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Abstract— We examine various independent component anal-
ysis (ICA) digital signal processing algorithms for estima&
ing the arterial oxygen saturation (§0,) as measured by a
reflective pulse oximeter. The ICA algorithms examined are
FastICA, Maximum Likelihood ICA (ICAML), Molgedey and
Schuster ICA (ICAMS), and Mean Field ICA (ICAMF). The
signal processing includes pre-processing bandpass filteg to
eliminate noise, and post-processing by calculating the,8),.
The algorithms are compared to the commercial state-of-the
art algorithm Discrete Saturation Transform (DST) by Masimo
Corporation. It is demonstrated that ICAMS and ICAMF
perform up to 13% better than DST. PPG recordings are
done with a reflective pulse oximetry sensor integrated in an
Electronic Patch. This system is intended for patients with
chronic heart and lung conditions.

Fig. 1. The Electronic Patch. The patch contains a microidated ring-

shaped silicon backside photodiode with a through chip fasleommercial

. INTRODUCTION surface mounted LEDs. This is packaged inside a hard pleafisule with

analog, digital, and RF electronics. The capsule is emhkddedhesive

Pulse oximeters intended for long-term monitoring ofmaterial as shown in the figure. The patch measures 88 mm bynt@ma

people living an everyday life with a chronic condition affe 'S > mm thick. The weight is 15.9 grams.
several challenges: 1) Design and construction of small,
discrete, and low-power pulse oximeter devices. 2) Digital
signal processing of photoplethysmograms (PPG) which a
affected by the patient’s motions, a less optimal monigrin
site for the purpose of discreteness and long-term comp : .
ibility, and battery powered Light Emitting Diodes (LEDS). 0 benefit most_ from the abqve ment|_oned category of IO\.N'
3) Integration of these new technologies which typicall)Power pulse oximeters algorithms which are better at noise

features telehealth solutions into the established health and_motlon fllterlr_lg are needed. L
system. Signal processing of PPG data using independent compo-

We have previously reported the design and developmeﬁnt analysis (ICA) has been reported by several authors [5]

) o . : as a promising technique for motion artefact reduction.
of an Electronic Patch with integrated reflective pulse @«dm . S
These papers do not describe the problem of estimating

try based on a novel ring-shaped optical sensor [1], [Zlhe S0, nor do they present a comparison with the DST

E]e.a-srlTrerllzeI?ﬁg?:Cors;agﬁg tﬁisSh:Wenr ;rr]e F'g;foj;'m:g VI;E]GtﬁlEorithm. In this paper we evaluate four different ICA algo
P pap P rithms with respect to estimatingS, from normal PPG data

o _ .. (i.e. not motion distorted) but recorded with the Electooni
EITEcttrom(E Pat;h. f PG dat - ) | . on di 4 b ded with the EI .
_=stimating the 52 from . ata which are neavlly paich under low-power conditions (the LED driving current
distorted by noise and motion artefacts can be done l?%( 5 mA). The ICA algorithms are compared to the DST

algorithm.
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orporation [4], is often used in clinical pulse oximeters.



in the attempt to separate sources and noise signals. whereX is a matrix of observed multiple signal samplds,

The hypothesis of this paper is that the quality of thés a mixing matrix, ands is a matrix of independent source
separated PPG signals and consequently tl@ rediction  signal samples. The aim is then to estimateandS.
depends critically on the choice of ICA algorithm. Motivdte By assuming each of the pulse oximetry recordings con-
by this we present a comparison of the mentioned fourins a component representing the PPG sign@l) and an
different ICA algorithms and the DST algorithm. We evaluaténdependent noise componen(t) the ICA model for pulse
the algorithms by comparing the estimate@gvalues with ~ oximetry is given by the 2-by-2 linear mixing systém
reference values obtained by a commercial pulse oximeter

Ir(t) = allsl(t) + a1282(t) (7)

for the intensive care unit.
Tir (t) = a2181(t) + agzs2(t) 8

wherea;; are the coefficients determining the elements of the
DST is based on the assumption that the measured signgiging matrix A in (6). The optical ratio is then estimated
can be described as a sum of a desired PPG sigtigind a by the ratio of the mixing coefficients of the PPG source
noise signah(t) due to motion artifacts. Masimo [4] definessignal
the system as R4 9)
azi

