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Abstract

Latent structure in complex networks, e.g., in the form of community structure,
can help understand network dynamics, identify heterogeneities in network prop-
erties, and predict ‘missing’ links. While most community detection algorithms
are based on optimizing heuristic clustering objectives such as the Modularity, it
has recently been shown that latent structure in complex networks is learnable by
Bayesian generative link distribution models (Airoldi et al., 2008, Hofman and
Wiggins, 2008). In this paper we propose a new generative model that allows rep-
resentation of latent community structure as in the previous Bayesian approaches
and in addition allows learning of node specific link properties similar to that in
the modularity objective. We employ a new relaxation method for efficient infer-
ence in these generative models that allows us to learn the behavior of very large
networks. We compare the link prediction performance of the learning based ap-
proaches and other widely used link prediction approaches in 14 networks ranging
from medium size to large networks with more than a million nodes. While link
prediction is typically well above chance for all networks, we find that the learn-
ing based mixed membership stochastic block model of Airoldi et al., performs
well and often best in our experiments. The added complexity of the LD model
improves link predictions for four of the 14 networks.

1 Introduction

A community is traditionally defined as a densely connected subset of nodes that is sparsely linked
to the remaining network. Latent structure in complex networks, e.g., in the form of community
structure, can help understand network dynamics, identify link density heterogeneities, and pre-
dict ‘missing’ links, therefore a large number of algorithms have been proposed. Most community
detection algorithms are based on heuristic clustering objectives such as Hamiltonian and Modu-
larity optimization [3, 10, 9, 8]. The Hamiltonian optimization problem is typically formulated as
minimizing− trace[S(A−B)S>] whereA is the n×n network’s adjacency matrix,B is a back-
ground ‘null hypothesis’ matrix of the same size as A and S a c× n clustering assignment matrix.
For Modularity optimization Bi,j = Ei,j

|A| kikj where Ei,j = 1 − δi,j and ki =
∑

j Ai,j such
that communities are defined by regions of link densities above that expected based on the nodes
degree distribution [9, 8]. Other common choices for B include B = m

n2E where m = |A|, i.e.
communities are defined by link densities above that expected on average [3, 10]. A drawback of
Modularity and Hamiltonian optimization is that they are based on heuristic null hypotheses that
are not adapted to the actual network. Recently, generative models for complex networks have been
proposed in [5] (here referred to as the H&W model) and in [1] ( the mixed membership stochas-
tic block model MMSB). Both approaches are based on links distributed according to independent
Bernoulli draws where the probability of a given link between node i and j is conditioned on latent
variables representing community structure. The two existing generative models do not take into
account node specific properties such as the degree in the clustering process, as is key to some of
the heuritics methods. While H&W assumes a within group link probability ρc and between group
link probability ρn the MMSB model assumes specific between group probabilities parameterized
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by a between group link probability matrix P of size c × c where c is the number of communities.
Both approaches are based on Bayesian inference. Common to the optimization of the Modularity,
Hamiltonian, H&W model and MMSB model are that they can be expressed in terms of what we
define as the generalized Hamiltonian for graph clustering (GHGC). Thus, the computational bot-
tleneck for all the models is the optimization of GHGC with respect to the clustering assignments
having a computational cost of O(cm). In this paper we demonstrate that the hard assignments
optimization problem of the GHGC can be relaxed to efficient standard continuous optimization over
the simplex such that hard assignments are recovered at stationarity. Within the GHGC framework
we propose a generalization of the MMSB model to take into account node specific properties in the
clustering process - in particular, we propose a new link density model (LD) that is able to take node
degree into account during the learning process. Based on the exact continuous relaxation of the
GHGC we analyze a variety of large scale complex networks and compare the Modularity, Hamil-
tonian, H&W model, MMSB model and LD model in terms of their capability to infer the inherent
structure of networks based on their ability to predict links not seen during the learning process.

