
Hans Bruun Nielsen

LINEAR ALGEBRA
for

IT & HEALTH

September 2010

DTU Informatics – IMM
Richard Petersens Plads

DTU – building 321
DK-2800 Kgs. Lyngby

Phone: +45 4525 3351
www.imm.dtu.dk

Preface

This lecture note has been written for the teaching in the course Modelling and
Programming. The aim has been to give an easy, but sufficient introduction to the
subject of linear algebra, leaving out the parts that are not strictly necessary.

I wish to thank Jeppe Revall Frisvad for his careful reading of the note and many
useful suggestions. Also, I appreciate the fruitful discussions with Peter Dalgaard
and Rasmus Reinhold Paulsen.

Hans Bruun Nielsen

The front page illustration is discussed in Example 1.14 on page 8.

Contents

Preface iii

1. Introduction 1
1.1. Vectors and matrices . 1
1.2. Basic vector arithmetic . 3
1.3. Basic matrix arithmetic . 5
1.4. Linear mapping . 8
1.5. Basis and coordinates . 10

2. Linear Systems of Equations 15
2.1. Simple systems . 17
2.2. Gaussian elimination . 18
2.3. Complete solution . 22
2.4. Matrix inverse . 25
2.5. LU factorization . 28
2.6. spd systems . 30

3. Eigenvalues and Eigenvectors 35
3.1. Properties of eigensolutions . 35
3.2. Applications of eigensolutions . 39

Differential equations . 39
Simplification of quadratics . 42
Google’s PageRank . 44

4. Linear Least Squares Problems 47
4.1. Overdetermined systems . 48
4.2. QR factorization . 52
4.3. Singular value decomposition . 53

Literature 57

Notation 58

List of Danish words 59

Index 60

1. Introduction

1.1. Vectors and matrices
A vector x∈R

n (also called an n-vector) is a list of n elements, x1, x2, . . . , xn, all of
which are real numbers: xi ∈R.

Example 1.1. In the usual Cartesian system a geometric vector −→v can be identified by
the coordinates (v1, v2), cf the figure. This pair of coordinates is a vector in R

2.

Figure 1.1. Geometric vector.

−→v
(v1, v2)

(1)

(2)

Conversely, one may visualize a vector x∈R
2 by a geometric vector −→x in the plane,

having the coordinates (x1, x2).
It may help intuition to generalize this idea: One may think of an n-vector as an
“arrow” in the n-dimensional space.

Example 1.2. During the development of a new drug you need to perform clinical
experiments to investigate how fast the drug is excreted from the human body. This
investigation may consist in measuring the drug concentration in the kidneys at certain
times after taking the drug. The results may be represented by two vectors, t and y,
where yi is the concentration at time ti.

Figure 1.2. Concentration y
as function of time t. 0 4 8 12 16 20 24

0

0.05

0.1

0.15

0.2

0.25

t

y

The figure is a Matlab plot of the results of such an experiment. Time is given in
hours after the drug was taken. It seems that there was an 8 hour break during the
experiment.

2 1. Introduction

We shall return to this problem several times, first in Example 1.5. In Chapter 3 we
discuss a mathematical model for the behaviour shown in Figure 1.2.

The zero vector 0 has all its elements equal to zero. We say that x is nonzero if
it has at least one element different from zero.

A matrix A∈R
m×n (also called an m×n matrix) is a list of m ·n real numbers,

organized in m rows, each of which has n elements. Alternatively we can think of A
as organized in n columns, with m elements in each. The element in position(i, j)
(ie the jth element in the ith row) is denoted aij or (A)ij . The diagonal of A consists
of the elements aii, i = 1, 2, . . . , min{m, n}.
Example 1.3. Consider the 2×3 matrix

A =
(

1.2 3.4 5.6
7.8 9.1 −2.3

)
.

We have, for instance, a12 = 3.4 and a23 = −2.3. The diagonal elements are a11 = 1.2
and a22 = 9.1.

Note that R
1×n and R

m×1 contain matrices with only one row and one column,
respectively. Such degenerated matrices are equivalent to vectors, and we talk about
a row vector if x∈R

1×n and a column vector if y ∈R
m×1. If nothing else is specified,

x∈R
n is considered to be a column vector.

The elements in the entire ith row of the the matrix A∈R
m×n is a row vector,

which we denote Ai,:. Similarly, A:,j ∈R
m×1 consists of the elements in the jth

column of A.

Example 1.4. For the matrix from Example 1.3, we see that

A1,: =
(
1.2 3.4 5.6

)
, A:,3 =

(
5.6
−2.3

)
.

Example 1.5. The results from the clinical experiment in Example 1.2 may be stored in
a matrix A, with the times and the measured concentrations in the first and second
column, respectively: A:,1 = t, A:,2 = y.
If the experiment involves 4 patients that are measured simultaneously, then the results
may be stored in a matrix A with 5 columns, where A:,j+1 holds the yi-values for the
jth person.

A square matrix has the same number of rows and columns, m = n. A diagonal
matrix is a square matrix where all the elements outside the diagonal are zero. The
identity matrix I is a diagonal matrix with all diagonal elements equal to 1. A lower
triangular matrix is a square matrix where all the elements above the diagonal are
zero. Similarly, all the elements below the diagonal are zero in an upper triangular
matrix .

Example 1.6. In the case m = n = 3 we have

I =

 1 0 0
0 1 0
0 0 1

 .

As examples of a diagonal matrix and a lower and an upper triangular matrix we give

1.2. Basic vector arithmetic 3

D =

 2 0 0
0 −1 0
0 0 3

 , L =

 2 0 0
5 −1 0
2 7 3

 , U =

 2 3 −4
0 −1 7
0 0 3

 .

For the sake of better visual impression we often omit the zeros outside the diagonal in
a diagonal matrix and above/below the diagonal in a lower/upper triangular matrix,
for instance

I =

 1
1

1

 , U =

 2 3 −4
−1 7

3

 .

Example 1.7. Matlab is an acronym for MATrix LABoratory. The basic storage
element is a matrix. Let A be a Matlab variable, then the command [m,n] = size(A)
returns m, the number of rows in A, and n, the number of columns in A.
If m = 0 or n = 0, then A is empty.
If m = n = 1, then A is a scalar.
If m = 1 and n > 1, then A is a row vector.
If m > 1 and n = 1, then A is a column vector.
If m > 1 and n > 1, then A is a proper matrix.

1.2. Basic vector arithmetic
1◦ Transpose. The transpose of the vector x is denoted xT . If x is a column vector,
then xT is the row vector with de same elements, and vice versa.

2◦ Multiplication by a scalar. Let x∈R
n and α∈R. Then

z = αx

is the vector with elements zi = αxi, i = 1, 2, . . . , n.

3◦ Addition. Let x∈R
n and y ∈R

m, and consider the sum

z = x + y .

This is meaningful only if x and y have the same number of elements, ie m = n.
If one distinguishes between row and column vectors, the two vectors must also be
of the same type, ie both of them must be either row vectors or column vectors.
When these conditions are satisfied, z is a vector of the same type with elements
zi = xi + yi, i = 1, 2, . . . , n.

4◦ Multiplication of two vectors. Let x∈R
n and y ∈R

m be column vectors. They
can be multiplied in three different ways:

4a◦ Inner product (also called scalar product or dot product): This is defined only
if the two vectors have the same number of elements. The inner product of two
n-vectors x and y is

xT y = x1y2 + x2y2 + · · ·+ xnyn . (1.1)

4 1. Introduction

Thus, the inner product is a real number, a scalar . It follows immediately from the
definition that swapping the two vectors does not change their scalar product:

yT x = xT y .

The vectors x and y are said to be orthogonal if their scalar product is zero, xT y = 0.

4b◦ The outer product of the column vectors x and y is written

x yT .

This is a matrix with the number of rows given by the number of elements in x,
n, and the number of columns is given by the number of elements in y, m. The
elements in the matrix are(

xyT
)

ij
= xiyj

{
i = 1, 2, . . . , m
j = 1, 2, . . . , n

.

In general y xT 6= x yT . The outer product may also be expressed row-wise or
column-wise: (

x yT
)

i,:
= xiy

T , i = 1, 2, . . . , n ,(
xyT

)
:,j

= yjx , j = 1, 2, . . . , m .

4c◦ Element-wise multiplication. In some cases it is relevant to compute the vector
defined by element-wise multiplication of two vectors with the same number of
elements, x, y ∈R

n. We use the notation

z = x⊗y .

This is also a vector with n elements, given by zi = xiyi, i = 1, 2, . . . , n.

Example 1.8. Let

x =

 1
2
3

 , y =

 4
−5

6

 .

Then

2xT =
(
2 4 6

)
, xT + yT =

(
5 −3 9

)
,

xT y = 12 , y xT =

 4 8 12
−5 −10 −15

6 12 18

 , x⊗y =

 4
−10

18

 .

In Matlab the inner, outer, and element-wise products of the vectors x and y are
obtained by the commands

ip = x’ * y, op = x * y’, ep = x .* y

5◦ Norm. In many applications we are interested in being able to talk about the
“length” of a vector, and we introduce the norm for that purpose. The scalar product
of an n-vector x and itself is

xT x = x2
1 + x2

2 + · · ·+ x2
n .

1.3. Basic matrix arithmetic 5

This is a real, nonnegative number, and we define the norm of x, ‖x‖, as

‖x‖ =
√

xT x . (1.2)

It is fairly easy to verify that ‖x‖ satisfies the following so-called norm conditions

5a◦ ‖x‖ ≥ 0 for all x ,

5b◦ ‖x‖ = 0 ⇔ x = 0 ,

5c◦ ‖αx‖ = |α| · ‖x‖ for all α ∈ R ,

5d◦ ‖x + y‖ ≤ ‖x‖+ ‖y‖ for all y ∈ R
n .

Example 1.9. Let −→x and −→y be geometric vectors with Cartesian coordinates (x1, x2)
and (y1, y2). Their dot product is

−→x · −→y = x1y1 + x2y2 ,

and the length of −→x is

|−→x | =
√

x2
1 + x2

2 .

If x,y ∈R
2 are the column vectors with the coordinates, we see that xT y = −→x · −→y

and ‖x‖ = |−→x |.
The norm ‖x‖ generalizes this concept of “length” to vectors with any number of
elements.

The condition 5d◦ is known is the triangle inequality . The reason is that if a triangle in
the plane has two sides given by −→x and −→y , then the length of the third side is |−→x +−→y |,
and this cannot be larger than the sum of the lengths of the two other sides.

1.3. Basic matrix arithmetic
1◦ Transpose. The transpose of the matrix A∈R

m×n is the matrix AT ∈R
n×m. It

is obtained from A by interchanging rows and columns: (AT)ij = (A)ji.

2◦ Multiplication by a scalar. Let A∈R
m×n and α∈R. Then

C = αA

is the matrix with elements cij = αaij , i = 1, 2, . . . , m; j = 1, 2, . . . , n.

3◦ Addition of two matrices. This makes sense only, if the two matrices are of
the same type, ie if they have the same number of rows and the same number of
columns. If A, B ∈R

m×n, then

C = A + B

is the matrix with cij = aij + bij , i = 1, 2, . . . , m; j = 1, 2, . . . , n.

4◦ Matrix–vector multiplication. Let A∈R
m×n and x∈R

n×1, and consider the
product

y = Ax .

6 1. Introduction

The result is defined by the scalar products

yi = Ai,:x i = 1, 2, . . . , m ,

so the matrix–vector product is

A x =

a11x1 + a12x2 + · · · + a1nxn

a21x1 + a22x2 + · · · + a2nxn
...

am1x1 + am2x2 + · · · + amnxn

 . (1.3)

Example 1.10. With the matrix from Example 1.3 we get

A =
(

1.2 3.4 5.6
7.8 9.1 −2.3

)
, AT =

 1.2 7.8
3.4 9.1
5.6 −2.3

 ,

A

 2
−2

3

 =
(

1.2 · 2 + 3.4 · (−2) + 5.6 · 3
7.8 · 2 + 9.1 · (−2)− 2.3 · 3

)
=
(

12.4
−9.5

)
,

AT

(−1
1

)
=

 1.2 − 7.8
3.4 − 9.1
5.6 + 2.3

 =

 6.6
5.7
−7.9

 .

If D is a diagonal matrix, it follows immediately from Eq. (1.3) that the vector y = Dx
has the elements yi = diixi. In particular, Ix = x.

Example 1.11. Consider the parabola

p(t) = c1t
2 + c2t + c3 ,

where c1, c2 and c3 are known coefficients. From basic vector arithmetic it follows
that we can express p(t) by

p(t) =
(
t2 t 1

) c1

c2

c3

 .

Now, let yi = p(ti), i = 1, 2, 3, with ti = i. Then it follows that y1

y2

y3

 =

 t21 t1 1
t22 t2 1
t23 t3 1

 c1

c2

c3

 =

 1 1 1
4 2 1
9 3 1

 c1

c2

c3

 .

The figure illustrates the problem for a specific choice of the coefficients.

Figure 1.3. p(t) = 0.5t2 − 1.6t + 1.9.
0 1 2 3

0

1

2

3

p(t)
(t

i
, y

i
)

1.3. Basic matrix arithmetic 7

We return to this problem in Examples 2.1 and 2.6.

5◦ Matrix–matrix multiplication. Let A∈R
m×n, B ∈R

p×q, and consider the prod-
uct

C = AB .

This is defined by

(C)ij = Ai,:B:,j ,

{
i = 1, 2, . . . , m
j = 1, 2, . . . , q

. (1.4)

In words: the (i, j)th element i C is the inner product of the ith row in A and the jth

column in B. The product exists only if these two vectors have the same number
of elements, ie the number of columns in A must be equal to the number of rows i
B, n = p. The result can be expressed column-wise:

C:,j = AB:,j, j = 1, 2, . . . , q , (1.5)

ie the jth column in C is the matrix-vector product of A and the jth column in B.
We shall sometimes use the following identity,

(A B)T = BT AT . (1.6)

We already saw this relation in the case where the two matrices degenerate to a
row and column matrix, respective, see Eq. (1.1). For general matrices it is easy to
prove the identity by using the definition of the matrix–matrix product.

