector (VAD) is
needed and a lot of effort has been devoted towards developing stable VADs,
e.g. [39]. This, however, will not be pursued any further in this dissertation
and it will be assumed that it is known beforehand when the speech is present.

This way of estimating the noise has a serious drawback. As long as the speech
is present, the noise estimate cannot be updated and with very non-stationary
signals like wind, the noise estimate will not be a very good estimate over a long
time period. Instead of estimating the noise when no speech is present, pre-
computed codebooks can be used to find the best fit to the current frame. The
best fit in the codebook is then the estimated wind noise for that frame. This
estimation is also possible while speech is present and will be pursued further
in chapter 3.
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2.2 Generalizations of Spectral Subtraction

The basic Spectral Subtraction filter given in (2.1) is sufficient if perfect esti-
mations of the noise can be made. This, however, is not possible, as explained
in the previous section, which leads to errors in the magnitude of the speech
estimate |S(w)|. There can be two kinds of errors in |S(w)|: residual noise and
speech distortion. If the noise estimate at a certain frequency is too high, the
subtraction algorithm will remove too much from the noisy signal at that fre-
quency point and some of the speech will also be removed. This will be heard
as speech distortion. If on the other hand the noise estimate is lower than the
actual noise level, there will be some residual noise left in the speech estimate.
If this residual noise occupies a large area in the spectrum it will be heard as
broadband noise, but if narrow spectral peaks occur in the residual noise, it will
be heard as musical tones and is often called 'musical noise’ [28]. Musical noise
is very annoying to listen to and should be minimized if possible.

2.2.1 Overestimation and Spectral Floor

It can be shown that overestimating the noise like in [28] reduces the musical
noise. The idea consists of multiplying a signal dependant constant a(w;,m)
onto the noise estimate and putting a lower bound 3 on the filter. This changes
formula (2.1) into:

W (wi,m)|

Ynm) D olsawm)0sf<]

H(w;,m) =max(1 — a(w;,m) -
a(w;, m) is usually calculated based on a relation like this:

sy Qmin < a(wia m) < Qpaz

Y (wi, m)| )

a(wi,m) = ag — slope - 101og <|W(w )

The formula can be recognized as a linear relationship between the Signal-to-
Noise ratio (SNR) and a(w;, m). Other formulas are also possible, for instance a
sigmoid function. For the values ayin = 1.25, Qppgr = 3.125, a9 = 3.125, slope =

(Qmaz — Qmin) /20, the relation between 10log (%) and a(w;, m) can be
seen in figure 2.2. When the noise is relatively high, the fraction % is

low and the filter will subtract more from the noisy signal. This reduces both
musical- and broadband-noise. The downside is that if a(w;, m) is too high, the
speech will distort. This is an important tradeoff. Another tradeoff is that of
choosing 5. When there are large peaks in the noise estimate that are further
enhanced by a(w;,m), a lot of speech distortion can happen. By introducing
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Cverestimation factor for noise compensation
T

alpha

0 i i i i ;
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Figure 2.2: Quverestimation as a function of SNR.

a non-zero spectral floor, these peak excursions can be limited, reducing the
speech distortion. This, however, also introduces broadband noise, though it is
important to note that the filter H(w;,m) is multiplied onto Y (w;, m) and so
this broadband noise will be relative to Y (w;, m) (ie. if § is a lot smaller than
1, it will always be much lower than the speech).

2.2.2 Filter Smoothing

By smoothing the filter H(w;, m) in both the time and frequency domain, large
peaks will be reduced, which will reduce the musical noise. This smoothing
is inspired by articles like [6] and [27]. In those articles it is suggested that
the smoothing over time takes the form of a first order auto-regressive filter to
obtain a smoothed filter H;(w;, m):

Hs(wi,m) =g - Hy(wi,m —1) 4+ (1 — Ag) - H(w;, m) ,0< Ay <1

This filter is also known as a first order lowpass filter. When the smoothed filter
has low values, the noisy signal Y (w;, m) is being heavily filtered because there
are a large amount of noise. It is therefore expected to be better to smooth a
lot in this area and less in areas with a low amount of noise. A new smoothing
filter Hgo(w;, m) can be calculated as:

Hsg(wi,m) = H(wi,m) . Hs(wi,m) —+ Hs(wi,m) . (1 — Hs(wi,m))

This is a weighting between H (w;,m) and Hq(w;, m) where H,(w;, m) is also
being used as a weight. In areas with prominent speech H(w;, m) will be large



10 Generalized Spectral Subtraction

and not a lot of smoothing is happening, but when the noise is prominent
(1 — Hy(w;,m)) is large and the filter will be heavily smoothed.

By smoothing the filter in the frequency domain as well, large peaks in the
filter’s spectrum will be further reduced and can be done with a simple sliding-
window filter of length 2L — 1:

L

> Hap(wig,m)

l=—L

1

Hyz(wi,m) = 57 —1

2.2.3 Exponent Choosing

The Spectral Subtraction method reviewed so far, is also known as Magnitude
Spectral Subtraction, because it is the magnitude of the noise spectrum that is
being subtracted from the noisy signal. Another kind of Spectral Subtraction
is Power Spectral Subtraction, where it is assumed that |V (w)]? = [S(w)|> +
|W(w)|?. This equation can be attained by squaring the basic assumption for
Magnitude Spectral Subtraction:

Y ()] = (1S + [W(w))? = [S(@)]* + [W(w)]* +2|S(w)||W ()]
By assuming that noise and speech is uncorrelated the last term will vanish on
average, ie. approximate |S(w)||W (w)| with E[|S(w)||W (w)|].
The basic filter operation will then look like this:

W (w)P?

ISP = (Y@ = W) = (1- 5

) Y (@) = Hpoer (@) [¥ (@)
The full complex speech estimate becomes:

ower

S(w) = (Hpower (@) - [V ()[)1/2 - 7258 () = HIS, () Y (w)
To generalize this, an arbitrary constant can be chosen as exponent:

: W ()7
S(w) = (1 - 7) Y (w)
Y (w)?
A suggestion for a different exponent, could be v = 0.67, which would equal
Steven’s Power Law' for loudness. To generalize this even further, the exponent
to the filter 1/ can be set to another constant p/v. Increasing the value of p

1Steven’s Power Law is a proposed relationship between the magnitude of a physical stim-
ulus and its perceived intensity or strength.
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yields a stronger filtering, leading to cleaner silence portions at the expense of
stronger distortion of the low-energy speech portions:

N B \W(W)W ol
S(w) = (1 - W> Y ()

The use of p, can be seen as a kind of overestimation and as in the case with
a(w;, m), it might improve the filtering to introduce a lower bound Sajter:

|5 (w)[" = max ((1 - M)p Y (@), Bieer - |W(w)|7> 0 < Brer < 1

The lower bound is introduced as a proportion of the noise estimate, to make
sure it is not present when there is only speech or silence.

2.2.4 Generalized Filter

Combining all these generalizations into one filtering operation yields:

G W (w)[ P . Uy

S(W) - e (maX (l_a(w“m).“}/(((,u))ﬁ'y’ﬁ) .ly(w)W?ﬁﬁlter"W(W)’y) .eJ'¢Y(w)
i — _ ) W) P . )

with H(w) = max (1 — a(w;,m) V(o) ,) being smoothed as detailed in

section 2.2.2.

Using the values:

o a(w;,m)=1

«5=0

o« y=1
«p=1

® Shiter =0
e \gy =0
e =1

would equal the basic magnitude Spectral Subtraction method.
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2.3 References to Known Algorithms

There are other known noise reduction algorithms that are contained within
the methods that have been developed in the preceding sections. This section
contains a description of those.

2.3.1 Wiener Filter

The Wiener filter is another popular filtering method. In the following it will
be shown how the wiener filter relates to the Spectral Subtraction filter given
in section 2.2.4.

Generally the Wiener filter can be shown to have the frequency response [27]:

_ Pg(w)
Hw) = 5@y + P (@)

with P(w) being the power density spectra. The problem with this expression is
that the signals are assumed stationary and Ps(w) known. Instead the Wiener
filter can be approximated with an expected frequency response:

B[S
Hw) = Fs@P + E[w @R

Further by assuming |V (w)|? = |S(w)|*> + |W (w)|? the expression can be rewrit-
ten:

) < EIS@P+EIW@PE]  BW@P
E[S(@)P1+ E[W (W] E[lS(w)P]+ E[W(w)?]
L BIW@R )P
E[Y (w)[?] Y (w)[?
where E[|W(w)[?] = |W(w)|?> means that the noise is estimated using some

method. It is seen that the Wiener filter has a close relation to the Power
Spectral Subtraction method.

2.3.2 Qualcomm

The Qualcomm algorithm is a method that was proposed for the 7th Interna-
tional Conference on Spoken Language Processing in 2002 [1]. It is a complete
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frontend for an Automatic Speech Recognition (ASR) system and has outper-
formed the current ETSI Advanced Feature Standard on a number of different
testsets. It includes a noise reduction scheme that is contained within the gen-
eralized filter given in section 2.2.4. It can be used by setting the different
variables to [9]:

e «(w;, m) should be set to the values used in figure 2.2
e 3=0.01

e y=2

e p=1

ﬂﬁlter = 0.001

Ag =0.9
e L =10
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CHAPTER 3

Non-Stationary Spectral
Subtraction

The method given in this section is an advanced non-stationary version of the
Spectral Subtraction method described in the previous chapter. A fundamental
assumption in the noise estimation for the Spectral Subtraction algorithm in
the previous section is that the noise is stationary. This is because the noise
estimate cannot be updated while speech is present. Also the method requires
a VAD that might not work very well under very noisy conditions.

The fundamental advantage of the non-stationery Spectral Subtraction method
is that it estimates the noise and speech in each time frame and thus can adapt
to varying levels of noise even while speech is present. This is done by using
a-priori information about the spectrum of speech and noise to compute code-
books. In [3] and [12] it is argued that it is beneficial to perform the spectral
subtraction, as a filtering operation based on the Auto-Regressive (AR) spectral
shape of the noise and speech estimate in each frame. This results in smooth
frequency spectrums and thus reduces musical noise. The actual filtering opera-
tion is basically the same and can be generalized in the same way as for normal
Spectral Subtraction.

First the theory behind the method is described followed by a description of
the structure and parameters of the model.
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3.1 Spectral Subtraction

The basic Magnitude Spectral Subtraction filter of this method is the same as in
the previous section, except that the clean noise and speech magnitude spectrum
now is estimated in every timeframe and the resulting magnitude spectrum is
given as:

) — oo _ (1 W@y
Sw) = (V@) = W)@ = (1 - 15 )Y (@) ~

W

(1 ___ [War(w)] )Y(w) = H(w)Y (w)

[Sar(W)] + [War(w)|
with )

(War(w)|
|Sar(W)| + [War(w)|
where the subscript AR indicates that the estimations are based on an Auto-
Regressive model and |Y (w)| is being approximated by the sum of the noise and
speech AR-estimate.

(3.1)

Hw)=1-

3.2 Noise and Speech Estimation

The idea behind the estimation of noise and speech is to use smoothed spectrums
to approximate the noisy signal with AR models. This has already been used in
papers like [24] to model degraded speech. This sections contains a brief review
of AR modeling in relation to signal estimation and a review of how to estimate
the speech and noise.

3.2.1 AR Modeling

An AR model of z(n) is a linear prediction model that, given a number of
parameters N, predicts the next value of x(n) based on the previous N values
of z(n). It is defined as:

z(n) = —a1z(n —1) —aszx(n —2) — ... —anz(n — N) + &(n)

where £(n) is white noise with variance o2 and mean zero and (ay, as, ..., ay)
are the parameters of the process. As can be expected, the model gives good
predictions for data with high correlation between data points spaced less than



3.2 Noise and Speech Estimation 17

or equal to N points apart.

Transforming the expression to the frequency domain yields:
X(w) = —X(w)(are ™7 + aze™* + .+ aye N¥) + e(w) &

X(W)(1 4 a1e7 + age ™% 4+ ..+ ane M) = g(w) &
e(w)

X(w) = 4 : .
) 14+ are 9% + age~21% + ... + aye Niw
From this equation the AR-process can be recognized as an All-pole model or

an Infinite Impulse Response (IIR) filter [35]. The power spectrum of such a
signal can be estimated as the expected value of | X (w)|?:

_ B[l (@) o
[1+aje=7% 4+ age=21% + ..+ aye Niw2  |a,(w)|?
(3.2)
where o2 is the excitation variance, which is equal to the power of £(n) since it

Py = E[|X (w)[?]

. . . . N kj
is white noise with zero mean and a,(w) =1+ Y_,_, are™*.

The parameters (a1, az, ...,ay) and o2 are solved by the Yule-Walker equations

Yo V-1 -+ V=N+1 ay —71

7 Yo co Y=N+2 az -2

= (3.3)
IYN—-2 7YN-3 ... V-1 aN—1 —YN-1
YN-1 IN-2 - Y0 an —IN

Ug =" + a1y1 + azxy2 + ... F anYN

where 7p,71, ..., 7§ are the autocorrelation estimates with the index being the
lag. These equations are solved efficiently by means of the Levinson-Durbin
recursion, which is implemented in the Matlab function aryule.

The number of parameters N also governs how smooth the spectrum is, as
can be seen in figure 3.1. The plot shows the Periodogram of a 512 sample
point speech signal and two corresponding AR spectrums with a different num-
ber of parameters.

3.2.2 Minimization-Problem

To estimate the noise and speech in each time-frame, a minimization-problem
is solved [41], which is described below. Let P, be the estimated AR-Power

spectrum of the observed noisy signal and let Py, be the corresponding power
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Figure 3.1: Comparison between power spectrum estimates of a speech signal.
Lower order AR-models gives more smooth spectrums.

spectrum of the modeled signal equal to P, + P, where the spectrum of
the noise and speech signals can be evaluated from the AR-coefficients s =
{02, a1,as,...,an} and 0, = {02,b1,bs,...by}. Furthermore define a measure
of the difference between the 2 spectra d(P,,, Pyy) The problem of estimating
the speech and noise spectrum used in the spectral subtraction filtering, can
then be formulated as:

(ésv éw) = areg glin d(Pyy, pyy)

To solve this, the log-spectral distortion between the sum of the estimated noise
and speech power spectrums and the observed noisy spectrum is minimized:

)| de (3.4)

2
U?J

|ay(w)[?

1 o2 o2

s = g | Il o + i)
The solution to this minimization problem does not have a unique solution and
a global search through all possible combinations would be computationally un-
feasible. Instead a codebook that contains the AR-coefficients of the noise and
speech spectra that are expected to be found in the noisy signal is introduced.
For each combination of speech and noise AR-coefficients, the log-spectral dis-
tortion must be evaluated and the set that has the lowest measure is used for
the spectral subtraction.
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3.2.3 Estimating the Variance

There is an issue with the AR representation power spectrum that has to be
addressed before the log spectral distortion can be evaluated. Looking at (3.2)
it is seen that the power spectrum consists of the variance of the white noise
and the AR-coefficients. The variance is just a constant that shifts the power
spectrum up or down in the spectrum, while the shape of the spectrum is gov-
erned by the AR-coefficients. Noise can have many different spectral shapes,
but it can also have many different levels of energy and therefore it is not a
good idea to save the variance of the white noise in the codebook along with
the AR-coefficients, as it would necessitate many more entries in the codebook,
to obtain a good representation of the noise. Instead, only the AR-coefficients
are saved in the codebook and the variance is estimated for each combination
of noise and speech spectrum.

It has not been possible to find an explicit derivation of the variance in any
paper that mentions this method and therefore it is derived explicitly here.

