
Documentation for the SDIRK C++ solver

by Erik Østergaard, IMM, DTU, Denmark

July 2, 1998

Abstract

This document serves as documentation for the SDIRK C++ ODE solver for
the UNIX environment.

The solver was originally implemented using the Borland C++ compiler ver-
sion 1.0 in 1991 by Michael Jeppesen. The author of this document has ported
the source to UNIX together with minor changes in structure and features.

This document presents the stucture of the source and lists the calls and
functions that are avaliable. Also a little example will be given.

The solver is located at

http://www.gbar.dtu.dk/~c938790/app/,

as sdirk.tar.gz, where both the source and this documentation can be found.
The source is compiled and tested in the HP-UNIX environment as well as in
the Red Hat Linux environment.

Keywords:
Sdirk ODE solver, UNIX, C++.

Contents

1 Introduction 2
1.1 Brief on the SDIRK methods . 2
1.2 Why C++? Why UNIX? . 4
1.3 Changes made during porting . 4
1.4 Contents of the sdirk directory 4

2 Usage of the SDIRK solver 5
2.1 Class overview . 5
2.2 Avaliable methods/calls . 6
2.3 Linking and compiling . 7

2.3.1 The Sdirk library . 7
2.3.2 Using the Sdirk library . 7

3 File structure 9
3.1 Hierachy and include files . 9
3.2 Plain include files . 9
3.3 Derived classes . 11

4 Small example 13
4.1 van der Pol’s equation . 13

1

Chapter 1

Introduction

This chapter is ment to give a brief introduction to the SDIRK method and why
it mattered porting the code to UNIX.

Also the changes made during porting are mentioned in order to enable
updates of applications using the previous version of SDIRK.

1.1 Brief on the SDIRK methods

An often applied method to integrate differential equations is using one of the
Runge-Kutta (RK) methods. These methods can be separated into three groups
characterized by their coefficients, the Butcher Tableau.

In general, the RK method for the ODE problem

ẏ = f(t, y), y(a) = c, f : R × R
m → R

m (1.1)

is defined by (see e.g. [H66, p.34] or [Lambert, chapter 5])

yn+1 = yn + h

s∑
i=1

biki (1.2)

where

ki = f

(
tn + cih, yn + h

s∑
i=1

aiki

)
, i = 1, ..., s (1.3)

The coefficients a, b and c together form the Butcher Tableau

c1 a11 a12 · · · a1s

c2 a21 a22 · · · a2s

...
...

...
. . .

...
cs as1 as2 · · · ass

b1 b2 · · · bs

=
c A

b
(1.4)

2

CHAPTER 1. INTRODUCTION 3

The family of RK methods can be categorized into three groups:
Explicit methods:

aij = 0 for j ≥ i, j = 1, ..., s ⇔ A stricty lower triangular

Semi-implicit methods:

aij = 0 for j > i, j = 1, ..., s ⇔ A lower triangular

Implicit methods:

aij 6= 0 for some j > i ⇔ A not lower triangular

The far most used RK method is the explicit one. It is called explicit since
the calculations (1.2) and (1.3) can be performed explicitly. In contrast, the
semi-implicit and implicit methods introduce implicit assignments in (1.2) and
(1.3), thereby demanding iterative solutions.

Methods, that are semi-implicit, are called DIRK methods (Diagonally Im-
plicit Runge Kutta). DIRK methods having identical diagonal elements are
called SDIRK methods (Singly Diagonally Implicit Runge Kutta) 1. Methods,
that are implicit, are called SIRK methods (Singly Implicit Runge Kutta).

The SDIRK method used in the implementation is called the NT1 method
after Nielsen and Thomsen, Institute of Mathematical Modelling, Technical Uni-
versity of Denmark. The method is characterized by the Butcher Tableau

0 0
5/6 5/12 5/12

10/21 95/588 −5/49 5/12
1 59/600 −31/75 539/600 5/12

59/600 −31/75 539/600 5/12
−37/600 −37/75 1813/6600 37/132

=
c A

b
d

(1.5)

which is supplied by a d vector allowing an error estimate D to be calculated in
order to perform step length control. See chapter 2 about chossing the desired
step length control. We notice, that element a11 is 0 and not 5/12 as the other
diagonal elements. This is done in order to allow explicit assignment of the first
elements in (1.2) and (1.3).

