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Kernel Maximum Autocorrelation Factor and
Minimum Noise Fraction Transformations

Allan Aasbjerg Nielsen

Abstract—This paper introduces kernel versions of maximum
autocorrelation factor (MAF) analysis and minimum noise frac-
tion (MNF) analysis. The kernel versions are based upon a dual
formulation also termed Q-mode analysis in which the data enter
into the analysis via inner products in the Gram matrix only. In
the kernel version, the inner products of the original data are re-
placed by inner products between nonlinear mappings into higher
dimensional feature space. Via kernel substitution also known as
the kernel trick these inner products between the mappings are
in turn replaced by a kernel function and all quantities needed in
the analysis are expressed in terms of this kernel function. This
means that we need not know the nonlinear mappings explicitly.
Kernel principal component analysis (PCA), kernel MAF, and
kernel MNF analyses handle nonlinearities by implicitly trans-
forming data into high (even infinite) dimensional feature space
via the kernel function and then performing a linear analysis in
that space. Three examples show the very successful application
of kernel MAF/MNF analysis to: 1) change detection in DLR
3K camera data recorded 0.7 s apart over a busy motorway, 2)
change detection in hyperspectral HyMap scanner data covering
a small agricultural area, and 3) maize kernel inspection. In the
cases shown, the kernel MAF/MNF transformation performs
better than its linear counterpart as well as linear and kernel
PCA. The leading kernel MAF/MNF variates seem to possess the
ability to adapt to even abruptly varying multi and hypervariate
backgrounds and focus on extreme observations.

Index Terms—Dual formulation, kernel maximum autocorrela-
tion factor (MAF), kernel minimum noise fraction (MNF), kernel
substitution, kernel trick, orthogonal transformations, Q-mode
analysis.

I. INTRODUCTION

B ASED upon work by Pearson [1] in 1901, Hotelling [2]
in 1933 introduced principal component analysis (PCA).

PCA is often used for linear orthogonalization or compression
by dimensionality reduction of correlated multivariate data, see
[3] for a comprehensive description of PCA and related tech-
niques. An interesting dilemma in the reduction of dimension-
ality of data is the desire to obtain simplicity for better under-
standing, visualization and interpretation of the data on the one
hand, and the desire to retain sufficient detail for adequate rep-
resentation on the other hand.
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Switzer and Green [4] introduced maximum autocorrelation
factor (MAF) analysis. In [5], MAF analysis was used and in
[6] PCA was used to detect change in images consisting of
simple differences between corresponding spectral bands ac-
quired at two points in time. Green et al. [7] introduced the min-
imum noise fraction (MNF) transformation. Both the MAF and
the MNF transformations contain spatial elements and they are,
therefore, (conceptually) better suited for spatial data than PCA.

Schölkopf et al. [8] introduced kernel PCA. Lai and Fyfe
[9] described kernel canonical correlation analysis (CCA), and
Bach and Jordan [10] described kernel independent component
analysis (ICA) based upon kernel CCA. Good general refer-
ences for kernel methods are [11], [12]. Kernel methods among
many other subjects are described in [13], [14]. In [15], kernel
PCA is used for change detection in univariate image data. In
[16], the kernel MAF transformations is applied to analyze ir-
regularly spaced geochemical data.

In this paper, Section II sketches linear PCA primarily to mo-
tivate the reparameterization used in dual or Q-mode analysis.
Based upon the usual combination of the dual formulation and
kernel substitution [8], [12] kernel versions of MAF and MNF
analyses are introduced in Sections III and IV, respectively.
These transformations may be used for general feature gener-
ation as preprocessing to for example classification tasks. Here,
we apply kernel PCA and MAF/MNF analysis to three exam-
ples. The data used in the examples are described in Section V.
In the first two examples, we detect change over time in remotely
sensed images. This is done by finding the projections along the
eigenvectors for data consisting of simple band-by-band differ-
ences of coregistered, calibrated variables which represent the
same spectral bands covering the same geographical region ac-
quired at two different time points, one on airborne camera data
over a busy motorway , [17], and another one on airborne, hyper-
spectral scanner data over a small agricultural region [18]. In a
third example, the methods are applied to hyperspectral image
data in maize kernel inspection [19]. Results are described in
Section VI. Section VII concludes and an Appendix gives de-
tails on maximizing a Rayleigh quotient with special attention
to the case where the matrix in the denominator is not full rank.

