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ABSTRACT
In this paper we propose an approach to handle forward mo-
del uncertainty for EEG source reconstruction. A stochastic
forward model is motivated by the many uncertain contri-
butions that form the forward propagation model including
the tissue conductivity distribution, the cortical surface, and
electrode positions. We first present a hierarchical Bay-
esian framework for EEG source localization that jointly
performs source and forward model reconstruction (SOFO-
MORE). Secondly, we evaluate the SOFOMORE model by
comparison with source reconstruction methods that use fix-
ed forward models. Simulated and real EEG data demon-
strate that invoking a stochastic forward model leads to im-
proved source estimates.

1. INTRODUCTION

Electroencephalography (EEG) measures the electrical ac-
tivity that arises from neurons in the brain by an array of
sensors placed on the scalp. We are interested in recon-
struction of the EEG source generators, which is known as
the inverse problem with a mapping from source space to
sensor space that is many to one. Despite the fact that EEG
source reconstruction is a severe ill-posed problem it con-
tains highly interesting information for the functional imag-
ing community due to its high temporal resolution in com-
parison with functional magnetic resonance imaging (fMRI)
and positron emission tomography (PET). The relation be-
tween the measured EEG signal and the current sources
within the brain can under the quasi-static approximation
of Maxwell’s equation be expressed as a linear combination
of the sources in the so-called forward problem. Given the
measured EEG signalM ∈ ℜNc×Nt and the current sources
S ∈ ℜNd×Nt , withNc,Nd, andNt denoting the number of
channels, dipoles, and time samples, respectively, the for-
ward relation is given by, [1],

M = AS + E , (1)

where the noiseE is assumed additive. The interrelation-
ship between the sensors and the current sources is given

by the lead field matrix/forward modelA ∈ ℜNc×Nd with
the rows referred to as the lead fields for the sensors and
the columns as the forward fields for the sources. In this
contribution we assume the orientations of the dipoles at
the vertices to be perpendicular to cortex. However, a more
flexible orientation can be incorporated by inclusion of three
columns inA per dipole corresponding to the three direc-
tional components. Different levels of complexity of the
head model exist, where the spherical head model, the bound-
ary element method (BEM), and finite element methods (FEM)
are examples of increasingly complex models, [2], [3].

To obtain a unique solution when solving the inverse
EEG problem additional information or constraints such as
anatomical, physiological, and mathematical properties are
needed, [4]–[7]. This has led to a development of a vast
number of inverse methods in the literature. One approach
used is to restrict the estimated current sources to a limited
number of current dipoles. This can lead to an overdeter-
mined inverse problem where the limited set of dipoles is
then fitted to the data by minimizing a measure of recon-
struction error such that the location, orientation, and am-
plitude of the dipoles can be obtained, [8]. A different class
of inverse methods is the so-called distributed models also
known as source imaging techniques, where a distribution
of the current sources is recovered. The well-known mini-
mum norm (MN) estimate [9] reconstructs a source distri-
bution that minimizes thel2-norm of the measurements and
the explained EEG by a given source configuration.

Embedding prior assumptions of the sourcesS into the
reconstruction problem is conveniently implemented in a
Bayesian framework with the use of the prior distribution
p (S). In fact this important choice of prior primarily dif-
ferentiates the different source localization methods. Given
the observed data we can now use the marginal posterior
distribution as representation of the unknown sources,

p (S |M ) =
p (M,S)

p (M)
=

∫

p (M |θ ) p (θ) dθ\S

p (M)
(2)

whereθ is a set of parameters for the model includingS and
θ\S denotes the parameter setθ except forS. To obtain the



posterior distribution forS we marginalize all other param-
eters thanS. The distributionp (M) is the marginal like-
lihood also referred to as the model evidence and is given
by p (M) =

∫

p (M |θ ) p (θ) dθ. The model evidence is
important for model comparison. Since all parameters are
integrated out to obtain the model evidence, the Bayesian
framework naturally favors simpler models over more com-
plex models that a priori can model a larger range of data
sets. Unfortunately, the marginal likelihood becomes in-
tractable for most prior distributions, and thereby the pos-
terior p (S |M ) cannot be computed either. Thus, approxi-
mate methods e.g. Laplace approximation [10], variational
Bayesian (VB) [6], [11], and markov chain monte carlo
(MCMC) sampling [12] have been used.

