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Abstract

Estimating the adequate number of components is an important yet difficult
problem in multi-way modelling. We demonstrate how a Bayesian framework
for model selection based on Automatic Relevance Determination (ARD) can be
adapted to the Tucker and CP models. By assigning priors for the model param-
eters and learning the hyperparameters of these priors the method is able to turn
off excess components and simplify the core structure at a computational cost of
fitting the conventional Tucker/CP model. To investigate the impact of the choice
of priors we based the ARD on both Laplace and Gaussian priors corresponding
to regularization by the sparsity promoting l1-norm and the conventional l2-norm,
respectively. While the form of the priors had limited effect on the results ob-
tained the ARD approach turned out to form a useful, simple, and efficient tool for
selecting the adequate number of components of data within the Tucker and CP
structure. For the Tucker and CP model the approach performs better than heuris-
tics such as the Bayesian Information Criterion, Akaikes Information Criterion,
DIFFIT and the numerical convex hull (NumConvHull) while operating only at
the cost of estimating an ordinary CP/Tucker model. For the CP model the ARD
approach performs almost as well as the core consistency diagnostic. Thus, the
ARD framework is a simple yet efficient tool for the estimation of the adequate
number of components in multi-way models. A Matlab implementation of the
proposed algorithm is available for download at www.erpwavelab.org.

1 Introduction
Tensor decompositions are in frequent use today in a variety of fields including psy-
chometrics (28), chemometrics (29; 35), image analysis (40), web data mining (1),
bio-informatics (30), neuroimaging (25; 3), and signal processing (34). Tensors, i.e.,
X ∈ CI1×I2×...×IN , also called multi-way arrays, multidimensional matrices or hy-
permatrices are generalizations of vectors (first order tensors) and matrices (second or-
der tensors). The two most commonly used decompositions of tensors are the Tucker
model (39) and the more restricted Canonical Decomposition (CandeComp) and Par-
allel Factor Analysis (PARAFAC) model proposed independently by (11, 16). We will
presently denote the CandeComp/PARAFAC model CP.
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The Tucker model reads

Xi1,i2,...,iN ≈ Ri1,i2,...,iN =
∑

j1j2...jN

Gj1,j2,...,jN A(1)
i1,j1

A(2)
i2,j2
· ... ·A(N)

iN ,jN
.

where G ∈ CJ1×J2×...×JN and A(n) ∈ CIn×Jn . To indicate how many vectors pertain
to each modality it is customary also to denote the model a Tucker(J1, J2, . . . , JN ).
Using the n-mode tensor product ×n (23) given by

(Q×n P)i1,i2,...,jn,...iN =
∑
in

Qi1,i2,...,in,...iN Pjn,in ,

the model is stated as

X ≈ R = G ×1 A(1) ×2 A(2) ×3 ...×N A(N).

The Tucker model represents the data spanning the nth modality by the vectors (load-
ings) given by the Jn columns of A(n) such that the vectors of each modality interact
with the vectors of all remaining modalities with strengths given by a so-called core
tensor G. As a result, the Tucker model encompasses all possible linear interactions
between vectors pertaining to the various modalities of the data. The CP model is a
special case of the Tucker model where the size of each modality of the core array G is
the same, i.e., J1 = J2 = · · · = JN while interaction is only between columns of same
indices such that the only non-zero elements are found along the diagonal of the core,
i.e., Gj1,j2,...,jN 6= 0 iff j1 = j2 = ... = jN . Thus, the CP model can be expressed
as a Tucker model with diagonal core. In particular, by appropriate scaling of each
component the CP model can be expressed as a Tucker model with unit diagonal core,
i.e. GCP = I. The Tucker model can in turn be expressed as the CP model by dupli-
cating components of different indices to form additional CP components (17). Notice,
in the Tucker model a rotation of a given loading matrix A(n) can be compensated by
a counter rotation of the core G, i.e., G ×n A(n) = (G ×n P−1) ×n (A(n)P). For
the CP model it is not possible in general to rotate the loadings and still keep the core
diagonal. Thus, the CP model is in general unique up to scale and permutation (22).

As the CP model corresponds to the Tucker model with diagonal core – Tucker
decompositions in which only some off diagonal elements are non-zero can be consid-
ered a representational interpolation between the Tucker and CP decomposition, see
also figure 1. Hence, whereas the Tucker model encompass all potential interaction
between the components of each modality through the core array G, the CP model only
allow for interactions between columns of A(n) with same indices. The sparse Tucker
model can be considered a model between the Tucker and CP model where interac-
tions are present within a few of the components across the various modalities. Several
strategies exist for simplifying the Tucker core. In (20) the Tucker solution was rotated
such that the Tucker core would have as many small loadings as possible while in (26)
the core was regularized penalizing deviation from sparsity on the core. Thus, by reg-
ularizing the Tucker model excess components can be turned off and the Tucker core
be simplified. We will presently estimate the adequate degree of regularization by a
Bayesian approach named Automatic Relevance Determination (ARD). Two types of
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Figure 1: Illustration of the Tucker model (to the left), sparse Tucker model (in the
middle) and CP model (to the right).

regularization will be considered; the sparsity promoting l1 regularization as well as the
more conventional l2 ridge regression regularization. The approach readily generalize
to the CP model and will also here be used to estimate the number of components.

Choosing the right model is in particular challenging in the Tucker model as the
number of components is specified for each modality separately. This renders heuris-
tics such as the DIFFIT (38), Numerical Convex Hull (12), Bayesian Information Crite-
rion (BIC) (33) and Akaikes Information Criterion (AIC) (2) as well as cross-validation
approaches (8; 36) computationally expensive as J1J2 · · · Jn models have to be evalu-
ated. Furthermore, while model selection for the CP model has been guided by heuris-
tics based on the Core Consistency Diagnostic (10), no such heuristics exist for the
Tucker model. In 2-way analysis it is common to evaluate the eigenvalue spectrum
and truncate the singular value decomposition (SVD). Although this approach does
not have a straightforward multi-linear counterpart (13) approximate approaches have
been given forming the fastDIFFIT (19). However, this approach can not account for
additional constraints such as non-negativity. In conclusion, no efficient approach for
the estimation of the number of components in the Tucker model is known. Thus, the
aim of this paper is

• to use regularization to turn off excess components in the CP and Tucker model
and thereby select the model order and simplify the core (as proposed in (26)).