2 Methods

We define the generalized Hamiltonian for graph clustering (GHGC) as

H(S) = −
N∑

n=0

trace[SB(n)S>J (n)] +
∑

j

h>j sj s.t. B
(n)
i,i = 0∀n, i. (2.1)

Here J (n) denotes couplings between groups, B(n) denotes couplings between nodes and hj the
potential of node sj where S is a binary clustering assignment matrix. N we will refer to as the
order of the GHGC.

We note that existing community detection approaches can be expressed by the GHGC. For example
the Hamiltonian and Modularity objectives correspond to a zero order GHGC1, i.e. N = 0. In
particular, there are only couplings between groups of same cluster-membership. The negative log-
likelihood of the H&W model (see also [5]) as well as the MMSB can both be expressed as a first
order GHGC2, i.e. N = 1.

Efficient Optimization ofH(S)
Finding S mounts to optimizing the GHGC which can be achieved through standard annealing ap-
proaches and various variants of Gibbs sampling (see also [1, 5, 6] and references therein). The
drawback of annealing approaches are that they are dependent on some problem specific cooling
scheme while Gibbs sampling can be prohibitively slow. Optimizing H(S) with respect to the as-
signment matrix S (i.e. MAP-estimation) is in general a NP-hard binary combinatorial optimization
problem. Despite this, the following theorem states that we can invoke standard continuous opti-
mization3 yet recover binary solutions at stationary solutions of the equivalent problem relaxed to
the simplex.
Theorem 1. A (local) optimum of the continuous optimization problem

arg min
S
H(S)− δ trace(SS>) s.t. S ≥ 0,

∑
c

sc,j = 1

is a binary 1-spin stable configuration for δ > 0.

The full proof is left out for brevity but follows by deriving the stationary solutions of the continuous
optimization problem and proving that these are 1-spin stable solutions, i.e. a single flip of assign-
ment form suboptimal configurations. The term δ trace(S>S) is merely a technicality invoked to
resolve potential ties and needless to say is negligible for small δ. In table 2 comparison between
the proposed continuous optimization approach denoted MAP∆ with Gibbs sampling is given. From

1J(0) = I , hj = 0∀j B(0) = A− m
n2 E and B

(0)
i,j = Ai,j − Ei,j

|A| kikj respectively
2B(0) = A and B(1) = E − A, J

(0)

c,c′ = log
P c,c′

1−P c,c′
, J

(1)

c,c′ = log (1− P c,c′), where P H&W =

ρcI + ρn(1 − I). In both models clustering assignments sj are drawn from a multinomial parameterized by
µ resulting in the potential hj = −2 log µ∀j

3We used a standard projected gradient approach.
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the figure it can be seen that the proposed continuous optimization identify better solutions than
traditional MAP estimation based on assigning nodes to their most likely cluster. While modeling
the parameter uncertainty in general improves learning of latent structure the proposed continuous
optimization is computationally efficient and form also an efficient burn in method for sampling
approaches.

The Link Density Model
An attractive property of the models proposed in [1, 5] are their generative nature, i.e. their ability
to generate synthetic networks according to the statistical models imposed. However, the models
operate with link probabilities parameterized by properties based on the grouping of the network
and as such disregard properties at the node level. As such nodes that have low degree tend to cluster
together regardless of their link properties. By assuming that the probability of a link between nodes
in the network are formed by independent Bernoulli draws given by properties both of the grouping
P c(i),c(j) ∈ [0; 1] where c(i) and c(j) denotes the assigned cluster of node i and j according to the
MMSB model as well as node to node specific properties Ri,j ∈ [0; 1] and that these two properties
are independent we get the following parameterization of the probability for a link between node i
and j in the network Bern(Ai,j |P c(i),c(j)Ri,j). After some rearrangement and using the fact that
log(1− α) = −

∑∞
n=1 α

n/n we find for the log-likelihood of the observed network

logP (A|R,P ) =
∑

i,j Ai,j log (Ri,jP c(i),c(j)) + (Ei,j −Ai,j) log (1−Ri,jP c(i),c(j)) =
Ai,j log (Ri,jP c(i),c(j))− (Ei,j −Ai,j)

∑∞
n Rn

i,jP
n
c(i),c(j)/n ≡

∑∞
n=0 trace[S>B(n)SJ (n)].

