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Abstract Hyperspectral imaging can be used

in assessing the quality of foods by decompos-

ing the image into constituents such as protein,
starch, and water. Observed data can be con-

sidered a mixture of underlying characteris-

tic spectra (endmembers), and estimating the

constituents and their abundances requires ef-

ficient algorithms for spectral unmixing. We
present a Bayesian spectral unmixing algorithm

employing a volume constraint and propose an

inference procedure based on Gibbs sampling.

We evaluate the method on synthetic and real
hyperspectral data of wheat kernels. Results

show that our method perform as good or bet-

ter than existing volume constrained methods.

Further, our method gives credible intervals
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for the endmembers and abundances, which al-

lows us to asses the confidence of the results.

Keywords Bayesian source separation,

Hyperspectral image analysis, Volume regu-
larization, Gibbs sampling

1 Introduction

Classic image acquisition and analysis is based

on three color bands (red, green, and blue)
which is sufficient for human visualization. In

the context of identifying or extracting mate-

rial constituents of e.g. foods, these three wide

channels are rarely enough. Hyperspectral im-

age analysis can include more than 100 chan-
nels and hence provides the opportunity to
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Fig. 1: Pseudo RGB image of a wheat kernel and
the associated pre-processed spectrum for the selected
pixel.
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capture detailed spectral information required

in analysis of foods. Figure 1 illustrates a hy-
perspectral image of a wheat kernel with a cor-

responding pre-processed spectrum from 950−
1650nm.

In a hyperspectral image acquisition system

based on light transmission, mixing of the ma-

terials constituents can be considered linear

according to Lambert-Beer’s law. In a reflec-
tance spectroscopy system, which we use in the

experiments in this paper, non-linear mixing

can occur, when incident light interacts with

several constituent materials. For simplicity,
however, it is reasonable to assume [6] that

the mixing process is predominantly linear and

that non-linear effects can be neglected.

Given a set of N preprocessed M -dimensional

mixed spectra, stored as columns in a matrix

X ∈ R
M×N , the unmixing problem consists

of estimating the non-negative spectral signa-
ture of the pure constituent components (end-

members) as well as their relative contribu-

tions (fractional abundances) for each of the

N spectra. The linear mixing can then be ex-
pressed as a rank K linear matrix factoriza-

tion,

X = WH + ǫ, (1)

where K is the number of endmembers. The

non-negative spectral signatures of these end-
members are contained in the columns of W ∈
R

M×K
+ and H ∈ R

K×N
+ holds the fractional

abundances for the N elements. The matrix

ǫ denotes the residual noise. Each of the ob-
served pixels can thus be considered a mix of

latent pure constituents. In foods, these con-

stituents are typically water, protein, starch,

oil, etc.

In addition to the non-negativity constraint,

the fractional abundances must sum to one1 in

order to maintain proper interpretation. The

1 In the literature, the constraints that abundances
must sum to one is sometimes refereed to as an addi-
tivity constraint.

constraints imposed on the matrix factoriza-

tion can thus be expressed as

wmk ≥ 0, hkn ≥ 0, and

K
∑

k=1

hk,n = 1. (2)

The non-negativity and sum-to-one assump-

tion of H implies a multidimensional simplex

structure of the modeled data, where the ver-
tices denote the endmembers. The simplex is

illustrated for two endmembers in one dimen-

sion in Figure 2(a) and for three endmembers

in two dimensions in Figure 2(b).

Spectral signature in W Observed data

(a) Simplex with two endmembers in one dimension

Spectral signature in W

Observed data

Invalid (noisy)

(b) Simplex with three endmembers in two dimen-
sions.

Fig. 2: Illustration of endmembers as the vertices of a
simplex. The two illustrations show how the points vio-
lating the constraints are located outside the simplices
formed by the endmembers (purple circles).

The data might not span the entire simplex

due to lack of mixing of the constituents. For
food applications, pure endmembers appear ra-

rely as the observed pixels are almost always a

mix of constituents. This means the observed

data will tend to concentrate around the cen-

ter of the simplex and very few samples can be
expected at the vertices. The data acquisition

is further subject to additive noise and thus

the simplex structure will not be perfect. Fig-
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Fig. 3: Scatterplot of first and second principal com-
ponent of the preprocessed wheat kernel hyperspectral
data. The preprocessing pipeline used is described in
Section 3.

ure 3 illustrates the simplex structure of wheat
kernel image pixels.

Different approaches can be used to unmix the

hyperspectral image data. One approach is to
analyse the data using convex geometrical meth-

ods. Plaza et al. [14] gives a comparative anal-

ysis of a set of endmember extraction meth-

ods based on geometrical analysis incl. the N-

FINDR method [19], VCA [9], PPI [3] and
other manually based endmember selection ap-

proaches.

Another approach is based on statistical mod-
els of the data. As the acquired data is non-

negative by nature, non-negative matrix fac-

torization (NMF) has received wide attention

[8,11,12,13]. The basic linear NMF model min-

imizes the squared error ||X − WH||2 sub-
ject to non-negativity constraint on the ele-

ments in W and H. These constraints are

however rarely sufficient to capture the end-

members in an unmixing problem. Furthermore,

the solution is not unique since any solution
in which all the data are encapsulated by the

endmembers will have the same cost; hence,

additional regularization is required. This can

be expressed through a regularized cost func-

tion,

C(W,H) = 1
2 ||X − WH||2

+ γJw(W ) + βJh(H), (3)

where Jw(W ) and Jh(H) are regularization

terms for the endmembers and fractional abun-
dances respectively.