Example 1.12. If both A and B are square and have the same number of elements, then
both AB and BA are defined; for instance

A =
(

1 2
3 4

)
, B =

(−5 6
7 8

)
gives

A B =
(

9 22
13 50

)
, B A =

(
13 14
31 46

)
.

This illustrates, in general AB 6= BA. To illustrate Eq. (1.6) we see that

AT BT =
(

1 3
2 7

)(−5 7
6 8

)
=
(

13 31
14 46

)
,

which is equal to (B A)T .
With the rectangular matrix from Example 1.3,

M =
(

1.2 3.4 5.6
7.8 9.1 −2.3

)
,

the matrix products AM and MT AT are defined, while MA is not defined.

AM =
(

16.8 21.6 1
34.8 46.6 7.6

)
, MT AT =

 16.8 34.8
21.6 46.6
1 7.6

 .

Again the result agrees with Eq. (1.6).

Exercise 1.13. Let A be an n×n matrix and let D be an n×n diagonal matrix. Show
that B = DA has the rows

8 1. Introduction

Bi,: = diiAi,:, i = 1, 2, . . . , n .

Hint: Use Eq. (1.5) and Example 1.10.

Next, show that C = AD has the columns

C:,j = djjA:,j, j = 1, 2, . . . , n .

Hint: Use Eq. (1.6) and the result for DA.

1.4. Linear mapping
Let A be an m×n matrix and let x be an n-vector. The m-vector y = Ax is said
to be obtained by a linear mapping from R

n into R
m, cf Figure 1.4 below. We say

x

y

A

R
n

R
m

Figure 1.4. Linear mapping, y = Ax.

that y is the image of x and that A is the mapping matrix .

Example 1.14. Linear mappings are widely used in mathematical models. In CT scan-
ning or MR scanning , for instance, you get a vector b of measurements, which do not
directly make sense. However, you can construct a matrix A such that for a given
distribution of mass density d in the scanned object, you would measure y = Ad. The
problem is to find the distribution x such that Ax = b. On the front page we show
such a picture with b obtained by MR scanning.

The solution of the problem Ax = b is the subject of the next chapter. First, however,
we need to discuss some properties of linear mappings.

Using the definition (1.3) of the matrix–vector product and the rules for vector
arithmetic, we see that the relation

A(αu + βv) = α
(
A u

)
+ β

(
A v

)
(1.7)

is true for all choices of n-vectors u, v, and scalars α, β. This relation is known as
the linearity condition.

In the special case where α = β = 0, it follows that

A0[n] = 0[m] , (1.8)

1.4. Linear mapping 9

where the indices [n] and [m] are used to indicate that the zero vectors are in R
n

and R
m, respectively. In words: a linear mapping maps the zero vector into the zero

vector.

Example 1.15. Let

A =

 1 2 3
4 5 6
7 8 9

 , z =

 1
2
1

 , w =

 1
−2

1

 .

Using Eq. (1.3) we get

Az =

 8
20
32

 , Aw =

 0
0
0

 .

This example shows that for some linear mappings there are nonzero vectors x
for which Ax = 0. In order to get a better understanding of this we look at the
definition (1.3) of the matrix–vector product,

Ax =

a11x1 + a12x2 + · · · + a1nxn

a21x1 + a22x2 + · · · + a2nxn
...

am1x1 + am2x2 + · · · + amnxn

 .

From the rules for vector arithmetic it follows that an equivalent formulation of the
right-hand side is

y = A x = x1A:,1 + x2A:,2 + · · ·+ xnA:,n . (1.9)

We say that y is a linear combination of the vectors A:,1, A:,2, . . . , A:,n.
If x = 0, we naturally get y = 0, and if y 6= 0 for all nonzero x (ie a vector with

at least one nonzero element), then the vectors A:,1, A:,2, . . . , A:,n (the columns in
A) are said to be linearly independent. If there exists a nonzero x such that the
image y = 0, then the columns in A are said to be linearly dependent. Assume, for
instance, that Ax = 0 for a vector x with x1 6= 0. Then Eq. (1.9) implies that

A:,1 = −x2

x1
A:,2 − · · · − xn

x1
A:,n .

This means that the first column in A is a linear combination of the other columns.
In general, if the columns in A are linearly dependent, then one or more of the
columns can be expressed as a linear combination of the other columns. The selection
of which column to express in terms of the others is normally not unique.

Example 1.16. If, for instance, A:,k = 0, then the columns in A are linearly dependent:
we may take xk = 1 and all other xj = 0.
Two nonzero vectors u and v are linearly dependent if and only if they are proportional,
ie there is a real number β such that u = βv.
For the matrix from Example 1.15,

A =

 1 2 3
4 5 6
7 8 9

 ,

we can select two columns in three different ways (neglecting the ordering):

10 1. Introduction

 1 2
4 5
7 8

 ,

 1 3
4 6
7 9

 ,

 2 3
5 6
8 9

 .

In all three cases the two columns are linearly independent.
In Example 1.15 we saw that

A:,1 − 2A:,2 + A:,3 = 0 .

This means that

A:,1 = 2A:,2 + A:,3 , A:,2 = 1
2A:,1 + 1

2A:,3 , A:,3 = 2A:,2 −A:,1 .

These relations are easily verified.

A linear mapping from R
n into R

m is sometimes confused with an affine mapping
from R

n into R
m. In this case the image y is given by

y = Ax + b , (1.10)

where the m-vector b may be zero or nonzero. Obviously, the linearity condition
Eq. (1.7) is not satisfied by an affine mapping with a nonzero b.

1.5. Basis and Coordinates

Example 1.17. Let
−→
b 1 and

−→
b 2 be two geometric vectors in the plane. If they are linearly

independent, ie they are not parallel, then we can write any −→x in the plane as a linear
combination of

−→
b 1 and

−→
b 2,

−→x = x̃1
−→
b 1 + x̃2

−→
b 2 .

The figure illustrates such a linear combination.

Figure 1.5. −→x = −1.3
−→
b 1 + 1.5

−→
b 2.

−→x

−→
b 1

−→
b 2

x̃1
−→
b 1

x̃2
−→
b 2

(1)

(2)

The observation in this example generalizes. If we know n linearly indepen-
dent vectors in R

n, b1, b2, . . . , bn, then any n-vector x can be written as a linear
combination of these vectors:

x = x̃1b1 + x̃2b2 + · · ·+ x̃nbn . (1.11)

The vectors {bj} are said to form a basis for R
n, and the {x̃j} are the coordinates

of x with respect to this basis.
The usual basis in R

n is the vectors e1, e2, . . . , en, where ej = I:,j, ie its jth

element is 1 and all the other elements are zero. The coordinates of a vector x with
respect to this basis are simply the elements in x.

1.5. Basis and coordinates 11

Example 1.18. The usual basis in R
3 is

e1 =

 1
0
0

 , e2 =

 0
1
0

 , e3 =

 0
0
1

 .

The vector with coordinates 2, 3 and 4 is

x = 2

 1
0
0

 + 3

 0
1
0

 + 4

 0
0
1

 =

 2
3
4

 .

By comparison with Eq. (1.9) we see that Eq. (1.11) is equivalent to

x = B x̃ , (1.12)

where x̃ is the vector of coordinates with respect to the basis {bj}, and the matrix
B has bj as its jth column, B:,j = bj .

Thus, given the coordinates, the vector x∈R
n is obtained by a linear mapping

of x̃∈R
n with the mapping matrix B. The inverse problem is: given x, find x̃.

How to do that in the general case is the subject of the next chapter. In special
cases, however, the inverse problem is simple:

If the basis vectors are orthogonal, ie

bT
i bj = 0 for all i 6= j ,

then it follows from Eq. (1.11) that

bT
k x = x̃1

(
bT

k b1

)
+ · · ·+ x̃k

(
bT

k bk

)
+ · · ·+ x̃n

(
bT

k bn

)
= x̃k

(
bT

k bk

)
,

showing that

x̃k =
bT

k x

bT
k bk

, k = 1, 2, . . . , n .

The computation is even easier if the basis is orthonormal. This means that the
basis vectors are not only orthogonal, but also each of them has norm ‖bj‖ = 1, cf
Eq. (1.2),

bT
i bj =

{
0 if i 6= j ,

1 if i = j .
(1.13)

In this case the computation simplifies to

x̃ = bT
k x , k = 1, 2, . . . , n . (1.14)

Example 1.19. It is simple to verify that the usual basis is orthonormal. Another
example of an orthonormal basis in R

2 is

b1 =
(

cos v
sin v

)
, b2 =

(− sin v
cos v

)
,

for any angle v. We easily see that the two vectors are nonzero and not proportional,
so they form a basis in R

2 for any choice of v. Next,

12 1. Introduction

bT
1 b2 = cos v · sin v − sin v · cos v = 0 ,

bT
1 b1 = bT

2 b2 = cos2 v + sin2 v = 1 .

Thus, the two vectors satisfy Eq. (1.13).

The matrix
B =

(
cos v − sin v
sin v cos v

)
is known as a rotation matrix , cf the next example.

Example 1.20. We shall demonstrate that a change of basis may simplify a problem:
We want to find the points P : (x1, x2) that satisfy the quadratic equation

73x2
1 − 72x1x2 + 52x2

2 = 100 .

The vectors

b1 =
(

0.6
0.8

)
, b12 =

(−0.8
0.6

)
form an orthonormal basis in R

2, and we introduce the coordinates (x̃1, x̃2) with respect
to this basis: (

x1

x2

)
=
(

0.6 −0.8
0.8 0.6

)(
x̃1

x̃2

)
.

In accordance with this we use 0.6x̃1 − 0.8x̃2 and 0.8x̃1 + 0.6x̃2 to replace x1 and x2,
respectively, in the quadratic equation:

100 = 73 (0.6x̃1 − 0.8x̃2)
2

−72 (0.6x̃1 − 0.8x̃2) (0.8x̃1 + 0.6x̃2)
+52 (0.8x̃1 + 0.6x̃2)

2

= 73
(
0.36x̃2

1 − 0.96x̃1x̃2 + 0.64x̃2
2

)
−72

(
0.48x̃2

1 − 0.28x̃1x̃2 − 0.48x̃2
2

)
+52

(
0.64x̃2

1 + 0.96x̃1x̃2 − 0.36x̃2
2

)
= 25x̃2

1 + 100x̃2
2 .

So, we got rid of the the term involving the product of the two elements in the vector.
After dividing by 100 on both sides of this equation we get(

x̃1

2

)2

+
(

x̃2

1

)2

= 1 .

This is the equation (with respect to the basis b1 and b2) for points on an ellipse with
half axes 2 and 1. In order to draw this curve we exploit that a point on the ellipse
can be expressed by (

x̃1

x̃2

)
=
(

2 cos u
sin u

)
,

for some value of the angle u. By letting u run though the interval 0 ≤ u ≤ 2π we can
generate all points on the ellipse. This is the background for the following Matlab
code, which was used to plot the ellipse in the figure.

u = linspace(0,2*pi,201);
xt = [2*cos(u); sin(u)];
x = [0.6 -0.8; 0.8 0.6] * xt; % original coordinates
plot(x(1,:),x(2,:))

1.5. Basis and coordinates 13

Figure 1.6. Rotated ellipse.

(1)

(2) (1̃)

(2̃)

−→
b 1−→

b 2

The matrix used in the relation between x and x̃ is a rotation matrix

A =
(

cos v − sin v
sin v cos v

)
,

cf Example 1.19. The angle is defined by

cos v = 0.6 , sin v =
√

1− cos2 v = 0.8 .

This corresponds to v ' 53 degrees, which is the angle between (1) and
−→
b 1 in Fig-

ure 1.6.

In conclusion, the points satisfying the given quadratic are on an ellipse, which is ro-
tated around its centre. The rotation angle is v ' 53 degrees.

In Example 3.9 we show how we found out that the specific choice of basis vectors
b1 and b2 would simplify the quadratic equation. Also we show how we can avoid
the tiresome calculations in the reformulation from 73x2

1 − 72x1x2 + 52x2
2 = 100 to

25x̃2
1 + 100x̃2

2 = 100.

14 1. Introduction

2. Linear Systems of Equations

A linear system of equations has the form

a11x1 + a12x2 + · · · + a1nxn = b1

a21x1 + a22x2 + · · · + a2nxn = b2
...

am1x1 + am2x2 + · · · + amnxn = bm

, (2.1)

where the coefficients {aij} and right-hand sides {bi} are given numbers. We seek
the solution x1, x2, . . . , xn.

From the discussion of matrix–vector products in Section 1.3 it follows that we
can write the system in the compact form

Ax = b , (2.2)

where the coefficient matrix A∈R
m×n has the elements aij , and the right-hand side

vector b and the solution vector x contain respectively {bi} and {xj}.
Example 2.1. Figure 2.1 shows three points (ti, yi) in the plane: (1, 0.8), (2, 0.7) and

(3, 1.6).

Figure 2.1. Three given points
on a parabola.

0 1 2 3
0

1

2

3

p(t)
(t

i
, y

i
)

We use a model which says that the points are on a parabola, yi = p(ti), where

p(t) = x1t
2 + x2t + x3 .

However, we do not know the coefficients x1, x2 and x3.
Using the same arguments as in Example 1.11, we see that the following equations
must be satisfied,

t2i x1 + tix2 + x3 = yi , i = 1, 2, 3 .

This is three linear equations with the three unknowns x1, x2 and x3. We can express
the three equations in the form

t21x1 + t1x2 + x3 = y1

t22x1 + t2x2 + x3 = y2

t23x1 + t3x2 + x3 = y3 ,

16 2. Linear systems of equations

or as Ax = y, where

A =

 t21 t1 1
t22 t2 1
t23 t3 1

 , y =

 y1

y2

y3

 .

By inserting the given values for (ti, yi) we get the system 1 1 1
4 2 1
9 3 1

x1

x2

x3

 =

 0.8
0.7
1.6

 .

Example 2.2. In many textbooks the “determinant method” is used to solve a system
of two linear equations with two unknowns,

a11x1 + a12x2 = b1 ,

a12x1 + a22x2 = b2 .

The determinant of the coefficient matrix A is defined by

detA =
∣∣∣∣ a11 a12

a21 a22

∣∣∣∣ = a11a22 − a21a12 .