We approximate log(1− α) by its second order expansion forming a 3rd order GHGC, i.e. N = 3 4.
The above model is over-complete asRi,j has as many free variables as links and non-links observed
in the graph. Therefore strong assumptions have to be imposed to make the model identifiable
in general. We use the outer product representation Ri,j = rirj to enable a node specific link
probability, e.g. as in the Modularity objective, but with ri a new free parameter. As such, nodes
with a very low number of links can potentially be included in a cluster with high link density if this
is the cluster of greatest preference of the node. We will in the following denote this model the link
density model (LD) as the model both take into account the varying densities between groups (as in
the MMSB model) but also node specific link densities (i.e. node degree).

In figure 2 is given a simple graphical representation of the proposed link density model (LD), where
the H&W and MMSB are special cases5 that do not take into account node specific properties in the
generative model. The hyper-parameters of the model, i.e. P , r and π can be inferred through vari-
ational Bayesian inference, Gibbs sampling or maximum a posteriori (MAP) estimation. We used in
the following if not otherwise stated variational Bayesian inference to estimate the hyper-parameters
P and π of the H&W, MMSB and LD model by imposing non-informative conjugate Beta and
Dirichlet priors on these model parameters respectively and MAP estimation to infer r and S.

Figure 2: Graphical representation of the link density model (LD). The
node assignment is drawn from a multinomial while links and non-links
between node i and j (Ai,j) are drawn according to a bernoulli distribu-
tion given byBern(Ai,j |Ei,jP c(i),c(j)) where P denotes the probability
of links occurring between communities c(i) and c(j) according to the
MMSB. Ri,j gives the probability of links at the node level between node
i and j. We assume Ri,j = rirj such that node specific link probabilities
can be taken into account during the clustering process. The model can
be expressed in the form of the GHGC. Priors on all the latent parameters
can further be imposed (not shown).

Properties of the MMSB and LD model
Since both the H&W, MMSB and LD models are generative it is fairly transparent what types of
network dynamics the models are suitable for. Contrary to the H&W the MMSB and LD models can
account for variability in link densities between the groups of nodes and the LD model can further
account for potential variations in the degree distributions of the nodes. In particular, the interpre-
tation of each entry P c,c′ of P denote the observed density of links between groups of nodes (for

4B
(0)
i,j = Ai,j log(Ri,j), J(0) = 1, B

(1)
i,j = Ai,j , J (1) = log P , Bn+1 = −(Ei,j − Ai,j)R

n
i,j ,

J
(n+1)

c,c′ = P n
c,c′/n for n > 0

5Note that we here for brevity have disregarded potential links generated by noise as described in [1].
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non-informative priors). As such the following properties of networks can be modelled:
Communities: Communities constitute regions of high density in the network between nodes with
same cluster membership, i.e. P c,c > P c,c′∀c′ 6= c.
Satellites: constitute regions where nodes within same cluster have low density but have high den-
sity with at least another group c, i.e. ∃c′ : P c,c < P c,c′ .
Overlapping groups: The degree of overlap between groups of nodes are given by P c,c′ . Further-
more, we define the overlap coefficient Λc,c′ = P c,c′√

maxc′′ P c,c′′ maxc′′ P c′,c′′
indicating the between

group ratio relative to the most strongly connected group to c and c′. This coefficient takes value
between 0 and 1 where 0 indicate no connectivity between the groups whereas 1 indicate that this is
the most prominent relation for both groups.
Hierarchy: The matrix P as well as the overlap coefficient Λ can be considered a similarity matrix
from which group hierarchies can be inferred.
Node degree distributions: ri is a free parameter that can take into account the node specific degree
distribution during the clustering process.
Both the MMSB and the LD model share the first four important properties that are a result of the
between and within group densities parameterized by P . The properties above are illustrated in
figure 3 and demonstrated on a real network in figure 5.