The kernel versions of PCA and MAF/MNF handle non-
linearities by implicitly transforming data into high (even
infinite) dimensional feature space via the kernel function and
then performing a linear analysis in that space. For the kernel
MAF/MNF variates to be used in for example denoising we
must look into the so-called preimage problem, [20]–[22]. This
deals with the complicated problem of mapping back from the
feature space defined implicitly by the kernel function to the
original variable space. This is not described here.
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II. PCA

Let us consider a data set (for example an image) with ob-
servations (or pixels) and variables (or spectral bands) orga-
nized as a matrix with rows and columns; each column
contains measurements over all observations from one variable
and each row consists of a vector of measurements from
variables for a particular observation, the superscript denotes
the transpose

...
(1)

is often called the data matrix. Without loss of generality we
assume that the variables in the columns of have mean value
zero.

A. Primal Formulation

In ordinary (primal also known as R-mode) PCA we ana-
lyze the sample variance-covariance matrix

which is by . If is rank
this will lead to nonzero eigenvalues and

orthogonal or mutually conjugate unit length eigenvectors
from the eigenvalue problem

(2)

We see that the sign of is arbitrary. To find the principal
component scores for an observation we project onto the
eigenvectors, . The variance of these scores is

which is maximized by solving the
eigenvalue problem, see the Appendix with matrix there equal
to the identity matrix.

B. Dual Formulation

To get to the dual formulation (also known as Q-mode anal-
ysis) multiply both sides of (2) from the left with

(3)

or

(4)

with proportional to , which is normally not
normed to unit length if is. The elements in the so-called
Gram1 matrix are the inner products of the rows
in . Now multiply both sides of (4) from the left with

(5)

to show that is an eigenvector of with the same
eigenvalue . We scale these eigenvectors to unit length as-
suming that are unit vectors

(6)

1Named after Danish mathematician Jørgen Pedersen Gram (1850–1916).

We see that and have the same
nonzero eigenvalues and that their eigenvectors are related

by and . This
result is closely related to the Eckart–Young theorem [23], [24].

III. MAF ANALYSIS

In MAF analysis first suggested in [4], we maximize the au-
tocorrelation of linear combinations, , of zeroth-mean
original (spatial) variables, , see also [5], [25], [26].
is a multivariate observation at location and is an
observation of the same variables at location ; is a spa-
tial displacement vector.

The autocovariance of a linear combination of ze-
roth-mean is

(7)

(8)

(9)

where is the covariance between and . As-
suming or imposing second-order stationarity of , is in-
dependent of location, . Introduce the multivariate difference

with variance-covariance matrix
where is the vari-

ance-covariance matrix of . Since ( is a scalar)

(10)

(11)

(12)

we obtain

(13)

To get the autocorrelation of the linear combination we divide
the covariance by its variance

(14)

(15)

where is the data matrix defined previously and is a
similarly defined matrix for with zeroth-mean columns.
above equals .

For regularly sampled spatial data, i.e., ordinary digital image
data, often a one-pixel horizontal shift, , to obtain
is used to estimate and a one-pixel vertical shift, , to
obtain is used to estimate . is then a pool of
the two. Alternatively, the two one-pixel shifts may be used to
estimate . Since this
differencing is not possible for samples located in the first row
or column, such samples are removed from these calculations.

A. Primal Formulation

To maximize in (15) we must minimize the Rayleigh quo-
tient or maximize its inverse. This is
done by solving a symmetric generalized eigenvalue problem,
see Appendix.
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Unlike linear PCA, the result from linear MAF analysis is
scale invariant: if is replaced by some matrix transformation

corresponding to replacing by , the result is the
same.

B. Dual Formulation and Kernelization

As in PCA described in Section II we get to the dual formu-
lation by reparameterizing and setting

(16)

With an by ) matrix

...
(17)

with nonlinear mappings into high-dimensional feature
space of the rows in , and an by matrix with non-
linear mappings of the rows in , this in the kernelized ver-
sion becomes

(18)

(19)

Replacing —which has elements , i.e., we
need not know the mapping explicitly, all we need are the
inner products—with kernel matrix with elements
and with is known as the kernel trick or kernel
substitution. Nonsymmetric here has elements

. Both and are centered
versions of the kernel matrices, i.e., the mean values of their
columns are zero [8], [12], [13], [15], [16]. Since we want

in this case we have and , i.e., unlike the
case with kernel PCA in kernel MAF analysis we do not divide
the dual eigenvector by the square root of the corresponding
eigenvalue, [8], [12], [13], [15], [16].

