
Web services payment systems

Master Thesis
Technical University of Denmark

Submitted by Mike Andreasen

31.12.2003

Web services payment systems

2

Contents
Preface ... 5
Introduction ... 6
State of the art.. 7

Distributed computing evolution ... 7
Introduction to XML ... 8
Java XML processing tools ... 8

Simple API for XML parsing (SAX)... 8
The Document Object Model API (DOM API)... 9
Extensible Stylesheet Language (XSLT)... 9
XPath ... 9
Java API for XML processing ... 10
Java Architecture for XML Binding (JAXB) .. 10

Java 2 Enterprise Edition (J2EE)...10
Cryptography... 11

Symmetric ciphers ... 11
Asymmetric ciphers... 12
Hashing algorithms.. 12
Certificates, signatures and key exchange algorithms ... 13

Network security.. 13
Java Cryptography Extensions (JCE) .. 15
Java Secure Socket Extension (JSSE) ... 15

XML Signature and Encryption... 15
XML Key Management Specification (XKMS).. 17
Security Assertion Markup Language (SAML)... 18

Application servers .. 18
Web services.. 19

Web service Description Language (WSDL) .. 20
Universal Description Discovery and Integration (UDDI) .. 21
Simple Object Access Protocol (SOAP).. 21
Java API for XML-based RPC (JAX-RPC) .. 22
SOAP with Attachments API for Java (SAAJ).. 23
Java API for XML Registries (JAXR)... 23
Apache AXIS... 23
Java Web Service Development Platforms.. 24
Web services Interoperability Organization (WS-I) .. 24

Suggestion to a web service security standard... 24
Ws security .. 25
Ws policy... 25
Ws federation... 25
Integrating security tools ... 26

Payment systems.. 26
Resources on the Internet and future payment models.. 26

Requirements to a web service payment system.. 28

Web services payment systems

3

Requirements to payment models.. 29
Empty model.. 29
Signature model... 29
Key agreement model ..30
Encryption model... 30
Secure payment.. 30
Capability access ... 30
CPU cycle payment ... 30

System design.. 32
Model of the system .. 32

The Proxy model ... 35
RPC and the business model proxy ... 37
Use case for the proxy ... 38
Class diagram for the proxy... 39
Sequence diagram for the proxy .. 40

The Business model framework .. 41
Business model XML description.. 42

The web service deployment tool .. 43
Use case descriptions... 45
Graphical user interface design.. 50
Interaction with business models... 52
Class diagrams... 53
XML descriptions of dynamic panels.. 57
Sequence diagrams .. 58

Design of business model implementations... 63
Empty model.. 63
Signature model... 63
Encryption model... 66
Key agreement model ..68
Secure payment.. 70
Capability access ... 76
CPU payment... 78

Client considerations ... 80
WSDL to Java application considerations... 81
Test applications.. 81

Key storage generator .. 81
Calculator... 82
Text application ... 82

Implementation and test... 83
Order of implementation.. 83
Business model proxy.. 84

Test cases... 84
Deployment tool .. 85

Test cases... 88

Web services payment systems

4

Empty model.. 88
Test cases... 89

Signature model... 89
Test cases... 90

Encryption model .. 91
Test cases... 92

Key agreement model .. 93
Test cases... 94

Secure payment model... 94
Test cases... 95

Capability access model .. 96
CPU payment model.. 96
Client proxy ... 96

Test .. 97
Evaluation.. 98

Future of the system .. 100
Bibliography .. 101

Books:.. 101
Tutorials:.. 101
Internet resources... 101

Appendixes .. 102

Web services payment systems

5

Preface
This rapport is made as M. SC. project in computer science at the Technical University
of Denmark, Informatics and Mathematical Modeling department. The rapport
describes the work done in developing a payment platform to use with Java web
services. The rapport describes some of the technologies within the web service
domain, but the main effort is used in the design and implementation of the system
developed.

The project is made in cooperation with IBM Denmark crypto department, and the
source material is IBM property.

Special thanks to my supervisor at DTU Dr. Christian Damsgaard Jensen, and IBM
Denmark Crypto Team.

31.12.2003

Mike Andreasen

S961171

Web services payment systems

6

Introduction
During the last decade of years the internet has evolved from being a media to share
relative static data among scientific institutions, to a media used to transport all sorts of
data among many different applications and devices. Many things are able to
communicate via the Internet, but there is still a huge challenge in integrating all these
things via one common language. During the last years XML has proven to be a
serious answer to such language. Build on XML, Web Services defines a protocol that
enables programs to share functionality via a network. The potential of programs
sharing functionality independent of device, operating system and implementation
language is huge: businesses can communicate independent of vendor of back end
systems, which is reducing cost by eliminate the human factor.

In longer terms Web services makes it possible for the user to be independent of one
system to do a specific task, because the common language makes it possible to select
another system that can do the same task. This is the first step in direction of a
computer grid that always can find computer power to serve the user. Autonomic
computing where computers maintain themselves is also one step closer, if the systems
know how to communicate with each other. Web services offers a way to register
available services, searching in such registries is also done in a standardized language,
which enables computer systems to automatic find and use applications on other
systems.

One huge challenge in implementing web services, is that the majority of computer
systems should be web services enabled, before the full potential of web services is
obvious: Speaking an internationally language not enough if everybody else do not
understand it. It is therefore important to have as many existing system converting as
possible, and make it easy to implement web services in new systems.

An issue when communicating between businesses (and when communicating on the
Internet in general), is security. If web services cannot guarantee security, it will be
very difficult to persuade companies to convert their existing systems, and choose web
services in new applications.

Another issue when implementing web services is the cost of the implementation.
Typically companies have good programmers understanding their existing systems, if
they must be re-educated to understand web services, it can be relative costly.

Introducing an abstraction layer between the application and the web service
technology, makes it possible to have the application programmers concerning about
the applications which they have proven to be good at. The details of web service
technology can be maintained by other specialized programmers, possible outside the
company.

This rapport will investigate the possibility of introducing an abstract layer that can
separate the application development process from the security and transport related
tasks. The focus will be on how to obtain different levels of security and access control
in payment systems. From the start the project is limited to focus on Java as
implementing language.

The result of the investigations will be used to develop a system that allows the user to
easily deploy applications as web services using different security models.

Web services payment systems

7

State of the art
The purpose of the section is to describe the foundation on which a web service
payment platform can be build.

The history of distributed computing will be shortly described, and the need for web
services will be explained. XML, which is the foundation for web services will be
explained, and the different tools that can help developing web services in Java will be
discussed. Standards that are used in the domain of web services and computer
security in general, will also be briefly covered.

Distributed computing evolution
The need for connecting computers in network evolved because the process of carrying
data between systems was a time consuming process. The reason for sharing data
among different systems was mainly to get calculations done on specialized systems.
Later, the networks were also used to transport data for central storage. The ratio
between the cost of network bandwidth, storage and computing power, have had an
impact on the way computer systems have been designed since the first computers got
connected in networks.

In the early days when computing power was expensive it was a very good idea to have
a central server to run CPU intensive jobs on. This server was in general very
expensive, and to get as much for the money as possible, the server should
constrainedly run with maximum workload. The role of distributed computing was to
transfer CPU intensive jobs from the client to one specific server. The technologies
used to

In the 1990s advanced technologies for distributed computing were developed by
different companies; Object Management Group (OMG) developed CORBA,
Microsoft DCOM, IBM DSOM and SUN developed RMI/IIOP. Each of the
technologies allows programs written in various languages, to run on remote computers
and act as if they were on the same computer. The problem with the technologies is
that they cannot communicate with other technologies, which is a problem if e.g. two
companies wishes to communicate, but have not bought the same technology.

By the time the distributed technologies were developed, the need for interoperability
was very little, because in general companies were not connected to each other via
network. The Internet, which formed a connection, was not mature to handle reliable
business-to-business communication.

During the 1990s, computing power and storage also became less expensive, and more
processing power and storage were added to the workstations. This mend that many of
the jobs that required to run on a large server, could run on the client, but also that the
client had a lot of spare CPU power when not running CPU intensive tasks. This made
the model of one server with many clients less common. Further many computers got
connected to the Internet via reliable high-speed connections, so the possibility of
selecting between more servers emerged.

In the new marked that focused more on the users needs, than on optimizing the use of
centralized servers, the lack of interoperability in the existing distributed computing
technologies became an issue.

Web services are expected to be the one common standard that all distributed systems
will follow, to overcome the interoperability problem. Making a standard instead of
trying to develop a new distributed technology that is better than previous technologies,
and therefore should be adapted by all, is an approach that have been tried in other

Web services payment systems

8

areas of computer science, without great success. An example is OSF/1, which many
thought would be the standard for Unix systems in the late 80’ties. The difference in
web services is that the standard is accepted by most or the major players in the
distributed computing area. The standard will therefore not have to compete with other
technologies. The challenge in web services is more to define a standard that everyone
can agree on, so the standards take relative long time develop. The long development
time for standards, can result in the customers of web services make systems that do
not follow the specifications completely.

Introduction to XML
When the Internet became popular among common people, the most used form of
communication was by sending HTML documents from a server to a web browser on
the users computer. The purpose of the browser is to render the HTML document and
thereby make a nice presentation of the information in the HTML document to display
on the screen. The problem with HTML is that it is very easy for humans to
understand when rendered in a web browser, but it is almost impossible for a computer
to separate rendering information from real information in the document.

This is why XML (Extensible markup language) was developed. XML is a meta
language which means it is a language to describe other languages, the other languages
could be XML security standards which is discussed later in this section. In short
XML defines the syntax to use when making new markup languages, this syntax
consist of documents elements and attributes.

SGML, which is the parent language of HTML, has the same capabilities as XML and
more. The reason for developing XML when SGML existed, was that SGML has so
many optional features that do not apply to web publishing activities. XML is
therefore a sub set of SGML.

A XML document consist of one root element that can have attributes, a value, and sub
elements. Because XML documents contain one root element with sub elements that
form a tree structure, it is easy to represent semi-structured data. All data are
represented in text, which makes it easy to share documents between different types of
systems.

XML has proven its usability in many applications during the last years, not only as
transport mechanism between network-connected systems, but also for storing data in
stand alone systems. Due to its popularity, many different tools exist to work with
XML documents. Java, being a platform independent language, has some focus on
XML, the following pages describes some of the important tools available in Java for
processing XML data.

For complete reference of XML, refer to the W3C XML 1.0 Recommendation.

Java XML processing tools
The standard Java 1.4 platform contains different packages that can be used to process
XML data. Earlier versions of Java did not have as many tools available, it is therefore
important to know which platform is available where the application should run. This
section describes the tools available not only in the latest standard distribution, but also
in other free Java distributions.

Simple API for XML parsing (SAX)
Simple API for XML parsing (SAX) is an API for an event based parser. The force of
an event based parser is that it is possible to use the parser on stream data, which is
powerful when working with large amounts of data, or when receiving data from a

Web services payment systems

9

slow media. The Parser API works by calling a specific method on an interface when
certain events occur. One event could be when the parser reads “/>”, in this case the
parser will call the method “EndElement()”. The API can be used directly on XML
data with success, if searching for something relative simple e.g. listing all elements in
a document. However when the requirements to the search becomes more complex, it
is usual desirable to be able to view the document as a hole, in a tree-structure. This is
where the Document Object Model API can be used.

The Document Object Model API (DOM API)
The Document Object model (DOM) is defined by W3C and is not a Java specific
component. The model defines the representation of a parsed XLM document as a tree
structure. Compared to the SAX parser, the model has some direct advantages:

• Possibility to modify the document by inserting and removing components.

• Random access to data, because the entire document is present in memory.

The disadvantage is that simple queries will usually take longer time, because the
entire document must be read before queries can be made. Reading the entire
document into memory will of cause also require more memory to be allocated.

By nature XML documents contains semi-structured data, which means that both the
structure of the document and the assigned values are important when reading a
document. However sometimes it is desirable that a document conforms to a certain
structure. One example of this could be a XML document that represent one table row
in a relation based database, before trying to insert the row it is useful to know if the
document matches the structure of the database, Document Type Definition (DTD) can
be used to this. DTD’s are documents that describe the structure of XML documents.
The Java DOM API gives the possibility to easily validate a document against DTD’s.
DTD’s can only be used to validate the structure of documents, not the content of the
document, to validate both the content and structure XML Schema Definition (XSD)
can be used. XSD enables the user to validate data using regular expressions written in
XML files, but is currently not available in the standard Java platform.

Extensible Stylesheet Language (XSLT)
Like DOM the XSLT API is defined by the W3C, it describes a language for
transforming XML documents into other documents or various other formats. One
simple (but very useful) transformation is transforming the DOM tree directly to a data
stream, which e.g. enables the tree to be written to a file. Other transformations usually
require a style sheet that defines the look of the new XML document.

The API can also be used to transform XML documents into other text based forms.
One example of this is Extensible HyperText Markup Language (XHTML), which can
contain markup tags that can make a useful presentation in an internet browser. In the
transformation the API requires information on which markup tags to use.

XPath
XPath is a data model of a XML document like DOM is, the difference between DOM
and XPath is that XPath is a conceptual model, which makes it useful when using
absolute references in a document. DOM cannot be used for this because it is an actual
API, and the parsing of a document may be vendor dependent. XPath can be used to
selecting sub sets of an XML document from a query string, and can therefore be used
to search for specific elements or attributes in a document.

Web services payment systems

10

In Java Standard Edition 1.4 tool for parsing XPart are included. If running an earlier
version of Java, some tools are included in IBM XML security API.

Java API for XML processing
Java API for XML processing (JAXP) is a package that contains implementations of
the most common used XML tools. The package contains implementations of Simple
API for XML Parsing (SAX) and Document Object Model (DOM), which enables the
user to handle the XML data as a stream of events, or have the data represented in a
tree structure. The API also gives the user the possibility to plug in other parsers
implementations that is compliant to the SAX or DOM specification. The package also
contains an implementation of the SXLT API, but is also pluggable so other
implementations of SXLT can be used.

Java Architecture for XML Binding (JAXB)
Java Architecture for XML Binding (JAXB) is a package that allows applications to
marshal Java objects into XML files, and un-marshal XML documents into Java
objects. Marshalling is the process known as serialize in Java, a marshaller that marshal
for Java objects to XML, is therefore capable of serialize the java object and write the
serialized object as text in an XML file.

The package can also validate an object against a XML schema file, to see if the object
is an instance of the class defined in the schema. In this way the package binds an
object to an XML file, and XML schemas to classes. JAXB is not a part for the Java 2
Standard Edition 1.4, but must be downloaded from SUN and installed separately if
used.

Castor is another data-binding framework that provides a mapping from XML schema
to Java objects, like it is possible with JAXB. It is maintained by the open source
organization Exolab. Castor has been available for longer time than JAXB, and has
more features like Java to SQL binding.

The binding between Java Objects and XML documents through XML schemas is very
important, because the use schemas as type description enables the use of complex self
defined objects in web services.

Java 2 Enterprise Edition (J2EE)
Java 2 Enterprise Edition (J2EE) is like Java 2 Standard Edition (J2SE) a stand alone
package. As J2SE focuses on standard application development, J2EE focuses on
multi tier network application. Being a multi tier network application means that the
application is divided into different layers capable of working on different systems,
connected via a network. It is possible to implement such applications using tools
available in the standard edition, however J2EE is supplied with tools that enable the
user to obtain a higher abstraction layer when dealing with network connections and
data structures frequently used in web based systems.

The latest release of J2EE is currently 1.3, it has only limited functionalities that are
interesting when developing web services. The main focus in this release is on Java
Servlets and Java Server Pages (JSP). Especially JSP is a very powerful technology, if
the client is a browser, which main purpose is to render HTML. Servlets are Java
programs that are able to run in an application server environment, where the
application server will handle the low-level socket connection, and pass the connection
to the servlet to handle the actual data processing. Servlets and JSP are closely related,

Web services payment systems

11

as most application servers will compile the JSP to a servlet and handle all
communication in the same way.

Because the application server simply passes the connection to servlet when
established, it is possibly to develop a servlet that speaks web service language. What
it requires from the servlet is that it has to be able to process the request, which the
XML processing tools previous described can do. Further the servlet has to be able to
unmarshal the data in the XML message into known data types, process the data, and
send back a response formatted as XML to the client.

J2EE version 1.4 is currently in beta release, which means that it is not integrated in
application servers yet. 1.4 has more tools available to help marshaling and un-
marshaling data, including an API to handle the XML messages as SOAP messages.

Different packages exists to fill in the missing parts in J2EE 1.3, so it is possible to use
Java as programming language for web services, further many companies have
solutions available, some of these solutions are described in the web service section.
Though, it is important to know that most application servers must have plug-ins
installed, to support the different web service platforms.

Cryptography
Cryptography is the foundation for most of today’s security systems. Cryptography can
e.g. be used to keep information secret to unauthorized persons, and authenticate users
in a system. Some of the many usages of cryptography will be discussed later in the
rapport.

Systems that use cryptography must be carefully designed to use the full potential of
the algorithms. The systems that use of a strong encryption algorithm can be insecure,
e.g. if the key to decrypt the data can easily be obtained by unauthorized persons.

This section will describe the most common concepts and most used ciphers, but will
not go into details on how the algorithms works and can be attacked, as this would go
beyond the scope of this project.

Symmetric ciphers
Symmetric ciphers are ciphers that use the same key for enciphering and deciphering.
Symmetric ciphers are usually fast, and therefore suitable when handling large amount
of data. Examples of symmetric ciphers:

DES:

Digital encryption standard (DES) was developed in 1973 by IBM, it uses s-boxes with
key length of 56 bits. DES is no longer considered secure as it can be broken in
seconds on a standard PC. If using DES three times with different keys, makes the
attack less feasible, because of the longer key. Another more commonly usage of the
DES algorithm is triple DES, which uses double length key but enciphers three times.
The action performed in triple DES encryption is: C=EK1(DK2(EK1(P))). Because
the encryption is done three times, triple DES is relative slow compared to other
ciphers.
With today’s known attacks on triple DES with double length key, it is considered
secure for many years to come.

AES:

Advanced Encryption Standard (AES) is a relative new algorithm build on the Rijndael
cipher by Joan Daemen and Vincent Rijmen. Rijndael is a variable key size cipher,

Web services payment systems

12

and the AES uses the cipher with 128, 192 and 256 bit key length. AES was developed
as a replacement for the much older DES algorithm.

Asymmetric ciphers
Asymmetric ciphers use one key for enciphering and another for deciphering. This
feature is useful when exchanging keys over an open network, because one key can be
distributed to all that whishes to be able to send encrypted data to the owner of the
other key. The challenged of using asymmetric ciphers will be discussed later in the
rapport.
In general asymmetric ciphers are much slower than symmetric ciphers, and should
therefore only be used on small amounts of data.

RSA:

Rivest, Shamir and Adelman are the names of the inventers of the RSA algorithm. The
algorithm was published in 1978, and has been the most used asymmetric algorithm
since. It operates with key lengths of 512,1024 and 2048 bits, where 1024 bits is
considered save today. In a few years 2048 bits will probably be the standard key
length for RSA, because faster computers will make attacks on systems using 1024 bit
key length possible. The strength of RSA builds on the difficulty of factoring large
integers.

Other asymmetric ciphers:

The second most discussed type of asymmetric cipher is based on elliptic curves, the
strength of the cipher is that it offers the same level of security with a smaller key size
than RSA. Analysis of the algorithm shows that an elliptic curve crypto system using
a 234 bit key, will take much longer time to break than a 2048 bit RSA system.
Elliptic curves implementations are becoming available in some of the most popular
crypto API’s, so we might see applications using elliptic curves in the near future.

Hashing algorithms
Hashing algorithms can calculate a fingerprint of data, the size of the fingerprint varies
with the different algorithms, but is usually significant smaller that the data it is
calculated from. The strength of a hashing algorithm is measured in how easy it is to
find source data that result in collisions. A collision is when the calculated fingerprint
for two different data sources, is the same. Collisions will always exists, because the
fingerprint has a fixed length, and the input data can vary in length.