Using the formulae (1.2) and (1.3) implies use of some kind of iterative
methode. Here is used the Newton-Raphson method to perform these iterations.
Since the diagonal elements are identical (exept for a11), the Jacobian used in
the Newton-Raphson iteration only needs to be calculated if the step length h
is changed.

1There is some confusion about this nomenclature. [Lambert] e.g. uses the term DIRK of
Singly Diagonally Implicit methods

CHAPTER 1. INTRODUCTION 4

1.2 Why C++? Why UNIX?

There are several motivations for choosing C++ for SDIRK. First of all, the
“hands-on” memory allocation and the thereby following handy vector and ma-
trix definition/manipulation possibilities are very usefull in constructing com-
plex implementations. C++ is an OOP language (object orienteted program-
ming), thereby offering a high degree of structure with a vast amount of appli-
cation possibilities.

UNIX is implemented in C, thereby substantiating the choice of language.
Furthermore, the far most used operating system (OS) in the campus areas is
UNIX (in any version), and applications supporting this OS are in great demand.

1.3 Changes made during porting

Only minor changes have been made during porting the source from MS-DOS
to UNIX. The overall structure has been left untouched as well as the classes
are the same.

A new class IVector has been added and the file sdirk.h containing both
headers for classes Sdirk and SdirkNewtonRaphsonhas been split into two head-
ers sdirk.h respectively sdirknewt.h containing the classes Sdirk respectively
SdirkNewtonRaphson.

The main integration call found in the class Sdirk har been changed to
allow restart of integration without loss of obtained step length corrections.
The previous call

Integrate(double &t lo, double &t hi, long Nstep, DVector &y);

has been replaced by the call
Integrate(DVector &t, double &h, DVector &y, long &Nstep);

which is a change, that affects implementations using the late version of the
Sdirk class.

1.4 Contents of the sdirk directory

In the root directory named sdirk, you’ll find:

1. File Makefile - contains commands to create lib/libsdirk.a. See sec-
tion 2.3.1 for further details.

2. Sub-directory doc - contains this document.

3. Sub-directory source - contains all SDIRK source (.cc) files.

4. Sub-directory include - contains all SDIRK include (.h) files.

5. Sub-directory example - contains source and Makefile for a SDIRK ex-
ample program. See sections 2.3.2 and 4 for further details.

Chapter 2

Usage of the SDIRK solver

In this chapter the usage of the implementation is explained. The supported
methods will be explained, and linking and compiling in the UNIX environment
is shown.

2.1 Class overview

The Sdirk class is defined in sdirk.h and coded in sdirk.cc. The class pro-
vides access to integrating an ODE system given the specific system ẏ = f(t, y),
its Jacobian J(t, y) in any form (exact or approximated) and initial conditions
y(a). The system can be integrated through an interval [a, b] or single stepwise
using the internal calculated steplength as next step. The tolerance can be set
externally, and finally, statistics can be shown listing the performance for the
most resent integration.

Access to the class is granted by including sdirk.h in the source file
#include "sdirk.h"

An instance of the class is made by the line
Sdirk *MyInstance

and it is initialized by the line
MyInstance = new Sdirk(1e-3, 2, &fun, &jac, SC PI)

Here we introduce the use of the Sdirk constructor, which in general has the
following syntax

Sdirk(double accur,
int num_ode,
void(* fun)(double t, DVector &y, DVector &f),
void(* jac)(double t, DVector &y, DMatrix &j),
StepControlType ctrl);

The constructor takes five arguments, which are

5

CHAPTER 2. USAGE OF THE SDIRK SOLVER 6

accur The desired accuracy
num ode Number of ODE’s (the size of the system)
fun Pointer to a function implementing the system f
jac Pointer to a function implementing the Jacobian J
ctrl Parameter indicating the type of step control to be performed