This is zero if and only if there is a scalar β such that(
a11

a21

)
= β

(
a12

a22

)
,

ie, the two columns in A are linearly dependent, cf page 9. Such a matrix is said to
be singular . This case is discussed in Section 2.3.

If det A 6= 0, we say that A is nonsingular , and the solution is

x1 =
a22b1 − a12b2

detA
, x2 =

a11b2 − a21b1

det A
.

This can be verified by inserting these expressions in the above system.

As a specific example, consider the system Ax = b with

A =
(

2 −4
2.5 −2

)
, b =

(
4

6.5

)
.

We get
det A = 2 · (−2)− 2.5 · (−4) = 6 ,

This is nonzero, so the matrix is nonsingular, and the solution is

x1 =
(−2) · 4− (−4) · 6.5

6
= 3 , x2 =

2 · 6.5− 2.5 · 4
6

= 0.5 .

The determinant method may be generalized to larger systems, but as n grows it
becomes very inefficient.

The solution of linear systems of equations occurs so often in scientific compu-
tation that it probably is the type of task that uses most computer effort. There
are many efficient programs for the solution of the problem, and in surroundings
like Matlab or R there are simple commands that call such a program. In the
next sections we give a brief introduction to the mathematical background of these
programs. We first discuss some particularly simple cases, and then proceed to a
generally applicable solution method.

2.1. Simple systems 17

2.1. Simple systems
The simplest case of a linear system of equations is when the coefficient matrix is
diagonal , ie when the equations have the form

aiixi = bi , i = 1, 2, . . . , n .

Assuming that all the aii are nonzero, the solution is

xi = bi/aii , i = 1, 2, . . . , n .

Another simple case is when the system has the form

Qx = b , (2.3)

where Q is an orthogonal matrix . This means that the columns in Q are orthonor-
mal :

QT
:,iQ:,j =

{
0 if i 6= j ,

1 if i = j .
,

cf (1.13). The system (2.3) is equivalent to

x1Q:,1 + x2Q:,2 + · · ·+ xnQ:,n = b ,

and as we did in Section 1.5, we see that

xk = QT
:,kb , k = 1, 2, . . . , n .

It is easy to verify that this means that the solution to the orthogonal system in
Eq. (2.3) can be expressed as

x = QT b , (2.4)

ie the solution is found simply by multiplying the right-hand side b by the transposed
of the coefficient matrix Q. We shall use this several times in the remainder of the
note.

Example 2.3. In Example 1.19 we showed that a rotation matrix

A =
(

cos v − sin v
sin v cos v

)
.

has orthonormal columns. This means that the vectors in the two columns can be used
as basis in R

2, and letting x̃ denote the coordinates with respect to this basis, we see
that

x = Ax̃ ⇔ x̃ = AT x .

Finally, we consider triangular systems. This means that the coefficient matrix
is triangular. We start by looking at Lx = b, where L is a lower triangular matrix,
so the system of equations has the form

`11x1 = b1

`21x1 + `22x2 = b2
...

`n1x1 + `n2x2 + · · · + `nnxn = bn

.

18 2. Linear systems of equations

The first equation has x1 as the only unknown, and assuming that the coefficient
`11 6= 0, we get x1 = b1/`11. We insert this value in the second equation and if
`22 6= 0, we get x2 = (b2 − `21x1) /`22 The known values for x1 and x2 are inserted
in the third equation, etc. We can summarize this in the form

x1 = b1/`11

for i = 2, 3, . . . , n
xi = (bi − `i1x1 − · · · − `i,i−1xi−1) /`ii

end

(2.5)

This algorithm is called forward substitution. It can be used only if all `ii 6= 0.

It is equally simple to solve the problem Ux = c, where U is an upper triangular
matrix,

u11x1 + u12x2 + · · · + u1nxn = c1

u22x2 + · · · + u2nxn = c2
...

unnxn = cn

.

We solve the last equation first and move up. Assuming that all uii 6= 0, we get

xn = cn/unn

for i = n−1, . . . , 2, 1
xi = (ci − ui,i+1xi+1 − · · · − ui,nxn) /uii

end

(2.6)

This algorithm is known as back substitution.

Example 2.4. Consider the upper triangular system 9 3 1
2
3

5
9
3
9

x1

x2

x3

 =

 1.6
−0.1

9
5.7
9

 .

By means of Algorithm (2.6) we get

x3 = 5.7
9

/ 3
9

= 1.9 ,

x2 = (−0.1
9
− 5

9
· 1.9)/ 2

3
= −1.6 ,

x1 = (1.6 − 3 · (−1.6)− 1 · 1.9)/9 = 0.5 .

2.2. Gaussian Elimination
The idea is to transform the given general, square system of equations Ax = b to
an upper triangular system Ux = c, which can then be solved by back substitution.
The transformation must be made so that the solution is not changed, and this is
ensured if we use a sequence of one or both of the two elementary operations

1◦ Interchange two equations.

2◦ Modify an equation by subtracting a multiple of one of the other equations.

2.2. Gaussian elimination 19

Example 2.5. Given the system from Example 2.2

2x1 − 4x2 = 4
2.5x1 − 2x2 = 6.5

We modify the second equation by subtracting 1.25 times the first equation:

2.5x1 − 2x2 − 1.25 (2x1 − 4x2) = 6.5 − 1.25 · 4 .

This reduces to 3x2 = 1.5, so the original system is equivalent to the upper triangular
system

2x1 − 4x2 = 4
3x2 = 1.5

By means of back substitution we get the same solution as in Example 2.2: x2 = 0.5,
x1 = 3. Note that the elimination factor 1.25 = 2.5/2 was chosen in order to eliminate
x2 from the modified equation.
Figure 2.2 gives a geometric interpretation: The two equations correspond to the
straight lines L1 : 2x1 − 4x2 = 4 and L2 : 2.5x1 − 2x2 = 6.5, and the solution is
the coordinates of the point where they intersect. The modification of the system
corresponds to replacing L2 by L̂2 : x2 = 0.5.

Figure 2.2. Gaussian.
elimination.

(1)

(2)

1
L1

L2

L̂2

Any linear equation with two unknowns and at least one nonzero coefficient can be
interpreted as the equation for a straight line, and the solution to a 2×2 system is the
the point of intersection between the two lines. The figure suggests possible complica-
tions:

L1 may be parallel to the (1)-axis. This happens if a11 = 0, and this problem might be
cured simply by interchanging the two equations, corresponding to renumbering the
two lines.

The two lines may be parallel, in which case the system has no solution.

The two line may be coinciding, in which case there is infinitely many solutions: all
points on the line satisfy both equations.

We will return to these problems in Section 2.3.

20 2. Linear systems of equations

Let us now consider a general n×n system Ax = b. It is convenient for the
presentation (and for hand calculation) to introduce the so-called augmented matrix
T , which is the n×(n+1) matrix

T =

a11 a12 . . . a1n b1

a21 a22 . . . a2n b2
...

...
...

...
an1 an2 . . . ann bn

 . (2.7)

The vertical line is put there only to separate the coefficients and the elements of
the right-hand side. Note that the ith row T i,: holds all information about the ith

equation. During computation the elements in T change, but in order to avoid a
very complicated notation, we let aij denote the current value of the coefficient of xj

in the ith equation, and bi is the current value of the ith right-hand side. Accordingly
we use “←”, for instance a ← a + b, to indicate that the old value of a is replaced
by a+b.

The first step in Gaussian elimination is to keep x1 in one equation and eliminate
it from all the others. This is done by first finding p1, the number of the equation
with the largest contribution from x1,

|ap1,1| = max
i=1,2,...,n

|ai1| (2.8)

If ap1,1 = 0, then x1 does not appear in any of the equations, and we proceed to the
next step. Otherwise, if p1 6= 1, then interchange the 1st and the p1th equation,

T 1,: ↔ T p1,: ,

and modify equations

`i1 = ai1/a11

T i,: ← T i,: − `i1T 1,:

}
i = 2, 3, . . . , n .

After this step the original system has been changed to

T =

a11 a12 . . . a1n b1

0 a22 . . . a2n b2
...

...
...

...
0 an2 . . . ann bn

 ,

where all the aij and bi may have values different from the original values. Note
that the active part of of the system: rows 2, . . . , n, columns 2, . . . , n, n+1, has the
same structure as the original system, but it is smaller.

The second step is similar to the first: Keep x2 in one of the active equations
and eliminate it from all the other active equations. This continues. For k =
1, 2, . . . , n−1 the active part of the system consists of rows k, . . . , n and columns
k, . . . , n+1. We keep xk in one of the active equations (if possible) and delete it

2.2. Gaussian elimination 21

from the others. The entire elimination algorithm can be expressed by

for k = 1, 2, . . . , n−1
find pk : |apk,k| = max

i=k+1,...,n
|ai,k|

if apk,k 6= 0 then
if pk 6= k then T k,: ↔ T pk,: end
for i = k+1, . . . , n

`ik = aik/akk

T i,: ← T i,: − `ikT k,:

end
end

end

(2.9)

After executing this algorithm the augmented matrix has the structure

T =
(
U c

)
,

where U is upper triangular and c contains the final values of the elements in the
right-hand side vector.

Example 2.6. Consider the parabola problem from Example 2.1, 1 1 1
4 2 1
9 3 1

x1

x2

x3

 =

 0.8
0.7
1.6

 .

We use the augmented matrix notation, and indicate the operations that lead from
one version of T to the next: 1 1 1 0.8

4 2 1 0.7
9 3 1 1.6

 ∼
p1 = 3

 9 3 1 1.6
4 2 1 0.7
1 1 1 0.8

 ∼
`21 = 4

9

`31 = 1
9 9 3 1 1.6

0 2
3

5
9
− 0.1

9

0 2
3

8
9

5.6
9

 ∼
p2 = 2
`3,2 = 1

 9 3 1 1.6
0 2

3
5
9

−0.1
9

0 0 3
9

5.7
9

 .

Thus, the solution x satisfies the upper triangular system 9 3 1
2
3

5
9
3
9

x1

x2

x3

 =

 1.6
−0.1

9
5.7
9

 .

We solved this system in Example 2.4. The solution is

x =
(
0.5 −1.6 1.9

)T
.

Note that this agrees with the coefficients in the parabola given in Figure 1.3, so the
three given points identified the correct parabola.

The term Gaussian elimination is used to cover the entire solution method,
involving both the elimination algorithm and back substitution in the transformed,
upper triangular system.

As presented, the algorithm involves pivoting . This means that each diagonal
element is determined as the largest element in the leading column of the active part
of the system. In hand calculation this part is needed only, if the current diagonal

22 2. Linear systems of equations

element is zero. When the calculations are made on a computer, the use of it is
very important. The reason is that a computer has a limited accuracy, and if an
elimination factor `ik is very large, then there is a risk that the result of

T i,: ← T i,: − `ikT k,:

is so dominated by the contribution `ikT k,:, that the “old” information in T i,: is lost.
With pivoting all the elimination factors satisfy |`ik| ≤ 1, and this reduces the risk
of loss of information.

Example 2.7. Consider the matrix A from Example 1.15 with a right-side b = Az: 1 2 3 8
4 5 6 20
7 8 9 32

 ∼
p1 = 3

 7 8 9 32
4 5 6 20
1 2 3 8

 ∼
`21 = 4

7

`31 = 1
7 7 8 9 32

0 3
7

6
7

12
7

0 6
7

12
7

24
7

 ∼
p2 = 3
`3,2 = 1

2

 7 8 9 32
0 6

7
12
7

24
7

0 0 0 0

 .

We see that u33 = 0, so there is a problem that we need to discuss.

2.3. Complete Solution
The elimination algorithm from the previous section transforms the given system
Ax = b to an upper triangular system Ux = c,

u11x1 + u12x2 + · · · + u1nxn = c1

u22x2 + · · · + u2nxn = c2
...

unnxn = cn

, (2.10)

without changing the solution x.
If all the uii 6= 0, then the solution is found simply by back substitution. Note

that in this case the solution x is unique.
The case where one or more uii = 0 needs further investigation. We say that

the matrix A is singular (and that it is nonsingular if all the uii 6= 0). We shall
only give a detailed discussion of the simplest case, where unn = 0 is the only zero
element on the diagonal of U . Then the last equation in (2.10) has the form

0 · xn = cn .

If cn 6= 0, then this equation, and therefore the original system Ax = b, has no
solution. If cn = 0, we say that the system is consistent. Then the last equation is
satisfied by xn = α, where α is any real number. In order to find the other elements
in x we see from Eq. (2.10) that they must satisfy the reduced system

u11x1 + u12x2 + · · · + u1,n−1xn−1 = c1 − u1,nα
u22x2 + · · · + u2,n−1xn−1 = c2 − u2,nα

...
un−1,n−1xn−1 = cn−1 − un−1,nα

. (2.11)

2.3. Complete solution 23

All the diagonal coefficients in this system are nonzero, so we can use back substi-
tution and get

xi = zi + αvi , i = n−1, . . . , 2, 1 ,

where
zn−1 = cn−1/un−1,n−1 , vn−1 = −ui,n−1/un−1,n−1 ,

and for i = n−2, . . . , 2, 1 :

zi = (ci − ui,i+1zi+1 − · · · − ui,n−1zn−1) /uii ,

vi = (−ui,n − ui,i+1vi+1 − · · · − ui,n−1vn−1) /uii .

So, in this case the complete solution to Ax = b is

x = xb + αw , α ∈ R , (2.12)

where

xb =

z1

z2
...

zn−1

0

 , w =

v1

v2
...

vn−1

1

 .

Example 2.8. In Example 2.7 we saw that 1 2 3 8
4 5 6 20
7 8 9 32

 ∼
 7 8 9 32

0 6
7

12
7

24
7

0 0 0 0

 .

Using the method described above we get the complete solution

x = xb + αw =

 0
4
0

+ α

 1
−2

1

 , α ∈ R .

We recognize the vector w from Example 1.15. The vector z from the same example
is obtained for α = 1.