Il. DISCRETESATURATION TRANSFORM

zir(t) = s(t) + n(t) (1) A Fasica

or(t) = ras(t) +ron(t) @ FastiCA works by maximizing the negentropy of the
with z;,(t) and z,(¢) being the signals from the infrared independent source signa_ls. .Negentro.py can be interpaet.ed
and red recordings respectively ang is the arterial raio @ Measure of non-Gaussiarfitf'he main advantage of this
corresponding to the arterial saturation ands the ratio of algorithm is due to its simple fixed-point iteration scheme.
venous, or non-arterial, components. The method is based gN \jaximum Likelihood 1CA

removal of the noise term(¢) by the use of Adaptive Noise ICAML he ind dent identically distributed
Cancellation (ANC) [16]. In pulse oximetry a noise signal separates the independent identically distribute

is not available and Masimo therefore defines a referenc@Yr€ signals by maximizing the likelihood of the mixing

noise signah’(t) as a weighted difference of the normalised:]am_x‘ To use .thedmaxlhmurrr: likelihood approda.lch.tt)he_ score
measured signals unction associated with the source prior distribution is

required.
/ P —_ .
n(t) = we(t) = rain(b). (3) C. Molgedey and Schouster ICA
By inserting (1) and (2) in (3) ICAMS is based on dynamic decorrelation and requires
, that the sources have different autocorrelation functidhse
W (t) = ras(t) +ron(t) —r(s(t) + n(t)) ) mixing matrix is estimated by maximizing the difference in
= (ra = 7)s(t) + (ro — r)n(t). (5) autocorrelation of the source signals.

Itis seen from (5) that when, = r the reference noise signal D. Mean Field ICA

n/(t) only contains the weighted noise of the measurements. |cAvF s a Bayseian probabilistic method for solving the
The measured signal from the red LED(¢) is applied s |ca problem and is rather flexible with respect to specifica-
the input to the ANC with the reference signél) and the jo of constraints and prior assumptions. The model differ
desired output of the ANC is the noise free PPG-sigtél.  from the general ICA model as it assumes the observed
The coefficient- is found iteratively by trying all values of gjgna15X are generated with an additive white noise source
r corresponding to all s, levels from 0-100% in steps of g |5 the present context this is a reasonable assumption
e.g. 1%. The power of the output signal from the ANC ig;nce it is unrealistic that the noise signals picked up & th

calculated for each reference signal. This results in @ POWR,q and infrared channels are identical except for scatiag,
spectrum for the values of that will have two peaks; one ;55 med in ).

atr =r, a_nd one at = 7, where the latter is_the desired X — AS + E. (10)
ratio. The implementation of DST used for this paper uses
a recursive least squares (RLS) adaptive FIR filter of orddihe noiseE is assumed to be Gaussian with zero mean
128. It is found that this order gives a desirable perforrean@nd covarianc&. The noise covariance matrix can further
and increasing the order will only slow down the algorithmbe constrained to be isotropic or diagonal for same noise
The coefficient is increased by a step size of 0.01 to ensurgariance on the observations or individual noise variawoce f
the resolution in SpQis less than 1%. each observation, respectively. It is found that a configoma
with a diagonal covariance matrix gave the best results.

IIl. INDEPENDENTCOMPONENTANALYSIS

. 1An extended model is provided in (10). See also the futurekwgection
The general ICA model is formulated as below.

2|t is well-known that white Gaussian distributed sourcenalg can not

X = AS (6) be separated, [17].



TABLE Il
BANDPASS FILTER CUFFREQUENCIES

Air .
container \_/i:l glg.?_mhm fi 0(32) In gHZ)
S0-70L CO, absorber FastICA 1 3
ICAML 1 2
ICAMS 1 3
ICAMF 0.8 3
Fig. 2. To lower the oxygen saturation a closed circuit isdu3éne subjects
re-breath air from a container through a carbon dioxiderfiite calcium
hydroxide, Soda Lime (Drager). Thg,S, is lowered from 100% to 75% . .
on the average of 16 min. to scale the recordings from each subject to the same range.
To avoid high frequency electrical noise and low frequency
TABLE | noise components bandpass filtering is applied. It is found
LENGTH OF SIGNALS AND START AND END REFERENCIS; O, LEVELS that the best performance is achieved by a 8th order IIR
FOR THE THREE SUBJECTS (Butterworth) filter. The cutoff frequencies are optimized
Subject ][ Length (5| 5,0, St (%) | 5,0, end (%) for each algorithm an(_j are given in Table Il as Ipwer
1 760 98 74 cutoff frequencyf; and higher cutoff frequencyj,. To avoid
2 1111 100 86 distortion due to filter settling time an overlap of 4s is
3 1020 100 70 added to the front of the signal windows before filtering and

removed again after filtering.
The signal processing can be summarized into five steps:

