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ABSTRACT

In this paper, we represent a new evaluation approach for missing
data techniques (MDTs) where the efficiency of those are investi-
gated using listwise deletion method as reference. We experiment
on classification problems and calculate misclassification rates (MR)
for different missing data percentages (MDP). We compare three
MDTs: pairwise deletion (PW), mean imputation (MI) and a max-
imum likelihood method that we call complete expectation maxi-
mization (CEM). We use synthetic dataset, Iris dataset and Pima In-
dians Diabetes dataset. We train a Gaussian mixture model (GMM)
with missing at random (MAR) data. We test the trained GMM for
two cases, in which test dataset is missing or complete. The results
show that CEM is the most efficient method in both cases while MI
is the worst of the three. PW and CEM prove to be more stable with
respect to especially higher MDP values than MI.

Index Terms— Machine learning, supervised learning, missing
data techniques

1 Introduction
The reconstruction of degraded audio and video sequences, the anal-
ysis of images with missing pixels or occlusions, the manipulation of
distorted signals because of a sensor failure or outliers are just some
of the wide range of situations in which it is necessary to face the
missing data problem. This issue, in fact, is really common in var-
ious studies and in several applications using statistical approaches,
such as: psychological and psychometric analyses dealing with sur-
veys without all the requested answers, market researches exploiting
incomplete interviews or medical diagnoses based on partial acces-
sible information.
Different strategies have been investigated in different areas to han-
dle the missing data problem and many techniques have been pro-
posed. Basically, it is possible to group these techniques in three big
categories:deletionmethods,imputationmethods andmodel-based
methods. In the first ones, the analysis considers only the present
data. The deletion procedure can be executed removing only the
missing elements (pairwise deletion) or the entire units containing
them (listwise deletion) [1, 2]. In the imputation methods, the holes
in the data set are replaced with other estimates, so that, like in the
pairwise deletion, all the available information is kept and utilized.
The simplest way to implement an imputation process is to substitute
the missing value of a variable for the mean value of the same vari-
able (mean imputation) [3]. In [4], Rubin proposes the concept of
multiple imputation (MI), which consists of inserting several values,
instead of just one, for each missing instance. This process gener-
ates many complete imputed data sets and standard complete data
methods are, then, used to examine each of them. The model-based
methods, instead, are able to perform directly their analysis on the

incomplete set, without changing or ignoring part of the available in-
formation. In particular, maximum likelihood (ML) approaches are
the most representative in this category and Expectation Maximiza-
tion algorithms (EM) are often used in this perspective ( [5], [6]).
The behaviour of these methods has been explored in literature, tak-
ing into account of the classification of the distribution of missing-
ness proposed by Rubin in [7]. Specifically, data aremissing at ran-
dom (MAR)if the probabilities of missingness could depend on the
observed data, but not on the missing ones;missing completely at
random (MCAR)if the probabilities depend on neither the observed
and nor the missing data. In the opposite case, data aremissing not
at random (MNAR).
Roth in [2] provides a qualitative evaluation of the most common
missing data approaches considering scenarios in applied psychol-
ogy. Allison in [1] analyses advantages and disadvantages of the
same methods, on the basis of three criteria: the capability to mini-
mize bias, maximize the use of available information and yield good
estimates of uncertainty. Schafer and Graham, perform in [8] an
analysis close to the cited work of Allison using means, bias and
mean square error to evaluate the model estimation accuracy and the
behaviour of the standard error to evaluate the margin of the uncer-
tainty. Myrtveit et al. in [9] investigate missing data methods in the
context of software cost modelling. In particular, the work focuses
on the possible benefits that could be obtained thanks to the use of
maximum likelihood, multiple imputation and similar response pat-
tern imputation (identifying the most similar unit without missing
information and replacing the missing part with the correspondent
values of this unit) approaches, instead of the listwise deletion one,
that is considered the most frequently utilized in their field.
To our knowledge, a standard and general strategy to compare dif-
ferent missing data techniques (MDTs) and to evaluate their perfor-
mance have not been proposed yet. In this paper, to fill the gap, we
propose a specific definition of efficiency that can be used to anal-
yse how an algorithm operates on missing data. The efficiency of
MDTs is computed considering the listwise deletion method as a
reference. Specifically, we test the behaviour of the maximum like-
lihood method in [6] (Complete EM), the pairwise deletion and the
mean imputation ones in a classification problem, using the Gaus-
sian mixture model [10], with different percentage of missing infor-
mation in the training set. We calculate the efficiency of an MDT, for
different missing data percentages (MDP) where train data is MAR
in two different contexts . In the first one, we use a complete (no
missing values) test set, to evaluate how well the model is estimated.
In the second one, we use test set with missing values, to evaluate
how robust the estimated model is to missing data . We consider the
latter as a more realistic scenario. The analysis is performed using
synthetic data, Pima Indians Diabetes and IRIS data sets.
In section 2, we introduce the learning model used and missing data