While existing source localization methods perform the
inversion under the assumption that the forward model is
known, we will treat the source reconstruction problem with-
out making this assumption about the forward model. This
is motivated by the many noise processes that contribute to
the forward model, including the representation of the corti-
cal surface, the conductivity distribution, and electrodepo-
sitions. When ’realistic head models’ are constructed from
tissue segmentation based on e.g. structural MRI, the ge-
ometry of the head model is affected by the resolution and
tissue segmentation errors. The issue of modeling the for-
ward process was recently pursued in [12], [13] from quite a
different viewpoint than ours. In [13] the basic structure of
the forward model is assumed known, while the skull-brain
conductivity ratio is an unknown parameter which is esti-
mated simultaneously with a few sources in a dipole fit set-
ting. Similarly, [12] has proposed a probabilistic approach
for distributed models to account for uncertainties in the
skull conductivity. Here, we apply a more unconstrained ap-
proach by modeling the whole forward model as uncertain
using a prior distribution for the forward model. We pro-
pose a first attempt for distributed models to perform simul-
taneous source and forward model reconstruction, in short
the SOFOMORE model [14]. In this paper we focus on
the evaluation of the performance of modeling the forward
propagation model in the SOFOMORE model in relation to
the MN method.

2. METHODS

Given the linear relation in Eq. 1 and if we assume the noise
to be time independent multivariate Gaussian distributed,
the likelihood for a single time pointt can be expressed
as p (mt |st ,ΣE) = N (mt |Ast,ΣE ) whereΣE is the
noise covariance matrix. For simplicity we assume no tem-
poral correlation. However, this can also be integrated as
outlined in [10]. In the remainder of this paper we assume
ΣE = β−1

INc
. In a minimum norm setting a multivariate

Gaussian prior for the sources with zero mean and covari-

anceα−1
INd

is assumed. Moreover, it is assumed that the
forward propagation modelA = A

(0) is known. With the
use of Bayes rule Eq. 2 it is seen that the posterior distribu-
tion is maximized by

ΣM =
(

A
(0)

(

α−1
INd

)

A
(0)T + β−1

INc

)−1

(3)

SMN =
(

α−1
INd

)

A
(0)T

ΣMM. (4)

It is noted that since the likelihood and prior are both Gaus-
sian distributions, the posterior and marginal likelihoodwill
also be Gaussian distributions. The estimation of the sources,
the precision parametersα and β are performed using a
standard expectation-maximization (EM) scheme [11].

In contrast to the MN formulation we here propose a
hierarchical model that incorporates corrections of the for-
ward fields simultaneously with the source estimation. As
prior for the current sources we use a zero-mean multivari-
ate Gaussian distribution with a diagonal precision matrix
D, where the diagonal elements areα = {αi}

Nd

i=1, st ∼
N

(

0,D−1
)

. Hereby, the dipoles can have different vari-
ances corresponding to some dipoles being expected to be
more active than others. The current variances are assumed
to not change over the time periodt = 1 : Nt and are esti-
mated by an automatic relevance determination prior (ARD)
quite similar to [6]. Thus, we havep (αi |ναi

, ζαi
) = G(αi|

ναi
, ζαi

) whereG (·) is the Gamma distribution with skew-
ness parameterναi

and inverse scale parameterζαi
such that

the mean is given byναi
/ζαi

and the varianceναi

/

ζ2
αi

.
We regard the forward model as a stochastic process,

in which the forward propagation modelA
(0) is used as a

mean value in a multivariate Gaussian prior. Each of the for-
ward fields are modeled as independent, such that the prior
distribution of a single forward field is given by prior mean
a

(0)
i (i’th column inA

(0)) and precisionγi, i.e.

p
(

A

∣

∣

∣
A

(0) ,γ
)

