
INFINITE NON-NEGATIVE MATRIX FACTORIZATIONMikkel N. Shmidt and Morten MørupTehnial University of Denmark, Rihard Petersens Plads, DTU Bldg. 321, 2800 Kgs. Lyngby, DenmarkABSTRACTWe propose the in�nite non-negative matrix fatorization(inmf) whih assumes a potentially unbounded number ofomponents in the Bayesian nmf model. We devise an infer-ene sheme based on Gibbs sampling in onjuntion withMetropolis-Hastings moves that admits ross-dimensionalexploration of the posterior density. The approah an ef-fetively establish the model order for nmf at a less om-putational ost than existing approahes suh as thermody-nami integration and existing reversible jump Markov hainMonte Carlo sampling shemes. On syntheti and real datawe demonstrate the suess of (inmf).1. INTRODUCTIONNon-negative matrix fatorization nmf has beome an im-portant tool for unsupervised, exploratory data analysis dueto its easily interpretable parts-based representation of data[16℄. nmf deomposes a non-negative matrix V ∈ R
I×J intoa positive low rank approximation (p-rank) given by
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, (1)where the dimensions are indiated below eah matrix, and
wid ≥ 0, hdj ≥ 0 and eij is residual noise. Non-negativematrix fatorization is also named positive matrix fatoriza-tion [25℄ but was popularized by Lee and Seung due to asimple algorithmi model �tting proedure based on multi-pliative updates [17℄. The nmf deomposition has provenuseful for a wide range of data where non-negativity is a nat-ural onstraint. Appliations inlude text-mining based onword ounts [16, 5℄, image analysis [16℄, neuro-informatis[22℄, bio-informatis [1℄, hemometris [7℄, astronomy [26℄,and audio proessing [31℄ to mention but a few. For a reentoverview of nmf see also [3℄.While nmf has found widespread use, an important openproblem remains to e�iently determine the number of om-ponents D. Contrary to singular value deomposition (svd)in whih models with di�erent number of omponents arenested, the omponents of the nmf deomposition hangewhen D hanges. Consequently, the interpretation of the de-omposition relies on the number of extrated omponentsand determining the model order is thus ruial in order toreliably interpret the omponents. Choosing the nmf modelorder amounts to estimating the posterior distribution of D(also denoted the marginal likelihood or evidene). UsingBayes' theorem, this is given by

p(D|V ) =
p(V |D)p(D)

p(V )
∝ p(V |D)p(D). (2)This, however, requires the omputation of the quantity

p(V |D) =

∫

p(V |Θ, D)p(Θ|D)dΘ, (3)where Θ denotes the parameters of the nmf model. In gen-eral, this integral is analytially intratable and an be ap-proximated using Markov hain Monte Carlo (mm).

Previous approahes to model order seletion have on-sidered a �xed range of model orders and arried out separateanalyses for eah D. This, however, might be a omputation-ally wasteful approah: If the posterior in Eq. (2) is highlypeaked it is not sensible to spend omputational resouresevaluating a possibly large range of very improbable modelorders. In this paper we will make a �rst attempt to over-ome these limitations by onsidering a non-parametri in-�nite non-negative matrix fatorization (inmf) model wherea potentially unbounded number of omponents an be on-sidered without having to exhaustively evaluate all potentialmodel orders in separate analyses.1.1 MAP estimation of NMFTraditionally, the nmf model has been �tted by various algo-rithms based on optimizing some error measure or omputingmaximum likelihood (ml) or maximum a posteriori (map)estimates of W and H. In many of these approahes, the(non-onvex) joint problem of estimating W and H is splitinto two (onvex) sub-problems estimating W for �xed Hand vie versa. Eah sub-problem is ommonly solved eitherby seond order approahes suh as the ative set proedure[15, 13℄ or �rst order methods suh as multipliative updates[17℄ or projeted gradient methods [18℄. For an overview ofestimation approahes see also [3, 12℄.Several approahes to establish the model order based onmap-parameter estimates have been proposed. The Bayesianinformation riteria (bi) is an asymptoti expansion of thelikelihood given in Eq. (3) suh that the number of om-ponents are seleted by minimizing the following quantity,bi = −2 logL + K logN , where L = p(V |Θmap, D) is thelikelihood, Θmap is the map estimate of the parameters, Kis the number of parameters, and N is the number of datapoints. For least squares estimation this redues to bi =