techniques that are evaluated in terms of efficiency, that is defined
in section 3. Finally, the experiments and results are discussed in
section 4.

2 Modeling Framework and Methods
2.1 Modeling Framework

The model used within this work is the Gaussian mixture model
(GMM) that is used and explained in [10]. Definex as the
d-dimensional input feature vector and the associated output,
y ∈ {1, 2, · · · , C}, of class labels, assumingC mutually exclusive
classes. The joint input/output density is modeled as the Gaussian
mixture.
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whereK is the number of components,p(x|k) are the component
Gaussians mixed with the non-negative priorsP (k),

∑K

k=1
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1 and the class-cluster posteriorsP (y|k),
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y=1
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k’th Gaussian component is described by the mean vectorµk and
the covariance matrixΣk. θ is the vector of all model parame-
ters, i.e.,θ ≡ {P (y|k),µk,Σk, P (k) : ∀k, y}. The joint input/
output for each components is assumed to factorize, i.e.,p(y,x|k) =
P (y|k)p(x|k).
The input density associated with Eq. (1) is given by

p(x|θu) =
C∑

y=1

p(y,x) =
K∑

k=1

p(x|k)P (k),

whereθu ≡ {µk,Σk, P (k) : ∀k, y}. Assuming a 0/1 loss function
the optimal Bayes classification rule iŝy = maxy P (y|x) where1

P (y|x) =
p(y,x)

p(x)
=

K∑

k=1

P (y|k)P (k|x)

with P (k|x) = p(x|k)P (k)/p(x).
Define data set of labeled examplesDl = {xn, yn;n = 1, 2, · · · , Nl}.
The negative log-likelihood for the data sets, which are assumed to
consist of independent examples, is given by

L = − log p(D|θ) = −
∑

n∈Dl

log
K∑

k=1

P (yn|k)p(xn|k)P (k)

The model parameters are estimated with an iterative modified EM
algorithm [11]:

1. To initialize the mean (µ0 ) and covariance (Σ0) matrices, all
train data set is considered as one normal distribution. In the case
of missing data, the calculations are done using only observed
data and theΣ0 is regularized (see section 2.2). Then, since ran-
dom points from the distribution can not be taken as cluster center
points because of missing data, we drawL random samples using
theµ0 andΣ0, and get rid of outliers. Instead of taking random
center points from the remaining samples, we use KKZ method
assuming the clusters will be distant from each other [12]. The
KKZ method is as the following:

• The first center point is taken as the sample having the
largest L2 norm

1The dependence onθ is omitted.

• Other center points are calculated as having the largest dis-
tance to the closest center points

2. Compute posterior component probability for alln ∈ Dl:

p(k|yn,xn) =
P (yn|k)p(xn|k)P (k)∑
k
P (yn|k)p(xn|k)P (k)

. (3)

3. For allk update means and covariance matrices
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4. For allk update cluster priors and class cluster posteriors
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2.2 Pairwise Deletion

In pairwise (PW) method, the only difference made on the model we
use, is the update of posterior input densityp(xn|k), the mean vec-
torµk and covariance matrixΣk. To update those, observed data for
each variable or pair of variables are used. However, the estimated
covariance matrix is unbiased and is not guaranteed to be positive
semi definite. We regularize the covariance matrix by inflating the
diagonal elements by the factor(1 + h) as in Eq. 4 which is com-
monly used approach [13] given by