Figure 3: Top panel: Illustration of the LD model. Based on the adjacency matrix of the network the
MMSB and LD model simultaneously estimate the grouping of nodes S and densities between groups
of nodes P . As a result the network is modeled as blocks defining regions with varying probabilities
for the occurrence of links. The LD model further account for varying degree distribution of the
nodes by R = r>r resulting in the overall link probabilities within the network given to the right.
Bottom panel: While communities in the MMSB and LD models corresponds to rows and columns
of P where the diagonal element contain the largest density, the MMSB and LD model can account
for groups that we denote satellites. Satellites are given by nodes that have little within group
connectivity compared to the connectivity to some of the other groups in the network. Overlap
between groups of nodes are naturally accounted for by the between group link densities P c,c′ and
as such the derived between and within group density matrix P can be considered a measure of
similarity between groups from which group hierarchies can be inferred. Finally, for the LD model
the parameter r can take properties of node degree into account in the clustering process.

Evaluating Network Models by Link Prediction
Cross-validation is a well established framework to evaluate model performance in terms of gener-
alization error. Recently, link-prediction has been proposed for the evaluation of models for com-
plex networks [2, 4]. Within the GHGC link prediction can be inferred by treating some of the
links and non-links as missing in the model estimation process. Let W be an indicator matrix of
links and non-links treated as missing (for prediction) in the model estimation. These missing val-
ues can straightforward be ignored in the model estimation process (i.e., marginalized) by setting
B

(n)
i,j = B

(n)
i,j −B

(n)
i,j W i,j in the expression of the GHGC. This changes the computational cost to

O(cmax(|A|, |W |)). To get a large number of links for prediction in the testing process without
introducing a heavy computational cost in the marginalization process we set the number of missing
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] nodes ] links r c L ρ

H&W model 8,800 687,272 0.7027 0.039 2.741(0.026) 8.9e-3
MMSB model 8,800 1,181,692 0.8612 0.062 2.623(0.032) 15.3e-3
LD model 8,800 1,484,592 0.4589 0.096 2.623(0.070) 19.2e-3
Yeast Network 2,284 13,292 -0.0991 0.134 4.388(0.244) 2.5e-3
US Power 4,941 13,188 0.0035 0.080 19.883(0.668) 5.4e-4
Erdos02 5,534 16,944 -0.0399 0.079 3.881(0.004) 5.5e-4
Free Assoc. 10,617 127,576 -0.0720 0.119 3.908(0.132) 1.1e-3
Reuters911 13,314 296,076 -0.1090 0.368 3.060(0.098) 1.7e-3
Wordnet3 31,867 240,798 -0.0911 0.029 7.196(0.319) 2.4e-4
Dictionary28 39,327 178,076 0.7080 0.222 7.809(0.507) 1.2e-4
CondPhys2005 39,577 351,386 0.1863 0.650 4.559(0.505) 2.2e-4
Internet 124,650 387,240 -0.0078 0.062 11.476(0.630) 2.5e-5
IMDB 896,308 115,025,018 0.2002 0.790 3.589(0.125) 1.4e-4
Patents 3,774,768 29,941,533 0.1071 - 8.5683(0.2259) 2.1e-6

corr(k, rLD)

H&W model 0.713(3)
MMSB model 0.690(2)
LD model 0.762(5)
Yeast Network 0.399(10)
US Power 0.505(12)
Erdos02 0.401(21)
Free Assoc. 0.351(5)
Reuters911 0.309(9)
Wordnet3 0.140(11)
Dictionary28 0.510(8)
CondPhys2005 0.126(7)
Internet 0.171(11)
IMDB 0.100(15)
Patents -