N log ssemap
N

+ K logN where ssemap = ‖V − W mapHmap‖2Fis the residual sum of squared error of the map parameterestimates. Thus, the bi riteria de�nes a tradeo� betweenmodel �t and omplexity.An alternative approah based on automati relevanedetermination (ard) has reently been applied in onjun-tion with map estimation of the nmf model [33, 21℄. Here,priors on the model parameters are given hyper-parametersthat represents the sale of eah omponent by de�ning itsrange of variation. By optimizing these hyper-parameters,omponents an be removed if their sale goes below somethreshold. This results in an estimate of the model orderwhen the model is initialized with �too many� omponents.Although map based approahes in general are very e�-ient they do not take parameter unertainty into aount,and as suh only form an approximation to Eq. (2).1.2 Bayesian NMFTo evaluate the integral in Eq. (3) Markov hain samplingapproahes an be used to obtain a Monte Carlo estimateof the posterior distribution of the parameters, p(Θ|V , D).In [23, 32, 34℄ Gibbs sampling is used to obtain estimatesof the joint posterior distribution of the nmf parameters Θ.In Gibbs sampling it is assumed that Θ an be partitioned



into N groups, Θ = {θ1, . . . ,θN}, suh that it is possibleto generate samples from the posterior onditional densities,
p(θn|Θ\θn), for eah of these groups. For the nmf modeleah element of a olumn ofW and a row ofH are ondition-ally independent suh that the olumns of W and rows of Han be sampled independently resulting in N = 2D groups.In addition, parameters of the noise distribution and possiblehyper-parameters must be sampled as well. Given some ini-tial value of the parameters, eah θn is iteratively sampledwhile keeping all other parameters �xed. This proedureforms a homogeneous Markov hain that an be shown tosample from the full posterior distribution.In our in�nite nmf we use Gibbs sampling in onjun-tion with ross-dimensional Metropolis-Hasting moves. Inthe following, we onsider an nmf model based on a Gaus-sian likelihood and reti�ed Gaussian priors,
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σ2 ∼ IG(σ2|β, γ), (7)where N (·|µ, σ2) denotes the Gaussian density,
RG(·|µ, σ2) = 2

1+erf(−µ/σ)
N (µ, σ2)1(·) denotes the re-ti�ed Gaussian density where 1(·) is a unit step funtion(see also [30℄), and IG(·|β, γ) denotes the inverse Gammadensity. We note that the ideas presented here an besimilarly applied to other nmf parameterizations suh as[23, 32, 30, 34℄. Our parameterization, Θ = {W ,H, σ2},results in the following posterior onditional distributionsrequired for the Gibbs sampler
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. (14)By iteratively sampling eah parameter from their respetiveposterior onditional distributions, samples from the jointposterior distribution p(Θ|V , D) are obtained. Using thissample estimate, several approahes have been proposed toevaluate the nmf model order.1.2.1 Chib's methodIn [32℄ Chib's method [2℄ for model order estimation is ap-plied to nmf. Here the marginal likelihood p(V |D) is ob-tained through the relation
p(V |D) =

p(V |Θ̄, D)p(Θ̄|D)

p(Θ̄|V , D)
, (15)where Θ̄ is some high posterior density value of the parame-ters. The numerator an be diretly evaluated while the de-nominator is approximated through N suessive runs of theGibbs sampler. As suh the model requires the evaluation ofall possible model orders in some set D = {Dmin, . . . , Dmax},

D̃ = |D|, resulting in a total of ND̃ posteriors densities tobe estimated through Gibbs sampling.