=

Nd
∏

i=1

N
(

ai

∣

∣

∣
a

(0)
i , γ−1

i INc

)

(5)

whereγ = {γi}
Nd

i=1. Assigning each of the forward fields
a precision parameter allows us to differentiate between the
amounts of correction of the forward fields that should be
performed. This is motivated by the belief that some regions
in the brain are more affected than others. Similar to the
precision parameters of the current sources, the precision
parameters for the forward fields are also modeled by con-
jugate prior distributions, i.e.γi ∼ G (γi |νγi

, ζγi
). Like-

wise, the inverse noise variance is assumed to be Gamma
distributed,G (β |νβ , ζβ ). We note that the MN estimate
is a special case of the SOFOMORE solution, where the
prior for the forward fields are just delta functions centered
ata(0)

i and moreover the values of precisions for the current
sources are all equal.



Given the hierarchical structure of the SOFOMORE mo-
del with the parametersθ = {S,A,α,γ, β} the marginal
posterior distribution of the current sources becomes ana-
lytically intractable, thus, approximations are needed. We
apply a standard VB framework [11], in which a parameter-
ized simpler distributionq (θ) approximates the true joint
posteriorp (θ |M ). In the VB framework the parameters of
the q (θ) distribution are determined with a maximization
of a lower bound of the marginal likelihood obtained by the
Jensen’s inequality,

L = ln

∫

p (M |θ ) p (θ) dθ ≥

∫

q (θ) ln
p (M |θ ) p (θ)

q (θ)
dθ

(6)
We assume factorization in the parametersθ = {S,A,

α,γ, β} of the approximate posteriorq (θ). This leads to
the sequential VB updates as illustrated in Fig. 1, where
each of the approximated marginal posterior distributions
of the parameters can be seen.

3. EXPERIMENTS

We demonstrate the effects of the SOFOMORE model sour-
ce reconstruction for both simulated and real EEG data. We
present the recovered source density estimates both with
and without estimated forward fields. Besides the MN met-
hod with a fixed forward model, we also compare the SO-
FOMORE model with a model with a similar hierarchical
structure as the SOFOMORE, however, with a fixed for-
ward field, i.e. noA- or γ-steps are performed. We denote
this model as the ARD model, due to its ARD prior on the
sources. For clarity of the results, the methods work di-
rectly on the measurementsM, i.e. no pre-processing is
performed. However, pre-processing will in general im-
prove the performance. As validation metrics we use the
mean square error (MSE), variance explained (VE), degree
of focalization (DF), and area under the receiver operating
curves (AUC). Definition of the validation metrics is given
in Tab. 1 in section 3.1.

3.1. Simulations

In the simulations a small cortical area in the left occipital
lope is simulated as active. The source signal consist of a
half sine of duration 50ms starting at t=25ms. The simu-
lated sources at t=50ms are shown in the SPM glass-brain
representation in Fig. 2. Due to the mapping from cor-
tex to the glass-brain representation, minor activity seems
to appear at the inner part of left hemisphere. Moreover,
Fig. 2 shows the time series of the simulated sources. The
first 256 rows in the image are the 256 most active sources
and the last 256 rows below the black horizontal line in
the image are 256 randomly drawn sources with the 256
most active sources excluded. This will give an idea of the
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Fig. 2. Left: Simulated sources at t=50ms. Right: Time
series of the 256 largest sources above the horizontal black
line at source number 256. Below this line are 256 randomly
selected sources of the left overs to indicate the noise level.

