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Abstract— We examine various independent component anal-
ysis (ICA) digital signal processing algorithms for estimat-
ing the arterial oxygen saturation (SpO2) as measured by a
reflective pulse oximeter. The ICA algorithms examined are
FastICA, Maximum Likelihood ICA (ICAML), Molgedey and
Schuster ICA (ICAMS), and Mean Field ICA (ICAMF). The
signal processing includes pre-processing bandpass filtering to
eliminate noise, and post-processing by calculating the SpO2.
The algorithms are compared to the commercial state-of-the-
art algorithm Discrete Saturation Transform (DST) by Masimo
Corporation. It is demonstrated that ICAMS and ICAMF
perform up to 13% better than DST. PPG recordings are
done with a reflective pulse oximetry sensor integrated in an
Electronic Patch. This system is intended for patients with
chronic heart and lung conditions.

I. I NTRODUCTION

Pulse oximeters intended for long-term monitoring of
people living an everyday life with a chronic condition offer
several challenges: 1) Design and construction of small,
discrete, and low-power pulse oximeter devices. 2) Digital
signal processing of photoplethysmograms (PPG) which are
affected by the patient’s motions, a less optimal monitoring
site for the purpose of discreteness and long-term compat-
ibility, and battery powered Light Emitting Diodes (LEDs).
3) Integration of these new technologies which typically
features telehealth solutions into the established healthcare
system.

We have previously reported the design and development
of an Electronic Patch with integrated reflective pulse oxime-
try based on a novel ring-shaped optical sensor [1], [2],
[3]. The Electronic Patch is shown in Fig. 1. All PPG
measurements reported in this paper are performed with the
Electronic Patch.

Estimating the SpO2 from PPG data which are heavily
distorted by noise and motion artefacts can be done by
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Fig. 1. The Electronic Patch. The patch contains a micro fabricated ring-
shaped silicon backside photodiode with a through chip holefor commercial
surface mounted LEDs. This is packaged inside a hard plasticcapsule with
analog, digital, and RF electronics. The capsule is embedded in adhesive
material as shown in the figure. The patch measures 88 mm by 60 mm and
is 5 mm thick. The weight is 15.9 grams.

advanced digital signal processing. The commercial state-
of-the-art, Discrete Saturation Transform (DST) by Masimo
Corporation [4], is often used in clinical pulse oximeters.
To benefit most from the above mentioned category of low-
power pulse oximeters algorithms which are better at noise
and motion filtering are needed.

Signal processing of PPG data using independent compo-
nent analysis (ICA) has been reported by several authors [5],
[6] as a promising technique for motion artefact reduction.
These papers do not describe the problem of estimating
the SpO2 nor do they present a comparison with the DST
algorithm. In this paper we evaluate four different ICA algo-
rithms with respect to estimating SpO2 from normal PPG data
(i.e. not motion distorted) but recorded with the Electronic
Patch under low-power conditions (the LED driving current
is 5 mA). The ICA algorithms are compared to the DST
algorithm.

Most authors focus on the FastICA algorithm [7], [8], but
there are several other ICA algorithms such as Maximum
Likelihood ICA (ICAML) [9], [10], [11], Molgedey and
Schouster ICA (ICAMS) [10], [12], [13] and Mean Field ICA
(ICAMF) [14], [15]. The various ICA algorithms are based
on different assumptions regarding the statistical properties
of the source signals and work by optimizing different pa-
rameters such as autocorrelation and probability distributions



in the attempt to separate sources and noise signals.
The hypothesis of this paper is that the quality of the

separated PPG signals and consequently the SpO2 prediction
depends critically on the choice of ICA algorithm. Motivated
by this we present a comparison of the mentioned four
different ICA algorithms and the DST algorithm. We evaluate
the algorithms by comparing the estimated SpO2 values with
reference values obtained by a commercial pulse oximeter
for the intensive care unit.