1) Normalisation

2) Bandpass filtering

3) Estimation ofR

4) Estimation of calibration curve
V. CLINICAL METHODS AND MATERIALS 5) Estimation of SO,

We perform non-invasive self testing on healthy subjectsy gyauation Scheme
The subject is seated at rest and the oxygen saturationT . L
measured on the third digit of the right hand by a pulse 0 evaluate the estimates (R a})cghbranon curve that
oximeter, Datex-Ohmeda AS/3 Compact Patient Monitorremes theR-vaIue_s to the SD? n % is needed. Frqm the
Pulse Oximeter. The Electronic Patch is placed on the Skmeory_of pulse-oximedry [18] it is known that the caliboi
over the third digit of the left hand. The PPG signal argtrve 1s on the form
measured continuously with the refereng®gvalue is read S0, =2t bR_
of every 30s. The sampling frequency of the PPG data is PT2 T c+dR
[s =200 Hz. The total length of the PPG sequences for thelowever, in the important ®, range from 70% to 100%
three subjects and the starting and ending referen@ S a linear approximation to the calibration curve can be used.
levels are given in Table I. It follows from derivation using Beer-Lambert’s law thateth

The subjects re-breath in a closed circuit in order tgradient of the linear approximation should be negativé.[18
lower the oxygen saturation as illustrated in Fig. 2. At the To obtain a calibration curve that does not depend heavily
initiation of each test the circuit is filled with approxineit on the available data set a training and test set evaluation
50 - 70 liters of atmospheric air. Carbon dioxide £ scheme is applied: Thez-estimates are divided into a
absorbed from the circuit by exhaling through a filter oftraining and test set consisting of values from two and one
calcium hydroxide, Soda Lime (Drager). The measuremenssibjects respectively. A calibration curve is calculatezir
are initiated by a few deep inspirations of 100% oxygethe training set by using the leave-one-out method. One
and then the breathing is changed to the closed circuiéstimate is left out and a linear model is fitted to the rest
The subject now breath continuously in the closed circuibf the estimates. This is repeated for all estimates in the
A decline in oxygen saturation is measured as the oxygeraining set and the mean of the coefficients of all fitted
concentration in the circuit decreases. calibration curves is used as a final linear calibration eurv

Prior to the investigations it is agreed to end the testinfpr testing. The obtained calibration curve is used to mtedi
when the oxygen saturation reached 75% or earlier if thest set SO, values fromR-values. Finally, the test error is
subject felt uncomfortable. calculated as the Euclidean difference between the egt@mat
V. SIGNAL PROCESSING and the reference measurement QDS Th.e.procedure is

’ repeated for all three combinations of training and test set

The optical ratioR is calculated for signal windows of The average error is then calculated for each algorithm.
30s corresponding to the reference measurements. For each

window the following signal processing is done: VI. RESULTS
The PPG signals are normalized by subtracting the DC- In Fig. 3 is shown the result for the DST algorithm as the
component and dividing by the DC-component. This is doneeference J0, values versus the estimated arterial ratios,

ICAMF allows one to use several prior distributions for
the sources and it is found that a bi-Gauss distribution was
the best choice for the PPG-signals. Beside this, the mixing
matrix is constraint to be positive as tiReshould be positive.

(11)
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Fig. 3. Calibration curve and estimates obtained using IX33.seen that
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the linear model fits most of the estimates, but some estsmateld be
considered as outliers.

TABLE Il
MEAN ERROR FOR EACH ALGORITHM AND LOWER f;, AND HIGHER, f,

Fig. 4. Calibration curve obtained using FastICA. It is clékat this
algorithm fails to estimateR as a most of the estimates are less than zero
and the calibration curve has a positive slope. It should diechthat a
fewer estimates are seen. This is due to the algorithm notecgimg for
parts of the data.

BANDPASS FILTER CUFFREQUENCIES

Algorithm || S,0, error | Error relative to DST
DST 3.0 -

FastICA 21 600%

ICAML 34 13%

ICAMS 2.9 -3%

ICAMF 2.6 -13%

rq. It is seen from this graph that the algorithm gives a
calibration curve and that the results from the three subjec
fall within the same range. The average error is found to be
3.0%.

