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In this article, a new assessment system is presented to evaluate infrastructure
objects such as roads after natural disasters in near-realtime. A particular aim is
the exploitation of multi-sensor and multi-temporal imagery together with further
geographic information system data in a comprehensive assessment framework.
The combination is accomplished combining probabilities derived from the dif-
ferent data sets. The assessment system is applied to two different test scenarios
evaluating roads after flooding, yielding very promising results and evaluation val-
ues concerning completeness and correctness. The benefit of the data combination,
in particular the multi-temporal component, demonstrates the suitability of the
proposed method for different application scenarios.

1. Introduction

In this article, a novel assessment system of infrastructure objects is presented using
multi-sensor and multi-temporal imagery after natural disasters. The automatic and
ongoing derivation of up-to-date information from imagery is of vital importance to
support a fast disaster management after flooding, earthquakes or landslides (Chesnel
et al. 2007, Rehor et al. 2008, Frey and Butenuth 2009). The focus of the introduced
assessment system is on the development of strategies and methods to evaluate the
status of infrastructure objects such as roads, in consideration of the crucial factor
time as the dominating condition to support the fast reaction.

Great efforts have been made in order to speed up the workflow from data acquisi-
tion including satellite tracking up to the point of map generation (Voigt et al. 2007).
Data analysis consisting of information extraction, damage assessment, thematic anal-
ysis and change detection plays a decisive role in the processing chain (Bamler et al.
2006). However, many data analysis tasks are currently done manually which is very
time consuming and, thus, automation is required to substitute the manual interpre-
tation. The difficulty is the development of methods minimizing wrong decisions to
avoid fatal consequences in emergency actions.

The general process of providing remote-sensing information for disaster manage-
ment can be divided into three parts: first, available satellites have to be selected and
commanded immediately. Secondly, the acquired raw data have to be processed with
specific signal processing algorithms to generate images suitable for interpretation,
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8576 M. Butenuth et al.

particularly for synthetic aperture radar (SAR) images. Thirdly, the interpretation of
multi-sensor images so as to get geometrically precise and semantically correct infor-
mation as well as the production of digital maps need to be conducted in the shortest
possible time frames. While the first two aspects are mostly related to the optimization
of processing chains and hardware capabilities, further research is needed concern-
ing the third aspect: the fast, integrated and geometrically and semantically correct
interpretation of multi-sensor and multi-temporal images.

The focus and novel contribution of this article is the combination of multi-sensor
and multi-temporal components in a comprehensive assessment system. The combi-
nation is accomplished combining probabilities derived from the different input data.
The integration of every kind of imagery in the system is an important prerequisite
to guarantee a fast assessment independently of the available sensor type. In this arti-
cle, a modular system is presented which is able to deal with varying data sources
embedding all obtainable information to ensure the transferability of the developed
strategy and methods. In addition, the integration of different imagery from differ-
ent time points has several advantages compared to current solutions: multi-temporal
images provide the opportunity to monitor a natural disaster chronologically dur-
ing a period of time, not only at a specific time point. Moreover, the assessment of
infrastructure objects at the time point t2 can be improved using the results from time
point t1.

In §2 the state of the art regarding existing up-to-date damage assessment systems
is presented and categorized in area- and object-based systems. In addition, data
fusion techniques with regard to disaster management are discussed, and the basics
of Gaussian mixture models and change detection methods are introduced since these
methods are key elements of the assessment system. In §3 the new general assessment
system is presented, which contains on a pixel level a supervised multi-spectral clas-
sification by means of Gaussian mixture models and belief functions derived from
geographic information system (GIS) data. In §4 the system is applied to two differ-
ent test scenarios using multi-sensor and multi-temporal imagery. The results shown
are investigated and evaluated concerning their quality measures. Finally, further
investigations and future work are pointed out in §5.