II. D ISCRETESATURATION TRANSFORM

DST is based on the assumption that the measured signals
can be described as a sum of a desired PPG signals(t) and a
noise signaln(t) due to motion artifacts. Masimo [4] defines
the system as

xir(t) = s(t) + n(t) (1)

xr(t) = ras(t) + rvn(t) (2)

with xir(t) and xr(t) being the signals from the infrared
and red recordings respectively andra is the arterial ratio
corresponding to the arterial saturation andrv is the ratio of
venous, or non-arterial, components. The method is based on
removal of the noise termn(t) by the use of Adaptive Noise
Cancellation (ANC) [16]. In pulse oximetry a noise signal
is not available and Masimo therefore defines a reference
noise signaln′(t) as a weighted difference of the normalised
measured signals

n′(t) = xr(t)− rxir(t). (3)

By inserting (1) and (2) in (3)

n′(t) = ras(t) + rvn(t)− r(s(t) + n(t)) (4)

= (ra − r)s(t) + (rv − r)n(t). (5)

It is seen from (5) that whenra = r the reference noise signal
n′(t) only contains the weighted noise of the measurements.
The measured signal from the red LEDxr(t) is applied as
the input to the ANC with the reference signaln′(t) and the
desired output of the ANC is the noise free PPG-signals(t).
The coefficientr is found iteratively by trying all values of
r corresponding to all SpO2 levels from 0-100% in steps of
e.g. 1%. The power of the output signal from the ANC is
calculated for each reference signal. This results in a power
spectrum for the values ofr that will have two peaks; one
at r = rv and one atr = ra where the latter is the desired
ratio. The implementation of DST used for this paper uses
a recursive least squares (RLS) adaptive FIR filter of order
128. It is found that this order gives a desirable performance
and increasing the order will only slow down the algorithm.
The coefficientr is increased by a step size of 0.01 to ensure
the resolution in SpO2 is less than 1%.

III. I NDEPENDENTCOMPONENT ANALYSIS

The general ICA model is formulated as

X = AS (6)

whereX is a matrix of observed multiple signal samples,A

is a mixing matrix, andS is a matrix of independent source
signal samples. The aim is then to estimateA andS.

By assuming each of the pulse oximetry recordings con-
tains a component representing the PPG signals1(t) and an
independent noise components2(t) the ICA model for pulse
oximetry is given by the 2-by-2 linear mixing system1

xr(t) = a11s1(t) + a12s2(t) (7)

xir(t) = a21s1(t) + a22s2(t) (8)

whereaij are the coefficients determining the elements of the
mixing matrix A in (6). The optical ratio is then estimated
by the ratio of the mixing coefficients of the PPG source
signal

R =
a11

a21

. (9)

A. FastICA

FastICA works by maximizing the negentropy of the
independent source signals. Negentropy can be interpretedas
a measure of non-Gaussianity2. The main advantage of this
algorithm is due to its simple fixed-point iteration scheme.

B. Maximum Likelihood ICA

ICAML separates the independent identically distributed
source signals by maximizing the likelihood of the mixing
matrix. To use the maximum likelihood approach the score
function associated with the source prior distribution is
required.

C. Molgedey and Schouster ICA

ICAMS is based on dynamic decorrelation and requires
that the sources have different autocorrelation functions. The
mixing matrix is estimated by maximizing the difference in
autocorrelation of the source signals.

D. Mean Field ICA

ICAMF is a Bayseian probabilistic method for solving the
ICA problem and is rather flexible with respect to specifica-
tion of constraints and prior assumptions. The model differs
from the general ICA model as it assumes the observed
signalsX are generated with an additive white noise source
E. In the present context this is a reasonable assumption
since it is unrealistic that the noise signals picked up in the
red and infrared channels are identical except for scaling,as
assumed in (7).

X = AS + E. (10)

The noiseE is assumed to be Gaussian with zero mean
and covarianceΣ. The noise covariance matrix can further
be constrained to be isotropic or diagonal for same noise
variance on the observations or individual noise variance for
each observation, respectively. It is found that a configuration
with a diagonal covariance matrix gave the best results.

1An extended model is provided in (10). See also the future work section
below.

2It is well-known that white Gaussian distributed source signals can not
be separated, [17].
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Fig. 2. To lower the oxygen saturation a closed circuit is used. The subjects
re-breath air from a container through a carbon dioxide filter of calcium
hydroxide, Soda Lime (Dräger). The SpO2 is lowered from 100% to 75%
on the average of 16 min.

TABLE I

LENGTH OF SIGNALS AND START AND END REFERENCESPO2 LEVELS

FOR THE THREE SUBJECTS.

