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ABSTRACT

Kernel versions of the principal components (PCA) and maximum autocorrelation factor (MAF) trans-
formations are used to postprocess change images obtained with the iteratively re-weighted multivari-
ate alteration detection (MAD) algorithm. It is found that substantial improvements in the ratio of
signal (change) to background noise (no change) can be obtained especially with kernel MAF.

1. INTRODUCTION

Principal component analysis (PCA) [1,2] has often been used to detect change over time in remotely
sensed images. A commonly used technique consists of finding the projections along the eigenvec-
tors for data consisting of pair-wise (perhaps generalized) differences between corresponding spectral
bands covering the same geographical region acquired at two different time points. In this paper kernel
versions of the principal component (PCA) and maximum autocorrelation factor (MAF) transforma-
tions [3,4] are used to carry out the analysis. An example is given based on bi-temporal Landsat-5 TM
imagery. For an application of kernel PCA to change detection with nonlinear data, see [5].
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2. KERNEL PCA AND KERNEL MAF

Let us consider an image with n observations or pixels and p spectral bands organized as a matrix X
with n rows and p columns; each column contains measurements from a spectral band and each row
consists of a vector of measurements from p spectral bands for a particular observation, xi. Without
loss of generality let us assume that the spectral bands in the columns of X have mean value zero. In
ordinary (R-mode or primal) PCA we analyse the variance-covariance matrix XT X/(n − 1) which is
p by p. Here T denotes the transpose. If XT X is full rank this will lead to p non-zero eigenvalues and
p orthogonal or mutually conjugate unit length eigenvectors.

In the Q-mode or dual formulation [5] we analyze XXT/(n − 1) which is n by n and can be very
big. If XTX is full rank XT X/(n − 1) and XXT /(n − 1) have the same p non-zero eigenvalues λi

and their eigenvectors (ui for XT X/(n − 1) and vi for XXT/(n − 1)) are related by

ui = XTvi/
√

(n − 1)λi and vi = Xui/
√

(n − 1)λi.

This leads to the desired
uT

i ui = vT
i vi = 1.

An obvious advantage of the dual formulation is the case where n < p. Another advantage even
for n � p is due to the fact that the elements of the (so-called Gram) matrix XXT consist of inner
products of the multivariate observations in the columns of X , namely xT

i xj . We may now replace
these inner products in XXT by the inner products of some nonlinear mapping φ of x into higher
(even infinite) dimensional feature space, i.e.,

xT
i xj → φ(xi)

T φ(xj).

Applying kernel substitution, also known as the kernel trick [7,8], we may even replace the inner
products φ(xi)

T φ(xj) with some kernel function κ(xi, xj) without explicit reference to the mapping
φ(x). The only prerequisite is that κ must be a so-called Mercer kernel, i.e., the n by n kernel matrix
with elements κ(xi, xj) must be symmetric and positive semidefinite. Moreover, projection of new
observations x along the principal axes in the mapped feature space and other quantities needed to do
the analysis, may be expressed in terms of the kernel function only. For example, the kernel matrix κ̃
corresponding to column-centered feature space observations is given by

κ̃ = κ − κ · 1nn/n − 1nn · κ/n + 1nn · κ · 1nn/n
2,

where 1nn is an n× n matrix of ones. Popular choices are stationary kernels that depend on the vector
difference xi − xj only (they are therefore invariant under translation in feature space), κ(xi, xj) =
κ(xi − xj), and homogeneous kernels (also known as radial basis functions) that depend on the Eu-
clidean distance between xi and xj only, κ(xi, xj) = κ(‖xi − xj‖).

The kernel version of PCA handles non-linearites by implicitly transforming data into high (even
infinite) dimensional feature space via the kernel function and then performing a linear analysis in that
space. The variance of projections along the ith eigenvector ui in the transformed feature space (the
kernel principal components) is given by

Var(uT
i φ(x)) =

λi

n − 1
,
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where λi is the corresponding ith eigenvalue of the (centered) kernel matrix.

As with the kernel PCA, we can use the combination of the dual formulation and the kernel trick
to obtain an implicit non-linear mapping for the MAF transform. The variance of the kernel MAFs,
again for centered kernel matrices, is given by

Var(uT
i φ(x)) =

1

n − 1
.

A detailed account of the kernel MAF transform is given in [9].

3. DATA ANALYSIS

In the case of the kernel versions, to be able to treat the large amounts of pixels (order 106 − 108) it is
necessary to sub-sample the image and use a small portion only (in the order n = 103 training pixels)
to find the eigenvectors onto which we then project the kernelized versions of the entire image. The n
sampled pixel vectors are then referred to as training data and the calculation of the centered kernel
matrix and its diagonalization constitute the training phase. This sub-sampling potentially avoids
problems that may arise from the spatial autocorrelation inherent to image data.

After diagonalization, the generalization phase involves the projection of each image pixel vector
along the eigenvectors of the kernel matrix. For an image with N pixels there are therefore n × N
kernels involved, generally much too large an array to be held in memory, so that it is advisable to read
in and project the image pixels row-by-row.

Kernel PCA and MAF are so-called memory-based methods: whereas ordinary PCA (and MAF)
handles new observations by projecting them onto the eigenvectors found based on the training data,
because of the kernelization of the new observations with the training observations, kernel PCA (and
MAF) needs the original training data as well as the eigenvectors to handle new data (and for kernel
PCA also the eigenvalues).

4. RESULTS

Both satellite images and airborne digital photographs are used in the following to illustrate the effects
of kernelization for enhancing change signals.