Sajda et al. [15] present an NMF algorithm

with additional constraints on the amplitude

of the estimated spectral components, with im-
proved endmember determination. An L2-norm

sparsity prior on both the endmembers W and

the fractional abundances H is incorporated

by Pauca et al. [13], which also leads to im-

proved estimation of the endmembers. A spar-
sity prior on the fractional abundances H en-

courages pure spectra among the observed pix-

els, but in analysis of food data this is rarely

the case. Thus, the sparsity prior might not be
useful in food applications.

A different approach is to incorporate a regu-

larization based on the volume of the simplex

spanned by the estimated endmembers. This
encourages a decomposition in which the esti-

mated endmembers lie closer to the data. The

volume of a simplex with K vertices {w:1, . . . ,w:K}2

and K < M is given by (denoted vol)

Jvol
w (W ) =

1

K!

√

det(W̃
⊤
W̃ ), (4)

where the column vectors of the matrix W̃ =

[w:1−w:ρ . . .w:ρ−1−w:ρ,w:ρ+1−w:ρ . . .w:K−w:ρ]

2 In the notation used in this paper, matrices and
vectors are denoted by capital and lower case bold
letters respectively. Two subscripts denotes a sub ma-
trix or sub vector with the corresponding rows and
columns, where a colon denotes all indices, and m̃ de-
notes all indices except m. For example, w:k denotes
the kth column of W and w

mk̃
denotes the mth row

of W with the kth element removed. A single element
of the matrix W is denoted by wmk.
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Fig. 4: The volume of a K=3 vertex simplex in two
dimensions, illustrating how the volume is computed
based on relative endmember vectors.

point to the vertices of the simplex from an

arbitrarily selected vertex, wρ. For K = M

Eq. (4) reduces to Jvol
w (W ) = 1

K! det(W̃ ).

The case of three endmembers in two dimen-

sions is shown in Figure 4.

Several authors have proposed algorithms for
spectral unmixing that employ different vol-

ume based regularizations. Miao and Qi [7]

present an NMF algorithm that incorporates

the following volume regularization (denoted
minimum volume constraint or mvc),

Jmvc
w (W ) ∝ det2

(

C +BU⊤
x (W − µ1⊤)

)

, (5)

where Ux is a projection matrix defined as the

K − 1 first principal components of the ob-

served data, X, µ denotes the sample mean

of X, B =
[

1
⊤

O

]

and C =
[

0
⊤

I

]

. This volume
regularization captures the volume of the cen-

tered simplex in the subspace defined by the

K − 1 first principal eigenvectors and thus in-

corporates a noise reduction. This approach is
quite intuitive, but due to its dependency on

the observed data in Ux it does not have the

interpretation as a prior in a Bayesian frame-

work.

Schachtner et al. [16] propose a different vol-

ume regularization approach based on the squa-
red volume of the parallelepiped spanned by

the endmembers and origo, and they propose

an optimization method based on the NMF

multiplicative update framework. The regular-

ization term can be expressed as (denoted par-

allelepiped or pp)

Jpp
w (W ) = det(W⊤W ), (6)

and can be seen as a surrogate to Eq. (4),

where the absolute vectors W are used instead
of the simplex spanning vectors W̃ . This mea-

sure, however, is sensitive to the location of

the data simplex as opposed to the simplex

volume in Eq. (4). This can potentially lead to

movement toward origo when minimizing the
volume. Since the regularization is expressed

in terms of a squared volume, large volumes

will be penalized relatively stronger than small

volumes.

Common for the three regularization terms bas-

ed on the determinant is that they measure

volume. Hence, they will tend to shrink the

volume, but when the regularization is strong,
the K-dimensional volume will collapse to a

(K−1)-dimensional subspace of which the vol-

ume becomes zero.

Another approach, which is not based on a de-
terminant criterion, is to form an approximate

volume regularization based on euclidian dis-

tance measures. In the ICE algorithm, Berman

et al. [2] implement a simplex volume measure

as the sum of squared distances between all
the vertices of the simplex. Equivalently, we

incorporate a measure based on the sum of

squared distances from the vertices to the cen-

troid shown in Figure 5 and given by (denoted
dist),

Jdist
w (W ) =

M
∑

m=1

wm:

(

I − 1
K
11

⊤)w⊤
m: (7)

=
K
∑

k=1

∥

∥

∥
w:k−

1

K

K
∑

k=1

w:k

∥

∥

∥

2

2
. (8)

This regularization term is not sensitive to the

location of the simplex as the pp regulariza-

tion is. With a large regularization, this mea-
sure will not collapse the simplex onto a lower

dimensional subspace, but will shrink the sim-

plex from each vertex towards the centroid.
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5

Fig. 5: The dist estimates the volume of a simplex
based on the vertices euclidian distance to the mean
center.

It further has the desirable property of being

computationally inexpensive, as it does not re-

quire the computation of a determinant.

The vol, pp, and dist regularization terms can

be given an interpretation as priors in a Bayesian

framework, as they do not depend on the ob-
served data. This is further discussed in the

next section.

Common to the volume constrained spectral

unmixing methods we have discussed so far is

that they specify a regularized cost function

and solve for the endmembers by numerical
optimization. A different approach for hyper-

spectral unmixing is to build a probabilistic

model and treat endmember extraction as a

Bayesian inference problem. This requires the
definition of an appropriate likelihood func-

tion and priors for the endmembers W and

fractional abundances H , which is closely re-

lated to the choice of cost function and regular-

ization terms. The Bayesian approach further
has the advantage of providing credible inter-

vals in addition to an improved estimate of the

endmembers and fractional abundances in the

form of posterior mean estimates and thereby
allowing for a more enhanced analysis.