• to optimize the amount of regularization from data.

• to achieve these objective at the cost of estimating a conventional multi-way
model.

We will use a standard approach in Bayesian inference referred to as Automatic Rele-
vance Determination (ARD) (24; 6; 31). Traditionally, ARD has been based on Gaus-
sian priors yielding a ridge regression type of selection. Here, we will derive an ARD
approach both based on the Gaussian prior as well as the Laplace prior to understand
better the role of priors on the models found. Contrary to Gaussian priors, the Laplace
prior favors sparse representations hence attempts to minimize the number of non-zero
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elements within the active components of the model (14). Optimizing for sparse rep-
resentation is related to the classic rotation criteria such as VARIMAX (18) and max-
imum Likelihood independent component analysis (ICA) based on sparse priors (27).
However, rather than rotating an estimated solution, the estimation process is directly
posed as a tradeoff between simplicity of the representation and fitting the data. Thus,
a sparse representation is strongly related to the principle of parsimony, i.e., among
all possible accounts the simplest is considered the best (27). If no formal prior infor-
mation is given parsimony can be considered a reasonable guiding principle to avoid
overfitting, see also (27) and references therein.

The paper is structured as follows. In section 2 we will establish the traditional
Tucker model in a Bayesian framework and assign priors to all loadings as well as the
core array. Based on maximum a posteriori (MAP) estimation we will both estimate
the model parameters as well as the parameters controlling the degree of regularization,
hence indirectly the model order. In section 3 we will investigate the performance of
the proposed approach both in finding the underlying components of data with Tucker
structure as well as data with CP structure. Comparison to existing model order selec-
tion heuristics will be given.

2 Methods

2.1 Notation
In the following X(n) is the n-mode matricized version of the tensor X where the n-
mode matricizing operation turn the array X I1×I2×...×IN into a matrix, i.e.,
XIn×I1...In−1In+1...IN

(n) . The Frobenius and 1-norm of a tensor will be denoted by

‖X‖2F =
∑

i1,i2,...,in

X 2
i1,i2,...,in and |X |1 =

∑
i1,i2,...,in

|Xi1,i2,...,in |, (1)

while X\jn will denote X with the jn’th slab removed – this notation also holds for
vectors and matrices which can be considered 1st and 2nd order tensors. Using the
n-mode multiplication we will define the reconstructed data according to the Tucker
modelR with the A(n)’th loading removed by

(R×n A(n)†) = G ×1 A(1)×2, · · · ×n−1 A(n−1) ×n+1 A(n+1) . . .×N A(N),

where A(n)† denotes the Moore-Penrose pseudo inverse. When A(n) has full column
rank we will use the left side otherwise we will use the right hand side of the expression
to calculate (R×n A(n)†).
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Algorithm 1 Tucker estimation based on Alternating Least Squares (ALS)

1: set J1, J2, . . . , Jn and initialize by random A(n) for n = 1, 2, . . . , N
2: repeat
3: Q = A(1) ⊗A(2) ⊗ . . .⊗A(N)

4: vec(G)← solve(vec(X ),Q)
5: R = G ×1 A(1) ×2 A(2) ×3 . . .×N A(N)

6: for n=1:N do
7: Z(n) = (R×n A(n)†)(n)

8: A(n) ← solve(X(n),Z(n))
9: R(n) = A(n)Z(n)

10: end for
11: until convergence

2.2 Tucker estimation based on Alternating Least Squares
Using the n-mode matricizing and Kronecker product operation the Tucker model can
be written as

X(n) ≈ R(n) = A(n)Z(n),

vec(X ) ≈ vec(R) = vec(G)Q, where

Z(n) = G(n)(A(N) ⊗ ...⊗A(n+1) ⊗A(n−1) ⊗ ...⊗A(1)) = (R×n A(n)†)(n),

Q = A(1) ⊗A(2) ⊗ . . .⊗A(N).

Traditionally, the Tucker model has been estimated using various types of alternating
least squares algorithms (4; 21). By alternating least squares the model estimation re-
duces to a sequence of regular matrix analysis problem where each mode is updated
keeping the loadings of the remaining modes fixed. As a result, for least squares mini-
mization the estimation problem can be solved by pseudo-inverses, i.e.

A(n) ← X(n)Z
†
(n),

G ← X ×1 A
(1)† ×2 A

(2)† ×3 ...×N A(N)† .

The alternating least squares (ALS) algorithm for Tucker model estimation is given
in algorithm 1. We denote the update of A(n) and G formed by the regular linear
regression subproblems by solve(·, ·). For unconstrained optimization the solution is
simply found by pseudo-inverses. However, if A(n) or G are constrained to be non-
negative the problem becomes a standard quadratic programming problem. The con-
vergence of the algorithm we defined as a relative change in the sum of squared error
(SSE = ‖X−R‖2F ) less than 10−9 or when 500 iterations had progressed. We note that
while the estimation of each mode keeping the other modes fixed is a convex optimiza-
tion problem, the joint estimation of all model parameters is a non-convex optimization
problem hence potentially prone to local minima.
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2.3 Model selection based on AIC, BIC, DIFFIT NumConvHull
and Core Consistency Diagnostic

In model selection Akaike’s Information Criterion (AIC) and the Bayesian Information
Criterion (BIC) have traditionally been used as simple approximations to the expecta-
tion of the negative log likelihood and the model evidence respectively (2; 33). Here,
the number of components are selected such that the following two quantities are min-
imized

AIC = −2 logL+K = S log
SSE
S

+K

BIC = −2 logL+K logS = S log
SSE
S

+K logS

Where L is the likelihood of the model, K is the number of parameters in the model,
and S =

∏
n In the number of data points. For least square estimation this reduces

to the expressions to the right where SSE is the sum of squared error. Thus, the crite-
ria defines a tradeoff between reduction in reconstruction error and complexity of the
model. Notice that BIC tends to penalize model complexity more heavily than AIC,
hence, gives a more conservative estimate of what is considered the best model.