1.2.2 Thermodynami IntegrationIn [34℄ an nmf model order seletion method based on ther-modynami integration [4℄ is proposed. Here, estimatesof the marginal likelihood are derived through the use ofpower posteriors based on ideas from path sampling [6℄from the prior to the posterior. A temperature parameter
t ∈ [0, 1] is imposed forming power posterior, pt(Θ|V , D) =
p(V |Θ, D)tp(Θ), whih is equal to the posterior for t = 1and the prior for t = 0. The thermodynami integral is thengiven by [4℄
log p(V |D) =

∫ 1

0

∫

Θ

log [p(V |Θ, D)]pt(Θ|V , D)dtdΘ. (16)The integral over Θ an be approximated by Gibbs samplingwhile the integral over t is arried out by onsidering a �nitedisretization of t ∈ [0; 1]. Thus, thermodynami integrationrequires the estimation of the joint posterior for eah modelorder D ∈ D and for eah disretized temperature. For Ttemperatures and D̃ onsidered model orders, a total of TD̃joint posteriors must then be estimated through Gibbs sam-pling.1.2.3 RJMCMCTo overome the high omputational ost of Chib'smethod and thermodynami integration, [34℄ proposes touse reversible jump Markov hain Monte Carlo sampling(rjmm) to obtain an estimate of Eq. (2). rjmm was �rstproposed by [8℄ and is a Metropolis-Hastings sampling ap-proah that an perform ross-dimensional moves. Based onideas from [19℄, [34℄ use independent proposal distributionsbased on approximations of the posterior for eah modelorder. A drawbak of this approah is thus that a sepa-rate Gibbs sampling run for eah potential model order isrequired to obtain the proposal densities before the atualross-dimensional sampling is used to estimate Eq (2). It isnoted in [34℄ that�. . . it would be possible to add or remove somerows and olumns of [H℄ and [W℄ and sample fromsome proposal distributions to jump between sub-spaes. However, this would not work as the sampleswould ontinually run out of mass of the extremelyomplex posterior distributions, and thus jumpingfrom one subspae to another would never happen.�In the following, we present suh an rjmm approah thatjumps between subspaes based on adding or removing somerows and olumns of W and H, and demonstrate that byhoosing good proposal densities ross-dimensional jumpsare aepted with high probability. This allows for samplingall parameters as well as the model order jointly, eliminatingthe need for initially sampling from the posteriors of eahpossible model order. The inferene sheme automatiallyinfers the posterior distribution over the model order, andbeause the potential number of omponents is unboundeda priori we denote this method the in�nite non-negative ma-trix fatorization (inmf).1.3 Existing in�nite matrix fatorization methodsRelated to inmf, there exists a lass of in�nite matrix fator-ization approahes, inluding in�nite binary matrix fator-ization (ibmf) [20℄, in�nite sparse oding (is) and in�niteindependent omponent analysis (iia) [14℄, that are basedon the Indian bu�et proess (ibp) [9℄ whih is a distributionover unbounded binary matries. The ibmfmodel is given by
V = UQV ⊤+E, where U and V are binary matries with apotentially in�nite number of olumns. Although attrativefor its non-parametri representation, the binary onstraintsimposed on U and V make the model unable to aount



well for general non-negative features as in nmf. The isand iia models are given by V = A(S ⊙Z) +E, where Aand S are general unbounded matries, Z is an unboundedbinary matrix, and ⊙ denotes element-wise produt. Themodel results in a sparse feature representation, where Aare the extrated features, the binary matrix Z indiateswhih features are present for eah data point, and S holdsthe real-valued oe�ients of these features. In [14℄, a Gibbssampling inferene proedure is proposed, and with suitableprior densities a bene�t of this model is that when estimat-ing a given element of Z the orresponding element of S anbe marginalized out analytially. By onstraining A and Sto be non-negative, the model orresponds to a sparse nmfrepresentation [10℄; however, the sparsity imposed throughthe binary ativation pattern Z may not always omply wellwith the struture of the data if the assumption in nmf istrue that all features are partially expressed to some degreein every data point.2. INFINITE NMFRather than forming an in�nite nmf model through the bi-nary ibp representation we devie a rjmm sampling pro-edure that an perform general ross-dimensional jumps ef-�iently. Cross-dimensional jumps from a model of order Dwith parameters Θ to a model of order D∗ with parameters
Θ

∗ is aepted with probability given by the reversible jumpMetropolis-Hastings ratio
min