To estimate the variance, the log spectral distortion is minimized for each set
of AR-coefficients. The minimum is found by differentiating the measure with
respect to the 2 variances and then setting it equal to zero. First the measure
is simplified to make sure that the resulting equations are linear:

o2 o2 o2 2
In Os w —1 Yy ‘d —
“ 5 [ (et o) (i)
1 la (w)| o2 o2 2
. 1 Y S w ‘ d —
%/\“( 7 ator * atop)) @
1 lay (w)|? o? o2 2
— In(1 Y s L -1 ‘d =~
W/‘n( = <|a5 P 1 aw w)|2) )| @
|ay(w o )2
v 1] dw =
27r/’ (|ag (w) |aw(w)|2) W
1 \ay<w>\4( I S
2 oy @ " Ja@IF " Jau (@) Plaw @)
e ot o

o (r R

where it is used that In(1+ z) =~ z, for small z, i.e. small modeling errors, which
is illustrated in figure 3.2. Partial differentiating d;s with respect to o2 and o2
and setting it equal to zero yields:

Odps _ 1 [ 20%]ay(w)|* 203 |ay(w)[* 2lay (w)[?

= — = w — dw =20 3.5
32~ 2r | Slla@lf | olan@)Plan@P o2l @p e =0 G
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Figure 3.2: Approzimation to In(1 + z).

gy, 2 ) ojlaw(@)* T oglas(@)Plaw(@)*  oflaw(w)]?

This set of equations can be rewritten in matrix form:

odis _ 1 [20%ay@)*  20%a,@)I'  Za,@P

VS

w)|* 2
J 7!2?2(%‘)14@ J ‘aswa‘sl(C:fJ)(\ﬂL“Z(w?dw [02} J e
[ ol g Jml g, | o [zl g,

0§|a5(w)‘2‘aw(w)|2 Ug‘aw(w)|4 law(w)|?

w

The variance of the speech and noise can now be estimated by isolating o2 and

0.2.
o
ag

ot
Negative variances that arise from estimation errors are set to zero.

@ N

IS

Jay(w)* Jay (w)* oy ()2
] | T oy J azwasw)\zwag(w)l?dw f TR
f ay (w)]* _dw f }ay(w)\ dw f |ay(w)\ —dw

oglas (W) *aw (W)[? oglaw (W)t law ()2

(3.6)

3.2.4 Calculating Integrals

The system of equations in (3.6) that estimates the excitation variances con-
tains a number of integrals with AR-coefficients. These equations are solved by
regarding the expression in the integrals as filters with filter-coefficients equal
to the AR-coefficients. The frequency response of each filter is then evaluated
in N number of points spaced evenly along the unit circle and the numerical
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integral is calculated, as illustrated on the second integral:

ay(w)]* or N ok
[ il —aw= L [ iepar = 25 ST n 6

Ty =1

where H(k) = % The frequency response of H(k) can be evaluated

with the Matlab function freqz.

3.3 Description of Method

An illustration of the algorithm can be seen in fig. 3.3, where it is broken down
into a number of steps:

The signal is divided up into overlapping timeframes of constant width and is

Noise Speech
Codebook codebook

Y y

> Log-Spectral Minimization

A 4

Spectral . » [Estimated
Subtraction Inverse STFT Speech

r

Signal frame > STFT

Figure 3.3: Flowchart of Non-Stationary Spectral Subtraction.

then routed through 2 different paths; one for estimating the noise and speech
part of the signal and the other for holding the original signal in the spectral
subtraction part. Each time-frame is then handled individually.

1.1: Before the noise and speech part of the signal is estimated from the signal,
the AR-parameters and excitation variance of the original signal frame must be
estimated.
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1.2: For each pair of noise and speech AR-signals in the codebooks, the ex-
citation variances are calculated by (3.6) and negative variances arising from
modeling errors are set equal to zero. The log-spectral distortion is then eval-
uated by (3.4) and the pair yielding the lowest measure is selected as the one
that provides the best spectral fit to the signal frame.

2.1: Along the other path, the signal frame is windowed by a Hamming window
of equal length and then an FFT is performed. This is equivalent to performing
STFT (Short Time Fourier Transform).

2.2: The Fourier transformed signal is now filtered with the filter (3.1), contain-
ing the AR-spectral shapes found in step 1.2. This filtering can be generalized
in the same way as the Magnitude Spectral Subtraction algorithm in chapter 2.

2.3: Inverse STFT is then performed to transform the time-overlapping spectral
frames into a time signal.

The code for this method has been implemented in Matlab and can be seen
in Appendix ?77.

3.4 Codebooks

The codebooks used to estimate the speech and noise are generated from sep-
arate databases, representing the signals that are expected to be found in the
noisy signal. There are two codebooks; one for noise and one for speech each
consisting of a matrix. These matrices, who are not necessarily of the same size,
contain AR-coefficients representing the shape of the signals they were derived
from. Each row in the matrix is a set of AR-coefficients and the number of
columns denotes the number of coefficients used to represent the training set:

1 a1 ay ... an 1 dy do ... dy
CCSPSGC]L = 1 bl b2 bN CCnoise 1 €1 €2 €M

1 (&1 Co ... CN - 1 fl f2 fM

Segments of the same length and overlap as the input to the Non-Stationary
Spectral Subtraction algorithm are sampled from the speech and noise part of
the training set and used to generate the two codebooks. For each segment the
corresponding AR-model is estimated using Yule-Walkers equations (3.3) and
stored in the codebooks. Because the variance is estimated for each timeframe,
only the AR-coefficients are saved in the codebook.
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These codebooks, however, contains a lot of redundant data, since many in-
stances of the same noise and speech is present and will only increase the amount
of time needed to search through the codebooks. Therefore a method to decrease
the size of the codebooks is needed. When performing this reduction, it is im-
portant that as much of the representation in the training set is kept and for that
the k-means algorithm [20] is used. This algorithm clusters the AR-coefficients
into k M-dimensional cluster centers (where M is the number of AR-coefficients),
by an iterative procedure. An artificial example of a k-means clustering can be
seen in figure 3.4. In the example 2-dimensional data has been clustered by
k=3 cluster centers. The red dots are cluster centers and the numbers are data
points, where the numbers indicate which cluster center the point belongs to.
In the k-means algorithm a point is assigned to the cluster with the shortest
Euclidean distance. It can be shown that the k-means clustering is actually a
special case of the gaussian mixture model [4]. After the k-means algorithm has
been applied, the new codebooks only contain the cluster centers found by the
iterative scheme (k < number of original spectrum-entries).

In the non-stationary Spectral Subtraction algorithm, the codebooks are only
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Figure 3.4: K-means clustering on 2-dimensional data with k=3.

used to evaluate powerspectrums in the integrals in (3.7) and the spectral dis-
tortion in (3.4). Therefore computation time can be saved, by precomputing the
spectrums from the codebook using the freqz command in Matlab as mentioned
in section 3.2.4. This will, however, increase the amount of memory needed to
store the codebooks.
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3.4.1 Searching the Codebooks

The use of codebooks enables the estimation of noise even while speech is
present, but it also increases the computation time needed as the method
searches through the codebook for the best fit. To keep the computation cost of
the method at a certain level, it might therefore be necessary to limit the size of
the codebook, thereby possibly reducing the performance of the noise estima-
tion. This motivates the implementation of more intelligent searching strategies
in the codebook.

The most intuitive way to search the codebook is to compare each spectrum
in the speech codebook with each spectrum in the noise codebook and find the
pair with the lowest spectral distortion according to (3.4). This brute-force
method, however, is very computationally inefficient with an upper-bound of
O(K; - Ky,), where K and K, is the number of speech and noise spectrums in
the codebooks respectively.

An alternative searching scheme can instead be implemented that reduces the
computation complexity significantly. For each time frame, a noise estimate
must be obtained using any noise estimation technique, for instance the one in
chapter 2.1. Based on this noise estimate, the entire speech codebook is searched
to find the best fit that minimizes the spectral distortion (3.4). Then using this
speech entry in the speech codebook, the entire noise codebook is searched to
find the best fit according to the spectral distortion. Again the speech codebook
is searched using the new noise estimate and this procedure is repeated until
the spectral distortion has converged. The obtained noise and speech shapes
are then used to filter that noisy frame. The upper-bound using this approach
is O(Ks + K,,) and in practice it is found that it is only necessary to search
through each codebook about 2-4 times.



CHAPTER 4

Non-Negative Matrix
Factorization

Non-Negative Matrix Factorization (sometimes called Non-Negative Matrix Ap-
proximation) is a relatively new method that has many potential application
areas, for instance Image Processing, Text Analysis and Blind Source Separa-
tion, see [29] and [10] for a general review of the method with applications. The
method first became popular in 1999 with the article [23] by Lee and Seung.
The idea behind the method is to factorize a matrix A into a product of two
matrices D and C. The usual factorization is interpreted as a dictionary ma-
trix D that contains the different possible activations that occur in A in each
column and C' is a code matrix that contains information about where in A the
activations occur:
A=D-C

A simple example of a factorization is:

11 2 0 11 2 3 1 1 3
21 3 0 8 4 2|=1(21 2
31 40 5 61 3 1 1

S O =
o = O
O ==
o O O
w N o
S O N
= o O

A contains different combinations of the 3 basis vectors (3 columns) in D and
C contains information about where in A the different basisvectors are. As the
name implies only non-negative numbers are allowed in the matrices, which can
be interpreted as if D contains magnitudes that can only be added together
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(because C' is non-negative) to get A. In the context of wind noise filtering, A is
the magnitude spectrogram, D contains spectral magnitude shapes that belongs
to either speech or noise and C' contains information about where the respective
spectral shapes in D occur.

A number of observations can be made about the factorization example:

e The factorization of A into D and C' is not unique. For example the first
column of D can be divided by 2 if the first row of C' is multiplied by 2.

e Column 2 in A could be represented by a sum of all basisvectors in D,
but to keep the interpretation of the factorization simple, C' should be as
sparse as possible (contain as many zeros as possible).

e Highly trivial and undesirable factorizations can be found, for instance
the factorization where D is a unity matrix and C' is equal to A.

The first problem can be avoided by making sure D is normalized:
D =D/||D]

where || - || is the Euclidean norm. The 2 other problems are related, because
by keeping C' sparse, as much information will be put into D as possible and
undesirable factorizations will hopefully be avoided. By putting as much in-
formation as possible into D, the interpretation of D as a basis matrix is also
strengthened. The problem of keeping C' sparse will be dealt with later.

4.1 Defining a Cost Function

Due to the recent popularity of this method, many different suggestions for ob-
taining a factorization of A exists. Most of the methods, however, minimize
a least squares costfunction, but without mentioning the explicit assumptions
made about this costfunction. In the following a derivation of the cost func-
tion that is inspired by [38] is followed. It assumes that the reader has some
knowledge of probability theory.

4.1.1 Maximum Likelihood Estimate

The problem of finding a factorization can be stated as:

V=A+e=D -C+e
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where ¢ € RE XL is residual noise, V € RfXL is the data matrix and A € RE*
is the factorized approximation to V.

The Maximum Likelihood (ML) estimate of D and C' is equal to the minimum
of the negative log-likelihood:
(D,C) = argmin Ly |p (D, C)
D,C>0
where Ly|p,.c(D,C) is the negative log-likelihood of D and C. The likelihood
depends on the residual noise . If the noise is assumed to be independent

identically distributed (i.i.d) Gaussian noise with variance o2, the likelihood
can be written as:

_V-b-cJp?

1
(\/EO'E)KL eXp( )

which is basically as gaussian distribution over the noise. From this it is seen
that the negative log-likelihood is:

1
Lyip,c(D,C) x|V =D - C|J?

This expression is known as a least squares function and a factorization of A
can be found by using it as a costfunction that should be minimized:

1 1
CCrs = §HV -D- C||2 = 92 ZZ(V“] - ZDUC : CkJ‘)Q (4.1)
i g &

where the indices denotes elements in the matrices. Other kinds of noise as-
sumptions, leads to other cost functions, for instance would a Poisson noise
assumption lead to the following cost function [32]:

Vi
CCkr = ZZVi,j - log (m) - Vij+ Z};Divk Cry (4.2)
i g ’ ’

which is known as the Kullback-Leibler divergence.

4.1.2 Enforcing Sparsity

The costfunctions derived so far has no sparsity build into them. As long as A
is a good approximation of V', it does not take into consideration if the found
factorization is meaningful. A way to implement this is to include prior knowl-
edge about the code matrix C into the estimation using maximum a posteriori
(MAP) estimates. Using Bayes rule, the posterior is given by:

p(VID,C) -p(D,C)

p(D,ClV) = o)
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Given V the numerator is constant and the minimum of the negative logarithm
of the posterior p(D,C|V) is seen to be proportional to a sum of the negative
log-likelihood (the ML estimate) and the negative logarithm of a prior term
p(D, C) that can be used to penalize solutions that are undesired:

Lp.cv(D,C)x Lyp,c(D,C)+ Lp,c(D,C) (4.3)
A way to impose a sparse representation on C' would then be to introduce an
exponential prior over C"
p(D,C) =[] - exp(=ACi )
i,J
A plot for the exponential prior over 1 dimension and for A = 0.2 can be seen
in figure 4.1. The negative log-likelihood of the exponential prior is:

Exponential prior over CiJ

i

Probability p(C. )

a0

Figure 4.1: Ezponential prior for one element in C with A = 0.2. As can be
seen the prior favors small values of C.

Lp.c(D,C) x —log (Hexp(—)\Ci,j)) = )‘ZCM
i,j 0,J

According to equation (4.3), this term can be added to the negative log-likelihood

to give a posterior estimate that enforces sparsity. Adding this term to the cost

functions in equation (4.1) and (4.2) gives:

CCLs = % SN (Vij =Y Dk Crj)*+ X Ci (4.4)
i 7 k

CCkr = ZZVZJ -log (Z:]CD‘Z:%) Vi +;D¢7k'ck7j+/\~ci7j (4.5)
i g ’ )

The regularization parameter A determines how much large values in C' should
be penalized.
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4.2 Minimizing the Costfunction

The method of minimizing the sparse costfunction given in this section is using
multiplicative update rules that are derived from the gradient descent method.
This method iteratively updates the estimates of D and C to arrive at a solu-
tion that minimizes the costfunction. It is inspired by articles like [37], but is
also using sparseness constraints. Updating rules for sparse costfunctions like
equation (4.4) can be found in [10] and [13], but to the knowledge of the author
no paper exists that actually derive the update rules for sparse costfunctions.
Therefore they will be derived here, but only for equation (4.4) as the approach
for (4.5) is exactly the same.

Looking at equation (4.4) it is seen that there is a potential pitfall in the min-
imization process, because of the added sparsity constraint. By dividing C'
with a constant larger than one and multiplying the same constant onto D, the
sparsity term will decrease while the first ML term will remain the same. This
means that any minimization algorithm can decrease the costfunction by letting
C go towards zero and proportionately increasing D. This numerical instability
can be avoided by normalizing D before each new update and introducing a
normalization of D in the costfunction:

CCLs = = }:E: J E:HDH Ce)?+A-Cij (4.6)

D; 1, is normalized with the Euclidean norm of the corresponding row and now
the cost function is invariant to the scaling of D. In the derivation of the update
steps to C, some intermediate derivatives are needed:

Diyi
[1D]]|

azk I\Dkl\ - Chj - D, ifj=d

0C1q B

0 if j£d

aCCLS o 8% Zz Zj( Zk ||Dk|| ij) Jr)\'Cid'

805@ N 801 d
Z { id — Z D; i, - C.a) } + A
where it is used that ||Dk|\ =1 because D has just been normalized before each

update. Now the derivative of the costfunction with respect to an element in D
is found, with a few intermediate derivatives:

2Dld
D 9Dy.4

0 if k £ d
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M.C,ZQ—DQ)-C- ifi=1
O3 5 Chg _ ) T 4 ta) - Ca;
0D 4 if ¢
=i - Cay = —Dig-Dia-Cay ifi#1

0CCrs 5% leg( Zk ||D || “Cri)?+X-Cij

6Dl,d o aDl,d

—Z{Vl; Zleij Cdj]"‘ZZ{ i ZD’chk‘j D; 4Dy q-Cq

The second term in aggLS would vanish if D was not normalized with the
Euclidean norm in the cost function and can be considered a correction term
for the numerical stability. For the rest of the derivation a simpler notation can

be used, by rewriting the two derivatives of the costfunction into matrix-form:

0CCys T
5C (V—-A)+ A
acC
H = —(V-ACT+ Do D6 (V- A)CT)

where A = DC, 1 is a square matrix of ones of suitable size, ® is the element-
wise multiplication operator like .x in Matlab and 7 is the transpose operator.
All matrix divisions in this chapter are elementwise divisions, like the ./ opera-
tor in Matlab.