Secure Hash Algorithm (SHA):

SHA was developed by National Institute of Standards and Technology (NIST) in 1993,
in 1995 a revised version was published under the name SHA-1. The SHA-1 algorithm
is building on the MD4 algorithm and produces a 160 bit hash value from the input
data. Other SHA algorithms exists that produces 256 and 512 bit hash values, but
SHA-1 is still more commonly used. The algorithm has proven to be resistant to
known cryptanalytic attacks.

Message Digest 5 (MD5):

MD5 was developed by Ron Rivest at MIT in 1991, as a revised version of MD4. It
produces a 160 bit hash value. Various attacks have been attempted on the algorithm,
some with success, though it has not been possible to generalize the attacks. The
algorithm is designed to run fast on 32 bit processor architecture, and is faster than
SHA when running on a standard PC.

Web services payment systems

13

Certificates, signatures and key exchange algorithms
The foundation of almost all security based on cryptography, relies on the algorithms
described above. This section describes some of the most used terms and combinations
of the algorithms.

Padding:

Most ciphers and hashing algorithms work on blocks of data with a fixed length. If the
length of the input data modulus the block size of the cipher is not an integer, extra
bytes must be added until the input data fits the cipher’s working length. The way the
extra bytes are added, is specified in special standards, so the operation can be repeated
with the same result. PKCS is a set of standards used in the domain of cryptography.

Signatures.

Asymmetric ciphers can be used to sign data; the signing is done by encrypting the data
to sign with the private key, and to verify the signature decrypting the signature with
the public key. If the decrypted data is the same as the signed data, then the signature
is verified. Because the asymmetric ciphers work relative slow, it is normal to
calculate a hash value of the data to sign, and encrypt this value instead. As with
padding, standards exist to define which algorithms and padding scheme to use when
generating a signature.

Certificates

A certificate is a proof of possession of a private key. A certificate is generated by an
issuer, and contains identity information and the public key of the owner. The
information is finally signed by the issuer, to show that the issuer will guarantee the
correctness of the certificate. Certificates can be used to establish trust between parts
that trusts the certificate issuer. An example of a commonly used certificate standard is
X.509.

Key agreement:

As previously discussed asymmetric ciphers are slow, and therefore seldom used to
encrypt a connection between communicating parts. Asymmetric ciphers can be used
to get the right symmetric key in place on the communicating parts, in different ways.
If the parts have exchanged their public keys securely, the key can be generated by one
of the parts, and be send to the other encrypted with the other parts public key. If the
parts have not exchanged their certificates, they can use a key exchange algorithm like
Diffie Hellman.

The first part generated a key pair and sends the public part to the other part. In the
generation of the other parts key pair, the public part of the first part is used.. The
public key of the other part is send to the first part. Because the key pair generated on
the other part included the first parts public key, both parts can now generate the same
symmetric key using the public key of the opposite part and their private key.

The key agreement can only be used to ensure that the same key exists on the
communicating parts, the identity of the parts cannot be guaranteed.

Network security
Security is an issue in almost all cases, when publishing material on the internet. A
normal way of thinking is that security is good, and therefore an application cannot be
secure enough. The price of security means that the requirement of an application must
be carefully balanced with what the application offers and requires knowledge of. The
price of security in applications is not only the cost of the extra code lines, but also the

Web services payment systems

14

extra time the end user possible uses to operate the application. In computer science
security is usually divided into five requirements:

• Confidentiality – Keeping information private, so that an attacker cannot
understand the meaning of the messages send.

• Integrity security – The integrity of messages is secured by the system, so that
an attacker cannot change the contents of messages.

• Authentication – The system guaranties the identity of communicating parties,
so that an attacker cannot claim to have another identity.

• Authorization – The system can limit the access to resources based on the user
credentials.

• Non-repudiation – The system guaranties that data cannot be recorded and
replayed, so an attacker cannot fake the system to think that the same massage
was sent twice.

All requirements above have been known before the internet became what it is today,
also a solution to the requirements have been known namely cryptography. Still very
few applications have actually implemented all five requirements successfully. The
reason for this is that the security can only be obtained if the user of the system is
willing to take the time to get registered in a secure way. Further the user must accept
to give up anonymity, when communicating with the system.

An example of wrong level of security on the internet is when a user has to register
with name and e-mail, to gain access to a resource that is register-free elsewhere. Even
if both resources are free, the user will usually choose not to register, to maintain
anonymity. In general, if the level of security and the value of the service do not match,
the service will probably be unpopular with the users or insecure.

There are different levels in a communicating system, where security can be
implemented, all with benefits and drawbacks:

• Network level security

• Transport level security.

• End to end security

• Message level security.

Security implemented in the network layer is usually transparent to the user and
application, because it is implemented in the lower level of the communication
protocol. Network security can be implemented in hardware, and do therefore not
affect the performance of the application using it. Being transparent to the application,
the security mechanism does not require special security knowledge of the application
programmer. The drawback of the technology is that the connection is not guaranteed
to be secure all the way to the receiver, because not all routing points necessarily
support network level security. IPsec is security related standards, published by IETF
in 1995 that defines how to implement security below the IP layer. Support for IPsec is
mandatory for IPv6, but not for IPv4.

Transport level security is security implemented between the IP layer and the
application. Compared to network level security, this can guarantee a secure
connection between two applications. The application programmer does not need
extensive security knowledge, because the transport layer can do all the security related

Web services payment systems

15

transport behind the back of the application. Secure Socket Layer designed by
Netscape, is the most popular transport layer security protocol.

End to end security is when the application programmer takes care of all security used
by the application. Like transport level security, this can ensure security between
applications, but also between the users of the applications. This can be obtained
because the application can ask the user for authentication, and thereby ensure the
identity. An example of end to end security is home banking systems that ensure that
only the right person has access to a certain account.

Message level security is security implemented in the application layer, but unlike end
to end security, the application does not need to be the final destination for the secure
content in a message. The same advantages as in end to end security can be obtained in
message level security, because the application can decide how to handle the security
content. Message level security is especially usable in multi tier systems, where
different levels of security can be required in each tier. The possibility of having
different security levels in one message also makes the technology interesting in multi
user systems, because the same message can be shared in a group of people with
different access rights to the message. XML security is a technology that can be used
to obtain message level security.

Java Cryptography Extensions (JCE)
The US export regulations are regulations to ensure that American companies do not
sell technology that can be used to harm USA in any way, to companies outside USA.
Strong encryption algorithms implemented in software were included in the regulations,
until a few years ago.

JCE is a pluggable framework that allows the user to plug in own crypto providers.
Crypto providers are program packages that implements the cryptographic algorithms.
This allows SUN to distribute JCE, but without providers that support strong
encryption. Until Java standard edition 1.4 the JCE was not included in the standard
java edition, but available for download from SUN’s web site. From Java 1.4 the JCE
is included in the standard edition, but still without providers of strong encryption
algorithms.

To enable strong encryption with JCE, it is possible to download crypto providers from
open source organizations. Bouncycastle is one organization that has free
implementations of strong encryption standards.

Java Secure Socket Extension (JSSE)
JSSE is an API that allows Java programs to communicate using Secure Socket Layer
(SSL). The package is included in Java standard edition 1.4, but in earlier versions it
must be downloaded and installed separately. The package contains crypto functions
that can be used to for other purposes that SSL e.g. the possibility of verifying a
certificate. Further the package contains a crypto provider with implementations of
many components, used when establishing a secure connection.

XML Signature and Encryption
When sending private information over open networks, some protection is required as
discussed in network security section. When formatting transport messages as XML
documents, there are some advantages in choosing message-level security:

Web services payment systems

16

• It is possible to encrypt only secret parts of the message and thereby preserve
the structure of the message, which makes it possible to understand the not-
secret information.

• It is possible to use different keys for encryption of different parts of the
message. This makes it possible to let the same message travel in a multi tier
system, and let the different tiers handle only their responsibilities, as part of
the message can be kept secret to some tiers.

• The end point of the security can be chosen by the system designer. Because
all security information is kept in the message, it is possible to handle the
anywhere in the system.

XML Signature and encryption are standards to add security information to XML
documents, so Message level security can be obtained.

One problem the standards addresses, is that digest algorithms and ciphers work on
binary data of fixed length. An XML document (or a part of it) can be handled as a
array of bytes, like all other data, and be padded to a multiple of the fixed length, like
data usually are handled when using cryptography. This approach is very useful if the
data should not be modified during the transport, but it is not desirable for XML
documents because the information can remain the same, if the values of the bytes that
form the document changes. An example of this is if comments are added to the
document, the document information would be the same because the comments would
be discarded by the destination parser, but the byte value of the document would not be
the same. The XML signature and encryption standards solve this problem by making
a canonicalized object containing only information from the document. This object’s
byte value will always be the same for the same information, regardless of comments
and other non informational bytes added to the document. This feature makes it
possible to use standard crypto tools on XML documents to calculate hash values, sign
and encrypt/decrypt.

The XML signature standard describes how to sign branches and entire XML
documents. It also describes how to attach the signature and information about how it
was generated, so the receiver can determinate how to verify the signature. In the same
way that it is important for the receiver of a signature, to know which algorithm is used
to calculate the signature, it is also important to the receiver of an XML signature to
know which canonizer was used.

Example. Consider following XML node:

<data>

 <value>test</value>

</data>

What seems to be important is that the data element has the value test. But the node
consist of an element data whit three children:

• A text node with the value “ \n”.

• An element named value

• A text node with the value “\n”

The value element consists of a text node with the value “test”. It seems natural that
the canonizer can ignore the two new line text nodes, because they do not change the
fact that data’s value is “test”. But if the receiving application knows that the value of
data should be found in the second child of data, it would be catastrophic to remove the
text nodes. Different canonizer standards exist, so the programmer can decide the best
way to canonize the applications XML data. Because of the standards, the canonization

Web services payment systems

17

process is not bound to a specific implementation of the canonizer, and can therefore
be used independent of platform and implementing language.

The XML encryption standard described how to encrypt branches and entire XML
documents. The standard suggests that the selected data for encryption will be
encrypted and handled as one node until it is decrypted. This also makes the structure
of the data secret. It is also described how to attach decryption information to the
document, so the receiver known how to handle the document.

The two standards are not bound to specific algorithms and can therefore also be used
with future algorithms.

Currently XML security is not implemented in the standard java distributions, but IBM
offers a free implementation of the standards called XML security suite.

The two standards do not address how to do key management or how to establish trust.

XML Key Management Specification (XKMS)
XML key Management Specification (XKMS) is a specification that describes the
protocol in a system, which will minimize the effort required by clients to obtain keys
and verify trust. XKMS was developed by Microsoft, Verisign and webMethods, but is
now controlled by W3C.

The protocols XKMS defines, can be used in systems that contain one or more servers,
which can handle revocation information, validating chains of certificates and other
things to help clients in establishing trust.

Figure 1

The XKMS trust service is build on two XKMS specifications the XML Key
Information Service Specification (X-KISS) and the XML Key Registration Service
Specification (X-KRSS). The X-KISS specification specifies the format of messages
in a two tier system consisting of a locate service and validating tier.

• Locate Service.
Handles key information. If a client whishes to know whether a signature is
valid, but do not have the public key, it can send a reference of the certificate
containing the public key to the X-KISS tier 1. The locate service will find the
actual certificate using the reference; the certificate can be located on other
XKMS trust services. The client will have to perform the validation of the
signature itself.

Web services payment systems

18

• Validate service
Validates trust and certificates revocation. If a client whishes to validate a
signature, but does not have the facilities to do this, it can ask the X-KISS tier2
to perform the operation. The validate service can locate the public key in a
certificate, check the certificate for revocation and check the certificate chain
path. The certificates in the chain may be located in other XKMS trust
services.

X-KRSS specifies the protocol to use in order to register certificates, and handle
revocation in a XKMS trust service.

Parts of the XKMS specification can be used even if the application is not a fully
XKMS system as described in the specifications. E.g. the syntax of a key
reference for the receiver to look up may be useful in other types of systems.

Security Assertion Markup Language (SAML)
Security Assertion Markup Language (SAML) is a standard for transferring
authentication, authorization and permissions, developed by OASIS Security Services
Technical Committee. Permissions Management Infrastructure solutions (PMI) have
been available for some time, but the protocols used in many of these systems are
vendor specific, therefore the interoperability of such systems is poor. SAML defines
an open protocol based on XML, to use in PMI systems. Single sign on allows users to
enter authentication information once to be authenticated across multiple domains.
Before SAML this feature was limited to systems that were able to speak the protocol
of the proprietary PMI system.

When logging in to a SAML enabled application the permission information is stored
in a SAML assertion. The assertion contains information about when, how and for
which resources a permission was granted. A SAML token is generated, which is a
unique identifier containing authentication and authorization data. When the user
whishes access to a SAML application, the token is submitted to a Policy Enforcement
Point (PEP), which is responsible for requesting access in the systems Policy Decision
Point (PDP). If the user has access to the desired application, the PDP returns an
authorization decision assertion, which is attached to the users SAML token, and the
user can access the protected resource. If the authorization decision assertion returned
by the PDP states that the user cannot use current login information to access the
resource, the user is requested to log in to that specific resource.

SAML defines the interface between the user application, PEP, PDP and the resource
application. Therefore parts of SAML can be used in most systems that require access
control.

Application servers
As described in the J2EE section, application servers are usually used as platform,
when deploying JSP sides and servlets. Many features on the available application
servers can also be used in a web service environment. Following features are also
usable when deploying functionality as web service:

• The application server will handle all network traffic, so the web service
developer can concentrate on developing the application and web service
interface.

• The application server enables more applications to run on the same network
port.

Web services payment systems

19

• Most application servers have access control and supports security
mechanisms like SSL.

Different vendors of application servers exists, the most popular are BEA Weblogic
and IBM Websphere application server. Both servers are relative complex and focuses
on the high end marked, where it is very important to be able to handle a large number
of simultaneous users. Tomcat application server from Apache group, is a free open
source server written in pure Java, the performance is not as good as on the commercial
servers, but it is functional and good for testing purpose or smaller businesses. The
Tomcat server can be combined with Apache web server, to remove the work load of
static sides from the application server.

Web services
One common misunderstanding in the term web services is that when talking about
distributed computing, web services do not mean all the services available via the
world wide web. Rather it means a web of services, though it is true that most web
services communicates via http on the Internet, like it is the case for most web pages.

As previous described distributed computing is the capability of computing data on a
remote computer, using the same interface as if the computing was done locally. A
normal way of doing distributed computing is using Remote Procedure Call (RPC),
where the client calls a method, possible with some parameters, and receives the data
the method returns (if any). To send the parameters via a network, the parameters and
return value needs to be serialized. The way the objects are serialized must be known
to both the server and client, further it must be assumed that both parts know the type
of the parameters. The process of serialized and de-serialize is often referred to as
marshalling and de-marshalling, and the components responsible for the process, stubs.
figure 2 shows the model of a RPC call.

Figure 2

Web services are definitions of the communication protocols used by the server and
client stub. The differences between web services and other protocol specifications are
that web services is an open, platform and language independent protocol. One of the
challenges in web services is therefore to marshal objects from one programming
language to a universal understandable format, so the receiver always can de-marshal
the message to an equal object in another programming language. Web services solve
this challenge by using XML which is understandable in all language, because XML
consist only of text. Web services uses some type primitives that is available in all
programming languages like Strings and Integers, to use more complex types it is
necessary to publish a definition of the type, and refer to this when using the type.

Web services must have an interface description that describes exactly how to
communicate with the service. The description must include information about where
the service is located, which methods can be called, and which types it expects and
returns. This interface description can be published in a service registry, where clients

Called
procedure

Server
stub Client stub Calling

process

Response

Client Server

Request

Web services payment systems

20

can search for services that fulfill their requirements. Figure 3 shows a web service
system

Figure 3

The service provider develops a web service, and publishes its interface description in a
service registry.

The service requestor queries the registry and finds the service location.

The service provider and requestor start communicating using the protocol described
by the service provider.

The service registry does not contain the actual descriptions of the services, only
searchable keywords of the services. If a client whishes an interface description, it will
be send from the service provider.

A web service system does not need to use a service registry. If a service should only
be used within a small group of clients, the address and interface of the service can
simply be given to the involved parts without publishing the information to other parts.

Web service Description Language (WSDL)
WSDL is a language based on XML used to describe the interface of web services. A
WSDL document must have a definitions element as document root; the element
contains definitions of the namespaces used in the document. Following elements is
allowed in the definitions element:

• Message: A message represents variables send between the web service and
clients. Messages contain one or more parts that specify the parameter name
and data type. A message can both be a request and a response.

• Porttype: The message element does not specify how the data is associated
with an operation, this is done by the porttype element. Porttype contains
operation elements that links operations (methods) to messages; an operation
element contains a name, an input message and an output message.

• Binding: The binding elements contain information about how to send the
messages in the porttypes. The most common binding is SOAP RPC over http.
In the binding element is an operation element that describes the encoding of
the data

• Service: The service element specifies the URL address that clients must
contact to invoke the web service. One address for each binding is required.

Service
registry

service
provider

Service
requestor

Publish Find

Bind

Web services payment systems

21

Figure 4 is an example of the structure in a WSDL document

 Notice the similarity between a WSDL
portType and an interface in object oriented
programming; they both describe a set of
functions and the data types used with the
functions. The operation element is the
analogue to a method in programming
languages.

The similarities to programming languages,
makes it relative easy to develop applications
capable of making WSDL document from
existing programming code, and make
programming code from WSDL documents.
This makes it possible to work with web
services without detailed knowledge about
the web service description language.

Figure 4

Universal Description Discovery and Integration (UDDI)
UDDI is the most popular XML service registry to use with web services. UDDI makes
it possible to register web services in a database that can be queried by others to obtain
information about available web services. UDDI only registers the information used
for describing what services do, not how to communicate with them. If a client finds a
service it wishes to use, the binding information is requested from the web service.
The binding information usually consists of a WSDL document.

UDDI registries share similarities with the search engines used for web pages, both can
search for resources on a network. UDDI will however require the services to register,
before it can be found. The communication interface to UDDI registries is based on
XML, and can therefore easily be integrated in applications that whish to look up
services. This is only the case for standard search engines if they are made accessible
via web services.

Simple Object Access Protocol (SOAP)
SOAP is an XML protocol framework for the communication between distributed peer
processes. SOAP defined a general structure of messages, which can consist of a
header and a body. Both the header and body can contain SOAP blocks, which is used
for the application data. SOAP blocks in the header can have an actor attribute that
indicates the receiver of the block. The transport path of a SOAP message is not bound

Web services payment systems

22

to the transport layer, a SOAP message can therefore travel between different SOAP
nodes that will process some of the data in the SOAP parts, if they can take the role of
the actor described in a SOAP part. If a SOAP node fulfills the role as anonymous, the
node is considered the final receiver, and will process the SOAP parts without actor
information. SOAP blocks in the body cannot have an actor, and is therefore always
for the final receiver.

The use of complex objects can be obtained in two ways: SOAP RPC and document
style SOAP. Most Java API for SOAP messaging supports complex objects over
SOAP RPC, if the objects are compliant to the Java Bean specification. This can
however lead to complications, if other implementation languages is used, because the
Java Bean to XML serialization is not well defined. Another way is to use document
style SOAP, where XML-schemas is used to describe the complex objects. This
describes the structures in an well defined way, independent of language, platform,
environment and transform. The drawback of this solution, is that the developer will
have to write an XML parser that can understand the schemas used, and turn this in to
real objects.

The receiver of a SOAP message is expected to send a message back to the sender, if it
encourages problems when processing the message. The message must contain a
SOAP fault, which must describe the error occurred. Four standard types of SOAP
faults exists:

• Env:Server temporary problem on the server.

• Env:DataEncodingUnknown if the server cannot decode a parameter

• Rpc:ProcedureNotPresent the server cannot find the procedure

• Rpc:BadArguments if the parameters send to the server do not match the
parameters of the method to call.

Other faults can be used if required by the application.

Java API for XML-based RPC (JAX-RPC)
JAX-RPC is the package for developing web services in Java, it supports SOAP and
WSDL, to make the interoperability requires in web services. The API is based on the
Remote procedure call (RPC) model, but has some features that go beyond standard
RPC. The possibility of extensible type mapping, makes it possible to use the API for
self-defined types. Standard RPC is based on one request and one response; in JAX-
RPC it is possible to split the call into more documents, which is practical if large
amounts of data should be send.