In Fig. 4, 5, 6, and 7 are shown the results for the four
ICA algorithms. From Fig. 4 it is seen that the FastICA
algorithm fails to give a valid calibration curve as the best
fit has a positive slope (this should be negative as prewousl|

; ; Fig. 5. Calibration curve and estimates obtained using ICABlompared
described). The ICAML, ICAMS, and ICAMF algorithms all to the DST algorithm the estimates deviates more from thbregibn curve.

give a correct calibration curve. The ICAMS and ICAMF
algorithms give results that are more similar to the result
from the DST algorithm compared to the ICAML algorithm.
For the DST, ICAMS, and MCAMF the linear fit is correct
in the range 100%-80% but fails in the range 80%-70%.

The average Euclidean error and the relative error com-
pared to the DST error is listed in Table Il for the all algo-
rithms. With respect to these measures it is seen that ICAML
performs 13% worse than DST. Both ICAMS and ICAMF
performs better than DST with relative improvements of 3%
and 13%, respectively.

VIl. DISCUSSION

The purpose of this work is to study ICA algorithms by
comparing them with respect to each other and to the DST
algorithm. The purpose is not to obtain a calibration cuore f
future use. Therefore the quality of the reference data is of

b2

Oxygen Saturation S O, (%)

Oxygen Saturation S0, (%)

©
]
T

@
@

80

75

70

100

95

o
3

®
&

«
3

75

70

x  Subject1
+  Subject2
O Subject3

Calibration curve

0

05

.
15
Optical ratio R

T
Calibration curve
X Subject 1
+  Subject 2
0 Subject3

15
Optical ratio R

less importance and we choose to use a hon-invasive met

6. Calibration curve and estimates obtained using IGAMhe
ormance is similar to the DST algorithm. Notice the reates below

that does not require a clinical protocol (by Danish law)80% do not fit the linear model approximation.
More precise reference data could be obtain by collecting



T
Calibration curve

X Subject 1 1
+  Subject 2
0 Subject3

100~ +

95

90

85

Oxygen Saturation 8,0, (%)

80

(1]

15
Optical ratio R

Fig. 7.  Calibration curve and estimates obtained using IGAMhe
performance is similar to the DST algorithm, but the aldwomtappears
to be more robust when considering possible outliers.

(2]

[3]
arterial blood samples from which the oxygen saturation can
be found accurately by a blood gas analyzer.

The non-invasive method we have used resulted in aff!
error of 3.0% for the DST algorithm. A commercial pulse
oximeter by Masimo Corporation has a specified accuracys]
of 2% [19], the obtained reference data must therefore be
considered useful. [6

The obtained calibration curves suggest that the linear
model approximation is good in the,S, range of 80%
to 100% whereas below this range a nonlinear relation i%]
a better choice.

VIIl. CONCLUSION AND FUTURE WORK
A. Conclusions

(8]

[9]
We have successfully demonstrated ICA algorithms in the
application of estimating the arterial oxygen saturatign byiq;
pulse oximetry. Four ICA algorithms have been evaluated
and compared to DST. The four algorithms did perfomEll]

differently. The ICAMF is found to give the best results with
an relative improvement over the DST algorithm of 13%. The
FastICA algorithm did not work and failed to converge fort12
part of the data. The ICAMS showed a relative improvement
of 3% over DST and the ICAML show a decline of 13%[13]
compared to DST.

It can be concluded that ICA can be used for calculating 4
S,0, when the ICA problem is solved using the right con-
straints. We conclude that the difference in autocorrmefati 15]
of the source signals and the bi-Gaussian distribution ef tﬁ
PPG signal and individual noise on the red and infrared
recordings are the useful constraints. (16]

The accuracy of the ®, values do indeed depend on the
choice of ICA algorithm, and we have found that the ICAMH17]
is the best choice.

B. Future Work [19]

Motion artifacts are serious noise component in th&o0]
recorded signals. We believe that ICA models could provide
a good framework for handling such problems which is
suggested by initial experiments. We consider a more genera

(18]

framework using a linear state-space based model suggested
in [20] which allows for more flexible mixing and prior
1 source models. In addition, the model can handle the so-
called underdetermined case, i.e. more signals than surce
1 This is useful for modeling different noise sources which
could have very different dynamics.
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