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ABSTRACT that occluded (incomplete) speech might contain enough informa-

; jon for the recognition.
et PARST, e Iepresent & e 2pprac o robst Pk iy work we go ne ste further and explore he possiily
method is evaluated on an isolated digit database, TIDIGIT in threguafftigg;?m?o?rfatci)gﬁll#gfdAgEee'lgl?ebr%totshteo?\fil(s)ﬁsltsbeelaé?iltgg ?r?irsry
noisy environments (car,bottle and cafe noise types taken fro . A . :
O un Sl Ly, Dicrt en oy Ml 5 R Sty o e v
used for the recognition and the observation vectors are quantiz s ) A
wih th K means algoritm using Hamming disanc. I found e 222 1 e Brcr ot of e lnget i ose sar o
that a recognition rate as high as 92% for clean speech is a_chleva%%ary Mask{" B'M) Where,only target information is needed and
using IdeaI.Blnary Masks (IBM) where we assume priori target ompared to a speech shaped noB8N matching the long term
and noise information is available. We propose _that using é:spectrum of a large collection of speakers. UsiHgMs has also
TargetdBl(?ary fMask (TBM) \évhere only g:\?ln tag\gl]et |Inf0rmat|0n been proven to give high human speech in.telligibility [4]. In addi-
is needed performs as good as using s. We also propose " : :
TBM estimation method based on target sound estimation usingog’r;’;ecggi’rﬁ’os(ﬁlggg[z]s“mat'on method based on non-negative
non-negative sparse coding (-NNS-C)' The recognition resu_llts forP This pa| gr will focus.on a speaker-independent isolated digit
TBMs with and without the estimation method for noisy conditions S pape h hidd » P ol penadel he by g
are evaluated and compared with those of using Mel Frequencg'ﬁcogr"zer with hidden Markov model (HMM) using the binary

.

Ceptsral Coefficients (MFCC). It is observed that binary maskNaSKs as the feature vectors. In Section 2 we give the modeling
feature vectors are robust to noisy conditions amework. The experiments and results are explained in Section 3.

Finally Section 4 states the conclusion.

1. INTRODUCTION 2. MODELING FRAMEWORK

Automatic Speech Recognition (ASR) systems have been improv7='1 |deal Binary Masks
ing significantly since the 50’s. However, there are still many chal-The computational goal of CASA, tH8M, is obtained by keeping
lenges to be surpassed to reach the human performance or beyottte time-frequency regions of a target sound which have more en-
It is well known that one of the key challenges is the robustness urergy than the interference and discarding the other regions. More
der noisy conditions. Another challenge is the need for innovativespecifically, it is one when the target is stronger than the noise for
modeling frameworks. Most of the work has been focusing on the local criteria [(C), and zero elsewhere. The time-frequency (T-F)
successful representations such as mel frequency cepstriééntef representation is obtained by using the model of the human cochlea
(MFCC). However, because of a long history of research within theas the basis for data representation [7].T(t, f) andN(t, f) de-
current ASR paradigm, the performance enhancement usually reote the target and noise time-frequency magnitude, therBille
ported is very little. We will suggest a new approach which givesis defined as
the state of the art performance that is robust to noisy environments.