Now the update steps can be found by gradient descent. This method con-
sists of initializing C and D to some value and then iteratively updating them,
by taking steps in the direction of the negative gradient of the costfunction:

0CCLs
C—C—-—nc0o aC
9CCrs

As the gradient points in the direction of steepest ascent, following the negative
gradient guarantees that the costfunction will decrease. 7 is the stepsize, which
should be chosen with great care. A too small step size will make the algorithm
very slow in reaching a minimum and too large stepsizes will make the algorithm
overshoot the minimum and possibly end up in a new position with higher cost
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than before. To obtain the multiplicative update rules, ¢ is chosen so that the
two terms in the gradient descent can be contracted:

. C
T DTA A
oCCrs ~DT(V -A)+ A
C - ® =C-C0o =
e DA+ )\

DTA + ) DT'v
Col(l-=x + —= =
DTA+)\ DTA+ )

D'V
CO—F——
D" A+ )
The same strategy is applied for np:
B D
T ACT i Do (Do (VCT))
acc —~(V-ACT+Do1(Do(V-ACT
Doy po ~(V-ACT+DoaD OV -ACT)
oD AC" + Do (1(Do(VCH))

ACT+Do(1(Cower) veT+Do (1(Do (ACT)))
Do|1-
ACT+Do(ADowveT) ACT+Do (1(Do(Veh)))

veT + Do (1(D o (ACT)))
ACT + Do (1(D o (VveT)))

4.3 Complete NNMF Algorithm

The complete algorithm for performing Sparse Non-Negative Matrix Factoriza-
tion (NNMF) using a least squares costfunction and multiplicative update rules
is:

Least Squares NNMF Sparse Multiplicative Update Rules

1. Initialize C' and D to be random strictly positive matrices



32

Non-Negative Matrix Factorization

2. Normalize D to unity

3. Update C' according to

4. Update D according to

D— Do

D.
Di‘ 2,7
7Dyl
DT
C — C@ Tiv
(DTD)C + A

vCcT + Do (1(D e (D(Ccch))))

Dcch+ Do (1(De (Veh)))

5. Check for convergence and maximum number of iterations, otherwise re-

turn to 2

Here A has been replaced with DC' and parentheses have been put in to show
that the multiplications DT D and CC” should be performed first to save com-
putationtime. This is because the number of columns in D (the number of
basisvectors), which is equal to the number of rows in C, is expected to be a
lot smaller than the other dimension of D and C. The update rules using the
Kullbach-Leibler divergence as costfunction can be derived in exactly the same
way as done with the least squares costfunction and are:

Kullbach-Leibler NNMF Sparse Multiplicative Update Rules

1. Initialize C' and D to be random strictly positive matrices

2. Normalize D to unity

3. Update C' according to
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4. Update D according to

»CT + Do (1(D o (107))
1ICT + Do (1(D 6 (Z=CT)))

D— Do

5. Check for convergence and maximum number of iterations, otherwise re-
turn to 2

There is a strong resemblance between the two update algorithms. A small
dither should be added to all numerators to avoid division by zero. A sig-
nificant advantage of the multiplicative update equations is that as long as C'
and D is initialized as positive matrices, they will remain positive, because the
matrices are only multiplied with a positive constant in the update equations.
This ensures that the factorization is always non-negative. Also the method
is relatively easy to implement and has a simple formulation. Other methods
that uses second order information (the Hessian matrix) might have faster con-
vergence time, for instance Alternating least squares projected gradient [26],
Quasi-Newton optimization [45], Fast Newton-type [7] or SMART [2] methods.

4.3.1 Convergence

According to step 5 in the NNMF multiplicative update algorithm, convergence
should be checked for each iteration. A way to do this is to check, if the relative
change in the cost function in relation to the last iteration is smaller than a
certain threshold value e:

cor — Ccn—l

ccn

where n is the iteration number. According to [29] the multiplicative update
equations guarantees convergence to a stationary point that is either a (local)
minimum or a saddle point. Saddle points are usually undesirable, but the
equations have been shown to give good factorizations in just a single run [31].

€ >

4.3.2 Accelerated Convergence

To speed up the convergence, the multiplicative term can be exponentiated with
an acceleration parameter § larger than one. For each iteration the costfunction
is evaluated and if the cost is smaller than in the previous iteration, d is increased
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and if it is larger, then 0 is decreased. Illustrated on the update equations for
the least squares C' expression:

1. Initialize ¢ to some value larger than 1

2. Update C according to
D'V )6

C—CoO(————
- ((DTD)C—I—)\

3. if OCpg < CCOTS"
then § «— &2
else § « max($,1) and return to step 2

4. Check for convergence and maximum number of iterations, otherwise re-
turn to 2

Individual acceleration parameters can be used for C' and D. When the al-
gorithm has converged, J should be set to one and the update should be run
one more time to make sure that the algorithm did not overshoot a minimum
because of a too large stepsize.

4.4 A-weighted Costfunction

To include some perceptual knowledge about how the ear perceives sound, the
costfunction can be A-weighted [34]. This is a weighting over frequency accord-
ing to how sensitive the ear is to that corresponding frequency and is related
to perceptual loudness.The frequency response of the A-weighting filter is given
by:

7.39705 - 107 - 5%
(s 4 129.4)%(s + 676.7)(s + 4636)(s + 76655)2
A magnitude plot of the A-weighting curve can be seen in figure 4.2. It is seen
that the Aw filter gives high weight to frequencies from 1000-6000Hz and very
low weight to low frequency signals. It should be noted that the A-weighting
curve is a very simple model of the frequency-dependent sensitivity of the ear and
is really only valid for relatively quiet pure tone signals. Wind noise contains a
lot of low-frequency content, as will be shown in chapter 6, which can be trivially
removed from speech using a highpass filter. Therefore it could potentially
improve the factorization by A-weighting the cost function:

1
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Figure 4.2: A-weighting filter as a function of frequency.

where Aw; is the corresponding A-weighting for that particular frequency. This
can also be done in a similar way for the Kullbach Leibler divergence costfunc-
tion. The derivative of the least squares costfunction with respect to C; 4 and
Dl,d is:
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- Z [AWZ‘(VZJ*Z Dl,k'Ck,j)'Cd,j} Jrz Z Aw;- [(Vi,jfz D; 1-Cy;)Dia-DiqaCq;
J k i g k

From this it is seen that the multiplicative update rules can be A-weighted by
multiplying V; ; and A;; = >, Djx - C; with Aw;. The A-weighting has a
numerical problem, because the weight for the lowest frequencies approaches
zero. This can be avoided by setting a lower bound on the weight, for instance
0.25.
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4.5 Sparse NNMF in Wind Noise Reduction

When using Sparse NNMF to filter noise it is assumed that speech and noise is
additive:

V—S4+W=DC=[D, Du [g]

where V' is the magnitude spectrogram of the noisy signal, S is the magnitude
spectrogram of the speech, W' is the magnitude spectrogram of the wind noise,
D and C is the factorization result of the NNMF algorithm and the indices s
and w indicate the part of the factorization that belongs to the speech and wind
noise respectively.

To filter the noise away, V is given as input to the NNMF algorithm, which
then estimates D and C'. The estimated speech is then obtained by multiplying
together Dy and Cg:

S =D,C;
Then the phase of the noisy signal is used to convert the speech estimate back to
the time domain. A potentially better estimate can be obtained by estimating
the noise by multiplying D,, and C,, and then filter V' using the generalized
Spectral Subtraction algorithm described in chapter 2. In this case NNMF is
used as an advanced noise estimator. Like in the Generalized Spectral Subtrac-

tion algorithm, the magnitude spectrogram can also be exponentiated before
the factorization is calculated:

.
VI=8"+W"=D"C" = [Ds’v Dw'y] [gs’Y]
w
This, however, breaks the additive assumption of S and W. A remaining prob-
lem that has not been mentioned is how to figure out, which part of the factor-
ization belongs to the speech and which part belongs to the noise. This will be
addressed in the following section.

4.6 Noise Codebooks

In order to estimate the speech and noise part of an NNMF it must be known
which part of the factorization matrices D and C belongs to speech and which
part to wind noise. Any 2 columns in D can be switched around as long as the
corresponding rows in C' are switched correspondingly. This permutation am-
biguity makes it impossible to know which part of the NNMF belongs to speech
and noise without making some sort of inspection of them. A way around this



4.7 Real-Time NNMF 37

problem is to precompute the noise part of D before NNMF is run. D,, can be
estimated by running NNMF on pure noise that is expected to be found in the
noisy signal V. If a number of wind noise files are used for computing the wind
noise dictionary D,,, then these files can be concatenated into one file and then
given as input to the NNMF algorithm using another sparsity parameter ..
The resulting basismatrix is then the noise codebook D,, that can be put into
D before running the NNMF on the noisy signal V.

As D,, is now kept fixed, the update equations for the least squares costfunction
can be separated into:

D" D"
Cs(_CSGT—V7 Cw—CypO T v
(D.”D)C + \, (Dw"D)C + Ay
T T
b+ Do VO 4 Dyo (1D, & (D(OC,")

D(CC,")+ D, ® (1(Ds ® (VC,")))

and similarly for the Kullbach-Leibler divergence. Different sparsity parameters
As and A, is introduced as it might improve the factorization.

As in the Non-Stationary Spectral Subtraction (NSS) algorithm in chapter 3,
speech could also be precomputed and put into the basismatrix. This, however,
might not be a good idea idea. The NSS algorithm uses smooth spectrum-
estimates in the codebooks to estimate the noise and speech, while the NNMF
algorithm uses exact shapes of the signals. So while the NSS algorithm filters
the signal using smooth filters, the NNMF algorithm might not be able to find a
good match of the current signal in the codebook, especially if the noisy signal
contains other kinds of signals than just speech and noise.

4.7 Real-Time NNMF

The method reviewed so far estimates the factorization over an entire magnitude
spectrogram and thus assumes that the noisy signal is known for all times.
This is not possible in a real-time implementation. Instead the method can be
changed so it uses a sliding window of size Ly over the frames of the magnitude
spectrogram. Each time the sliding window is moved one frame, the factorization
must be recalculated. Based on this new factorization, the newest arriving frame
in the window can be filtered. This, however, is a very costly procedure and can
be improved by considering that all frames in the window except for the newest
frame already has been factorized. Therefore the old factorization can be used
as a starting guess for the new factorization, which will lead to a much faster
convergence of the NNMF algorithm.
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CHAPTER 5

Evaluation Methods

When evaluating how the methods perform it is important to use relevant mea-
sures. Often papers give Signal-to-Noise ratios (SNR) of how their method
performs, but rarely has the perceptual comprehension of the output of the
method been subjected to an objective evaluation. These two concepts does
not have a simple relationship and in [31] it was even found that the method
that improved the speech recognition the most in a noise reduction comparison
between 3 methods, actually decreased the SNR.

In this chapter different ways to evaluate the output of a noise reduction al-
gorithm will be reviewed. The chapter covers different objective evaluations,
subjective evaluations and an objective perceptual evaluation, which is an au-
tomated methodology for capturing the perceptual quality in the subjective
evaluations.

5.1 Objective Evaluation

The most commonly used objective measure for evaluating noise reduction algo-
rithms is the Signal-to-Noise measure. Different variations of this measure will
be reviewed in this section.
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5.1.1 Signal-to-Noise Ratio

The input Signal-to-Noise ratio is defined as:
>, s(n)?
D w(n)?

where s(n) is the clean speech and w(n) the wind noise. The SNR is basically
a ratio between the energy in the speech and the energy in the wind noise.

SNR; =10log

The output of a noise reduction algorithm is the speech estimate §(n). The
output speech error is then given as:

So(n) contains the wind noise that has not been filtered, but it also contains
the part of s that has been removed by estimation errors in the algorithm. The
output SNR is then:

>, s(n)?

2on S0(n)?
It should be noted that the only difference between SNR; and SNR, is the
noise, because the desired signal is the same in both cases.

SNR, =10log

Another measure, the SNR,., can be found by calculating the SNR in small
frames and then averaging over all frames:

M
1 Yo s(n, m)?
SNReq = i E 101log 7271 so(n. )2

m=1
where m indicates the frame number and n is the sample number in frame m.
Before averaging, all frames with a speech or noise level below a certain thresh-
old ¢; should be left out.

A similar measure, the Noise Residual N R, can be measured as:

1010 2on W)
NR, = 10log =2 "0

where w, = w(n) — §(n) is the difference between the true wind noise and the
output. This is a measure of how much the output resembles the wind noise. A
good noise reduction methods needs to have both a high SNR, and a low NR,.
This measure can also be modified to a segmented version.

To include some perceptual knowledge about how the ear perceives sound, the
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energy in the speech and noise can be A-weighted [34]. This is a weighting over
frequency according to how sensitive the ear is to that corresponding frequency
and is related to perceptual loudness. A magnitude plot of the A-weighting
curve can be seen in figure 5.1. It is seen that the Aw filter gives high weight
to frequencies from 1000-6000Hz and very low weight to low frequency signals.
Wind noise contains a lot of low-frequency content, as will be shown in chapter
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Figure 5.1: A-weighting filter as a function of frequency.

6, which can be trivially removed from speech using a highpass filter. Using A-
weighted measures to evaluate the output of a noise reduction method, makes it
possible to put more emphasis on the middle frequency range where most of the
speech content exists. To A-weight the SNR measure, a frequency representa-
tion of the energy must be obtained. This can be done by estimating the power
spectral density using the Welch method [35]. This method divides the signal up
into small overlapping frames, windows each frame, calculates the Periodogram
and then averages over all frames. It can be shown that using this strategy
rather than just calculating the Periodogram over the entire signal, significantly
decreases the variance of the estimate.

An A-weighted SNR estimate is then given by:

Yo Ps(w) - Aw(w)
> Pu, (W) - Aw(w)

SNR4, = 10log

where P;(w) and P, (w) is the power spectral density estimate using the Welch
method of the speech and output noise respectively.
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A similar segmented SNR estimate can be obtained:

M
1 Zw Py(w, m) - Aw(w)
SNRAw,seg - M Z 10 log Zw Pwo (w7m) . AU}(UJ)

m=1

The N R measure can be extended in a similar way.

5.1.2 Binary Masking

Based on a speech and noise spectrogram, a binary mask [18] can be calculated.
This binary mask consists of a time-frequency matrix of the same size as the
speech and noise spectrogram. The mask contains only 0’s and 1’s, where a time-
frequency bin is 0 if the noise spectrogram is larger than the speech for that bin
and otherwise 1. By multiplying the binary mask with the noisy spectrogram,
a speech estimate is obtained. If the noise and speech spectrogram used to
calculate the binary mask is the original spectrograms used to create the noisy
signal, then the binary mask is called the "Ideal Binary Mask" and the resulting
speech estimate represents an optimal separation that can be compared to other
methods.

5.2 Subjective Evaluation

Using test subjects to evaluate the sound output is the best way to grade noise
reduction algorithms that should be used by real people, but it is also the most
time consuming. Many different subjective tests exist and in the following, a
number of these will be briefly reviewed. As the MUSHRA test is the most
relevant for this thesis, it will be reviewed in greater detail.

5.2.1 Preference Test

In the preference test the test subject is presented to two different sounds and
the test subject must then choose which one has the most pleasing overall sound
quality. The test subject can only choose one of the two sounds or select no
preference. This is a relatively simple test that is well suited for comparing two
alternatives.
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5.2.2 ITU-T Recommendation P.800

MOS [17], Mean Opinion Score, provides a numerical indication of the perceived
quality of a sound after it has been processed in some way and is specified in
the ITU-T recommendation P.800. MOS is expressed as a number between
1.0 and 5.0, where 5.0 corresponds to the best quality. A disadvantage of this
methodology is that there is no build-in scaling, so one test subject might grade
sounds with minor artifacts as having very bad quality, while another test sub-
ject might grade it as having good quality. This means that a lot of test subjects
are needed to achieve a statistically significant result.