2. State of the art and basics

2.1 Infrastructure assessment systems

In the case of natural disasters it is reasonable to differentiate between object-based
and area-based damage assessment systems. The focus of object-based systems is the
assessment of infrastructural objects such as roads or buildings concerning their func-
tionality. In recent years, several systems have been developed estimating the extent
and type of destruction on various buildings. The damage assessment was realized
using different kinds of sensors such as light detection and ranging (LIDAR; Rehor
et al. 2008), SAR data (Gamba et al. 2007) and high-resolution spaceborne (Chesnel
et al. 2007) and airborne images (Guo et al. 2009). However, most methods focus on
only one single sensor and, thus, the adaptability is limited depending on the availabil-
ity of data sources after a natural hazard. There are few approaches which analyse the
possible advantages of combining different sensors for damage detection (Stramondo
et al. 2006). The evaluation of individual objects such as damaged bridges is investi-
gated using high-resolution SAR images (Balz et al. 2009). Even though bridges are
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Infrastructure assessment 8577

crucial bottlenecks in the transportation systems, in the case of natural hazards a
comprehensive assessment system of the whole road network is necessary. Further
research developing automatic methods to assess transportation lifelines after natu-
ral disasters is important (Morain and Kraft 2003). Research dealing with the quality
assessment of road databases has been carried out by Gerke and Heipke (2008), but the
underlying strategy and model is based on an operational road network, not affected
by natural hazards. In Frey and Butenuth (2009) a near-realtime assessment system
of a road network using GIS objects and multi-sensor data is presented, but a multi-
temporal component is not included into the system. The road objects are classified
into different states using the ample paradigm proposed by Förstner (1996).

On the other hand, area-based systems focus on affected regions. Typical exam-
ples are the generation of flood masks derived from different sensors. Besides optical
imagery, SAR data in particular are suitable for the extraction of inundated areas. A
split-based automatic thresholding method to detect flooded areas from TerraSAR-X
data in near-realtime is used by Martinis et al. (2009). A further semi-automatic
approach using TerraSAR-X data is proposed in the work of Mason et al. (2010)
detecting flooded regions in urban areas. The authors point out that in urban areas in
particular the quality of the results is limited due to the side-looking principle of the
radar sensor.

2.2 Data fusion

In general, the performance of damage assessment systems can be improved by includ-
ing additional imagery and data sources. In particular, the combination of optical and
radar images leads to an improved damage assessment (Stramondo et al. 2006). The
system presented in this article is designed in a flexible way such that the benefits of
data fusion can be completely exploited, but it is not dependent on specific sensors.
This adaptability to different case scenarios distinguishes the presented approach from
the previous methods mentioned above. The additional benefit depends on the way
data are combined. Pohl and Van Genderen (1998) differentiate between three differ-
ent levels of image fusion: pixel level, feature level and decision level. A review of the
latest research of multi-source data fusion is given in Zhang (2010), who updates these
three levels of data fusion with current developments pointing to the importance of
high-level fusion approaches which include feature-level and decision-level fusion. For
the assessment of infrastructural objects high-level data fusion is of utmost impor-
tance, because conclusions of the status of objects are needed. The combination of
different data sources, for example, vector and image data, is discussed in several other
contributions to emphasize the benefit, for example, Butenuth et al. (2007). In partic-
ular, the integration of GIS information combined with imagery improves the results
and simplifies the decision making enormously (Brivio et al. 2002). A method for map-
ping the floodplain combining optical imagery and digital elevation model (DEM) is
presented in Wang et al. (2002). For each data source an individual flood mask is gen-
erated, so that the final flood mask consists of the set union of the individual masks.
Considering the DEM as an image, this approach belongs to the decision-level image
fusion as defined in Pohl and Van Genderen (1998). The approach presented in this
article combines imagery and DEM, too, to detect flooded areas. In contrast to the
approaches discussed above, the aim is the combination based on probabilities derived
from the input data.
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8578 M. Butenuth et al.

2.3 Change detection: multivariate alteration detection

Change detection algorithms are widely used to investigate the extent and damage of
natural disasters. A comprehensive review on change detection methods is given, for
example, in Lu et al. (2004) and Coppin et al. (2004). However, many methods are
restricted to specific sensor characteristics. The efficient response in the case of natural
disasters requires a change detection method which is able to deal with various sensors
containing a different number of channels. Furthermore, the influence of changing
atmospheric conditions should be minimized. The multivariate alteration detection
(MAD) method is invariant to linear transformation, which implies an insensitivity
to linear atmospheric conditions or sensor calibrations at two different times (Nielsen
et al. 1998).