Accuracy is recommend to be between 10−12 and 10−3 hereby normally ensuring
acceptable results. The lower limit allowed for accuracy is 100 times the unit
roundoff εM (usually εM = 2.2204 · 10−16), since the Newton iteration uses one
100th of the tolerance as stop criterion. If the unit roundoff is not specified on
your system, it is calculated automatically using Malcolms Methode.

sdirk provides four different step controls, which is chosen by inserting the
right parameter for ctrl. The step controls are:

SC PRIM Primary step control for initial step length
SC WATTS Watts step control for initial step length
SC ORDINARE The ordinary step control
SC PI Proportional-Integral step control

2.2 Avaliable methods/calls

Apart from the Sdirk constructor, the following methods are avaliable from the
Sdirk class:

• ~Sdirk();
Destructor. This can be called explicitly in order to free the memory
allocated to the instance by the constructor. Normally this memory is
freed anyway, but use of the destructor ensures correct memory handling.

• Integrate(double &t, double &h, DVector &y);
Integrate a single step from t =t to t =t+h. The input y is the state y(t)
of the system at t =t. The output y is the state y(t + h) of the system at
t =t+h. If the system forces/allows the solver to change the steplength,
h reflects the new steplength on output.

• Integrate(DVector &T, double &h, DVector &y, long Nstep);
Integrate through the interval [T[1], T[2]], with initial step length h. On
return, Nstep contains the number of steps taken. Actually, this integra-
tion just calls the above mentioned integration till the end of the interval
is reached. h holds the most recent used steplength on return.

• Reset();
Resets the integrator, allowing a new integration to be performed without
having to destruct the instance.

• SetEps(double eps);
Sets a new value for the tolerance ε.

CHAPTER 2. USAGE OF THE SDIRK SOLVER 7

• GetInfo(SdirkInfoType &p);
On return, p contains statistical information on the integration:
p.NumOfGoodStep Number of accepted steps
p.NumOfBadStep Number of rejected steps
p.NumOfNewtonDivergens Number of divergent steps

in the Newton iteration
p.MaxError The maximal estimated error

• ShowInfo();
Calls GetInfo and displays the information in a nice way.

All these methods are accessed the usual way. Setting the tolerance to ε = 10−6

is done by
MyInstance->SetEps(1e-6);

and integration of a given system (assuming fun and jac are defined) from
t = 0 to t = 2π, printing the solution and statistics and finally terminating the
instance is done by

DVector T(2);
T[1] = 0.0;
T[2] = 2*M_PI;
double h = 0.1;
long Nstep = 0;
DVector y(2);
y[1] = 1.0;
y[2] = 0.0;
MyInstance->Integrate(T, h, Nstep, y);
cout << "Solution found after " << Nstep << " steps:\n" << y;
MyInstance->ShowInfo();
MyInstance->~Sdirk();

2.3 Linking and compiling

2.3.1 The Sdirk library

By typing make in the sdirk directory, the library libsdirk.a is compiled and
linked and placed at sdirk/lib/libsdirk.a. The different object files (.o)
compiled temporarily are removed afterwards. See the Makefile in the sdirk
directory for details. A compiled version is already present, but also the the
source and headers are avaliable allowing changes to be made.

2.3.2 Using the Sdirk library

Access to the class sdirk is granted by including the header in your application
and linking to the library during compiling.

CHAPTER 2. USAGE OF THE SDIRK SOLVER 8

Including the header is done by
#include "sdirk.h"

Linking to the library libsdirk.a is done by setting the include options in the
Makefile for the application. This can be done by constructing a Makefile
looking like this:

Makefile for implementation linking to libsdirk.a

#

Source to make: MyApplication.cc

TARGET = MyApplication

Libraries and headers

LIB = ./sdirk/lib

INC = ./sdirk/include

Compiler and options

CC = g++

CCOPTS = -Wall -I$(INC) -c

Rules

all : $(TARGET)

$(TARGET): $(TARGET).o

$(CC) -L$(LIB) -o $(TARGET) $(TARGET).o -lsdirk -lm

$(TARGET).o: $(TARGET).cc

$(CC) $(CCOPTS) $(TARGET).cc

Chapter 3

File structure

This chapter is devoted to give an overview of the structure and class hierachy
of the implementation. All text in typewriter is code related, and is either
reserved words in C (C++) or items from the implementation (classes, methods,
calls, structures e.g.).
All mentioned include files (.h) are placed in the include dir.
All mentioned source files (.cc) are placed in the source dir.