Table 1: Left Table: Properties of the analyzed networks. r denotes the networks assortativity, c
denotes the clustering coefficient [11], L the average shortest path and ρ the density of the network.
The average shortest path measure was calculated as the average of 10 samples of up to 10,000 links
in the network disregarding non-existing paths between nodes (in parenthesis is given the standard
deviation of this mean over the samples). Right Table: Correlation between node degree distribution
and the estimated node specific parameter r of the LD model. Given are the average correlation over
10 model estimations as well as the standard deviation on the last digit. Clearly, there is a significant
correlation for all the networks.

links and non-links to be the same. This can potentially introduce a small model bias as the link
to non-link ratio of the full network and training network no longer will be exactly the same. In
the next section we compare the performance of the Modularity, Hamiltonian, H&W, MMSB and LD
models in terms of their ability to predict links. For completion we include the following commonly
used non-parametric link prediction scoring methods:

Degree Product: αi,j = kikj Shortest Path: αi,j = minp{(Ap)i,j > 0}
Common Neighbour: αi,j = a>i aj Jaccard: αi,j = a>i aj/(ki + kj − a>i aj)

As performance measure of the various link prediction approaches we will use the area under curve
(AUC) of the receiver operating characteristic (ROC) proposed in [2] which is a measure that is
invariant to the ratio of links to non-links used for prediction.

3 Results

We analyzed a variety of benchmark network data given in table 1. The H&W, MMSB and LD
datasets were generated according to their respective generative model using 7 clusters of varying
sizes ranging from 500 to 2000 nodes. Directed as well as weighted networks were turned undirected
and un-weighted for the analysis disregarding link directions and weights 6. It is an open problem
how many clusters to expect in the data we set cmax = 50 for all the analysis. The algorithms were
terminated when there was no change of assignment in S or when 500 iterations had progressed.

From the right of table 1 it can be seen that there is a significant positive correlation between node
degree and the estimated value of r in the LD model for all the networks analyzed by the model.

In table 3 the mean link prediction performance (i.e. mean AUC value) over 10 random splits for
the various link prediction approaches7 using a total of up to cmax = 50 clusters is given. In each of
the analysis 1 % of links as well as an equivalent number of non-links (both randomly chosen) were
treated as missing8. In half of the analysis the MMSB and LD model are the best performing methods
for predicting links and when outperformed this is by non-parametric methods such as the shortest
path method. In particular, when comparing table 3 with table 1 this is the case when the average
shortest path length between nodes in the network is large. Thus, the MMSB and LD model perform

6We note that the proposed approach readily generalize to the analysis of directed and weighted networks.
Directed networks can potentially be modelled by asymmetric link densities(i.e., P 6= P> whereas weighted
networks can be considered networks where multiple links have been drawn between the nodes of the network.
These types of analysis is however out of the scope of the present paper.

7Due to the large sizes of the IMDB and Patents networks we only ran 3 runs for these two networks and
did not include a LD analysis for the Patents network.

8For the small networks Yeast , US Power and Erdos02 we treated 5% instead of 1% as missing to have a
reasonable validation data set size
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AUC MAP MAP4 Gibbs MAP4 → Gibbs GibbsAll MAP4 → GibbsAll

Reuters911 0.937(3) 0.944(2) 0.944(2) 0.946(2) 0.944(2) 0.947(2)
Wordnet3 0.712(9) 0.740(8) 0.820(7) 0.804(5) 0.832(5) 0.805(6)
Dictionary28 0.780(8) 0.813(5) 0.851(8) 0.836(6) 0.859(5) 0.835(5)
CondPhys2005 0.837(8) 0.892(2) 0.907(1) 0.908(2) 0.909(2) 0.907(2)