For the Tucker model the DIFFIT procedure (38) has been proposed to estimate the
adequate number of components. In the DIFFIT procedure, all potential models are
evaluated and the mth model where m =

∑
n Jn given byRm with the best explained

variance, i.e. ExpVar(m) = 1− ‖X−R
m‖2F

‖X‖2F
calculated. The DIFFIT for themth model

is then calculated as

DIF(m) = ExpVar(m)− ExpVar(m− 1)
DIFFIT(m) = DIF(m)/DIF(m+ 1)

And the model with largestDIFFIT value taken to be the most adequate model when
disregarding DIFFIT values based on too small values of DIF (38; 19). Hence, the op-
timal model is given by the model that has the largest contribution to the explained
variance relative to consecutive models corresponding to the region of maximal cur-
vature in the graph of {m,ExpV ar}. An approximate evaluation of DIFFIT forming
the fastDIFFIT (19) is given by evaluating the eigenvectors of X(n) for all n-modes
and take the best modelsRm formed by the HOSVD (23). Notice, for a 3-way Tucker
model, m = 3 (i.e. a Tucker (1,1,1) ) and m = 4 (i.e. for instance given by a Tucker
(2,1,1)) pose the same modeling ability thus m = 4 is ignored. A refinement of the
above approach correcting for the number of free parameters (FP) for the pth Tucker
model FP(p) =

∑
n InJn +

∏
n Jn −

∑
n J

2
n form the numerical convex hull (Num-
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ConvHull)1 approach (12) given by

FPDIF(p) = FP(p)− FP(p− 1)

NumConvHull(p) =
DIF(p)/FPDIF(p)

DIF(p+ 1)/FP(p+ 1)
.

The approach is motivated by inspecting the convex hull formed by the plot {FP,ExpVar},
i.e. inspecting data points with largest explained variance (ExpVar) relative to degrees
of freedom (FP) such that p index over the solutions forming the convex hull. The
maximal NumConvHull indicates the region of maximal curvature in the convex hull
and as such indicates the optimal tradeoff between improvement in fitting data rela-
tive to number of additional free parameters used in the model. For the CP model
FP (d) = d

∑
n In where d = J1 = . . . = Jn such that FPDIF(d) =

∑
n In hence

the approach reduces to the regular DIFFIT procedure.
For the CP model the core consistency has been used as a heuristic to access the

adequate number of components (10). The core consistency measures the degree of
cross-talk between the components of the CP model by estimating the corresponding
Tucker model core G given the CP loadings, i.e.

CorConDiag = 100 · (1−
∑
i1,i2,...,in

(Gi1,i2,...,in − Ii1,i2,...,in)2∑
i1,i2,...,in

I2
i1,i2,...,in

)

Where G is estimated as

G ← X ×1 A
(1)†

CP ×2 A
(2)†

CP ×3 ...×N A(N)†

CP .

A
(n)
CP is the n-mode loadings of the CP solution. Since the Tucker model encompass

all potential interactions between components of the various modes non-zero values
in the off-diagonal of the Tucker core indicate that structure in components of dif-
ferent indices over the modalities can combine resulting in so-called cross-talk. Too
many components will result in a strong degree of cross-talk across the loadings of
the modes thus will yield a low value of the CorConDiag. Too few components on
the other hand will exhibit a low degree of cross-talk. Thus, a heuristic for the “cor-
rect” number of components is taken to be just before a major drop-off in the graph of
{d,CorConDiag}(10) where d = J1 = J2 = . . . = Jn.

2.4 Automatic Relevance Determination for Multi-way models
Automatic Relevance Determination (ARD) is a hierarchical Bayesian approach widely
used for model selection (24; 31; 6). In ARD hyperparameters explicitly represents the

1The number of free parameters is given by the number of elements in the factors of each mode and core,
i.e. first and second term of FP subtracted the reduction in degrees of freedom due to the orthonormality
constraints (third term). When imposing sparsity or non-negativity the loadings are no longer necessarily
orthogonal. Therefore, the degrees of freedom should no longer be subtracted the third term. As a result,
a better definition of FP would here be the number of non-zero elements in the loadings and core. Since
the original definition of FP, FP without subtracting the orthonormality term as well as FP given by the
number of non-zero elements in core and loadings all shared the same best model for the analyzed data the
NumConvHull results reported are for the original formulation of FP given in (12).
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relevance of different features by defining the range of variation for these features,
usually by modeling the width of a zero-mean Gaussian prior imposed on the model
parameters. If the width becomes zero, the corresponding feature cannot have any
effect on the predictions. Hence, ARD optimizes these hyperparameters to discover
which features are relevant. While ARD based on Gaussian priors can prune excess
components Gaussian priors do not in general admit sparse representation within the
active components hence does not necessarily favor simple parsimonious representa-
tions. The reason being that the l2-regularization penalizes elements by their squares
and as such penalizes large values relatively more than small values. The Laplace
prior on the other hand is known to admit sparse representation as it corresponds to a
l1-regularization thus is the closest convex proxy to minimizing for the number of non-
zero elements in the model (14). Due to their different nature, we will both consider
the Gaussian as well as the Laplace priors on the model parameter θd, i.e.

PGaussian(θd|αd) =
∏
j

(αd
2π

) 1
2

exp[−αd
2
θ2j,d]

PLaplace(θd|αd) =
∏
j

αd
2

exp[−αd|θj,d|].

In a Bayesian framework, the least squares objective

SSE = ‖X −R‖2F =
∑

i1,i2,...,in

(Xi1,i2,...,in −Ri1,i2,...,in)2,

corresponds to minimizing the negative log-likelihood assuming the entries in X are
independent, identically distributed (i.i.d.) with Gaussian noise, i.e.

P (X|R, σ2) =
∏

i1,i2,...,iN

1√
2πσ2

exp[− (Xi1,i2,...,iN −Ri1,i2,...,iN )2

2σ2
]

= (2πσ2)−
I1I2···IN

2 exp[−‖X −R‖
2
F

2σ2
].

In the following we derive an algorithm for estimating both the number of components
as well as the model parameters of the Tucker model based on ARD. We note that the
corresponding CP algorithm is derived by fixing the core G = I.