{

p(Θ∗, D∗|V )q(U∗|Θ∗, D∗,V , I∗)q(I |D)

p(Θ, D|V )q(U |Θ, D,V , I)q(I∗|D∗)
, 1

}

, (17)where U and U∗ are auxiliary variables suh that nΘ+nU =
nΘ∗ + nU∗ where nΘ denotes the number of elements in Θ.For ease of notation we have further inluded auxiliary vari-ables I and I∗, whih are index sets that point to a numberof features, i.e., olumns of W and the orresponding rowsof H. Given I , the ross-dimensional jump proposal is de-terministi given by (Θ∗,U∗, I∗) = g(Θ,U , I) where g is abijetive funtion with a Jaobian determinant of 1. (Forthat reason the Jaobian determinant term that usually o-urs in the expression for the rjmm aeptane ratio isomitted.) The funtion g removes the features indexed by Ifrom Θ and plaes them into U∗ and then appends the fea-tures in U to Θ forming the new feature Θ

∗, and I∗ pointsto the indexes of the appended features. Finally, q(I |D) de-notes the probability of seleting a given feature index setfor removal.The rux for the rjmm proedure to be e�ient is toahieve a reasonably high aeptane rate, whih requiresforming highly probable proposals q(U |Θ, D,V , I). In thefollowing, we onsider two approahes for proposing ross-dimensional jumps: A birth-death proedure, whih addsor removes one feature, and an split-merge proedure, whihsplits one feature into two or merges two to one. Both proe-dures are inspired by similar proedures for Dirihlet proessmixtures [11℄.The proposals are based on the idea of a launh state:Sine q(U |Θ, D,V , I) is allowed to depend on the existingfeatures Θ, these an be used to deterministially omputean initial highly probable launh value, U launch, for the newfeatures U . As shown in [11℄, the omputation of the launhstate need not be deterministi: If the proedure is stohas-ti, it simply orresponds to a mixture transition, wherea Markov hain transition is hosen randomly from a setof valid transitions. Here, we use the following proedure:We launh new features generated from the prior and re�nethem through t restrited Gibbs sweeps over the new fea-tures onditioned on the existing features less the removedfeatures. Next, q(U |Θ, D,V , I) an be de�ned as a ran-

dom walk starting from U launch. Here, we use one �nal re-strited Gibbs sweep, q(U |Θ, D,V , I) = q(U |Θlaunch,V ),where Θ
launch = g(Θ,U launch, I). The transition probabil-ity for the restrited Gibbs sweep an be omputed as theprodut of the probabilities of eah onditional parameterupdate given in Eq. (8�14).2.1 Birth-death proedureIn the birth-death proedure we set the probability of gen-erating a new omponent (birth) or removing a omponent(death) to be equal exept if D = 0 where a death move haszero probability. As a result, we have the following ontin-geny table for q(I |D),

q(I |D) D = 0 D > 0 Move type
I = ∅ 1 1

2
Birth

I ∈ {1, . . . , D} 0 1
2D

Death .
(18)Consequently, for a death move we randomly selet a fea-ture to remove among the D ative features with probability

1/D. For a birth move, we launh a new feature as explainedabove. The motivation behind the birth-death proposal isthat it will allow the inlusion of extra features that modelthe residual error if needed, and onversely allow the deletionof unneessary features.2.2 Split-merge proedureWhen inspeting the features of the nmf deompositions fordi�erent model orders it is often observed that inluding ad-ditional omponents has the e�et that a previously observedomponent splits into two new di�erent omponents. As ob-served by [16℄ nmf often results in parts-based representa-tions, and adding additional omponents often results in ex-isting parts being further atomized into smaller onstituentparts. Based on this observation, we devie a split-mergeproedure that expliitly exploits this dynami to generatehighly probable proposal distributions for ross-dimensionaljumps.As for the birth-death approah we will assume that botha split and a merge step has equal probability exept when
D = 1 where a merge move has zero probability. As a resultwe have the following ontingeny table for q(I |D),

q(I |D) D = 1 D > 1 Move type

I ∈ {1, . . . , D} 1 1
2D

Split

I = (i1, i2), i1 6= i2,
i1, i2 ∈ {1, . . . , D} 0 1

2D(D−1)
Merge.

