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1 Abstract

In this paper, we present The Slab Yard Planning and Crane
Scheduling Problem. The problem has its origin in steel production
facilities with a large throughput. A slab yard is used as a buffer for
slabs that are needed in the upcoming production. Slabs are trans-
ported by cranes and the problem considered here, is concerned with
the generation of schedules for these.

The problem is decomposed and modeled in two parts, namely a
planning problem and a scheduling problem.

In the planning problem a set of crane operations is created to
take the yard from its current state to a desired goal state. The
aim of the planning problem is twofold. A number of compulsory
operations are generated, in order to comply with short term planning
requirements. These operations are mostly moves of arriving and
leaving slabs in the yard. A number of non-compulsory operations
with a long term purpose are also created. A state of the yard may
be more or less suited for future operations. It is desirable to keep
the yard in a state, where it lends itself well to the future requests.
Partial knowledge of future requests may exist and hence the yard
can be prepared for those.

In the scheduling problem, an exact schedule for the cranes is
generated, where each operation is assigned to a crane and is given
a specific time of initiation. For both models, a thorough description
of the modeling details is given along with a specification of objective
criteria. Variants of the models are presented as well.

Preliminary tests are run on a generic setup with artificially gen-
erated data. The test results are very promising. The production
delays are reduced significantly in the new solutions compared to the
corresponding delays observed in a simulation of manual planning.

The work presented in this paper is focused on a generic setup. In
future research, the model and the related methods should be adapted
to a practical setting, to prove the value of the proposed model in
real-world circumstances.
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2 Introduction

2.1 Problem Description

The Slab Yard Planning and Crane Scheduling Problem is a complex optimiza-
tion problem, combining planning and scheduling in an effort to generate feasible
schedules for a number of interacting cranes. The problem instances origin from
real world data. Costs and constraints have been defined in cooperation with
the industry. The industrial problem instances are of a large size and hence it is
important to create a solution method that can make superior heuristic choices
in little time.

The problem at hand is from a steel hot rolling mill. A large number of
slabs arrive by train to a slab yard, where they are stored until transported to
the hot rolling mill by a roller table. The slabs need to be transported from the
train to the yard and later from the yard to the roller table in the correct order
and at specific points in time. Each slab has its individual properties and hence
we need to consider each slab as being unique.

16 rows x 16 columns

Railway track
(Incoming slabs)

Roller Table
(Outgoing slabs)

The two gantry cranes

Crane trolley

Figure 1: Overview of the slab yard.

In Figure 1 an overview of the slab yard is shown. The two gantry cranes are
used to move slabs from one stack to another. As seen in the figure, both the
train and the roller table can be modeled as special sets of temporary stacks.
The generic slab yard that we consider in this paper consists of 16 × 16 stacks
where each stack is a number of slabs on top of each other. The cranes can carry
only one plate at a time and hence only the top slab of a stack can be moved.
The cranes operate in two directions. Horizontally, they run on a shared pair
of tracks and hence they can never pass each other in this direction. Vertically,
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they operate by a trolley attached to the crane, which can move freely from top
to bottom.

2.2 Solution Approach

The problem is approached in a two-stage planning/scheduling conception. The
planning problem of the yard is of an abstract nature. Decisions are made on
the layout of the slab yard. For a pre-specified time horizon, a desired end state
is formulated, i.e. the end position of the slabs in the yard is determined. We
also include information on a number of operations that need to be carried out
in order to arrive at that state. The aim of the crane scheduling problem is to
concretize the decisions of the planning problem. Operations are allocated to
cranes and all operations are sequenced and positioned in time. The concrete
scheduling solution is directly applicable in practice.

2.3 Literature

The Slab Yard Planning and Crane Scheduling Problem was considered in a
similar context by Hansen [9]. The problem is from a Steel Shipyard where
ships are constructed by welding together steel plates. The plates are stored in
stacks in a plate storage and are moved by two gantry cranes sharing tracks.
A simulator and a control system are developed and implemented in a system
to be used as decision support for the crane operators. Our work is based on
the findings of Hansen. Hansen uses a simulation as the core of the algorithm.
The simulation is by nature stochastic which makes the overlying algorithm
unstable. The large number of simulations needed also affects the effectiveness
of the algorithm in a negative direction. For these reasons, the approach in our
work is slightly different from that of Hansen.

Another similar problem is presented by Gambardella et al. [7] (based on the
work in [29]) where containers are transported by cranes in a container terminal.
The solution method here uses an abstract decision level and a concrete decision
level to make sure that the best decisions are made and at the same time, the
schedules are applicable.

An immediate advantage of the two-stage approach is that the planning
problem and the scheduling problem individually have received considerable
attention in the literature.

2.3.1 Slab Yard Planning and Container Stacking

The literature relating to The Slab Yard Planning Problem is found mainly
in other areas of slab yard planning and in container stacking. An abstract
stacking problem from the artificial intelligence literature is the Tower of Hanoi
Problem, where disks are moved between stacks one by one and can only be
placed on top of larger disks. Here we find some general tools for stacking
problems. Dinitz and Solomon [5] describe algorithms for the Tower of Hanoi
Problem with relaxed placement rules. See also the literature on Blocks World
(e.g. [23]) for another abstract problem with interesting similarities to the slab
stacking problem.

Tang et al. [27] describe a steel rolling mill where slabs need to be trans-
ported from a slab yard according to a scheduled rolling sequence. The article
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builds on the initial work found in [26]. The layout of the slab yard is different
from ours and the cranes are located so that they never collide. Another differ-
ence is that for each batch, several candidates exist among the slabs, and the
objective therefore is to minimize the cost by choosing the right slabs among
the candidates. Singh et al. [21] address the same problem and solve it using
an improved Parallel Genetic Algorithm. König et al. [12] investigate a simi-
lar problem from storage planning of steel slabs in integrated steel production.
The problem formulation in the article is kept at a general level to make the
model versatile. The stacking problem is considered alone, thereby disregard-
ing the crane schedules. They present a greedy construction heuristic and by a
Linear Programming relaxation of a Mixed Integer Problem formulation of the
problem, they are able to quantify the quality of their solutions.

A problem in container stacking with many similarities to the slab stacking
problem is described by Dekker et al. [4]. A significant difference is that the
maximum height of container stacks is 3, where the corresponding number in
slab stacks usually is considerably larger than this. A number of stacking policies
are investigated by means of simulation and in that sense, it resembles the work
of Hansen [9] in a container stacking context. Kim and Bae [10] describe a
container stacking problem where a current yard layout is given and a new
desirable layout is provided. The problem is to convert the current bay layout
to the desirable layout by moving the fewest possible number of containers. The
problem is decomposed into three subproblems, namely a bay matching, a move
planning, and a task sequencing stage, where the latter two are similar to the
two stages that we introduce for The Slab Yard Planning and Crane Scheduling
Problem. Kim et al. [11] consider a similar container stacking problem. See
Steenken et al. [24] for at recent review of literature on container stacking.

2.3.2 Crane Scheduling

The Crane Scheduling problem considered here is an example of a Stacker Crane
Problem [6] with time windows and multiple cranes.

Parallel crane/hoist scheduling has been thoroughly treated in production
of electronics, especially in printed circuit board production. In circuit board
production, the hoists are used to move products between tanks, where the
plates are given various chemical treatments. In some layouts, the production
sequence is the same for all products. One consequence of this is that all hoist
moves are from one tank to the next. Such a layout is less interesting in our
context.

Leung and Zhang [14] introduce the first mixed-integer programming formu-
lation for finding optimal cyclic schedules for printed circuit board lines with
multiple hoists on a shared track, where the processing sequence may be differ-
ent than the location sequence of the tanks. The solution method itself is not
transferable, but several of the elements in the modeling phase are very relevant
to the crane scheduling problem of the slab yard. This includes the formulation
of collision avoidance constraints. Collision avoidance constraints are also de-
scribed in a dynamic hoist scheduling problem by Lamothe et al. [13] and in a
fixed sequence production by Che and Chu [3] and Leung et al. [15].

Rodošek and Wallace [19] present an integration of Constraint Logic Pro-
gramming and Mixed Integer Programming to solve hoist scheduling problems.
The proposed hybrid solver is able to solve several classes of previously unsolved
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hoist scheduling problems to optimality. Varnier et al. [28] also use constraint
programming to find optimal hoist schedules.

A simulation module is developed by Sun et al. [25] and used to test schedul-
ing strategies. The schedules are created in a greedy fashion, following the cho-
sen strategy and by simulation the strategy is evaluated. Skov [22] presents a
recent application in another large scale setting. Two methods are considered: a
simulation approach and a method based on the alternative graph formulation
(see e.g. [18] or [17]).

As it becomes apparent in the following sections we are in the scheduling
problem able to abstract from the practical context of the problem and consider
the problem as a parallel scheduling problem with sequence-dependent setup
times. Zhu and Wilhelm [30] present a recent literature review for this type of
scheduling problems.
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3 Modeling

3.1 Specific Problem Properties and Assumptions

To build an accurate model we need to give a more detailed problem description.

For the storage, we assume that slabs are always placed in stacks. All stacks
have a maximum height. Train wagons and the roller table are also modeled as
stacks. We assume that the train has a length and loading capabilities similar to
that of one row in the yard, and hence the train is modeled as a temporary row
as illustrated on Figure 1. The train is only at the yard for a certain amount of
time and hence all slabs must be moved away from the wagons within this time
window. The modeling of the roller table is a little more complex. In principle,
we have access to the roller table in multiple positions as shown on Figure 1
(shown as 8 stacks wide). The order of the slabs on the roller table is essential
and to ensure that the sequence of slabs leaving the roller table follow the order
in which they were brought there, we allow the cranes to bring slabs to only
the right-most of the roller table stacks. Further, as there is room for at most 8
slabs on the roller table, we may have to wait, whenever the roller table is full.
As time goes, the slabs are removed from the roller table in a first-in, first-out
manner. For each slab that is to be moved from the yard in a near future, we
have the production time, Aim Leave Time (ALT ). By looking forward 8 slabs
in the sequence, we know when there will be free room for a new slab on the
roller table, Earliest Leave Time (ELT ). Hence, we have a time window for
moving the specific slab to the roller table. Slabs that have not yet been given
an ALT (slabs which are not a part of the immediately following production)
instead have an Estimated Leave Time (EST ), a Batch Identification Number
(BID), and a Batch Sequence Number (BSQ). As slabs are processed in batches,
we know that all slabs with identical BIDs will leave the yard consecutively and
in the order dictated by the BSQs of those slabs. This information can be used
to prepare the yard layout for future production.