A web service developed using JAX-RPC consist of two classes: The service
implementation class, and an interface class that describes the methods available for
remote call. The package includes a mapping tool that can be used to generate the tie
class that can be deployed on an application server, it is also possible to generate a
WSDL file that describes the service interface. To write the client, the mapping tool
can be used to generate a stub class from the WSDL file, or from the interface class
written on the server. The tool also generates a skeleton for the client application that
uses the stub to remote calls.

JAX-RPC can map the primitives and some collection classes of the standard Java
edition to XML/WSDL datatypes. Thus, it is important not to include self defined
classes in the interface methods of web service implementations that should use JAX-
RPC as web service platform.

Web services payment systems

23

SOAP with Attachments API for Java (SAAJ)
SAAJ is a framework to send SOAP messages over a network. The framework can be
used in a standalone client that should communicate with a RPC based web service.
When generating a client stub in JAX-RPC, SAAJ is used to form the message as
SOAP messages. The framework ensures that the messages conform to the SOAP 1.1
specification, by using classes that represent the elements in a SOAP 1.1 message. The
framework can both construct SOAP messages and parse data streams to SOAP objects.

The protocol used to communicate the SOAP massages assumes that receiving part
will send a response for each message send. This makes the framework suitable of
communicating directly with web services that sends a response for each request.

As the name indicates, the framework can include attachments to SOAP messages; the
attachments can contain binary data, which is a better way of transporting large files
like pictures and sound clips, than encoding the files to fit in an XML document.

Java API for XML Registries (JAXR)
JAXR is an API that enables the use of XML registries in Java. UDDI is the most
common registry to use with web services, but other types of registries are available e.g.
ebXML. JAXR includes the general concepts of XML registries, but is pluggable so
the vendors of registries can write their own provider, and thereby make JAXR capable
of communicating with the registry. The concept is the same as with JDBC that makes
java applications capable of communicating with databases, if the database is supplied
with a JDBC driver.

JARX includes functions to registering business information in a XML registry, so
others can find the business information. The information to register is business name
and classification scheme, where the classification scheme is used to describe what the
business offers, so it is easy to compare the business of same kind. The API also
includes functionality to search registries, and get binding information to the business.

Apache AXIS
Apache group have developed a SOAP engine called AXIS. The engine is available in
Java and a c++ implementation is being developed. The SOAP engine does much the
same as JAX-RPC, but is different in some ways:

• AXIS supports both RPC and document style web services.

• XML Schema support that enables easy use of external serializers and de-
serializers

• AXIS wraps the service, and generates SOAP faults if exceptions

• Java classes can be deployed instantly, simply by copy the class to AXIS
deployment directory.

• AXIS is capable of generating WSDL documents for deployed web services,
on requests from the network.

AXIS includes an application for deployment on Java application servers, and a
standalone server that can easily be used for testing purposes. Tools for generating
WSDL documents from Java classes, and Java classes from WSDL documents is also
included.

Web services payment systems

24

Java Web Service Development Platforms
Many large companies involved in web services have developed a web service
development platform. The platform usually consists of different APIs to easily
develop servlets communicating via SOAP messages.

IBM web service tool kit (IBM WSTK) also includes tools for registering services in a
UDDI registry. IBM has a public UDDI registry server that can be used for test or
publishing free of charge. The tool kit does not include any servers, but instructions on
how to use the toolkit with the most popular applications server, and the IBM public
UDDI registry.

SUN’s Java Web Service Development Package (JWSDP) is much like IBM WSTK,
but includes a configured Tomcat application server and a registry server, which makes
it easy to test web services with UDDI registry. The distribution makes use of all the
web service packages from SUN, including J2EE 1.4 (currently in beta release). The
platform is interesting, because it includes technologies that might become standard in
the Java standard edition or enterprise edition.

The security tools in the package, makes it possible to sign and verify SOAP messages,
but is nonstandard, because the web service security standard is only available in draft.
The security is implemented as an extension to JAX-RPC and is called JAX-RPC-SEC.
Currently only signing and verifying signature is available in the package.

Other companies have similar solutions, some free of charge, others included with their
application server/ web service solution.

Web services Interoperability Organization (WS-I)
WS-I is an organization that is formed to accelerate the usage of web services, by
defining best practice for development and usage of web services. The organization
groups their recommendations into profiles. A profile is related to sets of web service
specifications in a specific version.

For each profile the organization produces documents on how to read the related
specifications, samples on how interoperability can be obtained, and test assertions.
The test assertions can be used to test a working web service to see if it conforms to the
profile.

The members of the organization are other organizations that work with web services.

Suggestion to a web service security standard
It is specified in the SOAP and WSDL specifications how data types should be
exchanged between web services. To maintain the concept of having a standard way of
describing how to interface to a service, it must be possible to describe security
assertions in the same way as data types. Therefore Microsoft and IBM have worked
together developing specifications for exchanging security information in a web service
environment. The proposal has been accepted by OASIS that has formed a committee
who currently is working on moving the specification to an open standard.

The specifications mainly describe enhancements to the SOAP standard. Where it is
possible, the specifications make use of existing standards like XML signature and
encryption. To simplify the overview, the specifications are divided into groups:

Web services payment systems

25

The model should be read from the button and up; underlying specifications provides
the foundation for specifications above.

Following description of the model will only describe the concept of the horizontal
layers.

Ws security
Web services security builds on the SOAP specification; it describes how a security
token can be attached to a message. The token works as a claim from the sender of the
message. An example of a claim could be that the sender attaches his certificate to a
message, to claim that he has the private key of the certificate. Security tokens can also
be combination of username and password, access tickets (used in kerberos) or
something not standardized like an iris scan.

The specification suggests that encrypting and signing of the SOAP message follows
the XML security specifications. It is only specified where the signing and encryption
information should be stored in the message.

Ws security does not specify which modifications that should be done to the WSDL
document that describes how to communicate with the secured service. This is
discussed in the web service policy suggestions.

Ws policy
Web service policy describes a grammar for expressing capabilities and requirements
in a web service system. The suggestion makes use of policy tokens that can describe a
security policy of a system. A policy token could describe the encryption used in a web
service. To specify how a web service will use the policy tokens, some assertions are
defined; assertions can be used in combination with policies. Examples of defined
assertions are “required” and “used”

The policy specification also describes how to attach policies to WSDL documents, so
different parts of the WSDL can have different policies. This makes it possible to
specify the security requirements of a web service, and make it readable to others.

Ws federation
Web services federation defines mechanisms to build trust between identities that do
not necessarily use the same identification method. The specification defines a
Security Token Service (STS), which can issue different types of security tokens. The
trust between different STSs makes it possible for a user only to establish trust to one
STS, to be able to authenticate in the federation of STSs.. The specification describes
some of the same functionalities, which is present in SAML and XKMS

Because web services is a relative new area of distributed computing, the experience
with the technology is limited, therefore the specifications take long time to define.

WS secure
conversion

WS
Federation

WS
authorization

WS policy WS Trust WS privacy

WS security

Federation

Policy

Messaging

Web services payment systems

26

The suggestions are written based on the needs the two companies and business
partners experiences when implementing web service systems.

Because none of the suggestions above are accepted as standards yet, very few have
actually implemented the suggestions. In the web service platform from SUN digital
signatures are implemented, but encryption is not. Because of the long development
process of the standards, some people recommend companies to implement non-
standardized security systems in their web services systems. Simply because they
mean the standards will not mature before the end of 2005.

Integrating security tools
Looking at existing development tools, many have already implemented the possibility
of deploying applications as web services, directly form the development environment.
The challenge of deploying an application as a secure web service does not need to be
much harder that without security; small steps in this direction have been made in
Microsoft’s .net development platform. Also IBM has added the possibility of
deploying applications with XML signature and encryption. The configuration of the
security applied to the application, and the interaction between the application and the
security is very limited though.

In the requirement section, the integration between web service security and the web
service application will be discussed in detail, and it will become clear that the
application needs some interaction with the security, when developing payment
systems.

Payment systems
Today many different payment models exist on the internet, and many factors indicates
that there will be even more in the future. Probably the best known payment model on
the internet, is selecting goods from different html pages, and navigating to a paying
page that allows payment with credit card via an html form. Once the credit card
information is submitted the Internet shop will process the order, and withdraw the
money from the credit card. Through the last years, the payment model has proven to
work, and is used by most companies that sell things that have a certain value.

Other systems exists that may not look like a payment system, but works as one for the
company. An example is advertisement on web pages, when the company gets paid
when the user sees or clicks on the advertisement. Another example is when a
company requires information from the user before giving access to resources; this
information can be valuable to the company when promoting their products, because
they now know something about their target user group.

Common to all successful resources on the Internet is that they use a payment model
and prize that is accepted by the user, which also must be the case for future resources
and payment models.

So why look for new payment models when it works fine the way it is now? One
answer to this could be that the future resources that are available on the Internet may
vary from what we see today.

Resources on the Internet and future payment models
As mentioned before a very common way of buying things on the Internet, is by
ordering it and pay with credit card. The only difference between this approach and
going to a physically shop, is the fact that the purchase can be done when the shop

Web services payment systems

27

normally would be closed, and that the geographically placement of the shop is less
important.

If, in the future, we will see more companies giving access to their systems via web
services, the user will have the possibility to instant change settings that normally
would require human interaction. An example of this could be the cable television
company, allowing users to change their subscription instantly. This could enable the
user to have a button on the television, to turn advisement on and off, by changing the
subscription on the cable television provider. Perhaps the television itself could search
between cable television companies, to find the cheapest provider for the channel
selected.

In general the controlling of most resources based on services, could be made
accessible as web services, and possible be maintained by the users systems and not
directly by the user, as it is the case in most internet based ordering systems today.

Today trust on the Internet is based on people’s trust in large organizations, and the
possibility of punishing persons who breaks law on the net. This model is closely
related to the rules in the real world, where the government issues a coin that people in
the country trusts, if somebody breaks the law, the government will punish the person.
The model is not very good across country boarders, because there is no common law
and perhaps not all governments can be trusted. Especially when more people in the
non western countries gains access to the Internet, this becomes an issue.

The technology to give digital identities based on trust to a large organization have
existed for many years, despite the many benefits of everybody having a digital
identification that can be used everywhere, it has not really been applied yet. One of
the reasons for this is that it would not be possible to be anonymous, if the digital
identification should be used everywhere.

A solution to the trust problem is to have smaller trust communities, where the trust not
necessarily is based on a digital id. The important factor is that security and anonymity
must be balanced whit the value of the service.

In following sections it will be analyzed if web services is a good solution for payment
systems, now and in the future.

Web services payment systems

28

Requirements to a web service payment system.

In this section requirements to a system that can help developing and deploying web
services that require payment, will be defined. The purpose of the requirements is to be
able to form a general model of the system; the requirements will therefore not be very
specific at this stage. Use cases for the system will be defined later, combined with the
requirements listed in this section, this will form the system specification.

The state of the art section shows that many API’s are available to help develop secure
web services. The use of the API’s often requires intensive knowledge within the
domain, because most of the API’s are very flexible. To implement an application as a
web service and apply a suitable payment model, requires knowledge most of these
API. Most programmers are specialized within a more narrow area of computer
science, and it is therefore typically necessary to combine the work of more specialized
programmers when developing large web applications. One way of combining the
work of more programmers, is by defining a set of interfaces and integrate the system,
once the sub components have been developed. The integration process can be manual
or automated; the automated process will usually require an integrating system. An
example of an automated integration system is the Microsoft Java development
platform that is able to integrate compiled Java classes with a Java runtime
environment, which produces an executable file on the Windows platform.

One purpose of this system is to divide the knowledge required to develop a payment
system as web service into smaller units, and define the interfaces between them. An
automated integration tool capable of integrating the units into a web service, must be
developed.

The payment model used by one application, is most likely not special for the
application, the integrating system must therefore be able to reuse a payment model in
different applications. The system should hide as much of the web service transport
layer as possible, as the application and payment model programmers probably known
little about developing web services. The system must therefore be able to combine the
work of three groups:

Figure 5

Web services payment systems

29

The web service that the system generates, must meet the requirements of web services
in general, which means that the system must generate a WSDL file, that can be used
by other programmers to interface to the service.

The abstraction between the service application and the business layer must be
dynamic. It must be possible for the developer of the payment model to decide which
parameters the application has access to. Further it must be possible to establish a
channel between the application and payment model, because the application may
depend on data processed in the payment model and vice versa. This channel is
essential when using message level security, because it gives the application
programmer the possibility of getting and setting data in the security layer.

Once the application and payment model have been developed, and the web service
environment has been configured, it must be easy to integrate the components into a
web service. At this stage the flexibility is less important, and configuration options
must be kept to a minimum.

Payment models most likely share features e.g. more payment models may require an
encrypted channel, therefore it must be easy to reuse components in different payment
models.

As seen in the state of the art section, the payment models may be different in the
future. The system must be able to support future payment models, even if they are
significant different from to days known models for payment systems.

Once a payment model have been developed, it must be possible to make minor
changes to the way applications make uses the models, during the deployment phase.
This is because a payment model should be able to fit a broad range of applications.

The system will not include client applications, or helping tools to develop client
applications. The system must however be designed so components on the server can
be reused when developing a client. The communication between server and client
must be done and documented in standard web service way.

Requirements to payment models
Not all of the payment models will actually be implemented, but it is important to state
their requirements, to make sure the system will be able to handle them. The following
models are not all directly related with payment, the term “payment model” will from
here be exchanged with the term “business model”, which better describes the
functionality

Empty model
If an application should be deployed as web service without a business model, the
empty model can be used in the integration process. The model must contain the same
components as other business models, but must not modify data when used. It must be
possible to use the model as foundation for other models due to the empty
implementation.

Signature model
The need of signing data is present in many of today’s payment system, the signature
can be used as proof of an agreement between the customer and supplier. The
signature model must be able to verify signatures on incoming requests, and sign
outgoing responses.

Web services payment systems

30

In the configuration of the model it must be possible to choose the action if the
signature cannot be verified. The model must assume that the certificate of the client is
present at the server.

Key agreement model
Before communication encrypted with symmetric ciphers can begin, the
communicating parties must agree on which key to use. The key agreement model
must be able to make the same symmetric key available to the client and server, in a
secure manner.

In the configuration of the model it must be possible to choose how the symmetric key
is stored on the server.

Encryption model
The encryption model must address the need for confidentiality of data transmitted
between the client and server. The model must be able to decrypt incoming messages
and encrypt responses before they are sent back. The model must use a symmetric key
available on the server.

In the configuration of the model it must be possible to assign a static value for the key
name to use, or choose to let the client decide the name.

Secure payment
The secure payment model must make use of the features developed in signing, key
agreement and encryption model. The model must be able to establish a secure
channel to the client, and use this channel to process the client request. The client
request must be signed, and the model must be able to store the signature and the
signed data. The model must be able to sign and encrypt the response message. The
model must not be vulnerable to replay attacks.

In the configuration of the model it must be possible to choose to pass the name of the
client to the application, if the application has a suitable interface. It must be possible
to choose a public key to verify the certificate send by the client

Capability access
The model is must be aware of an applications entire usage, and based on how the
clients interfaces to the model, give access to more or less of this usage. The model
must be able to supply the application with default data, if the interface used is not
exactly the same as the application’s interface.

In the configuration of the model, it must be possible to divide the application’s
functionalities, and define different capabilities bases on the division. It must be
possible to assign the default values which some capability interfaces may require

CPU cycle payment
The CPU cycle payment model enables the client to pay for a service by allowing a
small program to be executed on his/hers computer, and sending the result back to the
server. The model builds on the client’s good will, because the client will be able to
cheat the system by sending wrong data back. The model must be able to supply the
program on the client with data before the application starts; this enables the model to
solve large problems that can be parallelized.

Web services payment systems

31

In the configuration of the model it must be possible to select a source (database)
where the start data to supply to the clients is stored. It must also be possible to select a
place to store the results form clients.

Web services payment systems

32

System design
The requirement section describes requirements to a system that will make it easier to
develop, deploy and reuse components in a web service payment system. To realize
these requirements, several design considerations must be taken. Many of these
considerations will be discussed in this section and a design that conforms to the
requirements will be made.

First the components of the system will be identified, and the interaction between the
components will be discussed. The functionality of each component will be defined
and listed as use cases. State diagrams will be used to describe flow in the components,
if this is not obvious from the use cases. Class diagrams will be used to show the static
structure of the components, but may be less detailed that the actual implementation
requires. Sequence diagrams will be used to show the interaction between classes for
each use case, again it may be less detailed that in the actual implementation. Where
the components require interaction with the user through a graphically interface,
simplified drawings will be used to show the interface.

Model of the system
The standard model of a web service system consists of a service, a client, and a
discovery service. The SOAP specification specifies that a SOAP massage can be
routed through a path of SOAP notes whit different responsibilities. This feature will
not be used in this system; when a SOAP message is received it is always handled as if
the node is the final destination. If more nodes are required to process a message, this
must be handled in the web service application, and not by the SOAP message layer.

This system will not make use of a discovery service; once the system is running, it can
therefore be described as a standard client/server system with one client and one server:

Figure 6

To fulfill the requirement of easy deployment of services, many of the existing tools
supplied with the web service platforms described in state of the art section, could be
used. But because the security model should be easy to change and reuse among
different services, it requires a mechanism to integrate security models in existing
applications in an easy way. One way to implement a security model in a system is to
develop an API that makes the integration of the model easy to the application
developer. The approach of separating a program’s functionality in packages is
commonly used, because it makes it easy to reuse the code in different applications.

If the security models were implemented as API’s available to the application
programmer the system would look like figure 7.

Web service Client
XML documents
over network

Web services payment systems

33

Figure 7 – model 1 Payment model as API

There are several advantages in this model:

• It is possible to use one of the many deployment programs available to most
web service platforms.

• The API programmer does not have to concern about how the final application
becomes a web service.

• The web service platform can generate the WSDL documents that describe the
data types used to communicate with the service.

• The web service platform usually has tools to generate client interfaces and
proxy classes, to make the client development easy.

• The application has full access to the security model, which means that it is
easy to share information like authorization between the application and the
security model.

The disadvantages of the model are:

• The security model is integrated in the application, which means that existing
applications must be re-written to use the security model.

• The WSDL documents generated on the server will not contain information
about security policy. Thus, it will most likely not be possible to develop a
client that can communicate with the service, because the WSDL will not
contain information about required authorization and encryption policy.

• The advantages of message level security cannot be obtained, because the
security is implemented after the message is un-marshaled into types known to
the application.

Especially the second disadvantage breaks with the web service concept of making the
communication interface usable across businesses, platforms and language. It is clear
that a mechanism to describe the security assertions must be applied to the model. Most
Web service platforms generates WSDL documents of deployed web services when a
client requests a document, the WSDL documents are not static files stored on the
server. This means that the web service platform must be modified to generate WSDL
documents containing security information. Further the deployment tool must be
modified to pass security information to the web service platform, so it can generate
the WSDL containing security information.

Instead of having the security models as an API available to the application
programmer, the security models could be applied by wrapping the application with the
security model, before the application was deployed as web service. The model would
then look like figure 8.

Web services payment systems

34

Figure 8 – Model 2 Payment model as wrapper

This model would solve the first issue of the API model, because the application would
not need to be modified before deployment, but it would still be a problem to generate
the correct WSDL for the web service. And message level security could not be
obtained.

If the wrapper moves to the network layer and acts as a proxy, message level security is
possible to implement in the proxy. The proxy can take the responsibility of generating
WSDL documents, and can therefore generate WSDL documents with the necessary
security information included. The model would look like figure 9.

Web

service

platform

Client

Payment

model

proxy

Application

Firewall

Figure 9 - Model 3 payment model as proxy

How the proxy speaks with the SOAP container is not important to the client, and the
client should not be able to communicate directly with the SOAP container, so the
network connections coming from other than the proxy, must be rejected by the SOAP
container, this could be obtained by installing a firewall.

Another way to gain control over the web service in the message layer, is to develop
the soap container from scratch, or modify an existing soap container. This approach
binds the system to one specific web service platform, and requires modifications
whenever a new version of the platform is developed.