Since the human auditory system has a great performance, it is 1, if T(t,f)—N(, f)>LC
tempting to use the human auditory system as an inspiration for an IBM(t, f) = 0, otherwise @)
efficient ASR system. Auditory Scene Analysis(ASA) studies per-
ceptual audition and describes the process how the human auditory Figure 1 shows time-frequency representations of the target,
system organizes sound into meaningful segments[1]. Computaoise and mixture signals. The target is digit six by a male speaker
tional ASA (CASA) makes use of some of the ASA principles andwhile the noise isSSNwith 0dB of SNR The correspondingBM
it is claimed that the goal of CASA is the ideal binary maki\]) with LC of 0dB is also seen in Figure 1. Calculating M re-
[2]. IBM is a binary pattern obtained with the comparison of thequires that the target and the noise are available separately. One of
target and the noise signal energies with priori information of tarthe other properties of dBM is that it sets the ceiling performance
get and noise signals separatéBMs have been shown to improve for all binary masks. Therefore, itis crucial that we know the results
speech intelligibility when applied to noisy speech signals. The liswith IBMs before exploring any alternative mask definitions.
teners have been imposed to the resynthesized speech signals from LC andSNRvalues in Equation 1 are two important parameters
the IBM-gated signal and almost perfect recognition results havéen our system. IfLC is kept constant, increasing or decreasing the
been obtained even for a signal-to-noise-ra8dlg as low as -60 SNRmakes the mask get closer to all-ones mask or all-zeros mask
dB which corresponds to pure noise [3, 4]. Having proven to makeespectively. The change iBMs for a fixedLC with differentSNR
improvements on speech intelligibility of humans, it is inevitable values is shown in Figure 2 for a digit sample. As also seen from this
not to make the use of CASA and thiBMs for machine recog- figure, with fixed threshold, low or higBN Rvalues result in masks
nition systems. Green et. al. have studied this in [5]. They usedvith little or redundant information respectively. Meanwhile, in-
CASA as a preprocessor to ASR and used only the time-frequenayreasing theSNRvalue is identical to decreasing th€ value and
regions of the noisy speech which are dominated by the target sigice versa. Therefore, the relative criterie@= LC — SNRwas de-
nal to obtain the recognition features. Therefore, they concludefined in [4] and the effect dRCof anIBM on speech perception was
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Figure 1: llustration of T-F representations of a target, noise (SSNrigure 3: llustration of T-F representations of a target (digit six),
and mixture signals with the resultant IBM ( 0dB of SNR, 32 fre- mixture (target+cafe noise) and mixture signals with the resultant
quency channels and window length of 20ned)regions: highest IBM and TBM red regions: highest energyblue regions. lowest

energyblueregions: lowest energy. energy.
Digit One Digit Two Digit Three Digit Four
. . . . . 32 32 32 32
studied. They calculatd®Ms with priori target and noise informa- 3
tion and multiplied the mixture signal with the correspondiBiyls. § 24| Y 24 24 A4p
They,exposed human subjects to resynthesized IBM-gated mixture 9 . 16l 1 1
and found high human speech intelligibility (over 95%) for R@ 5 ] . '
range of [-17dB,5dB]. We took thiRCrange as a reference and the ge 8 8 8
results of our ASR system coincided with human speech perceptic .
results in terms oRC range which is shown in section 3. 0408080 20 4060 80 20 40 60 80 20 40 €0 80
ime Frames Time Frames Time Frames Time Frames
. 3ZSNR:15dB 32 SNR=0d8 SNR1548 L SNR=2548 Figure 4: IBMs for different digits for the same speaker
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S 16 16, g 16
;% sl . % 8 opposed to the use BMs where it is needed to include dBMs
£ | I for all different noise types in the training stage.
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As mentioned previously, we investigate if the mask itself can be
used to recognize different words. The distinctivity of the masks
can be observed easily in Figure 4 in whi&Ms for four different
digits with SNRof -6dB using SSN as interference are shown. (
Note thatIBM is identical toT BM when the noise type is SSN)
2.2 Target Binary Masks Moreover, as seen in Figure 5, the masks for different speakers fo

. . the same digit are very similar. Thus, the patterns in every mask are
The binary mask calculated based on only the target signal was stugharacteristic for each digit which concludes that these patterns are

ied and is called Target Binary MaskBM) [8]. TBMs were further  hromising representations for speech recognition.
investigated in [4] in terms of speech intelligibility and the results

were comparable to those BMs. The definition off BM as seen Speaker 1 Spesker 2 Spesker 3 Spoaker 4
in equation 2 is very similar to that dBM except that while obtain- 32 32 32 |:I
ing TBM the target T-F regions are compared to a reference SSI

Figure 2: IBMs of digit three with SSN for a fixed LC at 0dB and
for different SNR values .