Each move consists of lift time, transportation time, and drop time. We
assume that the cranes move at constant velocity. Transportation time is equal
to the maximum of the vertical and the horizontal transportation time, as the
cranes are able to move horizontally concurrently with the crane trolley moving
in a vertical direction.

3.2 Objective

The objective of the schedule is to minimize maximum tardiness (delay). The
reason is as follows. Take all slabs leaving the slab yard within the scheduling
horizon. Whenever a slab is not moved to the roller table before its Aim Leave
Time, it causes a delay in the production. The production is not immediately
able to catch up on this delay and therefore subsequent slabs are needed later
in the production than we anticipated initially. Production is further delayed,
only if subsequent slabs are delayed even more. Hence, the most delayed slab
determines the quality of the solution.
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3.3 Decomposition

Already at an early point in the process it became clear that splitting the
problem in a planning stage and a scheduling stage is valuable. In the first part,
the planning stage, we make the plan of what we want to do within a given time
horizon, i.e. we determine which slabs to move and where to move them. These
decisions are not disturbed by specific details concerning the crane scheduling.
The idea is that better decisions are made when the problem is abstracted
enough to only consider the most important properties at first. Hence, it also
becomes easier to express what we expect from a good solution. The scheduling
stage takes care of all the details. It is important to respect all deadlines and
hence doing so is the main objective in the scheduling stage. In the scheduling
stage, all operations are allocated to cranes and the final order of execution
is determined. A feasible schedule consists of a sequence of Operations in the
form: Crane X picks up slab Y (at its current location) at time T and moves
it to position Z. Naturally, none of the operations are allowed to conflict with
other operations, neither within the schedule of one crane nor between the two
cranes.

We have seen a similar decomposition of problems in the literature (e.g. [7]
and [10]). Most of the related literature deals with either the yard planning
problem alone or the crane scheduling problem alone. Both of these points
strengthen the reasoning behind the decomposition. The decomposition and
the resulting model is described in Section 4 and 5.

3.4 A Simple Example

Before describing the details of the decomposition, we introduce an illustrative
example, to clarify the concepts and ideas that are introduced in the following
sections.

Example 1. We have a very simple slab yard with only one row. An overview
of the small yard is shown in Figure 2.

Railway track
(Incoming slabs)

Roller Table
(Outgoing slabs)

1 row x 4 columns

Figure 2: Overview of a very simple slab yard used in Example 1.

In this example, we have a scheduling horizon of [0, 22]. A side view of the
initial yard state is shown in Figure 3. Note that the vertical dimension is not
visible in the figure. However, in the figure, we are able to illustrate the exact
composition of each stack. The yard consists of a single arrival stack, Tar1, four
stacks in the main yard, T1, ..., T4, and one exit stack, Texit. In the yard are 14
slabs, S1, ..., S14.
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T1 T2 T3 T4

S9 (23, 2, 4)

S8 (23, 2, 3)

S1 [0, 10]

S6 (23, 2, 1)

S2 [11, 12]

S12 (33, 3, 3)

S11 (33, 3, 2)

S10 (33, 3, 1)S5 (15, 1, 3)

S4 (15, 1, 2)

S3 (15, 1, 1)

S7 (23, 2, 2)

TexitTar1

S13 (40, 4, 1)

S14 (40, 4, 2)

Figure 3: Slab Yard Crane Scheduling Problem: Side-view of a toy example.
Gray slabs are slabs that must leave the yard during the scheduling horizon.
Leaving slabs (gray): [ELT, ALT]. Non-leaving slabs (white): (EST, BID, BSQ)
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4 Modeling - The Yard Planning Problem

In the planning stage we generate a plan that takes us from the current state
of the yard to a final state for the horizon. In the final state, all slabs with
deadline within the horizon are brought to the roller table. At the same time,
the plan should leave the yard in the best possible condition for subsequent
planning periods.

To arrive at a feasible and superior plan within reasonable computational
time, the idea is to relax a number of the real world constraints in the planning
stage. Whatever is relaxed here is fixed in the scheduling stage so that the final
solution is always fully descriptive.

4.1 Operations

In the planning stage, we are going to consider a solution as defined by a number
of successive operations. An operation contains the following information:

Slab The slab to be transported.

Destination The stack where the slab is put on top.

Priority How important is it to include this operation in the final schedule.

A solution to the planning problem consists of a sequence of operations.
Many operations are related directly to slabs which are moved to the roller
table. Such operations are compulsory and hence have a priority of ∞. As is
described in Section 4.4, some operations are however optional and the priorities
give an ordering of their importance.

There are three strict requirements for feasibility of The Yard Planning Prob-
lem. Furthermore, we have a number of properties that we would also like to find
in a solution. Additional desired properties are described by separate functions.

4.2 Feasibility Criterion

For a planning solution to be feasible, we require the following:

• All slabs with deadline within the scheduling horizon are transported to
the exit stack in the correct order.

• All incoming slabs (i.e. slabs in the train wagon stacks) must be moved
to permanent stacks.

• All operations must be valid in the sequence. Only slabs on top of a stack
may be moved and only to stacks where the maximum stack height has
not been reached.

The two first criteria are easy to verify, when we know the set of incoming
slabs and the set of outgoing slabs. The third criterion can be verified by
updating a yard state as the sequence of operations is processed.
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4.3 Assessment Criteria

To assess the quality of a plan, we introduce a number of objectives. The
following properties characterize a good solution. The two first are directly
concerned with the plan, where the two last evaluate the end state of the yard.

• The number of operations is low.

• Operations do not span too far vertically. Even though the operations are
not allocated to cranes yet, we would like a solution to accommodate such
an allocation. Operations are faster and have less risk of conflicting, when
they span over as little vertical space as possible.

• Slabs that are to leave the yard soon (but after the current horizon) are
close to the exit stack.

• The number of false positions is low. Slabs in false positions are slabs that
are in the way of other slabs below them. A false position in our context
is a stochastic term, as many slabs only have an estimated leave time.
We are still able to use the notion of false positions even though it is not
deterministic. As described in Section 4.3.1, we introduce probabilities to
approximate the number of false positions.

All of the above points are formulated rather vaguely. To make it clear how
we intend to assess the different criteria, we introduce the evaluation functions
z1 − z4.

numoperations = the number of operations.
disttoexits = the distance from the stack of slab s to the exit stack

(Texit).
leavetimes = ALT (Aim Leave Time) of slab s - if ALT does not

exist use EST (Estimated Leave Time).
falseprobs = Probability of slab s being in a false position.
vertspana = Vertical span of operation a.

z1 = numoperations
z2 =

∑
s disttoexits(maxs′(leavetimes′)− leavetimes)

z3 =
∑
s falseprobs

z4 =
∑
a vertspana

In a solution method we want to minimize z1 − z4. One way could be to
create one multi-criterion objective function, where the four criteria are weighted
and summed to give one value for the quality of the solution. disttoexits is not
necessarily the geometric distance. It may be calculated so that vertical distance
weighs heavily, as movement in this direction is slower and as a large vertical
distance is causing more collision avoidance inconvenience in the scheduling
stage.

4.3.1 Calculating the Probability of False Positions

falseprobs is calculated in the following way. Define a set Bs of all slabs below
slab s in the yard state to be evaluated. For each slab b ∈ Bs we calculate

13



the probability pb of this slab leaving the yard before s. We assume that if
ALT is not defined, it follows the Gaussian distribution alt ∼ N(est, σ2), where
est is the Estimated Leave Time and σ is problem dependent. Φest,σ2 is the
corresponding cumulative distribution function. We have several cases:

alts and altb are both defined: pb = { 1 if altb < alts
0 otherwise

bids = bidb pb = { 1 if bsqb < bsqs
0 otherwise

bids 6= bidb and only alts is defined pb = Φestb,σ2(alts)
bids 6= bidb and only altb is defined pb = 1− Φests,σ2(altb)
bids 6= bidb and alts and altb not defined pb = Φestb−ests,2σ2(0)

In the last case, we have two different Gaussian distributions for the two
ALTs. We want to find the probability that altb ∼ N(estb, σ

2) is smaller than
alts ∼ N(ests, σ

2), which is the same as finding the probability of getting a
negative value from the difference between the two: N(estb, σ

2)−N(ests, σ
2) =

N(estb − ests, σ
2 + σ2). The cumulative distribution function of N(estb −

ests, 2σ
2) is hence used in the last case.

To find the total probability we accumulate the individual probabilities. As
some of the slabs in B may belong to the same batch, we may have a very high
correlation between the probabilities. For simplicity, we split in two cases. If
the slabs b1 and b2 have identical BID we say that these are totally correlated
and therefore we only use one of the probabilities pb1 and pb2 . We choose to
use max(pb1 , pb2). If two slabs belong to different batches we assume that the
probabilities are independent and both probabilities are used in the calculation.
Define the set B′s as the set of slabs included by this selection. Now falseprobs
is calculated as:

falseprobs = 1−
∏
b∈B′

s

(1− pb)

Example 1 (continued). Solution 1

A planning solution to Example 1 is seen in Figure 4. The solution consists
of a sequence of operations.

o1: (S6→T3) o2: (S1 → Texit) o3: (S2 → Texit) o4: (S14 → T2) o5: (S13 → T2)

Figure 4: Solution 1. A solution to the planning problem of Example 1.

The end state of the storage is fully determined by the planning solution
and is shown in Figure 5.