Subject Length (s) SpO2 start (%) SpO2 end (%)
1 760 98 74
2 1111 100 86
3 1020 100 70

ICAMF allows one to use several prior distributions for
the sources and it is found that a bi-Gauss distribution was
the best choice for the PPG-signals. Beside this, the mixing
matrix is constraint to be positive as theR should be positive.

IV. CLINICAL METHODS AND MATERIALS

We perform non-invasive self testing on healthy subjects.
The subject is seated at rest and the oxygen saturation
measured on the third digit of the right hand by a pulse
oximeter, Datex-Ohmeda AS/3 Compact Patient Monitor,
Pulse Oximeter. The Electronic Patch is placed on the skin
over the third digit of the left hand. The PPG signal are
measured continuously with the reference SpO2 value is read
of every 30s. The sampling frequency of the PPG data is
fs = 200 Hz. The total length of the PPG sequences for the
three subjects and the starting and ending reference SpO2
levels are given in Table I.

The subjects re-breath in a closed circuit in order to
lower the oxygen saturation as illustrated in Fig. 2. At the
initiation of each test the circuit is filled with approximately
50 - 70 liters of atmospheric air. Carbon dioxide CO2 is
absorbed from the circuit by exhaling through a filter of
calcium hydroxide, Soda Lime (Dräger). The measurements
are initiated by a few deep inspirations of 100% oxygen
and then the breathing is changed to the closed circuit.
The subject now breath continuously in the closed circuit.
A decline in oxygen saturation is measured as the oxygen
concentration in the circuit decreases.

Prior to the investigations it is agreed to end the testing
when the oxygen saturation reached 75% or earlier if the
subject felt uncomfortable.

V. SIGNAL PROCESSING

The optical ratioR is calculated for signal windows of
30s corresponding to the reference measurements. For each
window the following signal processing is done:

The PPG signals are normalized by subtracting the DC-
component and dividing by the DC-component. This is done

TABLE II

BANDPASS FILTER CUT-FREQUENCIES

Algorithm fl (Hz) fh (Hz)
DST 0.9 3
FastICA 1 3
ICAML 1 2
ICAMS 1 3
ICAMF 0.8 3

to scale the recordings from each subject to the same range.
To avoid high frequency electrical noise and low frequency
noise components bandpass filtering is applied. It is found
that the best performance is achieved by a 8th order IIR
(Butterworth) filter. The cutoff frequencies are optimized
for each algorithm and are given in Table II as lower
cutoff frequencyfl and higher cutoff frequencyfh. To avoid
distortion due to filter settling time an overlap of 4s is
added to the front of the signal windows before filtering and
removed again after filtering.

The signal processing can be summarized into five steps:
1) Normalisation
2) Bandpass filtering
3) Estimation ofR
4) Estimation of calibration curve
5) Estimation of SpO2

A. Evaluation Scheme

To evaluate the estimates ofR a calibration curve that
relates theR-values to the SpO2 in % is needed. From the
theory of pulse-oximetry [18] it is known that the calibration
curve is on the form

SpO2 =
a + bR

c + dR
. (11)

However, in the important SpO2 range from 70% to 100%
a linear approximation to the calibration curve can be used.
It follows from derivation using Beer-Lambert’s law that the
gradient of the linear approximation should be negative [18].

To obtain a calibration curve that does not depend heavily
on the available data set a training and test set evaluation
scheme is applied: TheR-estimates are divided into a
training and test set consisting of values from two and one
subjects respectively. A calibration curve is calculated from
the training set by using the leave-one-out method. One
estimate is left out and a linear model is fitted to the rest
of the estimates. This is repeated for all estimates in the
training set and the mean of the coefficients of all fitted
calibration curves is used as a final linear calibration curve
for testing. The obtained calibration curve is used to predict
test set SpO2 values fromR-values. Finally, the test error is
calculated as the Euclidean difference between the estimated
and the reference measurement of SpO2. The procedure is
repeated for all three combinations of training and test set.
The average error is then calculated for each algorithm.

VI. RESULTS

In Fig. 3 is shown the result for the DST algorithm as the
reference SpO2 values versus the estimated arterial ratios,
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Fig. 3. Calibration curve and estimates obtained using DST.It is seen that
the linear model fits most of the estimates, but some estimates could be
considered as outliers.