amount of noise present in the estimated solution. Note,
that since this figure shows the simulated sources, only a
minor part of the most active sources are active. The cor-
responding simulated EEG consists of the clean EEG con-
structed with a 3-spheres forward model by SPM51 with tis-
sue conductivities brain:skull:scalp = 0.33:0.0041:0.33S/m
(ratio 1:1/80:1) and dimension128 × 7204 added with ‘re-
alistic EEG noise’. The amount of noise added to the clean
EEG signal is in the order of a SNR = 10 similar to [6], with
SNR defined as the ratio between the power of the clean
EEG and the noise. The noise is adopted from an evoked
EEG study described in Sec. 3.2, where we have used the
pre-stimulus period as noise. For source estimation three
different 3-spheres head models with a lower spatial resolu-
tion than the ‘true’ forward model is used, and two of these
are added with conductivity errors. In Fig. 3 both the lo-
cation and the time series of the estimated source densities
for MN, ARD, and SOFOMORE are shown. The estimated
sources illustrated on the SPM glass brain correspond to the
time point t=50ms. In this figure a forward model with ‘er-
roneous’ conductivity value for the skull (0.0223 S/m) has
been used. The MN estimate leads to a quite good localiza-
tion of the main activity in the occipital lope, however, also
minor activity in the right pre-motor area is reconstructed.
In the image with the time series included, it is seen that
the MN solution also reconstructs quite a bit of activity out-
side the time period 25-75ms where no activity should be
present. Compared to the MN solution, the source recon-
struction using the ARD model is very sparse with a domi-
nant source located correctly in left occipital region. How-
ever, the ARD model also captures minor activity in the
pre-motor area. It is noted that the amplitude of the ac-
tive sources are much higher than the simulated ones, since
only a few account for most of the energy in the EEG sig-
nal. In contrast, the SOFOMORE model only reconstructs

1The forward model was estimated by the SPM5 academic soft-
ware (http://www.fil.ion.ucl.ac.uk/spm/), based on
routines from BrainStorm (http://neuroimage.usc.edu/
brainstorm/).



Fig. 1. Flow chart of the SOFOMORE model in a VB formulation. A fullyfactorized model inθ = {S,A,α,γ, β} is
applied, where each of the VB updates can be seen with their corresponding approximate posterior distribution to the right.
The log evidence of the model is denotedF , which includes Kullback-Leibler (KL) divergences of the approximate posterior
distributions and their prior distributions. Following notations are used〈·〉 denoting the expectation,lTj the j’th row in A,
andG a diagonal matrix withλ in the diagonal. Furthermore,ψ (·) is the digamma function and its derivative isψ′ (·).
Hyper-hyperparameters of the formνx andζx are updated using Newton-Raphson.

the activity in the left occipital and minimal activity outside
the time period of the simulated source is reconstructed. It
is seen that regarding the forward fields as stochastic pro-
cesses leads to an improvement relative to the source esti-
mates obtained with fixed forward model in the ARD mo-
del.

In Fig. 4 similar source estimates with a ‘correct’ choice
of conductivities are shown. A better estimate of the source
amplitudes is shown compared to the simulated sources ex-
cept for the ARD method due to its sparse nature. Indeed, an
improvement of the ARD source estimates is also obtained
by taking the uncertainty of the forward fields into account
here, even with the ‘correct’ conductivity values given. This
is further validated by the accuracy metrics described in
Tab. 1. Table 2 shows the results for all three forward mod-
els used for source reconstruction. Note that illustrations
as Fig. 3 and 4 for the third forward model with conductiv-
ity errors included (brain:skull:scalp=0.33:0.0013:0.33S/m)
have been left out, since the results are quite similar to the
ones in Fig. 3 and 4 with reconstruction of minor misleading
activity in the pre-motor area for the MN and ARD methods.
The differences can be seen from the validation metrics.

Table 1. Validation metrics.
Definition

MSE =
Nt
∑

t=1
‖ŝt − st‖

2
/

Nt
∑

t=1
‖st‖

2

VE =
Nc
∑

j=1

var
(

Mj· − a
T
j S

)

/
Nc
∑

j=1

var (Mj·)

DF =
∑

i∈Θ

∥

∥

∥
Ŝi· − Si·

∥

∥

∥

2

/
∑

i∈Θ

‖Si·‖
2

AUC: Corresponding top(Ê (i′) > Ê (i)), with i′ deno-
ting the index of an active source andi a inactive source
andÊ (i) = ||Ŝi·||2/max(||Ŝ||2)

3.2. Real EEG data

In this section real EEG data is used, which is from a multi-
modal study on face perception, where faces and scrambled
faces were presented for 600ms every 3600ms to a subject.
A detailed description of the experiment is given in [15]
andhttp://www.fil.ion.ucl.ac.uk/spm (where the
data is available for download). In this contribution we re-
construct the average event related potential (ERP) of trials