Previous work on Bayesian spectral unmixing
include Ochs et al. [10], who introduce a Bayesian

spectral decomposition (BSD) algorithm based

on an atomic prior. Moussaoui et al. [8] present

a Bayesian method for separating non-negative

mixtures of NIR data based on a hybrid Gibbs-
Metropolis-Hastings sampling procedure. Schmidt

and Laurberg [18] present a Bayesian NMF

based on an exponential sparsity prior.

In this paper, which extends our previous work

[1], we present a Bayesian spectral unmixing

method with a volume prior for unmixing hy-

perspectral images. The method embodies three
different volume priors related to the vol, pp,

and dist measures in Eq. (4), (6) and (7). The

method incorporates non-negativity constraints

for the spectra as well as non-negativity and

sum-to-one constraints for the fractional abun-
dances. For model inference, we present a Mar-

kov chain Monte Carlo (MCMC) sampling pro-

cedure. The details of the method are described

in the next section and we refer to the method
as BayesNMF-Vol.

For comparison to our proposed Bayesian ap-

proach, we have implemented optimization based
endmember extraction methods using the mvc,

pp, and dist volume regularization terms in

Eq. (5), (6) and (7). Our implementation is

similar to the methods presented in previous
work, but is based on a projected gradient NMF

framework denoted as NMF-Vol. The sum-to-

one constraint for the fractional abundances

is not included in the work of Schachtner et

al. [16] and is implemented as a soft constraint
by Miao and Qi [7] in their algorithm. This

leads to a trade-off between describing the ob-

served data and respecting the sum-to-one con-

straint. In our NMF-Vol framework the sum-
to-one constraint is implemented using with a

variable substitution approach, which guaran-

tees that the constraint is fulfilled. We evaluate

both the NMF-Vol and BayesNMF-Vol meth-

ods on synthetic an real hyperspectral image
data of foods3.

In Section 2 we present our Bayesian volume
constrained NMF model as well as the MCMC

sampling procedure. The synthetic and real

3 Both algorithms are available as a Matlab toolbox
for download at www.ToBePosted.com
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data used in the experiments are described in

Section 3 with a description of the pre-proces-
sing procedure used. Finally, in Section 4 we

evaluate how the proposed method can extract

the true endmembers and corresponding frac-

tional abundances, and compare with existing

methods.

2 Bayesian NMF with volume prior

The spectral unmixing methods presented in

the previous section (except for mvc) can be

given a Bayesian interpretation: They can be
seen as maximum a posteriori (MAP) estima-

tors. The data fit term 1
2 ||X −WH||2 corre-

sponds to a Gaussian likelihood, and the reg-

ularization terms, γJw(W ) and βJh(H) cor-
respond to priors over the parameters W and

H. Using a Bayesian approach, we are not lim-

ited to computing point estimates, such as the

MAP estimator, but we can compute the full

posterior distribution of the parameters. This
can then be used to estimate the parameters

and their credible intervals. When we are ul-

timately interested in a point estimate of the

parameters, better estimators than the MAP
can be computed, such as the posterior mean

or median, which are optimal under squared

and linear loss respectively.

2.1 Motivating the Bayesian approach

To further motivate the use of Bayesian meth-

ods for spectral unmixing, we consider a very

simple one-dimensional example, which clearly

demonstrates the differences between the MAP
and the Bayesian approach. Consider the case,

where we have N measurements, xn,4 which

are points on the non-negative real line (see

Figure 6). We now wish to model these data us-

ing the non-negative linear factorization from

4 For simplicity, we use a slightly different notation
in this section.

w0
x  = wn hn

Fig. 6: One-dimensional linear factorization. Data xn

(circles) are points on the non-negative real line. Since
hn ∈ [0, 1], w must be greater than the maximum data
point.

Eq. (1), which in this case can be written as
xn = w · hn + ǫn. For simplicity, we consider

the noise free situation, ǫn = 0, which results

in a likelihood that requires all data points to

be modeled exactly,

p(x|w,h) =
N
∏

i=n

δ(xn − w · hn). (9)

The prior over w is chosen as a flat uninfor-

mative (improper) distribution over the non-
negative real numbers, which can be thought

of as a uniform distribution between zero and

infinity,

p(w) = lim
uw→∞

1

uw

I [0 ≤ w ≤ uw] (10)

∝ I [w ≥ 0] . (11)

Here, I [·] denotes an indicator function, which

has the value one when its argument is true

and zero otherwise. The prior for h is chosen
as uniform between zero and one,

p(h) =

N
∏

n=1

I [0 ≤ hn ≤ 1] . (12)

Our intuition about this model is that w will
take some value greater than the maximum

data point, and hn will indicate the fractional

distance at which xn lies. The prior on w cap-

tures our ignorance about the location of w,
and the prior on hn states that it corresponds

to a proper fraction between zero and one.

Data points can be generated from the model

by first selecting a random w from the prior,

and then for each data point selecting a ran-
dom hn between zero and one. The generated

data, xn, will be uniformly distributed between

0 and w, and in the limit of infinitely many
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data points, intuition says that w can consis-

tently be estimated as the maximum of the
observed data points.