3.1 Hierachy and include files

In order to give an overview of the structure and hierachy of the files used in
the implementation, both the table 3.1 and the figure 3.1 is provided.

In the figure, arrows indicate that root items are included in the outpointed
item. It is important to notice that sdirk.h and sdirknewt.h are included in
each other. This is due to a close cooperation between the two, which will be
described further in section 3.3.

In the table, cc indicates that the header in the corresponding row is included
in the source file (.cc) of the corresponding column. An h indicates that the
header in the row is included in the include file (.h) of the column.

3.2 Plain include files

• types.h A collection of the userdefined types and definitions used in the
implementation. If needed, calculation of unit roundoff.

• dmatrix.h Definition of a double matrix class. Overloading the =, +=,
-=, +, -, (·,·) and << operators.
Class name: DMatrix.

• dvector.h Definition of a double vector class. Overloading the =, +=,
-=, +, -, [·] and << operators.
Class name: DVector.

9

CHAPTER 3. FILE STRUCTURE 10

Figure 3.1: Graphical representation of the file hierachy

CHAPTER 3. FILE STRUCTURE 11

d
i
v
c
t
r
l

d
m
a
t
r
i
x

d
v
e
c
t
o
r

i
v
e
c
t
o
r

l
u
f
a
c

n
e
w
t
b
a
s
e

r
k
b
a
s
e

s
d
i
r
k

s
d
i
r
k
n
e
w
t

s
t
e
p

s
t
e
p

b
a
s
e

t
y
p
e
s

divctrl.h in cc h

dmatrix.h in cc h h

dvector.h in cc h h h

ivector.h in cc h h

lufac.h in cc h

newtbase.h in cc h

rkbase.h in cc h

sdirk.h in cc h

sdirknewt.h in h cc

step.h in h cc

stepbase.h in h cc

types.h in h h h h cc

<iostream.h> in h

<math.h> in h

<stdlib.h> in h

Table 3.1: Table of connections between files and headers.

• ivector.h Definition of an int vector class. Overloading the =, +=, -=,
+, -, [·] and << operators.
Class name: IVector.

• lufac.h Definition of a linear equation solver, using Doolittles methode.
Class name: LUfactorize.

• divctrl.h Implementation of a divergens control used in the Sdirk class.
Class name: DivergensStepControl.

3.3 Derived classes

Three base classes are used, from which derivation is done. These are

• stepbase.h Implementation of steplength control base.
Class name: StepControlBase.

• newtbase.h Implementation of base for iterative solving the linear equa-
tions using Newton-Raphson iteration.
Class name: NewtonRaphsonBase.

• rkbase.h Implementation of base and coefficients for the Runge-Kutta
iteration.
Class name: RKbase.

CHAPTER 3. FILE STRUCTURE 12

In step.h, four steplength controls are implemented; all being first or second
derived classes from StepControlBase, shown here:

Base: StepControlBase
Derived: OrdStepControl : public StepControlBase
Derived: PrimStepControl : public StepControlBase
Derived: PiStepControl : public StepControlBase

2nd Derived: WattsStepControl : public PiStepControl

In the public part of StepControlBase, four virtual methods are defined,
hence they are defined locally in the derived classes. Source for the four derived
classes (as mentioned above) is in step.cc.

The toplevel class Sdirk (defined in sdirk.h) has a friend, namely the
class SdirkNewtonRaphson (defined in sdirknewt.h). Hence they include each
other in order to obtain this close connection:

Base: RKbase
Derived: SDirk : public RKbase

Base: NewtonRaphsonbase
Derived: SDirkNewtonRaphson : public NewtonRaphsonbase

Futrhermore, Sdirk contains an instance of SDirkNewtonRaphson in its private
part, and SdirkNewtonRaphson contains an instance of SDirk in its private
part. Finally, the constructor for SdirkNewtonRaphson takes this Sdirk in-
stance as an argument. This explains the doublepointing arrow at figure 3.1.