matching the long-term spectrum of the target speaker. (It is als g 24 24 alk
possible to compare the target to a frequency dependent threshc s 16 16
corresponding to the long term spectrum of SSN) I . .
1, if T(t,f)— SSNt, ) > LC : '
T BM(t’ f) = {O7 Otherwise (2) T?nge“grasngego Ti2n?1e4lgr:ngego Ti2n?1e4|8r:ngego Ti2n91e4|8ra6n?1e§0
Figure 3 illustrates the T-F representation of a target signal and Figure 5: IBMs for digit three for different speakers.

the mixture signal with cafe noise at 0dB SNR. That figure also

shows the resultanBM andT BM patterns witH.C of 0dB, and the

difference between themis discernible. TIBM mimics the target We use a discrete Hidden Markov Model (HMM) as the recog-

pattern better, whereas thBM pattern depends on the noise type. nition engine [9]. As the vector quantization method before HMM,
Some of the properties @fBM can be very practicable. First of we choose to use K-means algorithm which has been shown to per-

all, acquiring a BM needs only the priori information of the target. form as well as many other clustering algorithms and is compu-

Therefore, estimating th€ BM can be much more convenient in tationally efficient [10] and proven to be succesfully applicable to

some applications, especially if speech enhancement techniques atassify binary data [11]. Figure 6 illustrates the acquisition of the

used. In the case of an ASR system that is robust to noise types, ulEture vectors to be classified by K-means. We stack the columns

of TBMs in the training stage require less computational effort a®f the IBM into a vector. The number of columns to be stacked



is a parameter that has been optimized for this work (it is 3 for ~ The columns of the dictionary can be considered as the basis

this study) as well as other parameters: the codebook size, the statrd the code matrix can be considered to have the weights for each

number of the HMM, the number of frequency bands, and the winof the basis vectors constituting the sigXalln our caseX is the T-

dow length of thdBM. The optimization process can be found in F representation of a signal which is non-negative (Details about the

detail in [12]. acquisition of T-F spectrogram is in section 3). We use the method
described in [13] that is based on the algorithm in [M]andH are
initialized randomly, and updated according to the equations below

IBM ; .
. Vi Vo until convergence:
e Vectors to be clustered T
5 W'.X
- T T T T T H«—HX—"7——, 4
5 v “WTWH +A @
= ] ]
£ i5 % XH"+Wx (L(WHH" xW))
I Vixi3) - W «—W . 5
‘ “WHHT FW x (LOCHT xW))) ®)

| S O O |
titats tats te t - . L . -
Time Frames Here, (.) indicate direct multiplication, while others indicate
point wise multiplication and division. 1 is a square matrix of ones
K Of suitable size.

Figure 6: Acquistion of the feature vectors to be clustered by When the speech signal is noisy, and if the noise signal is as-

means. sumed to be additive, then
The whole system is summarized in Figure 7. First, the masks X = Xs+ Xn & [WeWh] { Hs } , (6)
for training and test data are calculated. The feature vectors ob- Hn

tained fromIBMs are quantized with K-means to acquire the ob- .
. L whereXs and X, denote the speech and noise. We precompute
served outputs for discrete HMM. One HMM for each digit is the noise dictionary\, using noise recordings and using equations

trained with the corresponding data. Finally, the test masks ar . :
input to each HMM and the test digit is assigned to the one witrﬁs?:éjtﬁé :‘/(\)/ﬁol\(/\ﬁﬁg itgrsaﬁ\r,icﬁggﬂm fixed and learn speecks