The public interface to describe the communication with a web service, is of great
importance in the web service domain, therefore a solution without possibility to
describe the security assertions of the service, is not acceptable when developing a
system for secure payments via web services. To maintain the possibility of choosing
between different web service platforms and versions, the best solution is to implement
the security layer as a proxy server in front of the web service platform, as described in
solution 3.

Web services payment systems

35

 A challenge in this implementation is that the application shall not only be deployed
against the web service platform, but also make the proxy aware of how a request to a
specific service should be handled and routed. This requires extensions to the
deployment tool used to deploy applications on the web service, so it can handle
deployment against the proxy as well.

The Proxy model
A standard way of implementing a proxy, is to create a server that listens on a specific
network port, and handles all request on that port in some way. From the client a proxy
should be transparent; how the proxy handles the request, is of no interest for the client
as long as it produces a valid response.

If the web service security proxy should work in this way, it would require knowledge
of the services behind. This is best illustrated by an example:

• The proxy works as proxy for two web services: Calculator and dictionary.

• The proxy listens on port 8880, the services are deployed on an application
server that listens on another port.

What the proxy needs to do when a request comes to port 8880 is:

• Parse the request to see if the request is for calculator or dictionary.

• Look up in a local database to find the security model and configuration for
the service.

• Apply the security model in the configuration found.

• Send the request to the web service.

• Apply the security model on the response from the web service

• Send the response to the client.

This approach has some disadvantages:

• The proxy needs its own network port.

• The proxy must be started as a separate application apart form the web service.

• The proxy must maintain a database of security models, security models
configurations, web services and relations between them.

Instead of implementing the proxy as a standalone application, the proxy can be
implemented as servlets on the application server that serves the web services. This
will not require an extra network port, and the proxy will always be up and running
with the web services, because they run on the same application server.

This implementation will require one servlet for each web service deployed on the web
service platform, but the security models can be shared among more servlets.

Web services payment systems

36

Figure 10 - The proxy as implemented as servlets

As previous described, the standard network proxy model will have to maintain a
database, and look up for each request. This is not necessary in this model, because
each servlet can hold information about which security model should be applied, and
how it should be configured. Further the proxy will not have to parse the destination of
the request, because it can also be given by the servlet. In this way one proxy servlet
represents one specific web service with one specific security model applied in one
specific configuration. If a web service should be accessible through more than one
security model, it will be possible simply by deploying another proxy servlet pointing
to the same web service.

Web services can consist of more operations (methods), and it may be required to
apply different business models to each operation. To do this, different proxies must
be deployed for the same web service

If one Java class is deployed as web service on the web service platform, publishing
more than one method as web service, and it is accessed by different business model
proxies, then it is possible to cheat the system. Because the servlet proxies do not look
in the SOAP body for the destination of the incoming messages, it is possible to use a
different proxy if more are deployed for the same Java class.

Example: A class containing two methods, m1 and m2, is published. m1 is configured
to use the empty business model, and m2 is configured to use the secure payment
model. Clients will be able to use the proxy servlet for m1 to access m2 without the
security in the secure payment model.

To avoid this scenario the class must be deployed under two different names in the web
service platform, which requires two deployment processes.

Having a proxy in front of each operation in a web service, makes the deployment
procedure a little more complicated; it must now ensure that both the web service and
the suitable proxies are deployed.

Web services payment systems

37

RPC and the business model proxy
Some business models may require a communication model that is not supported by
standard RPC communication. An example of this is that for communicating secure, it
may be required that the communicating parts must follow a key agreement procedure,
which requires more than one RPC call. Because this step is concerned with the
business model layer, it must be transparent to the application. Following figure shows
a scenario, where one RPC from the application requires more calls in the proxy layer:

Figure 11

1) The client application sends a RPC request

2,3,4) The client business proxy is set to encrypt the channel, and therefore starts the
key agreement sequence , which may be build on several RPC request to the server
business proxy.

5) The client business proxy encrypts the message from the application and sends it to
the server’s business proxy.

6) The server business proxy decrypts the message and sends the message to the web
service.

7) The web service processes the message and sends a response to the server’s business
proxy.

8) The server’s business proxy encrypts the response and sends it to the client’s
business proxy.

9) The client’s business proxy decrypts the response and sends the result to the client
application.

From this scenario it is obvious that the business model proxy must be able to expand
one RPC call in the application layer into more RPC calls in the business proxy.
Further it is clear that it must be possible to deploy proxy servlets that do not have a
web service in the application layer associated. Each of the proxy servlets must work
as standalone web services, with WSDL documents associated, to conform to the web
service standard.

Web services payment systems

38

Figure 12

Figure 12 shows that one web service can result in more servlets, because one servlet
will handle only one web service operation. The business model applied on operation
two requires two RPC calls, therefore the servlet is split up in two parts, where only
one calls the web service operation2.

Use case for the proxy
When the model of specific servlets holding the configuration for the proxy is used, the
use cases concerned with configuration is moved to the deployment tool. This leaves
two use cases for the proxy namely handling a request and answering requests for
WSDL documents.

Use case 1 : Handling a WSDL requests from a client.
Actor: Client application e.g. an Internet browser.
Pre. Req:
A proxy servlet must have been deployed, containing a valid configuration.

Actor action: System action:

Contacts the servlet on http with the
parameter ?wsdl

 Reads WSDL file generated during the
deployment process, and sends it to the
client

Processes the response.

Variations of the normal flow

Variation Result

The system cannot read the WSDL file The system will close the network
connection to the client, and write an
error to the application server.

Comments:

Use case 2 : Handling a RPC requests from a client.
Actor: Client application.
Pre. Req:
A proxy servlet must have been deployed, containing a valid configuration.
A client capable of sending requests compliant to the WSDL document of the servlet

Web services payment systems

39

Actor action: System action:

Sends a valid request to the servlet

 1) Reads the configuration of the servlet
2) Processes the request in the right
business model.
3) Sends the response to the web service
application.
4) Processes the response from the web
service application in the same business
model.
5) Sends the response to the client.

Processes the response.

Variations of the normal flow

Variation Result

The system receives an invalid request.
(Not a SOAP message)

The system will close the network
connection to the client, and write an
error to the application server.

The configuration of the servlet defines
that the request shall not be processed by
the web service.

The system will process the message
only in the business model.

An unexpected error occurs in the
business model, while processing a
request or response.

The system will close the network
connection to the client, and write an
error to the application server.

The web service application does not
answer or produces an unexpected
answer.

The system will close the network
connection to the client, and write an
error to the application server.

Comments:
The reason for closing the network connection in all cases of errors, is that the
business models are able to generate SOAP faults if a controlled error occurs. If an
error occurs elsewhere something is wrong in the configuration of the server, and the
client will most likely have little benefit of an error message.

Class diagram for the proxy
 Figure 13 shows the class diagram for the main classes of the proxy

HttpServlet

(from javax.servlet.http)

EmptyCalculator

BusinessModel
WebServiceName
BusinessConfiguration

processWSDL()
processRPC()

(from mike.ws.proxy.servlets)

ServiceClass

processRequest()
processResponse()

(from mike.ws.businessmodels)

Proxy

WebservicesBase

getWSResponse()

(from mike.ws.proxy)
ServletHandler

process()

(from mike.ws.proxy)

Figure 13

Web services payment systems

40

The EmptyCalculator class illustrates a proxy servlet generated during the deployment
process of a calculator application, using an empty business model. Notice that it holds
information about which business model and configuration that should be used. It also
holds information about which web service application the request should be processed
in. The class can answer to WSDL requests and RPC requests, only when processing
RPC requests, the class needs to communicate with the Servlet hanlder.

The ServletHandler class is responsible for the flow of the RPC calls, the flow can vary
depending on the configuration of the servlet as described in use case 2 for the proxy.
It will make instances of the correct business model to process the request from the
client and the response from the web service application.

The ServiceClass interface comes from the business model package; it defines the two
methods to process requests and responses, which must be present when writing the
application that forms the business model layer.

The proxy class holds information about where to find all the web service application,
this information combined with the information in the servlet can be used to locate the
right web service application. The class can send the request to the web service
application, and receive the response.

Sequence diagram for the proxy
The sequence diagram shows the flow in the proxy described in use case two for the
proxy. The sequence diagram for sending WSDL documents is not shown, because it
only involves the client and the Servlet (EmptyCalculator).

 : Actor :
EmptyCalculator

 :
ServletHandler

 : ServiceClass
 : WebService : Proxy

processRPC()
process()

processRequest()

processResponse()

getWSResponse()

processAppl()

Figure 14

The web service class is not a class in the system, but represents the web service
application that offers only one functionality: To process a request in the application
deployed as web service. The diagram shows that the proxy class offers exactly the
same functionality, and therefore works as a transparent component.

Web services payment systems

41

The Business model framework
In the requirement section the requirements to different payment models are listed,
common to all of them is that they must be able to be used and configured in the
system. That raises the demand of one common framework that can be applied to all
business models, and be used in the system.

From the requirements and proxy design it is obvious that a business model consist of
some code to process requests and responses, this code will be called the service
component. Because a business model must be able to expand one RPC call into more
RPC calls, a business model must be able to contain more than one service component.

The business models must be configurable during the deployment process. Not all
models requires the same configuration flow, therefore a business model must be able
define its own configuration flow. Some models may have a static flow while others
have a configuration flow, depending on the selections made, therefore a business
model must have a configuration flow controller that is used during the deployment
phase.

To save the configuration collected in the configuration flow, a business model must
have a configuration component. This component has the responsibility of parsing the
selections made in the configuration flow, and produces a configuration that is
understandable to the service components.

Because the proxy works in the network layer and business models may modify the
structure of the messages, a business model must have a component that can generate
WSDL documents that describe how to communicate with the proxy. The
configuration of the business model can change the interface to the proxy; therefore the
WSDL generator component must be able to build the WSDL based on the
configuration of the business model.

The components described above must all be able to work together, and the
deployment tool must have one access point that can tell where the components of the
model are located. Therefore a business model must have a collection component,
which contains all the static references.

The class diagram in figure 15 shows the relations of the components described.
Notice that the components described are interfaces, which makes it possible to
developers of business models to implement the interface and use the model in the
system.

Web services payment systems

42

ConfigClas s Impl
(from mike.ws.businessm odels.em pty)

ServiceClass Im pl
(from mike.ws.businessmodels.empty)

Bus iness ModelIm pl
(from mike.ws.businessmodels)

Bus ines sModelFactory
(from mike.ws.businessm odels)

WSDLGeneratorIm pl
(from mike.ws.businessm odels.empty)

ConfigFlowControllerIm pl
(from mike.ws.businessm odels.em pty)

WSDLGenerator
(from mike.ws.businessmodels)

ServiceClas s
(from mike.ws.businessmodels)

ConfigClas s
(from mike.ws.businessmodels)

ConfigFlowController
(from mike.ws.businessmodels)

Proxy
(from mike.ws.businessmodels)

Bus ines sm odel
(from mike.ws.businessmodels)

ConfigPanel
(from mike.ws.businessconfig.gui)

Figure 15

The implementation classes in the diagram are all located in a different package (in this
case the empty model) except the BusinessModelImpl and Proxy. The implementation
of BusinessModel is not located in the model package because it does not contain
functionality, only descriptions and references. The BusinessModelFactory is a factory
that builds businessmodels, this makes it possible to store the information of the
businessmodel in an XML file, and construct an instance of the model from this file.

Notice that the proxy class is not in the same package as the one from the proxy design.
The proxy class in this package is used as holder-class for the information related to
one proxy. One proxy must have a WSDL generator and a service class as previous
discussed, and one business model can have more proxies to be able to expand the RPC
call.

Only methods in the ServiceClass are defined in the diagram, because they are given
from the design of the proxy, the methods in the other interfaces will be defined in the
design of the deployment program.

The use cases and sequence diagrams for the business model framework, are depending
on the implementation of the model. These components can therefore be found in the
design of each business model.

Business model XML description
As described the business models must have a description file that can described the
static components of one business model. It must be possible to make instances of the
implementations of the BusinessModel interface from an XML file. The file must
therefore contain information about all attributes in a business model and associated
classes. Following describes the structure of an XML file that can be used to make
instances of the BusinessModel interface:

The XML document must contain a root element called businessmodel with following
attributes:

• name: The name of the business model

• description: The description of the model.

• version: The version of the business model.

Web services payment systems

43

• configflowcontroller: The implementation class of the ConfigFlowController
interface.

• configClass: The implementation class of the ConfigClass interface.

The root element must also contain one or more proxy elements that describe one
proxy servlet The proxy element must contain following attributes:

• ID: An integer number that defines the order of which the proxies must be
deployed and used.

• name: The suggested name for the proxy servlet.

• serviceclass: Name of the implementation of the ServiceClass interface to use
in the proxy.

• wsdlgenerator: Name of the implementation of the WSDLGenerator interface
to use to generate the WSDL file for the servlet.

• Processinwebservice: property that defines if the proxy should call the web
service application, or if it should process the request only in the business
model layer.

The root element can also contain references to implementations of the configpanel
interface. The structure of these elements is discussed in the design of dynamic
configuration panels.

The web service deployment tool
As discussed in the general model of the system, the deployment tool for the selected
web service platform must either be extended or re-developed, to fulfill the
requirements to the system with a business model proxy. Many web service platforms
have a deployment tool that can deploy web services by executing a program with the
correct parameters. Others require user interaction. If the existing deployment tool can
work as a command line program, or do deployment from a script file, it will be
relative easy to extend its functionality by wrapping a new deployment around as
showed in figure 16.

Web services payment systems

44

Figure 16 - Deployment tool using existing tool.

If the existing deployment tool for the web service platform requires user interaction to
deploy web services, the tool must be used separately to deploy the application against
the web service platform. In the following design it is assumed that it is possible to re-
use the existing deployment tool as shown in the figure above.

The figure shows a system that is able to integrate applications, with business models
(security/payment) and web service knowledge into web services, as described in the
requirements section. The main purpose of the tool is to make it easy to deploy a
application, the more static components like web service linking knowledge and
business models are therefore represented as resources. The resources could be less
static, but it would make the deployment process more complicated if e.g. the user
should point to the proxy installation directory every time an application should be
deployed. The drawback of the static resources is the flexibility of the tool, if the tool
should be used to deploy to different systems, it would require low level configuration
of the tool every time the system changes.

The deployment tool can therefore be described in three main use cases:

1 Deploying applications as web services using a business model.

2 Making business models available to the tool.

3 Changing static settings for the tool.

The first use case is complicated, and can be divided into more use cases:

Web services payment systems

45

Actor SelectSource SelectBusinessModel ConfigureBusinessLayer Deployment

Figure 17

Use case diagram for deploying services

As the diagram shows, the use cases depends on each other, it would therefore be
natural to implement the deployment tool as a state machine.

Use case descriptions

Actor SelectSource SelectBusinessModel ConfigureBusinessLayer Deployment

Figure 18

Use case 1.1 : Selecting an application to deploy.
Actor: A person who whish to deploy an application.
Pre. Req: The deployment tool has been correctly configured (U.C. 3)
Expected result: The system is in a state where U.C, 1.2 can begin.

Actor action: System action:

Starts the deployment tool, by executing a
command from a command line.

 Reads the configuration of the
deployment tool and shows a graphical
user interface containing two text input
field and a button.
The GUI also shows a button panel
containing three buttons : Back, Cancel
and Next.

Presses the button to browse for a class
file (the application)

 Shows a file dialog.

Navigates to a class file and selects it.

 Updates the first text field with the
complete path to the selected class file

Types the base directory of the selected
class. The base directory is where the
package structure for the selected class
begins.
Presses the Next button

 Removes all the GUI components

Web services payment systems

46

except the button panel.
Reads the names of all business models
applied to the system.
Analyses the selected class and shows a
drop down list for each public method
in the class. Each drop down list
contains all the names of applied
business models, and a “Do not deploy”
item.

Variations from the normal flow

Variation Result

The actor selects an other file than a class The system does not update the text
field, and informs the user of valid file
types.

The selected file is not a valid Java class,
or the file can not be read.

The system informs the user, and does
not update the GUI.

The base directory for the selected class is
incorrect.

The system informs the user, and does
not update the GUI.

The class does not contain public
methods.

The system shows an empty list.

The actor presses the back button. Nothing.

The actor presses the cancel button The system closes.

Comments:

Actor SelectSource SelectBusinessModel ConfigureBusinessLayer Deployment

Figure 19

Use case 1.2 : Selecting a business model to used.
Actor: A person who whish to deploy an application.
Pre. Req: U.C. 1.1 has ended without variations.
Expected result: The system is in a state where U.C, 1.3 can begin.

Actor action: System action:

For each method in the list: Selects which
business model should be used.
If a method should not be published as
web service: Selects the “Do not deploy”
item.
Presses next

 For the first method that have another
business model than “Do not deploy”,

Web services payment systems

47

load the business model and ask it’s
configuration flow controller for the
first configuration panel.
Removes all GUI components except
the button panel
Shows the first configuration panel
from the business model.

Variations from the normal flow

Variation Result

The actor selects “Do not deploy” for all
available methods.

The system closes.

The list is empty and the actor selects
next.

The system closes.

The actor presses the back button The system returns to the state in U.C
1.1 before the next button was pressed.

The actor presses the “Cancel” button The system closes.

Comments:

Actor SelectSource SelectBusinessModel ConfigureBusinessLayer Deployment

Figure 20

Use case 1.3 : Configuration of the business model.
Actor: A person who whish to deploy an application.
Pre. Req: U.C. 1.2 has ended without variations.
Expected result: The system is in a state where U.C, 1.4 can begin.

Actor action: System action:

 Fill in all necessary fields of the panel
and presses the “Next” button.

 Calls the business models configuration
class and asks it to store the information
selected in the panel.
Removes all GUI components except
the button panel.
Calls the business models configuration
flow controller, and asks for the next
panel.
Show the panel.
If the controller returns an empty panel:
Check if more methods should be
deployed and re-run the use case for
them, else:
Display a text input field.

Web services payment systems

48

Variations from the normal flow

Variation Result

The actor presses the “Cancel” button The system closes.

The actor presses the back button The system calls the business model
flow controller to get the previous
panel, and shows this.

Errors occur in some of the business
model components.

The system informs of the error and
closes.

Comments: The flow in the business model configuration is described in the design
of each business model.

Actor SelectSource SelectBusinessModel ConfigureBusinessLayer Deployment

Figure 21

Use case 1.4 : Deployment.
Actor: A person who whish to deploy an application.
Pre. Req: U.C. 1.3 has ended without variations.
Expected result: A web service deployed on the web service platform and a proxy
to call the web service deployed.

Actor action: System action:

 Types the name of the application part of
the web service in the text field. And
presses Next

 Stores the name of the service, and
deploys the selected application from
U.C. 1.1 on the web service platform.
Displays a new text input field. Asks the
user to type the name of the proxy
servlet for the first method selected in
U.C. 1.2

Fills in the name of the first proxy, and
presses Next.

 If only one method was selected in U.C.
1.2, the system will start the
deployment. Else it will continue to ask
for names of the proxy servlets.
Deployment:
For each method selected in U.C. 1.2
the system will deploy proxies. Each
method can result in more servlet
proxies, if the selected business model
requires more that a single RPC call.

Web services payment systems

49

Variations from the normal flow

Variation Result

The actor presses the “Cancel” button The system closes.

The actor presses the back button The system returns to the beginning of
U.C.1.2

Errors occur in some of the business
model components.

The system informs of the error and
closes.

Comments: The exact flow of deployment is described later by a state diagram.

Use case 2 : Appling a business model.
Actor: A person who whish to apply a business model.
Pre. Req: A business model and configuration file has been developed..
Expected result: The list of available business models in U.C. 1.2 contains the name
of the business model.

Actor action: System action:

Copies an XML description file of the
business model to the business model
description directory.
Copies the compiled business model
implementation to the deployment tool’s
program directory, and to the business
model proxy program directory.

 Next time the deployment tool is
started, the business model is available.

Variations from the normal flow

Variation Result

The business model description file is not
valid

The business model will not be
available in the deployment tool, or the
deployment tool will generate an error
when U.C. 1.3 is executed.