The MAD transformation is based on canonical correlation analysis (CCA) which
was originally introduced by Hotelling (1936). Unlike principal component analysis
(PCA) which identifies patterns of relationships within one set of data, CCA investi-
gates the intercorrelation between two sets of variables. Let F ={F1, F2, ... , Fn} and
G = {G1,G2, ... ,Gm} be two images with n or m channels (n ≤ m). A linear combination
of the intensities for all channels leads to the transformed images U and V :

U = �aF = a1F1 + a2F2 + . . . + anFn,
V = �bG = b1G1 + b2G2 + . . . + bmGm.

(1)

The goal of the transformation is to choose the linear coefficient �a and �b minimizing
the correlation between U and V . This leads to the result that the difference image
between the transformed images U and V will have a maximum variance. Multiples
of U and V would have the same correlation, which is why a reasonable constraint
var(U) = 1 and var(V ) = 1 is chosen:

var(U − V ) = var(U) + var(V ) − 2cov(U , V ) = 2(1 − cov(U , V )). (2)

Using CCA, the linear coefficients �a and �b are determined and the MAD variates Mi

can be calculated (Nielsen et al. 1998):

Mi = Ui − Vi for i = 1, . . . , n. (3)

An extension to the MAD transformation is the iteratively reweighted MAD
(IRMAD) method. Similar to boosting methods in data mining, an iteration schema
focuses on observations whose change status are uncertain (Nielsen 2007). Since the
MAD or IRMAD variates can only be interpreted in a statistical manner there is
a need to assign a semantic meaning to the MAD variates. In Canty and Nielsen
(2006) an unsupervised classification method is proposed based on the MAD variates
to cluster pixels in no-change and one or more change categories.

2.4 Combination of probability functions: Gaussian mixture model

The radiometric characteristics of infrastructural objects of the same type could vary
strongly, which is why single probability functions are not able to describe the complex
scenes sufficiently. Therefore, mixture models are used which combine single functions
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Infrastructure assessment 8579

into a more complex probability function. The resulting probability function p(y|θ ) is
simply a weighted sum of the initial functions pj(y|θ j):

p(y|θ ) =
k∑

j=1

αjpj(y|θj). (4)

Each θ j describes the set of parameters defining the jth component, α1, . . . , αj are the
weights called the mixing probabilities and y = [y1, . . . , yd]� represents one particular
outcome of a d-dimensional random variable Y = [Y 1, . . . , Yd]�. Often Gaussians
are used for pj(y|θ j). The mixing probabilities have to fulfill the following equations:

αj ≥ 0, j = 1, . . . , k and
k∑

j=1

αj = 1. (5)

The expectation maximization (EM) algorithm is used to determine αj and θ j. A
detailed description of mixture models can be found in McLachlan and Peel (2000).
The number of centres j is calculated using the minimum message length (MML) cri-
terion (Wallace 2005). The detailed algorithm of MML is described in Figueiredo and
Jain (2002). Different mixture models, especially for SAR images where the data is
generally non-Gaussian, have been described in Bouguila and Ziou (2006) using finite
Dirichlet mixture models and in Ziou et al. (2009) using finite Gamma mixture models.

3. Assessment system

3.1 System

The assessment system has a modular and very flexible structure to cope with varying
raw data being available in emergency cases (see figure 1). Nevertheless, there are some
prerequisites to applying the system. The GIS objects which should be evaluated con-
cerning their functionality must be given. It is conceivable to extract the GIS objects
using imagery before the natural disaster takes place or, alternatively, from a GIS.
However, in view of the performance of automatic extraction methods, objects from a
given GIS database with a guaranteed quality concerning correctness and complete-
ness are better suited. The result of the assessed GIS objects depends strongly on the
available input information. Besides the imagery, DEM and further GIS information
can be embedded into the system. Here, this data is called input data.