the highest likelihood. We use only clean data for training. How-

ever, for testing we use clean data to see the best performance that WT X
can be obtained with our system, unprocessed mixture signal to see Hs «— Hsx T;, )
the worst case performances under noisy conditions and finally es- We' W.H +1s
timated target signal from the mixture to see the improved results WT X
under noisy conditions. _ A
y HnHHnXWnT.W.H{»ln’ (8)
Target
 Mixture X.HE +We x (L(W.H.HT x W)
Target Noise(SSN) /E?lgiieﬁoise(ssm Ws +— Wiex W.H -H;r +Ws x (1~(X~HsT X Ws))) 7 @)
VR 1 . .
St @l The clean speech is estimated as
Masks L Masks
Training Test Xs = WSHS' (lo)
Masks Masks
oo — Finally, the TBM is estimated by comparing the estimated
[ouannzation -k m speec_h signaks to th_e referenc_eSSN sig_nal spectrogram using
Vestor 1 equation 2. As mentioned previously, differdR€ values lead to
Classified Veclor 2 o Classified masks with different densities and only choosing the rig@tval-
Trelning Data : Testiga ues leads high recognition results. However, we learn the Rght
g Vector M values for ASR after training and testing witBMs, where we have _
‘ Train F;M“f } the pure target and noise signals.(The results can be seen in section
| Models | Model ° 3 in figure 8). We assume that after NNSC we have the pure tar-
Y get spectrogram. Then, since we also have the refei@8bisignal
Recognition spectrogram that is also used during training, we only need to adjust
Resiits SNRandLC values for the righRC value. However, to obtain the

) ) ) SNRbetween the estimated target and speech, we do not go back
Figure 7: The schematics representation of the system used. o time domain which would be a waste of time and computational
power. Thus, we defined a néBNRin the T-F domain which is
calculated by the ratio between the sum of all T-F bins of the tar-
o get signal to the sum of all T-F bins of the noise signal and will be
2.4 Edtimation of TBMs called asSNR-gp. We observed thaR®Crrp = LCtrp — SNRFD
Estimation ofT BM is simpler compared to that of 48BM as men-  'ange is similar tiRCrange found before( The results can be seen
tioned previously. Once the target signal is estimated, it is coml" Section 3 in figure 10).
pared to a referencBSNsignal in T-F domain. For speech and
noise separation, non-negative sparse coding (NNSC), combination 3. EXPERIMENTAL EVALUATIONS
of sparse coding and non-negative matrix factorization, is used [6lrhrough the experiments, data from TIDIGIT database were used.
This method was proven to be successful for wind noise reductiofhe spoken utterances of 37 male and 50 female speakers for both

in [13], and we took this work as reference for our method. training and test data were taken from the database. There are
_ The principle in NNSC is to factorize the non-negative signal.two examples from every speaker for each 11 digits (zero-nine,
X into a dictionaryW and a codet: oh) making 174 training, 87 test and 87 verification utterances for

each digit. The verification set has been used to obtain the opti-
X ~WH. 3) mized parameters for HMM and for NNSC and the final results



are obtained using the test set. The experiments were carried ontethods suggested for MFCC that results in a better performance
in MATLAB and an HMM toolbox for MATLAB by Kevin Mur-  [18]. Nevertheless, we did not use dynamical features that could be
phy was used [15]. The experiments have also been verified ugbtained fromlBMs neither. In addition, we believe that the per-
ing the HMM s in Statistical Toolbox of MATLAB. For NNSC the formance ofiBMs for ASR can also be improved in various ways
NMF:DTU toolbox for MATLAB [16] has been adjusted for our such as mask estimation methods [19]. Moreover, if we consider
system and used. The time-frequency representations of the signale ASR results obtained using MFCC within recent works, our re-
sampled at 8kHz have been obtained using gammatone filter witbults are comparable [18]. (We can not make a direct comparison
32 frequency channels equally distributed on ERB scale within théhough, since they use a different system and database) In addition,
range of [80Hz,4000Hz]. The output from each filterbank channebur method establishes a new route for robust ASR that is open for
was divided into 20 ms frames with 10 ms overlap. SSN, car, bottldurther improvements. (Some additional results and figures of the
and cafe noise were used through the experiments [17]. A left-towhole system can be found at [12]).

right HMM with 10 states was used to model each digit. The binary

vectors were quantized into a codebook of size 256 with K-me Car Botile Cafe

The HMMs were trained withBMs obtained with.C of 0 dB and o o . .