5.2.3 ITU-R Recommendation BS.1116-1

Methods for the Subjective Assessment of Small Impairments in Audio Systems
Including Multichannel Sound Systems [15] uses a "double-blind triple-stimulus
with hidden reference" testing method. The test subject has three signals avail-
able (A,B,C). A known reference signal (the clean speech signal) is always avail-
able as stimulus A. A hidden reference and the sound to be graded are simulta-
neously available but are "randomly" assigned to B and C. The subject is asked
to assess the impairments on B compared to A, and C compared to A, according
to the continuous five grade impairment scale that is also used in the MOS test.
This makes it possible to determine very small impairments in the degraded
signal, but it is not very usable for comparing different processing techniques
because only one degraded signal is available at a time. Also because of the
small degradation in the sound, expert listeners who are used to listening to
sound in a critical way is needed.

5.2.4 ITU-R Recommendation BS.1534-1

MUSHRA [14], Multiple Stimuli with Hidden Reference and Anchor, is a method-
ology to evaluate the perceived quality of the output from lossy audio com-
pression algorithms. It is defined by ITU-R recommendation BS.1534-1 and is
intended for medium and large impairments in the sound.

It is a "double-blind multi-stimulus" test method with hidden references and
anchors. In one test trial there are a number of test sounds and a reference
sound that contains the original clean speech signal. The test subject can listen
to and compare each sound in any order, any number of times. The test subject
is required to score the test samples according to how pleasing the sound is in
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relation to the reference. The grading scale is based on a continuous quality
scale of integers from 0 to 100, which is divided into five equal categories as
shown in figure 5.2. The test subject should not necessarily give a grade in

0 20 40 60 80 100

| | | \ | |
| | | \ | |

Bad Poor Fair Good Excellent

Figure 5.2: Grading scale for MUSHRA.

the "bad" category to the sound with the lowest quality in the test, but one or
more sounds must be given a grade of 100 because the given reference signal is
also hidden as one of the test sounds to be graded. A number of anchors are
also hidden among the test signals to be graded. According to the standard
one of these must be a 3.5kHz lowpass filtered version of the reference signal.
Any other anchors are optional, but they should contain artifacts similar to the
other test signals.

The test subjects should have some experience in listening critically to sound,
although this is not as important as in ITU-R Recommendation BS.1116-1, be-
cause the impairments are expected to be relatively high and therefore easy to
detect. Before the test is started, it is mandatory to expose the test subjects to
the full range and nature of the impairments and all the test signals that will
be experiences during the test. The listening level can be adjusted before a test
run to within +4dB relative to the reference level defined in ITU-R Recommen-
dation BS.1116-1, but should be kept constant during a test run. Also only the
use of either headphones or speakers are allowed.

An advantage of MUSHRA is that the use of a hidden reference and anchors
avoids the problems with MOS, because they provide an absolute scale that
the test signals can be compared to. Also because the different test sounds are
available at the same time, the test subjects can better judge the difference
between them and a comparison is easier to make. This also makes it possible
to perform a finer distinction between the test sounds, which is reflected in the
0 to 100 quality scale, as opposed to the 1.0 to 5.0 scale used in MOS.

5.2.4.1 Statistical Analysis

The mean of a test sound can be found as the average over all test subjects:

1 N
Hj = N Z M5
i=1
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where NV is the number of test subjects and u; ; is the score for test subject i
and algorithm j.

A 95% confidence interval for the mean can be found as:

(1 — 0j, 15 + 5]

Yo (T — pig)?
=1 :
0 96\/ NNV

where

—1)

For multiple test runs with different reference sounds, a similar mean and con-
fidence interval can be found over all test runs.

5.3 Objective Perceptual Evaluation

Subjective test evaluations are very time consuming and can therefore not be
used during the optimization of a noise reduction algorithm. For this purpose
some objective evaluation is needed that gives predictions that are close to those
of a subjective listening test. In [43] it is shown that PESQ is an appropriate
measure for the development and optimization of noise reduction schemes and
has a high correlation with subjective listening tests.

5.3.1 ITU-T Recommendation P.862

PESQ [12] | 16], Perceptual Evaluation of Speech Quality!, is an objective method
for automated assessment of the speech quality in a narrow-band (about 300-
3400Hz) telephone system or speech codec. It is standardized by ITU-T in
recommendation P.862 (02/01). A wideband extension (about 50-7000Hz) has
been added in recommendation P.862.2.

The PESQ measure compares an original clean speech signal s(n) with a de-
graded signal §(n) and outputs a prediction of the perceived quality that would
be given to §(n) by subjects in a subjective listening test. In the context of noise
reduction schemes, §(n) would be the output of the noise reduction algorithm.
The ITU-T reference mentions that in 22 benchmark tests the correlation be-
tween the PESQ score and a listening test with live subjects was 0.935. The
output of the PESQ algorithm is given as a MOS-like score.

LA reference implementation of the PESQ algorithm can be downloaded from
http://www.itu.int /rec/ T-REC-P.862/en
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In the following a brief overview of the calculation of the PESQ score will be
given. PESQ basically compares s(n) and §(n) using a perceptual model. First
individual utterances in the signals are delay-compensated to make sure the two
signals are properly aligned. Then they are level aligned corresponding to 79dB
SPL at the ear reference point. The STFT is then taken and the frequency rep-
resentation is mapped into a psychophysical representation. This representation
consists of a time-frequency mapping into the perceptual Bark frequency and
Sone loudness level followed by a frequency warping and a compressive loudness
scaling. Based on this, different Disturbance values are calculated and a linear
combination of these makes up the final PESQ score. The details of this cal-
culation can be found in [16] and its references. The usual range of the PESQ
score is from 1.0 to 4.5, but in extreme cases it can go down to 0.5.

5.3.1.1 Choice of Input Sound

The PESQ standard recommends that natural speech recordings are used when
evaluation is performed, although artificial speech signals and concatenated real
speech signals can be used, but only if they represent the temporal structure
(including silent intervals) and phonetic structure of real speech signals. Test
signals should be representative of both male and female speakers and for natural
speech recordings it is recommended that at least two male talkers and two
female talkers are used for each testing condition. They should include speech
bursts of about 1 to 3 seconds separated by silence and speech should be active
for about 40 to 80 percent of the time. Most of the signal used in calibrating
and validating PESQ contained pairs of sentences separated by silence, totalling
about 8 seconds in duration.

5.3.1.2 Comparison between objective and subjective scores

How well the PESQ measure predicts the subjective scores may be measured by
calculating the correlation coefficient between PESQ measure results and sub-
jective listening test results from the same data set. The correlation coefficient
is calculated using Pearson’s formula:

= > i@ —Z)(yi —7)
Vi@ =225 - 9)?

where z;, y;, T and 7 is the result from the PESQ measure and listening test on
the ith datapoint and the averages of these respectively.




CHAPTER 6

Experimental Data

This section contains information about the sound data used to train, optimize
and evaluate the models. The first part contains a description of how the sound
data is obtained followed a description of the different data sets used in the
thesis. All datasets are disjoint.

6.1 Obtaining the Data

Different datasets are used for training, optimizing, and evaluating the models.
For the training part individual speech and wind noise sound files are used.
For optimizing and evaluating the methods speech and noise is mixed together.
Ideally, the mixed sound files should be recorded by a microphone while both
speech and wind noise is present. The problem with this approach is that the
clean speech and noise signals are not known and so it is not possible to objec-
tively measure how much the method improves the speech. Instead the wind
noise and speech will be obtained separately and mixed together on a computer
for the optimization and some of the evaluation. Some noisy speech signals that
has been recorded while wind noise is present will, however, also be used as a
part of the subjective evaluation.
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Figure 6.1: Spectrogram of speech from the TIMIT database. The amplitude is
measured in dB.

The speech data used for this thesis consists of speech samples from the TIMIT-
database. In total 60 male and 60 female randomly chosen speech sentences has
been extracted. Each sentence has a duration of 2-4 seconds corresponding to
about 6 minutes of speech. The speech data is available as 16bit signals sampled
at 16kHz. A typical speech recording can be seen in figure 6.1. Speech has most
of its energy in the frequency range from 125-4000Hz. The wind data is recorded
around the Copenhagen area using a single hearing aid-type microphone. The
wind is recorded while holding the microphone at different angles relative to the
wind and is sampled at 16kHz. The wind speed is measured while recording us-
ing a handheld anemometer. A spectrogram of a wind noise sample recorded at
5-10m/s wind speed is seen in figure 6.2. Wind noise has a lot of low frequency
content with a few spikes higher op in the frequency spectrum.

6.2 Dataset 1

This dataset is used for training the codebooks in the Non-Stationary Spectral
Subtraction Algorithm and the Non-Negative Matrix Factorization algorithm.
It consists of 5 male and 5 female sentences from the TIMIT database and 10
wind noise recordings of about 5 seconds each. The recorded wind velocity is
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Figure 6.2: Spectrogram of a 5-10m/s wind noise sample in dB.

about 5-10m/s with a few wind gusts of up to 15 m/s.

6.3 Dataset 2

This dataset is used for optimizing the methods to filter wind noise from speech
using the PESQ measure. It consists of 5 male and 5 female sentences from the
TIMIT database and 10 wind noise recordings of about 5 seconds each. The 10
speech files are mixed with the 10 wind noise files at 0dB A-weighted SNR to
produce 10 noisy speech signals. They are mixed so there is one second of clean
wind noise in the beginning of each file. The recorded wind velocity is about
5-10m/s with a few wind gusts of up to 15 m/s.

6.4 Dataset 3

This dataset is used for evaluating the methods using the objective measures
including PESQ. It consists of 44 male and 44 female sentences taken from the
TIMIT database and 44 wind noise recordings of about 5 seconds each. 22 male
and 22 female sentences are mixed with the 44 wind noise recordings at 0dB A-
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weighted SNR. 0dB A-weighted SNR corresponds to about -20dB normal SNR
and while this number seems quite small, most of the energy is concentrated
in the lowest frequency range, where it does not overlap with the speech. The
remaining sentences are mixed with the same 44 wind noise recordings but at
-11dB A-weighted SNR. This results in 44 noisy speech signals mixed at 0dB
A-weighted SNR and 44 noisy speech signals mixed at -11dB A-weighted SNR.
The recorded wind velocity is about 5-10m/s with a few wind gusts of up to 15
m/s.

6.5 Dataset 4

This dataset is used for evaluating the methods using the subjective MUSHRA
test. It consists of 3 male and 3 female sentences taken from the TIMIT
database. Each sentence is played back on an ADAM A7 professional studio
monitor at a moderate volume, and recorded by a microphone while wind noise
is present. This results in 6 speech recordings with wind noise. Because the
speech and wind is not mixed in a computer, the clean wind noise is not known.
The original speech sentence from the TIMIT database is used a an estimate of
the clean speech sentence. The recorded wind velocity is about 5-10m/s with a
few wind gusts of up to 15m/s. A spectrogram of one of the recordings can be
seen in figure 6.3.
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Figure 6.3: Spectrogram of a recorded speech sample during wind noise in dB.
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6.6 Dataset 5

This dataset is used for evaluating the Non-Negative Matrix Factorization al-
gorithm in heavy wind conditions. It consists of 3 male and 3 female sentences
from the TIMIT database and is processed in the same way as dataset 4, but
with a wind velocity of about 10-20m/s.

6.7 Dataset 6

This dataset is used for training the codebook in the Non-Negative Matrix
Factorization algorithm for heavy wind conditions (10-20m/s). It consists of 10
wind noise recordings of about 5 seconds each. The recorded wind velocity is
about 10-20m/s.
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CHAPTER 7

Experimental Analysis

In this chapter the different methods reviewed so far, will be optimized to reduce
wind noise from mono speech signals. First a general optimization scheme is
described followed by an optimization procedure that uses the PESQ measure
given in section 5.3.1.

All frequency domain analysis in this chapter is using 32ms Hanning windows
with 75% overlap between each window and the wideband extension of the
PESQ measure has been used for calculating the PESQ values.

7.1 General Optimization Scheme

The three different noise reduction algorithms reviewed in this thesis will be
optimized to filter wind noise from speech. Because this is done in a similar way
for all algorithms, the approach will be described here.

For each parameter in the algorithm that is being optimized, good initial values
are found by listening to the output of the algorithm when run on the noisy
speech in dataset 2. Based on this, a meaningful range of values is chosen. In
this interval the PESQ measure from section 5.3.1 is evaluated on the output
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of the algorithm from the same files, and a maximum of the PESQ measure is
found by manually adjusting the parameters. This is done in the following way:

1. For some given parameters, the noisy speech signals from dataset 2 are
given as input to the algorithm.

2. The ten output files of about 4-5s. each are concatenated two and two,
to form five 8-10s. sound files. This is done in order to obtain files of the
same length and type as the PESQ method has been verified on.

3. The PESQ measure is calculated on the five concatenated files. This will
give different values than calculating the PESQ measure on each of the
non-concatenated files and then averaging the result, because of the
nonlinear averaging process in the PESQ method.

4. The mean of the the PESQ results from the five concatenated sound files
are found.

5. This procedure is repeated for some other given parameters until a
maximum mean PESQ values has been found.

In each parameter interval, at least 5 values are selected and for each possible
combination of parameters, the PESQ measure is calculated. The parameters
corresponding to the largest PESQ value is then used as a starting point for
further investigation. Next the parameters are varied one by one within the
interval while keeping the other values fixed to the values found previously. In
this way, the sensitivity and importance of each individual parameter can be
evaluated. The results from the optimization procedure of each method will be
presented in the following sections.

7.2 Optimization of Generalized Spectral Subtrac-
tion

This section contains the optimization procedure for the Generalized Spectral
Subtraction algorithm reviewed in chapter 2.

The wind noise estimate for this method is obtained as an averaging window
over the initial silence in each sound file. The length of the window used was
225ms long, but it was found that the exact size of the window was not critical.
A relevant range of parameter values to optimize the model over is found to be:
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Am € [0.00,0.875], The amount of time smoothing

e L €10,20], The sliding-window size of the frequency smoother

~ € [0.25,2.0], The exponent to the spectrogram

p € [0.25,2.5], The exponent to the filter H

B € [0.0,0.20], The lower bound on the filter H

Qmaz € [1.25,4.75], The maximum overestimation factor

o Briter € 0.0,0.10], The lower bound on the speech estimate

7.2.1 Importance of Individual Parameters

The parameters are varied one by one within the interval while keeping the
other values fixed, and selected values for each parameter can be seen in figure
7.1-7.7. The blue circle is the mean, the red line is the median, the limit of the
solid blue box corresponds to the lower and higher quartile, and the dotted line
signifies the range of the data. A point is considered an outlier (red cross) if it
is more than 1.5- IQR away from the upper or lower quartile, where IQR is the
difference between the lower and upper quartile. Because the PESQ measure
gets 8-10s. files as input, there is a lot of averaging going on inside the PESQ
algorithm that is not captured in the boxplot. Therefore the boxplot is not an
accurate indication of the variance of the data and can only be used to see the
difference between the five concatenated files.

7.2.1.1 Optimal Parameters

Overall it is found that a lot of the parameters does not have a very large
influence on the quality of the filtering. The most significant parameters are
seen to be an exponentiation of the spectrogram and a high degree of smoothing
of the filter. When removing the weighted smoother Hg(w;, m) from section
2.2.2, the PESQ score slightly decreased although it was hard to hear a difference
between them. The choice of parameters that maximizes the PES(Q measure for
the Generalized Spectral Subtraction method is:
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Figure 7.1: The amount of time smoothing as a function of PESQ. More smooth-
ing yields higher PESQ values.
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concatenated files is lower at L="7 while having almost the same mean.
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is very sensitive to the this parameter and values around v = 0.75 gives the
highest PESQ values.
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A mazimum is seen around 2.5-3.25.
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Figure 7.7: The lower bound on the speech estimate as a function of PESQ. The
value should not be set higher than 0.4.