Comments:

Use case 3 : Changing configuration of the deployment tool.
Actor: A person with knowledge of the systems to deploy to.
Pre. Req: The deployment tool is installed on a computer.
Expected result: The deployment will use the configuration next time it is started.

Actor action: System action:

Edits the configuration file for the
deployment tool, using a text or XML
editor

 Next time the deployment tool is
started, configuration will be used.

Web services payment systems

50

Variations from the normal flow

Variation Result

The structure of the configuration file is
modified so the deployment tool does not
understand the content.

The deployment tool will show an error,
when executing.

Comments:

Graphical user interface design
The use cases of the deployment tool describes the tool’s interaction with the user, all
normal interaction is done via a graphical interface, only configuration of the system is
not done by the tool’s user interface. The graphically user interface consists of two
parts: The static part that always will be executed independent of the users selections,
and the business model configuration part that depends on which business models the
user selects.

The static panels:

All windows in the system consist of a
target panel, and a button panel. The target
panel is where the panel of the systems state
is shown. The button panel is used to
navigate between the states of the system.

Following panels are all panels to be
displayed in the target panel.

 Figure 21

Panel for use case 1.1: The user must select a
class file, and type the base of the class. The
file dialog that can be used to select a class
file is not shown, because it is a standard file
dialog for the operation system

F

Figure 22

Panel for use case 1.2: The user must select
which business model to use for each public
method. If the selected class contains more
methods than the panel can contain, a
vertical scroll bar will become visible.

Figure 23

Web services payment systems

51

Panel for use case 1.4: The user must type
the name to use when deploying the web
service. A similar panel is used to get the
name of the proxy servlets.

Figure 24

Dynamic configuration panels

Because the deployment tool must be able to handle different business models, with
different configuration flows, it must be possible to define configuration panels when
developing business models. The deployment tool must provide some standard
components, which can be used by business models to build configuration panels that
can be used with the tool. A dynamic panel can consist of following components:

A Checkbox panel can contain a headline
and zero or more check boxes. A check box
has a check field and a text. The first check
box will appear in the top of the panel,
following check boxes will appear below.

Figure 25

An Option panel can contain a headline and
zero or more option buttons. Only one
option can be selected at a time. The first
option will appear in the top of the panel,
following options will appear below.

Figure 26

A text field panel can contain a headline and
zero or more text input fields. A text input
field has a text description and an input field
below. The first text field will appear in the
top of the panel, following text fields will
appear below.

Figure 27

Web services payment systems

52

A choice box panel can contain a headline,
zero or more choice boxes and zero or more
options. A choice box contains a description
text. The options for all choice boxes in the
panel are the same. The first choice box will
appear in the top of the panel, following
choice boxes will appear below.

Figure 28

A base panel can contain a headline and zero
or more configuration panels. The example
showed in figure 29, is a base panel with a
headline, a choice box panel and a check box
panel without headlines.

Figure 29

Interaction with business models
The design of the business model framework introduces the ConfigFlowController
interface. Implementations of this interface must be able to generate the configuration
panels for a business model. Because the flow within a business model is relative
static, the coding of the ConfigFlowController can be very simple, if the definition of
the panels is stored in the configuration file for the business model.

When loading a business model from a configuration file, the BusinessModelFactory
will make instances of the classes, and make a list of static configuration panels
available to the ConfigFlowController. Only if a dynamic flow is required by the
business model, the ConfigFlowController will have to actually build the panel itself.

The interface of the ConfigFlowController must have one method:

• ConfigurationPanel getNextPanel(currentpanel): To
implement a dynamic flow, the implementation of the interface can get access
to collected properties in the ConfigClass, through the BusinessModel class.
To implement a static flow, the flow controller can simply ask the business
model for a specific static panel.

The ConfigClass in a business model is the component that collects information from
the configuration panels. The definition of the GUI components makes it clear that the
output from a configuration panel depends on the type of panel: A text input field
returns a String and a check box returns a Boolean. The ConfigClass must be able to
convert the output of the configuration panels to a configuration understandable to the
proxy. To do the conversion the ConfigClass must know the structure of all
configuration panels, and the configuration panels must have a unique id, so the
ConfigClass can do the conversion.

The interface of the ConfigClass must have two methods:

Web services payment systems

53

• addProperties(ConfigurationPanel) : The configuration panel
has an id that can be used by the configcontroller to determinate how to
convert the panels input fields into configuration properties.

• Configuration getProperties(): When the configuration of a
business model is done, the configcrontroller must be able to return the
collected properties, to use when deploying the proxy servlet.

The configuration of a business model must primarily be used in the proxy servlet, but
the structure of the WSDL file that described how to interface to the proxy servlet, may
also depend on the configuration of the servlet. Therefore the WSDL generator class
of a business model must have access to the configuration of the business model. The
easiest way to obtain this is by giving it as argument when generating the WSDL. The
WSDL generator is only responsibly for the changes that the business model will do to
the WSDL file, therefore the WSDL for the application without the business model
applied must also be available when generating the WSDL.

The interface of the WSDLGenerator must have one method:

• WSDL generateWSDL(ApplWSDL, configuration) : An
implementation of the WSDLGenerator interface, can generate the WSDL
document for one proxy servlet. If a business model consist of more servlets
(as discussed in the proxy design section), the business model must have more
implementations of the interface.

Class diagrams
The class diagrams in this section show the overall structure of the program. The
diagrams are kept very simple, and can not be used as a programming reference. For a
more specific description of the classes please refer to the implementation section or
the Java documentation on the CD.

The class diagram for the deployment tool can be divided into four categories:

• GUI Classes related to the static flow of the tool.

• Classes that does the functionality of the tool.

• GUI Classes available to the business models.

• Business model classes

The class diagram for the business model classes has been discussed in the business
model design section, and will not be described here.

Static GUI classes

The static GUI classes are already partly described in the design of user interfaces
section. The purpose of the class diagram is to see the overall structure, and to show
how the configuration panels from the business models can be used.

Web services payment systems

54

DeployStatePanel
(from mike.ws.secintegrator.gui)

ButtonPanel
(from mike.ws.secintegrator.gui)

WizPanel
(from mike.ws.secintegrator.gui)

MainWindow
(from mike.ws.secintegrator.gui)

StartPanel
(from mike.ws.secintegrator.gui)

BusinessSelector
(from mike.ws.secintegrator.gui)

Panel
(from awt)

Frame
(from awt)

Figure 30

Notice that the MainWindow only uses two panels: The static button panel, and a
WizPanel that is super class for all panels used in the target area of the main window.
The three panels that are used in the static flow of the tool therefore extend the abstract
class.

Functionality classes

The functionality classes are all related to the MainWindow class, either directly or
through other functionality classes. The reason for this is that the MainWindow is the
class where the state machine that controls the overall flow of the system is
implemented.

Web services payment systems

55

WSDeployerFactory
(from mike.ws.secintegrator)

ProxyDeployer
(from mike.ws.secintegrator) DeployWriter

(from mike.ws.secintegrator)ByteClassLoader
(from mike.ws.secintegrator)

ProxyServletGenerator
(from mike.ws.secintegrator)

Util
(from mike.ws.secintegrator)

BusinessModelReader
(from mike.ws.businessconfig)

MainWindow
(from mike.ws.secintegrator.gui)

IntegProp
(from mike.ws.secintegrator)

WSDeployer
(from mike.ws.secintegrator)

WSDeployerImpl
(from mike.ws.secintegrator)

Figure 31

The WSDeployerFactory is a factory class that can build web services deployers. The
factory design pattern is chosen because it must be possible to easily develop new
deploy-classes if the system should be used with different web service platforms. The
Factory builds instances of the interface WSDeployer that describes the functionalities
a web service deployer must have. The WSDeployerImpl is an example of an
implementation of the interface, it uses a DeployWriter to write files used to use when
deploying.

The deployment tool must be able to analyze classes that are not part of the system, to
display the methods available for web service deployment. The ByteClassLoader must
be able to convert a byte stream into an instance of a class, so the class can be analyzed.

To make proxies for the application deployed by the WSDeployer, the ProxyDeployer
class can be used. The class will use the ProxyServletGenerator to generate and
compile a proxy servlet with the correct name and configuration, and then copy it to the
servlet container of an application server. Because the ProxyServletGenerator must be
able to compile the servlet, it must call an external compiler.

The Util class makes it possible to call external applications, the class make the
deployment tool wait for the external application to end, before it continues its
execution. This is useful e.g. when the compiled servlet must be copied; this can not be
done before the compiler has compiled the source code.

The BusinessModelReader class is the class that can read an XML description of a
business model, and make an instance of the model, if the correct classes are available.

The IntegConfig is a class that can read XML documents and make the content
available in a standard Property manner to the application. The class is constructed

Web services payment systems

56

using Singleton design pattern, which makes the same instance of the class available to
the entire application. The class diagram only shows relations with the MainWindow
and BusinessModelReader, other classes also have relations, but they are not shown in
the diagram due to the complexity

GUI Classes available to the business models

The class diagram of GUI classes available for business models is rather large due to
the number of panel types (described in the design of business model configuration
panels). The diagram showed here only contains one type of configuration panel (Text
field panel), but the structure is the same for all panels. Refer to the CD-Rom for the
complete class diagram.

ConfigPanel
(from mike.ws.businessconfig.gui)

ConfigPanelImpl
(from mike.ws.businessconfig.gui)

BusinessModelReader
(from mike.ws.businessconfig)

ConfigPanelFactory
(from mike.ws.businessconfig.gui)

WizPanel
(from mike.ws.secintegrator.gui)

PanelTextInput

(from mike.ws.businessconfig.gui)

PanelTextInputImpl
(from mike.ws.businessconfig.gui)

Figure 32

The ConfigPanel interface defines the behavior that all business model configuration
panels must implement. As described in the design of the ConfigClass, all
configuration panels must have a unique ID and other attributes, this interface can be
used to get these attributes.

The ConfigPanelImpl is an abstract implementation of a ConfigPanel. The Class also
contains some general methods that can be used to compose GUI components with
behavior like describe in the GUI design section. The class extends the WizPanel
described in the static GUI class diagram, this makes it possible to use sub-classes in
the deployment tool.

The PanelTextInput interface extends the ConfigPanel, to specify the behavior of a
Text field panel. The interface can be used by the ConfigClass, to access the attributes
of a Text field panel, without having knowledge of the entire implementation.

The implementation of the PanelTextInput, PanelTextInputImpl, extends
ConfigPanelImpl, because it makes the usable in the deployment tool. It also contains
the implementation of the ConfigPanel, which makes the coding a little easier. Beside

Web services payment systems

57

the implementation of the methods described in PanelTextInput, PanelTextInputImpl
contains some construction methods that are not visible through the interface.

The ConfigPanelFactory is a factory class for all configuration panels. It can build
panels from XML elements that describe the content of the panels. The class makes an
instance of an implantation, and configures this instance after the roules described in
the XML element. The BusinessModelReader, also described in the functionality class
diagram, makes use of the ConfigPanelFactory to generate the list of static panels
available in a business model.

XML descriptions of dynamic panels
In the design of the business model framework, it is described that the XML file
describing the business model must be able to describe the static configuration panels
available to the business model. All static panels must be defined in the root element
of the business model file, and use an element called configpanel. A configpanel
element represents a Base Panel (See design of dynamic configuration panels on page
52) and must contain following attributes:

• ID: The suggested order which the ConfigFlowController must use the panel

• headline: The headline of the base panel.

As base panels can contain zero or more configuration panels, the element configpanel
can contain elements that describe dynamic configuration panels. Following elements
describes configuration panels:

Checkboxpanel:

ID: The order of adding the panel to the base panel.

Headline: The headline of the panel

To add check boxes to the panel, the element checkbox must be used. The attributes of
a checkbox are ID and text, where ID is the order which the checkbox is added to the
panel, and text the text displayed.

Optionpanel:

• ID: The order of adding the panel to the base panel.

• headline: The headline of the panel

To add options to the panel, the element option must be used. The attributes of an
option are ID and label, where ID is the order which the option is added to the panel,
and label the text displayed.

Textboxpanel:

• ID: The order of adding the panel to the base panel.

• headline: The headline of the panel

To add text fields to the panel, the element textfield must be used. The attributes of a
textfield are ID and label, where ID is the order which the text field is added to the
panel, and label the text displayed.

Choicepanel:

• ID: The order of adding the panel to the base panel.

Web services payment systems

58

• headline: The headline of the panel

To add choices the choice element must be used. The attributes of a choice element are
ID and text, where ID is the order which the choice elements must be displayed and
text the text used.

To add choice boxes to the panel the element choicebox must be used. The attributes
of a choicebox are ID and text, where ID is the order which the box is added to the
panel and text the text displayed in front of the choices. Choice boxes must be added
to the panel before the choices defined by the choice element are displayed.

Sequence diagrams
The class diagrams did not describe the methods or attributes of the classes. The
sequence diagrams will show some of the methods required, but more may exists
which is discussed in the implementation section.

 : Actor
 : MainWindow : IntegProp : StartPanel

showFileDialog()

init()
Starts the
application

Activates the
Browse
button

getProperty()

Figure 33 - Sequence diagram for use case 1.1 -first diagram

The diagram shows the first part of use case 1.1. The init method must set up the
environment of the application; to do this requires knowledge of size and placement of
the GUI components. Some of the parameters to set up the system can be hard coded
in the MainWindow class, while other can be stored in the configuration file, and
retrieved through the IntegProp class. The diagram does not show the construction of
all GUI components, due to the number of classes involved. It is obvious that the init
method must construct all GUI components, and add actions listeners to all buttons.
The methods called on actions from the button panel must be placed in the
MainWindow class, because this class controls the flow of the application. The action
method for the StartPanel can be placed in the StartPanel itself, because the action of
browsing for files is only related to that panel

Web services payment systems

59

 : Actor
 : MainWindow :

ByteClassLoader
 :

BusinessSelector
 : IntegProp : StartPanel :

BusinessModelFactory

next()

LoadClass()

changePanel()

updatePanel()

getProperty()

getPath()

getBase()

buildModel()

Figure 34 - Sequence diagram for use case 1.1 -second diagram.

The diagram starts when the user has selected the application class and base, and the
next button. The application information from the start panel, is collected and stored in
the MainWindow class. Usually when loading a class in an application, it is required
that the class is in the Java Virtual machines classpath. The tool must be able to load
classes that is not in the JVM’s classpath, to analyze the content of the class, the
loadClass method in the the ByteClassLoader must be able to do this.

The systems configuration contains information about where the business model
configuration files are located, and is asked for this property to be able to load all
business models. The MainWindow runs through all XML files in the business model
directory, and tries to build a business model instance using the BusinessModelFactory.
All the instances is stored in the MainWindow.

The method information from the loaded application class and the names of the
business model instances is used to construct a BusinessSelector panel. The
changepanel removes the StartPanel from the main window, and inserts the new panel
in its place.

Web services payment systems

60

 : Actor
 : MainWindow

 : ConfigClass :
ConfigFlowC...

 :
Businessmodel

 : ConfigPanel

next()
getResult()

NextPanel()

changePanel()

The actor
has filled in
the required
fields of the
configuration
paneland
presses Next setProperty()

next()

changePanel()

NextPanel()

Figure 35 - Sequence diagram for use case 1.2

The diagram starts when the actor has selected which methods to make available, and
which business models to use. What the diagram does not show is that the
MainWindow stores the information about the selected methods and business models.

Notice that the MainWindow accesses all classes in the business model through the
BusinessModel interface. The panel is changed to the first configuration panel from
the first selected business model, the flow of configuration panels can now be
controlled by the business model. Every time the actor changes to the next panel in the
configuration flow, the result of the panel is collected by the MainWindow and passed
to the ConfigClass, which will format the result as properties understandable to the
ServiceClass implementation. This will be done for each panel returned form the
ConfigFlowController.

When one business models has been configured, the ConfigFlowController will not
return more configuration panels, and the MainWindow will load the next business
model, if more methods have been selected for deployment. When the last selected
business model has been configured, the MainWindow will change the to deployment
state, which is described in following state diagram.

Web services payment systems

61

 : Actor
 : MainWindow :

DeployStatePanel
 : WSDeployer : IntegProp : DeployWriter : Util :

WSDeployerFactory

next()
getWSName()

getWSDeployer()

deploy()
getProperty()

writeDPFile()

getProperty()

callExtDeployer()

waitForProcess()

Figure 33 - Sequence diagram for use case 1.4 first diagram

The state diagram starts when the actor presses the next button, after having given a
name to the web service. The name is used as identification of the application in the
web service layer. The MainWindow quires the deployment tools configuration to get
information about the web service platform where the application must be deployed.

The WSDeployerFactory returns an instance of a WSDeployer that can deploy
applications on the selected web service platform. The rest of the application
deployment process is done using the WSDeployer interface. In this case the
implementation of the interface is for deployment to a AXIS web service platform.

The AXIS deployer quires the deployment tools configuration to get information about
the AXIS installation e.g. where to place the application class, and how to get WDSL
files from the platform. The application delivered with AXIS to deploy web services is
a command line Java application that uses a configuration file as descriptor for how to
deploy the application. The DeployWriter can write these files based on the
configuration passed form the MainWindow and the deployment tool’s configuration.

The WSDeployer calls the AXIS deployment tool as an external process, because the
Java program terminates the JVM when the application has been deployed. If the
application was not called in an external process, it would result in the business model
deployment tool would terminate as well. The synchronization between the two
processes is handled by the Util method waitForProcess that pauses the execution of
the deployment tools process, until the AXIS process has ended.

Unlike the deployment of the proxy servlets, deployment of the web service application
must only be done once, independent of how many methods and business model that
have been selected for deployment.

Web services payment systems

62

 : MainWindow :
ProxyDeployer

 :
ProxyServletGenerator

 : IntegProp : Proxy : Util
 :

WSDLGener...

 : WebService : ConfigClass

deployProxy() getProperty()

generateServlet()

compileServlet()
waitForProcess()

copyServlet()

getConfig()

processWSDL()

getProperty()

modifyWSDL

generateWSDL()

Figure 37 - Sequence diagram for use case 1.4 – second diagram.

The diagram shows the flow when generating and deploying the proxy servlets, which
is done after the deployment of the web service application. The ProxyDeployer is
responsible for deploying all servlets in one business model; this sequence diagram
will therefore be repeated for each method selected for deployment. The
ProxyDeployer will first do the things that are common to all the proxies that may be in
a business model:

• Query the deployment tool’s configuration, about where to deploy the proxy
servlets.

• Query the web service platform for the WSDL file that describes the interface
to the web service.

For each servlet proxy in the business model the ProxyDeployer will do the following:

• Modify the end point in the WSDL document to the address of the proxy. If
the WSDL document contains other operations than the one used by the servlet,
they must be removed.

• Get the configuration from the proxy. Notice that the proxy asks the
ConfigClass for the configuration collected during the configuration process.
This means that all proxies get the same configuration, even if some of the
configuration values are not used in all proxies.

• The ProxyServletGenerator is set to generate and compile the servlet, based on
the information collected. The process requires an external compiler to be
called, to keep the application synchronized, the deployment tool is set to wait
until the compiler ends.

• The WSDLGenerator implementation for the proxy is used to modify the
WSDL document again. Because the generator is associated with the proxy, it
has information about how to generated WSDL for exactly this proxy.

Web services payment systems

63

• The generated servlet and its WSDL document are copied to the servlet
container.

Sequence diagram for use case 2

Use case 2 describes how to apply a new business model to the deployment tool.
Because the process does not require directly interaction with the deployment tool, or
other system components, a sequence diagram is not necessary.

Sequence diagram for use case 3

Use case 3 describes how to configure the deployment tool. Because the process is
done using an external text editor, a sequence diagram is not necessary.

Design of business model implementations
The implementation of the interfaces described in the business model framework,
varies a lot from business model to business model, and therefore requires individual
design process.

Many of the business models described here require additional information to be
attached to the SOAP message, used by the web service application. Because most
specifications related to attaching security information to SOAP messages are
incomplete or in draft release, the security information will be attached using parts of
different specifications. The same problem exists with the WSDL document that must
describe a service. If the security information changes the communication interface in
a way that cannot be described in standard WSDL, the WSDL language must be
extended. The best way to extend the standards is discussed for each business model.