The dual formulation linear MAF analysis inherits the scale
invariance of the primal formulation problem. This is not the
case for the nonlinear mapping and,
therefore, it is not the case for the kernel version either. How-
ever, for radial basis function (RBF) kernels, i.e.,

, any transformation by an orthogonal matrix
(i.e., a rotation) of the original coordinate system will not in-
fluence the result of the analysis,

.

C. Regularization and Kernelization

Because of the versatility of the model in kernel CCA where
we find two different sets of linear combinations (the eigenvec-
tors), regularization there is always needed, [9], [12]. We see

that in kernel MAF analysis where we find one linear combi-
nation only, we need not regularize. Still we may wish to reg-
ularize and if so one of several possible alternative versions of
the primal formulation is

(20)

which in the dual version becomes

(21)

which in turn kernelizes to

(22)

D. Implementation Issues

Here the kernel version of the symmetric generalized eigen-
value problem is solved by maximizing the inverse of the
Rayleigh quotient in (19), see also the Appendix for a more
thorough description. This may be done by writing symmetric

as a product of matrix square roots

(23)

(24)

The problem now rewrites to

(25)

which is a symmetric ordinary eigenvalue problem. The
Appendix shows how this may be done when is not
full rank.

A very different implementation issue is the following: and
are by where is the number of observations (pixels)

which in image analysis can be prohibitively large. In this case,
we may subsample the image and carry out the kernel eigen-
value analysis on these samples only. These samples are termed
the training data. To obtain a transformed version of the entire
image we then project all pixels, which we call the test data,
mapped by onto the primal eigenvectors. Hence, we need to
calculate which is a centered version of mapped training
observations in kernelized with mapped test obser-
vations in . The image will typically be too large to hold the
kernel matrix in computer memory and to carry out cen-
tering and kernelization of the test data with the training data
in memory. Therefore, we may need to center and kernelize in
smaller chunks at a time, for example row by row. Choosing to
center the test data with the test data mean will force us to cal-
culate twice—once for centering and once for calculating
the projections, see the following—resulting in increased exe-
cution time. Because of the necessary looping over rows this
is especially true for vector and matrix oriented programming
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environments such as Matlab and IDL. This part of the code
is well suited for parallel implementation or for running on the
GPU processor on a graphics card.

The subsampling potentially facilitates avoiding problems
arising from the spatial autocorrelation inherent to image data.

E. Projections Onto Eigenvectors

To find the kernel MAFs from the generalized eigenvalue
problem in (19) or a regularized version, we project a mapped

onto the primal eigenvector

(26)

(27)

or in matrix notation for the training observations
( is a matrix with in the columns and is a matrix with
in the columns). The variance of this projection is

(28)

(29)

(30)

(31)

IV. MNF ANALYSIS

In MNF analysis first suggested in [7], we minimize the noise
fraction (NF) or equivalently maximize the signal-to-noise ratio
(SNR) of linear combinations, , of zeroth-mean original
(spatial) variables, . NR and SNR will be defined shortly.
Here we write the total as a sum of a signal part, ,
and a noise part,

(32)

These two parts are considered to be uncorrelated. Therefore,
the variance-covariance matrix of may be written as a sum
of the signal and noise dispersions

(33)

Assuming or imposing second-order stationarity of and
, and are independent of location, .

The noise fraction NF is here defined as the ratio of the vari-
ance of the noise and the variance of the total, so for a linear
combination of zeroth-mean we get

NF (34)

Similarly, for the SNR, which is here defined as the ratio of the
variance of the signal and the variance of the noise, we get

SNR (35)

This gives the relation NF SNR or SNR ,
i.e., by maximizing SNR we minimize NF.

In [4] it is argued that if the signal is highly correlated and the
noise is uncorrelated we have , see Section III.

For regularly sampled spatial data, i.e., ordinary digital image
data, often the difference between the actual value at a loca-
tion and the mean of the values in a 3 3 neighborhood, or the
residual from a local regression in a 3 3 neighborhood to a
plane or a paraboloid is used to estimate . This may be
formulated as a filtering problem [27]. Since this filtering is not
possible for samples located in the first and last row or column,
such samples are removed from these calculations.

A. Primal Formulation

We wish to maximize

(36)

(37)

where is the by data matrix and is a similarly defined
matrix for with zeroth-mean columns.