This solution may be evaluated by the objectives defined earlier. We assume
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T1 T2 T3 T4

S9 (23, 2, 4)

S8 (23, 2, 3)

S1 [0, 10]

S6 (23, 2, 1)

S2 [11, 12]

S12 (33, 3, 3)

S11 (33, 3, 2)

S10 (33, 3, 1)S5 (15, 1, 3)

S4 (15, 1, 2)

S3 (15, 1, 1)

S7 (23, 2, 2)

TexitTar1

S13 (40, 4, 1)

S14 (40, 4, 2)

Figure 5: End state for Solution 1 (Figure 4).

σ = 5, and hence σ2 = 25 and 2σ2 = 50 . We get:

z1 = numoperations = 5

z2 =
∑
s

disttoexits(max
s′

(leavetimes′)− leavetimes) = 539

z3 =
∑
s

falseprobs = 2.9335

z4 =
∑
a

vertspana = 1 + 3 + 1 + 2 + 2 = 9

z2 and z3 are calculated from the following terms:

Slab z2 =
∑

z3 =
∑

S3 4 · (40− 15) = 100 0
S4 4 · (40− 15) = 100 0
S5 4 · (40− 15) = 100 0
S6 2 · (40− 23) = 34 Φ10,50(0) = 0.0786
S7 4 · (40− 23) = 68 Φ−8,50(0) = 0.8711
S8 3 · (40− 23) = 51 0
S9 3 · (40− 23) = 51 0
S10 1 · (40− 33) = 7 0
S11 2 · (40− 33) = 14 0
S12 2 · (40− 33) = 14 0
S13 3 · (40− 40) = 0 Φ−17,50(0) = 0.9919
S14 3 · (40− 40) = 0 Φ−17,50(0) = 0.9919

Solution 2
We may alter the solution slightly by moving S13 and S14 to stack T4 instead

of T2. This gives the solution of Figure 6.

o1: (S6→T3) o2: (S1 → Texit) o3: (S2 → Texit) o4: (S14 → T4) o5: (S13 → T4)

Figure 6: Solution 2. Example of a solution to the planning problem of Example
1.
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T1 T2 T3 T4

S9 (23, 2, 4)

S8 (23, 2, 3)

S1 [0, 10]

S6 (23, 2, 1)

S2 [11, 12]

S12 (33, 3, 3)

S11 (33, 3, 2)

S10 (33, 3, 1)S5 (15, 1, 3)

S4 (15, 1, 2)

S3 (15, 1, 1)

S7 (23, 2, 2)

TexitTar1

S13 (40, 4, 1)

S14 (40, 4, 2)

Figure 7: End state for Solution 2 (Figure 6).

The end state is only slightly changed (Figure 7). This solution gets the
following evaluation:

z1 = numoperations = 5

z2 =
∑
s

disttoexits(max
s′

(leavetimes′)− leavetimes) = 539

z3 =
∑
s

falseprobs = 2.6275

z4 =
∑
a

vertspana = 1 + 3 + 1 + 4 + 4 = 13

We see that it is better in the respect of false positions. There is now a
greater chance for S13 and S14 for not needing a reshuffle. On the other hand,
z4 is worse as the two new operations vertically span wider.

Solution 3
A third possible solution is shown in Figure 8.

o1: (S6→T3) o2: (S1 → Texit) o3: (S2 → Texit)

o7: (S14 → T4) o8: (S13 → T4)

o4: (S7 → T2)

o5: (S6 → T2) o6: (S10 → T3)

Figure 8: Solution 3. Example of a solution to the planning problem of Example
1.

T1 T2 T3 T4

S9 (23, 2, 4)

S8 (23, 2, 3)

S1 [0, 10]

S6 (23, 2, 1)

S2 [11, 12]

S12 (33, 3, 3)

S11 (33, 3, 2)

S10 (33, 3, 1)

S5 (15, 1, 3)

S4 (15, 1, 2)

S3 (15, 1, 1) S7 (23, 2, 2)

TexitTar1

S13 (40, 4, 1)

S14 (40, 4, 2)

Figure 9: End state for Solution 3 (Figure 8).

This solution yields the end state of Figure 9. The end state has no possible
false positions, which is naturally a good feature. On the other hand we also
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need more operations in the solution. The solution is evaluated with:

z1 = numoperations = 8

z2 =
∑
s

disttoexits(max
s′

(leavetimes′)− leavetimes) = 546

z3 =
∑
s

falseprobs = 0

z4 =
∑
a

vertspana = 1 + 3 + 1 + 1 + 1 + 1 + 4 + 4 = 16

4.4 Operation Priority

So far we have assumed that all operations had to be included in the final
schedule. However that need not be the case. In Solution 3 of Example 1, we
saw an example, where a number of operations are added to enhance the final
state. Some of the operations could be disregarded if the schedule becomes too
tight. Figure 10 shows Solution 3 with priorities on the operations.

o1: (S6→T3)
∞ o2: (S1 → Texit)

∞ o3: (S2 → Texit)
∞ o4: (S7 → T2)

0.87

o5: (S6 → T2)
1 o6: (S10 → T3)

1.68 o7: (S14 → T4)
∞ o8: (S13 → T4)

∞

Figure 10: Solution 3. Example of a solution to the planning problem of Figure
3. The operations have priorities in the upper right corner.

The priorities of the operations in this example have been calculated as the
difference in z3 when the operation is omitted, compared to the end state where
all operations are included. This priority may also be a multi-criteria function
just as the objective function. As for the objective function that would require
us to weigh the various criteria against each other.

Example 2. Sometimes operations may not in themselves be of any value, but
they may be prerequisites of other optional operations. An example of this is
seen in Figure 11 + Figure 12. The operation for S11 has a priority of 0, but
must be included for S10 to be moved. Moving S10 adds a lot of value to the
solution.

T1 T2 T3 T4

S9 (23, 2, 4)

S8 (23, 2, 3)

S1 [0, 10]

S6 (23, 2, 1)

S2 [11, 12]

S12 (33, 3, 3)

S11 (33, 3, 2)

S10 (33, 3, 1)S5 (15, 1, 3)

S4 (15, 1, 2)

S3 (15, 1, 1)

S7 (23, 2, 2)

TexitTar1

S13 (40, 4, 1)

S14 (40, 4, 2)

Figure 11: Example where a no-value optional operation may be included.
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o1: (S6→T3)
∞ o2: (S1 → Texit)

∞ o3: (S2 → Texit)
∞ o4: (S7 → T2)

0.87

o5: (S6 → T2)
1 o7: (S10 → T3)

1.68 o8: (S14 → T4)
∞

o9: (S13 → T4)
∞

o6: (S11 → T3)
0

Figure 12: A solution to the problem of Figure 11.
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5 Modeling - The Crane Scheduling Problem

From a solution to the planning problem it is now the aim to generate a com-
plete and feasible schedule. First, the ordering of operations must be relaxed to
allow for parallel execution of operations. Most operations are locally indepen-
dent from each other. These independencies are detected and only meaningful
precedence constraints are kept for the scheduler. The crane scheduling prob-
lem is similar to a traditional parallel scheduling problem. We have a number
of operations that we need to allocate to two cranes (machines). Between op-
erations there are several temporal constraints. The anti-collision constraint is
an important temporal constraint added by the fact that we have two cranes
in operation. As the crane operation times are of a stochastic nature, we need
to introduce buffers, enforced by the temporal constraints. The buffers ensure
that no crane collision occurs, even with disturbances in operation time. For
major disturbances, the scheduling problem and possibly the whole planning
may have to be resolved.

5.1 Precedence Relations

To ensure that the end state of the schedule is identical with end state of the
planning solution, we establish a number of precedence relations. Using the
planning sequence as a starting point we ensure that, whenever relevant, the
order of the operations in the schedule stay the same as in the plan. There
are four cases where reordering operations may change the state of the storage
and may therefore cause direct or indirect infeasibility of the solution. In these
cases we do not allow reordering of the operations. See Figure 13 for a graphical
description of the four cases.

S2S1

1

2

S2

S1

1

2

S1

1 2

S2S1

2

1

Case 1 Case 2 Case 3 Case 4

Figure 13: Graphical description of the state preserving precedences.

Case 1 Moving slab S2 to a stack where slab S1 was moved away from earlier.
If the order of these two operations is changed, S2 is going to block S1 and
the solution becomes infeasible. There does not seem to be much sense in
changing the order of the two operations either, as it would require the
addition of another move of S2 before S1 is moved.

Case 2 Moving slab S1 and then slab S2, where S1 is on top of S2. Again,
changing the order of the two operations leads to infeasibility.
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Case 3 Moving the same slab twice. If the order of such two moves is changed,
the final destination of the slab may change. If the slab is moved again at
a later time the final destination, however, remains unchanged.

Case 4 Two slabs S1 and S2 are moved to the same stack. If the order is
changed it may lead to infeasibility later. If the two slabs are not moved
later, the end state is altered, but the solution remains feasible.

Example 1 (continued). Going back to the Example 1, we are now able to
determine the precedence relations of the plan. Using the four cases depicted
in Figure 13 we arrive at the precedences in Figure 14.

Case 1

Cas
e 4

Case 2

Case 2

Case 4

o1: (S6→T3) o2: (S1 → Texit) o3: (S2 → Texit) o4: (S14 → T2) o5: (S13 → T2)

o1: (S6→T3) o2: (S1 → Texit)

o3: (S2 → Texit)

o4: (S14 → T2) o5: (S13 → T2)

Figure 14: Precedence relations for Solution 1 (Figure 4).

5.2 Temporal Constraints

The precedence constraints described in the previous section ensure that the
end state of a parallel schedule is the same as the corresponding sequential
schedule. We still need to introduce temporal constraints to create a schedule
that is feasible with respect to the individual movement of a crane and to create
a schedule which is collision free.

5.2.1 Notation and Definitions

For two operations i and j we have four positions that have to be considered
and where temporal constraints may have to be added correspondingly. The
four positions are:

T origi Origin stack of operation i
T desti Destination stack of operation i

T origj Origin stack of operation j

T destj Destination stack of operation j

In the following, we say that i is before j, if i enters and leaves the conflict
zone between the two moves, before j. When two operations are allocated to the
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same crane, the crane needs to complete the first operation before initiating the
next. Hence, in this case if i is before j it means that operation i is completed
before operation j is initiated. However, if the operations are allocated to
different cranes they may have a small conflict zone. Hence, even if operation
i is before operation j, it does not necessarily mean that it is neither initiated
first nor completed first. It only means that it will be the first of the two moves
in any of their conflict positions. If two operations have no conflict zone, it is
irrelevant whether i is considered to be before j or vice versa.