A supervised multispectral classification is accomplished on a pixel level by means
of Gaussian mixture models (GMMs) to interpret the multi-spectral imagery. The mix-
ing coefficients for the Gaussian mixtures are determined from the EM algorithm.
Belief functions are introduced to derive probabilities from GIS information to be
exploited during the assessment. If multi-temporal images are available change detec-
tion methods such as the MAD algorithm are used to derive probabilities of change
between different time points. The combination of the different input data is carried
out in the probability level. All individual methods regarding specific input data and
the combination of the derived probabilities are realized at a pixel level. In contrast,
the subsequent assignment of GIS objects to the states intact, possibly intact or not
intact/destroyed using maximum likelihood estimation is object-based (see figure 1).
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8580 M. Butenuth et al.
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Figure 1. General damage assessment system.

3.2 Methods and combination of probabilities

For each input data individual methods have to be applied to derive individual prob-
abilities evaluating infrastructural objects (see figure 1). Given multi-spectral imagery
as input data, a multi-spectral classification is carried out. The infrastructural objects
are classified to different classes relating to the states intact, possibly intact and not
intact/destroyed. Since many classes such as roads have no consistent radiometric
characteristic as shown in figures 2 and 3, the probability density function which is
needed to describe the class road is more complex than a multivariate Gaussian distri-
bution. Therefore, the GMM is used to calculate the more complex probability density
function by summing up several multivariate Gaussian distributions. The parameters
for the individual Gaussian distributions are derived using the EM algorithm. This
approach is applied to every class, but a real benefit of the GMM compared to a single
Gaussian distribution is only noticeable in the case of the class road due to the different
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Figure 2. Two-dimensional probability density functions of the classes forest and water and
the separated road classes (city road, country road, path and motorway). Exemplarily visualized
using the infrared and green channel.
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Figure 3. Two-dimensional probability density functions of the classes forest and water and a
combined class road. Exemplarily visualized using the infrared and green channel.
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8582 M. Butenuth et al.

radiometric characteristics. The resulting probabilities from the mixture model pimg

are combined with probabilities from further input data (see figure 1). In the case
of the assessment of roads concerning the trafficability after flooding, pimg represents
the probability that a road segment belongs to the class water or road derived from
the corresponding multivariate probability density functions generated from training
samples. A road segment is derived from the available GIS data and can be defined
with a specific length. The object-based probabilities are computed by a mean value
of the related pixel-based probabilities.

The availability of images at different time points enables the utilization of change
detection methods exploiting additional assessment criteria. The IRMAD algorithm
enables the detection of changes and resulting IRMAD variates are classified using a
supervised multispectral classification. For the different change states, that is, intact →
destroyed, probability functions are generated. These probabilities pmad are embedded
into the assessment system. In figure 4(c) three IRMAD variates are shown as an
RGB-colour image obtained from IKONOS images at time t1, see figure 4(a), and time
t2, see figure 4(b). In this example of a flood event, the changed areas from flooded to
not flooded are depicted in pink, the grey colour represents no change, see figure 4(c).

Additional GIS information such as DEM is often available offering the oppor-
tunity to enhance the assessment system. Since the combination of the input data
is based on the probability level, probabilities also have to be derived from the GIS
information. Belief functions can be generated depending on the GIS information. In
figure 5 an example is shown which depicts the probability that an object is flooded
depending on the elevation. The general probabilities pgis can be modelled as belief
functions. In the case of the assessment of flooded roads, the probabilities pdem can be
derived from the DEM in figure 5, that is, pgis = pdem.

The combination of the probabilities derived from the different input data is defined
as following:

p1 = p1,img · p1,gis · . . . · p1,mad

p2 = p2,img · p2,gis · . . . · p2,mad
...

ps = ps,img · ps,gis · . . . · ps,mad.

(6)

The probabilities pi are the combined probabilities of one status i. In the easiest case,
the set of states could be intact or not intact, but it is also reasonable to think of s dif-
ferent kinds of destruction states. Finally, the object is categorized into the state i with
the highest probability. The probabilities pimg and pgis are statistically independent. As
part of the model, the statistical independence between pimg and pmad can be assumed,
because pmad contains new information derived from the newly introduced image at
time t2.