Empty model
The purpose of the empty model is to verify that the system can deploy services, and
communicate through a proxy. The ServiceClass implementation must therefore return
the same messages as it receives in both the processRequest and processResponse
method. The configuration of the model does not contain any configuration panels,
therefore the configFlowController implementation must never return a panel. The
ConfigClass implementation must be able to return an empty set of properties, when
deploying the proxy servlet. The implementation of the WSDLGenerator must return
the WSDL document passed to it, without modifying it. This can be done because the
deployment tool has modified the service address and operations not used.

The XML document that describes the business model, must point to the correct
implementations of all the interfaces in the business model package except the business
model itself.

Signature model
The signature model must be able to verify signatures and sign messages. There are
many approaches for implementing these two requirements, following considerations
must be done:

• What must the client sign? Is it allowed for the client to sign more than one
element of the message?

Web services payment systems

64

• Must the client send its certificate with the message, or can the server locate
the certificate from a reference?

• What are the requirements to the client’s certificate? Must the server allow self
signed certificates?

The questions could be asked to the person that deploys an application using the model,
this would require a rather complicated ServiceClass implementation and a
complicated configuration flow when deploying. To keep the model relative simple,
following choices has been made:

• The client must sign exactly one element of the SOAP message namely the
body, which means that the content concerning the web service application
must be signed. It is not allowed to sign sub elements of the body.

• The client must send a reference to the certificate, which must be present in
the server’s key storage.

• The certificate must be issued by a part trusted by both the server and client.
The certificate will be checked by the server for revocation before use, but the
issuer signature will not be checked. It is not necessary to check the signature
of the issuer, because the certificate always comes from the server key storage.
The process of putting certificates in the key storage must ensure that the
signature is valid.

Flow diagram and user interface for configuration.

In the configuration of the model it must be possible to decide which file to use as key
storage, what to do if a signature cannot be verified and whether the response should be
signed. The configuration flow is therefore static and consists of three panels:

Figure 38

To keep the implementation of the ConfigClass in the business model simple, only
standard configuration panels is used. The configuration flow could have done in less
that three panels if the panels where combined (see design of configuration panels page
51).

Because all panels are static, they can all be defined in the configuration file for the
business model, and the ConfigFlowController can run the flow by loading the panels
in the same order as they are defined in the file.

Sequence diagram for request

The function used to sign and verify signatures, must be able to be reused by other
business models and possibly also on the client, this functionality is therefore placed in
another package than this business model.

Web services payment systems

65

 :
ServiceClassImpl

 : SigTools
 : Actor

processRequest()
getKeyName()

verifySignature()

Figure 39

Sequence diagram for response

The request had a reference of which key to use to verify the signature, when signing
the response, the business model must decide which private key to use for the signature.
This could be done during the configuration of the model or in a property file; but for
this test purpose the key name is hard coded in the business model. This makes the
sequence diagram very simple, the service class simply calls a signBody in the
SignatureTools class. The diagram is too simple show!

Design of interface and WSDL

The web service security specification version 1.0 defines a security element in the
header of a SOAP message; this element can contain a digital signature in the format
defined in the XML signature specification. A digital signature from the XML
signature specification can contain information about how to retrieve the public key,
which can be used to verify the signature. Figure 40 shows the expected content of a
message coming from the client, the same structure will be used to send the signed

message back to the client.

Notice that the structure of basic SOAP message is
not changed, the only difference is that a security
field is added to the header. The reference of what
is signed must always point to the entire SOAP
body.

The WSDL file to describe the interface to the
servlet proxy, can be based on the WSDL
document generated by the web service platform.
When the address fields have been changed by the
deployment tool (as described in design of the
deployment tool), only a description of the security
field must be added to the document, figure 40

Figure 40

Web services payment systems

66

shows that the content of the SOAP body does not change.

Carlisle Adams and Sharon Boeyen, Eurotrust have written a suggestion to some
simple extensions to WSDL and UDDI that makes it possible to include security
information. They suggest using a securityParameters element to contain security
information. Because the binding element of the WSDL document describes the
format of the message, it will be natural to place the securityParameters element in here.

The security element must contain following information:

• References to all operations that must be signed (one in this case)

• Information about how to sign (XML signature as described in above).

• Information about which signatures can be verified

Encryption model
The encryption model must be able to decrypt incoming messages, and encrypt
outgoing messages. The key to use for both de- and en-crypt must be a symmetric key
located in the server’s key storage.

The model will assume that the entire body of the incoming SOAP message is
encrypted, and it will encrypt the entire body on the outgoing messages. It must be
possible to select a static key name to use with the model, or choose to let the client
decide the name of the key. The possibility of letting the client decide the name makes
the model easy to combine with the key agreement model described next.

Flow diagram and user interface for configuration.

The two first configuration panels are static, because the user must always decide
which key storage to use, and if a static key must be used. Only if the user chooses to
use a static key name the last panel must be showed.

Figure 41

The ConfigFlowController must use the configuration from the ConfigClass to decide
whether the last panel must be loaded. Like in the signature model, only standard
panels have been used, to make the implementation of the ConfigClass simple.

Sequence diagram for request

The sequence diagram for a request in the model shows the scenario where the user has
deployed a configuration that will use the key name send by the user.

Web services payment systems

67

 :
ServiceClassImpl

 : EncTools
 : Actor

processRequest()
getKeyFromSoap()

decrypBody()

Figure 42

The actual functionality of the model is placed in a common class (EncTools), because
the functions can be reused in other business models and by the client.

Sequence diagram for response

Like the request sequence, the sequence for the response relies on functions placed in
the common class EncTools. Because the encryption must be able to use different
encryption templates, e.g. if not the entire body should be encrypted, the template is
loaded from a class responsible for the templates.

 : Actor
 :

ServiceClassImpl
 : EncTools : EncTemplate

processResponse()

encryptBody()
getTDESTemplate()

Figure 43

Design of interface and WSDL

The XML encryption standard specifies how to encrypt XML documents or parts of
documents. The way it is done is by replacing the clear text node with an XML
encryption node that holds the cipher text and information about it. One of the
requirements to this business model is that the entire SOAP body is encrypted. The
structure of an encrypted message send to or from the server will therefore have the
structure showed in figure 44

Notice that the SOAP specification requires a body in a SOAP message, therefore the
message is actually not a SOAP message before it is decrypted.

The key info is not used by the server if it is set to use a static value as key name. To
keep the generation of the WSDL document simple, the WSDL will always require the
key info to be present

Web services payment systems

68

SOAP Message

XML encryption

SOAP Header

Key info

Cipher data

Algorithm info

Figure 44

Like in the signature model the security information is natural to place in the binding
element of the WSDL document, where also the encoding of the message is specified.
Following information is required in the security field in the binding element:

• Link to the operations that need encryption. Because a servlet can handle
maximum one operation in this system, the reference will always point to only
one operation.

• Information about which algorithms that are supported.

• Information about how to attach the key reference.

Key agreement model
Key agreement can be done in different ways, depending on the facilities available on
the communicating parts. If a number of secrets already have been exchanged, the key
agreement can simply be to select which secret to use for the communication. It is
however unusually that several secrets have been exchanged securely before the secure
communication begins, therefore the agreement method is only used in systems where
the number of sessions is relative limited. An example of a system that uses a variation
of that type of key agreement is home banking systems, where the customer receives a
paper with a number of one-time keys printed.

Key agreement can also be done if the parts have exchanged their public keys. The
first part can generate a key and send it to the other part encrypted with the other parts
public key. The other part can decryp the key using its private key. To avoid re-play
attacks, the first part will have to include a unique serial number or similar, which the
other part must be able to check, to see if it has been used before.

Diffie Hellmann key agreement algorithm is shortly described in the state of the art
section. Compared to the other two key agreement mechanisms Diffie Hellmann has an
advantage because both parts contribute with the generation of the shared secret. This
means that a session cannot be replayed. As mentioned in the state of the art, the key
agreement method does not ensure the identity of the communications parts, which
makes systems based solely on secure agreement woundable if it is possible to spoof
identity on the network. This weakness can however be overcome if the key agreement
process is followed by an identity check

Diffie Hellmann is selected as key agreement method, because it is important to have a
way to establish a encrypted channel between to parts that have not exchanged secrets
or certificates.

Web services payment systems

69

Sequence of key agreement.

Client Server

Generates a Diffie Hellmann key pair with
no initial key.
Sends the public part to the server

 Generates a Diffie Hellmann keypair using the
public key of the client as initial key.
Generates a symmetric key from the client’s
public key and own private key.
Sends own public key back to the client.

Generates the same symmetric key as the
server from the server’s public key and own
private key.

From the sequence it can be seen that the key agreement can be done in one RPC call,
but to use the key, it will require more calls. Notice that the client call does not contain
any data for the Web service application; therefore the servlet proxy can handle the
request alone, and can avoid calling the web service layer.

User interface and flow during configuration

Only the key storage file name can be configured in this business model, the user
interface for this is similar to the key storage dialogs used in the signature and
encryption model.

Sequence diagram for request

 : Actor
 :

ServiceClassImpl
 :

KeyAgreementTools
processRequest() getPublicFromDoc()

generateKeyPair()

getSecretKey()

buildKeyInfo()

Figure 45

Sequence diagram for response.

The model does not send the request to a web service; the response is therefore the
same as the request. All the processing will therefore be done while processing the
request.

Design of interface and WSDL

Web services payment systems

70

As discussed only the public keys of the client and server will have to be send over the
network, this means that there is actually no need for sending a SOAP message. A
SOAP message is used anyway, to enable the model to process application data using
the same message. The Public keys are therefore placed in the same security field in
the SOAP header as the signature model uses. The structure of the messages is showed
in figure 46

SOAP Message

SOAP Body

SOAP Header

Key Info

Security field

Figure 46

The WSDL document generated by the WSDLGenerator in the model, must add the
same security field as used in the encryption and signature model, to the binding
element. The security element must include following information:

• A key info description that shows how the model expects to receive the values
of the public part of a Diffie Hellmann key pair.

The use of the SOAP header for exchanging the public keys is done because all other
security related information is transported in the header. Another way of transporting
the keys could be by using the SOAP body; the business model layer would then have
to act like a standard web service operation, where both the input and output would be
a DH public key.

Secure payment
The secure payment business model must be able to establish a secure connection
based on the security mechanisms used in the other business models. The five security
points described in the state of the art section can be used as checklist for the security
in this model.

• Confidentiality: The encryption facilities from the encryption business model
will be used to ensure the confidentiality.

• Integrity: The signature model can ensure the integrity by checking the
signatures on signed data.

• Authentication: The signature model can easily be extended to check the
client’s certificate against an issuer’s public key.

• Authorization – The business model must use the name from the client’s
certificate to perform an authorization check. The database of the business
model must store valid user names.

• Non-repudiation – The facilities in the key agreement business model can be
used to make the same key available on the server and client. If the key is only
used in one transaction, then the system is not vulnerable to replay attacks.

One transaction using the model will have the flow showed in figure 47.

Web services payment systems

71

Figure 47

Notice that the client must send the web service request before the identity of the server
is proven by its signature. The client can only assume that the network address is
correct and it is actually the server receiving the encrypted message. This problem can
be solved if the server signs the message with the public Diffie Hellmann key it sends
back (3); the client can then stop the communication if the signature cannot be verified.

When the client prepares to send the web service request, it must first calculate the
signature on the clear text message, and then encrypt the message. It is important to
sign the message before it is encrypted, because the server will store the clear text
version as proof for the transaction, and the signature must be used as a link between
the client and this message. The client must attach its certificate with the web service
request, because the server will use the public key of the certificate to check the
signature of on the message. To ensure that the certificate can be trusted, the server
must check the certificate with the public key of a third part that is trusted by both the
server and client.

Flow and user interface for configuration.

In the configuration of the model it must be possible to select the key storage to use for
the symmetric key, and the public key to verify the client’s certificates. It must also be
possible to type the name of the public key. The model must be able to send the name
of the client to the application in on of the parameters used when calling the application.
If the method to deploy does not take a String as one of its call parameter, the
configuration must offer to pass the username. If the method is called with one or
more Strings, the configuration must ask the user if one of them should contain the
username from the client’s certificate. Figure 48 shows the flow and user interface for
the configuration.

Figure 48

Web services payment systems

72

 The second panel is only showed if the method takes a String parameter, and the third
panel is only showed if the user chooses to use the name in the application.

To keep the business model simple, it is chosen to hard code many parameters that
could be configured when deploying. Of things to hard code is:

• Database name and driver.

• Keystorage password and key passwords.

• Behavior of the model if users are revoked or signatures cannot be verified.

Sequence diagram for request

From figure 47 it can be seen that the business must have two servlet proxies; one for
the key agreement and one for the web service call. Figure 49 shows the sequence
diagram for the first servlet proxy.

 : Actor
 :

ServiceClassImpl1
 :

KeyAgreementTools
 : SigTools

processRequest()
getPublicFromDoc()

generateKeyPair()

getSecretKey()

buildKeyInfo()

signKeyInfo()

Figure 49

Notice that the key agreement functions are all used in the key agreement business
model. The model places the public key information in the SOAP header, and the
signature business can only sign the body of a SOAP message, therefore a new method
that can sign a key info field must be added to the SigTools class.

The second proxy servlet relies on the symmetric key which the first put the server key
storage. Figure 50 shows the sequence diagram for the second servlets request process.

Web services payment systems

73

 : Actor
 :

ServiceClassImpl2
 : EncTools : SigTools : Database : WebService :

ParamModifier

processRequest()
getKeyFromSoap()

decrypBody()

getCertificate()

checkCertificate()

CheckAccess()

setValue()

processAppl()

verifySignature()

Figure 50

The EncTools class is used to get the name of the symmetric key used to encrypt from
the message. The message is decrypted, and the SigTools class must check the validity
of the certificate attached to the message. The SigTools also checks the signature on
the SOAP body, to verify that the client has signed, and the integrity of the data is
intact. The database class must check that the client has access to the web service

In the configuration it can be selected to let the business model overwrite on parameter
passed to the web service with the name of the client. The paramModifier class can
read and modify text values in the SOAP body. The class does not use any of the
functionality from the web service platform; therefore can only Strings and Integers be
read and modified. The client name is a String, and can be modified with the name
form the certificate, if it is selected during the configuration of the model.

The ServiceClassImpl2 must save the request message until the response has been send
to the client, because the signature and request must be saved in the database. The
request is not saved in the request process, because the web service can fail, and the
request stored in the database, will be used to charge the client for one processed
request.

Sequence diagram for response.

The first proxy servlet does not call the web service application; therefore can the
whole process be done in the request process.

Figure 51 shows the sequence diagram for a response in the second proxy servlet.

Web services payment systems

74

 : Actor
 :

ServiceClassImpl2
 : SigTools : EncTemplate : EncTools : Database

processResponse()

signBody()

encryptBody()

getTDESTemplate()

deleteKey()

storeRequest()

Figure 51

The response needs to be signed and encrypted like it is done in the signature and
encrypt business model. The ServiceClassImpl2 must used the key name from the
request to encrypt the message. It is important that the key is deleted from the key
storage before the session ends; else it would be possible to replay the request. At last
the request is stored in the database, to use as proof for a successful completion of the
application call.

Database design.

The database design is relative simple if it is only used to information used in the
business model. The user table only contains the name and a revoked field; it is
assumed that the name is the unique identifier of a user. This is possible because the
business model can only verify certificates from one issuer; this issuer must ensure that
two certificates do not have the same name. The transaction table contains a reference
to a user, and the entire SOAP message after it is decrypted. Figure 52 shows the
database design.

Figure 52

Design of interface and WSDL

As discussed the format of the messages used in the first proxy servlet, is almost
similar to the messages used in the key agreement business model. The only difference
is that the response from the proxy is signed. The response message will therefore
have the structure showed in figure 53

Web services payment systems

75

The WSDL document to describe this message must
extend the document used in the key agreement
model, by specifying that the response includes a
signature in security field in the SOAP header.

The WSDL document does not need to specify that
the signature is for the key info field. This
information is contained in the signature itself.

The second proxy servlet will send and receive
messages that are encrypted and signed, the structure
of the messages will therefore be a combination of
the messages from the signature and encryption
model. Incoming and outgoing messages will have
the same structure. Figure 54 shows the structure of
the messages.

Notice that the reference in the XML signature cannot
point to an element in the message, because the body
element is changed to an XML encryption element.
The receiver of the message must therefore know that
the encrypted element must be decrypted, before the
signature can be verified.

The WSDL document that described the message
must contain both the elements defined in the
signature model, and in the encryption model.

In the binding element of the WSDL document, both the
encryption information and signing information must
therefore point to the operation element. In this way
will the client know that the SOAP body must be
signed before it is encrypted, because the encryption
process removes the body (the operation in WSDL),
and makes the signing impossible.

Figure 53

Figure 54

Web services payment systems

76

Capability access
The philosophy of capability systems is that users with knowledge of the address and
protocol used in a system should be granted access to the resource. In a standard Java
web service system, all the deployed methods in a class will be described in a single
WSDL document, and thereby be defined as one service One way to make
differentiated access based on capabilities would be to publish the same class one time
for each capability access point.

Example: An application can search in a database using the method
search(query_string1,query_string2, max_result), where the query strings is used to
define what to search for, and max_result is the maximum number of results to return.
Two capabilities must be defined for the method, one that gives directly access to the
method, and one that will limit the use to one query string and a fixed number of
results.

One way to implement this in a web service system, is to add another method in the
application that calls the search method, but uses static values for the last two
parameters. The application must now be deployed one time for each method, where
only one method is allowed to be called in each web service.

This will result in two web services with different WSDL descriptions, if the
application were deployed only once it would result in one WSDL description with
both interfaces described. It is important to have two WSDL descriptions, because the
access control is based on the communicating interface described in these files.

Because this system can deploy more servlets for one method, capability access can be
implemented relative easy without adding new methods to the application. The
business model to capability must be able to add default values to the application
method, if required. Figure 55 shows the model of the capability system, with the
method from above.

Figure 55

User interface and flow during configuration

In the configuration of the model, it must be possible to select which capabilities to
deploy for one method. For each capability to deploy, the user must select which
parameters to include in the interface specification, and which parameters the business
model must assign default values. Figure 56 shows the flow and user interface of the
configuration of the model.

Web services payment systems

77

Figure 56

The first panel must be build dynamically by the ConfigFlowController, because the
choice boxes must match the parameters used in the method to deploy. The second
panel must be build dynamically using the choice made in the first panel and the
parameters required by the method. The last two panels can be defined in the static
description of the model, because they do not change with the selections made.

The last panel must be able to end the dynamic configuration process, if the user
selects to deploy the defined capabilities.

Sequence diagram for request

The sequence performed on an incoming request to the web service application,
depends on the configuration of the servlet. Figure 57 shows the sequence diagram
when request parameters needs to be added by the model.

 : Actor
 :

ServiceClassImpl
 :

ParamModifier
 : WebService

processRequest() insertParam()

setParamOrder()

processAppl()

Figure 57

The parameterAdder method must be able to in insert parameters in the SOAP request,
but it must also be able to change the order of incoming parameters. In this way it will
be possible for the model to construct SOAP messages that fits the interface of the web
service independent of the structure of the incoming message.

Web services payment systems

78

Sequence for response

The capability access is done alone in the request, the response must therefore be send
to the client without modifications.

Design of interface and WSDL

The interface of each deployed proxy servlets, depends on the selection made in the
configuration, but it will always be a sub set of the original method. The
WSDLGenerator must therefore be able to remove parameters in the WSDL message
element. The elements to remove must be selected using the selections made during
the configuration of the model.

CPU payment
The CPU payment business model will ask the client to do some calculation before it
gives access to the web service. The model must therefore be able to send a problem to
the client, and first call the web service when the client delivers an answer. A model of
the communication is showed in figure 58

Client Application Web service

Server business

proxy

Client business

proxy

1. Send web

service

request

2. Ask for start parameters

3. Send start parameters

4. Send result and web

service request

5. Process

web service
6. Send WS result

7. Send WS result

8. Get WS result

Figure 58

The figure shows that the business model must consist of two proxy servlets for each
web service operation: One that can deliver start parameters, and one that can receive
results and process the clients request in the web service layer. The model can easily
be extended by a check of the result the client sends; this is especially useful if the
check is requires less calculation than the operation done by the client.