The solution x = xb + αw was constructed so that

A(xb + αw) = b

for any choice of α. By use of the linearity condition of a linear mapping, Eq. (1.7),
we see that A(xb + αw) = b is equivalent to the condition

A xb + αAw = b

for any choice of α. This can be satisfied only, if

A xb = b and Aw = 0 . (2.13)

We say that w is in the nullspace (or kernel) of A. The system

A x = 0

24 2. Linear systems of equations

is said to be a homogeneous system. The zero vector x = 0 satisfies this system
for any A, and if A is nonsingular, then 0 is the only solution. If A is singular,
however, then it has a proper nullspace that contains nonzero vectors, for instance
w.

By rewriting the condition Aw = 0 we see that

w1A:,1 + · · ·+ wn−1A:,n−1 + A:,n = 0 .

This shows (cf page 9) that the columns in a singular matrix are linearly dependent.
We can write

A:,n = −w1A:,1 − · · · − wn−1A:,n−1 ,

and this implies that the image of any x∈R
n can be expressed as

Ax = x1A:,1 + · · ·+ xn−1A:,n−1 + xnA:,n

= x̂1A:,1 + · · ·+ x̂n−1A:,n−1 ,
(2.14)

where x̂j = xj −wjxn. In other words, the image is a linear combination of the first
n−1 columns in A. This is a subspace of R

n, called the column range of A.
The condition for Ax = b having a solution is that b is “reachable”, ie that b is

in the column range of A. If the n×n matrix is nonsingular, then the nullspace of
A has 0 as the only element, and the column range of A is the entire R

n.

Example 2.9. We shall briefly discuss a problem, Ax = b ∼ Ux = c, where U has
more than one uii = 0 or the zero diagonal element is not in the last row.
In all of these cases the matrix A is singular, and the solution – if it exists – has at
least one free parameter. Intuitively, the number of free parameters is equal to the
number of zero diagonal elements in U , but this guess may be wrong! To illustrate
that, consider the two examples

4 2 10 0 4 50
2 4 8 6 14 64
1 0 2 3 3 10
3 2 8 9 13 52
0 3 3 3 9 36

 ∼

4 2 10 0 4 50
0 3 3 6 12 39
0 0 0 4 4 4
0 0 0 8 8 8
0 0 0 0 0 0

 ,

4 6 8 8 4 4
2 13 10 0 6 36
1 −1 0.5 11 6 −9.5
3 7 7.5 9 6 5.5
0 −5 −3 4 −1 −20

 ∼

4 6 8 8 4 4
0 10 6 −4 4 34
0 0 0 8 6 −2
0 0 0 4 2 −6
0 0 0 0 0 0

 ,

In both cases U has two zero diagonals, and for each A the right-hand side was
generated as b = Ax̆, where

x̆ =
(
1 −2 3 −4 5

)T
,

so both systems have a solution. For the first system the complete solution is

x =

7
11
0
1
0

+

−2 0
−1 −2

1 0
0 −1
0 1

α , α ∈ R
2 ,

2.4. Matrix inverse 25

so the solution involves two free parameters. The vector x̆ is obtained for α1 = −13,
α2 = 5.
The complete solution to the second system is

x =

4.3
−0.2

0
−4

5

+

−1.1
−0.6

1
0
0

α , α ∈ R ,

so for this problem there is only one free parameter. The vector x̆ is obtained for
α = 3.
It is outside the scope of this lecture note to describe how we computed the complete
solution. In Section 4.3 we discuss a method, which is better than Gaussian elimination
for computing nullspace, column range and complete solution.

2.4. Matrix inverse
Let A∈R

n×n, B ∈R
n×q, and consider the matrix equation

AX = B .

If A is nonsingular, then there is a unique solution X ∈R
n×q, whose columns satisfy

the linear system of equations

AX :,j = B:,j , j = 1, 2, . . . , q .

The algorithms in Gaussian elimination are simple to adjust to cope with matrix
equations: If we let the augmented matrix include all the columns of B,

T =
(
A B

)
,

then the elimination algorithm (2.9) needs not be changed, and it leads to

T ∼ (
U C

)
.

If there are no zeros on the diagonal of U , then the solution can be found by the
following modified version of the back substitution algorithm (2.6),

Xn,: = C :,j/unn

for i = n−1, . . . , 2, 1
X i,: = (Ci,: − ui,i+1X i+1,: − · · · − ui,nXn,:) /uii

end

Example 2.10. We would like to solve the matrix equation(
2 3
4 5

)
X =

(
1 0
0 1

)
.

With the notation from Example 2.6 we get

26 2. Linear systems of equations

(
2 3 1 0
4 5 0 1

) ∼
p1 = 2

(
4 5 0 1
2 3 1 0

) ∼
`21 = 1

2

(
4 5 0 1
0 1

2 1 −1
2

)
,

and back substitution gives

X2,: =
(
1 −1

2

)
/1

2 =
(
2 −1

)
,

X1,: =
{(

0 1
)− 5

(
2 −1

)}
/4 =

(
−5
2

3
2

)
.

This means that the solution is X = 1
2

(−5 3
4 −2

)
.

The matrix equation with B = I, the identity matrix, is of special interest. Its
solution is called “A inverse” and is written A−1,

AA−1 = I . (2.15)

The matrix inverse is defined only for nonsingular matrices.
Now, let A be a nonsingular n×n matrix, b an n-vector, and define y = A−1b.

Then
Ay = AA−1b = I b = b .

This shows that y = x, the unique solution to Ax = b, ie, if A is nonsingular, then

A x = b ⇔ x = A−1b . (2.16)

If we multiply first equation by A−1 from the left, we get

A−1Ax = A−1b ,

and combining this with Eqs. (2.15) and (2.16) we see that the matrix inverse satisfies

AA−1 = A−1A = I . (2.17)

This is one of the rare examples, where the interchange of the factors in a matrix-
matrix product does not change the result.

Example 2.11. In Example 2.10 we actually computed a matrix inverse:

A =
(

2 3
4 5

)
⇔ A−1 = 1

2

(−5 3
4 −2

)
.

Now consider the system Ax =
(

4
6

)
. By means of Eq. (2.16) we can find the solution:

x = 1
2

(−5 3
4 −2

)(
4
6

)
=
(−1

2

)
.

There are matrices for which it is almost embarrassingly simple to compute the
inverse. We shall mention diagonal and orthogonal matrices:

D =

d11

d22

. . .

dnn

 ⇔ D−1 =

d−1

11

d−1
22

. . .

d−1
nn

 .

2.4. Matrix inverse 27

Example 2.12.

D =

 1
1
2

3

 ⇔ D−1 =

 1
2

1
3

 .

An orthogonal matrix Q satisfies

QT Q = I , (2.18)

cf the discussion at the start of Section 2.1. According to Eq. (2.17) this implies
that

Q−1 = QT ,

and that also QT is orthogonal

QQT = I .

It is wasteful to use Gaussian elimination to solve a system Qx = y with an orthog-
onal matrix. It is both faster and slightly more accurate to exploit that

Qx = b ⇔ x = QT b . (2.19)

Example 2.13. We actually exploited Eq. (2.19) in connection with Eq. (1.14). The
general equation for basis shift is x = Bα, where the columns in B are the coordinates
of the “new” basis vectors. If they are orthonormal, then B is orthogonal, and the
“new” coordinates are α = BT x.

For a general square, nonsingular matrix A it must be said that Eq. (2.16) is a
convenient notation when discussing a mathematical model, but “x = A−1b” should
be read as shorthand for “find x as the solution to Ax = b”. The matrix inverse
itself is only needed in special cases, and the solution via Gaussian elimination is
both faster and usually also less affected by rounding errors than the solution via
the matrix inverse.

Exercise 2.14. We can use this comment on the matrix inverse to derive the following
result: Let A and B be square and nonsingular. Show that

(AB)−1 = B−1A−1 .

Hint: Consider the matrix equation ABX = I and introduce the auxiliary matrix
C = BX.

Example 2.15. It sometimes happens that one has to solve a series of problems

Axk = bk , k = 1, 2, . . . ,K ,

with the same matrix but different right-hand sides. It is, of course, wasteful to start
from scratch with each problem, since the operations on the matrix elements are the
same.
If all bk are known, then the simplest method is to solve the problem as a matrix
equation AX = B, where the n×K matrix B has bk as its kth column, B:,k = bk.
In some cases, however, bk is a function of x1,x2, . . . ,xk−1, so it is not known from
the start, and we cannot use the matrix equation approach. One might argue that

28 2. Linear systems of equations

the use of A−1 would be appropriate here, since the inverse only has to be computed
once, and then each xk is computed by the matrix-vector product A−1bk. In the next
section we describe a better method for solving this problem.

2.5. LU factorization

Example 2.16. In Example 2.7 we saw that

A =

 1 2 3
4 5 6
7 8 9

 ∼
p1 = 3
`21 = 4

7

`31 = 1
7

 7 8 9
0 3

7
6
7

0 6
7

12
7

∼

p2 = 3
`32 = 1

2

 7 8 9
0 6

7
12
7

0 0 0

 = U .

We introduce a lower triangular matrix L with ones on the diagonal and the elimination
factors stored column-wise in the strictly lower triangle. The storage is affected by row
interchanges: if pk 6= k, we use the row interchange T k,: ↔ T pk,: in Algorithm (2.9),
and the same interchange should be applied to the “preceding” elimination factors,

(L)kj ↔ (L)pkj , j = 1, . . . , k−1 .

With the above matrix we have p2 = 3, so `21 and `31 end up in (L)31 and (L)21,
respectively, while (L)32 = `32:

L =

 1 0 0
1
7

1 0
4
7

1
2

1

 .

It is easily verified that

L U =

 7 8 9
1 2 3
4 5 6

 .

This product is equal to the matrix obtained after the row interchange A1,: ↔ A3,:,
followed by A2,: ↔ A3,:.

The result in this example is no coincidence. We used the elimination algorithm
Eq. (2.9), and it can be shown that the effect on the coefficient matrix can be
expressed by

P A = LU . (2.20)

This is the so-called LU factorization of A. The matrix P is a permutation matrix ,
characterized by each row and each column having one element equal to 1, and all
the other elements are zero. L is a lower triangular matrix with ones on the diagonal
and the elimination factors in the strictly lower triangle, stored as outlined in the
example. Finally, U is the upper triangular matrix resulting from the elimination
algorithm.

Example 2.17. The permutation matrix P can be obtained from the identity matrix
I by applying the row interchanges defined by the elimination algorithm. For the

2.5. LU factorization 29

problem in Example 2.16 we get 1 0 0
0 1 0
0 0 1

 ∼
p1 = 3

 0 0 1
0 1 0
1 0 0

 ∼
p2 = 3

 0 0 1
1 0 0
0 1 0

 = P .

Note that the columns in P are orthogonal. This is a general property of a permutation
matrix, and implies that P−1 = P T .

Let ji denote the position of the 1 in the ith row of P . Then the result of PA is that
the rows of A come in the sequence j1, j2, . . . , jn. In particular, for the problem of
Example 2.16 the above P gives j1 = 3, j2 = 1, j3 = 2, and

P A =

 7 8 9
1 2 3
4 5 6

 .

This is equal to the result of the product LU in Example 2.16.

Now, assume that we know the LU factorization of A and want to solve the
system Ax = b. This is obviously equivalent to PAx = Pb, or

L U x = P b .

We introduce c = Ux, and it follows that the original problem can be solved in the
two steps

1◦ solve L c = Pb ,

2◦ solve U x = c .
(2.21)

The two systems involve a lower and an upper triangular matrix, so their solution
is found via forward and back substitution, respectively. The ones on the diagonal
ensure that L is nonsingular, so c is unique. A singular system is reflected in zero
diagonal elements in U .

Example 2.18. The nonsingular matrix in Example 2.6 has the LU factorization

P =

 0 0 1
0 1 0
1 0 0

 , L =

 1
4
9

1
1
9

1 1

 , U =

 9 3 1
6
9

2
9
3
9

 .

The vector P b is obtained by interchanging the first and third element in b. We
combine this with the forward substitution algorithm, Eq. (2.5), and exploit that all
the diagonal elements are one, so there is no division involved:

c1 = 1.6 ,

c2 = 0.7− 4
9

= −0.1
9

,

c3 = 0.8− 1
9
· 1.6− 1 · −0.1

9
= 5.7

9
.

This c is identical to the modified right-hand side in Example 2.6, which is no wonder:
The calculations involved in step 1◦ are the same as were used to get from

(
A b

)
to
(
U c

)
, except that they are done in a different order. Step 2◦ was performed

already in Example 2.4.

Example 2.19. Algorithm 2.21 can be interpreted as an application of the relation treated
in Exercise 2.14:

LUx = Pb ⇔ x = (LU)−1Pb = U−1L−1P b = U−1c .

30 2. Linear systems of equations

Example 2.20. Matlab has a built-in function lu for computing the LU factorization.
Let the Matlab variable A contain the matrix A, then the command

[L, U, P] = lu(A)

returns L, U and P in L, U and P, respectively. The command

[L, U] = lu(A)

returns P T L in L and U in U. Thus, L contains a row permuted lower triangular
matrix. We return to this aspect in Example 2.28 at the end of the the next section.

Example 2.21. It is relevant to ask the question: If A∈R
n×n and b∈R

n, how much work
is needed to solve the system Ax = b ? The elimination algorithm Eq. (2.9) involves
pivot searches, row interchanges and a number of “flops”. A flop (short for floating
point operation) is a simple arithmetic operation (addition, subtraction, multiplication
or division) between two real numbers. Traditionally, only the flops are counted, and
it can be shown that the transformation from A to U involves(

2
3
n3 − 1

2
n2 − 1

6
n
)

flops .

For large n the first term dominates, and we say that the “cost” of the transformation
from A to U is 2

3
n3 flops. Note that this is also the cost of computing the LU factor-

ization. The cost of solving each of the triangular systems Lc = Pb and Ux = c is
n2 flops. For comparison, the matrix-vector multiplication Az costs 2n2 flops, ie the
same as the solution of both triangular systems.
For a matrix equation AX = B we need 2

3
n3 flops to transform A to U and 2n2 flops

per column in B. If there are q columns, the solution cost is
(

2
3
n3 + 2q ·n2

)
flops. If

q = n, then the cost is 8
3
n3 flops. In the special case where B = I it is possible to

exploit the zeros in the off-diagonal positions, and the cost of computing A−1 reduces
to 2n3 flops.
For the problem in Example 2.15,

Axk = bk , k = 1, 2, . . . ,K ,

it follows that the solution via the matrix inverse costs
(
2n3 + 2Kn2

)
flops. Instead we

should compute the LU factorization once and then use Eq. (2.21) for each bk. With
this method the cost reduces to

(
2
3
n3 + 2Kn2

)
flops, so we save 4

3
n3 flops.