with different SNRvalues in the range of [-2dB,16dB] with 2c g 8 o 80 S/ 80 o -

steps only usingSNas the reference noise signal. We compare g s / 6 o 60

method with a standard approach using 20 static MFCC feat 5 7 / o

All parameters used for the MFCC are the same except for the § 0 J “° o 01 -

mized codeboook size of 32. The optimal codebook size is sir g 2 o o 20

since we have less training data for MFCC. One minute of SSN | ~ & — 1BM features WFCC features

bottle and cafe noise recordings were used to obtain the dicti 67 s w0 s & s w1 3 5 10 15
SNR (dB) SNR (dB) SNR (dB)

ies for NNSC. For train, verification or test noise samples diffeicii
arts of corresponding noise types were used.
P Recognitioﬁ resul?s obtain)égl for the test setlBMs withSSN ~ Figure 9: The recognition rates for TBMs and MFCC features at
for LC of 0 dB and differentSNRvalues are presented in Figure SNR range of [0dB,20dB]
8. As seen, the rate curve is bell-shaped, i.e. the rate does not
increase monotonously whil8BNRincreases. This is because of
the previously mentioned fact that either increasing or decreasinl%In
the SNRvalue results in masks closer to all-ones or all-zeros maskBe
and thus in the decrease of the recognizability of the masks. If wWe
look at the RC value, Figure 8 shows that 92% recogniton rate iﬁiti
obtained forRC of -6 dB. Thus, the masks witRC of -6 dB gives
the maximum performance.

As mentioned previously, for NNSC we needed to fRGrgp

ge giving high recognition results. The corresponding results can
seen in Figure 10 and -6dB BICrgp gives the maximum per-
mance and RC between -16dB and 2dB gives reasonable recog-
on results (over 80%). The optimized parameters for NNSC for
this work is the size of the dictionary of noise and spe&ghand

Ws. Other parametera |Is andIn were just equaled to be a very
small number taking reference the results in [13]. To find the op-
timal parameters for the size ¥, andWs, we checked the recog-

SNR versus Recognition Rates for LC=0dB

©
1S

ol e ] nition results for different size numbers between 4 and 512 for all
s .l - noise types wittSNR-gp of 10dB andLC of 0dB. We choose 64

g% ,/ S ] for Wi and 128 foMs based on the results seen in Figure 11.
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If the LC value can be adjusted so that the mask is as close to the
maximum-performance mask as possible (RC is close to -6dB), Weigyre 10: The recognition rates with IBMs faiC=0dB and
can obtain high recognition results for differéditiRvalues. How-  SNR-(p=[-2dB,16dB]
ever, under noisy conditions choosing the cort€ztalue is a chal-
lenge since we do not know neither tB& Rvalue nor the noise
spectrogram in real life applications. This problem will be solved In Figure 12, the recognition rates obtained with noisy mix-
by using NNSC method assuming we have information about théures before and after using NNSC is shown. (with refere3@hl
noise characteristics. However, it is reasonable to check the recogat SNR-gp of 0dB) As seen on the left of this figure, before NNSC,
tion results that can be obtained comparing unprocessed mixtuifferent LC values within right RC range found before (-4 dB to
signals toSSNwith adjustedLC values (results are obtained with 2dB), result in sparse recognition rates. For cafe noise at BNIB
differentLC values and the best result is recorded) before exploringt is seen that before NNSC the rates can change from 30% to 60%
that method. Figure 9 shows the recognition rates obtained usinfgr those differenL.C values. However, after using NNSC to esti-
HMMs trained withIBMs obtained by clean data ai®5N with mate the masks as explained, it is seen that the rates for tise
test set added different noise types atSiiRrange of [0dB,20dB] values gives the best performances solving the choice of the right
(with adjustedRCvalue for the best performance). In that figure, the LC values for our ASR system. Using NNSC not only solves this
results obtained using static MFCC features is also shown. It can hgroblem but also leads higher recognition results especially for low
seen that usingBM features yields more noise-robust recognition SNRvalues at the price of a decrease in recognition results for high
rates than using MFCC features. We point out the fact that we useBNRvalues. However, the decrease in higNRvalues is not as
only static MFCC features and did not use any of the improvementnuch as the increase in low ones. Finally, we obtain 60% to 70%,
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16% to 73% and 40% to 70% recognition rates$&tRvalues be-
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