User interface and flow during configuration.

The simple implementation of the model requires only knowledge about where to find
the start values for the client, and where to store the result. This can be done by two
text input fields in one static configuration panel, as described in the design of the
configuration panels.

Sequence for request

The diagram on figure 59 shows both the calls that are necessary to make to the service.
Notice that only the second call communicates with the web service application. The
database implementation is showed as one class, but the actual implementation may
require more classes, depending on how to communicate with the database.

Web services payment systems

79

 : Actor
 :

ServiceClassImpl
 :

ServiceClassImpl2
 : Database : WebService :

ResultChecker

processRequest() getStartValues()

processRequest()

storeResult()

checkResult()

processAppl()

Figure 59

Sequence for response

Because the first proxy servlet of the model do not call the web service, there is no
need for processing the response.

The second proxy servlet does call the web service, but the client does not need more
information form the business model layer, so there is also no need for processing this
response.

Design of interface and WSDL

The interface to the business model is divided into two parts, because it consists of two
proxy servlets. The message send to the first servlet can be empty, because the servlet
does not require any information from the client. The response must however contain a
start value to the client, and it must be described in the WSDL how to interpret the
value. The description of the value depends on which problem the client is asked to
solve, therefore a new namespace may be required for each problem to solve.
Following information must be available to the client in the description of the service.

• Data format and encoding of the data returned from the service.

• Reference to an application or algorithm that can use the data as input.

The second servlet proxy must be able to receive the result from the client in the same
message as the clients request to the web service application. Transport of the result
can be done in the same way as security information: In the header of the SOAP
message.

The WSDL document for the second servlet proxy must describe the data format and
encoding of the result value, in the same way as the first described the format of data it
returns.

Web services payment systems

80

Package structure
The package structure of the system is already partly described in the class diagrams;
an important thing to notice is that the helper classes used in the business models, must
be placed in a separate package. The separation of the functions in the helper classes is
important if the components must be reused, but also for separating the web service
knowledge from the business implementation. Following packages is used in the
system:

Businessconfig: The configuration panels available to the dynamic
configuration of the business models

Businessmodels: The business model framework

Businessmodels.dh The key agreement model

Businessmodels.dsig The signature model

Businessmodels.empty The empty model

Businessmodels.encryp The encryption model

Businessmodels.secpay The secure payment model

Secintegrator The functionality of the deployment tool

Secintegertor.gui The gui classes of the deployment tool

Security.xml The common functionality classes for the business
models

Client considerations
The clients are not considered as a part of the system, but the design of the system
should make it easy to develop clients capable of communicating with the proxy
servlets. Further it is necessary to develop test clients to ensure that the business
models works and fulfills the requirements.

As discussed the server uses a web service platform to do the marshalling and de-
marshalling, the business model layer can therefore concentrate on the security and
payment related tasks. The same model can be used on the client, and thereby obtain
the same benefits of using the web service platform.

The client will also have to run a proxy that handles the business model related tasks,
but not necessarily on an application server. The web service platform will usually
provide an API that will do the marshalling and send directly to the network. The best
solution for the client business model proxy, would be if the proxy could replace the
network layer of the web service API. This would however require modification of the
web service platform. Instead the proxy will be developed as a network proxy.

For testing purpose the client must be able to change the business model relative easy,
therefore the client proxy is developed in much the same way as the server proxy, with
a pluggable service layer. The client model will look like figure 60

Web services payment systems

81

Server

Client application

Client proxy

Client

Business

models

Figure 60

Notice that the proxy is able to have more service layers installed, this is used when a
business model requires more than one RPC call. The service layeres must have full
control over the messages like it is the case on the server proxy. This makes it possible
for the business model send exactly what is required by the receiving servlet, and not
necessarily the SOAP message generated by the client application.

WSDL to Java application considerations
If the web service platform is used on the client side as described in the client
considerations, it will be natural if the WSDL to Java application that is usually
available on the web service platform, can be used to help generate the client
application. The generating application will have to be extended to be able to generate
the right service class to use in the client proxy layer.

One of the challenges of the code generator is to make clients that use more that one
web service to one client RPC call. The information of the relation between two web
services is not described in the WSDL of the services. An example of this is the secure
payment model where the last servlet requires that the first servlet is called to set up the
transport key. The WSDL of the second servlet only describes that the message must
be encrypted, and that the client must send the name of the key under which the
message is encrypted. To enable a code generator to generate proxy code for coupled
web services, a language to describe the relations is therefore necessary.

Test applications
To verify that the proxy, deployment tool and business models, the test environment
needs to be set up properly. The applications described here will help in testing the
system components.

Key storage generator
Some of the business models rely on the availability of some cryptographic keys and
certificates. It is out of the scope of the project to develop applications to securely
distribute these components, instead one application capable of setting up key storages
for the client and server is developed. How the key storages is made available to the
server and client is not considered. Content of the server key storage:

• One private RSA key belonging to the server. This key is used to sign
messages in the signature and secure payment model.

• One certificate containing the public key of a certificate issuer, signed by the
issuer. The public key is used to verify certificates send by the client

Web services payment systems

82

• One certificate containing the public key of the server, signed by the issuer.
The certificate is attached in the signature and secure payment model. (But
only used by the client in the secure payment model.)

• One certificate containing the public key of the client, signed by the issuer.
This certificate is only used in the signature model, to verify the signature. In
the secure payment model the certificate send by the client is used.

• One symmetric key. To use in the encryption model. The secure payment
model will use the symmetric key generated in the model.

The content of the client key store is similar, except the private RSA key that must
belong to the client.

Calculator
The calculator must be able to add and subtract two integers and return the integer
result. The application can be used for testing the deployment tool and business
models.

Text application
To test the capability of changing the user name in the SOAP message in the secure
payment model, the web service application must take a string parameter as argument.
The text application must take a text as parameter and return the same text plus some
extra text that indicates that the text has been processed in the web service layer.

Web services payment systems

83

Implementation and test
This section describes how the components designed in previous section can be
implemented. The implementation is not explained in detail, only if the
implementation requires more than basic programming knowledge, it is explained. For
a more detailed description of the implementation, refer to the Java documentation or
the source code on the CD-ROM (see appendix a).

The design of the system shows that the system must rely on external software
components. The system must be implemented in Java, and the most obvious choice is
the standard edition in the newest release which currently is 1.4. Choosing the newest
release means that the system will not run on systems where only older versions are
installed. This is a major drawback especially for the web components, because
updating the Java virtual machine on an application server usually changes the
environment for all applications running in its context. Updating the JVM on an
application server is therefore not as easy as for a standalone application, and requiring
the latest version of Java may conflict with the existing configuration. The web
components must therefore be able to run on an older version of Java than the
standalone applications. Java standard edition version 1.2 or newer can be found on
most application servers, and is therefore selected as platform for the proxy and
business models. The proxy must be able to run as servlets on an application server,
therefore it relies on the Java enterprise edition. Version 1.3 of the J2EE is chosen as
J2EE platform, because 1.4 is currently in beta release, and 1.3 is available on most
application servers.

 For the deployment tool Java standard edition version 1.4 is selected as platform,
mainly due to the support of regular expressions, which is not standard in earlier
versions.

The choice of using Java version 1.2 on the application server means that all XML
processing APIs must be downloaded separately and included with the web
applications. The same is the case for the cryptographic support required in some
business models.

The system is designed to work with different web service platforms and application
servers, in the implementation and test Apache AXIS will be used as web service
platform, and Apache Tomcat as application server. The choice is made because they
can be downloaded for free, and the source code is included, if unexpected problems
should occur. AXIS includes a small proxy that can echo the messages send through,
this is used for debugging

As development application IBM WebSphere Application Studio Developer is used.
The application offers Java development with instant debugging facilities on different
Java platforms and application servers. Development of XML documents and different
web-related files is also possible. Concurrent Versioning System (CVS) is used as code
repository for the development process.

Order of implementation
In the design section it is mentioned that not all the designed components will be fully
implemented. The reason for this is that the purpose for the project is not to implement
a fully functional system, but to focus on some of the issues of developing secure web
services. The order of the implementation is therefore focused on implementing the
main functionality, and not on making the system stabile or user-friendly.

Due to the size of the project, the two last business models (Capability access and CPU
payment) will not be implemented.

Web services payment systems

84

Business model proxy
The priority order of implementing the proxy is as follows.

1. Core proxy functionality as an http servlet on an application server.

2. Analyze the messages that go through the proxy. Build XML documents from
the messages.

3. Create instances of the serviceclass from different business models, and
process the messages in the instances.

4. Reply on WSDL requests.

5. Create a reusable API with functions used in different service classes.

6. Error handling that will inform the client of errors occurred by sending SOAP
fault messages.

7. Extended error handling with local logging.

The success criteria for the proxy is that 1,2 and 3 are implemented and functional.

First success criteria:

To implement point one, a test environment consisting of an application server must be
installed and configured. This application server must be set up in debug mode to
enable step-wise debugging of the server applications.

The application server can handle http request, therefore it is not necessary to code a
specific http layer to handle the mime headers. On the connection to the web service
platform, the proxy can use the same mime headers as on the incoming connection.
The incoming data stream can be copied directly to the web service connection’s
output stream, using a byte array as buffer.

Second success criteria:

The incoming data stream must be feed to an XML document builder. The IBM XML
security package contains a document builder that can build DOM representations of
XML documents from a data stream. It is possible to use other API’s that can build
SOAP messages from XML data streams, but some of the business models require the
messages as DOM representations, so this format is selected from the start.

Third success criteria:

The proxy servlets can have the business model classes in the class path, but must be
able to make instances of the classes from a text description. When doing this the
instance must be cast to a ServiceClass implementation. The classpath must also
include all the classes used by the ServiceClass.

Fourth success criteria:

The reply on WSDL requests will be handled by the servlets, and is therefore described
in the implementationof the servlet template in the deployment tool.

Fifth success criteria:

The reusable API will be implemented when implementing the business models.

The remaining success criteria will be considered “nice to have”, and will not be
discussed nor implemented!

Test cases
The test cases for the proxy are defined by its use cases

Web services payment systems

85

For all tests performed the empty model will be used to as business model and the
calculator application as web service. The calculator client will be used without
business model proxy attached, to generate the test requests and show the returned
result.

In the test of handling WSDL requests, an Internet browser will be used.

Deployment tool
The priority order for implementing the deployment tool.

1. Deployment of a Java application on a web service platform.

2. Generation of a servlet with a changeable configuration. Deployment of
servlet on an application server.

3. Analyze of a compiled java class.

4. Use of external business models in the application.

5. GUI to collect all information required to generate a servlet and deploy the
application.

6. WSDL modification.

7. Storing system configuration in a XML file.

8. Error handling to display errors in a user-friendly way.

9. Extended GUI that can navigate both forward and backware in the deployment
process and show help.

The success criteria for the deployment tool is that 1 to 7 are implemented and
functional.

First success criteria:

It is essential for the system to be able to deploy applications on the web service
platform (AXIS). The deployment tool must be able to use the existing AXIS
deployment tool, which can use XML files as deployment descriptors. The files must
contain information about the service name, application name and which methods to
publish. The system must therefore be able to write such XML files, and call the
external application using this file.

As discussed in the design the application must wait for the external application to end,
before the execution can continue. This can be done by polling the external process for
it’s return value, and continue when the value is returned by the process. The polling is
done every 0.5 second, and the application is set to sleep between the polling. It is
important control the polling interval, because if the application is not set to sleep
between the polling it will use unnecessary CPU time that could be used by the
external process.

Second success criteria:

To generate servlets with a variable configuration, it is necessary to have a template
containing keywords to use when adding the configuration. Regular expressions from
Java 1.4, is used to find the keywords in the template, and inserting the configuration
parameters. Java properties with only Strings as keys and values, is used as type for the
configuration, which means that string values is inserted in the Java source template.

Web services payment systems

86

This can result in an error if the user uses escape characters in the configuration values.
Example: The user must type where a key storage is placed and types:

C:\keystore.ks

Which will result in the following code is added to the servlet:

Properties p= new Properties();
p.put(“keystore”,”c:\keystore.ks”);

The code will not be able to compile because the correct notation for the backslash is
‘\\’ when writing Java source code. The problem can be omitted by simply parse the
strings before they are used in the source code, or base 64 encode the string before it is
used in the source. Example of servlet source if an encoded value is inserted:

Properties p= new Properties();
p.put(“keystore”,new String(Base64.decode(“Dhas1dV7 6Zbb9hilG”)));

The compilation will also succeed, if the user of the application remembers to type \\
instead of \. In the first version of the program nothing will be done to avoid the
problem in the application.

The template must contain the code that uses the proxy (and thereby the business
models), but it must also be able to process requests for WSDL files. To tell the servlet
that it must read the WSDL file instead of calling the proxy, the user must type the
address of the servlet followed by ?WSDL in a browser. The application server will
pass the “WSDL” as an attached query string. The servlet can check for this query
string every time it is called, and thereby know when to read the WSDL file associated
with the servlet.

The location of the WSDL file is decided by the deployment tool, but even if the file is
placed in the same directory as the servlet, it is not necessarily the default directory for
the servlet. The default directory is decided by the application server, and can
therefore not be used. Instead the WSDL directory is passed to the servlets using an
environment variable called WSDL_HOME.

The compile procedure must be done with the correct classpath, which can be
controlled, because the compiler is called as an external process, which the deployment
tool can give parameters. The command string to execute is therefore build from the
parameters in the configuration file and the parameters collected from the user.
Example of a simple compile command:

“c:\java\Javac.exe –cp c:\lib” “c:\source\servlet.j ava”

The placement of the java file is decided by the source generator, and must be a place
where the application server can find the servlet.

Some application servers requires that the servlets are contained in a web project, and
that the servlet is included in the XML description file for the web procject. The
information required in the XML file is much the same as required for the AXIS web
service deployment tool. Because not all application servers requires this description
file, the deployment tool cannot modify such files in the first version.

Third success criteria:

The deployment tool must be able to analyze classes located outside the tools class
path, which requires a way to analyze classes from byte read from the disk. To
determinate the package for the class, the byte loader must use both the directory where
the package begins, and the path to the class. The loader must subtract the base
directory, and thereby build the package name using the java.lang.ClassLoader. The

Web services payment systems

87

analysis of the class once it is loaded must be done using java.lang.Class and
java.lang.reflect.Method.

Fourth success criteria:

GUI support for business model configuration is implemented as described in the
design by having one target panel, and changing the panels that is showed in the panel.
The deployment tool must simply use the interface of the ConfigFlowController, to get
the panels to display, when the controller returns ‘null’ as the next panel, the
deployment tool must continue to deployment phase. The GUI of the configuration
flow must be implemented using Java AWT.

Fifth success criteria:

The visual design of the static GUI makes it possible to used some of the components
made available to the dynamic configuration of the business models. Only the first
panel that contains a “Browse” button con not be implemented using the standard
components form the business model configuration panels.

Sixth success criteria:

The deployment tool must ask the web service platform to get the WSDL document
from the application, so the business model can make its model specific modifications.
In AXIS the web service must be called with the query string WSDL to get the
document, this must be done by using a URL connection.

The WSDL document must be modified before it is passed to the business models
WSDL generator, this must be done using XPATH expressions for finding the correct
elements to modify or remove.

Seventh success criteria:

To store the configuration of the deployment tool in an XML file makes it easy to
organize the properties logically; by it requires a way to refer the properties in an easy
way from the application. The configuration class will convert text string into an XML
path, and thereby be able to look up values in an XML file. The class must use ‘.’ As
element separator, and assume that the last token in a string is an attribute name.
Example of part of a configuration file:

<deploymenttool>
 <deployment>
 <proxy port=”8088”/>
 </deployment>
</deploymenttool

To get the proxy port value from the application the following identity string must be
used in the application:

deploymenttool.deployment.proxy.port

The standard java Class java.util.Properties could have been used, but it would require
the configuration file to be in standard Properties format, which is harder to keep
organized.

Eight success criteria:

Web services payment systems

88

The error handling in the deployment tool can help the business model developer to
debug the business models, therefore must the error handling be detailed and include a
program location of where the error occurred. The error must be displayed in a modal
dialog box that will exit the application when closed.

Ninth success criteria:

To activate the back button in the static configuration flow is relative easy, it simply
requires that the states will be saved on a stack. The back button must set the be able to
change the state to the previous state. To enable the back button in the dynamic
configuration flow requires that the ConfigFlowController is able to return the old
panels, which is not supported by the interface. In the use case for the dynamic flow it
is however stated that if the back button is activated during the dynamic configuration,
the application must go to the beginning of the dynamic flow, which is possible using a
stack for the static panels.

Test cases
The test cases for the deployment tool are given in the use cases for the application.

The variations described in the use cases will not be implemented, but the application
still conforms to the first seven success criteria, because the variations occurs on errors
or pressing the back- button. Screen dumps of the application running can be seen in
appendix e

Empty model
The priority order for implementing the empty model.

1. Manual deployment of a working (but transparent) model

2. Interaction with the deployment tool.

3. ClientProxyLayer implementation.

The success criteria is that the first two success criteria are implemented and functional

First success criteria:

The manual deployment requires a functional business model proxy, with a servlet
capable of accepting connections and telling the business model proxy to make
instances of the empty model implementation of ServiceClass. This criteria is fulfilled
when testing the proxy.

Second success criteria:

The implementations of ConfigClass ConfigFlowController and WSDLGenerator must
be usable in the deployment tool. The model can also be used as test for static
configuration panels defined in the business model description file. The
implementations can also be used when testing the flow and functionality in the
deployment tool.

Third success criteria:

The ClientProxyLayer that will make the client business model proxy work as a
transparent proxy, is not necessary when testing the business models on the server. If a

Web services payment systems

89

business model on the server must be tested with a empty client proxy, it will be easier
to use the client without a proxy. The empty ClientProxyLayer can however be useful
when testing the client business model proxy.

Test cases
Test 1: Requesting through the ServiceClass

Pre Req: The ServiceClass implementation of the business model is made accessible
for the business model proxy on the server. A standard proxy servlet that uses the
model and points to a valid web service is developed and deployed.

Test: A client capable of using the web service directly is requesting the web service
through the proxy servlet.

Expected result: The client receives the same result as when requesting directly to the
web service.

Test 2: Deploying an application using the model

Pre. Req.: The business model description and Classes is made accessible to the
deployment tool.

Test: The deployment process is done as described in the design of the deployment tool,
using the empty model.

Expected result: The static flow of the deployment tool is completed, and the
application is available as web service in the same way as described in the Pre. Req. for
test 1.

The Empty model have passed both tests.

Signature model
The priority order for implementing the signature model.

1. Signing and verifying of signatures in one standalone application. Source:
XML document from a file.

2. Signing and verifying on both client and server. Implemented as a
ServiceClass on the server and a ClientProxyLayer on the client. Source:
SOAP message generated by the AXIS client API.

3. Implementation of ConfigClass, ConfigFlowController and WSDLGenerator,
to configure the model and generate WSDL files.

4. Functions to reuse in other models moved to common class.

5. Error handling if the signatures cannot be verified.

The success criteria is that 1 to 4 is implemented and functional.

First success criteria:

To enable the necessary cryptography in older Java Runtime Environments, JCE and a
crypto provider must be downloaded and placed in classpath. JSSE contains providers
that can do the necessary cryptography for signing and verification of signatures. The
default providers are listed in the java.security file, can also be loaded dynamically
during the execution of the application. When the providers are shipped with the
application (as in this case), the best way is to remove all providers, and add exactly

Web services payment systems

90

the needed providers. A lot time can be saved by doing this, because some providers
generate runtime errors, while others works fine with the same code.

IBM XML Security suite is used to generate and verify the signatures. In the reference
to the signed object it is important to use an XPATH expression to point to the SOAP
body, because this ensures that the receiver will find the same element, even if other
elements have changed in the document.

Second success criteria:

When dividing the application into a client and a server, two different JVM will be
used it must be ensured that the necessary crypto providers are present in both
classpath’. If the crypto providers were not loaded dynamically, both java.security
files would possible have to be updated, which is problematic for some application
servers.