2.6. SPD systems
In an spd system the n×n coefficient matrix A is symmetric and positive definite
(the matrix is an spd matrix). This means that AT = A and

xT Ax > 0 for all nonzero x ∈ R
n . (2.22)

Note that the left hand side is the scalar product between the vectors x and Ax,
so it is a real number, and this is positive. Note also, that that this implies that
Ax 6= 0 for all nonzero x, so the columns in A are linearly independent and A is
nonsingular.

2.6. spd systems 31

If A is symmetric and

xT Ax ≥ 0 for all nonzero x ∈ R
n ,

then A is an spsd (symmetric, positive semidefinite) matrix.

Example 2.22. In Chapter 4 we introduce the normal equations matrix

A = F T F ,

where F is an m×n matrix with m ≥ n. We immediately see that A is an n×n matrix,
and using Eq. (1.6) we get

AT = F T (F T)T = F T F = A ,

so A is symmetric. Next, we let y = Fx and get

xT Ax = xT F T F x = yT y = y2
1 + · · ·+ y2

m ≥ 0 .

This shows that A is an spsd matrix.

If the columns in F are linearly independent, then y = Fx 6= 0 for all nonzero x, and
it follows that

xT A x = y2
1 + · · ·+ y2

m > 0 .

So in this case A is an spd matrix.

It can be shown that pivoting does not improve the accuracy of Gaussian elim-
ination applied to an spd system. If we omit this, there are no row interchanges,
and formula (2.20) simplifies to

A = L U .

Further, one can show that the symmetry is preserved in the active part of the
matrix during the transformation, and this has the effect that U = DLT , where
D is the diagonal matrix given by the diagonal elements in U . This means that
Gaussian elimination applied to an spd system is equivalent to the so-called LDL
factorization

A = L D LT . (2.23)

Example 2.23. With the notation from for instance Example 2.6 we get
4 12 −8 16

12 45 −33 66
−8 −33 41 30
16 66 30 502

∼

`21 = 3
`31 = −2
`41 = 4

4 12 −8 16
0 9 −9 18
0 −9 25 62
0 18 62 438

 ∼
`32 = −1
`42 = 2

4 12 −8 16
0 9 −9 18
0 0 16 80
0 0 80 402

 ∼
`43 = 5

4 12 −8 16
0 9 −9 18
0 0 16 80
0 0 0 2

 .

We see that the active parts of the matrix are symmetric. Collecting the elimination
factors in L we get

L =

1
3 1
−2 −1 1

4 2 5 1

 ,

32 2. Linear systems of equations

and U is the resulting upper triangular matrix,

U =

4 12 −8 16

9 −9 18
16 80

2

 =

4

9
16

2

1 3 −2 4
1 −1 2

1 5
1

 .

We see that U = DLT .

The symmetry can be exploited: We only need to compute the modified elements
on the diagonal and in either the strictly lower or the strictly upper triangle of the
matrix. Then we also know the modified elements in the other triangle. This means
that the cost of computing the LDL factorization is only half the cost of computing
the LU factorization, 1

3
n3 flops.

The LDL factorization can be computed for any symmetric matrix. However, if
the matrix is not positive definite, we should use pivoting in order to avoid excessive
effects of rounding errors. Fortunately, it is simple to check the condition Eq. (2.22)
during the computation of the factorization:

xT Ax = xT L D LT x

= yT D y = d11y
2
1 + d22y

2
2 + · · ·+ dnny

2
n .

Here, we introduced y = LT x. The ones along the diagonal in L ensure that this
matrix in nonsingular, and therefore y 6= 0 for any nonzero x. The right-hand side
must be positive for any nonzero y, and this is clearly the case if and only if all
the dii > 0. This means that if we meet a dkk ≤ 0 during the computation of the
factorization, then we know that the matrix is not spd, and can stop.

Example 2.24. We change the second diagonal element in the matrix from Example 2.23
to a22 = 35 and get

4 12 −8 16
12 35 −33 66
−8 −33 41 30
16 66 30 502

∼

`21 = 3
`31 = ?
`41 = ?

4 12 −8 16
0 −1 ? ?
? ? ? ?
? ? ? ?

The ? indicates values that we do not need to compute. d22 = −1 ≤ 0 tells us that the
matrix is not positive definite, and we stop the computation. A system Ax = b with
this matrix should be solved by Gaussian elimination with pivoting.

An spd system is often solved via the Cholesky factorization of the matrix,

A = C CT , (2.24)

where C is a lower triangular matrix. We can derive this from the LDL factorization,

A = LD LT =
(
L D1/2

)(
D1/2LT

)
= C CT .

Here, we have introduced the matrix

D1/2 =

√

d11 √
d22

. . . √
dnn

 .

2.6. spd systems 33

Since the dii are positive, the square roots exist.

Example 2.25. For the matrix from Example 2.23 the Cholesky factor is

C =

1
3 1
−2 −1 1

4 2 5 1

2
3

4 √
2

 =

2
6 3
−4 −3 4

8 6 20
√

2

 .

The Cholesky factor may be computed directly, ie without the detour around
the LDL factorization.

Once the Cholesky factorization is known, the spd system

Ax = b ⇔ C CT x = b

can be solved in the two steps

1◦ solve C z = b ,

2◦ solve CT x = z .
(2.25)

The solution of these two systems is found via forward and back substitution, re-
spectively.

Example 2.26. Consider the system
4 12 −8 16

12 45 −33 66
−8 −33 41 30
16 66 30 502

x =

108
441
−61
2034

 .

In Examples 2.23 and 2.25 we found that the symmetric coefficient matrix is positive
definite and computed its Cholesky factor C. The solution to the system is found in
the two steps

2
6 3
−4 −3 4

8 6 20
√

2

 z =

108
441
−61
2034

 ⇒ z =

 54
39

684
√

2

 ,

2 6 −4 8

3 −3 6
4 20√

2

x =

 54
39

684
√

2

 ⇒ x =

−1

2
−3

4

 .

Example 2.27. Traditionally the Cholesky factorization is defined as in Eq. (2.24),
A = C CT , where C is lower triangular. We might as well define it as

A = RT R ,

where R = CT is upper triangular. This is the definition used in Matlab. The
built-in function chol can be used to compute the Cholesky factor. Let A contain a
square matrix, then

R = chol(A)

34 2. Linear systems of equations

attempts to compute the Cholesky factor for the matrix. The matrix is assumed to be
symmetric and only the elements in the upper triangle are considered, for instance

R = chol([4 2;0 10]) R = chol([4 2;2 10])
both give R = [2 1;0 3]. If the matrix is not positive definite, you get an error
return.

Example 2.28. Let the Matlab variables A and b contain respectively an n×n matrix
A and column vector b with n elements. Then the Matlab command

x = A \ b

returns the solution to the system Ax = b. The method depends on possible special
properties of A:

1◦ If A is lower triangular (or a permuted lower triangular matrix, cf Example 2.20),
then the system is solved via (permuted) forward substitution. Similarly a (per-
muted) upper triangular system is solved by (permuted) back substitution.

2◦ If A is symmetric, then a Cholesky factorization of it is attempted. If it succeeds,
then it is used in the two step algorithm Eq. (2.25) to compute the solution.
Otherwise the general method is employed.

3◦ General method: Compute the LU factorization of A, and use Eq. (2.21) to solve
the system.

3. Eigenvalues and Eigenvectors

Example 3.1. Let λ be a constant. The simple differential equation
dy

dt
= λ y

has the solution

y(t) = c eλt ,

where c is an arbitrary constant. If y(0) = β is known, then c = β gives the desired
solution.
A linear system of differential equations has the form

dy

dt
= Ay ,

where each element in y is a function of time and the elements in the square matrix
A are constant. It is tempting to postulate that the solution to this system is

y(t) = eA t c ,

where c is an arbitrary vector. Is there an interpretation of the “matrix exponential”
eA t that makes this postulate true ?

Some other interesting questions are

• How did we find a good change of basis for the ellipse problem in Example 1.20 ?

• Why do the most interesting links always come out close to the top in a Google
search ?

• For a given n×n mapping matrix A, is there a nonzero vector v whose image Av
is proportional to v ?

Surprisingly, the key question is the last one. This is the so-called eigenproblem

A v = λ v , (3.1)

where the scalar λ is the eigenvalue and the nonzero v is a corresponding eigenvector .
We say that the pair (λ, v) is an eigensolution.

3.1. Properties of eigensolutions
The definition Av = λv is equivalent to

(A− λI)v = 0 . (3.2)

36 3. Eigenvalues and eigenvectors

We look for a nonzero solution to this homogeneous system of equations, and it
follows from the discussion in Section 2.3 that the matrix A− λI must be singular.
Especially, if λ = 0 is an eigenvalue for A, then the matrix itself is singular.

Example 3.2. For a 2×2 matrix A we can use the determinant defined in Example 2.2
to express that A− λI must be singular:

0 = det(A− λI) =
∣∣∣∣ a11−λ a12

a21 a22−λ

∣∣∣∣
= (a11−λ)(a22−λ)− a21a12

= λ2 − (a11+a22)λ + a11a22 − a21a12 .

This means that the eigenvalues are the roots of the so-called characteristic polynomial

PA(λ) = λ2 − (a11+a22)λ + a11a22 − a21a12 .

We shall consider three specific examples,

B =
(

73 −36
−36 52

)
, C =

(
1 2
0 1

)
, H =

(
73 −36
36 52

)
.

With the first matrix we get

PB(λ) = λ2 − 125λ + 2500 .

Using a well known technique for solving the quadratic equation PB(λ) = 0, we first
find the discriminant

D = (−125)2 − 4 · 1 · 2500 = 5625 ,

and the roots are

λ1 =
125 +

√
D

2
= 100 , λ2 =

125−√D

2
= 25 .

In order to find an eigenvector corresponding to λ2 we solve the singular system (B −
25I)v2 = 0. With the notation from Section 2.2 we get(

48 −36 0
−36 27 0

) ∼
p1 = 1

`21 = −36
48

(
48 −36 0
0 0 0

)
.

The reduced system has u22 = 0, confirming that B − 25I is singular. Proceeding as
in Section 2.3 we find the complete solution

v2 = α

(
3
4

)
, α ∈ R .

Similarly we find that

v1 = α

(−4
3

)
, α ∈ R ,

are the eigenvectors corresponding to λ1 = 100 .

Next, we find

PC(λ) = (1− λ)2 .

The only root is λ = 1. We say that this eigenvalue has algebraic multiplicity 2. The
eigenvectors are

(
α 0

)T for any α∈R.

Finally,

3.1. Properties of eigensolutions 37

PH(λ) = λ2 − 125λ + 5092 .

The discriminant is

D = (−125)2 − 4 · 1 · 5092 = −4743 .

This is negative, so H has no eigenvalue λ∈R.

Example 3.3. The condition that A−λI be singular has the immediate consequence that
the diagonal elements in a triangular (especially a diagonal) matrix are eigenvalues of
that matrix. For instance

A =

 1 2 3
4 5

6

has the eigenvalues λ1 = 1, λ2 = 4 and λ3 = 6.
The n×n identity matrix I gives Iv = v for any v ∈R

n, cf Example 1.10. This means
that I has the eigenvalue λ = 1 with arithmetic multiplicity n, and any v ∈R

n is an
eigenvector.

These examples show that if A has an eigensolution, then the eigenvector is not
unique: From the linearity conditions in Eq. (1.7) and the above definition of the
eigenproblem it follows that

A(αv) = α(Av) = α(λv) = λ(αv) ,

so αv is also an eigenvector for any choice of the scalar α. Therefore it may be
useful to think of an eigenvector as a direction in R

n, cf the geometric view in
Example 1.1. When we talk about “the eigenvector” in the following, we assume
that it is normalized so that ‖v‖ = 1. This makes v unique, except for sign.

We saw in Examples 3.2 and 3.3 that a matrix A may have several different
eigenvalues λj with corresponding eigenvectors vj,

Avj = λjvj , j = 1, 2, . . . , p . (3.3)

Further, it may happen (as for instance with I) that there are linearly independent
eigenvectors corresponding to the same eigenvalue. This case is also covered by the
formulation (3.3). If λi = λj, then

A (αvi + βvj) = α(λivi) + β(λjvj) = λi (αvi + βvj)

for any choice of scalars α and β. This shows that any linear combination of eigen-
vectors corresponding to a multiple eigenvalue is also an eigenvector.

Without proof we give the following facts about the eigenproblem for an n×n
matrix A. We shall use 5◦ in Section 3.2.3.

1◦ A has at most n different eigenvalues λ1, λ2, . . . , λp , p ≤ n .

2◦ If λ1, λ2, . . . , λp are mutually different, then the corresponding eigenvectors
v1, v2, . . . , vp are linearly independent.

3◦ If A is symmetric and λi 6= λj then vi and vj are orthogonal.

38 3. Eigenvalues and eigenvectors

4◦ If A is symmetric, then it is possible to choose an orthonormal set of n eigen-
vectors for A.

5◦ If all the elements in A are positive and the sum of the elements in each column
is one, then λ = 1 is an eigenvalue for A.

Example 3.4. Let

A =

 2 −1 −2
−1 2 −2
−2 −2 −1

 , B =

 15 −6 −12
12 −3 −12
12 −6 −9

 .

Both matrices have the eigenvalues λ1 = −3 and λ2 = λ3 = 3. For the symmetric
matrix A we may choose the orthonormal eigenvectors

v1 =
1√
6

 1
1
2

 , v2 =
1√
3

 1
1
−1

 , v3 =
1√
2

 1
−1

0

 .

The normalized eigenvectors for B may be chosen as

v1 =
1√
3

 1
1
1

 , v2 =
1√
5

 1
2
0

 , v3 =
1√
2

 1
−1

0

 .