Assigning Laplace or Gaussian priors for the loadings and core we get

PLaplace(A(n)|α(n)) =
∏
d

(
α

(n)
d

2

)In

exp[−α(n)
d |A

(n)
d |1],

PLaplace(G|αG) =
(
αG

2

)J1J2···Jn

exp[−αG |G|1],

PGaussian(A(n)|α(n)) =
∏
d

(
α

(n)
d

2π

) In
2

exp[−
α

(n)
d

2
‖A(n)

d ‖
2
F ],

PGaussian(G|αG) =
(
αG

2π

) J1J2···Jn
2

exp[−α
G

2
‖G‖2F ].
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In a hierarchical Bayesian framework we could further assign priors on the hyper-
parameters α(n) and αG (see also (37)), however, we will here use simple uniform
(noninformative) priors on the hyper-parameters. As a result, the posterior can be
written as

L = P (G,A(1),A(2), . . . ,A(N)|X , σ2,αG ,α(1),α(2), . . . , ,α(n))
∝ P (X|R, σ2)P (G|αG)P (A(1)|α(1))P (A(2)|α(2)) · · ·P (AN |α(N)).

Thus the negative log likelihood using Gaussian priors is proportional to

− logL ∝ const.+
1

2σ2
‖X −R‖2F +

1
2

∑
n

∑
D

α
(n)
d ‖A

(n)
d ‖

2
F + αG‖G‖2F

+
1
2
I1I2 · · · IN log σ2 − 1

2

∑
n

∑
d

In logα(n)
d − 1

2
J1J2 · · · Jn logαG ,

and using Laplace priors proportional to

− logL ∝ const.+
1

2σ2
‖X −R‖2F +

∑
n

∑
d

α
(n)
d |A

(n)
d |1 + αG |G|1

+
1
2
I1I2 · · · IN log σ2 −

∑
n

∑
d

In logα(n)
d − J1J2 · · · Jn logαG .

Notice, how first line corresponds to a l2-regularized and l1-regularized least squares
problem respectively while the normalization constants in the likelihood terms are
given in the second lines. It is due to these normalization terms that it is possible
to learn the values of σ2, α(n) and αG .

To solve for the l2-regularized parameters is equivalent to the regular ridge regres-
sion problem, i.e.

1
2σ2
‖X−AS‖2F +

1
2

∑
d

αd‖Ad‖2F ,

which has the solution

A = XS>(SS> + σ2 diag(α))−1.

To solve for the l1-regularized parameters on the other hand form the regular sparse
regression problem also denoted the LASSO or Basis Pursuit De-noising (BPD), i.e.

1
2σ2
‖X−AS‖2F +

∑
d

αd|ad|1,

which has the solution

A = (XS> − σ2 sign(A) diag(α))(SS>)−1.

For a review of approaches to solve this sparse regression problem see (27). In the
following we will simply write A ← solveSparse/Ridge(X,S, σ2α) when solving for
the parameters either by sparse or ridge regression.
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Differentiating the negative log likelihood with respect to the so-called hyperpa-
rameters and equating the derivatives to zero we get the following parameter updates
using Gaussian priors

σ2 = ‖X−R‖2F
I1I2···IN

, α
(n)
d = In

‖A(n)
d ‖

2
F

, αG = J1J2...JN

‖G‖2F
.

and using Laplace priors

σ2 = ‖X−R‖2F
I1I2···IN

, α
(n)
d = In

|A(n)
d |1

, αG = J1J2...JN

|G|1 ,

According to the above updates σ2 can technically be learned from the data. However,
estimating σ2 from data has a tendency of underestimating the value of σ2 due to over-
fitting, i.e. the models ability to fit noise. We therefore used the following more viable
approach to set σ2: Let X = R + E and assume the signal modeled R and the noise
E are uncorrelated – we then have ‖X‖2F = ‖R‖2F + ‖E‖2F . As a result, the signal to

noise ratio (SNR) is given by SNR = 10 log ‖R‖
2
F

‖E‖2F
= 10 log ‖X‖F−‖E‖2F

‖E‖2F
. Assuming

the noise is normal i.i.d. we have ‖E‖2F = σ2
∏
n In = σ2S (where S =

∏
n In),

therefore
σ2 = ‖X‖2F /(S(1 + 10SNR/10)). (2)

In all the experiments we used a fixed value of SNR = 0dB assuming the same degree
of signal as noise in the data. However, in figure 2 we investigated the impact of the
choice of SNR.

The algorithm for ARD Tucker estimation is given in algorithm 2. Notice, how
the updates of the hyper-parameters correspond to setting the hyper-parameters of the
priors such that they match the posteriors distribution as derived in (15). Furthermore,
the model selection, i.e. the updates of the hyper-parameters, comes at practically no
extra computational cost compared to the ordinary Tucker ALS algorithm. As a result,
the cost per iteration of the ARD Tucker is the same as for the ordinary ALS Tucker
algorithm.

A few notes to the algorithm: When imposing non-negativity constraints on A(n)

and G the prior is no longer given by the Laplace but the exponential distribution.
However, this only changes the normalization constant by a constant hence does not
change the updates. Similarly, the Gaussian prior becomes a rectified Gaussian i.e.
the corresponding distribution derived by setting the density of the Gaussian to zero in
regions where parameters are negative. Thus, despite the Gaussian being a conjugate
prior to the least squares error (i.e., the posterior distribution is also Gaussian), the
rectified Gaussian as well as the Laplace prior are not conjugate and can as such not be
integrated analytically to estimate the mean and covariance of the posterior (6). As a
result, all parameter estimates are based on maximum a posteriori (MAP) estimation.
We kept α = 0 for the first 25 iterations to avoid basing the ARD on too poor model
estimates. For components that had become zero or close to zero we set α = 1

ε where
ε = 10−9. For further details on the algorithm consult the matlab implementation
available for download at www.erpwavelab.org.