In the following, we calculate the required gap between two operations i and
j when i is before j. The gap is defined as the amount of time required from
initiation of operation i to initiation of operation j. There are three different
types of gaps depending on the crane allocation of operations i and j.

gsij Required gap when i and j are allocated to the same crane (s).
glij Required gap when i is allocated to the left crane (l) and j to the

right crane.
grij Required gap when i is allocated to the right crane (r) and j to

the left crane.

The following generalized precedence constraint is imposed: ti + gij ≤ tj ,
where gij represents gsij , g

l
ij or grij according to the situation. To calculate the

gaps between operations, we need to introduce a number of parameters:

pi time required to pick up slab of operation i.
qi time required to drop off slab of operation i.
mTxTy

time required to move from stack Tx to stack Ty when crane is
laden.

eTxTy time required to move from stack Tx to stack Ty when crane is
empty.

b buffer time required between two cranes (see Section 5.2.3).

We assume that mTxTy
and eTxTy

are linear in the distance traveled. Both
measures are independent of the crane involved. In the following we will use the
assumption that the two cranes move at the same speed. Also, we assume that
a crane cannot move faster when laden than when it is empty.

Precedence relations are included in the generalized precedence constraints,
so the values of gsij , g

l
ij and grij hold all the information we need with respect

to precedence constraints. If precedence relations disallow the execution of
operation i before operation j, we set: gsij = glij = grij =∞.

5.2.2 Two Operations Allocated to the Same Crane

When two operations are allocated to the same crane, we need to make sure
that there is sufficient time to finish the first operation and to move to the start
position of the second operation. Consequently, we get:

gsij = pi +mT orig
i Tdest

i
+ qi + eTdest

i T orig
j
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See Figure 15 for a visualization of this. We use Time-Way Diagrams that
are frequently used when depicting solutions of crane scheduling problems, es-
pecially in printed circuit board production (see e.g. [16]). The horizontal and
vertical axes in the diagram represent the time and crane positions, respectively.

ti

ti + pi + mTi
orig Ti

dest + qi + eTi
dest Tj

orig

pi mTi
orig Ti

dest qi

tj

time

eTi
dest Tj

orig

Tdest
j

Tdest
i

Torig
j

Torig
i

horizontal stack position

Figure 15: Two operations executed sequentially by the same crane.

5.2.3 Two Operations Allocated to Separate Cranes

When two operations are allocated to two separate cranes, we need to make sure
that the cranes never collide. Further, as we are dealing with a highly stochastic
system, we introduce the concept of a buffer. The buffer denotes the amount of
time we require between two cranes traversing the same position. By introducing
a buffer we establish a certain degree of stability in the schedule. If one of the
cranes is delayed by an amount of time less than the buffer size the schedule is
still guaranteed to be feasible. The buffer size is set so that infeasibility only
occurs in rare cases. In the following, a violation of the prespecified buffer size
is considered to be a collision.

Left Crane Moves First In Table 1 we describe how to calculate glij . This
is the case, where the left crane is allocated to operation i and the right crane to
operation j. In case of conflict between the two operations, operation i enters
and leaves the conflict zone before operation j. There are five different cases to
be considered. These are shown in Table 1 and in Figures 16-20. (l2) and (l3)
may both apply at the same time and in that case glij is set equal to the larger of
the two values. To be strict, we may rewrite (l2)+(l3) as (l2b)+(l3b)+(l23), see
Table 2. The comparison of two stacks is done with respect to their horizontal
position, e.g. T origi < T origj means origin stack of operation i is to the left of
origin stack of operation j.,
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Precondition Gap

(l1) T origj ≤ T desti glij = pi +mT orig
i Tdest

i
+ qi + eTdest

i T orig
j

+ b

(l2) T destj ≤ T desti < T origj glij ≥ pi +mT orig
i Tdest

i
+ qi + b− (pj +mT orig

j Tdest
i

)

(l3) T desti < T origj ≤ T origi glij ≥ pi +mT orig
i T orig

j
+ b

(l4)
T desti < T destj

≤ T origi < T origj

glij = pi +mT orig
i Tdest

j
+ b− (pj +mT orig

j Tdest
j

)

(l5) Otherwise glij = −∞

Table 1: Calculation of the required gap between two operations. Operation i
is allocated to the left crane and operation j to the right crane. In conflict, i is
moved before j.
Otherwise means: T orig

j > T orig
i ∧ T orig

j > T dest
i ∧ T dest

j > T orig
i ∧ T dest

j > T dest
i

Precondition ⇒ Gap

(l2b)
T dest
j ≤ T dest

i < T orig
j ∧ T orig

i < T orig
j

⇒ glij = pi +m
T

orig
i Tdest

i
+ qi + b− (pj +m

T
orig
j Tdest

i
)

(l3b)
T dest
i < T orig

j ≤ T orig
i ∧ T dest

i < T dest
j

⇒ glij = pi +m
T

orig
i T

orig
j

+ b

(l23)

T dest
j ≤ T dest

i < T orig
j ≤ T orig

i

⇒ glij = max(pi +m
T

orig
i Tdest

i
+ qi + b

−(pj +m
T

orig
j Tdest

i
), pi +m

T
orig
i T

orig
j

+ b)

Table 2: We may rewrite (l2) + (l3) of Table 1 as (l2b) + (l3b) + (l23).

ti

ti + pi + mTi
orig Ti

dest + qi + eTi
dest Tj

orig + b

tj

time

pi qi b

eTi
dest Tj

orig

Tdest
j

Tdest
i

Torig
j

Torig
i

mTi
orig Ti

dest

horizontal stack position

Figure 16: (l1): T origj ≤ T desti ⇒ ti + pi +mT orig
i Tdest

i
+ qi + eTdest

i T orig
j

+ b ≤ tj
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ti

ti + pi + mTi
orig Ti

dest+ qi + b

pi

tj + pj + mTj
orig Ti

dest

time

mTi
orig Ti

dest qi b

tj

pj mTj
orig Ti

dest

Tdest
j

Tdest
i

Torig
j

Torig
i

horizontal stack position

Figure 17: (l2): T destj ≤ T desti < T origj ⇒ ti + pi + mT orig
i Tdest

i
+ qi + b ≤

tj + pj +mT orig
j Tdest

i

ti
ti + pi + mTi

orig Tj
orig + b

pi

mTi
orig Tj

orig

b

tj

time

Tdest
j

Tdest
i

Torig
j

Torig
i

horizontal stack position

Figure 18: (l3): T desti < T origj ≤ T origi ⇒ ti + pi +mT orig
i T orig

j
+ b ≤ tj
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ti

ti + pi + mTi
orig Tj

dest + b

pi mTi
orig Tj

dest b

tj + pj + mTj
orig Tj

dest

time

pj

tj

Tdest
j

Tdest
i

Torig
j

Torig
i

mTj
orig Tj

dest

horizontal stack position

Figure 19: (l4): T desti < T destj ≤ T origi < T origj ⇒ ti + pi + mT orig
i T orig

j
+ b ≤

tj + pj +mT orig
j Tdest

j

ti

time

tj

Tdest
j

Tdest
i

Torig
j

Torig
i

horizontal stack position

Figure 20: (l5): No direct temporal relations between operation i and operation
j.
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It should be clear from each of the five figures (Figure 16 - Figure 20) why
a violation of the constraint introduces a collision. However, what may not be
so clear is why these five cases are sufficient for avoiding all possible collisions.
We will prove this in the following. It is important to note that we are only
comparing two operations at a time. We may hence assume that the left crane
is moved away as soon as it finishes and in the same way we may assume that
the right crane is only moving into the overlapping area of the storage when
absolutely necessary. If all pairwise comparisons show no collisions the whole
schedule is collision-free.

Proposition 1. Assuming that a crane cannot move faster when laden than
when it is empty and that the two cranes move at the same speed. If the left
crane is allocated to operation i and the right crane to operation j, then (l1)−(l5)
are sufficient to avoid all collisions between the two cranes.

Proof. First, assume that T origj ≤ T desti . The situation is depicted in Figure
21. The horizontally hatched region can never be entered by either crane as we
assume the unladen movement speed to be at least as fast as the laden movement
speed. This is true for all values of T origi and T destj . The region is at least as
wide as the buffer because tj − (ti + pi + mT orig

i Tdest
i

+ qi + eTdest
i T orig

j
) ≥ b is

ensured by (l1). Hence, no collision can occur when T origj ≤ T desti .

Now, assume T origj > T desti . Figure 22 depicts such a situation. If T origj ≤
T origi the vertically hatched region exists and no crane can enter it, by the same
argument as in the former case. The same is true for the horizontally hatched
region when T destj ≤ T desti . The diagonally hatched region is always as wide
as the wider of the other two regions, because the lift time and the drop time
are both nonnegative. If only one of the regions exits the diagonally hatched
region is at as least as wide as that one. By (l2) and (l3) it always holds that
the regions are at least as wide as the buffer size (b).

The last case where we have not yet proven the two operations to be in-
ternally collision-free is for T origj > T desti ∧ T origj > T origi ∧ T destj > T desti . If

T destj > T origi the two operations have no overlap in position and hence they
are naturally collision-free. Therefore, we need to consider only the case where
T destj ≤ T origi . This implies: T desti < T destj ≤ T origi < T origj . The case is de-
picted in Figure 23. The hatched area is at least as wide as the buffer size,
because (l4) implies: tj + pj +mT orig

j Tdest
j
− (ti + pi +mT orig

i T orig
j

) ≥ b.

Right crane moves first In Table 3 it is shown how to calculate grij . The
calculation is analogue to the one, we have just gone through for left crane
before right crane. Operation i is now allocated to the right crane and j to the
left crane. Again, in case of any conflict between the two operations, operation
i is before operation j. All coordinates are just mirrored, which does not affect
any of the movement times and hence the calculations are very similar.