Now, assume that A has n linearly independent eigenvectors, and make a matrix
V with vj as its jth column,

V =
(
v1 v2 · · · vn

)
. (3.4)

Then
AV =

(
λ1v1 λ2v2 · · · λnvn

)
= V Λ , (3.5)

where Λ is the diagonal matrix with the eigenvalues,

Λ =

λ1

λ2

. . .

λn

 .

In Eq. (3.5) we used the column-wise formulation of a matrix–matrix product,
Eq. (1.5), and the result from Exercise 1.13 about the product of a general and
a diagonal matrix.

The assumption about the columns in V being linearly independent, implies that
V is nonsingular. Therefore V −1 exists, and if we multiply with this matrix from
the right on both sides in Eq. (3.5), we get

A = V ΛV −1 . (3.6)

This eigen factorization of A is essential for the applications that we give in the
next section.

If A is symmetric, then the assumption about n linearly independent eigenvectors
is satisfied, and if we choose them to be orthonormal, cf fact 4◦ above, then V is an
orthogonal matrix, and Eq. (3.6) simplifies to

A = V ΛV T . (3.7)

3.2. Applications of eigensolutions 39

Example 3.5. We return to the question from Section 2.6: Let A be symmetric; is it
also positive definite ?

To answer that question we may use the factorization in Eq. (3.7).

xT A x = xT V ΛV T x

= yT Λy = λ1y
2
1 + λ2y

2
2 + · · · + λny2

n .

Here, we introduced y = V T x. Since V is nonsingular, there exists a nonzero y
corresponding to any nonzero x. The right-hand side must be positive for any nonzero
y, and this is clearly the case if and only if all the λi > 0.

Therefore, if all the eigenvalues for a symmetric matrix are strictly positive, then it is
an spd matrix. It should be said, that it is computationally cheaper to check via the
LDLT or Cholesky factorization, as described in Section 2.6.

Example 3.6. Matlab has a built-in function eig for computing eigensolutions. Let A
be a square matrix, then the command

la = eig(A)

returns a vector la with the eigenvalues of A. The command

[V, La] = eig(A)

returns the arrays V and La, representing respectively V and Λ in Eq. (3.6), or Eq. (3.7)
if A is symmetric.

The algorithm used is based on the following relation: If S is a nonsingular matrix,
then

Av = λv ⇔ S AS−1S v = λS v .

The transformation from A to Ã = SAS−1 is called a similarity transformation. We
see that it preserves the eigenvalues, but changes the eigenvectors. If we know the
eigensolutions and if the eigenvectors are linearly independent, then it follows from
Eq. (3.6) that if we take S = V −1, then Ã = Λ.
We do not know the eigensolutions, but it is possible to compute a sequence of similarity
transformations in such a way that the sequence of Ã-matrices converge to an upper
triangular matrix U . According to Example 3.3 the diagonal elements in U are the
eigenvalues, and it is fairly easy to compute the eigenvectors of U and transform them
back to eigenvectors of A.
The algorithm used in Matlab uses orthogonal matrices for the similarity transfor-
mations, ie Ã = QAQT . In case A is symmetric, the symmetry is preserved, and the
sequence converges to a diagonal matrix.

3.2. Applications of eigensolutions
In this section we shall answer the first three questions raised in Example 3.1.

3.2.1. Differential equations
First, we look at a model that involves n functions of t, y1(t), y2(t), . . . , yn(t). We

40 3. Eigenvalues and eigenvectors

do not know closed form expressions for the functions, but know their values at
t = 0,

yi(0) = βi , i = 1, 2, . . . , n .

Further, we know that for t > 0 the functions satisfy a linear system of coupled
differential equations,

y′1 = a11y1 + a12y2 + · · · + a1nyn

y′2 = a21y1 + a22y2 + · · · + a2nyn

=
...

y′1 = an1y1 + an2y2 + · · · + annyn

.

We introduce the vector function y(t) and the vector β with the ith elements yi(t)
and βi, respectively. Further, we let the n×n matrix A hold the coefficients aij, and
see that the problem can be written in the form

y′(t) = Ay(t) for t > 0 , y(0) = β . (3.8)

We want to solve this initial value problem for a linear system of differential equa-
tions.

The solution is quite easy to find with the help of the eigensolutions of A, pro-
vided that there are n linearly independent eigenvectors, v1, v2, . . . , vn. In that
case we can use them as basis in R

n, ie we can write

y(t) = ỹ1(t)v1 + ỹ2(t)v2 + · · ·+ ỹn(t)vn = V ỹ(t) , (3.9)

where V is the matrix with the eigenvectors as columns, cf Eq. (3.4), and the vector
ỹ has ỹi as the ith element. By differentiation we get

y′(t) = ỹ′1(t)v1 + ỹ′2(t)v2 + · · ·+ ỹ′n(t)vn = V ỹ′(t) .

We insert these relations in the differential equation and use the factorization Eq. (3.6)
for A,

V ỹ′(t) = AV ỹ(t) =
(
V ΛV −1

)
V ỹ(t) .

So the differential equation is equivalent to

ỹ′(t) = Λ ỹ(t) .

The starting values are given by V ỹ(0) = β, or

ỹ(0) = β̃ with β̃ = V −1β .

We see that this change of variables transforms the original system of coupled dif-
ferential equations to a system of scalar differential equations,

for j = 1, 2, . . . , n

ỹ′j(t) = λj ỹj(t) for t > 0 , ỹj(0) = β̃j .

The solution is
ỹj(t) = β̃je

λjt , j = 1, 2, . . . , n .

3.2. Applications of eigensolutions 41

In vector form we can express this as

ỹ(t) = [β̃]ϕ(t) , (3.10)

where

ϕ(t) =

eλ1t

eλ2t

...
eλnt

and [x] denotes the diagonal matrix with diagonal elements given by the vector x,

[x] =

x1

x2

. . .

xn

 . (3.11)

Finally, by combining Eqs. (3.9) – (3.11) we see that the components of the solution
can be expressed in the form

yi(t) = αi1e
λ1t + αi2e

λ2t + · · ·+ αine
λnt , with αij = vij β̃j . (3.12)

Note that every component in both ỹ(t) and y(t) is a linear combination of the
exponential functions eλjt, where the λj are the eigenvalues of A. The coefficients in
the linear combinations depend on the initial values and on the eigenvectors of A.

Example 3.7. The drug concentration problem in Example 1.2 can be modelled by a
compartment model . This has the form of Eq. (3.8), with n being the number of
compartments.
As an example consider the initial value problem

y′(t) =
(−0.18 0.15

0.024 −0.27

)
y(t) for t > 0 , y(0) =

(
0
1

)
.

The eigensolutions of the matrix are

λ1 = −0.15 , v1 =
(

0.981
0.196

)
, λ2 = −0.30 , v2 =

(−0.781
0.625

)
.

We used the Matlab function eig from Example 3.6 to compute the eigensolutions,
and display the results with at most three decimals. Going through the steps of
computing β̃ and the coefficients αij , we find that the two components of y(t) are

y1(t) = e−0.15t − e−0.30t , y2(t) = 0.2e−0.15t + 0.8e−0.30t .

Figure 3.1. Two
components of y(t). 0 4 8 12 16 20 24

0

0.2

0.4

0.6

0.8

1

t

y

y
1

y
2

42 3. Eigenvalues and eigenvectors

The points in figure 1.2 have coordinates (tr, y1(tr)) for 17 different values of tr.

Example 3.8. In Example 3.1 we asked the question: If we want to write the solution to
y′ = Ay as y(t) = eA tc, how shall we interpret eA t ?
The answer is not easy to see from Eq. (3.12). However, we can replace Eq. (3.10) by
the equivalent formula

ỹ(t) = [ϕ(t)] β̃ = [ϕ(t)]V −1β .

Then y(t) = V ỹ(t) leads to y(t) = V [ϕ(t)]V −1β. This implies that a valid interpre-
tation is

eA t = V [ϕ(t)]V −1 ,

where [ϕ(t)] is the diagonal matrix with ([ϕ(t)])ii = eλit and V is the matrix with
V :,i = vi.

3.2.2. Simplification of quadratics
This application also relies on using eigenvectors as basis. In Example 1.20 we asked
a question of the form: which points (x1, x2) satisfy the equation q(x) = 0, where
q(x) is the quadratic

q(x) = c1x
2
1 + c2x

2
2 + c3x1x2 + c4x1 + c5x2 + c6 .

It simplifies the problem if we can get rid of the mixed term c3x1x2 involving the
product of different elements in x. To achieve that we introduce the matrix A and
vector b,

A =

(
c1

1
2
c3

1
2
c3 c2

)
, b =

(
c4

c5

)
. (3.13)

It follows that

xT Ax = xT

(
c1x1 + 1

2
c3x2

1
2
c3x1 + c2x2

)
= c1x

2
1 + c2x

2
2 + c3x1x2 ,

bT x = c4x1 + c5x2 ,

so that
q(x) = xT Ax + bT x + c6

= xT V ΛV T x + bT x + c6

= x̃TΛ x̃ + b̃
T
x̃ + c6

= λ1x̃
2
1 + λ2x̃

2
2 + b̃1x̃1 + b̃2x̃2 + c6 . (3.14)

Here we used the factorization Eq. (3.7) for the symmetric matrix A, and introduced

x̃ = V T x ⇔ x = V x̃ , b̃ = V T b ⇔ b = V b̃ ,

so the elements in x̃ and b̃ are the coordinates of x and b with respect to the basis
given by the eigenvectors of A. The change of variables makes it easier to discuss
the solution to the equation q(x) = 0. We shall illustrate that with two examples.

3.2. Applications of eigensolutions 43

Example 3.9. The quadratic in Example 1.20 has the coefficients

c =
(
73 52 −72 0 0 −100

)T
.

The corresponding matrix is

A =
(

73 −36
−36 52

)
,

which has the eigensolutions

λ1 = 25 , v1 =
(

0.6
0.8

)
, λ2 = 100 , v2 =

(−0.8
0.6

)
.

Therefore, Eq. (3.14) leads to

q(x) = 25x̃2
1 + 100x̃2

2 − 100 = 0 .

This agrees with the equation that we derived in Example 1.20, using some rather
tedious calculations.

Example 3.10. For the quadratic

q(x) = 18x2
1 + 32x2

2 + 48x1x2 − 40x1 − 95x2 + 37.5

we use Eq. (3.13) to get

A =
(

18 24
24 32

)
, b =

(−40
−95

)
.

The eigensolutions of A are (presented in the form defined by Eq. (3.5))

V =
(

0.6 −0.8
0.8 0.6

)
, Λ =

(
50

0

)
.

So λ1 = 50, λ2 = 0, and the eigenvectors are the same as in the previous example.
Further,

b̃ = V T b =
(−100
−25

)
,

and Eq. (3.14) takes the form

q(x) = 50x̃2
1 − 100x̃1 − 25x̃2 + 37.5 .

Therefore, the equation q(x) = 0 is equivalent to

x̃2 = 2x2
1 − 4x̃1 + 1.5 = 2 (x̃1 − 1)2 − 0.5 .

This is the equation for the parabola shown in Figure 3.2 below.

Figure 3.2. Rotated parabola.
(1)

(2)

(1̃)(2̃)

−→v 1

−→v 2

44 3. Eigenvalues and eigenvectors

3.2.3. Google’s PageRank
Finally, we give a simplified description of the PageRank principle used in Google.
Figure 3.3 shows a very small web with only n = 6 pages and 10 links, indicated by
arrows. For instance there are two links from page 4: to pages 5 and 6.

Figure 3.3. Web with
n = 6 pages.

1 2

3 4

5 6

Let page i have the PageRank pi. This number should reflect the importance of
that page in such a way that it is better for the page to be pointed at from a page
with a large PageRank than from a less important page. In order to quantify the
PageRank we set up a model that simulates a web-surfer.

Suppose that the surfer is at page j, which has q = qj out-links. The model
says that the surfer may either follow one of these links or choose a new page at
random. In both cases it is assumed that all possible candidates for being the next
page have the same probability to be chosen. In the follow-a-link case this means
that each of the q target pages “inherits” the PageRank contribution 1

q
pj. This can

be represented by an n×n matrix H , where all elements are zero, except for hij = 1
q

for the pages pointed at from the jth page, which has q out-links. For instance

H =

0 0 1
3

0 0 0
1
2

0 1
3

0 0 0
1
2

0 0 0 0 0
0 0 1

3
0 0 1

2

0 0 0 1
2

0 1
2

0 0 0 1
2

1 0

is the H-matrix for the web in Figure 3.3.

The web may contain “dangling pages”, as for instance page 2 in Figure 3.3,
from which there are no out-links. From such a page the surfer chooses any of the
n pages at random. This corresponds to a modified matrix S, which is equal to H
except for the columns where all elements are zero. These columns are replaced by
1
n
e, where e is the vector of all ones. The S-matrix corresponding to the above H

is

S =

0 1
6

1
3

0 0 0
1
2

1
6

1
3

0 0 0
1
2

1
6

0 0 0 0
0 1

6
1
3

0 0 1
2

0 1
6

0 1
2

0 1
2

0 1
6

0 1
2

1 0

 .

3.2. Applications of eigensolutions 45

Finally, the surfer may occasionally want to pick a new page at random. If this
was done from every page, the corresponding S-matrix would be 1

n
E, where E is

the matrix of all ones. However, let us assume this random choice has probability
1−α. Then the matrix to use is

G = α S +
1−α

n
E . (3.15)

This is known as the Google matrix .
Returning to the PageRank, gijpj is the contribution from page j to the PageR-

ank of page i, and we demand that

for i = 1, 2, . . . , n :
gi1p1 + gi2p2 + 0 · · ·+ ginpn = pi ,

or, in matrix–vector notation:
G p = p . (3.16)

We recognize this as an eigenproblem with λ = 1 and p, the vector of PageRanks,
is a corresponding eigenvector. This may seem a bit magical, but the matrix G
satisfies the conditions of 5◦ on page 38, so λ = 1 is indeed one of its eigenvalues.
The corresponding eigenvector depends on the choice of α, as shown below for the
6×6 matrix G corresponding to the web in Figure 3.3.