cpu-time (seconds) MAP MAP4 Gibbs MAP4 → Gibbs GibbsAll MAP4 → GibbsAll

Reuters911 44.55(5.29) 27.15(1.91) 334.51(3.40) 104.68(2.08) 388.46(4.12) 116.37(2.22)
Wordnet3 37.27(4.17) 39.36(2.20) 763.80(5.70) 184.53(2.40) 813.92(7.43) 187.43(2.58)
Dictionary28 34.84(1.90) 41.61(1.67) 1068.13(7.19) 244.38(2.59) 1147.90(9.00) 251.03(2.84)
CondPhys2005 84.70(7.30) 130.76(5.63) 1413.74(14.59) 420.51(5.80) 1548.65(21.55) 430.98(6.20)

Table 2: Comparison of the proposed MAP∆ estimation approach based on continuous optimization
to regular MAP estimation (i.e. assigning nodes to their most likely cluster) and sampling of S and
all model parameters (i.e. Gibbs and Gibbsall) for the MMSB model [1] for the four medium sized
networks using different random initialization. Given are the mean AUC values as well as their
standard deviations on the last digit given in parenthesis across 10 data splits with randomly chosen
links and non-links treated as missing (for the sampling approaches we used 400 iterations for burn in
and 100 iterations for parameter estimation). At the bottom the mean Matlab cpu-time and standard
deviation (in seconds) for each of the methods can be found. MAP and MAP∆ converged in general
in less than 100 iterations.

in general very well except when the nodes of the graphs are far apart rendering all the community
detection approaches unable to well detect group structure.

In figure 4 examples of the results obtained by permuting graphs according to the various community
detection approaches are given. Comparing the correlation between the median node degree within
the nodes of each cluster with the node density of each cluster there is a significant difference
between the obtained correlations of the MMSB and LD model. Thus, as expected the LD model has
a less tendency to cluster nodes together based on their degree properties as this can be accounted
for by the additional parameter r. In figure 5 we illustrate how hierarchies and group interactions
between communities and so-called satellites can be derived from the estimation of P for the MMSB
and LD models. Since the LD model to a lesser extend group nodes according to their node degree
fewer satellites are observed in the analysis.

Degr. Prod. Short. Path Com. Neigh. Jaccard Hamilt. Modularity H&W MMSB LD
H&W model 0.627(5) 0.788(7) 0.827(8) 0.828(8) 0.869(2) 0.867(3) 0.873(2) 0.868(2) 0.872(1)
MMSB model 0.621(5) 0.786(5) 0.840(5) 0.845(5) 0.866(2) 0.856(6) 0.861(3) 0.892(1) 0.888(1)
LD model 0.690(2) 0.688(2) 0.834(3) 0.825(3) 0.866(2) 0.866(2) 0.870(1) 0.904(1) 0.905(1)
Yeast Network 0.783(6) 0.795(9) 0.675(9) 0.675(9) 0.640(13) 0.599(14) 0.573(9) 0.836(7) 0.794(9)
US Power 0.449(10) 0.795(6) 0.474(13) 0.474(13) 0.479(12) 0.489(13) 0.544(13) 0.407(8) 0.506(9)
Erdos02 0.586(9) 0.580(9) 0.584(5) 0.559(8) 0.530(15) 0.460(11) 0.377(12) 0.954(3) 0.873(22)
Free Assoc. 0.845(6) 0.877(5) 0.856(6) 0.854(6) 0.766(11) 0.632(8) 0.609(6) 0.902(5) 0.872(4)
Reuters911 0.928(3) 0.892(4) 0.929(3) 0.910(3) 0.728(8) 0.601(5) 0.766(4) 0.942(2) 0.935(2)
Wordnet3 0.602(6) 0.613(6) 0.356(4) 0.356(4) 0.507(8) 0.463(7) 0.481(6) 0.795(8) 0.658(8)
Dictionary28 0.808(5) 0.917(4) 0.776(4) 0.744(5) 0.644(6) 0.633(4) 0.678(6) 0.865(6) 0.894(3)
CondPhys2005 0.790(3) 0.963(2) 0.964(1) 0.965(1) 0.737(8) 0.689(5) 0.463(12) 0.909(2) 0.924(1)
Internet 0.604(5) 0.745(4) 0.501(4) 0.501(4) 0.662(4) 0.672(5) 0.607(8) 0.695(5) 0.663(5)
IMDB 0.918(1) 0.980(5) 0.998(0) 0.997(1) 0.864(2) 0.857(2) 0.861(2) 0.965(2) 0.974(1)
Patents 0.766(1) 0.946(3) 0.743(5) 0.743(5) 0.770(1) 0.768(1) 0.696(14) 0.889(1) -