Figure 24 illustrates how (r1) is closely related to (l1). The only difference
is the precondition, which is mirrored. The proof of correctness is naturally
analogues with the previous case.
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ti tj

time

Tdest
j

Tdest
i

Torig
j

Torig
i

ti + pi + mTi
orig Ti

dest + qi + eTi
dest Tj

orig

horizontal stack position

Figure 21: Assume T origj ≤ T desti .

ti tj

time

ti + pi + mTi
orig Ti

dest + qi

tj + pj + mTj
orig Ti

dest

ti + pi + mTi
orig Tj

orig

Tdest
j

Tdest
i

Torig
j

Torig
i

horizontal stack position

Figure 22: Assume T origj > T desti .
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ti ti + pi + mTi
orig Tj

dest tj + pj + mTj
orig Tj

dest

time

Tdest
j

Tdest
i

Torig
j

Torig
i

horizontal stack position

Figure 23: Assume T desti < T destj ≤ T origi < T origj .

Precondition Gap

(r1) T origj ≥ T desti grij = pi +mT orig
i Tdest

i
+ qi + eTdest

i T orig
j

+ b

(r2) T destj ≥ T desti > T origj grij ≥ pi +mT orig
i Tdest

i
+ qi + b− (pj +mT orig

j Tdest
i

)

(r3) T desti > T origj ≥ T origi grij ≥ pi +mT orig
i T orig

j
+ b

(r4)
T desti > T destj

≥ T origi > T origj

grij = pi +mT orig
i Tdest

j
+ b− (pj +mT orig

j Tdest
j

)

(r5) Otherwise grij = −∞

Table 3: Calculation of the required gap between two operations. Operation i
is allocated to the right crane and operation j to the left crane. In conflict, i is
moved before j.
Otherwise means: T orig

j < T orig
i ∧ T orig

j < T dest
i ∧ T dest

j < T orig
i ∧ T dest

j < T dest
i

ti

ti + pi + mTi
orig Ti

dest + qi + eTi
dest Tj

orig + b

tj

time

pi mTi
orig Ti

dest qi b

eTdest
i Torig

j

Tdest
j

Tdest
i

Torig
j

Torig
i

horizontal stack position

Figure 24: The situation of Figure 16 mirrored vertically. Operation i is now
allocated to the right crane.
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Example 1 (continued). With these definitions we can illustrate how to cal-
culate the coefficients for the generalized precedence constraints of Example 1.
We have the three sets of coefficients: gsij , g

l
ij , and grij represented by the three

matrices of Figure 25. First, we use the precedence constraints of Figure 14
to fill in the ∞ values. This includes the entailed precedence constraints (e.g.
a1 → a2 ∧ a2 → a3 ⇒ a1 → a3). In this example, we have for all operations:
pi = 1, qi = 1, and b = 1. mTxTy

and eTxTy
are equal and are set to the

horizontal distance between the two stacks, cf. Figure 3 (e.g. mT1Texit
= 4).

Three examples of the calculations for the matrices are shown below (gra1a2 is
calculated from (r2)+(r3) and gra1a4 is calculated from (r4)).

gsa2a3 = pa2 +mT b
a2
T e
a2

+ qa2 + eT e
a2
T b
a3

= 1 + 3 + 1 + 1 = 6

gra1a2 = max{pa1 +mT b
a1
T e
a1

+ qa1 + b− (pa2 +mT b
a2
T e
a1

), pa1 +mT b
a1
T b
a2

+ b}

= max{1 + 1 + 1 + 1− (1 + 1), 1 + 0 + 1} = 2

gra1a4 = pa1 +mT b
a1
T e
a4

+ b− (pa4 +mT b
a4
T e
a4

) = 1 + 0 + 1− (1 + 2) = −1

gsij a1 a2 a3 a4 a5
a1 − 4 4 6 6
a2 ∞ − 6 10 10
a3 ∞ ∞ − 8 8
a4 ∞ ∞ 6 − 6
a5 ∞ ∞ 6 ∞ −

glij a1 a2 a3 a4 a5 grij a1 a2 a3 a4 a5
a1 − 5 −∞ 7 7 a1 − 2 5 −1 −1
a2 ∞ − 7 11 11 a2 ∞ − 4 −1 −1
a3 ∞ ∞ − 9 9 a3 ∞ ∞ − −∞ −∞
a4 ∞ ∞ −∞ − 7 a4 ∞ ∞ 7 − 2
a5 ∞ ∞ −∞ ∞ − a5 ∞ ∞ 7 ∞ −

Figure 25: Coeffecients of generalized precedence constraints for Example 1.

5.3 Objective Function

The objective function is, as it was described in Section 3.2, to minimize the
maximum tardiness of the schedule. At the same time, a good schedule includes
many optional operations. The sum of the priorities of the included optional
operations is used to evaluate this criterion. The objective function is two-
layered so that minimization of maximum tardiness is always prioritized over
the second objective. However, we still require all operations with priority ∞
(compulsory operations) to be in the schedule.
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5.4 Generic Formulation of the Crane Scheduling Problem

We are now able to abstracting fully from the real-world context and introduce
an explicit formulation of the Crane Scheduling Problem as a parallel scheduling
problem with generalized precedence constraints, non-zero release times, and
sequence-dependent setup time. Using the three-field notation of Graham et
al. [8] extended by Brucker et al. [2] and Allahverdi et al. [1] we denote the
problem R2|temp, rj , sijm|Tmax.

Sets:

O The set of operations.
C = {Cl, Cr} The two cranes, left crane and right crane respectively.

Decision variables:

xi ∈ B i ∈ O 1 if operation i is included in the schedule, 0 oth-
erwise.

ti ∈ Z i ∈ O Start time of operation i.
ci ∈ C i ∈ O The crane allocation of operation i.
yij ∈ B i ∈ O, j ∈ O 1 if the temporal relation between operation i and

operation j must be respected, 0 otherwise.
τ i ∈ Z i ∈ O Tardiness of operation i.

Parameters:

gsij ∈ Z i ∈ O, j ∈ O The required gap between operations i and j
when allocated to the same crane and i has pri-
ority in a conflict.

glij ∈ Z i ∈ O, j ∈ O The required gap between operations i and j
when allocated respectively to the left crane and
the right crane and i has priority in a conflict.

grij ∈ Z i ∈ O, j ∈ O The required gap between operations i and j
when allocated respectively to the right crane and
the left crane and i has priority in a conflict.

ri i ∈ O Release time of operation i.
di i ∈ O Due date of operation i.
pi i ∈ O Priority (weight) of operation i.
tmaxi i ∈ O Deadline of operation i.

The Constraint Programming Model:
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min max τa and secondly max
∑
i∈A

pixi (1)

τ i = max{0, ti − di} ∀i ∈ O (2)

xi = 1 ∧ xj = 1⇒ yij = 1 ∨ yji = 1 ∀i ∈ O,∀j ∈ O, i 6= j (3)

ti ≥ ri ∀i ∈ O (4)

ti ≤ tmaxi ∀i ∈ O (5)

yij = 1 ∧ ci = Cl ∧ cj = Cl ⇒ ti + gsij ≤ tj ∀i ∈ O,∀j ∈ O (6)

yij = 1 ∧ ci = Cr ∧ cj = Cr ⇒ ti + gsij ≤ tj ∀i ∈ O,∀j ∈ O (7)

yij = 1 ∧ ci = Cl ∧ cj = Cr ⇒ ti + glij ≤ tj ∀i ∈ O,∀j ∈ O (8)

yij = 1 ∧ ci = Cr ∧ cj = Cl ⇒ ti + grij ≤ tj ∀i ∈ O,∀j ∈ O (9)

pi =∞⇒ xi = 1 ∀i ∈ O (10)

xi ∈ B, ti ∈ Z, ci ∈ C, yij ∈ B, τ i ∈ Z ∀i ∈ O,∀j ∈ O (11)

The model (1)-(11) captures all the problem properties that have been de-
scribed in this section. (1) is the objective function, which has two criteria.
(2) sets the tardiness of each operation. (3) ensures that if both operations are
included in the schedule, then their internal precedence constraints must be re-
spected either in one direction or the other. Operations cannot be started before
their release date (4) and must be scheduled within the horizon (5). (6)-(9) con-
nect the decision on crane allocation with the correct precedence constraints.
Finally, (10) makes sure that all compulsory operations are included in the
schedule, and (11) gives the domains of the decision variables.

The parameter pi is handed down directly from the planning solution. ri
and di are calculated as ri = ELTi − duri and di = ALTi − duri, where duri is
the duration of an operation, i.e. duri = pi +mT orig

i Tdest
i

+ qi. g
s
ij , g

l
ij , and grij

are calculated as described in Section 5.2.

A feasible solution to this problem, is a feasible assignment of values to all
decision variables. We also use graphical representations of solutions. These are
presented in Section 5.5.

Example 1 (continued). We consider again Example 1. We have the 5 oper-
ations of Figure 4 which make up the set of operations O = {o1, o2, o3, o4, o5}.
We have all temporal relations from Figure 25. The duration of each operation
and subsequently the release date and due date of each operation is calculated
in the table. In this example the scheduling horizon is 0 ≤ ti ≤ 22:

Operation (i) duri ri di tmaxi pi
o1 3 0 19 19 ∞
o2 5 0 5 17 ∞
o3 3 8 9 19 ∞
o4 4 0 18 18 ∞
o5 4 0 18 18 ∞

An optimal solution is (Solution 1a):
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Operation (i) xi ti ci yio1 yio2 yio3 yio4 yio5 τ i
o1 1 0 Cr − 1 1 1 1 0
o2 1 2 Cl 0 − 1 1 1 0
o3 1 9 Cr 0 0 − 1 1 0
o4 1 12 Cl 0 0 0 − 1 0
o5 1 18 Cl 0 0 0 0 − 0

Another solution that we will get back to is (Solution 1b):

Operation (i) xi ti ci yio1 yio2 yio3 yio4 yio5 τ i
o1 1 0 Cr − 1 1 1 1 0
o2 1 4 Cr 0 − 1 1 1 0
o3 1 10 Cr 0 0 − 1 1 1
o4 1 3 Cl 0 0 0 − 1 0
o5 1 9 Cl 0 0 0 0 − 0

5.5 Alternative Representations of Solutions to the Crane
Scheduling Problem

5.5.1 Gantt Chart

Solution 1a of Example 1 is vizualized in a Gantt chart in Figure 26. The Gantt
chart does not depict the value of neither yij-variables nor τ i-variables.