Table 2. Results of validation metrics for MN, ARD, and SOFOMORE on three forward models with different conductivity ratios.
SOFOMORE performs best in the metrics MSE, VE and AUC. Optimal value for VE is 88.2%. Note that MSE measures the ability to
reconstruct the true active sources while keeping estimates of the true inactive sources small. SOFOMORE’s ability to suppress the noise
results in the best MSE. In contrast, DF measures only the relative squared error of the source estimates for the simulated region. Since the
amplitudes of the MN estimates are higher than SOFOMORE’s but still smaller than the true, MN perform best in this measure.

MN ARD SOFOMORE
1:1/15:1 1:1/80:1 1:1/250:1 1:1/15:1 1:1/80:1 1:1/250:1 1:1/15:1 1:1/80:1 1:1/250:1

MSE 0.85 1.08 5.05 3.92 20.21 119.86 0.91 0.76 0.74
VE 99.0% 98.8% 98.8% 99.5% 99.1% 98.7% 95.5% 91.6% 81.5%
DF 0.76 0.42 0.30 2.11 8.03 78.44 0.88 0.69 0.56
AUC 0.93 0.97 0.98 0.89 0.93 0.87 0.92 0.99 0.99

256 most active dipoles

Time [ms]

S
ou

rc
es

 

 

0 20 40 60 80 100 120

100

200

300

400

500 −0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

(a) MN

256 most active dipoles

Time [ms]

S
ou

rc
es

 

 

0 20 40 60 80 100 120

100

200

300

400

500

−20

−10

0

10

20

30

(b) ARD

256 most active dipoles

Time [ms]

S
ou

rc
es

 

 

0 20 40 60 80 100 120

100

200

300

400

500
−0.5

0

0.5

1

1.5

(c) SOFOMORE

Fig. 3. Source estimates when forward model with ‘erro-
neous’ conductivity values (ratios 1:1/15:1) are used. Left:
Activity at t=50ms. Right: Time series as indicated in Fig.2.

involving real faces as stimuli. The estimated source densi-
ties att=170ms for MN, ARD, and SOFOMORE are illus-
trated in Fig. 5. Quite different results are obtained, withthe
three source localization methods. The MN leads to activ-
ity in a larger area compared to the ARD and SOFOMORE,
with most of its activity located in the right occipital re-
gion, the right frontal region and right fusiform gyrus. The
ARD results in scattered activity with two prominent voxel
in the left and right temporal lope, respectively, and less
prominent voxels in the visual cortex. In contrast, forward
modeling in SOFOMORE leads to improved localization of
activity in the visual cortex compared to the ARD with a
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Fig. 4. Similar to Fig. 3 however with ‘correct’ conductivity
values (ratios 1:1/80:1).

fixed forward model. The source estimate in SOFOMORE
is quite similar to the MN solution, however with a domi-
nant region in the left visual cortex and basically no frontal
activity. The SOFOMORE also leads to weak activity in
both the left and right fusiform gyrus, which is known to be
connected with face processing. This is well-aligned with
results reported in [10].

4. CONCLUSION

We presented the first results of a hierarchical Bayesian fra-
mework for simultaneous source and forward model recon-
struction, with no explicit physical assumptions about the
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Fig. 5. Estimated activityt = 170ms after stimulus. Tissue
conductivities brain:skull:scalp = 0.33:0.0041:0.33S/mare
used.

source and forward model error. Both simulations and re-
sults from real EEG data illustrated an improvement of a
similar model where the forward model is assumed fixed.
Moreover, a comparison with the minimum norm method
was also used to illustrate the applicability of the extended
hierarchical model. Simulation results showed that the SO-
FOMORE model was able to reduce large distance errors.
A serious concern of extending source localization meth-
ods to include forward model reconstruction is overfitting.
However, the choice of an ARD prior on the forward fields
allows corrections to mainly be performed where it is re-
quired to fit the signal while keeping the model simple.
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