B. Dual Formulation and Kernelization

As in kernel MAF analysis described in Section III we get to
the dual formulation by reparameterizing and setting

(38)

which in the kernelized version becomes

(39)

(40)

where is an by matrix with mappings of and
nonsymmetric has elements

. We see that this is completely equivalent to the previ-
ously MAF analysis with here playing the role of there.

V. DATA

To illustrate the techniques we give three cases. The first two
are change detection examples, one is based upon RGB data
from the DLR 3K camera system [28], [29], and another is based
upon hyperspectral data from the HyMap scanner [30]. Because
of the nature of the data in the first case we have a good impres-
sion of the “truth,” see the following. The case on HyMap data is
chosen because the dual formulation inherent to kernel methods
as described here is well suited for hypervariate data. The third
case shows an application to maize kernel inspection.

A. DLR 3K Camera Data

The images used were recorded with the airborne DLR 3K
camera system [28], [29] from the German Aerospace Center,
DLR. This system consists of three commercially available 16
megapixel cameras arranged on a mount and a navigation unit
with which it is possible to record time series of images covering
large areas at frequencies up to 3 Hz. The 1000 rows by 1000
columns example images acquired 0.7 s apart cover a busy mo-
torway. Fig. 1 shows the RGB images at time points one (a) and
two (b). The data at the two time points were orthoprojected using
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Fig. 1. DLR 3K camera images as RGB acquired 0.7 s apart; note the move-
ments of the cars on the motorway. (a) Time point one. (b) Time point two.

GPS/IMU measurements and a DEM. For flat terrain like here
one pixel accuracy was obtained. In these data, the change occur-
ring between the two time points will be dominated by the move-
ment of the cars on the motorway. Undesired, apparent change
will occur due to the movement of the aircraft and the different
viewing positions at the two time points, see also and [17].

B. Hyperspectral HyMap Data

In this example we use all spectral bands of 400 rows by 270
columns 5-m pixels HyMap [30] data covering a small agri-

Fig. 2. DLR 3K camera simple difference image as RGB.

cultural area near Lake Waging-Taching in Bavaria, Germany.
HyMap is an airborne, hyperspectral instrument which records
126 spectral bands covering most of the wavelength region from
438 to 2483 nm with 15–20 nm spacing. Fig. 7 shows HyMap
bands 27 (828 nm), 81 (1 648 nm) and 16 (662 nm) as RGB,
30 June 2003 8:43 UTC (a) and 4 August 2003 10:23 UTC (b).
The data at the two time points were radiometrically calibrated
and orthorectified using GPS/IMU measurements, a DEM and
ground control points. One pixel accuracy was obtained. These
data are dealt with in [18], [31], and [32].

C. Maize Kernel Data

Here we use a line scan camera to obtain 149 rows by 370
columns 153 band (900–1 700 nm) hyperspectral images of
maize samples comprised of the front and back side of eight
kernels on a black background acquired as two separate images
appended into one. The kernels are not fresh from harvest and,
hence, they have a very low water content and in addition they
are free from any infections. Many cereals in general share the
same compounds and basic structure. In our case of maize, a
single kernel can be divided into many different constituents on
the macroscopic level. In general, the structural components of
cereals can be divided into three classes denoted “Endosperm,”
“Germ,” and “Pedicel,” see Fig. 10. These components have
different functions and compounds leading to different spectral
profiles. This is described in more detail in [19].

VI. RESULTS AND DISCUSSION

To be able to carry out kernel PCA and MAF/MNF analysis
on the large amount of pixels typically present in Earth obser-
vation and other image data, we subsample the image and use
a small portion termed the training data only. We use typically
in the order randomly sampled training pixels to find the
eigenvectors onto which we then project the entire image termed
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Fig. 3. Scatterplots and histograms of (a) the first three kernel PCs and (b) kernel MAFs.

the test data kernelized with the training data. With this subsam-
pling we potentially avoid problems that may arise from the spa-
tial autocorrelation inherent to image data. A Gaussian kernel

with equal to the
mean distance between the observations in feature space is used.

A. DLR 3K Data

Since there are only three spectral bands in this example we
can see all simple difference images between acquisitions at
time points two and one simultaneously. Fig. 2 shows an RGB
image of these simple differences stretched linearly from mean
minus to mean plus three standard deviations. Because of the
0.7 s between acquisitions the change detected is dominated by
the movements of the cars on the motorway. Also, the move-
ment of the airplane gives rise to edge effects where height dif-
ferences on the ground occur. We see that the no-change back-
ground appears quite noisy.