10

Right Crane

Left Crane

o1: (S6→T3)

o2: (S1 → Texit)

o3: (S2 → Texit)

o4: (S14 → T2) o5: (S13 → T2)

2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22

Figure 26: Gantt chart of optimal solution to the scheduling problem of Example
1.

Solution 1b is illustrated in Figure 27. The solution is more compact and
may actually look more attractive. However, the due date of o3 is violated and
hence this solution is worse than Solution 1a.

10

Right Crane

Left Crane

o1: (S6→T3) o2: (S1 → Texit) o3: (S2 → Texit)

o4: (S14 → T2) o5: (S13 → T2)

2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22

Figure 27: Gantt chart of another solution to the scheduling problem of Example
1.
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5.5.2 A List of Operations with Crane Allocations

The nature of the problem makes the transitive closure valid for all choices of
priority on conflicting operations, i.e. if operation i is before j (with respect to
conflicts) and j is before k then we may assume that i is before k (yij = 1∧yjk =
1 ⇒ yik = 1). We find this propertyalso in lists and hence we may use a list
to represent all sequencing decisions. If further we state the crane allocation of
each operation, ci, and if we assume that all operations are scheduled at the
earliest possible time according to the given sequence and the crane allocations,
then the list representation is sufficient to explicitly represent the solution. The
earliest possible times are found in polynomial time by running through the list.
For every operation i the generalized precedence constraints to all preceding
operations are checked and the most limiting of those determine the starting
time of operation i. We adapt the graphical representation from the planning
solutions but add information on the crane allocation. Further, we leave out the
operations which are not included in the schedule (where xi = 0). We still lack
information on ti and τ i and therefore the objective function of the solution is
not immediately available, but can be calculated by running through the list.
The two solutions from before are represented as seen on Figure 28 and Figure
29.

o1: (S6→T3) R o2: (S1 → Texit) L o3: (S2 → Texit) R o4: (S14 → T2) L o5: (S13 → T2) L

Figure 28: Alternative graphical representation of solution 1a of Example 1.

o1: (S6→T3) R o2: (S1 → Texit) R o3: (S2 → Texit) R o4: (S14 → T2) L o5: (S13 → T2) L

Figure 29: Alternative graphical representation of solution 1b of Example 1.

The advantage of this representation is realized from the two figures (Figure
28 and Figure 29). The only difference between the two solutions is the change
in crane allocation of operation o2. All other variable changes (that were ob-
served on Figure 27) can be interpreted as consequences of this variable change.
Another nice feature of the list representation is that any permutation that re-
spects all precedence relations is also feasible with respect to (2)-(4) + (6)-(11).
Only the scheduling horizon is possibly violated.

5.5.3 Extended Alternative Graph Formulation of The Crane Schedul-
ing Problem

We now introduce an extended Alternative Graph Formulation of the Crane
Scheduling Problem. The Alternative Graph Formulation was first introduced
by Mascis and Pacciarelli [17] and is based on a generalization of the disjunctive
graph, introduced by Roy and Sussman [20]. In the alternative graph, the
longest path through the graph represents a feasible schedule. The graph is a
task-on-nodes representation, where each operation is represented by a node and
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arcs between nodes represent transitions from one operation to the next. The
graph may include alternative arc pairs. From an alternative arc pair, one of
the arcs is omitted whereas the other arc stays in the graph. The optimization
problem is to select the alternative arcs so that some criterion is optimized. The
longest path from an initial node to each node, determines the start time of the
operation represented by that node. In our case, the objective hence is to create
longest paths that lead to a minimum violation of due dates.

In The Crane Scheduling Problem, we have release dates and due dates of
operations. These have to be included in the Alternative Graph Formulation,
and hence we get an Alternative Graph Formulation with Time Windows. The
objective is to violate the due dates of the nodes as little as possible. We have
a number of operations which are optional. To include this property in the
graph, we introduce the notion of alternative nodes. These are nodes which
may be omitted from the graph at a certain cost (equivalent to receiving a prize
for inclusion in the graph). This is the Alternative Graph Formulation with
Time Windows and Optional Nodes or just the Extended Alternative Graph
Formulation. In Figure 30 the relation between two operations are shown in the
alternative graph formulation. The two operations are represented by 4 nodes
each (L1, L2, R1, R2). The time windows and node weights are not shown.
Alternative arcs are dashed and the alternative arc pairs are visualized by the
gray circles connected by dotted lines.

R1 R2

L1 L2

o1

R1 R2

L1 L2

o2

gro2o1

gso2o1

gso1o2

gro1o2

gso1o2

glo1o2

gso2o1

glo2o1

0

0

0

0

Figure 30: Relation between two operations in the Alternative Graph Formula-
tion.

The Alternative Graph Formulation of Figure 30 has 6 alternative arc pairs
and hence 6 decisions to be made. 3 of those are, however, irrelevant if we make
the decisions in a certain order. The two internal arc pairs, from R1 to R2 and
from L1 to L2 in each node, represent the decision on crane allocation. When
we have made a decision on the two pairs, the graph may look like Figure 31.

Only the internal arcs have end points in R2 and L2 of any node, and hence
a number of arcs become irrelevant with respect to the longest path. We are
able to reduce the graph significantly to the graph of Figure 32.
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0

0

R1 R2

L1 L2

o1

R1 R2

L1 L2

o2

gro2o1

gso2o1

gso1o2

gro1o2

gso1o2

glo1o2

gso2o1

glo2o1

Figure 31: Relation between two operations in the Alternative Graph Formula-
tion with given crane allocation.

R1 R2

L1 L2

o1

R1 R2

L1 L2

o2

gro2o1

glo1o2

Figure 32: Relation between two operations in the Alternative Graph Formula-
tion with given crane allocation after reduction.

We may also reinterpret the crane allocation decision as being a decision
on alternative nodes instead of alternative arcs. Deviating slightly from the
Alternative Graph Formulation, however, the idea is the same, and we are now
able to illustrate each operation as two alternative nodes and we have the simple
graph of Figure 33(a).

When the precedence decision has been made on the two operations, we are
left with only one arc as shown in Figure 33(b).

As it is clear from Figure 30, the alternative graph representation of The
Crane Scheduling Problem is not appropriate for illustrating examples with
more than a few nodes. However, the graph of Figure 33(b) is simple and may
be suitable for graphical representation of a solution, as it shows information
on the precedence relations. Next, we use this representation for Example 1.

Example 1 (continued). Figure 34 depicts Solution 1a. The longest path
from an initial node to all other nodes is highlighted and the earliest possible
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o1
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L

o2

gro2o1

glo1o2

L

o1

R
o2

glo1o2

(a) (b)

Figure 33: (a) Relation between two operations in the Alternative Graph For-
mulation with given crane allocation and with alternative node representation.
(b) Only one arc is left when all decisions have been made.

starting time for each operation is easily calculated as the length of this path.
An arc from the initial node to other nodes may be introduced to respect the
release dates. This is illustrated for operation o3. The nature of the problem
ensures that for operations scheduled on the same crane, the operation immedi-
ately preceding another operation is always the most restrictive one, and other
relations on the same crane may hence be disregarded. This is illustrated in
Figure 34 by a dotted line from the node of o2 to the node of o5.

R

o1

L

o2

R

L L

o3 o4 o5

2
‐1

‐1

4

10
6

7

‐∞‐∞

10

[0,19] [0,5] [8,9] [0,18] [0,18][ri,di]
pi ∞ ∞ ∞ ∞ ∞

0
0

8

0 2 9 12 18ti

Figure 34: Solution 1a depicted by a reduced Alternative Graph.

Likewise we depict Solution 1b in Figure 35.
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Figure 35: Solution 1b depicted by a reduced Alternative Graph.
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5.5.4 Time-Way Diagrams

Yet another way of visualizing a solution graphically is by using Time-Way
Diagrams as the ones we used in Section 5.2. Solid lines indicate that the crane
is processing an operation, whereas dashed lines indicate that the crane is either
waiting or moving to the start position of the next operation. Solution 1a and
Solution 1b are depicted in Figure 36 and Figure 37, respectively.
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-1
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Figure 36: Time-Way Diagram of Solution 1a.
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Figure 37: Time-Way Diagram of Solution 1b.
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6 Alternative formulations

The proposed model is just one out of several promising ways of modeling the
problem at hand. In the following, we describe a number of variations of the
model, along with the pros and cons of each.

6.1 Two-stage planning

We may split the planning phase into two stages. Again, we want to separate
the important parts of decision making, so that decision can be made with the
correct abstraction level. Here the idea is to split the problem into:

1. A decision on end position of a slabs, regardless of the means of getting
them there.

2. Creating a planning solution with all necessary specifications, i.e. explic-
itly list all operations.

The first part is an abstraction of the planning problem described in Section
4. We present a MIP-model of the problem. In the model, we determine the
end stack of each slab. For most slabs, this is naturally the same as the initial
stack for the particular scheduling horizon. In the model, we do not include
probabilities in the calculation of false positions, but we use the simplification,
where a slab is in a false position, if it is on top of another slab with earlier due
date.

Sets:

i ∈ I Stacks
j ∈ J Slabs

Jdue ⊆ J Slabs with a due date in the current scheduling horizon

Parameters:
cij = estimated cost of moving slab j to stack i.

ontopof(j, j′) =

{
1 Slab j is on top of slab j′ and must hence be moved if j′ is to be moved.
0 Otherwise

i0j = Initial stack of slab j.

jreshuffleij = The lowest slab in stack i with a due date before slab j.