In general the crux of the ARD approach is that it estimates an optimal tradeoff
between optimizing the likelihood of the data and the likelihood of the model parame-
ters. Thus, as for the existing heuristics such as BIC, AIC, DIFFIT and NumConvHull
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Algorithm 2 Tucker estimation based on Automatic Relevance Determination (ARD)
1: set J1, J2, . . . , Jn large enough to encompass all potential models,
2: σ2 = ‖X‖2F /(S(1 + 10SNR/10))
3: set αG = 0, α(n) = 0 and initialize by random A(n) for n = 1, 2, . . . , N
4: repeat
5: Q = A(1) ⊗A(2) ⊗ . . .⊗A(N)

6: vec(G)← solveSparse/Ridge(vec(X ),Q, σ2αG)
7: Sparse : αG = min{J1J2···JN

|G|1 , 1
ε }, Ridge : αG = min{J1J2···JN

‖G‖2F
, 1
ε }

8: R = G ×1 A(1) ×2 A(2) ×3 . . .×N A(N)

9: for n=1:N do
10: Z(n) = (R×n A(n)†)(n)

11: A(n) ← solveSparse/Ridge(X(n),Z(n), σ
2α(n))

12: Sparse : α(n)
d = min{ Jn

|A(n)
d |1

, 1
ε }, Ridge : α(n)

d = min{ Jn

‖A(n)
d ‖

2
F

, 1
ε }

13: If α(n)
jn

= 1
ε then Jn = Jn − 1, A(n) = A(n)

\jn , G = G\jn , α(n) = α
(n)
\jn

14: R(n) = A(n)Z(n)

15: end for
16: until convergence

there is an inherent tradeoff between fitting the data and model complexity invoked by
the regularization terms formed by the model parameter priors. As such, BIC, AIC and
NumConvHull can be regarded approaches where model complexity is measured with
respect to the l0-norm, i.e. by the number of free model parameters. However, whereas
the existing heuristics has to evaluate all potential models the ARD approach prune
excess components and learn the model order at the cost of fitting one regular Tucker
model. Since σ2 and α weights the importance of the likelihood of the data and model
parameters in the objective respectively - good estimates of these parameters are the
crux for the ARD approach to work well. Finally, the better the noise model as well
as component priors fit the true structure of the data the better the ARD framework
will work. We note that as for the regular ALS Tucker estimation the ARD Tucker
algorithm is potentially prone to local minima.

3 Results
We analyzed a total of five different datasets two with Tucker structure and 3 with CP
structure. The data with CP structure were both analyzed based on the ARD TUCKER
and the ARD CP model. We note again that the CP model is simply formed by set-
ting the Tucker core G = I. We compared the estimated number of components by the
ARD approach to the estimated number of components found by the DIFFIT, NumCon-
vHull, Bayesian Information Criterion, Akaikes Information Criterion and for the CP
model also the Core Consistency Diagnostic. To compare the impact of the choice of
prior we fitted the models both using Gaussian as well as Laplace priors based on iden-
tical initializations. We further investigated the impact of choice of SNR. For brevity

11



we will denote the analysis based on Gaussian priors – ridge ARD, and Laplace priors
– sparse ARD.

3.1 Data
Synthetic Data: A data set with Tucker(3,4,5) structure was randomly generated with
size 30 × 40 × 50. All the factors as well as the core array were drawn from a nor-
mal N(0,1)-distribution, i.e. with zero mean and variance 1. Gaussian i.i.d. noise was
added to the data such that SNR = 0dB.
Flow Injection Analysis: This data set is described in (29; 35) and is given by the
absorption spectra over time for three different chemical analytes measured in 12 sam-
ples with different concentrations, i.e. 12(samples)×100(wavelengths)×89(times),
ideally this dataset form a Tucker(3,6,4) model.
Amino Acid Fluorescence: This data set is described in (9) and contains the excitation
and emission spectra of five samples of different amounts of tyrosine, tryptophane and
phenylalanine forming a 5(samples)× 51(excitation)× 201(emission) array. Hence
the data can be described by a three component CP model.
Sugar process data: This data set contain emission and excitation spectra measure-
ments in 265 samples forming a 265(samples) × 571(emissions) × 7(excitations)
array (7). The data was in (7) modeled by a four component CP model where the
number of components were estimated based on an extensive split half analysis.
Dorrit fluorescence data: This data set contains the emission and excitation spectra
of 27 synthetic samples containing different concentrations of four chemical analytes
forming a 27(samples) × 551(emissions) × 24(ecitations) array (32). The data is
adequately modeled by a four component CP model.
Since the components of the four chemometrics data sets are non-negative the esti-
mated models for these data were constrained to be non-negative.

3.2 ARD Tucker analysis
In figure 2 the impact of the choice of signal to noise ratio SNR is investigated. For
the synthetic data a clear break point around SNR = 0dB is found such that lower
SNR values identify the correct model order for both sparse and ridge ARD Tucker
whereas higher SNR values makes the ARD approach completely fail in identifying
the correct number of components as the model fit noise. A similar behavior is found
for the remaining data sets. Namely that high SNR values tend to over-estimate the
number of components whereas low SNR values perform more stable. As such, the
exact choice of SNR seem to have little impact on the model order found as long as
SNR is not set too large. Thus, when there is no prior information as to the true SNR
of the data it seems to be better to use low estimates of the SNR rather than large SNR
values as large SNR values has a tendency to use too many components hence overfit
the data. In the following analysis we set SNR = 0dB.

In table 1 is given the result running 20 ARD Tucker(10, 10, 10) models both using
sparse ARD and ridge ARD. From the table it can be seen that both the sparse and ridge
ARD Tucker correctly identifies a Tucker(3, 4, 5) component model for the synthetic
data. A Tucker(3, 4, 2) and Tucker(3, 4, 3) model for the FIA data respectively hence

12



Figure 2: Analysis of the impact of choice of SNR (in dB) on the models identified.
Top row gives the mean number of components over 10 runs for each data set of each
mode for various choices of SNR using the sparse ARD Tucker. Bottom row gives the
corresponding analysis based on the ridge ARD Tucker.

correctly identifying the number of analytes but describing the underlying spectra and
time courses by a mixture of fewer components. For the Amino Acid Fluorescence both
sparse and ridge ARD Tucker correctly identifies a Tucker(3, 3, 3) component model
and for the sugar process a Tucker(1, 4, 4) component model correctly identifying the
number of emission and excitation spectra. For the Dorrit data both models identify a
Tucker(8, 4, 6) component model hence correctly identifying four emission spectra but
wrongfully identifying too many sample components and excitation spectra.