3.3 Workflow of rule-based classification

Natural disasters can be divided into specific phases. In general, all disasters con-
sist of three main time phases: pre-disaster, the disaster itself or maximum extent
of disaster and post-disaster. Depending on the type of natural disaster the time
phases can be further subdivided. The workflow of the rule-based classification sys-
tem is dependent on the available imagery at different time points. In addition, the
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(a)

(b)

(c)

Figure 4. Change detection using the MAD algorithm: the IKONOS scene of the flooded area
of the Elbe near Dessau, Germany, at time t1 (a); the IKONOS scene of the flooded area at time
t2 (b); three MAD variates depicted as an RGB-colour image (c).
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1

µf (a) µt (a)

0.5

0
a1 a2Water Level Altitude

Figure 5. Belief functions depending on altitude: area is flooded (blue), area is not flooded
(grey).

Figure 6. Possible development of the trafficability of roads during a flood subdivided into
different time phases (T, trafficable; F, flooded).

type of natural disaster and the kind of infrastructural objects to be assessed lead
to specific assumptions which can be embedded as rules in the classification system.
In figure 6 an example of specific time points of a flooding event is shown which is
important in order to carry out an analysis of, for example roads concerning their
trafficability.

In the case of flooding it is reasonable to determine five time phases in which
imagery can be acquired. All kinds of imagery being acquired before the natural dis-
aster are assigned to the first time phase tpre. During a flooding two different time
phases can be subdivided: the water level increases t1 until the water level reaches the
maximum and the water level decreases t2. In the following the time point between
t1 and t2 is noted as tmax. In the model we assume that the water level at the time
point tmax is higher than at the time point t1 and t2. The index ‘max’ stands not for
the maximum water level during a flood but for the time point of the acquisition of
an image. Imagery acquired after the flooding is noted as tpost. Depending on the time
points when the images are acquired, different assumptions can be made leading to
rules which are embedded into the classification system. For example, if two images at
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Infrastructure assessment 8585

the time point t1 and tmax are available it is reasonable to assume that roads which were
flooded at time point t1 are still flooded at time point tmax. This kind of assumption is
depicted in figure 6 as a continuous arrow. In particular, if the information content of
the image at time point t1 is higher than at time point tmax, this additional assumption
could improve the results at time point tmax. The circles illustrate the status of a road
which can be trafficable T or flooded F. The dashed lines show the possible changes of
the status of a road based on decisions derived from computed probabilities.

Similar graphs can be developed for different kinds of disasters and other infrastruc-
tural objects. In a semi-automatic approach it is imaginable that a manually generated
categorization at a previous time point is used for the improved categorization at the
current time point. Despite the time-consuming generation of the categorization there
is no loss of time for the emergency response since the categorization at the previous
time point can be done in advance before the current time point provides new remote
sensing information. The improvement of this semiautomatic approach is shown in
the test scenarios.

Image tmax

Altitude?

Trafficable

Trafficable?

Possibly
flooded Flooded

Flooded?

DEM:

Image tmax + t2:

Image t2:

yes

yes

no

no

a > a1

pmad

ptraf = proad *pdem *pmad

ptraf > s1 pflood < s2 pflood > s2ptraf < s1

ptraf = proad *pdem

pflood = pwater *(1-pdem)pflood = pwater *(1-pdem) * (1-pmad)

a < a2

a2 < a < a1

DEM

Assessment for tmax

tmax
Trafficable?

tmax
Flooded?

max = ptraf max = pforest

Find max (ptraf , pflood, pforest)

pwater, proad, pforest

max = pflood

pdem

Figure 7. Example of workflow of rule-based classification describing the rectangular part of
figure 6.
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8586 M. Butenuth et al.