α = Cost of one false position.
d = Maximum height of the stacks.

Variables:

xij =

{
1 Stack i contains slab j by the end of the day
0 Otherwise

mj =

{
1 Slab j is moved
0 Otherwise

ĝj =

{
1 A slab with an earlier due date is found below slab j by the end of the day
0 Otherwise

The model:
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min
∑
j

∑
i

cjixji + α
∑
j

ĝj (12)

∑
i

xji = 1 ∀j (13)∑
j

xji ≤ d ∀i (14)

mj = 1− xji0j ∀j (15)

mj ≥ mj′ ∀j, j′|ontopof(j, j′) (16)

ĝj +mjreshuffle
ij

≥ xji ∀j, i|jreshuffleij 6= ∅ (17)

xjiexit = 1 ∀j ∈ Jdue (18)

xjitrain = 0 ∀j (19)

The objective function (12) contains two terms. The first terms is related
to the cost of moving a slab to a stack. Typically, cji0j = 0, so it does not

cost anything to leaving the slab in its current stack. We have the following
constraints. All slabs must have exactly one end stack (13). There is a maximum
height for a stack (14). If a slab leaves its original stack it counts as a move
and the mj-variable is updated accordingly (15). If a slab is moved, all slabs
on top must be moved as well (16). For most end positions of a slab, we have
to check if the slab ends up in a false position (17). Either the slab is in a false
position (ĝj = 1) or all slabs that could cause a false position have been moved
from that stack (mjreshuffle

ij
= 1). Finally, we fix some of the decision variables.

All due slabs must be moved to the roller table (18) and incoming slabs must
be moved to the yard (19).

The model presented is a slight relaxation of what was described above.
When a slab is moved, we do not keep track of its depth in the new stack, and
hence we lose information on the internal ordering in the new stack. Modeling
this information has also been tried, and it introduces a large number of new
decision variables which makes the model less suitable for practical applications.
The model can be solved by standard MIP-solvers, but as the practical problems
are usually very large, metaheuristics may be better suited for the purpose.

The planning part has two stages, meaning that from a solution to (12)-(19)
we need to create a planning solution with the same information level as was
described in Section 4. For this we use knowledge from the artificial intelligence
field, where a well known planning problem is found in the Blocks World (e.g.
[23]). In Blocks World, an initial state and a goal state is given and the problem
is to find the minimum number of stack operations (moves) that takes us from
the initial to the goal state. In Blocks World, we are allowed to lift only the
topmost block of a stack and moved blocks are always put on top of their new
stack. This general problem resembles very well what we need in the second
part of the planning process.

6.2 Planning-scheduling feedback

Another possibility that was considered in the modeling process, was to create
a two-stage method with feedback between the two parts. The idea is to use
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knowledge from the schedules when solving the planning problem. E.g., after
generating an initial planning solution, a schedule is created with some apparent
bottlenecks. This may be repaired in a new plan, by altering certain decisions.
We may run several planning-scheduling iterations and hopefully end up with
planning solutions that facilitate the generation of a good schedule.

A special case of the planning-scheduling feedback idea is to aim for a very
large number of feedback iterations by e.g. not including priorities for optional
operations. We may include only a subset of the optional operations in the
planning solution and by making the optional operations mandatory, we lower
the required solution time in the scheduler. We may even fix the sequence
of moves completely, i.e. fix all yij variables of the formulation (1)-(9). The
scheduler has much less flexibility and consequently it gets harder to find good
solutions. On the other hand, the solution process is very fast, and we may
run thousands of iterations, where the planning module is responsible for all
the important decisions and the scheduling module is reduced to an evaluation
module, where the proposed solution from the planning module is assessed.

6.3 Scheduling: Allow slight planning modifications

Yet another possible extension to the method is to allow slight planning modifi-
cations in the scheduler. There may be some operations, which are particularly
difficult to schedule, and since we actually generated the operations ourselves
in the planning module, we are also allowed to change them, as long as the final
plan is not impaired significantly.

42



7 Solution Method

A solution method is implemented based on the presented model. In the follow-
ing, we present two greedy methods, one for the planning problem and one for
the scheduling problem. The two methods are straight-forward in their imple-
mentation and more sophisticated methods will evidently enhance performance.
The simple methods are still able to generate results, and hence we will use
them to assess the value of the model.

7.1 Planning

The planning method will give as output a solution as described in Section
4. When the final schedule is created in the second stage of the method, all
precedence constraints are respected, and hence the sequence of operations that
we specify in the planning solution fully determines the state of the yard. As
a result, we are able to update the yard state, as the operations are added to
the solution. For any partial solution, we therefore have a current yard state.
When we refer to location of slabs, it is with respect to the current state of the
yard.

The implemented method is divided into three steps:

• Generation of operations for slabs that must leave the yard during the
scheduling horizon (exit-slabs).

• Generation of operations for incoming slabs (arrival-slabs).

• Generation of other operations.

In this solution method, we treat the three steps separately, one by one.

7.1.1 Leaving slabs

First, we generate a list of operations for the slabs that must leave the yard
during the scheduling horizon. We already have their Aim Leave Time and
hence we have a predetermined ordering of these operations. The slabs may not
be on top of their stacks and hence we may need to generate reshuffle operations
also, where the slabs on top are moved to other stacks.

For reshuffle operations we must specify a destination stack. The destination
stack is chosen from a number of criteria. First, we disallow movement to stacks
still containing exit-slabs. Moving a slab to such a stack will trigger another
reshuffle-operation later, where the same slab has to be reshuffle again. This
should be avoided if possible. Further, when choosing a destination stack, we
look for stacks within a short range. This limits the duration of the operation
and at the same time decreases the risk of crane collision involving this oper-
ation. We also look for stacks where the slab has a small chance of being in a
new false position (and hence in need of another reshuffle in a future plan).

7.1.2 Incoming slabs

When all exit-operations have been generated, we proceed with the arrival-
operations. For each slab on the railway cars, we generate an operation that
will bring the slab to the yard. As each slab leaves the yard along with the rest
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of the slabs of its batch, we try to group the slabs by batch id in the yard. When
choosing a destination for these slabs we also use the considerations listed for
reshuffle-operations in the previous section. It is particularly important to keep
the sum of false position probabilities low.

All arrival-operations are sequenced after the exit-operations. This does not
necessarily mean that they are also scheduled later than all arrival-operations.
The reason why the operations are sequence in this way, in the planning solution,
is that all stacks involved in both exit- and arrival-operations, will have the exit-
operation executing first, which is obviously a desirable feature. To introduce
flexibility in the scheduler, we try to select destination stacks that do not have
any outgoing exit-operations.

The order of arrival-operations is partially predetermined. We have to move
the slabs from top to bottom from the stacks of the railway cars. We do,
however, have a choice between the stacks in the Railway Cars.

7.1.3 Other operations

Last, we generate a number of operations that are not mandatory for feasibility
of schedules, but that will increase the quality of the solution by reducing z2
and z3 (described in Section 4.3), i.e. the operations will reduce the total false
position probability and may also move slabs with an upcoming due date closer
to the exit stack. These operations are not necessarily sequenced last in the
planning solution. As the operations are generated, different positions in the
sequence of operations are considered, and the most suitable position is chosen.

Example 1 (continued). To illustrate the effect of each of the three steps, we
again consider Example 1, and show how Solution 3 is generated. The three
steps and the (partial) planning solution for each step is depicted in Figure 38.

o1: (S6→T3)
∞ o2: (S1 → Texit)

∞ o3: (S2 → Texit)
∞ o7: (S14 → T4)

∞

o8: (S13 → T4)
∞

o1: (S6→T3)
∞ o2: (S1 → Texit)

∞ o3: (S2 → Texit)
∞

o1: (S6→T3)
∞ o2: (S1 → Texit)

∞ o3: (S2 → Texit)
∞ o4: (S7 → T2)

0.87

o5: (S6 → T2)
1 o6: (S10 → T3)

1.68 o7: (S14 → T4)
∞ o8: (S13 → T4)

∞

Step 3: Other actions

Step 1: Leaving slabs

Step 2: Incoming slabs

Figure 38: Generation of Solution 3 of Example 1: The three steps and the
(partial) planning solution for each step.
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7.2 Scheduling

Given a planning solution, we need to schedule the operations on the two cranes.
The generic formulation is given in Section 5.4. In the following we describe a
greedy heuristic that the current implemented is based on.

The heuristic is very simple. We process the operations in the order given in
the planning solution. For each operation, the earliest possible time of initiation
is calculated for both cranes. The operation is allocated to the crane that is
able to initiate first. As we have release times for operations, there may still be
some waiting time from the preceding operation to the current one. Therefore,
we check if we are able to squeeze in any of the unscheduled operations. The
operations with high priority are preferred over the others. When squeezing in
operations like this, we need to make sure that all precedence constraints are
respected.

7.2.1 Variations

The proposed heuristic is very simple and has some apparent flaws. The most
apparent issue is that it is a greedy heuristic and therefore has no ”foresight”,
so the operations may be distributed evenly on the two cranes in the beginning
of the schedule but in the end, all operations tend to involve the same part of
the yard, and hence only one of the cranes is used efficiently. The issue is visible
in the time-way diagram of Figure 40.

This issue could be addressed by the implementation of a local search pro-
cedure, to enhance the results of a greedy construction heuristic. As a starting
point, a steepest descent algorithm would probably increase quality significantly.
Adding metaheuristic features to such a search is likely to enhance the solution
even further. Preliminary test results from a metaheuristic show promising
results.

Another possibility is to use standardized scheduling tools. One such tech-
nique uses the model directly in a Constraint Programming solver. The quality
of solution from such an approach should also be evaluated.
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8 Test results

In the following, we present the preliminary test results. The results are based
on a number of assumptions and on simulated data. First, we present a setup for
simulating manual planning as it currently conducted in practice. By comparing
the solutions of the method presented in this paper to the solutions of such a
simulation, we are able to assess the value of the proposed method.

8.1 Simulation of Manual Behavior

To evaluate the quality of the solutions, for each instance, we generate a refer-
ence solution that represents the solution obtainable by manual planning. We
try to imitate the behavior of the cranes when they are under the control of the
individual crane operator.