α 0.5 0.6 0.7 0.8 0.9
0.116 0.102 0.085 0.064 0.037
0.145 0.133 0.115 0.090 0.054

p 0.124 0.111 0.093 0.071 0.042
0.176 0.181 0.187 0.195 0.206
0.199 0.213 0.230 0.254 0.286
0.239 0.262 0.290 0.326 0.375

The eigenvector is normalized such that the sum of the PageRanks is one. We see
that all these choices of α agree that the most important pages are 6, 5 and 4 in that
order. It is believed that α = 0.85 is used by Google. In Section 4.3 we describe
how the relevant pages are found.

Example 3.11. The number n of pages registered by Google is not known, except that
n > 1010, so the matrices are huge, and it is impossible, just to store G. However, H
is very sparse, ie most of the elements are zero, and this can be exploited. The size of
the matrix prevents the use of the method mentioned in Example 3.6. Instead a very
simple algorithm is employed. This is the so-called power method, which has the form

Choose p[0] with p
[0]
1 + · · ·+ p

[0]
n = 1 (for instance p[0] = 1

n
e)

for k = 1, 2, . . . ,K :
p[k] = G p[k−1]

end

It can be shown that not only does G have the eigenvalue λ = 1, but also the
other eigenvalues satisfy |λj| < 1, and that these properties imply that the sequence
p[1],p[2], . . . converges to p. For our 6×6 example with α = 0.85 we get

46 3. Eigenvalues and eigenvectors

p[0] p[1] p[2] p[3] p[4] p[5]

0.167 0.096 0.082 0.068 0.062 0.057
0.167 0.167 0.123 0.103 0.090 0.083
0.167 0.119 0.089 0.077 0.068 0.064
0.167 0.167 0.193 0.187 0.198 0.196
0.167 0.190 0.230 0.244 0.255 0.261
0.167 0.261 0.281 0.321 0.327 0.339

Already p[2] shows that most important pages are 6, 5 and 4 in that order.
In the computation of Gp[k−1] we can exploit the sparsity of H when computing of
the contribution αHp[k−1]. The contribution from a dangling page (no j) is to add
α/n·p[k−1]

j to every component of p[k]. Finally, the condition on the sum of the elements
in p[0] is preserved:

eT p[k−1] = p
[k−1]
1 + · · · + p[k−1]

n = 1 , k = 1, 2,

This is useful when computing the contribution involving Ep[k−1]: Exploiting the outer
product defined on page 3 we get

E p[k−1] = e eT p[k−1] = e .

Therefore, the contribution 1−α
n Ep[k−1] consists simply in adding 1−α

n to each element
in αSp[k−1].

4. Linear Least Squares Problems

Example 4.1. We have applied different loads pi to an elastic spring, and measured the
resulting lengths `i.

i pi `i

1 0.8 7.97
2 1.6 10.2
3 2.4 14.2
4 3.2 16.0
5 4.0 21.2

0 1 2 3 4
0

5

10

15

20

`

p

Figure 4.1. Measured length (`)
as function of load (p).

The figure shows the points (pi, `i). They seem to be close to a straight line with the
equation

` = x1 + x2p ,

for some values of the parameters x1 and x2. In physics this mathematical model is
known as Hooke’s law of elasticity. The first parameter, x1, is the undisturbed length
of the spring, and 1/x2 is the so-called spring constant .

The problem of determining (a good approximation to) the parameters in Hooke’s
law is an example of a linear data fitting problem: Given measurements (ti, yi),
i = 1, 2, . . . , m, where yi is assumed to be a perturbed value from some “background”
function Y ,

yi = Y (ti) + εi .

The εi are measurement errors. Further, we are given a fitting model

M(x, t) = x1f1(t) + x2f2(t) + · · ·+ xnfn(t) , (4.1)

where the fj are given functions of t. We wish to choose the parameters x such that
M(x, t) is close to Y (t) in a certain range of t-values, which includes the given ti.
In other words, we wish to find x such that the error function

e(x, t) = Y (t)−M(x, t)

is close to zero for all t in the desired range. This task, however, is impossible: We
only have discrete information about Y , and furthermore, this information, the yi,
is inflicted with errors. The best we can do is to find x such that the residuals

ri(x) = yi −M(x, ti) (4.2)

48 4. Linear least squares

are close to zero for all i = 1, 2, . . . , m. Traditionally, this goal is interpreted as:
Find x̂, the set of parameters that minimizes the function

ϕ(x) = r1(x)2 + r2(x)2 + · · ·+ rm(x)2 . (4.3)

The minimizer x̂ is the so-called least squares solution. In the next sections we shall
describe how it is computed.

4.1. Overdetermined systems
Combining (4.2) and (4.1) we see that the ith residual is

ri(x) = yi − (x1f1(ti) + x2f2(ti) + · · ·+ xnfn(ti)) .

This means that the residual vector r = r(x) is

r(x) =

y1

y2
...

ym

−

f1(t1)x1 + f2(t1)x2 + · · · + fn(t1)xn

f1(t2)x1 + f2(t2)x2 + · · · + fn(t2)xn
...

f1(tm)x1 + f2(tm)x2 + · · · + fn(tm)xn

 .

Further, by comparison with Eq. (1.3) we see that

r(x) = y − Fx , (4.4)

where F is the m×n matrix

F =

f1(t1) f2(t1) · · · fn(t1)
f1(t2) f2(t2) · · · fn(t2)

...
f1(tm) f2(tm) · · · fn(tm)

 .

Example 4.2. For the problem with the elastic spring in Example 4.1 the free variable
is denoted p instead of t and the observations are called `i instead of yi. Taking this
into account, the fitting model has the form Eq. (4.1) with f1(t) = 1, f2(t) = t and we
see that

y =

7.97
10.2
14.2
16.0
21.2

 , F =

1 0.8
1 1.6
1 2.4
1 3.2
1 4.0

 .

Ideally, we would like to find x so that r(x) = 0, ie so that

Fx = y . (4.5)

4.1. Overdetermined systems 49

In data fitting problems it is always the case that m > n, ie the system involves
more equations than unknowns. We say that Eq. (4.5) is an overdetermined system
of equations.

Example 4.3. Let m = 3 and n = 2. Figure 4.2 is a geometric illustration in the 3-
dimensional space.

Figure 4.2. Geometric
illustration of an over-
determined system. −→

F:,1

−→
F:,2

−→y

As discussed on page 24, a vector z = F x is in the column range of F . This is the
shaded plane in the figure, spanned by the columns of F . The vector −→y in the figure
is outside this plane, and therefore the system (4.5) has no solution in this case. We
shall use the somewhat sloppy notation, that x̂ is the least squares solution to

Fx ' y .

Combining Eqs. (4.3) and (1.2) we see that

ϕ(x) = ‖r(x)‖2 .

The least squares solution x̂ minimizes this, and it follows, that an equivalent defi-
nition is that x̂ minimizes ‖y − Fx‖. In words: find the vector F x̂ in the column
range of F , which is closest to the right-hand side vector y. The corresponding
residual is

r̂ = y − F x̂ . (4.6)

Example 4.4. Proceeding with the m = 3, n = 2 case from Example 4.3, we recall from
Example 1.9 that ‖r‖ = |−→r |, the Euclidean length of the residual vector. Intuitively
this is smallest when r is orthogonal to the column range, cf Figure 4.3.

Figure 4.3. Geometric
illustration of least
squares solution. −→

F:,1

−→
F:,2

−→y −→̂
r

−→
Fx̂

50 4. Linear least squares

A vector in the column range has the form z = Fx, where x is an arbitrary
n-vector. Generalizing from the example, the vectors z and r̂ should be orthogonal,
so their scalar product should be zero:

0 = (Fx)T r̂ = xT F T r̂ .

This is satisfied for all x if

0 = F T r̂ = F T (y − F x̂) .

By rearranging the terms we see the least squares solution x̂ satisfies(
F T F

)
x̂ = F T y . (4.7)

This system of linear equations is known as the normal equations .
The matrix

A = F T F

is n×n, and in Example 2.22 we saw that it is symmetric and positive definite,
provided that the columns in F are linearly independent. We shall assume that
this is the case. Then we can show that x̂ is indeed the minimizer of ‖r(x)‖: If we
change x from x̂ to x̂+u, then the residual changes to

r = y − F (x̂ + u) = r̂ − Fu ,

and, exploiting Eq. (1.2),

‖r‖2 = rT r = (r̂ − Fu)T (r̂ − Fu)

= r̂T r̂ − r̂T F u− uT F T r̂ + uT F T F u

= r̂T r̂ + uT Au > r̂T r̂ if u 6= 0 .

Summarizing: If the columns in F are linearly independent, then the least
squares solution x̂ can be found by solving the normal equations (4.7). Since
A = F T F is an spd matrix, the least squares solution is unique, and it may be
found via the Cholesky factorization of A, cf Section 2.6.

Example 4.5. For the problem with the elastic spring in Example 4.1 we saw in Exam-
ple 4.1 that

y =

7.97
10.2
14.2
16.0
21.2

 , F =

1 0.8
1 1.6
1 2.4
1 3.2
1 4.0

 .

The columns in F are linearly independent. The normal equations and their solution
are (

5 12
12 35.2

)(
x̂1

x̂2

)
=
(

69.57
192.776

)
, x̂ =

(
4.2360
4.0325

)
.

This shows, cf Example 4.1, that the undisturbed length of the spring and the spring
constant are estimated to be 4.2360 and 1/4.0325 ' 0.2480, respectively.

4.1. Overdetermined systems 51

The data and the fit M(x̂, p) = x̂1 + x̂2p is shown in Figure 4.4.

Figure 4.4. Spring
data and least
squares fit. 0 1 2 3 4

0

5

10

15

20

`

p

Example 4.6. We consider the problem from Example 1.2: We have measured the
drug concentration yi in the kidneys at times ti after the drug was taken. The points
shown in Figure 1.2 are (ti, Y (ti)), where Y is the background function. In practice the
measurements have errors, and Figure 4.5 gives an example of results from a “practical”
experiment.

The phenomenon may be modelled by a compartment model with two compartments,
and according to Eq. (3.12) the background function has the form

Y (t) = c1e
λ1t + c2e

λ2t

for some values of c1, c2, λ1, λ2. This should be exploited in the choice of fitting
model. If λ1 and λ2 are known, then

M(x, t) = x1e
λ1t + x2e

λ2t

is appropriate. With the data in Figure 4.5 and λ1 = −0.15, λ2 = −0.30, cf Exam-
ple 3.7, we get x̂1 = 1.006, x̂2 = −1.011

Figure 4.5. Data and fit.
M(x̂, t) = 1.006e−0.15t

−1.011e−0.30t . 0 4 8 12 16 20 24
0

0.05

0.1

0.15

0.2

0.25

t

y

data
fit

If we do not know λ1 and λ2, then it is appropriate to use a fitting model with four
parameters

M[4](x, t) = x1e
x3t + x2e

x4t .

In this model x3 and x4 appear nonlinearly, and we cannot use the approach leading
to the linear system known as the normal equations. (The matrix F would depend
on the unknowns x3 and x4). There is software, for instance in Matlab and R, for
finding the least squares solution also in this case, but it is outside the scope of this
lecture note to discuss it. We only mention that for the data in Figure 4.5 and the
above 4-parameter model the least squares solution is

x̂[4] =
(
1.4291 −1.4196 −0.16157 −0.25906

)T
.

The corresponding sum of the squared residuals is ϕ(x̂4) = 0.001458. This is indeed

52 4. Linear least squares

smaller than the result from the 2-parameter model, ϕ(x̂) = 0.001512. If we plotted
the graph of M[4](x̂[4], t), it would be almost indistinguishable from the graph of the
least squares 2-parameter model M(x̂, t).

4.2. QR factorization
Let F be an m×n matrix with m ≥ n. A QR factorization of F is a relation of the
form

F = Q

(
R
0

)
, (4.8)

where Q is an m×m orthogonal matrix and the n×n matrix R is upper triangular.
The 0 indicates an (m−n)×n matrix with all elements equal to zero. According to
the rules of matrix–matrix products (see Eq. (1.5) and Eq. (1.9)) these zeros imply
that the last m−n columns in Q do not affect the product in Eq. (4.8). Let Q̆ denote
this part of Q and let Q̂ be the m×n matrix consisting of the first n columns in Q.
It follows that Eq. (4.8) is equivalent to the so-called “economy-size” (or “skinny”)
QR factorization,

F = Q̆R , (4.9)

This is illustrated in Figure 4.6

m−n

m−n

m

nnn

n

==F Q̂Q̂ Q̆

RR

0

Figure 4.6. QR factorization.

It is outside the scope of this lecture note to show that any F has a QR factor-
ization and to discuss methods for computing it. Instead we shall demonstrate how
it can be used to solve the problem

minimize ‖y − Fx‖ .

First, we let Q be an arbitrary, orthogonal matrix, and use Eq. (1.2): ‖r‖2 = rT r,
Eq. (1.6): (Qr)T = rT QT , Eq. (2.18): QT Q = I and Example 1.10: Ir = r:

‖Qr‖2 = (Qr)T (Qr) = rT QT Qr = rT I r = rT r = ‖r‖2 .

This shows that Qr has the same norm as r, so a minimizer of ‖Qr(x)‖ is also a
minimizer for ‖r(x)‖. This holds for any orthogonal matrix, and if we use QT with

4.3. SVD 53

Q from the QR factorization, we get

QT r(x) = QT (y − Fx) = QT y −
(

R
0

)
x =

(
Q̂

T
y −Rx

Q̆
T
y

)
.

Finally, the definition of the norm, Eq. (1.2), implies that∥∥∥∥∥
(

Q̂
T
y −Rx

Q̆
T
y

)∥∥∥∥∥
2

= ‖Q̂T
y −Rx‖2 + ‖Q̆T

y‖2 .

This is clearly minimized when x is chosen such that Q̂
T
y −Rx = 0.

Summarizing, we have derive a method for computing the least squares solution
x̂. This method consists in computing the economy-size factorization F = Q̂R
followed by solving the quadratic system

Rx̂ = Q̂
T
y . (4.10)

Since R is upper triangular, we can use back substitution to solve this system.

Example 4.7. In Example 2.28 we described what happens in Matlab when we issue
the command x = A \ b, with a square A. If F and y are the Matlab representations
of F ∈R

m×n and y ∈R
m, then

x = F \ y

returns x, the Matlab representation for x̂, the least squares solution to Fx ' y.
The solution is found via the QR factorization, because this method is less affected by
rounding errors than the solution via the normal equations.