A detailed workflow of the rule-based assessment system is exemplarily depicted
in figure 7 assuming the water level is decreasing (see figure 6, black rectangle). The
input data are illustrated by the grey parallelograms (figure 7). Below these parallel-
ograms the derived probabilities from the input data are attached in grey rectangles.
The combination of the probabilities is realized in the blue boxes. The assessed road
segments at time tmax and additional information such as the water level lead to the
rule-based framework built on the combination of the probabilities. The probability
pimg derived from the imagery at time point t2 is partitioned into three different proba-
bilities belonging to a specific class: water pwater, road proad and forest pforest. The classes
road, water and forest are chosen, because only these classes are relevant for the object
of interest (road) or its possible occurring occlusions (water, forest). The classifica-
tion is only accomplished for the possible road areas, not for the whole image. Using
a maximum likelihood estimation followed by a threshold operation the segment is
categorized into the three states trafficable, possibly flooded and flooded.

4. Results and analysis

The damage assessment system presented is applied to two different flooding sce-
narios. In real case scenarios the availability of input data is the crucial factor. The
derivation of the probabilities given in equation (6) is not always possible depending on
the available data. On the other hand, often further information exists which is useful
to generate additional rules. The combination of probabilities is embedded into a rule-
based framework which can differ from case to case. In the following two scenarios
road objects given from a GIS database are assessed concerning their trafficability.

4.1 Test scenario Elbe (Germany)

The first test scenario is the flooding of the river Elbe (Germany) in the year 2002.
The available input data for the damage assessment system consists of two IKONOS
scenes acquired on the 21 and 26 August, see figure 4(a) and figure 4(b). In addition,
a DEM is available with a 10 × 10 m grid with a geometric accuracy of +/− 1 m.
The peak of the water level was measured on 19 August. The scene at the time point
tmax shows almost the maximum inundated area. In the second scene at time t2 the
flooding receded strongly and only a small area is covered by water, see figure 4(b), top
right.

The results obtained are compared to a manually generated reference. The informa-
tion for the generation of the reference is only given in the image at time t2. Therefore,
it is not a comparison with the real ground truth, but it is the comparison of the
automatic approach with the manual interpretation of a human operator. The refer-
ence is categorized into three different states: trafficable, possibly flooded and flooded.
Since the categorization of the automatic system consists of the same states the follow-
ing four different assignment criteria are determined: ‘correct assignment’, ‘manual
control necessary’, ‘possibly correct assignment’ and ‘wrong assignment’. The ‘cor-
rect assignment’ indicates that the manually generated reference is identical with the
result of the automatic system. In the case of ‘manual control necessary’ the automatic
approach leads to the state possibly flooded whereas the manual classification assigns
the line segments to flooded or trafficable. The other way around denotes the expres-
sion ‘possibly correct assignment’. The expression ‘wrong assignment’ indicates that
one result categorizes the segment to flooded and the other to trafficable. The results

D
ow

nl
oa

de
d 

by
 [

D
T

U
 L

ib
ra

ry
] 

at
 0

7:
21

 2
6 

N
ov

em
be

r 
20

12
 



Infrastructure assessment 8587

Table 1. Results and evaluation of the assessment system evaluating the road data of
the test scenario Elbe exploiting different input data.

t2 (%) t2, DEM (%) tmax,2, DEM (%) tmax,2,c, DEM (%)

Correct 68.40 68.45 69.60 87.14
Manual 27.88 27.77 27.48 10.96
Possibly 2.64 2.72 2.52 1.79
Wrong 1.08 1.06 0.40 0.11

and evaluation of the combined interpretation of the enhanced automatic system are
shown in table 1. All results are generated using GMMs.

The first column in table 1 represents the result using only the image t2 without any
further information. The result with about 1% ‘wrong assignments’ and about 68%
‘correct assignment’ is almost the same if an additional DEM is used, see table 1
(t2, DEM). The reason for the lack of improvement could be ascribed to the low
accuracy of the DEM used. The evaluated road segments are depicted in figure 8(a).
Green road segments correspond to ‘correct assignment’, yellow to ‘manual control
necessary’, cyan to ‘possibly correct assignment’ and red or blue belongs to ‘wrong
assignment’. If the system assigns a road segment to the state trafficable but the refer-
ence is flooded the road segment is coloured in red. Blue road segments are assigned
to flooded by the system and trafficable by the reference.