Table 3: Link prediction performance of the various methods on the 14 networks. Given are the
mean AUC values as well as their standard deviations on the last digit given in parenthesis across 10
data splits with randomly chosen links and non-links treated as missing. In bold black is given the
best performing approach and in underline the best performing community detection approach. The
Hamiltonian was based on average link density as the imposed null hypothesis, i.e. B = m

n2E. All
clusters were modelled with cmax = 50.

4 Discussion

We have demonstrated that a wide range of existing community detection approaches for com-
plex networks can be posed as an optimization of the generalized Hamiltonian for graph clustering
(GHGC). We further proved how the optimization of GHGC with respect to the clustering assignment
matrix S can be efficiently solved by continuous optimization based on an exact relaxation to the
simplex of the GHGC. We compared a variety of community detection approaches in their ability to
predict links within the GHGC framework including the proposed link density model (LD) that can
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Figure 4: Permuted graphs obtained from the clustering assignments derived from the various com-
munity detection approaches shown for the Reuters911 and CondPhys2005 networks. Clearly, both
the MMSB and LD models are able to split the graph into blocks of varying link densities. It further
appears that the LD model to a lesser extend group nodes with low link degree together. As such the
average correlation between median degree of the nodes and the estimated link density of the group
for the MMSB model vs. the LD model are 0.900(33) vs. 0.704(33) and 0.874(4) vs. 0.686(16) for
the two displayed networks respectively. Notice, despite that it appears the LD model has better split
the Reuters911 network into separate parts the model does not predict links as well as the MMSB
model.

account for node degree in the clustering process. This analysis demonstrated that the MMSB model
and the proposed LD model are superior in extracting inherent structures of networks compared to
Modularity and Hamiltonian optimization as well as the H&W model given in [5]. This performance
we believe to be due to the models ability to account for overlap between groups of nodes, so-called
satellites formed by nodes with little inter-connectivity relative to the connectivity to other groups in
the network as well as the ability to model cluster hierarchies, i.e. the MMSB and LD model explic-
itly quantify cluster similarities. The LD model is able to account for node degree in the clustering
process, however, compared to the MMSB the proposed LD model improve the predictions only for
a few of the networks but results for the majority of the networks in a less adequate description of
the data. Whether this is a result of the model being more prone to local minima due to the extra set
of parameters to be estimated is an open question.
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MMSB (CondPhys2005)

LD (CondPhys2005)

Figure 5: Visualization of the MMSB (at the top) and LD (at the bottom) results for the CondPhys2005
collaboration network. Given are in the top panels the permuted network adjacency matrix, the log
link probabilities as well as the derived Λ defining communities and satellites in the networks. In
the bottom panels are shown the derived between group dynamics. Here outer boxes indicate groups
that are satellites, inner circles groups that form communities, and blue links between community
relations, red links within satellite connection and gray links between community and satellite rela-
tions. Width of connections indicate their strength whereas the sizes of the boxes and circles the log
size of the satellites and communities respectively. To the bottom right is given the derived group
hierarchies. As can be seen the LD models ability to take into account the nodes degree distribution
has reduced the number of satellites extracted as nodes that have few links are not necessarily forced
into the same low density group in the clustering process.
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