Parameter Description
Ag =0.9 The smoothing factor seems important and higher degrees of
smoothing yields better noise reduction
L=0 Smoothing in the frequency domain does not give a better
result
v =0.7 This parameter is highly significant and has a maximum

around 0.7. The Power Spectral Subtraction assumption
(v = 2) is seen to be a bad choice of parameter. 0.7 is very
close to the proposed relation in Steven’s Power Law,
between a sounds intensity and its perceived strength

p=15 This parameter is not very significant, but a maximum can
be found around 1.5
5=0.1 This parameter is also not very significant, but a small

maximum is found around 0.1

Amae = 3.125 | Other parameters could have been varied for the
overestimation factor, but for simplicity it was chosen to use
the formula given in [9], which can be seen in figure 2.2.
Only the upper bound on the overestimation is varied and
the optimal value is found at 3.125

Briter = 0.4 | This value is not very significant as long as it is kept at
or below 0.4
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This choice of parameters, give an average PESQ value of 1.54. By listening
to the filtered noisy speech signals, it is informally verified that this choice of
parameters indeed does gives significant noise reduction, although there is still
intervals of several seconds where wind noise can clearly be heard.

7.3 Optimization of Non-Stationary Spectral Sub-
traction

This section contains the optimization procedure for the Non-Stationary Spec-
tral Subtraction algorithm reviewed in chapter 3.

The noise estimation is performed by using codebooks and searching through
them intelligently in each timeframe, the way it is described in section 3.4.1.
Dataset 1 is used for calculating the codebooks. The initial noise estimate that
is needed for this approach, is obtained by running the k-means clustering algo-
rithm from section 3.4 on the noise codebook with only one clustercenter. This
clustercenter, that can be precomputed, is then used as the initial noise esti-
mate. Furthermore, to keep the computation time of the algorithm reasonable,
it has been decided to limit the codebooks to 20 spectrums for each codebook.

The initial range of values is found to be:

N € [64,4092], The number of points used in the integration

e AR, € [1,25], The number of AR coefficients used to model the noisy
speech signal y

e K, €[10,20], The number of spectrums in the noise codebook has been
limited due to computation time

o AR, € [5,40]. The number of AR coefficients in the noise codebook

e K € [10,20], The number of spectrums in the speech codebook has been
limited due to computation time

o AR, € [5,40]. The number of AR coefficients in the speech codebook

It might also improve the filtering to exponentiate the noisy speech signal and
the codebooks before the algorithm is run, but this has not been done here.
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Figure 7.8: The number of points used in the integration as a function of PESQ.
N should at least be 512.

7.3.1 Importance of Individual Parameters

The parameters are varied one by one within the interval while keeping the
other values fixed and selected values for each parameter can be seen in figure
7.8-7.11.
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Figure 7.9: The number of AR coefficients used to model y as a function of
PESQ. This is an important parameter. The maximum is found at 3.
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Figure 7.10: The size of the noise codebook as a function of PESQ. There is no
advantage to using 20 spectrums instead of 10 and the number of AR coefficients
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Figure 7.11: The size of the speech codebook as a function of PESQ. 20 AR
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7.3.1.1 Optimal Parameters

All parameters are seen to have a significant influence on the Non-Stationary
Spectral Subtraction algorithm and a good combination of parameters is found
to be:

Parameter | Description

N =512 | The number of points used in the integration should be at least
512, but there is no advantage to using more points

AR, =3 | The number of coefficients used to model the noisy speech
signal y should be 3

K, =10 | The number of spectrums in noise codebook should be set to
10. It should not be increased to 20 spectrums, as the algorithm
actually performs worse then. This could be due to overfitting

AR,, =20 | The number of AR coefficients used in noise codebook can be
set to 20 or a bit higher to gain a marginal increase in PESQ.
To keep the computational complexity as low as possible it is
set to 20 here

Ks; =20 | The number of spectrums in speech codebook has been limited
to 20, due to the computational complexity

ARs; =20 | The number of AR coefficients used in speech codebook
should be set to 20

This choice of parameters gives an average PESQ value of 2.04. By listening
to the filtered noisy speech signals, it is informally verified that this choice of
parameters indeed does yield good noise reduction without musical noise.

7.3.1.2 Non-Stationary Generalized Spectral Subtraction

To further improve the filtering, the noise and speech magnitude estimates found
by the Non-Stationary Spectral Subtraction algorithm, can be used in the Gen-
eralized Spectral Subtraction filter:

. 9 )

H(w) = max (1 —a(w;,m) - — |WAR(WA)| ,ﬂ)
(IWar(@) + [Sar(@)])

where |Wagr(w)| and |Sag(w)| is the smoothed noise and speech magnitude

estimates found from the codebooks in the Non-Stationary Spectral Subtrac-

tion method respectively. It is important here to distinguish between |S(w)]
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and |S4r(w)|, where the former is the speech estimate output and the latter is
the smoothed speech estimate from the codebook that is used in the filtering
operation in equation 3.1. This filter is then used in the generalized Spectral
Subtraction algorithm as detailed in section 2.2.4.

The optimal parameters for the Non-Stationary Spectral Subtraction algorithm
are used to find the noise and speech spectrums in the codebooks. For the Gen-
eralized Spectral Subtraction algorithm, the optimization procedure is repeated
as in section 7.2 and the parameters that improve the filtering are:

Parameter Description

Ag =09 The smoothing factor is an important parameter and higher
degrees of smoothing yields better noise reduction

v=0.7 This parameter is highly significant and should be set to 0.7

p=08 That this value is below 1, means that it helps to increase the

Subtraction algorithm has a tendency to overestimate the noise

filter values in H. This indicates that the Non-Stationary Spectral

6 =0.005 This parameter is not very significant, but a small maximum
is found around 0.005

Britter = 0.01 | This value is not very significant, but a small maximum
is found around 0.01

This gives an average PESQ value of 2.46, which is an improvement of 0.92 and
0.44 when compared to the two other methods respectively. When listening to
the filtered speech estimate, the speech estimate is slightly better than without
the Generalized Spectral Subtraction method, but it still has the same overall
sound.

7.4 Optimization of Non-Negative Matrix Fac-
torization

This section contains the optimization procedure for the Non-Negative Matrix
Factorization algorithm reviewed in chapter 4.

The wind noise files in Dataset 1 are used for precomputing the noise dictio-
nary as explained in section 4.6 and the parameters of the model are optimized
using Dataset 2 with the procedure from section 7.2. The factorization is calcu-
lated over the entire magnitude spectrogram of a sound file. Because D and C'
are initialized as random positive matrices, the gradient descent optimization
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scheme will produce different factorizations, each time it is run. To investigate
how different these factorizations are, the algorithm is run 20 times on the same
data file with the same parameters. The PESQ value is then calculated for each
file. The variance of the PESQ value between the 20 files was 0.062 and the
largest deviation from the mean was 0.130. Audibly there was a very small or
no difference between the files, and throughout this optimization scheme it is
assumed that the NNMF method produces reliable results in just a single run.
The maximum number of iterations is set to 500 and the convergence criteria
to 1074,

The initial range of values is found to be:

v € [0.4,1.5], The exponentiation of the magnitude spectrogram
e ), €[0,.5], The sparsity parameter for the speech

e )\, €[0,0.1], The sparsity parameter for the noise

Apre € 10,0.3]. The sparsity parameter for precomputing the noise
codebook

ds € [16,128], The number speech basis vectors in D

dw € [16,128]. The number of precomputed noise basis vectors in D

Also the costfunction should be evaluated.

7.4.1 Importance of Individual Parameters

The parameters are varied one by one within the interval while keeping the
other values fixed and selected values for each parameter can be seen in figure
7.12-7.17.

7.4.1.1 Optimal Parameters

The parameters that maximizes the PESQ measure are:
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Figure 7.12: The exponentiation of the magnitude spectrogram as a function of
PESQ. This parameter is highly significant and a mazimum is seen at 0.7.
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Figure 7.13: The sparsity parameter for the speech as a function of PESQ. This
parameter has a mazimum around 0.2.
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Figure 7.14: The sparsity parameter for the noise as a function

PESQ
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Figure 7.16: The number of speech basis vectors as a function of PESQ. At least
40 speech basis vectors should be used.
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Figure 7.17: The number of precomputed basisvectors in D as a function of
PESQ. A mazimum is seen at 32 basis vectors.
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Parameter Description

v =0.7 The exponentiation of the magnitude spectrogram is a highly
significant parameter and should be set to 0.7, which equals
Steven’s Power Law

As = 0.2 The sparsity parameter for the speech has a maximum at 0.2

Aw = The sparsity parameter for the noise should be set to zero

Apre =0 The sparsity parameter for precomputing the noise codebook
should be set to zero

ds = 40 The number speech basis vectors in D should at least be set
to 40. More basis vectors increases computation time

dw = 32 The number of precomputed noise basis vectors in D should

be set to 32. Too many noise basis vectors, actually
decreases performance

CC = Kullbach Leibler

The minimization of the Kullbach Leibler costfunction
has the best performance.

Generally, it appears that sparsity should be used for speech, but not for wind
noise and that an exponentiation equal to Steven’s Power Law gives good results.
The Least Squares and Kullbach Leibler costfunction results can be seen in table
7.1. The values given are the mean of the PESQ scores when run five times on
Dataset 2. The Kullbach Leibler costfunction gives a significantly higher PESQ

Least Squares | Kullbach Leibler

2.43 2.87

Table 7.1: The performance for the two costfunctions.

score. The result for the Kullbach Leibler costfunction with and without A-
weighting can be seen in table 7.2. This is calculated in a similar way. It does
not improve the PESQ score to introduce A-weighting of the costfunction. This
choice of parameters gives an average PESQ value of 2.87.

no weighting | A-weighted

2.87 2.72

Table 7.2: The performance for the two A-weighted costfunction.
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7.4.1.2 Generalized Spectral Subtraction in NNMF

The noise part of the factorization can be used as an advanced noise estimator
as mentioned in section 4.5. This noise estimation can then be used in the
Generalized Spectral Subtraction Algorithm filter given in section 7.2. Using this
procedure and repeating the optimization process, it is found that a smoothing of
the filter by Ay = 0.7 improves the average PESQ score from 2.87 to 3.14. None
of the other parameters improves the filtering, although it should be mentioned
that the exponentiation of the magnitude spectrogram already is implemented
in the NNMF algorithm.

7.5 Computational Complexity

This section contains an investigation of the computational complexity of each
method. The simulations of the computational complexity is done on a com-
puter with an AMD Athlon 64 3700+ processor with 2.22GHz. The complexity
is only evaluated based on how many seconds it takes to run the Matlab im-
plementation on a sound file of 4 seconds and can not be used to evaluate the
real-time performance. The algorithms are run on Dataset 2.

Because the Non-Negative Matrix Factorization algorithm is initialized with

Method Computation Time (sec.)
NNMF 88
NNMF acc. Conv. 54
NSS 117
NSS int. CB 21
SPS 0.51

Table 7.3: Computation time for each method in seconds. NNMF: Non-Negative
Matriz Factorization, NNMF acc. Conv: NNMF with accelerated convergence
(see section 4.3.2), NSS: Non-Stationary Spectral Subtraction, NSS int. CB:
NSS with intelligent searching strategy for the codebooks (see section 3.4.1),
SPS: Generalized Spectral Subtraction

random matrices, the convergence time changes for each new factorization by a
few seconds. Therefore, the method is started 60 times and an average over the
computation time is found. For the two other methods, an average over 10 runs
is calculated. For all methods, it is assumed that the magnitude spectrogram
of the noisy signal is available before it is run. The parameters are set to those
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found in the optimization section for each method. The result can be seen in
table 7.3. It is seen that the SPS method has a very low computation time. For
the NNMF and NSS method, the original NNMF algorithm is faster than the
NSS algorithm, but intelligently searching the codebooks in the NSS algorithm
reduces the computation time to only 21 seconds. The accelerated convergence
of the NNMF algorithm increase the computation time by 34 seconds to 54
seconds.

7.6 Learning Codebooks

During the optimization of the parameters, the entire Dataset 1 has been used
to compute the codebooks for the Non-Stationary Spectral Subtraction and
Non-Negative Matrix Factorization algorithm. When training the methods for
new kinds of noise it is useful to know approximately how much data is needed
to obtain good codebooks. If only small samples of data is needed it might
even be possible to obtain the codebook on-the-fly when a new noise type is
encountered. To investigate how the methods perform with small training sets,
wind and speech data of varying length has been extracted from Dataset 1 and
used to train the codebooks for the two methods. For the extracted datasets
that are smaller than half of the original Dataset 1, the same size of data has
been extracted several times from different places in the dataset. The codebooks
are then trained on the data and used to filter wind noise from speech using
Dataset 2. The PESQ results of this data analysis can be seen in figure 7.18
and 7.19. The NNMF curve seems to drop around 7.7 seconds while the NSS
curve begins to fall between 11.5 and 23 seconds. For the rest of the thesis, the
entire training set has been used for calculating the codebooks.
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Figure 7.18: The size of the training set as a function of PESQ for the NNMF
algorithm.
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Figure 7.19: The size of the training set as a function of PESQ for the NNS
algorithm.
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CHAPTER 8

Results

This chapter contains the evaluation of the noise reduction algorithm reviewed
in chapter 2, 3 and 4. The noise reduction algorithms are evaluated based on
the measures in chapter 5 using the data from chapter 6 and the optimized
parameters from chapter 7.

8.1 Objective Evaluation

This section contains the part of the evaluation that is based on the objective
measures in chapter 5 including the PESQ measure. The three methods with
the optimized parameters from chapter 7 has been run on dataset 3. The re-
sulting PESQ values can be seen in figure 8.1 and 8.2. ’SPS’ is the Spectral
Subtraction algorithm, 'NNMFSPS’ is the Non-Negative Matrix Factorization
algorithm with the Generalized Spectral Subtraction addon that is optimized
in section 7.4.1.2, ’NSSSPS’ is the Non-Stationary Spectral Subtraction algo-
rithm with the Generalized Spectral Subtraction algorithm optimized in section
7.3.1.2, IDEAL MASK’ is the ideal binary mask calculated from the original
speech and noise files, and 'NNMF MASK’ is the binary mask calculated from
the NNMF factorization. The blue circle is the mean, the red line is the median,
the limit of the solid box corresponds to the lower and higher quartile, and the
dotted line signifies the range of the data. A point is considered an outlier (red
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cross) if it is more than 1.5 - IQR away from the upper or lower quartile, where
IQR is the difference between the lower and upper quartile. The outputs of the
methods have been concatenated two and two like in chapter 7, resulting in 22
speech estimates for each method.

The PESQ mean of each method is also shown in table 8.1. The NNMF-
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Figure 8.1: The PESQ wvalue for the 5 different methods and 2 binary mask
separations on the 0dB A-weighted dataset 8. The mean of the NNMFSPS
PESQ value is 8.10, which is 0.20 below the ideal mask.

NNMFSPS | NNMF | NSSSPS | NSS | SPS | Id. Mask | NNMF Mask
3.10 2.72 2.57 2.16 | 1.52 3.30 1.83
2.46 2.19 1.67 1.61 | 1.17 2.95 1.53

Table 8.1: The mean PESQ value for the 5 methods plus masks. The first row is
the 0dB A-weighted SNR dataset 3 and the second row is the -11dB A-weighted
SNR dataset 3.