In figure 8(b) the related result of the third column of table 1 is visualized which
includes the additional scene at time point tmax as input data. The additional scene
and the resultant calculated probability pmad derived from the described MAD method
leads to an improvement of the results. Several wrongly assigned segments disappear
whereas the ‘correct assignments’, the assignments ‘manual control necessary’ and the
‘possibly correct assignments’ remain almost constant.

In figure 8(c) the results exploiting an additional manually generated reference from
the previous scene tmax are plotted. The exploitation of the derived results from the
previous time point as additional input information is reasonable, because the correct
states of the objects at time point tmax can give hints to the evaluation of the current
assessment at time point t2. The numerical evaluation is presented in the fourth col-
umn of table 1 (tmax,2,c, DEM). The results are better by far than the previous results
obtained. The ‘correct assignments’ arise from 69% to 87% and the ‘wrong assign-
ments’ decrease from 0.4% to 0.1%. It is important to point out that a correct reference
at the time point tmax has to be generated. Nevertheless, there is no influence to the
near-realtime requirement of the system since the time consuming generation of the
reference can be done before the current assessment at time point t2.

The final result using the described assessment system is depicted in figure 9. All
road segments are divided into four different states: besides the already mentioned
states trafficable (green), possibly flooded (yellow) and flooded (red) an additional state
flooded → trafficable (blue) is introduced by means of the change detection algorithm.
This additional state is very useful for rescue teams since it shows the areas which are
again trafficable after flooding.

4.2 Test scenario Chobe river (Namibia)

The second test scenario investigates the flooding that took place in the north of
Namibia in March 2009. The used remote-sensing data consists of a SPOT image,
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(a)

(b)

(c)

Figure 8. Evaluation of the assessment system (Elbe scenario) evaluation using image t2
and DEM (a); evaluation using image t2, image t1 and DEM (b); detail of evaluation using
image t2, image t1 with correctly assessed roads and DEM (c); green = ‘correct assignment’,
yellow = ‘manual control necessary’, cyan = ‘possibly correct assignment’, red = ‘wrong
assignment’ (system = trafficable, reference = flooded), dark blue = ‘wrong assignment’
(system = flooded, reference = trafficable).
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Figure 9. Detailed result of the assessment system using all available input data (Elbe sce-
nario): image t1, image t2, DEM and manual generated reference at time t1; green = trafficable,
yellow = possibly flooded, red = flooded, dark blue = trafficable (change: flooded → trafficable).

acquired on 30 March with a resolution of 2.5 m, and a RapidEye image acquired
on 8 April with a resolution of 6.5 m. The water level rises until 29 March and then
increases slightly between 30 March and 8 April to the maximum. In the assessment
system all available channels are used. In the case of the SPOT image three channels
(red, green and infrared) and in the case of the RapidEye image five channels (red,
green, blue, red edge and near-infrared) are available. Besides the image information
a road network was extracted manually from a high-resolution Quickbird scene. The
goal of this test scenario is again the assessment of the roads into three different states:
trafficable, possibly flooded and flooded. In addition, an ASTER DEM was used with
a spatial resolution of 15 m.

A reference was generated manually which classifies the roads into trafficable and
flooded in order to evaluate the results of the assessment system. In contrast to the first
test scenario no state possibly flooded is used in the reference leading to the three differ-
ent assignment criteria: ‘correct assignment’, ‘manual control necessary’ and ‘wrong
assignment’.

In table 2 the results are shown using the image information from one image only.
In both cases a Gaussian mixture model is applied and the DEM is used as additional
information. The assessment of roads using the RapidEye image is significantly better
than that using the SPOT image in spite of the worse resolution. Hence in this example
the availability of radiometric information is more important than high resolution.
This behaviour occurs due to the disregard of geometric information in the assessment
system. In future work geometric features should also be embedded into the system.
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Table 2. Results and evaluation of the assessment system
evaluating the road data of the test scenario Chobe river

exploiting different satellite images.