In figure 3 is given the estimated cores for the best sparse and ridge ARD Tucker
models. The cores are sorted according to the norm of each slab in each direction, i.e.
such that ‖X(1,:,:)‖>F ‖X(2,:,:)‖2F > ... > ‖X(J3,:,:)‖2F , ‖X(:,1,:)‖2F > ‖X(:,2,:)‖2F >
... > ‖X(:,J2,:)‖2F , ‖X(:,:,1)‖2F > ‖X(:,:,2)‖2F > ... > ‖X(:,:,J3)‖2F . Clearly, regu-
larization has removed excess components and reduced the non-zero elements in the
core. However, the choice of regularization, i.e. sparse (l1-regularization) or ridge (l2-
regularization), seem to only have limited effect on the estimated model order as well
as the structure of the cores.

In table 2 and 3 is given the result when estimating the number of components of the
Tucker model based on DIFFIT, BIC and AIC and in table 4 the results obtained using
the NumConvHull approach. For the synthetic data both DIFFIT, NumConvHull and
BIC correctly identifies the Tucker(3, 4, 5) component model whereas AIC fails and
overestimates the number of components. In The Flow Injection analysis data DIF-
FIT underestimated the number of components indicating a Tucker(1, 1, 1) whereas
NumConvHull as for the sparse ARD approach indicate a Tucker(3, 4, 2) model. Both
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Synthetic Data
(J1, J2, J3) ]Sparse log PSparse ]Ridge log PRidge

(3, 4, 5) 20 −1.4007 · 105 18 −1.3709 · 105

(10, 10, 10) 0 - 2 −1.4361 · 105

Flow Injection Analysis
(J1, J2, J3) ]Sparse log PSparse ]Ridge log PRidge

(3, 4, 2) 9 2.9938 · 105 1 2.8122 · 105

(3, 4, 3) 7 2.9858 · 105 6 2.8273 · 105

(3, 5, 3) 0 - 11 2.8181 · 105

(4, 4, 3) 4 2.9861 · 105 2 2.8170 · 105

Amino Acid Fluorescence Analysis
(J1, J2, J3) ]Sparse log PSparse ]Ridge log PRidge

(3, 3, 3) 17 −2.5500 · 105 18 −2.7767 · 105

(4, 3, 3) 2 −2.5535 · 105 2 −2.7799 · 105

(5, 3, 3) 2 −2.5639 · 105 0 -
Sugar Process
(J1, J2, J3) ]Sparse log PSparse ]Ridge log PRidge

(1, 4, 4) 10 −3.2450 · 105 11 −3.5894 · 105

(1, 4, 5) 7 −3.2452 · 105 9 −3.5908 · 105

(1, 4, 6) 2 −3.2495 · 105 0 -
(2, 4, 4) 1 −3.3080 · 105 0 -

Dorrit
(J1, J2, J3) ]Sparse log PSparse ]Ridge log PRidge

(8, 4, 6) 4 −1.5272 · 106 2 −1.5720 · 106

Table 1: ARD Tucker analysis based on sparse ARD Tucker and ridge ARD Tucker of
the Synthetic Data, Flow Injection analysis data, Amino Acid Fluorescence data, Sugar
Process data and Dorrit data. 20 models based on a Tucker(10, 10, 10) component
model were fitted for each data set. Given are the estimated models, number of models
estimated and the likelihood of the best of each model estimated. The best model is
given by the model with largest logP value indicated in bold. For the Dorrit data we
have only given the best of the 20 estimated models.
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Figure 3: The estimated cores for the five datasets based on sparse ARD Tucker top
row and ridge ARD Tucker bottom row. Gray boxes correspond to positive values and
white to negative values in the core. The size of the boxes indicate the amplitude of
each entry in the core.

AIC and BIC wrongfully estimates a Tucker(4, 5, 5) model. For the Amino Acid Fluo-
rescence DIFFIT and NumConvHull correctly indicate a Tucker(3,3,3) model whereas
both BIC and AIC overestimates the number of components indicating a Tucker(5, 4, 4)
model. For the Sugar Process both DIFFIT and NumConvHull underestimates the
number of components indicating a Tucker(1, 1, 1) and Tucker(1, 2, 2) respectively
and for the Dorrit data DIFFIT again underestimates the model order indicating a
Tucker(2, 2, 1) model whereas NumConvHull indicates a Tucker(5, 3, 4) model cor-
rectly identifying the number of components of the third mode. BIC and AIC over-
estimates the number of components for the Sugar Process and Dorrit data as both
approaches indicate that the largest estimated Tucker(5, 5, 5) models are the most ap-
propriate.

3.3 CP ARD analysis
We finally analyzed the three data set with CP structure by fixing the core in the ARD
Tucker to be diagonal (G = I). In figure 4 the estimated number of components for the
three data sets can be found using the CorConDiag, DIFFIT/NumConvHull, BIC, AIC
and sparse as well as ridge ARD CP. Notice how both BIC and AIC as for the Tucker
analysis fail in estimating the adequate number of components. This is because the
Tucker model and in particular the CP model are highly restricted models using only
a few parameters to model a large amount of data. Thus, the complexity terms in BIC
and AIC grows in general more slowly than the improvement in log(SSE) thus they
tend to favor too complex models. The Core Consistency Diagnostic correctly iden-
tifies 3 components in the amino acid fluorescence data, 3-4 components in the sugar
process data and 4 components in the Dorrit fluorescence data. The DIFFIT and Num-
ConvHull correctly indicates a 3 component model for the amino acid fluorescence
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Synthetic data
m (J1, J2, J3) VarExp DIF DIFFIT BIC AIC
3 ( 1 , 1 , 1 ) 0.15389 0.15389 1.40732 278900 277690
5 ( 1 , 2 , 2 ) 0.26323 0.10935 4.14367 271620 269480
6 ( 2 , 2 , 2 ) 0.28962 0.02639 0.53081 269806 267325
7 ( 2 , 2 , 3 ) 0.33934 0.04971 1.91710 266047 263026
8 ( 2 , 3 , 3 ) 0.36527 0.02593 0.72668 264150 260669
9 ( 2 , 3 , 4 ) 0.40096 0.03569 0.70940 261294 257254

10 ( 3 , 3 , 4 ) 0.45126 0.05031 1.21855 256494 252033
11 ( 3 , 4 , 4 ) 0.49254 0.04128 3.41348 252373 247392
12 ( 3 , 4 , 5 ) 0.50464 0.01209 17.01277 251608 246007
13 ( 4 , 4 , 5 ) 0.50535 0.00071 0.86549 252072 245971
14 ( 4 , 5 , 5 ) 0.50617 0.00082 0.99170 252632 245931
15 ( 5 , 5 , 5 ) 0.50700 0.00083 - 253137 245885