SPS is seen to have the highest PESQ mean value, while SPS performs the
worst and NSS is in between. For both the NNMF and NSS case, it improves
the PESQ measure to use SPS filtering. It should be noted that an exponen-
tiation of the magnitude spectrogram is implemented in the NNMF algorithm,
which means that the difference between the NNMF and NNMFSPS algorithm
is only a first order auto-regressive smoother on the filter in the time domain.
For the 0dB A-weighted SNR dataset, the NNMFSPS algorithm performs al-
most as well as the the ideal binary mask, which represents the theoretical limit
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Figure 8.2: The PESQ value for the 5 different methods and 2 binary separations
on the -11dB A-weighted dataset 3. The mean of the NNMFSPS PESQ value is
2.46, which is 0.49 below the ideal mask.

of noise reduction using binary masking. SPS has some PESQ scores (the red
crosses) that are significantly higher, than the rest of the scores. Listening to
the original noisy sound data, it is observed that files that score very high PESQ
values using the SPS algorithm has very stationary wind noise. This is likely
to be because of how the noise is estimated. As the noise estimate can not be
updated during speech, the performance depends on how well the noise during
non speech intervals resembles the noise during speech activity. If the wind
noise is very stationary, then the estimation will be accurate. Finally it is seen
that for the -11dB dataset, the SPS PESQ values have been squeezed against
the lower bound of the PESQ measure and illustrates a weakness of the PESQ
measure; That the predetermined range of possible PESQ values, makes the
measure unsuitable for applications that lies outside this range.

For reference, the mean PESQ values from the optimization process in chap-
ter 7 is shown in table 8.2. Overall there is little difference between the mean

NNMFSPS | NNMF | NSSSPS | NSS | SPS
3.14 2.87 2.46 2.04 | 1.54

Table 8.2: The mean PESQ value for the 5 methods evaluated on the 0dB A-
weighted SNR dataset 2.

PESQ values of the two datasets. This is an encouraging result, because the
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Figure 8.3: The SNR results on all methods for the 0dB A-weighted SNR dataset
3.

parameters were specifically optimized for the small dataset 2, while dataset 3
is a much larger dataset that is completely independent from dataset 2.

Dataset 3 has also been evaluated using the objective measures in section 8.1.
However, because the results for a lot of the methods are similar, only a selection
of them will be shown here. All the objective measure results can be seen in
Appendix A. The SNR measure results for the 0dB A-weighted dataset 3 can be
seen in figure 8.3. It is seen the the SPS algorithm performs the worst, while the
NNMEF and NSS algorithm has similar performance. The SPS addition increases
the performance for the NNMF algorithm, while it decreases the performance
for the NSS algorithm. A reason for is that the SNR measure is a simple en-
ergy measure, and the SPS addition adds broadband noise to the NSS output
to help reduce musical noise. Also the parameter p = 0.8 (see section 7.3.1.2)
increases the filter values in H, which means that the noisy signal has less fil-
tering. The SPS addition to the NNMF algorithm only smoothes the filter in
the timedomain. The NNMF Mask actually performs slightly better than the 5
original methods. The A-weighted SNR results for the 0dB A-weighted dataset
3 can be seen in figure 8.4. The most significant difference from the unweighted
measures is that the SPS algorithm performs as well as the NNMF and NSS
algorithm for the A-weighted measure results. This can be explained by notic-
ing that the output of the SPS algorithm has large low-frequency artifacts from
the wind noise during speech activity. Because the A-weighting puts very little
emphasis on the low-frequency content, the SPS algorithm performs relatively
better using A-weighted estimates. The unweighted and A-weighted NR results
from the 0dB A-weighted dataset can be seen in figure 8.5 and 8.6. For the
unweighted NR results all methods are close to 0dB except the SPS method.
This is because of the high level of low-frequency wind content that is in both
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Figure 8.4: The SNR A-weighted results on all methods for the 0dB A-weighted
SNR dataset 3.
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3.
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Evaluation of Dataset 3: 0dB A-weighted SMNR
05 T T T

T
|
] == i |
- ; ~ ]

2k | 4

MR A-weighted (dB)
o
T

250 - A
—_ ==
3+ = -
L
35 L 1 L 1 L 1 L
NNMFSPS NMMF NSSSPS NS5 SPS IDEAL MASK. NNMF MASK

Method

Figure 8.6: The NR A-weighted results on all methods for the 0dB A-weighted
SNR dataset 3.

the nominator and denominator of the NR measure. This figure reinforces the
assertion that the SPS output has a lot of noise artifacts compared to the other
methods. For the A-weighted NR results, it is seen that the NSSSPS method
has the highest value. Like before this is likely caused by the broadband noise
that the SPS method adds to the output.

Looking at the figures, it seems there is a lot of redundancy in the measures. To
investigate this, the correlation between all measures has been calculated and
can be seen in table 8.3. The calculation is based on the 44 sound files from
dataset 3 evaluated using the 7 different noise reduction methods resulting in
308 values for each measure. They have been sorted according to their correla-
tion with PESQ. A graphical representation of the correlation coefficients can

1 2 3 4 ) 6 7 8 9

1 PESQ 1.00 | 0.60 | 0.57 | 0.48 | 047 | -0.41 | -0.42 | -0.49 | -0.52
2 SNR 0.60 | 1.00 | 0.95 | 0.83 | 0.80 | -0.66 | -0.66 | -0.80 | -0.86
3SNRsy | 057 | 095 | 1.00 | 0.92 | 0.92 | -0.55 | -0.53 | -0.71 | -0.83
4 SNRA 0.48 | 0.83 | 0.92 | 1.00 | 0.97 | -0.24 | -0.22 | -0.46 | -0.68
5 SNRAs,q, | 047 | 0.80 | 092 | 0.97 | 1.00 | -0.20 | -0.18 | -0.42 | -0.66
6 NR,eq -0.41 | -0.66 | -0.55 | -0.24 | -0.20 | 1.00 | 0.98 | 0.93 | 0.74
7TNR -0.42 | -0.66 | -0.53 | -0.22 | -0.18 | 0.98 | 1.00 | 0.93 | 0.71

8 NRA -0.49 | -0.80 | -0.71 | -0.46 | -0.42 | 0.93 | 0.93 | 1.00 | 0.84

9 NRAs, |-052|-0.86 |-083 |-0.68 |-0.66 | 0.74 | 0.71 | 0.84 | 1.00

Table 8.3: The correlation coefficients between all objective measures evaluated
on dataset 3. "A" means that the measure has been A-weighted, e.g. SNRA is
the SNR A-weighted measure
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Figure 8.7: The correlation coefficients between all objective measures evaluated
on dataset 3. The values have been converted to grayscale, so "white" is 1 and
"black" is -1.

be seen in figure 8.7. It is seen that the only measure that is not highly corre-
lated with another measure is PESQ. Especially segmented measures are highly
correlated with the corresponding not-segmented measure, e.g. SNR is highly
correlated with SINR,.4. PESQ is most correlated with SNR at 0.60. Also all
SNR measures are correlated with each other, just as all NR measures are. Some
negative correlation is also seen between the SNR and NR measures. Overall it
is not clear which energy measure is best suited for evaluating the performance
of the noise reduction methods. Even though the A-weighted measures could
be expected to capture more of the perceptual quality of the speech estimate,
this can not be concluded from the analysis of this data.
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8.2 Subjective Evaluation

This section contains the evaluation of the noise reduction methods that is based
on the subjective measures from section 5.2. A webpage! has been created with
a listening test. By following the instructions on the webpage, test subjects
can listen to and evaluate the outputs of the noise reduction algorithms. The
answers are saved in a MySQL database running on the server and can be ex-
tracted for analysis. This way of setting up a listening test is very practical for
the test subjects, because it can be done anywhere that has a computer and
a set of speakers. The disadvantage is that the test environment is not very
controlled and a lot of unknown factors can skew the results. There is way to
control what quality of speakers the test subject is using or how the test subject
fills out the test, and the results should therefore be taken with some reservation.

At the beginning of the test, the test subjects are instructed to listen through
the available files and adjust the sound volume of the speakers to a comfortable
level, and keep it constant for the duration of the test. The listening test is
divided up into two individual tests - a MUSHRA test and a preference test.
Before submitting an answer on the webpage, the test subject must fill out some
personal information and disclose whether he/she has experience in listening to
sound in a critical way.

In total 22 people took the listening test. Out of those, 2 were discarded,
because of missing data and for the MUSHRA test, another 2 were discarded,
because they graded more than 40% of the files to 0. Out of the 20 complete sub-
missions, 12 indicated that they had experience listening to sound in a critical
way.

8.2.1 MUSHRA Test

This test is intended to subjectively evaluate the differences between the meth-
ods reviewed in chapter 2, 3 and 4. It uses the data from Dataset 4 as input
to the methods and consists of 6 trials - one for each noisy speech signal in
Dataset 4. This data consists of speech from the TIMIT database played back
on a speaker and recorded by a microphone, while wind noise of about 5-10m/s
is present. The test subjects are instructed in completing the test in a similar,
but shorter, way to the description in section 5.2.4. The test subjects are told
to listen through all sound files before scoring them. Each of the 6 trials that
should be answered, looks like figure 8.8. As mentioned in the previous section,

IThe webpage for the listening test can be found at: http://www.kristian.timm-
danmark.dk
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Trial 1 of 6:
st [] 5] (€] 3] [E] (7] [6] (] s
Enter Grade: 0 0 0 0 0 0 ] 0

Figure 8.8: The window that is presented to the test subjects for each trial. By
clicking on a letter, the corresponding file will be played. The grade is given by
entering a number between 0 and 100 in the box below the letter.

18 usable submissions has been acquired for the MUSHRA test and out of those
10 indicated that they had experience listening to sound in a critical way. The
noise reduction methods that have to be scored in the MUSHRA test are:

NNMFSPS: This is the Non-Negative Matrix Factorization algorithm with
the Generalized Spectral Subtraction algorithm used as backend.

NNMEF': This is the Non-Negative Matrix Factorization algorithm.

NSSSPS: This is the Non-Stationary Spectral Subtraction algorithm with the
Generalized Spectral Subtraction algorithm used as backend.

SPS: This is the Generalized Spectral Subtraction algorithm.

Ideal Mask: This is an ideal binary mask calculated from the original speech
file from the TIMIT database and a random wind noise file from Dataset
6.

NNMF Mask: This is the Non-Negative Matrix Factorization algorithm, where
the factorization has been used to create a binary mask.

Lowpass: This is the original speech file from the TIMIT database that has
been lowpass filtered at 3.5kHz as specified in the MUSHRA standard (see
section 5.2.4).

Reference: This is the original speech file from the TIMIT database.

It should be noted that Ideal Mask, Lowpass, and Reference uses the origi-
nal TIMIT database speech files while all other methods uses the speech file
recorded as in the description of Dataset 4 (see section 6.5).

The results from the 6 trials of the MUSHRA test are combined and the total
result can be seen in figure 8.9. Because of the uncertainty of the test environ-
ment, all outliers have been disregarded in the calculation of the mean. The
mean value of the results can also be seen in table 8.4. It is seen that the NNMF
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Figure 8.9: The MUSHRA test result. The outliers (red crosses) are disregarded
in the calculation of the mean (blue circle).
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Table 8.4: The mean of the MUSHRA test.

outperforms the NSSSPS and SPS algorithm. The use of the SPS algorithm as
a backend addition to the NNMF algorithm increases the performance, while
the binary masking performs worse than just the NNMF algorithm. Generally
though, the methods that relies on the original TIMIT database file have much
better performance, which is not surprising. The interpretation and overall con-
clusion is the same if only the replies of experienced listeners are considered.
Overall the results are very similar to the PESQ scores, which is a positive

result.
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Trial 1 of 6:

Sound A Preferred ©
Sound B Preferred ©
No Preference ©

Figure 8.10: The window that is presented to the test subjects for each trial of
the preference test. The test subject should indicate which sound file is preferred
or otherwise choose 'No Preference’.

NNMFSPS | No Noise Reduction | No Preference
108 6 6

Table 8.5: The total number of 'votes’ for each possible choice in the preference
test.

8.2.2 Preference Test

The preference test is intended to evaluate whether the NNMFSPS algorithm is
better than not using any noise reduction in heavy wind conditions (10-20m/s).
In heavy wind conditions, the speech is harder to estimate, which results in more
distorted speech. If the estimated speech is very distorted, with too much musi-
cal noise, it might be more pleasant to listen to the original noisy speech instead.

The noisy speech signals from Dataset 5 is used for this test, resulting in 6
preference trials. This dataset consists of speech from the TIMIT database
played back on a speaker and recorded by a microphone, while wind noise of
about 10-20m/s is present. The noise codebook for the NNMFSPS algorithm in
this test, is trained using Dataset 6 instead of dataset 1, which has been used
in all other cases. Each of the 6 trials that should be answered, looks like figure
8.10. In total 20 submission have been acquired for the preference test, where
12 of these indicated that they had experience listening to sound in a critical
way. For the 6 trials, the total result of the preference test can be seen in table
8.5. It is concluded that using the NNMFSPS algorithm during heavy wind is
better than no noise reduction.

8.2.3 Spectrogram of Filtered Signals

The spectrogram of one of the clean sentences in the MUSHRA test can be
seen in figure 8.11. Figure 8.12-8.14 shows the filtered version using methods
NNMFSPS, NSSSPS and SPS.
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Figure 8.11: The original speech file from the TIMIT database.
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Figure 8.12: Filtered speech signal using NNMFSPS.
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Figure 8.14: Filtered speech signal using SPS.
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CHAPTER 9

Conclusion

This chapter contains the main conclusion of the thesis along with a discussion
of future work.

In this thesis a number of noise reduction techniques have been reviewed, imple-
mented, and evaluated. The overall conclusion is that the Non-Negative Matrix
Factorization algorithm provides the best noise reduction of the investigated
methods. This is based on both a perceptual and energy-based evaluation. The
perceptual evaluation is only based on speech quality and not intelligibility. An
advantage of this method is that it does not need a Voice Activity Detector
(VAD) and only assumes a-priori information about the wind noise. In fact, the
method can be viewed solely as an advanced noise estimator. The downside of
the algorithm is that it has a relatively high computational complexity. This
can potentially be improved with a more advanced cost minimization algorithm
than gradient descent. In the following, the individual methods and measures
will be given a more detailed evaluation.

A Generalized Spectral Subtraction algorithm has been implemented for this
thesis. The method serves as a baseline comparison against more advanced
methods and is well suited to demonstrate how the generalizations improve
the filtering. Among the generalizations, particularly the exponentiation of the
magnitude spectrogram and the smoothing of the filter is shown to improve the
speech estimate. The method has a low computational complexity. In compari-
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son to the other methods implemented for the thesis, the method has an overall
poor performance. Especially the noise residual is very large for this method,
because the method does not update the noise estimate during speech activity.

A Non-Stationary Spectral Subtraction method has been implemented. The
advantage of this method over the Generalized Spectral Subtraction method
is that it is possible to estimate the noise while a person is talking. This is
possible by using noise and speech codebooks, containing smoothed spectrums
of the signals that are expected to be found in the noisy signal. The compu-
tational complexity of the method is higher than for the Generalized Spectral
Subtraction, mostly because the codebooks have to be searched to find the best
fit to the current noisy signal frame. It is shown that intelligently searching
the codebooks can improve the computational complexity. The method out-
performs the Generalized Spectral Subtraction in all measures except for the
A-weighted SNR measure. This is because the A-weighted measure puts very
little emphasis on the low-frequency content of residual noise that is very large
for the Generalized Spectral Subtraction method. The generalizations from the
Generalized Spectral Subtraction method is shown to improve the perceptual
objective PESQ measure. This, however, decreases the energy measures.

A Non-Negative Matrix Factorization algorithm has been implemented. This
method factorizes the magnitude spectrogram into a dictionary matrix and a
codebook matrix. By introducing a precomputed noise codebook into the fac-
torization, it is shown that speech and noise can be estimated. Like the Non-
Stationary Spectral Subtraction method, this method can update the noise es-
timate during speech. The computational complexity of the method is high
compared to the other methods in this thesis. Overall the method has the best
performance for filtering wind noise from speech and the generalizations from
the Generalized Spectral Subtraction method is shown to improve both the en-
ergy and perceptual measures for this method.