Using Bayes’ rule and collecting multiplicative

constants, the posterior density of w and h is

given by

p(w,h|x) =
1

Z

N
∏

n=1

δ(xn − w · hn)

× I [0 ≤ w]

N
∏

n=1

I [0 ≤ hn ≤ 1] , (13)

where Z is a normalization constant. It is clear

from the posterior, that a MAP estimate of w

and h can be found by choosing any w greater

than the maximum data value, and then choos-
ing hn = xn

w
. Any solution in which the range

[0, w] encapsulates the data, has the same pos-

terior probability density, and the MAP esti-

mate is thus not uniquely defined. For that
reason, the MAP estimate is not particularly

meaningful in this example; however, this is

not because the model is ill defined. The poste-

rior has a ridge of constant probability density,

but in the Bayesian approach we are interested
in probability mass rather than density. In-

sight can be gained by looking at the posterior

marginals, which are found by integrating over

the posterior density. This can be done ana-
lytically in this simple example, but requires

more elaborate methods such as Markov chain

Monte Carlo in the general multidimensional

matrix factorization case.

The marginal density of w is given by

p(w|x) =

∫

RN

p(w,h|x)dh (14)

∝ w−N · I [xmax ≤ w] , (15)

where xmax = maxn(xn). The posterior margin-

al captures the intuition that w must be greater

than the maximum data point, but moreover,
it exhibits a polynomial decay, and thus its

mass is concentrated in the region close to xmax.

In the limit N → ∞, the marginal posterior

will be infinitely peaked at xmax. Similarly, the

posterior marginal of hn is given by

p(hn|x) =

∫

RN

p(w,h|x)dhñdw (16)

∝ hN−2
n · I

[

0 ≤ hn ≤
xn

xmax

]

, (17)

which in the limit N → ∞ is infinitely peaked
at xn

xmax

.

In the multidimensional hyperspectral unmix-

ing problem discussed in this paper, data vec-

tors are modeled as lying inside a K-simplex,
and the objective is to identify the endmem-

bers (the vertices of the simplex). With non-

informative priors, the MAP estimate for this

problem is not unique, as discussed previously,
since any simplex which encapsulates the data

vectors is a MAP solution, analogous to the

simple example above. Using an informative

prior, such as the volume priors discussed pre-

viously, will encourage the simplex to be small,
and thus overcome the problem of a non-unique

MAP solution. As the example above suggests,

when doing full Bayesian inference the non-

uniqueness of the MAP solution is not an issue
of concern — even when using non-informative

priors. The reason is that although the maxi-

mum of the posterior is not unique, the poste-

rior density itself is uniquely determined.

In addition to making the MAP estimate well

determined, the different volume priors sug-

gested in the literature also serve another pur-

pose. Real data from hyperspectral imaging
problems do not in general exactly obey the

linear mixing property, and there might be out-

lying data points, etc. Thus, the regularization

parameter γ in the volume prior can be used

to push the algorithm towards a good solution.
In the following we derive a Bayesian inference

procedure for hyperspectral unmixing, which

incorporates three different volume priors.
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2.2 Model

We model the joint probability distribution of

the endmembers, W , and the fractional abun-
dances, H, as well as the noise, conditioned

on the observed data, X, and a set of model

hyper-parameters, H. To this end we choose a

suitable noise model as well as reasonable prior

distributions over all parameters in the model.

2.2.1 Noise model

We model the noise, ǫ, as independent and
identically distributed white Gaussian noise,

which gives rise to the following likelihood func-

tion,

p(X|W ,H, σ2)

=

N
∏

n=1

M
∏

m=1

N
(

xmn|wm:h:n, σ
2
)

, (18)

where N (x|µ, σ2) = 1√
2πσ

exp
(

(x−µ)2

−2σ2

)

is the

Gaussian probability density function. Note that

the negative logarithm of the likelihood func-

tion corresponds to the squared error criterion

which is the first term in Eq. (3).

The likelihood has a single parameter, the noise

variance, σ2, for which we choose a conjugate

prior, i.e., an inverse-Gamma distribution,

p(σ2|α, β) = IG(σ2|α, β) (19)

=
βα

Γ (α)

(

1

σ2

)α+1

exp

(

−
β

σ2

)

.

(20)

2.2.2 Model of fractional abundances

For the fractional abundances, H, the prior

must enforce non-negativity as well as the con-

straint that the abundances for each pixel must
sum to unity. We choose a uniform prior on the

unit simplex,

p(H) ∝
N
∏

n=1

I

[

K
∑

k=1

hkn = 1

]

K
∏

k=1

I [hkn ≥ 0] ,

(21)

which is arguably the simplest and most nonin-

formative prior that expresses these constraints.

2.2.3 Model of endmembers

We choose a prior distribution for the end-

members, that encourages the simplex spanned
by the estimated endmembers to be small, and

which includes the constraint that each ele-

ment in the endmember matrix must be non-

negative,

p(W |γ) ∝ e−γJw(W )
M
∏

m=1

K
∏

k=1

I [wmk ≥ 0] .

(22)

The reason for choosing a prior proportional
to e−γJw(W ) is that the negative logarithm of

the prior then corresponds to the regulariza-

tion term, γJw(W ), in the cost function de-

fined in Eq. (3). Thus, there is a direct parallel

between the methods discussed in the intro-
duction and our Bayesian probabilistic model.