Σ
′

= Σ+ hI (4)
whereI is the identity matrix andh is a regularization parameter.h
is determined in the following way:

Σ
′

= Σ+ hI = V UV −1 + hV V −1 = V (h + U)V −1 (5)
whereV UV −1 is the eigenvalue decomposition of the covariance
matrix Σ, whereV is the square matrix whose ith column is the
eigenvectorqi of Σ andU is the diagonal matrix whose diagonal
elements are the corresponding eigenvalues. Then, we chooseh such
that (h + U) > 0 to have nonnegative eigenvalues in regularized
covariance matrix.

2.3 Mean Imputation

Mean imputation (MI) method is a replacement technique where a
missing variable is replaced by the corresponding mean value [3].
The model we use is not effected in this method, since we have com-
plete data after imputation. This method keeps all data, and is easy
to implement. However, the variance estimates are lessened as more
means are added.

2.4 Complete Expectation Maximization

This method is a maximum likelihood missing data technique that
is proposed in [6]. EM is used both for the estimation of model
components and for dealing with missing data. Posterior component
probability, p(k|yn,xn) is again calculated as in Eq. 3, but only
on observed dimensions. To update the mean vector,E[xm

n |xo
n] is

substituted for missing components ofxn and to update the covari-

ance matrix,E[xm
n xmT

n |xo
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E[xm
n |xo

n] = µm
n +Σmo

n Σoo−1

n (xo
n − µo

n),

E[xm
n xmT

n |xo
n] = Σmm

n −Σmo
n Σoo−1

n ΣmoT

n +E[xm
n |xo

n]E[xm
n |xo

n]
T .



3 Efficiency Definition

Fig. 1: The illustration for the efficiency calculation method used.

As data have more missing values, the resultant error rate(ER) gets
higher due to lack of information. However, the resultant MDP-ER
curve is different for different missing data techniques (MDTs). In
this work, we use the curve for listwise deletion(LW) method as the
reference. In other words, we calculate how efficient a technique
makes use of data with missing values instead of simply ignoring
them. As seen in Figure 1, the definition of efficiency (Eff) is ob-
tained by calculating the area under the reference and actual curves
(curves of MDTs investigated) as in Eq. 6. When the actual curve
is the same as the reference curve, the efficiency is 0%, while it
is 100%, when it is a straight line (i.e ER is not effected as MDP
changes, the method is completely robust to MDP).

Eff% =
AR −AA

AR

× 100 (6)

4 Experimental Evaluations
The experiments are carried out using MATLAB on synthetically
generated data and two datasets from UCI archive, Iris and Pima-
Indian-Diabetes [14]. MDP is determined randomly (MAR). The
experiment is done such that not all values can be missing in one ob-
servation (if all data in all directions are missing it would be equal to
deleting it, so reducing training data as in our reference method). We
experiment how the misclassification rate (MR) changes with MDP
and calculate the efficiency (Eq. 6) using those results for different
MDP values. We experiment for two cases, where test dataset also
has missing values (case 1) with same MDP, or it is complete (case
2). Case 2 investigates how well the model is estimated, while the
case 1 how robust the estimated model is to missing data. We make
100 iterations for each experiment, while changing MDP between
0% and 70%.

4.1 Synthetic Dataset

The algorithm is tested on synthetic data. The multidimensional in-
put data is generated on a Gaussian mixture model. The number of
mixtures K, is 3. The difficulty of the problem is determined using
the following SNR calculation:
Letdskl be the distance betweenµk andµl, eigk be a vector consist-
ing of eigenvalues ofΣk and mean() be the arithmetic mean operator,
then

SNRdB = 10 log

(
(mean(

∑
1≤k≤K,k≺l≺K

dskl))
2

mean(
∑

1≤k≤K
mean(eigk))

)