SPOT (%) RapidEye (%)

Correct 71.82 77.68
Manual 27.17 21.33
Wrong 1.01 0.99

Table 3. Results and evaluation of the assessment system evaluating the road data of the test
scenario Chobe river exploiting different input data.

tmax (%) tmax,GMM (%) tmax, DEM (%) t1,max, DEM (%) t1,max,c, DEM (%)

Correct 66.13 76.78 77.68 78.76 88.42
Manual 32.88 22.21 21.33 20.23 10.59
Wrong 0.99 1.01 0.99 1.01 0.99

In table 3 the improvement of the assessment system can be recognized, if additional
data is included. The first and second columns show the results if only the image data
at a time point tmax is used. In this test scenario the RapidEye scene is acquired at
tmax. The distinction between tmax and tmax,GMM shows the difference using a GMM
instead of a simple multivariate Gaussian distribution. The large improvement by
using a mixture model can be traced back to the fact that the class road does not have
consistent radiometric characteristics. Therefore, it is convenient to model the differ-
ent subclasses of roads by a mixture model. The results of all further columns are
gained using the GMM in order to build up the probability distributions. In column 3
the additional DEM information is embedded. The small improvement of the results
can be partly ascribed to the bad resolution of the DEM. Unfortunately, a DEM with
higher resolution was not available in order to investigate the influence of the accuracy
of the DEM. The last two columns represent the results using in addition the image
at time point t1, which reflects in the test scenario the SPOT scene. The usage of the
MAD algorithm and the automatically assessed roads at time point t1 entails further
improvements of the result as presented in the fourth column. In real applications it is
also possible to generate a manually generated assessment of the roads at time point
t1. In the fifth column the result is shown if manually assessed roads at time point t1

are available.
In figure 10 the graphical evaluation of the fourth column of table 3 is shown. The

‘wrong assignments’ depicted in red and blue (see figure 10) can be referred to dif-
ferent circumstances. Mainly all wrongly classified roads are located in the transition
zone between flooded and non-flooded regions. The reasons for the misclassifications
could be partly inundated roads, geometrical inaccuracies or even some errors in the
manually generated reference. Figure 11 shows the final result consisting of the same
states as already described in figure 9. Depending on the application the percent-
age of the ‘wrong assignment’ can be shifted using different parameter settings. In
figure 12 the assignments are depicted depending on the parameter s1. By means of
the threshold parameter s1 the road object is categorized to the states trafficable or
possibly flooded (see figure 7). As it is depicted in figure 12 the results of the system
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Figure 10. Evaluation of the assessment system (Chobe scenario) green = ‘correct assign-
ment’, yellow = ‘manual control necessary’, red = ‘wrong assignment’ (system = trafficable,
reference = flooded), dark blue = ‘wrong assignment’ (system = flooded, reference = trafficable).

Figure 11. Result of the assessment system using all available input data (Chobe scenario)
image t1, image t2, DEM and manual generated reference at time t1; green = trafficable,
yellow = possibly flooded, red = flooded, dark blue = trafficable (change: flooded → trafficable).

are very sensitive to this parameter s1. So far the threshold value has to be adjusted
manually. Further research is necessary in order to carry out an automatic parameter
estimation.
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Figure 12. Performance of the system using different parameters s1: green = ‘correct assign-
ment’, yellow = ‘manual control necessary’, red = ‘wrong assignment’.

5. Conclusion

In this article, a general framework of an assessment system of infrastructural objects
and the benefit of the included data fusion on a probability level is shown. The
improvement of the results by exploiting additional available data is demonstrated
in two different test scenarios. The integration of multi-temporal imagery leads to
an improvement of the assessment system concerning the correctness of the assessed
objects and concerning the additional temporal information. Combining this basis
with a rule-based approach, which is strongly dependent on the type of natural disas-
ter and available input data, leads to very promising results with a very small rate of
‘wrong assignments’.

In future work, the generic system will be tested on more scenarios with different
sensors. In particular, the combination of optical images and SAR data should be
investigated in more detail to derive statements on the benefit of these different kinds
of sensors. In addition to the radiometric exploitation of the optical imagery, geo-
metric features should be introduced as additional evidence of destructions, because
man-made infrastructure objects can be represented, particularly those with geomet-
ric features. The combination of probabilities which are embedded into a rule-based
workflow should be substituted using a general statistical framework. A promising
theory for the combination of the probabilities is the model of dynamic Bayesian
networks.
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