Specifically, we consider three different volume

measures,

Jpp
w (W ) = det(W⊤W ), (23)

J sv
w (W ) = det(W̃

⊤
W̃ ), and (24)

Jdist
w (W ) =

K
∑

k=1

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

w:k−
1

K

K
∑

k=1

w:k

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

2

2

. (25)

Jpp
w (W ) measures the squared volume of the

parallelepiped defined by the endmembers and

the origin, J sv
w (W ) is (K!)2 times the squared

volume of the simplex spanned by the end-

members, and Jdist
w (W ) measures the sum of

squared distances from the endmembers to their

centroid. We have chosen these three measures

of the simplex volume, because they can all

be written as quadratic polynomials when con-

sidered as functions of a single element wmk,
which is easy to see, since the determinant is

linear in its argument. For this reason, the

prior has the form of a truncated Gaussian,
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when considered as a function of a single el-

ement wmk. This makes it possible to derive
a direct Gibbs sampling procedure, as we de-

scribe in the next section. The parameter γ,

which is common for these three volume priors,

determines the strength of the volume penalty.

In this paper, we study how the strength of vol-
ume prior influences the solutions and in our

experiments we generate sets of solutions for a

range of values of γ as an explorative analysis.

If a single solution is of interest, γ can also be
modeled hierarchically, or a good value for γ

can be found by cross validation or Bayesian

model comparison.

2.2.4 Posterior

Using Bayes’ rule, the posterior is given by

p(W ,H |X,H)

=
p(X|W ,H, σ2)p(H)p(W |γ)p(σ2|α, β)

p(X)
,

(26)

where H = {α, β, γ} are hyperparameters. In
the following we let P = {W ,H, σ2} denote

the parameters of the model.

2.3 Gibbs sampler

A Gibbs sampling procedure [4] can be used to
infer the posterior distribution of the param-

eters of the model, P . In Gibbs sampling, we

sequentially draw samples from the posterior

of each parameter, conditioned on all other pa-
rameters. It can be shown that the sequence of

samples computed constitute a Markov chain

for which the stationary distribution is the pos-

terior in which we are interested. Due to our

choice of priors, we can sample from all con-
ditional distributions directly using standard

methods, which obviates slower sampling pro-

cedures such as rejection sampling.

2.3.1 Sampling the noise variance

Because we have chosen a conjugate prior for

the noise variance, σ2, its conditional distribu-
tion has the same functional form as the prior:

It is an inverse-Gamma,

p(σ2|X,P\σ2) = IG(σ2|ᾱ, β̄), (27)

where the parameters are given by

ᾱ = α+ 1
2NM, (28)

β̄ = β + 1
2

M
∑

m=1

N
∑

n=1

(xmn −wm:h:n)
2
. (29)

Samples from this distribution can be gener-
ated using standard methods.

2.3.2 Sampling fractional abundances

The conditional density of the fractional abun-

dances, H, arises from the product of the Gaus-

sian likelihood and the uniform prior on the

unit simplex and it hence has the form of a
Gaussian constrained to lie on the unit sim-

plex,

p(h:n|X,P\h:n) ∝ N (h:n|µ̄n, Σ̄n)

×
N
∏

n=1

I

[

K
∑

k=1

hkn = 1

]

K
∏

k=1

I [hkn ≥ 0] , (30)

and its posterior conditional parameters are

given by

µ̄n = (W⊤W )−1W⊤x:n, (31)

Σ̄n = σ2(W⊤W )−1. (32)

Samples from the constrained Gaussian den-

sity can be generated using using the method

described by Schmidt [17].
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2.3.3 Sampling endmembers

The conditional distribution of the endmem-

bers, W , arises from the product of the Gaus-
sian likelihood and the volume penalizing prior.

As noted earlier, the conditional prior has the

form of a truncated Gaussian,

p(wmk|P\wmk)

∝ N (wmk|mmk, s
2
mk)I [wmk ≥ 0] , (33)

assuming W satisfies the non-negativity con-

straint. The values of mkm and s2km depend on
the choice of Jw(W ). Using this, the posterior

conditional is a truncated Gaussian

p(wmk|X,P\wmk)

∝ N (wmk|µ̄mk, σ̄
2
mk)I [wmk ≥ 0] , (34)

with parameters given by

σ̄−2
mk = s−2

mk + (hk:h
⊤
k:)σ

−2 (35)

µ̄mk = σ̄2
mk

(

mmks
−2
mk, (36)

+
(

xm:h
⊤
k: −wmk̃H k̃:h

⊤
k:

)

σ−2
)

. (37)

Samples from this distribution can be gener-

ated using the methods described by Geweke [5]

and Schmidt [17]. What is left is to derive ex-

pressions for mmk and s2mk for each of the three
volume measures in Eq. (23–25).

For the determinant based measures, we use

the following expression for the determinant

of a symmetric matrix,

det

[

a b⊤

b C

]

= a det
(

C − 1
a
bb⊤

)

(38)

= a det(C)
(

1− 1
a
b⊤C−1b

)

(39)

= a det(C)− b⊤adj(C)b, (40)

where (38) is the expression for the determi-

nant of a block matrix, (39) follows from the

matrix determinant lemma, and in (40) we have

used the definition of the matrix adjugate. Us-

ing this, for −γJpp
w we arrive at

s−2
mk = γ

(

dk̃k̃ −wmk̃Ak̃k̃w
⊤
mk̃

)

, (41)

mmk = s2mkγwmk̃Ak̃k̃W
⊤
m̃k̃

wm̃k, (42)

where dk̃k̃ and Ak̃k̃ are the determinant and

adjugate of W⊤
:k̃
W:k̃ respectively, and for −γJ sv

w

we get

s−2
mk = γ

(

d̃k̃k̃ − w̃mk̃Ãk̃k̃w̃
⊤
mk̃

)

, (43)

mmk = wmρ + s2mkγw̃mk̃Ãk̃k̃W̃
⊤
m̃k̃w̃m̃k, (44)

where ρ 6= k, and d̃k̃k̃ and Ãk̃k̃ are the deter-

minant and adjugate of W̃
⊤
:k̃W̃:k̃ respectively.