Flow Injection Analysis
m (J1, J2, J3) VarExp DIF DIFFIT BIC AIC
3 ( 1 , 1 , 1 ) 0.84522 0.84522 10.06226 -641869 -644006
5 ( 1 , 2 , 2 ) 0.92922 0.08400 4.14987 -723206 -727374
6 ( 2 , 2 , 2 ) 0.94946 0.02024 0.86437 -758993 -763330
7 ( 2 , 3 , 2 ) 0.97287 0.02342 1.30707 -824256 -829693
8 ( 2 , 4 , 2 ) 0.99079 0.01792 3.85675 -938422 -944960
9 ( 3 , 4 , 2 ) 0.99544 0.00465 2.15369 -1013167 -1019916

10 ( 3 , 4 , 3 ) 0.99759 0.00216 1.58609 -1080327 -1088145
11 ( 3 , 5 , 3 ) 0.99895 0.00136 6.96039 -1167958 -1176929
12 ( 4 , 5 , 3 ) 0.99915 0.00020 1.05747 -1189701 -1198957
13 ( 4 , 5 , 4 ) 0.99933 0.00018 4.61202 -1214552 -1224962
14 ( 4 , 5 , 5 ) 0.99937 0.00004 - -1219905 -1231468
15 ( 5 , 5 , 5 ) 0.99937 0.00000 - -1219477 -1231431

Amino Acid Fluoresence
m (J1, J2, J3) VarExp Dif DIFFIT BIC AIC
3 ( 1 , 1 , 1 ) 0.64390 0.64390 3.23061 585439 582752
5 ( 2 , 2 , 1 ) 0.84321 0.19931 8.60608 537453 532672
6 ( 2 , 2 , 2 ) 0.86637 0.02316 0.44808 528371 522938
7 ( 3 , 2 , 2 ) 0.91806 0.05169 0.74407 498490 492967
8 ( 3 , 3 , 2 ) 0.98752 0.06946 5.85020 385395 377797
9 ( 3 , 3 , 3 ) 0.99940 0.01187 875.40179 200603 192304

10 ( 3 , 3 , 4 ) 0.99941 0.00001 0.10839 199984 190983
11 ( 4 , 4 , 3 ) 0.99953 0.00013 2.61932 187135 176561
12 ( 4 , 3 , 5 ) 0.99958 0.00005 0.95627 179767 169864
13 ( 5 , 4 , 4 ) 0.99963 0.00005 - 173789 162232
14 ( 5 , 5 , 4 ) 0.99963 0.00000 - 176225 162453
15 ( 5 , 5 , 5 ) 0.99963 0.00000 - 177173 162539

Table 2: DIFFIT, BIC and AIC analysis of the Synthetic data, Flow Injection anal-
ysis data and Amino Acid Fluorescence data. All combinations of models up to a
Tucker(5, 5, 5) component model were evaluated (for the analysis of the Flow Injec-
tion Analysis data we also included the Tucker(3, 6, 4) model which turned out to be
less optimal than the Tucker(4, 5, 4) model). Given are the best models obtained from
3 runs. 16



Sugar Process
m (J1, J2, J3) VarExp Dif DIFFIT BIC AIC
3 ( 1 , 1 , 1 ) 0.94985 0.94985 26.28563 591595 588138
5 ( 1 , 2 , 2 ) 0.98599 0.03614 10.66366 465543 461424
6 ( 2 , 2 , 2 ) 0.98938 0.00339 1.89336 441145 434168
7 ( 1 , 3 , 3 ) 0.99117 0.00179 0.52446 420419 415618
8 ( 2 , 3 , 3 ) 0.99458 0.00341 3.38900 375058 367346
9 ( 3 , 3 , 3 ) 0.99559 0.00101 0.68470 357814 347191

10 ( 2 , 4 , 4 ) 0.99706 0.00147 0.84127 315187 306697
11 ( 3 , 4 , 4 ) 0.99880 0.00175 5.86729 228849 217375
12 ( 4 , 4 , 4 ) 0.99910 0.00030 1.14055 203609 189151
13 ( 5 , 4 , 4 ) 0.99936 0.00026 2.03311 172664 155222
14 ( 5 , 5 , 4 ) 0.99949 0.00013 1.39400 151068 132859
15 ( 5 , 5 , 5 ) 0.99958 0.00009 - 131511 112965

Dorrit
m (J1, J2, J3) VarExp Dif DIFFIT BIC AIC
3 ( 1 , 1 , 1 ) 0.61094 0.61094 4.61661 3143497 3136390
5 ( 2 , 2 , 1 ) 0.74328 0.13234 5.07438 3002488 2988534
6 ( 2 , 2 , 2 ) 0.76936 0.02608 0.59456 2964598 2950314
7 ( 3 , 3 , 1 ) 0.81322 0.04386 0.78720 2896379 2875554
8 ( 3 , 3 , 2 ) 0.86894 0.05572 4.44743 2770309 2749095
9 ( 3 , 3 , 3 ) 0.88147 0.01253 1.02330 2734856 2713253

10 ( 4 , 3 , 3 ) 0.89371 0.01224 1.10994 2696390 2674362
11 ( 5 , 3 , 3 ) 0.90474 0.01103 1.43948 2657729 2635277
12 ( 5 , 4 , 3 ) 0.91240 0.00766 1.54004 2635022 2605900
13 ( 4 , 4 , 5 ) 0.91738 0.00498 0.62549 2614666 2585060
14 ( 5 , 4 , 5 ) 0.92534 0.00796 0.90730 2579119 2548960
15 ( 5 , 5 , 5 ) 0.93410 0.00877 - 2541883 2504935

Table 3: DIFFIT, BIC and AIC analysis of the Sugar Process data and Dorrit data. All
combinations of models up to a Tucker(5, 5, 5) component model was evaluated. The
best models obtained from 3 runs are given.
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Synthetic data Flow Injection Analysis

FP (J1, J2, J3) NumConvHull
205 ( 1 , 2 , 2 ) 1.32121
285 ( 2 , 2 , 3 ) 1.06799
457 ( 3 , 4 , 4 ) 3.90349
510 ( 3 , 4 , 5 ) 13.53390