Fig. 3 shows scatter plots and histograms of the first three
kernel PCs (a) and kernel MAFs (b) for the training
samples. We see that the histograms for the kernel MAFs are
very narrow and that many more samples are concentrated in
the center of the scatter plots for the kernel MAFs. This re-
flects the fact that no-change pixels have values very close to
zero and change pixels are very different from zero. Thus, the
kernel MAFs give a much better discrimination between change
and no-change. Also, the scatter plots for kernel MAF as op-
posed to those for kernel PCA much like independent compo-
nents show linear structures indicating a better separation of in-
teresting structure in the kernel MAF components.

Fig. 4 shows kernel principal components 1–3 (a) and kernel
MAFs 1–3 (b). Fig. 5 shows kernel MNFs 1–3 of simple
band-by-band difference images as RGB, with noise estimated
as the difference from the mean in a 3 3 window (a) and
kernel MNFs 1–3 with noise estimated as the residual from a
quadratic surface in a 3 3 window (b). The three bands are
stretched linearly between mean minus and plus three standard
deviations. In this representation, no-change areas will appear
as grayish and change regions will appear in saturated colors

(including black and white). From the images, we see that all
methods detect the change represented by the moving cars
and that all cars stand out clearly as being detected. Ordinary
linear PCA or MAF analysis (not shown) does not give this
beautiful discrimination between change and no-change re-
gions. The most conspicuous difference between kPCA on the
one hand and the kMAF/kMNF methods on the other hand
is the much less noisy no-change background offered by the
kernel MAF/MNF transformations corresponding to a lower
rate of false detection for these methods. Also, kMAF and the
two different noise models for kMNF give rise to different
coloring of the change pixels reflecting the fact that different
kernel components contain different change information. It is,
however, the same change pixels that get the extreme coloring
irrespective of the noise model used.

In this case a more relevant quantitative evaluation of the
change detection methods than the often applied compar-
ison with manually labelled “ground truth,” is a comparison of
background noise suppression with good noise suppression cor-
responding to fewer false alarms. Kernel MAF/MNF analyses
suppress the noisy no-change background much more success-
fully than ordinary PCA, ordinary MAF and kernel PCA. The
ratio between variances of ordinary PC 1 and kernel MAF 1
(both scaled to unit variance) calculated in the 100 100 pixels
top-right no-change region of the images is 85.7 corresponding
to 19.3 dB. For ordinary MAF 1 and kernel MAF 1 the ratio is
271.9 corresponding to 24.3 dB, and for kernel PC 1 and kernel
MAF 1 376.5 corresponding to 25.7 dB.

The eigenvalue based model SNR
for the first three ordinary MAFs are

14.24, 9.30, and 5.83 corresponding to 11.5 dB, 9.7 dB, and
7.7 dB. For the first three kernel MAFs the corresponding
numbers for SNR are 85.0 dB,
75.4 dB, and 72.5 dB, all drastic improvements. For kernel
MNF analysis with the noise estimated as the difference
between the center pixel and the mean in a 3 3 window
yielding similar change results, the corresponding numbers for
SNR are 85.5 dB, 82.0 dB, and
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Fig. 4. (a) Kernel principal components 1–3 and (b) kernel MAFs 1–3 of the
three simple difference images as RGB. All bands are stretched linearly between
mean (which is zero) minus and plus three standard deviations.

74.5 dB. For kernel MNF analysis with the noise estimated as
the residual from fitting a quadratic surface in a 3 3 window
again yielding similar change results with a slightly more
noisy visual appearance of the background, the corresponding
numbers are 100.6 dB, 87.9 dB, and 86.7 dB.

For the training data alone the kernel MAF/MNFs are un-
correlated. The correlation matrix for the entire image for the
first three kernel MAFs is shown in Table I for the DLR 3K
data (left). Although not zero, the correlations between different
kernel MAF modes are still fairly small.

Fig. 5. (a) Kernel MNFs 1–3 with noise estimated as the difference from the
mean in a 3�3 window and (b) kernel MNFs 1–3 with noise estimated as the
residual from a quadratic surface in a 3�3 window of the three simple difference
images as RGB. All bands are stretched linearly between mean (which is zero)
minus and plus three standard deviations.

TABLE I
CORRELATION MATRICES FOR ENTIRE IMAGE FOR FIRST THREE KERNEL MAFS

FOR THE DLR 3K CASE (LEFT) AND THE HYMAP CASE (RIGHT)
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Fig. 6. Scatter plots for training data of red and green bands differences at the two time points on backgrounds of contours for (a) kernel PC 2 and (b) kernel MAF
1, DLR 3K data.