For −γJdist
w we get

s−2
mk = γN−1

N
, mmk = 1

N−1

∑

k′ 6=k

wmk′ . (45)

Details of the derivations can be found in a
technical note at www.ToBePosted.com.

3 Data acquisition and pre-processing

The goal of this work is to develop useful meth-

ods for unmixing hyperspectral images of wheat

kernels. A wheat kernel consists of many dif-

ferent constituents, where the majority is wa-

ter, starch, protein and oil. Hence we expect
to extract 4 − 5 endmembers including back-

ground in our analysis. For the acquisition of

the image, a hyperspectral NIR line scan cam-

era from Headwall is used from 900-1700nm
in 165 bands. Hence each acquired image be-

comes a 3-way tensor of size 320× lines× 165.

Two hyperspectral images of 14 wheat kernels

are acquired on both front and back side, de-

picted in Figure 7.

Fig. 7: The raw acquired image of the front side of the
wheat kernels in pseudo colors.
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Fig. 8: Flowchart of pre-processing pipeline.

Prior to the image data being subjected to our

unmixing algorithm a series of pre-processing
steps are carried out shown in Figure 8.

Initially the peripheral spectral range from 900−
950nm and 1650 − 1700nm are removed due

to the poor signal-to-noise ratio of the cam-

era sensor. Afterwards, the raw image data is
compensated for white reference and dark cur-

rent background spectra to remove light source

characteristics and sensor offset. In order to

suppress noise, each line was scanned twice and

averaged.

The light scattering effects induced in the ob-
served data are in our case compensated in two

steps. First each spectra is converted to ab-

sorbance by a negative log-transform to obey

Lambert-Beer’s law for light transmission. Sec-
ondly a scatter correction step aligns the spec-

tra as shown in Figure 9. As sparse spectral

peaks are not prominent in NIR data, low or-

der scatter correction is applied as the resid-

ual from a first order polynomial fit. This ap-
proach still preserves the simplex structure as

shown in Figure 3.

For our analysis, the individual wheat kernels

are extracted or cropped from the images by

identifying and removing the pure background
pixels from the data set. This segmentation

is achieved by discriminating the first princi-

pal component applied on the image data de-

picted in Figure 10. A few background pixels

are left around the kernel periphery as illus-
trated in Figure 11 in order to capture an en-

tire grain kernel. This further allows the back-

ground to be identified as a single endmember

1000 1100 1200 1300 1400 1500 1600

0.2
0.4
0.6
0.8

Wavelength [nm]

1000 1100 1200 1300 1400 1500 1600
0.2

0.4

0.6

0.8

Wavelength [nm]

Fig. 9: The observed spectra before and after the affine
scatter correction (above and below respectively).
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Fig. 10: Principal component images of the wheat ker-
nel data set with corresponding associated PC spectra
enumerated E1-E5.

1 2 3 4

Fig. 11: A few segmented kernels with a little back-
ground included in the periphery.

component in our subsequent unmixing. The

final hyperspectral image data set is then rep-
resented as an unfolded matrix, X ∈ R

M×N ,

where each M -dimensional column vector x:n

is a pre-processed spectrum of a pixel.

For reference spectra of pure food constituents
(protein, starch and oil) are acquired using the

same camera system and pre-processed as de-

scribed. These measurements can act as refer-
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(b) Zoom showing the clear difference in peak location be-
tween protein and starch.

Fig. 12: Normalized spectra of pure basic food con-
stituents. The water spectrum may suffer from poor
SNR as H2O has extremely high absorption rates from
1400 − 1700nm.

ences in evaluating unmixed spectra and are
shown in Figure 12. Initially the spectral pro-

files of protein and starch appear similar in

most of the wavelength range. The most promi-

nent spectral difference is around 1450-1550nm
as shown in Figure 12(b). Any relocation of

the peak can be used to indicate different pro-

tein/starch mixtures and hence to interpret

unmixing spectral results.

4 Simulations

Our two volume regularized spectral unmixing

algorithms, NMF-Vol and BayesNMF-Volwere

evaluated in a set of simulations using syn-

thetic data with different profiles and known
labels. Next, our BayesNMF-Vol model was

applied to real hyperspectral image data of

wheat kernels.

4.1 Synthetic data

A set of synthetic datasets with different pro-

files of noise levels and dimensionality were

produced with full mixing, i.e. the generated
samples spanned the entire simplex. Several

synthetic datasets were created with different

amount of endmembers, varying data dimen-

sionality, and noise level. The first experiments
have few endmember in a low-dimensional space.

The next include a realistic number of end-

members and data dimensions found in real

hyperspectral images. Our final experiments

are conducted with a small sample size, where
the dimensionality of the data is greater than

the number of samples. Table 1 lists the differ-

ent synthetic data set profiles. Each dataset

was based on uniform distributed randomly
generated endmembers W used to produce dif-

ferent amounts of fractional abundance sam-

ples H.

The samples were generated using the sim-

plex point picking procedure leading to a uni-
form distribution of the generated samples H

over the unit simplex. The procedure exploits

the fact that the simplex can be considered a

Dirichlet distribution with all parameters set

to 1. Initially uniform random samples between
[0; 1] are drawn as huni and processed as h =

−log(huni). They are afterwards scaled to hk,n =

hk,n/
∑

k′ hk′,n, ∀k. Figure 13 illustrates an ex-

ample of a synthetically generated dataset as
a principal component scatterplot5.