(19)In a split move we randomly selet an existing feature andremove it. We then launh two new features using the launhmehanism desribed above. In a merge move, we randomlyselet two di�erent exiting features and remove them. Thenwe launh one new omponent with the slight modi�ationof the proedure that the initial value of the new feature istaken as the average of the exiting features rather than gen-erated from the prior before it is re�ned through t restritedGibbs sweeps as before.The birth-death proedure as well as the split-merge pro-edure are illustrated in Figure 1.3. RESULTSIn the following we present simulations on toy examples aswell as a real hemial shift imaging data set.We generated four simple data sets by drawing from theprior: We generated two small 10× 10 matries with 3 om-ponents and two 100 × 100 matries with 6 omponents atdi�erent noise levels (see Table 3). The priors were hosen
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HFigure 1: Illustration of the generated proposal densities forthe birth-death (top) and split-merge (bottom) proedures.The features U∗ indexed by I (red) are removed from Θ.New features are generated and re�ned through t restritedGibbs sampling sweeps forming U launch (blue). The �nalnew features, U , indexed by I∗, are generated through one�nal restrited Gibbs sweep, and the proposal density is om-puted by keeping trak of all transition probabilities in the�nal Gibbs sweep.as µid = mdj = 0, τid = sdj = 1, β = 1, γ = σ2. We as-sumed a �at improper prior over the number of omponents,
p(D) ∝ 1. Initializing with D = 0, we then omputed 106posterior samples using the proposed inferene proedure forinmf. In our experiments we interleaved one birth-death andsplit-merge proposal with �ve Gibbs sweeps, and used t = 10restrited Gibbs sweeps to generate the launh states. Theposterior probability of D for eah data set is given in Fig-ure 3. The results are as would be expeted: For the twolow noise data sets, A and C, the posterior is highly peakedaround the orret number of omponents, whereas for thehigh noise data sets, B and D, the posterior is less peakedand skewed towards fewer omponents. In all examples themaximum posterior probability is at the orret model or-der. For omparison we implemented a naive version of therjmm method in [34℄. We omputed a proposal densityfor eah value of D ∈ {1, . . . , 10} based on �tting a reti-�ed Gaussian to 106 posterior samples generated by Gibbssampling from the model. Although we were able to obtainresults similar to the ones obtained using inmf, we expe-riened that our naive implementation had severe di�ul-ties mixing aross dimensionalities. The nmf model has theinherent permutation ambiguity that any two features anbe permuted resulting in the same posterior density. Thus,when the posterior samples re�et this, it should be takeninto aount in onstruting a good proposal density, e.g.

I J D σ2A 10 10 3 1B 10 10 3 10C 100 100 6 1D 100 100 6 103Table 1: Toy example data sets.
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Figure 2: Results on toy data sets A-D: Posterior distribu-tion of D. In the two low noise data sets (left) inmf �nds theorret number of omponents with relatively high posteriorprobability. In the two high noise data sets (right) the pos-terior is less peaked and slightly skewed towards a smallernumber of omponents.by �tting a mixture model or by permuting the posteriorsamples.Next, we analyzed a 369×256 hemial shift imaging dataset [24℄ that has previously been analyzed using several nmfrelated methods [27, 28, 32, 29℄ and is known to ontain twoomponents. To math the noise level and sale of the datain line with [32℄, we hose the prior as µid = −10, mdj =
−106, τid = 10, sdj = 1011, β = 1, γ = 108. Initializingwith D = 0, we omputed 106 posterior samples using theinmf inferene proedure similar as above. The estimatedomponents mathed the ones omputed using other nmfrelated methods, and the posterior distribution of D hadalmost all of its mass at D = 2.4. DISCUSSIONWe proposed the in�nite non-negative matrix fatorization(inmf) model whih has a potential unbounded number offeatures. We devised an e�ient sampling sheme that wereable to perform ross-dimensional jumps using Metropolis-Hastings moves. To avoid extreme low-probability proposalswe derived high-probability on�gurations based on the al-ulation of an intermediate launh state as proposed for theDirihlet proess mixture in [11℄. On syntheti and real datawe demonstrated how the proposed approah was able toextrat the underlying model order reliably at a lower om-putational ost than ompeting approahes suh as Chib'smethod, thermodynami integration, and the rjmm ap-proah given in [34℄.One might suspet that the presented proedure is nearlyas omputationally expensive as [34℄ due to the intermittentGibbs sampling steps used to derive the launh states; how-ever, these steps are only arried out on a small number ofpossible omponents, sine the Markov hain predominantlyexplores the high probability region of the posterior. We donote, however, that the proedure is sensitive to the numberof restrited Gibbs sweeps, t, and that we observed better
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