The noise reduction methods have been evaluated based on speech and noise
that has been summed in a computer and noisy speech that has been recorded
while wind noise is present. It is generally found that the noisy speech, that is
recorded while wind noise is present suffers from more speech distortion than
when speech and noise is summed in a computer.

A Signal-to Noise Ratio and a Noise Residual measure, along with A-weighted
and segmented variations of these, have been implemented for evaluating the
energy improvement of the noise reduction methods. A PESQ measure, that has
high correlation with subjective listening tests, has also been used to optimize
and evaluate the methods. Finally the methods have been evaluated using a
subjective listening test called MUSHRA. Together these measures cover both
the perceptual and energy-wise evaluation of the noise reduction methods. It
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is shown that the energy measures have high correlation between them. The
A-weighted measures have high emphasis on the frequency range from 1000-
6000Hz while the other energy measures weights all frequencies equally, which
is reflected in how they score the methods. Particular the Generalized Spectral
Subtraction method, which does not estimate the low frequency wind noise very
well, scores low in the normal energy measures, while it scores almost as good
as the other methods in the A-weighted measures. The MUSHRA results have
a high uncertainty, because of the uncontrolled testing environment, but the
results are similar to the PESQ scores, which is encouraging.

9.1 Future Work

The Non-Negative Matrix Factorization algorithm can be improved by imple-
menting other and more advanced cost-minimization algorithms. This can po-
tentially decrease the convergence time of the minimization problem and lead
to a method with lower computational complexity. The current multiplica-
tive update rules only uses first-order information to find the minimum of the
costfunction and it is expected that methods that take the curvature of the
costfunction into consideration can improve the convergence time. This can be
done by the second derivative of the costfunction (the Hessian matrix). This
might also improve the actual filtering.

In section 4.7, a suggestion for a real-time implementation of the Non-Negative
Matrix factorization is given. The result is basically the same as when the entire
magnitude spectrogram is available at once, because of the sliding window. The
computational complexity, however, is greatly increased for real time operation
and future work could include different ways to improve this implementation.

The perceptual evaluation of the noise reduction methods, only include the
speech quality. Other measures, like speech intelligibility, could be used to give
a better estimate of how the methods perform in heavy wind conditions.
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APPENDIX A

Objective Energy
Evaluation of Noise
Reduction Methods

This Appendix contains the full SNR and NR graphical evaluation from chapter
8.1 in figures A.1 -A.16.
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Evaluation of Dataset 3: 0dB A-weighted SNR
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Figure A.1: The NR results on all methods for the 0dB A-weighted SNR dataset
3.
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Figure A.2: The NR A-weighted results on all methods for the 0dB A-weighted
SNR dataset 3.
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Evaluation of Dataset 3: 0dB A-weighted SNR
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Figure A.3: The NR., A-weighted results on all methods for the 0dB A-weighted
SNR dataset 3.
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Figure A.4: The NR,., results on all methods for the 0dB A-weighted SNR
dataset 3.
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Evaluation of Dataset 3: 0dB A-weighted SNR
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Figure A.5: The SNR results on all methods for the 0dB A-weighted SNR dataset
3.
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Figure A.6: The SNR A-weighted results on all methods for the 0dB A-weighted
SNR dataset 3.
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Evaluation of Dataset 3: -11dB A-weighted SNR
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Figure A.9: The NR results on all methods for the -11dB A-weighted SNR
dataset 3.
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Figure A.10: The NR A-weighted results on all methods for the -11dB A-weighted
SNR dataset 3.
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Figure A.11: The NR,., A-weighted results
weighted SNR dataset 3.
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Evaluation of Dataset 3: -11dB A-weighted SNR
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Figure A.13: The SNR results on all methods for the -11dB A-weighted SNR
dataset 3.
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Evaluation of Dataset 3: -11dB A-weighted SNR
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Figure A.15: The SNR,., A-weighted results on all methods for the -11dB A-
weighted SNR dataset 3.
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APPENDIX B

Matlab Code

This Appendix contains the main matlab code developed for the thesis.

B.1 Generalized Spectral Subtraction

L= = S = A N

e e e e i =
[ = Y R S A N

function 3E=3p3 (N353, WES, lawbdah, L,expo, Hexpo,alpha,beta, betafilter)
SE=3p3 (N33, WE3, lanbdas, lambdaw, expo, alpha,beta)

Performs Spectral Subtraction with generalizations. I only NS5 and UES
is giwven as arguments all other parameters will defasult to standard
Fower Spectral Subtraction.

%
‘%
5
5
2;
&
% Input:

¥ NZ5% - Noisy Signal Spectrogram

% WEZ - Magnitude Wind Estimate Ipectrogrsin

% lagnbdah - Smwoothing factor for filcer H (0 to 1, O=no smoothing)

% L - Length of avereging filter owver freguency

% expo — Exponent to magnitude spectrograeo (0.7 2tevens power law, 1

% Magnitude 3pectrogram, 2 Power Spectrogram)

% Hexpo - H exponent (0.5 Power 3Spectral S3ubtraction, 1 Wiener Filtering)
% alpha - Cwversubtraction factor

%¥ beta - Lower bound on filter output (>0)

% hetafilter - Lower kbound on output [(>0)
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19 %

20 L Qutput:

21 % 3E - Speech estimate

22 %

23 % Written by: Kristian Timm Andersen, IMM DTU zZoo7
24 R e e R e R L ]
25 — if [ (nargin<d) || isewpty(lazbdah) )

26 — lambdah=0;

27 — end

28 — if [ (nargin<4) || isewpty (L))

29 — L=0:

30 — end

31 — if [ (nargin<i) || isewpty(expo))

32 - expo=1;

33 — end

34 — if [ (nargin<o) || isewpty (Hexpo) )

35 = Hexpo=1;

36 — end

37 - if [ (nargin<?) || isewpty(alpha)

38 - alpha=onesisize (N33)) ;

3% — end

40 — if [ (nargin<g) || iscwpty (beta))

41 — heta=0;

42 —  end

43 — if [ (nargin<9) || izewpry(hetafilter) )

44 — hetafilter=0;

45 —  end

46

47 — [MFFTZ,L3] =si=ze (N33) ;

48 —  N3Stemp=sabs (N35): 5 Hagnitude

49 —  WE3temp=abs (WES): = MHagnitude

50 —  MNSStemp=NS33temp."“expo; % Exponentiate Noisy Signal
51 — WEStemp=WE3tewp." expo; % Exponentiate Wind Estimate
52 % Filter and correct estimation errors helow zero
53 — H=max|((l-alpha.*TE3temp./ (N3Stemp+eps)) ,beta) .~ Hexpo:
L4 — Hs=[H(:,1),=zero= (NFFTZ,L3-11]:

55 — for i=2:L3 % smoothe filter

56 — Hs(:,i)=lawbdah*Hs(:,i-1)+(1-lsxbdah) *H{:,1i);
57 — end

58 — H=H.*Hs-Hs.*Hs+Hs.%1l:; % Weight smoother

59 — for i=l:size(H,1) % average over frequency

60 — Hii,:j=1/(1+2*L) ¥zum(Himax (1,1-L) rmin(=size (H, 1), 1+L), ), 1) :
6l — end

62 — 3E=H.*(abs (N33)."expo); % Ferform Spectral Subtraction
63 — Zfloor=hetafilter*WEStemp: % Lower EBound on output
64 % =zet floor, exponentiation and phase

65 — SE=max (floor.”(l/expo),abs(SE)." (1/expo)).¥exp(j*angle (NS3));
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B.2 Non-Stationary Spectral Subtraction

1 function [outputspec] =N3Speciubn(x,N,NLARX, poverlap, lwin,NFFT, ...

& fARnoise, fARspeech)

3 % [outputspec] =N3Z3peciubn (xspec, N, NARx, poverlap, lwin, NFFT, ...

4 £ fARnoise, fARspeech)

5 % N33pecsub assumes x to he a signal containing speech and noise.

] % It filters the noise away from the x by a nonlinear spectral

7 % subtraction algorithmn based on the codebhooks ARspeech and ARnoise
g % containing AR-parameters of speech and noise respectiwvely.

9 %

10 % Input:

11 % x — Input signal

12 % N - MNumber of integration points

13 % NARx - WNunber of ALR-coefficients used to model the noisy speech
14 % poverlap - percent overlap between frames

15 % lwin - length of each frame

16 % NNFT - Wunber of points used in FFT

17 % fAPRnoise - Fregquency response of noise codebook

1a % fARspeech - Freguency response of speech codebook

13 %

20 % mtput:

21 % outputspec - Speech estimate spectrogram

22 %

23 % By: Eristian Tikt Andersen, IMM DTT 2007

24 S R I R I R R R R R R R AR A SRR RS
Z5 — win=hanningilwin):

26 — nowverlap=round(lwin*poverlap)

27 — xspecsspectrogram(x,win, noverlap, NFFT):

28 % initialize wector to hold the spetrograsn of the output

29 —  outputspec=zeros (NFFT/2+1,floor({length(x)/lvin-poverlap)/ (1-poverlap))):
30 - count=1; % Counting wvariabhle

31 % Gelect current timeframe

32 — for w=l:ceil{lwin®(l-powverlap) ) :(lengthix)-lwin+l)

33 AR parameters and excitation variance of current timeframe of X
34 - [LRx,o0x] = aryule (x(m:im+lwin-1) , NiEx):

35 - fAiRx=freqg=z (ARx,1,N, 'vhole') '

36— fAR®Z=fARx.*fARx:

37 % intialize wector that holds winiran logarithmic spectral distance,
38 % and the optimal speech and noise from codehook

8 |= mwinlsd=[inf,1,0,0,0,0]:

40 — while 1 % Optimization loop

41 - hd=fARxZ./ (fiRnoize (minlsd(2),:) . *fARnoise (minlad(2),:1);

4z — d=sum(sbs (hd) .~2)/ (N*ox"2);
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45 —
A6

43
43 —
50

52

53 —
5d —
55 —
56 —
57 =
58

58 —
60 —
al —
62 —
63

a5

13

a7 —
a5 —
69 —
70—
71—
7z -
73—
74

76
T =
78

&0

&l —
g2 —
83 —
Gd —
85 —
g6 —
&7 —
g3 —
g9 —
an —

hf=fARx./fiRnoise (minlad(2),:);
f=sum(abs (hf) ."2) / (N*ox):
for L=l:size(fiRspeech,1l) % Zearch through entire speech codebook
¥ First filter response in excitation wariance equation
ha=fiRxZ ./ (fARspeechil, :) . *fAR=speechil,:]):
% Perform numerical integral of the power of the filter
a=sum (abs (ha) ."2)/ (N*ox"2)
% Thiz and following lines are =imilar to ha
he=faRu,./fARspeech(L, )
% This and following lines are similar to a
e=zum (abs (he) . "2/ (H¥ox) ;
hbh=fARxZ ./ [fARspeech (L, :) .*fARnoize (minladi2),:1)1:;
h=sum(abs (hb) ."2)/ (H¥ox"2) ;
c=h;
sw=[a,b;c,d]4V[e;£f]; % solve the systew of equations
% check if excitation wvariance is negatiwve
if swil)<0, swi(l)=0; end
if swi(2)<0, swi(2)=0; end
hs=he; % filter response used to calculate lsd
hw=hf; % filter response used to calculate lsd
3logarithmic spectral distance measure
lsd=1/(2*pi)*...
swm | log((absih=) . "2%sw(l) +abs hw) . "Z%sw(2) ) ox) . ~2) /H;
% 1f current lsd iz smaller than minlsd then opdate minlsd
if (lad<minlsdil)
minlsd=[1lsd,winlsd{2),sw(2) ,L,swil) ,minlsd(a)]; end:
end;
if minlad(l)==minlsd(6)
hreak:
end
minlsd(6)=minladil) ;
% First filter response in excitation wvariance ecquation
ha=fARxZ./ (fiRspeechiminl=sd(4),:) . *fiRspeech(minl=ad(4),:)1);
% Perforw numericsal integral of the power of the filter
a=sum(sbs (ha) ."2) / (N*ox"2):
% This and following lines are similar to ha
he=fiRx,/fiPRspecchiminlsd(d),:):
% This and following lines are similar to a
e=sum(abs (he) .~ 2]/ (N¥ox) ;
for k=l:size(fARnoise,l) % Zearch through entire noise codebook
hbh=fARxZ ./ (fARspeech (minlad({4),:).*fARnoise (k,:)1);
h=sum (abs (hb) .*2)/ (HYox"2) ;
c=h;
hd=fARxZ./ [fARnoise (k,:).*fARnoize (k, 1)
d=sum {abs (hd) .~2)/ (N*ox"2) ;
hf=fiRkx./fARnoise(k, :):
f=zum (abs (hf) .~2)/ (N*¥ox) ;
sw=[a,b;c,d]\[e:;£f]: % solve the system of equations
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al % check if excitation variance 1= negative

92 - if swi(l) <0, sw(l)=0; end

a3 - if swi(Z) <0, sw(Z)=0; end

a4 — hz=he; % filter rezsponse used to calculate lad

95 — hw=hf: % filter response used to calculate lsd

6 Flogarithmic spectral distance measure

97 - led=1/(2*pi) *...

a3 sum(log( (absih=s) . "2%sw(l) +abs (hw) ."2*sw(Z) ) fox) .~2)/H;
Qq % 1f current l=ad iz smaller than mwinlsd then opdate winl=sd
oo — if (lsd<minlsd(1]),

101 — minlsd=[1lsd,k,swi2) ,,minlsd(4),sw(l) ,minl=d(6)]; end;
oz - end;

103 — if minlsd(l)==mwinlsd(6) % If converged

104 — hreak;

o5 — end

log — minlsd (&) =minl=d(1):

7 - end;

108 — F=minlsd(2):

109 — ow=minlsd(3);

110 — L=minlsd(4):

111 - os=minlsd(5):

112 % Calculate mwagnitude spectrun of khest noise and speech fit in codebook
113 — wspec=ow,/abs (fARnoise (k, 1:floor (NFFT/2)+1))1."2;

114 — sspec=os./abs (fARspeech (L, 1:floor (NFFT/2)+1)) ."2;

115 % Zubtract noise part from signal X

116 — magnitude=1-sgrt (wspec) ./ sqrt (vspec+sspec) ;

117 — outputspec (@, count) =magnitude' . ¥xspec(:,count) ;

118 — count=count+1;

119 = end
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B.3 Non-Negative Matrix Factorization

1 function [Ds,Dw,Cw,Cs,cost, nuls, nuCw, nubs]= NNMF (V,Dw, ds, lambdas, ...
2 lagnbdaw, maxit,cocriteria,accl,costfct)

3 % [Ds,Dw,Cw,Cs,cost, nuls, nuCw, nulbs] = NHNMF (V, Dw, ds, lambdas, ...