The synthetic datasets were initially analyzed

using NMF-Vol with three different regular-

izations; the mvc (5), pp (6) and dist (7) mea-

sures. All algorithms were initialized from ran-
domly selected observed data points among

X and a long exponential range of regular-

ization parameter values γ were applied from

[10−6 − 104]. Finally, the endmember MAP
estimates Wmap for the different regulariza-

tions were found. Similarly, our BayesNMF-

5 All scatterplots in this paper are presented as sub-
space projections onto the first and second PC based
on the data points.
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Table 1: List of synthetic data sets. Boldfaced will be
used for illustration.

Endmembers Dim. Noise Var. Samples
ID K M σ2 N

1 3 3 10−4 3000

2 3 3 10
−3 3000

3 3 150 10
−4 3000

4 3 150 10
−2 3000

5 5 150 10−4 5000
6 5 150 10−3 5000
7 5 150 10

−1 5000
8 5 150 10−4 50
9 5 150 10−3 50
10 5 150 10

−2 50
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P
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2

Fig. 13: Scatter plot of the synthetic data for, 1st and
2nd PC. Note the uniform distribution of the samples
over the unity simplex. (Dots denote data points and
crosses denote endmembers.)

Vol method was applied to the same datasets

with a similar range of appropriate regulariza-

tion. We used the tree different volume pri-

ors; pp (23), sv (24), and dist (25). For each
regularization level we generated 3000 Gibbs

samples and disregarded the initial 2000 sam-

ples as burn in to calculate the posterior mean

endmember estimates. A more thorough sim-
ulation generating 12000 Gibbs samples incl.

2000 burn-in samples were used to produce

and evaluate the credible intervals. Due to the

light regularization latent in the BayesNMF-

Vol algorithm caused by likelihood normaliza-
tion a non-informative prior of γ = 0 was suf-

ficient for this latter simulation.

Results of a subset of our experiments (bold-

face in Table 1) are shown in Figures 14–17 il-

lustrating the converged endmember estimates

for both algorithms with all regularization ap-

proaches and with interconnecting lines for the
different regularization levels. The models suc-

cessfully capture the data structures with more

samples than dimensions and reveal similar per-

formance in endmember extraction W. The

BayesNMF-Vol model successfully captures the
endmembers on par with the three regular vol-

ume regularized NMF models. There is, how-

ever, a clear difference between the two ap-

proaches: With low regularization, the NMF-

Vol methods find endmembers outside the data

simplex, and thus need a suitable regulariza-

tion to give a reasonable answer. This is espe-

cially visible in Figure 14(a). The BayesNMF-

Vol with low regularization gives solutions close
to the true endmembers, and higher regular-

ization tends to shrink the simplex further as

desired. A major advantage is the possibility

to compute credible intervals for the endmem-
bers, as depicted in Figures 14(c)–17(c). This

means the confidence of the estimate can be

evaluated. Increasing the regularization encour-

ages smaller volumes, as expected, but is not

necessarily required for the Bayesian method.
We do expect, however, that it will be useful

in real data to counteract noise and outliers.

In practice the different regularizations all sup-
press the noise to enhance the simplex struc-

ture in the data. Depending on the level of

noise a suitable level of regularization can be

found and hence the unmixing performance
across the parameters are expected to be com-

parable.

The data structures with fewer samples than
dimension are a bit more difficult to unmix as

seen in Figure 17. The estimated endmembers

fluctuate more due to the lack of structural

representation in the small amount of samples.

This is also manifested in the larger variance
for the BayesNMF-Vol method in Figure 17(c).

The differences between the determinant and

distance based volume regularizations, as dis-
cussed in the introduction, is illustrated in Fig-

ure 18. With increasing regularization strength,

the dist prior shrinks toward the center of the
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(a) NMF-Vol showing MAP estimates.
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(b) BayesNMF-Vol with posterior mean endmember es-
timates.
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(c) BayesNMF-Vol zoomed with post. mean endmember
estimates. Bold red line is 90% credible interval.

Fig. 14: Scatterplot of unmixing result with parame-
ters ID = 2,M = 3,K = 3, σ2 = 10−3. Different regu-
larization levels are shown with interconnecting lines.

simplex, whereas both the pp and the sv priors

initially shrink the simplex and eventually col-

lapses the simplex onto a line along the prin-

cipal eigenvector. This result is intuitive, since
the collapsed simplex has zero volume, but still

extends along a direction that can explain the

variance of the data.
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(b) BayesNMF-Vol with posterior mean endmember es-
timates.
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(c) BayesNMF-Vol zoomed with post. mean endmember
estimates. Bold red line is 90% credible interval.

Fig. 15: Scatterplot of unmixing result with parame-
ters ID = 4, K = 3,M = 150, σ2 = 10−2. Different
regularization levels are shown with interconnecting
lines.

4.2 Wheat kernel data

The wheat kernel data comprises of 14 grains,
where 4 are selected with front and back side

to be used for the unmixing, i.e, a total of 8

kernel images. Based on their biological prop-

erties, wheat kernels consists of many differ-

ent constituents, where the majority is water,
starch, protein and oil, i.e. we expect to ex-

tract 4 − 5 endmembers incl. background in

our analysis.
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(b) BayesNMF-Vol with posterior mean endmember es-
timates.
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(c) BayesNMF-Vol zoomed with post. mean endmember
estimates. Bold red line is 90% credible interval.