TABLE III

MEAN ERROR FOR EACH ALGORITHM AND LOWER, fl , AND HIGHER, fh

BANDPASS FILTER CUT-FREQUENCIES.

Algorithm SpO2 error Error relative to DST
DST 3.0 -
FastICA 21 600%
ICAML 3.4 13%
ICAMS 2.9 -3%
ICAMF 2.6 -13%

ra. It is seen from this graph that the algorithm gives a
calibration curve and that the results from the three subjects
fall within the same range. The average error is found to be
3.0%.

In Fig. 4, 5, 6, and 7 are shown the results for the four
ICA algorithms. From Fig. 4 it is seen that the FastICA
algorithm fails to give a valid calibration curve as the best
fit has a positive slope (this should be negative as previously
described). The ICAML, ICAMS, and ICAMF algorithms all
give a correct calibration curve. The ICAMS and ICAMF
algorithms give results that are more similar to the result
from the DST algorithm compared to the ICAML algorithm.
For the DST, ICAMS, and MCAMF the linear fit is correct
in the range 100%-80% but fails in the range 80%-70%.

The average Euclidean error and the relative error com-
pared to the DST error is listed in Table III for the all algo-
rithms. With respect to these measures it is seen that ICAML
performs 13% worse than DST. Both ICAMS and ICAMF
performs better than DST with relative improvements of 3%
and 13%, respectively.

VII. D ISCUSSION

The purpose of this work is to study ICA algorithms by
comparing them with respect to each other and to the DST
algorithm. The purpose is not to obtain a calibration curve for
future use. Therefore the quality of the reference data is of
less importance and we choose to use a non-invasive method
that does not require a clinical protocol (by Danish law).
More precise reference data could be obtain by collecting
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Fig. 4. Calibration curve obtained using FastICA. It is clear that this
algorithm fails to estimateR as a most of the estimates are less than zero
and the calibration curve has a positive slope. It should be noted that a
fewer estimates are seen. This is due to the algorithm not converging for
parts of the data.
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Fig. 5. Calibration curve and estimates obtained using ICAML. Compared
to the DST algorithm the estimates deviates more from the calibration curve.
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Fig. 6. Calibration curve and estimates obtained using ICAMS. The
performance is similar to the DST algorithm. Notice the estimates below
80% do not fit the linear model approximation.
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Fig. 7. Calibration curve and estimates obtained using ICAMF. The
performance is similar to the DST algorithm, but the algorithm appears
to be more robust when considering possible outliers.

arterial blood samples from which the oxygen saturation can
be found accurately by a blood gas analyzer.

The non-invasive method we have used resulted in an
error of 3.0% for the DST algorithm. A commercial pulse
oximeter by Masimo Corporation has a specified accuracy
of 2% [19], the obtained reference data must therefore be
considered useful.

The obtained calibration curves suggest that the linear
model approximation is good in the SpO2 range of 80%
to 100% whereas below this range a nonlinear relation is
a better choice.

VIII. C ONCLUSION AND FUTURE WORK

A. Conclusions

We have successfully demonstrated ICA algorithms in the
application of estimating the arterial oxygen saturation by
pulse oximetry. Four ICA algorithms have been evaluated
and compared to DST. The four algorithms did perform
differently. The ICAMF is found to give the best results with
an relative improvement over the DST algorithm of 13%. The
FastICA algorithm did not work and failed to converge for
part of the data. The ICAMS showed a relative improvement
of 3% over DST and the ICAML show a decline of 13%
compared to DST.

It can be concluded that ICA can be used for calculating
SpO2 when the ICA problem is solved using the right con-
straints. We conclude that the difference in autocorrelation
of the source signals and the bi-Gaussian distribution of the
PPG signal and individual noise on the red and infrared
recordings are the useful constraints.

The accuracy of the SpO2 values do indeed depend on the
choice of ICA algorithm, and we have found that the ICAMF
is the best choice.

B. Future Work

Motion artifacts are serious noise component in the
recorded signals. We believe that ICA models could provide
a good framework for handling such problems which is
suggested by initial experiments. We consider a more general

framework using a linear state-space based model suggested
in [20] which allows for more flexible mixing and prior
source models. In addition, the model can handle the so-
called underdetermined case, i.e. more signals than sources.
This is useful for modeling different noise sources which
could have very different dynamics.
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