FP (J1, J2, J3) NumConvHull
398 ( 2 , 2 , 2 ) 2.14066
510 ( 3 , 3 , 2 ) 1.30439
609 ( 3 , 4 , 2 ) 8.34957
705 ( 3 , 4 , 3 ) 1.65218
805 ( 3 , 5 , 3 ) 1.39208
825 ( 4 , 5 , 3 ) 2.61592
843 ( 5 , 5 , 3 ) 2.66880
927 ( 4 , 5 , 4 ) 3.49294

Claus Sugar

FP (J1, J2, J3) NumConvHull
534 ( 3 , 2 , 2 ) 2.96373
736 ( 3 , 3 , 2 ) 1.88249
801 ( 3 , 3 , 3 ) 19.22182
813 ( 5 , 3 , 3 ) 10.73038

FP (J1, J2, J3) NumConvHull
383 ( 1 , 2 , 2 ) 6.73324
438 ( 1 , 3 , 3 ) 2.19296
491 ( 1 , 4 , 4 ) 3.33768
772 ( 2 , 4 , 4 ) 2.05301

1051 ( 3 , 4 , 4 ) 1.90200
1061 ( 3 , 4 , 5 ) 2.73030
1406 ( 4 , 5 , 5 ) 1.03639

Dorrit

FP (J1, J2, J3) NumConvHull
648 ( 2 , 1 , 2 ) 1.23638
1301 ( 5 , 2 , 3 ) 1.01415
1328 ( 5 , 2 , 4 ) 1.75568
1862 ( 5 , 3 , 3 ) 1.71240
1894 ( 5 , 3 , 4 ) 3.15220
2493 ( 5 , 4 , 5 ) 1.90288

Table 4: Numerical convex hull analysis of the five dataset. Given are the degrees of
freedom, corresponding models and largest NumConvHull values obtained.
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Figure 4: Model order estimation for the amino acid fluorescence data, sugar process
data and Dorrit data. To the left is given the Core Consistency Diagnostic (CorCon-
Diag), DIFFIT, NumConvHull, BIC and AIC (To avoid local minima, the best of three
decompositions was evaluated). To the right is given the distribution of models from
the estimation of 20 different ARD CP models initialized with 10 components based
on Laplace priors (sparse ARD) and Gaussian priors (ridge ARD).

data but wrongfully a 1 component model for the Sugar process and a 1,3 or 6 com-
ponent model for the Dorrit data. Both the sparse and ridge ARD methods correctly
identified 3 components in the amino acid fluorescence data, for the sugar process the
sparse ARD indicate a 2 or 3 component model whereas the ridge ARD correctly iden-
tifies a 4 component model. For the Dorrit data both sparse and ridge ARD indicate
a 6 component model. Thus, while the proposed ARD approach here perform better
than heuristics such as DIFFIT/NumConvHull, BIC and AIC the Core Consistency Di-
agnostic seem to work somewhat better in estimating the number of components in the
CP model.

4 Discussion
Model selection is perhaps one of the most challenging problems in unsupervised learn-
ing. We demonstrated how a simple Bayesian framework based on Automatic Rele-
vance Determination (ARD) could be adapted to multi-way models such as the Tucker
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and CP models. The proposed ARD framework forms an efficient tool for the auto-
matic estimation of components in the Tucker models and as we saw in the analysis of
both synthetic and real data the method indeed effectively extracted reasonable num-
ber of components. While the ARD approach outperforms heuristics such as DIFFIT,
NumConvHull, AIC and BIC when estimating the number of components in the Tucker
and CP model we found that the Core Consistency Diagnostic performed slightly bet-
ter in estimating the adequate number of components in the CP model. The modelling
inadequacies encountered for the ARD CP and Tucker is probably due to incorrect es-
timates of the SNR, deviation from Gaussianity in the noise, deviation from Gaussian
and Laplace distributed components, the fact that the parameters were based on sim-
ple MAP estimates and finally due to limited amount of data for the identification of
the model order. The reason why no approach correctly established the Tucker(3, 6, 4)
structure of the flow injection analysis data and Tucker(4, 4, 4) of the sugar process
data is because models with less components almost perfectly accounts for all data
(VarExp> 0.99) as seen in table 2 and 3. On the other hand, for the Dorrit data the
sparse ARD and ridge ARD failed in correctly identifying 4 components as excess
components were able to model substantial parts of the data.

Despite the different nature of the Gaussian and Laplace priors the results found
based on the two priors were similar. This is because the ARD framework first and
foremost turn off excess components while components that remain active are little
influenced by the prior if their parameters are large. Hence, if the dth component of
the nth mode is important then α(n)

d will be small rendering the prior noninformative
and as a result give little effect in the estimation of that component. Thus, while the
ARD framework effectively can turn off excess components the choice of prior seems
to only have a limited effect on the components identified. Rather than estimating σ2

from data we defined σ2 from a user given signal to noise ratio (SNR). In figure 2 we
saw that the results obtained was only to a small degree sensitive to the defined SNR
as long as the SNR was not set to high causing the model to overfit the data. Hence,
although this parameter is user defined the actual choice of the parameter only has a
limited impact on the models obtained.

The ARD approach is computationally inexpensive as the method automatically
removes excess components when estimating the model contrary to existing heuristics
that requires the estimation and evaluation of all potential models. Thus, the ARD is a
simple yet efficient tool for the evaluation of the number of components of multi-way
models. Presently, each component of each mode was given its own prior and the priors
were either solely Laplace or Gaussian, however, we note that other parameterizations
of the priors are conceivable. Furthermore, we considered the most simple framework
where loadings and hyper-parameters were based on maximum a posteriori (MAP) es-
timation. Within the proposed Bayesian framework more involved methods based on
sampling approaches to estimate model parameters (5; 6) as well as expectation prop-
agation for the evaluation of predictive performance (31) can be employed to further
improve the model order estimation. This should be investigated in future work.

Finally, the ARD approach can only shrink models, i.e. remove components. Thus,
once a component has been removed it can no longer be brought back. In particular
this requires that Jn be chosen large enough to encompass all potential models. Fu-
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ture research should investigate methods that can adapt the ARD approach to grow if
initialized by a model order that is too small.
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