Fig. 16: Scatterplot of unmixing result with parame-
ters ID = 7,K = 5,M = 150, σ2 = 10−1. Different
regularization levels are shown with interconnecting
lines.

A set of reference concentrations for the con-

stituents are unfortunately not available, so

we perform a subjective evaluation of the un-

mixing results. The 4 kernels may suffer from
only small variations in the protein level be-

tween the pixels, which means that there is

a strong correlation with other constituents.

In such case the spectral profile of protein is

almost impossible to extract. Principal com-
ponent scatterplots of the wheat kernel data

suggest a simplex structure of 3-4 components

as illustrated in Figure 19.
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(b) BayesNMF-Vol with posterior mean endmember es-
timates.
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(c) BayesNMF-Vol zoomed with post. mean endmember
estimates. Bold red line is 90% credible interval.

Fig. 17: Scatterplot of unmixing result with parame-
ters ID = 10, K = 5,M = 150, σ2 = 10−2. Differ-
ent regularization levels are shown with interconnect-
ing lines.

The BayesNMF-Vol algorithm was initialized

with pp regularized NMF-Vol endmember esti-
mates in order to avoid unnecessary long burn-

in periods. The pp prior was also chosen for

the unmixing and a suitable prior parameter, γ

was found empirically through manual exper-

iments. Figure 20 shows the estimated poste-
rior mean endmembers for K = 4 endmembers

and 10000 Gibbs samples having disregarded

initial 10000 burn-in samples.
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Fig. 18: Scatterplot of unmixing result with parame-
ters ID = 3, K = 3,M = 150, σ2 = 10−4.
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Fig. 19: PCA scatter plot of the wheat kernel data
indicating a strong simplex structure in the first 3 PC.
This suggests 3−4 endmembers latent in the data set.

The spectral profiles of the endmembers, illus-

trated in Figure 21(a), shows how the 2nd and

4th spectra designate the starch and protein

content. The most prominent difference is the
position of the peak at appr. 1450nm. indicat-

ing different mixtures of protein and starch as

compared with the reference measurements in

Figure 12(b).

Of the 4 kernels (front and backside) a single

decomposed wheat kernel is illustrated in Fig-

ure 21(b). Initially the background has been

extracted by the model as the 1st component.
The protein and starch spectral profile have

also been identified very clearly along with a

spatial distribution in the 2nd and 4th com-

ponent. Similarly the oil in the germ part can

be identified primarily from the spatial distri-
bution. Finally the residual reveals very little

structure suggesting a successful decomposi-

tion.
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(a) Scatterplot of estimated simplex.
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(b) Zoomed, bold red line is 90% credible interval.

Fig. 20: BayesNMF-Vol analysis of wheat kernel data.
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(b) Image components of an unmixed wheat kernel as the
posterior means.

Fig. 21: The 2nd and 4th extracted spectral endmem-
ber (green and cyan) are easily identified as starch/pro-
tein matrix comparing to figure 12.
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4.3 Discussion

All the volume based NMF methods described

show light sensitivity to the number of com-

ponents, K. If K is too large, excessive com-
ponents are typically split up in two. In con-

trast component will be merged if K is too

small. We have found that the regularization

terms / priors based on the volume as com-

puted using the determinant has a sometimes
fatal sensitivity to linear dependencies among

the estimated endmembers leading to a col-

lapsing volume. This can occur if the number

of components K used in the analysis is greater
than the true number of components in the

data. In such situation, the excess endmem-

ber can cause the simplex to collapse and the

volume regularization will be rendered inop-

erative. The euclidian distance based volumes
does not suffer from the same issue as it simply

shrinks the volume according to the strength

of the regularization/ prior. It can also occur

that a strong regularizations, i.e. large value
of γ, leads to a collapse of the volume, as it is

never allowed to expand and capture the data.

A useful approach to estimate the true amount

of endmembers K is to conduct a regular PCA

scatterplot and evaluate the required number
of components to capture the simplex struc-

ture. Prior knowledge can also be used such as

general biological properties for wheat kernels

for instance, similar to our analysis in section
4.2.

In addition, our BayesNMF-Vol algorithm con-

ducts light regularization in it self on the es-

timated endmembers as discussed. For a flat

prior distribution p(W) with γ = 0, the Bayes-

NMF-Vol still encourages small volumes and
does not necessarily require regularization to

give meaningful results. This also means the

observed data point may not be encapsulated

entirely when using BayesNMF-Vol with γ = 0.

The synthetic data we used were limited to
full mixing profiles, where the entire simplex

is spanned with generated samples. In many

real world datasets this might not always be

true, as for our wheat kernel dataset for in-

stance. Future improvement would therefore
be to generate synthetic dataset with differ-

ent mixing profiles to evaluate our methods

performance in this area.

Both the NMF-Vol and BayesNMF-Vol are

available as a Matlab toolbox with a few ex-

amples at http://www.ToBePosted.com.

5 Conclusion

We have proposed a Bayesian method for spec-

tral unmixing, employing a volume based prior

suitable for hyperspectral image analysis of foods.

Results on synthetic data sets indicate simi-
lar or better unmixing performance compared

to existing volume regulated NMF models and

can further give credible intervals.

In addition we have identified known issues

and limitations to our methods and proposed

several remedies and approaches to circumvent

them. This has further given rise to improve-
ments and future work.

In a concrete food application of decomposing
wheat kernels into constituents our methods

prove successful and can be used as part of

assessment of the quality of foods.
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