Fig. 7. HyMap bands 27 (828 nm), 81 (1 648 nm) and 16 (662 nm) as RGB. (a) 30 June 2003 8:43 UTC. (b) 4 August 2003 10:23 UTC.

The generation of three kernel MAF/MNFs for the entire
image based upon random training samples calculated
by Matlab code based upon theeigs function with a simple for-
loop-over-rows implementation for the test data takes around
7.9 min on a 32-b, 2.00 GHz Intel Core 2 CPU laptop with
2.00 GB, 998 MHz memory.

Two-Band Example: Let us redo the analysis, this time skip-
ping the blue band leaving two spectral bands, red and green.

This leads to change patterns very similar to the ones described
in the three-band case mentioned previously and more impor-
tantly it gives us the possibility to produce a scatter plot of the
simple differences for red versus simple differences for green
for the training samples on the background of contours for the
individual kernel MAF and PC variates. Fig. 6 shows examples
of such plots where no-change pixels are located near the origo
and extreme change pixels successfully identified by especially
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Fig. 8. Scatterplots and histograms of the (a) first three kernel PCs and (b) kernel MAFs, HyMap data.

kMAF analysis are located towards the end of the “line,” i.e.,
the elongated point cloud in the scatter plot. Note, that the value
of the kMAF variate 1 is very small (dark graytones) for the
no-change observations and very large (bright graytones) for the
extreme change pixels, and that the sign of kMAF variate 1 is the
same for values around and (70, 70) in the scatter
plot showing that kMAF 1 is an excellent change/no-change dis-
criminator. This effect is not obtained here with kernel PCA and
can never be obtained with a linear technique.

B. HyMap Data

In this example all band-wise differences of the 126 spectral
bands of the HyMap are used. Fig. 8 shows scatter plots and
histograms of the first three kernel PCs (a) and kernel MAFs (b)
for the training samples. As in the previous case, we see
that the histograms for the kernel MAFs are very narrow and that
many more samples are concentrated in the center of the scatter
plots for the kernel MAFs. This reflects the fact that no-change
pixels have values very close to zero and change pixels are very
different from zero. Thus, the kernel MAFs give a much better
discrimination between change and no-change.

Fig. 9 shows kernel principal components 1–3 (a) and kernel
MAFs 1–3 (b) of simple band-by-band difference images as
RGB. All bands are stretched linearly between mean minus and
plus three standard deviations. In this representation, no-change
areas will appear as grayish and change regions will appear in
saturated colors (including black and white). The change de-
tected over the five weeks is due to growth of the main crop
types such as maize, barley and wheat. On pastures, which are
constantly being grazed, in forest stands and in the lake to the
south, no change is observed. Furthermore, both solar eleva-
tion and azimuth have changed which gives rise to edge effects
where abrupt height differences on the ground occur.

We see that both types of kernel analysis emphasize change
and that unlike kernel PCA, kernel MAF analysis seems to focus
on the most conspicuous changes and that it gives a very strong
discrimination between change and no-change regions.

The eigenvalue based model SNR
for the first three

ordinary MAFs are 40.70, 33.00, and 22.58 corre-
sponding to 16.1 dB, 15.2 dB and 13.5 dB. For the
first three kernel MAFs the corresponding numbers for
SNR are 78.5 dB, 74.1 dB
and 70.3 dB, as in the previous case all drastic improvements.
For kernel MNF analysis with the noise estimated as the
difference between the center pixel and the mean in a 3 3
window yielding similar change results with a slightly more
noisy appearance (not shown), the corresponding numbers for
SNR are 81.2 dB, 77.3 dB, and
75.9 dB. For kernel MNF analysis with the noise estimated as
the residual from fitting a quadratic surface in a 3 3 window
again yielding similar change results with a slightly more noisy
appearance (not shown), the corresponding numbers are 93.9
dB, 90.5 dB, and 85.0 dB.

As in the previous example ordinary linear PCA or MAF anal-
ysis (not shown) does not give this beautiful discrimination be-
tween change and no-change regions.

For the training data alone the kernel MAF/MNFs are un-
correlated. The correlation matrix for the entire image for the
first three kernel MAFs is shown in Table I for the HyMap data
(right). Although not zero, the correlations between different
kernel MAF modes are still fairly small.