4 % lagabdaw, maxit,ccriteria,accl,costicot)

5 %

[ % Input:

7 % W - The magnitude spectrogram of the sound to he filtered

il % Dy — The windnoise dictionary

9 % ds - The nunber of speech elewents to be found

10 % lambdas - The speech sparsity parameter

11 % lambdaw - The noise sparsity parameter

12 % maxit - The maximun numwber of iterations

13 % poriteria — The criteria for stopping the optimization of cost function
14 % accl - L parasweter multiplied to esach optimization step

15 t gostfot - The used costfunction, 'ls': Least sdquares (default) or 'kl:
16 % FKullbach leibler

17 5

15 % putput:

19 % Ds — The normalized speech dictionary

20 Y Dw — The normalized noise dictionary

2l % Cw — The noise codebook

22 % s — The =speech codebook

23 % wost - The cost in all itcerations

24 % nuCs - The acceleration parasweter for the speech codebook in all
25 % iterations

26 L nucw — The acceleration parsseeter for the noise codekbook in all

27 % iterations

28 % nuls - The acceleration parasmeter for the speech dictionary in all
z9 % iterations

30 %

31 L% The code iz an adapted wversion of a matlskh demofile from

32 5 http://wwwd . ime.dou. di/pubdb/vievs/publication details.php?id=4521
33 5

34 ¥ written by: Kristian Timm Andersen, IMM DTUO 2007

35 % B5%%% R R R R R R R R SN R SR SR SRR SR,
36

37 L Check optinal Input

35 - if [ (nargin<d4) || isempty (lanbdss)

39 - lambdas=0;

40 —  end

41 — if ((nargin<5) || isempty | laridbds)

42 - larbadaw=0;
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43
449
45
46
47
43
49
50
51
52
83
Sd
55
56
57
58
59
al
al
6z
63
6d
65
&1
a7
aa
1]
70
71
72
73
74
75
76
77
76
79
a0
gl
g2
g3
gd
g5
g6
a7
ga
g9
a0

end

if [ (hargin<e) | | isenpty (oaxit) )
maxit=500;

end

if ((nargin<?) || isemptyiccriterial)
coriteria=le—4;

end

if ([ (nargin<d) || isenmptyaccl))
aoccl=1.3;

end

if [ (nargin<?) || isempty(costict))
costfot="kl1';

end

=

% Initialize

[Ls,Lt]=size (V)

Cw=rand (size (Dw,2) ,Lt);

Ds=rand(Ls,ds) :

Cs=rand(ds,Lt):

if (si=ze(Dw,1l)~=Ls)

disp('ERREOR: Mwuber of rows in V and Dw wuast he the same'):

return
end
D = normslizel (Dw): % MNormalize
Iz = normalizel(Ds): % Normalize

Rec=[Ds3,Dw] *[C3;Cw] :

gwitch costfcot % Caloulate costfunction

case 'l1s'
cost=[0.5*norm(V-Rec, 'fro' ) “Z+lamkbdaz sum(Ca () ) . ..
+lanbdawtsum (Cwizl ), 2eros (1, maxic)] ;
case 'kl'

cost=[swn(sun (V. *log( (V+eps) ./ (Rect+eps) ) -V+Rec) ) ...
+ lambdas*sum(Cs(:) ) +lawbdavysuwm (Cwi:) ), seros (1, maxic)];
end
iter=1;
nubs=[1, zeros (1, maxic)];
nals=[1, zeros (1, maxit) ] ;
nuiw=[1, zeros (1, maxit)];
% Optimization loop
while 1
switch costfot % update factorization
case 'ls'
[Cs,Cw, D3, cost(iter+]l) ,nucCs (iter+l) , nucwiiter+1), ...
nubs (iter+1) ,accl] = updls(V,Cs,Cw, D3, Dw, cost (iter) ...
nuics (iter) ;nuCwiicer)  nubs(iter) , larbdas, lavbdaw, accl) 2
case 'kl'
[Cz,Cw,Ds,cost (iter+]l) ,nucCs(iter4+l) ,nucCwiicer+1), ...
nuls (iter+1l) ,acel] = updkl (V,Cs,Cw,Ds, Dy, cost (iter) ...
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91 souCs (iter) ,nulwiter) ,nulbs (iter) , lanbdas, lawbdaw, accl) ;
92 - end

93 % Check for convergence

04 — if abs(cost (iter)-cost({iter+l))/cost(iter+l)<ccriteria
95 % Check if acceleration parameter is too large

95 — if nubs(iter+l) <= acel &£& nuCs(iter4l) <= accl &£
97 nuCwjiter+l) <= accl

958 - nuls=nubs (1:itcer+l)

99 — nuCs=nucs (l:icer+l)

100 — nuCw=nucw(l:ricer+l)

101 - cost=cost (1:ritcer+l)

10z - disp ('NNMF has converged'):

103 - break;

104 - else % set =step =sizZe to 1 and run one more time
108 - nulz (iter+1)=1;

106 — nucs (icer+1)=1;

107 - nucwiiter+1)=1;

108 — end

109 — end

110 — if iter<maxit % Check for number of iterations

111 - iter=iter+l:

11z — else

113 - disp (' Maximwn nurkber of iterations reached'):;

114 — hreak;

115 — end

116 — end

117

115 R R R R R RN T R R RN T TN T R R R RN R YR ERYEEYTEYEY
1139 function [Cs,Cw,Ds,cost, nuls, nucw, nubs,accl] = updls(V,Cs,Cw,Ds, Dw,
120 cost_old, nucCs, nuCw, nubs, lawbdas, lawbdaw, accl)

121 % Update Cs

lzz — Cs_old=Cs;

123 — Cay=Dsa'*V;

124 — Csx=(Ds'*[Ds,Dw]) *[Cs;:Cw] +lanbdas;

125 — grad = Csv./ (Cax+eps);

126 — while 1

127 — Cz = C5_old.*|grad."nucs);

128 — Rec=[Ds,Dw] *[C=z:Cw] ;

129 - cost=,5%norm (V-Rec, 'fro' ] *24+lambdas*swm (Cs () ) +lanbdawFswn(Cwi:) )
130 — if costroost_old, nuls = max (outs/2,1);

131 — else nuCs = nuls*accl; break:

132 — end

133 — end

134 — cost_old=cost;

135 % Update Cw

136 — Cw_old=Cw;

137 — Cug=Dur' *V2

138 — Cuwx=(Dw'*[D=s,Dw] ) *[Ca;Cw] +1lambdan;
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139 — grad = Cuy./ (Cwx+eps);

140 -  while 1

141 — Cw = Cw_old.*(grad."nuCwv);

142 — Rec=[Ds,Dw] *[Cs:Cw] :

145 — cost=,5%norm(V-Rec,'fro' ) “Z+lambdas* sum(Ca () | +lanmbdav*swm (Cwi:) ) ;
144 — if costroost_old, nuCw=meax (nuCw/2, 1)

145 — else nuCw=nuCw*accl: hreak: end

146 — end

147 — cost_old=cost;

148 % Update Ds

149 — Ds_old=Ds;

150 — Dey=U+Cs';

151 — Desx=[Ds,Dw]*([C=:Cw]*C=");

152 — grad=(Desy+lz.*lones (size (V, 1)) % (Dex.*Dal)) ...

153 ./ (Dax+Ds. *{onez (sige(V, 1)) * (Davy. *Da) ) +epa) ;
154 = while 1

158 (= Dz = normalizel (D2_old.* (grad.“nubs)) :

156 — Rec=[Ds,Dw] *[Ca:Cw] ;

157 — cost=.5%norm (V-Rec, 'fro' ) " Z2+lambdas¥sum (Cs () ) +Hlabdaw®smm i Cwi) ) 2
158 — if costroost_old, nubs=mwax (nubDs/2,1):

159 — else nubls=nubs*accl; break; end

160 — end

161

162 R it I I e e L R R R IR

163 function [Cs,Cw,Ds,cost,nuls, nuCw, nubs,accl] = updkl (V,Cs,Cw,Ds,Dw, ...
led cost_old, nucs, nucw, nubs, lambdas, lambdaw, accl)
165 — Rec=[Ds,Dw] *[C=;:Cw]:

166 — VR=V./ (Rec+eps) ;

167 — 0(O=ones(size(V)):

168 % Update C=

169 — Cs_old=Cs;

170 — Csy=Ds'*VER:

171 — Csx=Ds' *O+lambdas;

172 — grad = Cavy./ (Csx+eps);

173 — while 1

174 — Cs = Cs_old.*(grad."nuCs);

175 — Rec=[Ds,Dw] *[C=;:Cw] ;

176 — cost=zwn (Sum (V. *log( (V+eps) ./ (Rec+eps) ) -V+Rec) ) ...
177 +lambdastaum (Ca(:) ) +lanmbdavfsuwm (Cwiz) ) ;
178 — if mostroost_old, nuls = max (nucs/z,0.1):

179 — else nuts = nuCs*accl: break:

180 — end

181 — end

182 — wost_old=cost;

183 tUpdate Cw

184 — VR=V./ (Rec+eps);

&5 |= Cw_old=Cm;

186 — Cuy=Du' *VER;
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187 — Cuyx=Duw' *O4lambdaw;

186 - grad = Cwy./ (Cux+eps):

189 — while 1

180 — Cuw = Cw_old.*(grad. " nucwj ;

181 — Bec=[D=,Dw] *[Cs:Cw] ;

18z — cogt=gum(sum (V. ¥log | (V+eps) ./ (Rec+epa) | -V+Rec) ) ...
193 + lambdas*sum (Cs(:) ) +lambdav*swo (Cwiz));
184 — if costrocost_old, nuCv=ma: [nuCw/2,11;

185 — else nuCw=nucw*accl: break; end

196 — end

187 —= cost old=cost;

193 L TUpdate D=

199 —  WR=V./ [Rec4eps)

00 — D=s_old=Ds;

201 — Dsy=VR*C3':

Z0Z2 — Dsx=0%Cz':

203 — grad =(Dsvy+Ds.*(ones(size(V, 1)) *(Dsx.*Ds))1) ...
04 . (Dax+De. % (ones(2ize(V, 1)) ¥ (Day.*D2) 1 +epa) ;
205 — while 1

206 — Dz = norwalizeD(Ds_old.*(grad. " nuls)):

207 - Rec=[D=,Dw] *[Cs:Cw] !

2058 — cost=sumi{sum (V. *log| (V+eps) ./ (Rec+eps) | -V+Rec) ) ...
209 + lambdas*sum (Cs(:) ) Hlambdawrswn(Cw ()]
210 — if costrocost old, nuls=swad [nubs/2,11;

211 — else nuls=nuls*accl; break: end

212 — end

213

214

215 L L L L L L e L L R L L L L L R R R e R R,
2la % MNormslize I

217 function I = normalizeD (D)

2158 — © = sgrtisum(D."Z,1)):

219 — D = D./repmat (Q+ep3,size (D, 1),1);

220
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B.4 Calculation of SNR and Related Energy Mea-

sures
1 function [SNRin, SNRout,NRout, SNRLin, SNRELAout ,NRiout, SNRsegin, ...
2 SNRzegout ,NEsegout , SNRA=egin, SNRA=zegout , NEAzegout]=. ..
3 CalobNR (noise, speech, spest, f2,seglength, Tsp, Thno)
4 % [EMRin, 8WNRout  NRout, SNRLin, BSNRLout,NELout, SNEsegin, ...
5 % SHNEsegout, NEsegout, SNELsegin, SNRELsegout, NREisegout]=. ..
& % Calc2NE (noise, speech, spest, £35, seglength, Tsp, Tno)
7 %
i % Calc3NE calculates different wvariations of 3WE and Noise Residual
E % mEasures.
10 3 Dptional arguments are seglengthi=100), T=p(=0.05) and Tno(=0.05).
11 %
1z % Input:
13 % noise - noise that speech is wixed with to produce input to algorithm
14 % speech - speech that noise is mixed with to produce input to algorithm
15 % spest - speech estimate output from algorithm
16 5 f£= - =sample rate
17 % seglength - length of a segment used to calculate power in ms
15 % Tsp - Threshold of speech power for a segment in pot of mean
19 % Tno — Threshold of noise power for a segwent in pet of mean
20 %
21 % Dutput:
22 % 3MNRin - Signal to noise ratio of the signal used as input to algorithm
23 % SNRout - Signal to noise ratio of signal output from algorithm
Zd % WNEREout - Moise EResidual of output from algorithm
25 % outputs with 'A' in the name is the sSsmwe as corresponding output
2B % without 'A', but AL-weighted.
27 % outputs with 'seg' in the nagwe is the sawme a5 corresponding output
28 % without 'seg', but calculated for each segment.
29 %
30 % Written by: Kristian Timm Andersen, IMM DTU Z007
31 R I e e e e e e e e e e T e e e e I e I e I i T 1]
32 % Check for input
g8 |= if (i(nargin<s) || isempty(seglength) ), seglength=100;end
34— if ((nargin<e) || isewmpty(Tsp)), Tep=0.05:end
85 = if ((nargin<?)||isewpty(Tho) ), Tho=0.05:end
36 — Lout=length(spest); % Length of output
37 — outnosp=spest-speech; % output minus speech
38 — outnono=spest-noise; % output minus noise
39 — =eglength=floor (fs*seglength/1000); % number of sample points in & Segment
40 — segno=floor (Lout/seglength); % IHunber of segments
41 5 Wumber of FFT points used in Welch's method
42 — HNFFT=max (256,2"ceililogs (seglength/4.5))1):
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43 —

44

45 —
a6 —

47

45 —
49 —
50 —
51 -

52

53 —
54 —
55 -
56 —
57 -
58 —
59 —
60 —
6l —
62 —
63 —
6d —
65 —
66 —
67 —

68
69

70 -
71 -
Tz =
73—
74 -
78 |=
76—
-

78

79 =

&0

gl —

gz

&3 —
g4 —
85 —

Nuelch=NFFT/Z+1; % MNuwber of elewments in output of Welch's method

i

f=(0:Nwelch-1) *£5/NFFT;

Ay=Aweight (f)'; % Calculate L-weight for each frequency

2

% Corresponding frequency of each output element in Welch's wethod

% Initialise power matrices. Each element contains the power of a segmwent

sp=geros(1,segno) ;spw=geros (1, segno) ;no=zeros (1, segno) ;nowv=zeros(1,segno) ;

outw=zeros(1l, segno) ; hospw=zeros (1, segno)  nonow=zeros (1, segno)

spsSeg=zeros (seglength, Segno) ;noseg=zeros (Seglength, Segno) ;

outnospseg=zeros (seglength, segno) ;outnonoseg=zeros (seglength, segno) ;
% waloulate the power for each segwent using Welch's wethod and A-weight

for i=l:segno

spseg(:,i)=speechil+(i-1) *seglength:i*seglength)
noseg(:,il=noise(1+(i-1) *seglength: i*seglength) ;

outnospsed(:, i) =outno=p (1+(i-1) *=eglength:i*seglength) ;
putnonosed(:, i) =outnono (1+(i-1) *seglength:i*seglength) ;

spli)=sum(pwelch(spseg(:, 1))
spwi(i)=sum(pwelchi=spseg(:,1)) .*Aw) ;!
nofi)=sum(pwelchinoseg(:, 1))} :
now(i)=sum(pwelchinoseg(:,1i)) . % 4w ;

outw (il =sumipwelch(spest (1+(i-1) *zeglength: i*zeglength) ) . FAw)

nospw(i)=sum{pwelch{outnospseg(:,i)).%4w);
nonow (i) =sumi{pwelch|{outnonoseg(:,1i)) . *4w)

end

Tsp=Tsp*mean(sp); % Calculate threshold
Tno=Tno*mean (no); % Calculate threshold
% Find intersection of spesch and noise
% threshold
evalframes=logical( (sp>Tsp) . ¥ (no=Tno) )
SHNRin=10*logl0 (sum(speech.”2) /sum(noise

SNRout=10%logld (swm(Speech. "2) fsumioutnasp. ~2) ) !
NEout=10%1logl0 (swn(noise. 2] /suwnioutnono. ~2) ) ;
SNRAin=10%logl0 (sum({spw(evalframes) ) /sum{now(evalframes) ) ;

for speech

for noise
Ssegments that are larger than

LTE)Y:

% Input 2NE

% (Output SNE
% Noise Residual output

SHNRAout=10%logl0 (suw (spwievalframes) | /sum(nospw (evalframes) ) ) ;

NEALout=10%logl0 (sum (now (evalframes) ) / sum (nonow (evalframes) ) ) ;

SNREsegin=10*logl0 (sum(spseqg(: ,evalframes) .~2,1) ...

LSEum (noseq | evalframes) L2, 1))

SMNEsegout=10%logl0 (swmn (spseqg|:,evalframes) ."Z,1) ...

Lfsum(outnospseg |, evalframes) .2, 1)) ;

NEsegout=10*logl0 (suminoseg(: ,evalframes) .*2,1) ...

Ssum(outnonoseq (:, evalframes) .2, 1)) ;

SNRizsegin=10%logll{spw{evalframes) ./nowievalframes) ) ;

SNRAsegout=10*logl0 (spw (evalframes) ./ nospwevalframes) ) ;
NREAZEgouL=10%logl0 (now (evalframes) . /nonow (evalframes) ) ;
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