Matlab has a built-in function qr for computing the QR factorization. The command

[Q, R] = qr(F,0)

returns the economy-size QR factorization.

4.3. Singular value decomposition
Let F be an m×n matrix with m ≥ n. The SVD : singular value decomposition of
F is the factorization

F = U ΣV T , (4.11)

where the matrices U ∈R
m×n and V ∈R

n×n have orthonormal columns and Σ is
the diagonal matrix

Σ =

σ1

σ2

. . .

σn

 ,

The σj are the singular values. They are nonnegative and ordered so that

σ1 ≥ σ2 ≥ · · · ≥ σp > 0 , σp+1 = · · · = σn = 0 . (4.12)

54 4. Linear least squares

If the columns in F are linearly independent, then all the σj are strictly positive, ie
p = n.

Let uj = U :,j, the jth column in U . This is known as the jth left singular vector .
Similarly, vj = V :,j, j = 1, . . . , n are the right singular vectors.

SVD is a powerful tool for analyzing linear mappings: First, we see that the {vj}
form an orthonormal basis for R

n. This means that any n-vector x can be expressed
as

x = V x̃ , (4.13)

where x̃ is the vector of coordinates with respect to the basis {vj}, cf Section 1.5.
The matrix V is orthogonal, and therefore Eq. (4.13) is equivalent to

x̃ = V T x . (4.14)

Next, by means of Equations (4.11) and (4.14) we get

F x = U ΣV T x

= U Σ x̃

= σ1x̃1u1 + σ2x̃2u2 + · · ·+ σpx̃pup . (4.15)

In the last reformulation we exploited that (Σx̃)j = σj x̃j , Eq. (1.9) and that σj = 0
for j > p. Eq. (4.15) shows that vectors u1, . . . , up are in the column range of F , cf
page 24. They actually form an orthonormal basis for this subspace of R

m. Further,
if p < n, then the vectors vp+1, . . . , vn form an orthonormal basis for the nullspace
of F .

Now we look at the inverse problem: Given F and y, find x such that the norm of
the difference r = y−Fx is as small as possible. From the discussion in Section 4.1
we know that

F x̂ = ŷ , r̂ = y − F x̂ ,

where ŷ is in the range of F and r̂ is orthogonal to this subspace of R
m. This

condition implies that

0 = uT
j (y − F x̂)

= uT
j (y −U ΣV T x̂)

= uT
j (y −U Σ ˜̂x)

= uT
j y − σj

˜̂xj , j = 1, 2, . . . , p .

The relation uT
j UΣ˜̂x = σj

˜̂xj follows from the orthonormality of the columns in U
and the result of Exercise 1.13. Since Fvj = 0 for j > p, it follows that x̂ can have
arbitrary coordinates ˜̂xj , j = p+1, . . . , n. Summarizing, we have

x̂ = V ˜̂x with ˜̂xj =

{
uT

j y/σj j = 1, 2, . . . , p ,

αj j = p+1, . . . , n ,
(4.16)

where the αj are arbitrary.

Example 4.8. In Example 2.7 we looked at the problem Ax = y with

4.3. SVD 55

A =

 1 2 3
4 5 6
7 8 9

 , y =

 8
20
32

 .

The SVD of the matrix is A = UΣV T with (rounded to three decimals)

U =

 0.215 0.887 0.408
0.521 0.250 −0.816
0.826 −0.388 0.408

 , Σ =

 16.848
1.068

0

 ,

V =

 0.480 −0.777 −0.408
0.572 −0.076 0.816
0.665 0.625 −0.408

 .

We seed that p = 2 and that the nullspace of A is spanned by the last column in V .
This is equivalent to the nullspace basis

(
1 −2 1

)T given in Example 1.15.
The coordinates of y with respect to the basis given by the columns in U are

ỹ = UT y =

 38.573
−0.323

0

 .

ỹ3 = 0 shows that y has no component outside the range of A, ie the system is
consistent.

Example 4.9. There is a close relation between the SVD for a matrix F and the eigensolu-
tions of the corresponding normal equations matrix A = F T F . If we insert Eq. (4.11)
and exploit that UT U = I, we get

A = V ΣT UT U ΣV T = V Σ2V T ,
where

Σ2 =

σ2

1

σ2
2

. . .
σ2

n

 .

Comparing this with Eq. (3.7) we see that the right singular vectors are eigenvectors
of A, and that σj =

√
λj . We know that the eigenvalues are nonnegative, and assume

that they are numbered in decreasing order. The left singular vectors may afterwards
be computed by means of Eq. (4.15):

uj =
1
σj

Fvj , j = 1, 2, . . . , p .

Example 4.10. Matlab has a built-in function svd for computing SVD. The command

s = svd(F)

returns a vector s with the singular values of F . The command

[U,S,V] = svd(F,0)

returns the matrices U , Σ and V . Instead of the method outlined in the previous ex-
ample svd uses a special purpose algorithm that avoids the possible loss of information
that may result from forming the normal equations matrix.

56 4. Linear least squares

We shall mention another application of SVD, which is closely related to a sta-
tistical method known as PCA: principal component analysis . It is based on an
alternative formulation of the decomposition. Using the rules from Section 1.3 we
see that F = UΣV T is equivalent to

F = σ1u1v
T
1 + σ2u2v

T
2 + · · ·+ σnunvT

n . (4.17)

In words: Any matrix can be expressed as a weighted sum of outer products. The
weights are the singular values, and they reflect the importance of each contribution.
It sometimes happens that most of the information in F is accounted for by the
approximation

F k = σ1u1v
T
1 + σ2u2v

T
2 + · · ·+ σkukv

T
k ,

where k is maybe much smaller than n. We can write this approximation in the
form

F k = U k Σk V T
k , (4.18)

where U k and V k consist of the first k columns in U and V , respectively, and Σk

is the upper left k×k corner of Σ.

Example 4.11. PCA is widely used in, for instance, medicine to identify certain combi-
nations of parameters that can be used to explain most of the variation in the observed
data.

As a specific example, however, we shall give a simplified description of a search ma-
chine like Google. We set up an m×n matrix, where m is the number of pages and n
is the number of selected keywords. The element fij is a measure of the importance of
the jth keyword in the ith page. As mentioned in Example 3.11, m > 1010, and n is
maybe 50 000, so F is a huge matrix (but it is very sparse).
Now, given a query, we set up a vector q, according to the keywords, and compute its
coordinates with respect to the columns in V k,

q̃ = V T
k q .

Let J denote the set of indices for which q̃j ≥ τ1 ‖q̃‖ where τ1 is a certain threshold,
for instance τ1 = 0.05. If J has only one element, then y = U

[k]
:,J is the corresponding

vector in R
m. If J has more than one element, then

y = U
[k]
J Σ[k]

J q̃J ,

where index J signifies that we only include the contributions corresponding to the
indices from J .
The hits are those pages for which yi ≥ τ2 ‖y‖, where for instance τ2 = 0.01. The
ranking of page i is some combination of the value yi and the PageRank pi, cf Sec-
tion 3.2.3.
If k in Eq. (4.18) is too small, we may both overlook interesting pages and get hits
that we really do not want. For larger k these misclassifications are reduced, but the
computational cost increases. See for instance the book by Eldén for a discussion of
this.

Literature

There are many books on linear algebra. For those readers that want to know more
about the subject we can recommend

G. Strang, Linear Algebra and its Application, 4th edition, Cengage, 2006

J. Eising, Lineær algebra, Matematisk Institut, DTU, 1993. (In Danish)

The following book focuses on numerical aspects applications

L.N. Trefethen and D. Bau, Numerical linear algebra, SIAM 1997,

while

L. Eldén, Matrix Methods In Data Mining and Pattern Recognition, SIAM,
2007

treats both numerical linear algebra and applications. This includes the mathemat-
ics involved in Google.

Further, we would like to recommend

E.S. Allman and J.A. Rhodes, Mathematical Models in Biology, Cambridge
University Press, 2004

M.W. Berry and M. Browne, Understanding Search Engines, SIAM, 1999

A.N. Langville and C.D. Meyer, Google’s PageRank and Beyond, Princeton
University Press, 2006

Notation

Vectors are normally written as lower case bold letters, and matrices are upper case,
bold letters.

A Typical name for a matrix.
AT The transpose of matrix A.
A−1 Matrix A inverse.
aij, (A)ij The element in position (i, j) in the matrix A.
Ai,: The row vector with the elements in the ith row of A.
A:,j The column vector with the elements in the jth column

of A.
m, n Positive integers.
R The set of real numbers.
R

n The set of vectors with n real elements.
R

m×n The set of matrices with m rows and n columns, where
all elements are real.−→v Typical name for a geometric vector.

x Typical name for a vector. Unless otherwise stated, x
is a column vector (cf page 2).

xi ith element in the vector x. i is the index of the element.
α, β Typical names for a scalar.
λ Eigenvalue.
Λ Diagonal matrix with (Λ)jj = λj, the jth eigenvalue.

In Matlab examples we use typewriter font to indicate the Matlab representation
of a variable. For instance A is the Matlab variable that represents matrix A.

List of Danish Words

I mange tilfælde er det danske ord for et begreb identisk med det engelske p̊a nær
en mindre ændring i stavem̊ade, fx vector ∼ vektor, orthogonal ∼ ortogonal. I andre
tilfælde fremkommer den danske betegnelse ved direkte oversættelse af den engelske.
Nedenfor giver vi en liste over de danske betegnelser i de tilfælde, hvor oversættelsen
ikke er umiddelbar.

English Dansk

augmented matrix totalmatrix
back substitution tilbage-løsning
column søjle
column range billedrum
complete solution fuldstændig løsning
eigenvalue egenværdi
eigenvector egenvektor
forward substitution fremad-løsning
Gaussian elimination Gauss-elimination
identity matrix enhedsmatrix
kernel kærne
mapping afbildning

matrix matrix. Én matrix, matricen, flere matricer.
En matrice er en støbeform

nonsingular regulær (om matrix)
quadratic 2. grads polynomium
rank rang
row række
singular singulær (om matrix)
square kvadratisk eller kvadratformet (om matrix)
transpose transponeret
triangular matrix trekantmatrix

Index

active part, 20
affine mapping, 10
algebraic multiplicity, 36
arithmetic operation, 30
augmented matrix, 20

back substitution, 18, 29, 34, 53, 59
background function, 47, 51
backslash, 34, 53
basis, 10, 35, 40, 54

change of basis, 12, 35
characteristic polynomial, 36
chol, 33
Cholesky factorization, 32, 50
coefficient matrix, 15
column range, 24, 49, 59

vector, 2f
compartment model, 41, 51
complete solution, 22ff, 36, 59
consistent system, 22, 55
coordinates, 1, 10, 27, 43, 55
cost, 30
CT scanning, 8

dangling page, 44
determinant, 16, 36
diagonal, 2, 37, 39
diagonal matrix, 2, 6, 17, 26, 31, 37, 41
differential equation, 40, 44
discriminant, 36
dot product, 3, 5
drug concentration, 1, 41, 51

economy-size, 52f
eig, 39
eigen factorization, 38
eigenproblem, 35
eigensolution, 35
elimination factor, 19
ellipse, 13, 35, 42

factorization, Cholesky, 32, 50
eigen, 38
LDL, 31
LU, 28
QR, 52
SVD, 53

fitting model, 47, 51
flop, 30
forward substitution, 18, 29, 34, 59

Gaussian elimination, 18
geometric illustration, 49

vector, 1, 5, 10
Google, 35, 44, 56

matrix, 45

hits, 56
homogeneous system, 24, 36
Hooke’s law, 47

identity matrix, 2, 6, 10, 26, 37
image, 8
initial value problem, 40
inner product, 3
inverse problem, 11, 54

kernel, 23
keywords, 56

LDL factorization, 31
least squares solution, 48f
linear combination, 9, 37

data fitting, 47
independency, 9f, 30, 37, 50,b 54
mapping, 8f, 35, 54

linearity conditions, 8, 23, 37
links, 44
lower triangular matrix, 2
lu, 30
LU factorization, 28

Index 61

mapping matrix, 8, 35
Matlab, 1, 3f, 12, 16, 30, 33f,

39, 41, 51, 53, 55
matrix, 2

addition, 4
column, 2, 9
equation, 25
exponential, 35,42
row, 2

matrix, diagonal, 2, 6, 17, 26, 31, 37, 41
identity, 3
inverse, 26
nonsingular, 16, 22f, 38, 59
orthogonal, 17, 27, 52
singular, 16, 22f, 29, 36, 59
sparse, 45, 56
spd, 31, 39, 50
square, 2, 18, 35, 39
symmetric, 30, 37
triangular, 2, 17f, 28, 37, 52

matrix-matrix product, 7, 27
-vector product, 5, 8, 30

model, 2, 8, 15, 26, 39, 41, 44, 47, 51
MR scanning, 8
multiple eigenvalue, 37

nonsingular matrix, 16, 22f, 38, 59
norm, 4, 11, 38
norm conditions, 5
normal equations, 31, 50f
nullspace, 23, 54

orthogonal, 4, 29, 37, 50
matrix, 17, 27, 52

orthonormal, 11, 17, 27, 38, 53
out-links, 44
outer product, 4, 56
overdetermined, 48

PageRank, 44, 56
parabola, 6, 15, 21, 43
PCA, 56
permutation matrix, 33
pivoting, 25

positive definite, 30, 39
positive semidefinite, 30
principal component, 56

qr, 53
QR factorization, 52f
quadratic equation, 36

residual, 47
rotation matrix, 12, 17
rounding errors, 27, 32, 53
row vector, 2

scalar product, 3, 6
search machine, 56
similarity transformation, 39
singular value decomposition, 53
singular vector, 54
skinny, 52
sparse matrix, 45, 56
spd matrix, 31, 39, 50
spring, 47, 50
square matrix, 2, 18, 35, 39
surfer, 44
SVD, 53
svd, 55
symmetric matrix, 30, 37

threshold, 56
transpose, 3, 58
triangle inequality, 5
triangular system, 17

usual basis, 10

vector, 1
addition, 3
norm, 4
transpose, 3

vector-vector product, 3f

web, 44

zero vector, 2