The generation of three kernel MAF/MNFs for the entire
image based upon random training samples calculated
by Matlab code based upon theeigs function with a simple for-
loop-over-rows implementation for the test data takes around 80
s on a 32-b, 2.00 GHz Intel Core 2 CPU laptop with 2.00 GB,
998 MHz memory.

C. Maize Kernel Data

The 153 band (900–1 700 nm, i.e., the near infrared region)
hyperspectral images of the maize samples consist of the front
and back sides of the kernels on a black background in two sep-
arate images appended into one image, the front in the left half
image and the back in the right half image.
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Fig. 9. (a) Kernel principal components 1–3 and (b) kernel MAFs 1–3 of 126 simple difference images as RGB. All bands are stretched linearly between mean
(which is zero) minus and plus three standard deviations.

Fig. 10. Maize kernel constituents, front (left) and back side (right), the color
image is constructed as an RGB combination of NIR bands 150, 75, and 1.

In this case we calculate kernel components based upon
training samples. Fig. 11 shows linear principal com-

ponents and linear MAFs of front (left half image) and back
sides (right half image) of eight maize kernels.

Fig. 12 shows kernel principal components and kernel MAFs
of front (left half image) and back sides (right half image) of
eight maize kernels. Note the superior ability of the kernel MAF
variates to adapt to even very abrupt changes such as image
edges (between the front and back images) and shadows in a
hyperspectral background and to label different maize kernel
structural components with the same color.

Autocorrelations for the first three linear MAFs are 0.9940,
0.9842 and 0.9685. Autocorrelations for the first three kernel
MAFs are all 1 to seven decimal places, all higher than achieved
by the linear analysis.

The generation of six kernel MAFs for the entire combined
front and back image based upon random training sam-
ples calculated by Matlab code based upon the eigs function
with a simple for-loop-over-rows implementation for the test
data takes around 11.5 min on a 32-b, 2.00 GHz Intel Core 2
CPU laptop with 2.00 GB, 998 MHz memory.

VII. CONCLUSIONS

In the dual formulation of PCA and MAF/MNF analyses the
data enter into the problem as inner products between the obser-
vations. These inner products may be replaced by inner products
between mappings of the measured variables into higher order
feature space. The idea in kernel orthogonalization is to express
the inner products between the mappings in terms of a kernel
function to avoid the explicit specification of the mappings. Both
the eigenvalue problem, the centering to zero mean and the pro-
jections onto eigenvectors to find kernel scores may be expressed
by means of the kernel function. Kernel orthogonalization
methods handle nonlinearities by implicitly transforming data
into high (even infinite) dimensional feature space via the kernel
function and then performing a linear analysis in that space.

In all three examples given, kernel orthogonalization with
a Gaussian kernel is
used. Generally, the scale parameter should be chosen equal
to a typical distance between observations in feature space and
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Fig. 11. Linear principal components of front (left half image) and back sides
(right half image) of eight maize kernels shown as RGB combination of factors
(1, 2, 3) and (4, 5, 6) [(a) and (b)], and corresponding linear MAFs [(c) and (d)].
(a) PC1, PC2, and PC3. (b) PC4, PC5, and PC6. (c) MAF1, MAF2, and MAF3.
(d) MAF4, MAF5, and MAF6.

smaller than the largest distance. Here it is chosen simply as
the mean value of the relevant distances. The sensitivity of the
kernel methods to the scale parameter , image noise, and the
subsampling applied are all good subjects for future work.

In two of three examples given, kernel orthogonalization with
a Gaussian kernel is used for detecting change in coregistered,
calibrated simple band-by-band difference DLR 3K camera
and hyperspectral HyMap images. Unlike ordinary linear PCA
or MAF/MNF analyses, especially kernel MAF/MNF analysis
gives a strong discrimination between change and no-change
regions with a conspicuously better suppression of both noise

Fig. 12. Kernel principal components of front (left half image) and back sides
(right half image) of eight maize kernel shown as RGB combination of factors
(1, 2, 3) and (4, 5, 6) [(a) and (b)], and corresponding kernel MAFs [(c) and (d)].
(a) kPC1, kPC2, and kPC3. (b) kPC4, kPC5, and kPC6. (c) kMAF1, kMAF2,
and kMAF3. (d) kMAF4, kMAF5, and kMAF6.

and signal in the no-change background. The simple differ-
encing is meaningful for calibrated or normalized data only. If
the data available is not of this nature, generalized differences
as described in [32]–[35] may be applied.