4.1 Satellite imagery

Two six-band LANDSAT 5 TM images acquired over irrigation fields in Nevada on successive passes
of the satellite in August-September 1991 (the thermal band is omitted) with 1,000 by 1,000 28.5 m
pixels were registered to one another with sub-pixel accuracy. Then they were processed with the
iteratively re-weighted MAD (IR-MAD) algorithm [10] in order to discriminate change. The MAD
image was post-processed with both ordinary and kernel versions of PCA and MAF analysis.

Kernel MAF was found to suppress the noisy no-change background much more successfully than
ordinary MAF, see Figure 1 showing the MAD image post-processed with ordinary MAF and kernel
MAF transformations. In the latter case a Gaussian kernel κ(xi, xj) = exp(−γ‖xi − xj‖2) with
the scale parameter γ = 0.01 was applied. The change signals are due almost entirely to differing
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vegetation reflection characteristics. Kernel MAF suppresses the noisy no-change background much
more successfully than ordinary MAF.

The ratio between variances of the ordinary MAF component 1 and the kernel MAF component 1
(both scaled to unit variance) calculated in a no-change region of the images is 140 corresponding to
21.5 dB. Kernel MAF analysis also outperforms both linear and kernel PCA here (not shown).

Figure 1. MAF band 1 (left), kernel MAF band 1 (right) for the LANDSAT-5 TM bitemporal image. Both are
stretched linearly from mean (middle gray) minus to plus two standard deviations.

4.2 Aerial imagery

Aerial color photographs were recorded with the airborne DLR 3K-camera system from the German
Aerospace Center (DLR) [11], a system consisting of three off-the-shelf cameras arranged on a mount
with one camera looking in the nadir direction and two cameras tilted approximately 35o across track.
Two 1000 by 1000 pixel sub-images acquired 0.7 seconds apart and covering a busy motorway near
Munich, Germany, were registered to one another with subpixel accuracy. The only physical changes
on the ground are due to the motion of the automobiles.

Again the images were processed with the IR-MAD algorithm and post-processed with ordinary
and kernel MAF, see Figure 2. In this case, kernel MAF component 5 exhibited the smallest no-change
variance: The ratio between variances of the ordinary MAF component 1 and kernel MAF component
5 (both scaled as before to unit variance) calculated in a no-change region of the images is 12.

5. CONCLUSIONS

We have applied both kernel PCA and kernel MAF nonlinear postprocessing to difference images ob-
tained with the (linear) IR-MAD transformation and have achieved, in the case of kernel MAF, quite
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Figure 2. MAF band 1 (left), kernel MAF band 5 (right) for the traffic scene. Both are stretched linearly from
mean (middle gray) minus to plus five standard deviations.

subtantial enhancements of the ratio of change signal to background no-change noise. Further investi-
gations will be needed in order to better understand this phenomenon, particularly the role played by
the choice of different kernel functions and their parameters.

Acknowledgement

The authors would like to express their thanks to the German Aerospace Center (DLR) for permission
to use the traffic scene images.

References

[1] K. Pearson, “On lines and planes of closest fit to systems of points in space,” Philosofical Magazine, vol. 6,
no. 2, pp. 559–572, 1901.

[2] H. Hotelling, “Analysis of a complex of statistical variables into principal components,” Journal of
Educational Psychology, vol. 24, pp. 417–441 and 498–520, 1933.

[3] P. Switzer and A. A. Green, “Min/max autocorrelation factors for multivariate spatial imagery,” Tech. Rep.
6, Department of Statistics, Stanford University, 1984.

[4] P. Switzer and S. E. Ingebritsen, “Ordering of time-difference data from multispectral imagery,” Remote
Sensing of Environment, vol. 20, pp. 85–94, 1986.

[5] A. A. Nielsen and M. J. Canty, “Kernel principal component analysis for change detection,” SPIE Europe
Remote Sensing Conference, vol. 7109A, Cardiff, Great Britain, 15–19 September 2008, Internet
http://www.imm.dtu.dk/pubdb/p.php?5667.

Proc. of SPIE Vol. 7477  74770T-5



[6] B. Schölkopf, A. Smola and K.-R. Müller, Nonlinear component analysis as a kernel eigenvalue problem.
Neural Computation, vol. 10, no. 5, pp. 1299–1319, 1998.

[7] J. Shawe-Taylor and N. Christianini, Kernel Methods for Pattern Analysis. Cambridge University Press,
2004.

[8] C. M. Bishop, Pattern Recognition and Machine Learning. Springer, 2006.

[9] A. A. Nielsen, “Kernel maximum autocorrelation factor and minimum noise fraction transformations,”
submitted, 2009.

[10] A. A. Nielsen, The regularized iteratively reweighted MAD method for change detection in multi- and
hyperspectral data. IEEE Transactions on Image Processing, 16(2), 463–478, 2007. Internet
http://www.imm.dtu.dk/pubdb/p.php?4695.

[11] F. Kurz, B. Charmette, S. Suri, D. Rosenbaum, M. Spangler, A. Leonhardt, M. Bachleitner, R. Stätter, and
P. Reinartz, Automatic traffic monitoring with an airborne wide-angle digital camera system for estimation of
travel times. In U. Stilla, H. Mayer, F. Rottensteiner, C. Heipke, and S. Hinz, editors, Photogrammetric Image
Analysis. International Archives of the Photogrammetry, Remote Sensing and Spatial Information Service
PIA07, Munich, Germany, 2007.

Proc. of SPIE Vol. 7477  74770T-6


	SPIE Proceedings
	MAIN MENU
	Contents
	Search
	Close