Third success criteria:

The configuration flow of the model is static, which will make the implementation of
the ConfigClass and ConfigFlowController relative easy. The WSDL generator must
always add a static value to the binding element of the WSDL generated by the web
service platform. As discussed in the design section the SecurityParameters tag must be
used to describe the security information. In this field the XML signature element can
contain information about the algorithms and references to the element that needs to be
signed. The signature can contain certificate information e.g. when using the
<X509Data> tag, this can be used to give information about which certificate issuer’s
that are accepted.

Because the proxy servlet represents only one method in the web service application,
the reference will always point to the one operation element in the WSDL document.
The whole security element can therefore be static for all servlets using this model, and
can be hard coded in the WSDLGenerator class.

See appendix ??? for an example of a WSDL file generated by the model.

Fourth success criteria:

The function of signing and verify a signature of a SOAP body can be used in other
models, but also the capability of adding an element to the binding element of a WSDL
file can be reused.

Fifth success criteria:

The best way of reporting an error is by generating a SOAP fault and send this to the
client. The logging facility of the application server can also be used to store the
information on the server.

Test cases
Test 1: Deployment

Pre. Req. The deployment tool is correctly configured and the application server is
started. The signature model is made available to the deployment tool.

The test: The deployment process is run, the calculator class is selected as application
and signature model as business model for one of the methods.

Web services payment systems

91

Expected result: The calculator application is deployed on the web service platform. A
proxy servlet using the signature model is deployed, pointing to the calculator web
service.

Test 2: Requesting through the ServiceClass

Pre req. Test 1 is completed successfully. Two key storeages are prepared using the
CertMaker application.

The test: A request is send to the proxy servlet using the calculator client and the client
proxy with the signature model.

Expected result: The client will receive the result as if it was communicating directly
with the web service.

Test 3: Modifying a signature reference

Pre.req. Test 2 is completed successfully. The server code is changed so one byte is
changed in the SOAP body of the incoming message.

The test: A request is send to the proxy servlet using the calculator client and the client
proxy with the signature model.

Expected result: The signature element can be verified, but the first (and only)
reference will fail to verify.

The Empty model have passed the tests.

Encryption model
The priority order for implementing the encryption model

1. Encryption and decryption in one standalone application using a symmetric
key. Source: XML document from a file.

2. Encryption and decryption both on client and server implemented in a
ServiceClass and a ClientProxyLayer. Source SOAP message from the AXIS
client API.

3. Implementation of ConfigClass, ConfigFlowController, to configure the model.
And WSDLGenerator to generate WSDL documents for the model.

4. Functions to reuse in other models moved to common class.

5. Error handling if the decryption fails.

The success criteria is that 1 to 4 is implemented and functional

First success criteria:

Strong symmetric encryption is not supported by the default crypto providers in JCE,
BouncyCastle must therefore be used to generate triple DES keys and to do the en-
decryption. IBM XML security suite contains the API to apply the encryption on XML
data.

Web services payment systems

92

Second success criteria:

Like in the signature model, the challenge using a client –server model is to ensure that
the crypto providers are available in both Java Virtual Machines. Further the encrypted
element must be transported in a SOAP message, but the encryption breaks the SOAP
structure, so the message must be handled as DOM.

Third success criteria:

The configuration flow depends on the selection made in the second panel; the third
panel must only be loaded if the right selection is made. The ConfigFlowController
must therefore use the properties from the other panels to decide whether to load the
last panel.

Like the signature model, the WSDL document of this model must use the
SecurityParameters tag to the security information. The EncryptedData tag from XML
Encryption namespace can be used to describe the format of the encrypted data. The
element must contain an EncryptionMethod element, a KeyInfo element and a
reference element. Like in the signature model the security field is the same for all
servlets using the model, therefore can the element be hard coded in the
WSDLGenerator class.

See appendix f for an example of a WSDL document generated by the model.

Fourh success criteria:

The function of encrypting and decrypting a SOAP body can be used in other models,
and must be moved to a common class. Also the hard coded SecurityParameter element
can be moved, for easier reuse.

Fifth success criteria:

As described in the signature model.

Test cases
Test 1: Deployment

Pre. Req. The deployment tool is correctly configured and the application server is
started. The encryption model is made available to the deployment tool.

The test: The deployment process is run, the calculator class is selected as application
and encryption model as business model for one of the methods.

Expected result: The calculator application is deployed on the web service platform. A
proxy servlet using the encryption model is deployed, pointing to the calculator web
service.

Test 2: Requesting through the ServiceClass

Pre req. Test 1 is completed successfully. Two key storeages are prepared using the
CertMaker application.

The test: A request is send to the proxy servlet using the calculator client and the client
proxy with the signature model.

Web services payment systems

93

Expected result: The client will receive the result as if it was communicating directly
with the web service.

Key agreement model
The priority order for implementing the key agreement model

1. Implementation of key agreement in one standalone application.

2. Implementation of key agreement in a ServiceClass on the server and in a
ClientProxyLayer on the client.

3. Implementation of ConfigClass, ConfigFlowController, to configure the model.
And WSDLGenerator to generate WSDL documents for the model.

4. Functions to reuse in other models moved to common class.

5. Error handling if something goes wrong.

First success criteria:

Implementing Diffie Hellmann in one application is relative easy, because the transport
and encoding of the public keys is not necessary. Diffie Hellmann key agreement is
supported by SUN’s JCE provider, and is therefore available if JCE is installed in the
JVM. The secret key generated in the process is a triple DES key and this requires JCE
1.2 or later to successfully store the key.

Second success criteria:

IBM XML security suite does not support Diffie Hellmann key agreement; the
exchange of the public keys generated in JCE is relative easy though. The
DHKeyValue from the XML encryption namespace can be used as element for the
transport, after the key is base 64 encoded.

Third success criteria:

The implementation of the configuration process is not really interesting for this model,
the web service application to deploy will never be called, because the model is build
to ignore the application. The configuration of the model is however important if the
functionality is used within other business models; the configuration flow is therefore
implemented even though its usability is limited.

The WSDL document is more interesting, because it must describes a web service that
has no operation, but will use a SOAP message to transport a public key. The way it is
done, is by removing all operations from the binding element, and add a
SecurityParameter element containing a KeyInfo element that describes the valid key
format.

See appendix f for an example of a WSDL document generated by the model.

Fourth success criteria:

The key agreement functions, and the XML formatting of Diffie Hellmann public keys
must be moved to a common class to reuse by other business models.

Web services payment systems

94

Fifth success criteria:

As in the other models.

Test cases
Test 1: Deployment

Pre. Req. The deployment tool is correctly configured and the application server is
started. The keyagreement model is made available to the deployment tool.

The test: The deployment process is run; the calculator class is selected as application
and key agreement model as business model for one of the methods.

Expected result: The calculator application is deployed on the web service platform. A
proxy servlet using the encryption model is deployed, pointing to the key agreement
web service.

Test 2: Requesting through the ServiceClass

Pre req. Test 1 is completed successfully. The ServiceClass and the client proxy are
temporary modified to echo the agreed key value.

The test: A request is send to the proxy servlet using the calculator client and the client
proxy with the key agreement model.

Expected result: The client and server proxies will echo the same key value. The
client application will terminate with an error, because the model will not call tha
servlet.

Test 1 fails because the configuration of the model is not completely implemented.
After manual deployment the second test is completed without errors.

Secure payment model
The priority order for implementing the secure payment model.

1. Combination of Key agreement, signature and encryption model, both on
server and client

2. Implementation of ConfigClass and ConfigFlowController, to configure the
model.

3. Modifying parameters in the SOAP body.

4. Access lookup in database and storing requests in database.

5. Implementation of WSDLGenerator class to generate the WSDL file for the
model

6. Error handling in proxy servlet.

First success criteria:

Combining the business requires two proxy servlets and two ClientProxyLayers, as
described in the design of the model. This will test the ability to deploy more than one
proxy servlet for one web service application in the deployment tool. The ability of
expanding on RPC call in the client proxy will also be tested.

Second success criteria:

Web services payment systems

95

The configuration flow of the model depends on which types the selected method takes
as parameters, the ConfigFlowController must therefore use its knowledge of the
method to create the configuration flow. When analyzing methods in a compiled class
using the java.lang.reflect.Method it is not possible to get the name of the parameter,
therefore will the panel used to select a parameter be based on the index of the
parameter.

Third success criteria:

The model must be able to modify a string parameter in the soap body. XML is in text
format, which makes it possible for the business model to modify the parameter
directly without using an external marshaller. The correct parameter is found using
XPath, which is relative simple, because the SOAP message will always contain a call
to the same application method.

Apache SOAP API could have been used to modify the message relative easy, but the
business model requires the SOAP message to be in DOM format e.g. when encrypting.
Transformations between Apache SOAP API and DOM have proven to break the
signature, because it removes text nodes that contain only spaces.

Fourth success criteria:

IBM DB2 personal edition is used as relational database system to store the
information used in the business model. The database is created using the
configuration application included with DB2. Access from the business model is
gained by using JDBC, which is the Java frame work for accessing databases. The
query in the database is relative simple, but must use prepared statements, to avoid
conflicts if the query parameters contain SQL reserved characters.

The size of the request to store in the database can vary, because it contains parameters
decided by the client application, the database must therefore be able to store data of
variable size. One way to obtain this is by selecting a fixed max size for the column in
the database, and pad the request to fit the column. The database can also be set to
store data of variable size, but this reduces the performance of the database. For testing
purpose the performance is not an issue, and the database is therefore set to store data
of variable length.

Fifth success criteria:

The WSDL document for the first proxy servlet, is the same as the one used in the key
exchange model except that the model signs the public key send back to the client.
One new element must therefore be added to the binding element of the WSDL
document, namely a Signature element pointing to the KeyInfo field.

See appendix f for an example of a WSDL document generated by the model.

Sixth success criteria:

Error handling must be done in the same way as in the other business models.

Test cases
Test 1: Deployment

Web services payment systems

96

Pre. Req. The deployment tool is correctly configured and the application server is
started. The secpay model is made available to the deployment tool.

The test: The deployment process is run; the text application class is selected as
application and secpay model as business model for one of the methods. In the
configuration it is selected to let the model modify the calling parameter to the owner
of the certificate.

Expected result: The calculator application is deployed on the web service platform. A
proxy servlet using the secpay model is deployed, pointing to the calculator web
service.

Test 2: Requesting through the ServiceClass

Pre req. Test 1 is completed successfully. Two key storeages are prepared using the
CertMaker application. A suitable database for the model must be available, and the
client must be created as user in the database.

The test: A request is send to the proxy servlet using the text application client and the
client proxy with the secpay model. The client must call the web serive using a string
parameter different from the name in its certificate.

Expected result: The client will receive a result string, where the name from its
certificate is included. The database will contain the decrypted request from the client.

Test 3: Variations of test 1 and 2

Test 1 is run with another source application, to verify configuration of the parameter
modification will change.

Test 2 is run with different settings on the client and server to verify that the model will
reject the client based on its certificate validation, authority in database and message
integrity.

Capability access model
The capability access model will not be implemented and therefore not discussed here.

CPU payment model
The CPU payment model will not be implemented and therefore not discussed here.

Client proxy
The priority order for implementing

1. A transparent standalone proxy, capable of forwarding http requests.

2. Building of XML documents from content.

3. Processing of XML documents in more ClientProxyLayers, enabling
expanding of one RPC call from the application to more RPC calls to web
services.

4. Integration with client application.

Web services payment systems

97

5. Error handling

First success criteria:

The server proxy makes use of the application server for network connections; one
thing the application server does is that it reads the http headers, and makes the content
of the request available as an input stream. To do this, the server makes use of the
HttpServletRequest, which is available from the Java 2 Enterprise Edition, and
therefore cannot be used in the client proxy. The proxy must rely on plain Sockets, and
do the separation of headers and data itself. The headers are separated by \r\n, and the
data stream begins after the first empty header.

The proxy must be able to establish a new connection to the server and send the same
mime headers, because it will not make changes to the content of the data. The data
content must simply be read from the socket input stream, and send directly to the
socket connected to the server.

Second success criteria:

One of the mime headers contain information about the length of the content data being
send. This information is used to make sure that the entire message is read, before
trying to build an XML document. The value of this mime header must be changed
before it is send to the server, because the length can have changed during the
transformation from byte data to XML document and back. Because the client proxy
will do the same cryptographic functions as on the server, the SOAP messages will be
handled as DOM objects.

Third success criteria:

To expand the RPC call from the client application, the proxy must implement a chain
of ClientProxyLayers. They must be used in the same order as they are added to the
proxy. The first layer will process the message from the client application and the
response from the server, and pass the result to the next layer. In this way can
information from all server RPC call be accumulated before the client receives the
result.

Fourth success criteria:

The proxy must act as part of the client and should not run as a standalone application.
Because it listens for connections on a network port, it will have to run in a separate
thread when it is integrated in the client application. The client must initialize the
proxy with the correct ClientProxyLayers and start the proxy, in the initialization of the
client.

Fifth success criteria:

The proxy must be able to recognize messages containing SOAP faults. If a the server
sends a SOAP fault the proxy must send it directly to the server without processing it
in the business model layer. If an error occurs on the client side, it must generate a
SOAP fault and send it to the client application.

Test
The purpose of the client is to be test tool for the business models on the server, and
will not be tested further than when used in the test of the server.

Web services payment systems

98

Evaluation
The purpose of this project was to obtain knowledge form the web service domain in
general, and use this knowledge to develop a system capable of deploying Java
applications as web services, and apply a security model.

In the state of the art section, many of the technologies used in the web service domain
were described. It is clear that the domain is very large, and exactly where it starts and
stops is very difficult to define. The section described both specifications and Java
tools that support the specifications; not all specifications and tool were described, but
the section shows that there exist many specifications and tools. To fully understand
the domain therefore requires a lot of study, and because the technology moves relative
fast, it is hard to be up to date with all work being done within the domain.

The work being done in securing web services is very focused on trust across domains,
which is natural because one of the sales points for web services is the ability of
business to business communication. The suggested systems which should help in
establishing this trust are often complicated, and the description in the state of the art
section is very short, compared to the complexity and the focus many companies have
in this area. The reason for this is that the system developed in this project had to be
less complicated than the solutions described in e.g. XKSM and SAML, due to the time
limit of the project.

The use of discovery service with web services is possible with the technology today,
but the focus is still on enabling applications to speak web services. This is also the
case when looking at security in web services, the focus is on the messages send
between the communicating parts, not on how to describe the communication in
WSDL or securing the discovery service.

The section with requirements to a web service payment platform, described why there
is a need for a payment system platform. The requirements were based on existing
payments systems, and assumptions to future payment systems made in the state of the
art section. In the considerations were also the technology available, especially what
web services offers, and the influence many people think web services will have on the
future way of doing business.

The selection on business models to implement was made based on existing ways of
doing business on the internet today, and assumptions to the future payment models.

The purpose of the design section was to design a system that conforms to the
requirements stated. The selection of a proxy model was made mainly because it do
not require any modifications to existing systems, but also because it is independent of
the web service platform used. One of the drawbacks of the proxy is that it is not
capable of serialize and de-serialize complex objects, which makes it hard to work with
the content of the messages in the proxy. A solution to the problem could be to use the
web service platform to get and set parameter values in the proxy; this will however
make the proxy dependent of the web service platform. The proxy mainly works with
the security header of the messages, where the complex objects are known by the
business model; serialization and de-serialization of these objects can therefore be done
without using the web service platform. The problem only occurs when the proxy
needs to access the data meant for the web service application.

The proxy with a changeable business model fulfills the requirement of separating the
business model from the service application; because it gives the business model full
access to the messages that is send to and from the application. To develop a business
model requires some knowledge of web services, the requirement of separating web
service knowledge from the payment knowledge is therefore not fulfilled completely.
Because the commonly used functions related to security and SOAP messages, is

Web services payment systems

99

moved to an API package available to all business models, the required knowledge
about web services is little when developing new business models. Only if a business
model must do something that is not included in the API, the business model developer
will have to know something about web services.

The model of having at least one servlet for each method in the web service application,
was selected, because the proxy will not have to read the destination method in the
incoming messages to select the right business model. In the capability access business
model, it also turned out to be usable when defining different capabilities for the same
method. As described, the drawback is that if more business models are applied to
different methods in the web service application, it is possible to use a wrong business
model to call the web service. The solution is to let servlets check the name of the
method in the incoming messages.

The challenged of making easy deployment of new application in the system, required
a new deployment tool. The tool is designed so users with very little knowledge of
web services can deploy applications and combine them with business models. The
cost of the easy deployment is less flexibility. Some flexibility is however possible
with the tool, because the developer of the business modes decides what needs to be
configured in the proxy servlet, the deployment tool can furthermore be configured
using the configuration file. The deployment process is kept simple, because it is
possible to deploy applications manual, if flexibility is preferred instead of the fast
procedure.

The business model framework is designed to make the development of business
models easy and yet flexible. Most of the framework is used only in the configuration
and deployment process; this shows that the price of the easy deployment using the
deployment tool is relative high. The use of interfaces in the framework is essential,
the different business models implemented using the interfaces, shows that the
framework can be used in many of today’s business models, and possible also in future
models.

In the design of the business model implementations cryptography is widely used, the
standards for using security information in XML documents are mature and API’s
exists to easily implement the standards. The suggestions on how to use security
information in web services are incomplete, and typically not standardized. Most
suggestions are however based on XML security, so the security design in the business
models is based on the XML security specifications. Attaching security information to
SOAP messages using XML security specifications is relative easy, but the description
of the security in WSDL files is harder.

The web service policy description suggests a way to attach security information to
WSDL files, the way it is implemented in the business models is similar to the
suggestions, yet not completely as described in the suggestion. The description of an
empty SOAP body with a signed public key in the header, can not be described in
WSDL with the web service policy extensions.

The need for extensions to the WSDL specification is also clear in the CPU payment
model. The model does not use cryptography, by it is required that the client has
solved a calculation problem to get access to a web service. WSDL can describe the
interface of both the proxy servlets in the model, but the connection between the two
services cannot be described.

The client and client proxy are not considered as components in the system, the reason
for this is that the system should make it possible for everyone to develop clients
capable of communicate with the system. The client proxy is developed for testing the
system, but is also designed to be pluggable, so a future WSDL to Java tool will be
able to generate the required plug-ins to support a business model.

Web services payment systems

100

The development and test environment is essential, the time spent configuring test and
development system compared to the time spent designing and coding the system is
relative high. The reason for this is that many components from different vendors have
to work together, and when a new release of a component must be added, it will
typically affect many parts of the system. Because web services is a fast evolving area,
the frequency of updates to the used components is relative high.

Future of the system
The system developed fulfills most of the listed requirements, but the system needs to
be extended and adjusted to have real value in a production environment. Especially
the generation of WSDL documents needs improvement; the concept of using the
WSDL generated by the web service platform is useable if only minor modifications
needs to be done. If the business model communicates via a completely different
interface, like it is the case for the secure payment model, it is simpler to let the
business model do the whole generation.

The developed system is functional, and indicated that web services indeed can be used
in payment systems. It shows that it is possible to separate the knowledge of
applications, web services and security, and combined it when deploying the web
service. The system does not address the need for trust across domains or the need for
security when communicating with an UDDI registry. It is clear that this is necessary
if the visions of web service shall come true, but until the security specifications are
standardized and general accepted, implementing such systems will be infeasible.

Web services payment systems

101

Bibliography

Books:
Deitel - Java Web Services for experienced programmers

Keogh – J2EE complete reference.

Stelting Maassen – Applied Java Patterns

Serge Abiteboul – Data on the Web

William Stallings - Cryptography and network security

Blake Dournaee – XML security

Donald E. Eastlake III – Secure XML

Robin Sharp – Principles of protocol design.

Douglas R.Stinson – Cryptography theory and practice.

Tutorials:
Eric Armstrong and others - The Java Web services tutorial

Internet ressources
http://java.sun.com

http://www.ibm.com/developer

http//www.ibm.com/alphaworks

http//www.w3c.org

http://www.oasis.org

Web services payment systems

102

Appendixes
Appendix a: CD-ROM

Appendix b: Proxy servlet template

Appendix c: Configuration files

Appendix d: Examples of messages.

Appendix e: Screen dumps from the deployment tool

Appendix f: examples of generated WSDL documents