In the DLR 3K camera case the ratio between variances in a
known no-change region between leading components of ordi-
nary PCA, ordinary MAF analysis and kernel PCA on the one
hand and kernel MAF analysis on the other, drastically favor
kernel MAF analysis. The ratios range from 19.3 dB to 25.7 dB.

Also the eigenvalue based model SNRs improve drastically
going from linear MAF to kernel MAF analysis. For the first
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three MAF variates in the DLR 3K camera case the SNR im-
proves from 11.5 dB to 85.0 dB, 9.7 dB to 75.4 dB, and 7.7 dB
to 72.5 dB, respectively. Corresponding numbers for the hyper-
spectral HyMap case are from 16.1 dB to 78.5 dB, 15.2 dB to
74.1 dB, and 13.5 dB to 70.3 dB. Using kernel MNF analysis
these model SNRs improve further but the visual impression of
the change results (not shown for the HyMap case) are not nec-
essarily better than for kernel MAF.

The maize kernel example shows the superior ability of the
kernel MAF variates to adapt to shadow, to even very abrupt
changes such as image edges in a hyperspectral background and
to label different maize kernel parts with the same color.

All three examples indicate that generally, the kernel
MAF/MNF variates seem to possess the ability to adapt to even
abruptly varying multi- or hypervariate backgrounds and focus
on extreme observations.

Kernel PCA and kernel MAF/MNF analysis are so-called
memory-based methods: where ordinary PCA and MAF/MNF
analysis handle new observations by projecting them onto the
eigenvectors found based upon the training data, because of the
kernelization of the new observations with the training obser-
vations, kernel PCA and MAF/MNF analysis need the original
data as well as the eigenvectors (and for PCA the eigenvalues)
to handle new data.

The kernel MAF and MNF transformations are expected to
be very useful in many other application areas for example in
medical, industrial and astronomical image analysis involving
both panchromatic and univariate data.

Matlab code to carry out the analyses described may be found
on the author’s homepage. IDL/ENVI and Python versions may
be found on Dr. Morton J. Canty’s homepage.

APPENDIX

Here we want to maximize the Rayleigh quotient

(41)

for both and by , symmetric and positive semidefinite.
In this case, both the numerator and the denominator are non-
negative. Also, is unchanged by a rescaling of . To maximize

we differentiate with respect to

(42)

Setting this gradient to zero we get the symmetric generalized
eigenvalue problem

(43)

The second derivative of or the Hessian,
, is

(44)

We have but the two terms are not
symmetric so they do not cancel. However, for the solution in
(43), i.e., at the stationary points where the gradient is zero, the
two terms do cancel, the last line above is zero, and we get

(45)

at these points. For full rank we have the following: For the
largest eigenvalue , has nonpositive eigenvalues, i.e.,

is negative semidefinite corresponding to a maximum for the
Rayleigh quotient. For the smallest eigenvalue , has
nonnegative eigenvalues, i.e., is positive semidefinite corre-
sponding to a minimum for the Rayleigh quotient. The eigen-
values for are both negative, zero
and positive, these correspond to saddle points.

The symmetric generalized eigenvalue problem may be
solved by writing symmetric as a product of matrix square
roots

(46)

(47)

where with consisting of columns of
eigenvectors and is a diagonal matrix of square roots of the
eigenvalues of . If is full rank we retain all columns
and all rows of both and . If has rank we retain only
the first columns corresponding to the highest eigenvalues (but
all rows) of and only the first rows and first columns of

. Since (and ), this leads to the de-
sired . The problem now
rewrites to

(48)

which is a symmetric ordinary eigenvalue problem. In this case,
we may get the inverse for as

where is an by diagonal matrix of inverse
square roots of the eigenvalues.

Alternatively, we may maximize the Rayleigh quotient in (41)
by multiplying from the left with the inverse or if needed
the Moore-Penrose inverse . In the latter case, we get

(49)

which is a nonsymmetric ordinary eigenvalue problem. If has
rank , its Moore-Penrose inverse is

with an by diagonal matrix of the nonzero
eigenvalues of ordered decreasingly and by matrix con-
sisting of columns of the corresponding eigenvectors. is an

by diagonal matrix of inverse eigenvalues.
Following one of these lines of attack the eigenvectors are

renormed so that the denominator of the Rayleigh quotient in
(41) equals one, . Other natural renorming schemes
are (so that the numerator of the Rayleigh quotient
equals one) or (to conserve Euclidean distance in the
transformed space).
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