We use SNR of 10 dB, for a 10 dimensional data. 150 observations
are generated for both training and test sets. Figure 2 shows first

three principal components plotted against each other for data used
for this work.
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Fig. 2: The principal components(PCs) plot for the data generated
with 3 different classes

The figure 3 shows the results for synthetic data generated. In case
1, CEM is the most efficient method, however PW is competitive to
it. CEM gives an efficiency of 40%, even at MDP of 70%. MI is
clearly the worst method in terms of efficiency. The efficiency of MI
decreases as MDP gets higher, while CEM and PW give more stable
efficiency results. In case 2, results are similar and still CEM is the
best. While MI performs better compared to case 1, CEM is slightly
worse.
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Fig. 3: The results for synthetically generated dataleft: Test set with
full dataright : Test set with missing datatop: MR plot against MDP
bottom: Eff plot against MR

4.2 Iris Dataset

Iris dataset is one of the most commonly used datasets in machine
learning literature. It consists of 3 classes of 50 instances each re-
ferring to a type of iris plant with 4 attributes. One class is linearly
separable from the others; the other two are not linearly separable
from each other. We use 100 instances for train and 50 instances for
test sets.
We show the results for this dataset in Figure 4. In case 1, CEM is
still the most efficient method, MI and PW show a similar behaviour.
CEM gives an efficiency of 70%, even at MDP of 70%. In case 2,
PW is worse than MI and CEM is still the best method. Compared to
case 1, the efficiency of CEM and PW is lower while the efficiency
of MI is higher.

4.3 Pima Indians Diabetes Dataset

Pima Indians Diabetes Dataset contains 2 classes that are diabetes
positive or negative with 7 attributes (age, pregnancy number etc.).
We use 200 instances for train and 200 instances for test sets.
The results are shown in Figure 5. Both in case 1 and case 2, CEM
overcomes other two methods, whereas PW and MI give similar re-
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Fig. 4: The results for Iris datasetleft: Test set with full dataright :
Test set with missing datatop: MR plot against MDPbottom: Eff
plot against MR

sults. The efficiency of CEM at MDP of 70% is around 20%, not as
high as other datasets, but still giving the highest performance.
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Fig. 5: The results for Pima Indians Diabetes datasetleft: Test set
with full dataright : Test set with missing datatop: MR plot against
MDP bottom: Eff plot against MR

4.4 General Discussion

We observe that, generally CEM is the most efficient missing data
method, while PW is worse than CEM, but still slightly better than
MI especially for high MDP values. The results coincide with previ-
ous work [1, 15]. In [1], where they compare missing data methods
using different criteria (the capability to minimize bias, maximize
the use of available information and yield good estimates of uncer-
tainty), ML methods are found to be the best. In [15], where they
compare 6 different methods including PW and EM methods, the
results again support ML approaches. Although CEM and PW per-
form well for both cases we experimented, we observe that they are
more efficient to use when test data set also has missing values. MI
is more efficient to use when we have a full test data set. Thus, MI
is better at estimating the model, but the estimated model is not that
robust to missing data in test set, and vice versa for CEM. Another
observation made from the results is that CEM and PW give more
stable results for higher MDP values, so it would be more trustwor-
thy to use them in situations where MDP for test set is undetermined.
Although MI turned out to be the least efficient approach, it would
be still acceptable to use it especially for low MDP values, since it is
very easy to implement and clearly computationally less expensive.

5 Conclusion
We proposed a new evaluation approach for MDTs where the effi-
ciency of those are investigated using listwise deletion method as
reference. We experimented on classification problems and calcu-
lated MR for different MDPs. We compared three different MDTs:
pairwise deletion, mean imputation and complete EM. We used syn-
thetic dataset, Iris dataset and Pima Indians Diabetes dataset. We
used a Gaussian mixture model (GMM) trained with MAR data. We
tested for missing or complete dataset. The results showed that CEM
was the most efficient method in both cases while MI was the worst
of the three. We observed that PW and CEM are more stable with
respect to especially higher MDP values than MI. We also observed
that MI performed better with complete test set, so was better at es-
timating the model, but the estimated model was not that robust to
missing data in test set, vice versa for PW and CEM.
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