Chapter 4

Small example

In this section, a small example of using the SDIRK solver is given. This example
can be found in the sdirk/example directory along with it’s Makefile.

4.1 van der Pol’s equation

We consider van der Pol’s equation

ÿ = µ(1 − y2)ẏ − y (4.1)

which written as first order ODE’s looks like

ẏ = f(t, y) =
[

ẏ1

ẏ2

]
=
[

y2

−y1 + µ(1 − y2
1)y2

]
, (4.2)

with initial conditions [
y1(0)
y2(0)

]
=
[

2
0

]
. (4.3)

The Jacobian is found as

J(t, y) =
[
∂(ẏ1, ẏ2)
∂(y1, y2)

]
=

 0 1

−2µy1y2 − 1 µ(1 − y2
1)

 . (4.4)

We implement these functions like this:

13

CHAPTER 4. SMALL EXAMPLE 14

// van der Pol

double mu = 20.0;

void fun(double t, DVector &y, DVector &f)

{

f[1] = y[2];

f[2] = -y[1] + mu*(1.0 - y[1]*y[1])*y[2];

}

// Jacobian

void jac(double t, DVector &y, DMatrix &J)

{

J(1, 1) = 0.0;

J(1, 2) = 1.0;

J(2, 1) = -2.0*mu*y[1]*y[2] - 1.0;

J(2, 2) = mu*(1.0-y[1]*y[1]);

}

where we have set the parameter µ = 20.

We now wish to integrate this system. This is done by constructing the
following little application, named vanderPol.cc:

/***

* Example of usage of the Sdirk integration class *

* The ODE system is van der Pol’s equation *

**/

#include "sdirk.h" // Include the Sdirk integration class

#include <fstream.h>

// Prototypes for the ODE system

void fun(double, DVector &, DVector &);

void jac(double, DVector &, DMatrix &);

int main()

{

// Vectors for the state (y) and for the integration interval (T)

DVector y(2), T(2);

// Initializing the Sdirk instance MyInstance

Sdirk *MyInstance;

MyInstance = new Sdirk(1e-9, 2, &fun, &jac, SC_PI);

// Initial values

y[1] = 1.0; // y_1(0)

y[2] = 0.0; // y_2(0)

double t_lo = 0.0, t_hi = 20; // Integration interval:

int m = 1500; // Number of outputs

double dt = (t_hi-t_lo)/m; // Distance between outputs

double h=0.1; // Initial steplength

long Nstep=0; // Number of steps used in each integration

CHAPTER 4. SMALL EXAMPLE 15

ofstream out("out.dat"); // Output file

out << y[1] << " " << y[2] << "\n"; // Write initial state

for (int i=0; i<m; i++){

T[1] = t_lo+i*dt; // Start time of integration step

T[2] = T[1]+dt; // End time of integration step

MyInstance->Integrate(T,h,y,Nstep); // Integration

out << y[1] << " " << y[2] << "\n"; // Write current state

}

out.close(); // Close the output file

MyInstance->~Sdirk(); // Free the instance

return 0;

}

We see, that we integrate the system through the interval [0, 20] with 1500
outputs in the interval. The application is compiled using the Makefile listed
in section 2.3.2. The simulation is written to a file named "out.dat", and the
wellknown graph is seen at figure 4.1.

-30

-25

-20

-15

-10

-5

0

5

-2.5 -2 -1.5 -1 -0.5 0 0.5 1 1.5 2

Figure 4.1: Plot of simulation

Bibliography

[Lambert] “Numerical Methods for Ordinary Differential Systems”
John Denholm Lambert,
John Wiley & Sons Ltd., 1991.

[H66] “Hæfte 66 - Numeriske Metoder for Sædvanlige differentialligninger”
Hans Bruun Nielsen & Per Grove Thomsen,
Numerisk Institut, DTH, 1993.

[Jeppesen] Source and headers for the SDIRK Borland C++ version 1.0 imple-
mentation
Michael Jeppesen,
Numerisk Institut, DTH, 1991.

16