We model the manual behavior as follows.

• Exit-slabs are dealt with as we approach their deadline. We only have
knowledge of the next slab leaving the yard. When that slab is on the
roller table, we consider how to move the next slab in the exit sequence.

• If slabs are on top of the exit slabs, we deal with it as it happens, i.e. we
do not predict this earlier during the day.

• If a crane has free time in between moves, it will use the time to move
slabs from the train wagons to the yard.

• When moving slabs to the yard or when moving slabs around in the yard,
we equip the crane operators with a two hour no-block foresight, i.e. they
will not choose a stack with slabs that have deadlines within the following
two hours.

• In the schedules described earlier, we needed a buffer between cranes, to
make the schedules more robust. The buffer is disregarded in this part,
as we are not really creating a schedule, rather are we simulating manual
planning/scheduling, and hence the operations are to be interpreted as
happening in real time and not as a pre-made schedule to be followed.

8.2 Overview: Structured Test

In the following we run a number of simulations. The average yard throughput is
fixed in each of the test instances. The throughput is increased in the hard test
instances, to check the effect on the quality of the schedules. The simulations
are kept as close as possible to the real world conditions. We need to assume /
decide a number of things for the simulation. The most important simulation
settings are listed below.

• We assume that the requested throughput of the yard for each day is
randomly drawn from a Gaussian distribution.

• In the same way, we assume that the production time for each slab is drawn
from a Gaussian distribution. The mean of this distribution matches the
throughput, so that the production actually calls for the correct number
of slabs on average.
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Two-Stage Manual
Slabs Avg Avg Avg Max Avg Avg Avg Max
per moves move deadline deadline moves move deadline deadline
day per slab duration violation violation per slab duration violation violation
400 2.37 43.91 0.01 1.66 2.61 46.55 0.24 11.78
450 2.39 43.76 0.02 1.35 2.60 46.28 0.09 8.52
500 2.37 43.84 0.02 1.86 2.61 46.68 5.53 61.13
550 2.38 43.80 0.02 1.86 2.59 46.50 2.94 74.64
600 2.41 43.84 1.08 10.54 2.61 46.62 26.69 234.82
650 2.39 43.91 0.40 7.28 2.58 46.63 27.30 253.55
700 2.38 43.91 0.38 7.51 2.59 46.60 139.64 543.17
750 2.38 43.90 0.72 16.50 2.68 46.61 878.07 1883.29
800 2.39 44.00 2.59 44.61 2.90 46.80 3092.32 4840.96
850 2.40 43.92 1.68 43.33 3.14 46.75 5202.69 7874.27
900 2.41 43.88 13.72 135.50 3.30 46.45 7930.29 13108.21
950 2.39 43.95 47.02 270.68 3.34 46.04 9204.57 15641.77

1000 2.44 43.93 118.06 490.39 3.43 45.72 10704.42 18626.53

Table 4: Comparison of test results from the Two-Stage method and simulation
of manual planning. Each value is an average over 10 identical runs. Deadline
violations and durations are measured in seconds.

• Furthermore, we also have a through time for a slab, which is the amount
of time from arrival to the yard to the due date of that slab. We assume
that also the through time is drawn from a Gaussian distribution. The
through time directly influences the number of slabs in the yard.

• Finally, batch size and number of slabs on a train are also assumed to be
drawn from Gaussian distributions.

We have the following simulation parameters and their corresponding values
in our simulation:

Parameter Mean (µ) Std dev (σ)
SlabsPerDay Set in test µ

10
ThroughT ime µ( 2000

SlabsPerDay ) · (24 · 60 · 60)−1 µ
5

BatchSize 20 5
SlabsOnTrain 200 20
Buffer 120 -

In the following table we summarize the results for the preliminary test.
Each value is an average over 10 identical runs.

From Table 4 it is clear that the proposed method provides significantly
better results than the simulation of manual planning. In the table we have
shown four performance measures. For each method, the first column gives the
average number of times a slab is moved before it leaves the yard. As slabs in
our setup are never transferred directly from train wagons to the exit belt, the
minimum number of moves of each slab is 2. This measure illustrates how well
the moves are planned, i.e. a low number indicates that the slabs are seldom in
the way of others. From the tests, we see a significant difference between the two
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methods, especially for the harder problems, where the Two-Stage algorithm on
average uses approximately one move less per slab. Also the duration of each
move is of interest and is shown in the second column. The difference between
the two methods is not remarkable, even though the Two-Stage algorithm is a
few seconds faster in all cases. The duration seems stable over the set of test
instances.

The two last columns report on deadline violations. The rightmost of the
columns gives the maximum deadline violation, which is, as stated earlier, the
main objective considered in this work. The first of the two columns reports
on the average violations. This is interesting if we assume that the following
production is able to catch up on the delays we may have caused. A low aver-
age deadline violation is equivalent to a low sum of violations, which is another
objective often used for scheduling problems in the literature. For both objec-
tives, we see that the Two-Stage algorithm clearly outperforms the other. The
manual planning has severe problems in the hard instances, where the results of
the Two-Stage method are still satisfactory. The figures for manual simulation
may seem very large, but it is noted that the numbers should only be used for
comparison with other similar tests. As soon as a method is unable to keep up
with the rate at which slabs enter the yard, it will lead to larger and larger vio-
lations as we let the simulation run. In each run of these tests, the two methods
naturally span over the same production plan.

Both methods are able to produce results in less than a second. Such com-
putation times are insignificant in these settings and are therefore not compared
here.

8.3 Details and comments

The test results of Section 8.2 call for a detailed analysis of the hard instances
and the corresponding schedules. A significant advantage of a structured plan-
ning approach is that we are able to identify weaknesses and repair the causes
of those.

In Figure 39 and Figure 40 we show two Time/Way diagrams for the same
planning problem. The schedule of Figure 39 is the result of a simulation of
manual behavior, whereas Figure 40 depicts the schedule of the Two-Stage al-
gorithm.

From Figure 39 and Figure 40 we see a significant difference between the two
methods. The scheduling algorithm of the Two-Stage approach is able to look
far ahead in the schedule and the effect is visible in Figure 40. The schedule is
clearly separated in two parts, where each crane is able to handle operations in
its own part of the yard. Notice that the exit stack is in horizontal position 7
and hence numerous operations end in that particular column.

To evaluate the quality of the schedules, we may also inspect how other
problem values vary over time. In Figure 41 we illustrate the change of different
values over time for the schedule of Figure 39. In the two charts from the top,
all exit moves are included. In the topmost chart, the time of initiation of each
exit move. Each such operation has a time window which is also depicted in
the plot. The second chart depicts the same information in a slightly different
way. The chart shows the time slack of each operation, i.e. the time distance
from the scheduled initiation of an operation to the latest point in time, where
delays are avoided. Finally, the third chart illustrates, over time, the remaining
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Figure 39: Schedule created by simulation of manual behavior.

-4

-3

-2

-1

0

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

0 2000

4000

6000

8000

10000

12000

Active 
cranes

Figure 40: Schedule created by the Two-Stage algorithm.

number of moves of different kinds. The exit moves are the same as depicted
in the two other charts. The moves referred to as ”Other Moves” are moves
which either move slabs which are in the way, or moves which are carried out
in order to enhance the state of yard. Figure 42 is the corresponding figure for
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the schedule of Figure 40.
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Figure 41: Assessment of schedule by illustration of various problem values over
time for schedule of Figure 39.
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Figure 42: Assessment of schedule by illustration of various problem values over
time for schedule of Figure 40.
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9 Conclusions

The Slab Yard Planning and Crane Scheduling Problem has been modeled in a
novel way that facilitates a beneficial and at the same time transparent optimiza-
tion. The model is generic enough to capture several variations of the problem.
The solution methods adapt to variations of the problem, correspondingly.

From the test results it is clear that the model facilitates an algorithm that
is capable of providing solutions, which are superior to the ones achievable by
manual planning. The tests are, however, preliminary and based on simulations
which rely on a number of assumptions.

The model in itself is a valuable tool for analyzing proposed schedules in a
number of various ways. In short term planning, several graphical representa-
tions allow for a thorough quality assessment. In long term planning, several
optimization criteria have been introduced, and these criteria can be evaluated
also for schedules which have been created by other means than the proposed
methods.

9.1 Pros and cons of the chosen model

In the paper we have introduced a model that, by splitting The Slab Yard
Planning and Crane Scheduling Problem in two stages, facilitate a solution
procedure that is clear in the formulation of objectives and is able to generate
superior schedules by targeting the problem in two different abstraction levels.
We will shortly discuss the conclusions that we are able to draw on the value of
the model, based on the findings presented in this paper.

The chosen model needs no feedback loop between the planning and schedul-
ing procedures. This means that we are able to find solutions to problems of
a realistic size in less than a second. A strict time limit may be a part of the
requirement of a potential user, and hence it is important that we are able
to comply with such requirements. Another advantage of not having a feed-
back loop is that the scheduler has time enough to find near-optimal solutions.
This comes at a cost, however. The schedules are near-optimal with respect
to the given planning solution. The planning solution has not been adapted
to any of the challenges discovered in the scheduling stage. Planning decisions
are made on a high abstraction level and hence they are, hopefully, suitable
for high quality in long term planning. In short term planning, the plan may
have some shortcomings. The scheduler will circumvent such shortcomings as
much as possible. It may be advantageous to allow the scheduler to make small
alternations to the plan, in order to optimize the short term planning further.

9.2 Future work

Future work should be aimed at real-world applications. So far, the experimental
conclusions are based on simulations and artificially generated data. The true
value of this work is in the possible applications. It will be interesting to see how
well real problem data fits the assumptions that were made in the generation of
artificial problem instances. In a practical application it is possible to tailor the
algorithms to fit the exact properties of that particular problem. In this paper,
we have made sure not to take advantage of structures in the problem data, as
such structures may not transfer to variations of the problem. Therefore, in a
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practical application, it may be possible to utilize problem specific knowledge
in the creation of the planning and the scheduling method, and get even better
results.
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